WO2023181955A1 - Method for producing glass article, glass article, and layered product - Google Patents

Method for producing glass article, glass article, and layered product Download PDF

Info

Publication number
WO2023181955A1
WO2023181955A1 PCT/JP2023/008972 JP2023008972W WO2023181955A1 WO 2023181955 A1 WO2023181955 A1 WO 2023181955A1 JP 2023008972 W JP2023008972 W JP 2023008972W WO 2023181955 A1 WO2023181955 A1 WO 2023181955A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
glass article
less
treatment
water
Prior art date
Application number
PCT/JP2023/008972
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 野田
茂嘉 伊藤
晋吉 三和
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023181955A1 publication Critical patent/WO2023181955A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Definitions

  • the present invention relates to a method for manufacturing a glass article, a glass article, and a laminate including the glass article.
  • Chemically strengthened glass is often used as cover glass for devices such as various electronic terminals and display devices.
  • so-called foldable type devices have been developed in which the display surface of the display can be folded, and chemically strengthened glass is also used for the cover glass of such foldable type devices.
  • An object of the present invention is to provide a glass article having high pen drop strength.
  • the method for manufacturing a glass article according to the present invention includes a preparation step of preparing a processing glass made of alkali aluminosilicate glass containing an alkali metal oxide as a glass composition;
  • the present invention is characterized by comprising a water treatment step of bringing the glass for treatment into contact with the treated water for 0.5 hours or more and less than 15 hours.
  • the present inventors have found that when the glass for treatment is alkali aluminosilicate glass, by performing the water treatment process in which the glass for treatment is brought into contact with the treated water for the predetermined period of time, pen drops of the glass for treatment can be reduced. It was found that the strength was significantly improved. Such a pen drop strength improvement effect persists even after the water treatment step, that is, after the contact between the treatment glass and the treated water is removed. Therefore, a glass article having high pen drop strength can be provided.
  • the glass for treatment is immersed in treatment water at a temperature of 46 to 100°C.
  • the pen drop strength of the treated glass can be efficiently improved in a short time.
  • the processing time the contact time between the processing glass and the processing water
  • the processing water the contact time between the processing glass and the processing water
  • glass articles having high pen drop strength can be efficiently manufactured.
  • the glass for treatment in the water treatment step, may be immersed in treatment water heated to 100° C. or higher in a pressurized atmosphere.
  • the pen drop strength of the treated glass can be efficiently improved in a short time.
  • the processing time required to obtain the desired pen drop strength can be relatively shortened. Therefore, glass articles having high pen drop strength can be efficiently manufactured.
  • the electrical conductivity of the treated water is 3 mS/m or less.
  • the pen drop strength of the treated glass can be further improved. Therefore, the pen drop strength of the glass article manufactured from the processing glass is further improved.
  • the glass for processing is preferably in the form of a plate or sheet with a thickness of 0.005 to 0.1 mm.
  • the processing glass becomes thinner in this way, a glass article manufactured from the processing glass can also be suitably used for foldable type devices.
  • the impact resistance of the glass article inevitably tends to decrease, making it more important to improve the pen drop strength. Therefore, the pen drop strength improving effect of the present invention becomes more useful.
  • the processing glass may be pre-formed within the above thickness range (0.005 to 0.1 mm) by an overflow down-draw method.
  • the treatment glass before the water treatment step, the treatment glass is brought into contact with an alkali metal nitrate to form a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface. It is preferable to further include a chemical strengthening step.
  • the glass for processing and the glass article become chemically strengthened glass having a compressive stress layer on the surface. Therefore, the pen drop strength of the glass article can be improved, and the bending strength can also be improved.
  • a glass article with improved bending strength as described above can also be suitably used for foldable type devices.
  • the temperature of the treated water is 50 to 95°C, and the contact time of the treatment glass and the treated water is 0.5 to 10 hours. is preferred.
  • the water treatment conditions are particularly suitable when the glass for treatment is chemically strengthened glass, and the pen drop strength of the glass article made of chemically strengthened glass can be efficiently improved.
  • the glass for treatment has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-80%.
  • the alkali metal nitrate is preferably a molten salt containing potassium nitrate .
  • the glass article according to the present invention which was invented to solve the above problems, is a plate-shaped or sheet-shaped glass article with a thickness of 0.005 to 0.1 mm, and has a spherical tip with a diameter of 0.7 mm.
  • the 60% fracture height is 5 cm or more.
  • the surface is provided with a compressive stress layer having a maximum compressive stress of 100 MPa or more.
  • the bending strength is improved in addition to the pen drop strength, so it can be suitably used for foldable type devices.
  • the laminate according to the present invention which was created to solve the above problems, is a glass article having the configuration of (12) or (13) above, and is laminated on at least one main surface of the glass article. It is characterized by comprising a protective layer or a reinforcing layer.
  • the protective layer can protect the glass article to achieve higher pen drop strength, and the reinforcing layer can reinforce the glass article to achieve higher bending strength.
  • a glass article having high pen drop strength can be provided.
  • FIG. 1 is a schematic diagram showing a cross section of a glass article according to a first embodiment of the present invention.
  • FIG. 3 is an image diagram of stress distribution in the thickness direction of the glass article according to the first embodiment of the present invention. It is a flow diagram of a manufacturing method of a glass article concerning a first embodiment of the present invention. It is a sectional view showing an embodiment of the water treatment process included in the manufacturing method of the glass article concerning the first embodiment of the present invention. It is a schematic diagram showing the cross section of the layered product concerning a second embodiment of the present invention. It is a flowchart of the manufacturing method of the glass article based on 3rd embodiment of this invention. It is a flowchart of the manufacturing method of the glass article based on 4th embodiment of this invention. It is a flowchart of the manufacturing method of the glass article based on 5th embodiment of this invention.
  • FIG. 2 is a side view showing an embodiment of a pen drop test.
  • FIG. 3 is a side view showing an embodiment of
  • the glass article 1 according to the first embodiment has a plate shape or a sheet shape.
  • the thickness t of the glass article 1 is not particularly limited, but is preferably 0.005 to 0.1 mm. The invention is particularly useful for such thin glasses.
  • the glass article 1 preferably has a 60% fracture height of 5 cm or more in a pen drop test in which a 5.7 g pen having a spherical tip with a diameter of 0.7 mm is dropped onto the main surface.
  • the 60% fracture height of the glass article 1 is more preferably 7 cm or more, 10 cm or more, or 15 cm or more.
  • the glass article 1 is chemically strengthened glass that has been chemically strengthened by ion exchange, and includes a compressive stress layer 2 and a tensile stress layer 3.
  • a compressive stress layer 2 and a tensile stress layer 3.
  • the two-point bending strength of the glass article 1 is preferably 900 MPa or more.
  • the two-point bending strength of the glass article 1 is more preferably 1000 MPa or more, 1100 MPa or more, or 1200 MPa or more.
  • the compressive stress layer 2 is formed on the surface layer portion of the glass article 1 including the main surface 1a and the end surface 1b.
  • the tensile stress layer 3 is formed inside the glass article 1, that is, at a deeper position than the compressive stress layer 2.
  • the main surface refers to the front and back surfaces of the entire plate-shaped or sheet-shaped glass surface excluding the end surfaces.
  • FIG. 2 An example of the stress distribution of the glass article 1 is shown in FIG. 2.
  • the vertical axis shows the stress value
  • the horizontal axis shows the depth from the surface.
  • FIG. 2 is an image diagram schematically showing the stress distribution by linear approximation, the stress distribution may be approximated by other functions (for example, a single curve function or a combination of multiple curve functions). Further, in this specification, unless otherwise specified, the magnitude of each stress is indicated by an absolute value.
  • the stress distribution of the glass article 1 is not limited to the embodiment shown in FIG. 2 .
  • the stress distribution shown in FIG. 2 illustrates the case where the glass article 1 is tempered glass that has been subjected to one-step ion exchange treatment.
  • the compressive stress is maximum at the surface (maximum compressive stress CS)
  • the stress gradually decreases as the depth from the surface increases, and the stress becomes zero at the depth DOC. That is, DOC is synonymous with the depth of compressive stress.
  • a tensile stress layer 3 having tensile stress extends in a region deeper than the depth DOC.
  • the stress distribution of the glass article 1 is preferably symmetrical on the front and back sides, as shown in FIG.
  • the tensile stress layer 3 includes a first region A1 where the tensile stress varies in the thickness direction of the glass article 1, and a second region A2 where the tensile stress is constant in the thickness direction. More specifically, the first region A1 extends from the depth DOC of the compressive stress layer 2 to the tensile stress convergence depth DCT, and the absolute value of the tensile stress gradually increases as the depth increases (the negative number shown in FIG. 2 In the title, it is a region (gradually decreasing). The second region A2 extends deeper than the tensile stress convergence depth DCT, and is a region where the tensile stress is constant in the thickness direction.
  • tensile stress is constant refers to the amount of change in stress in the depth direction being 0.5 MPa/ ⁇ m or less, and the amount of change is, for example, the differential of stress sampled at intervals of 0.1 ⁇ m in depth. It can be calculated by the value.
  • the depth DOC of the compressive stress layer 2 of the glass article 1 is preferably 20 ⁇ m or less, 1 ⁇ m or more and 19 ⁇ m or less, 2 ⁇ m or more and 18 ⁇ m or less, 3 ⁇ m or more and 17.5 ⁇ m or less, and 4 ⁇ m or more and 17 ⁇ m or less.
  • the depth of the compressive stress layer is It has been found that it is effective to make the thickness 20 ⁇ m or less. By doing this, it is possible to ensure safety while having sufficient strength against bending.
  • the maximum compressive stress CS in the compressive stress layer 2 of the glass article 1 is preferably 100 MPa or more, 200 MPa or more and 1000 MPa or less, 300 MPa or more and 900 MPa or less, 400 MPa or more and 870 MPa or less, 430 MPa or more and 850 MPa or less, or 450 MPa or more and 800 MPa or less.
  • the depth DOC of the compressive stress layer 2 satisfies the thickness t of the glass article 1 and the following formula (2).
  • the upper limit range of DOC/t is preferably 0.23 or less.
  • the lower limit range of DOC/t is preferably 0.03 or more and 0.10 or more.
  • the tensile stress convergence depth DCT can be calculated using the following formula (3).
  • DCT (CS+CT)/(CS/DOC) (3)
  • the upper limit range of the maximum tensile stress CT in the second region A2 is preferably 1000 MPa or less, 500 MPa or less, 400 MPa or less, 285 MPa or less, 250 MPa or less, 240 MPa or less, 230 MPa or less, 220 MPa or less, 210 MPa or less, 200 MPa or less, 190 MPa or less, 180 MPa Below, 170 MPa or less, 160 MPa or less, 150 MPa or less, 145 MPa or less, 140 MPa or less, 130 MPa or less, 120 MPa or less, 110 MPa or less, 100 MPa or less, 95 MPa or less, 85 MPa or less, and 70 MPa or less.
  • the lower limit range of the maximum tensile stress CT is preferably 10 MPa or more, 20 MPa or more, 35 MPa or more, 50 MPa or more, 55 MPa or more, and 60 MPa or more.
  • numerical values related to stress such as CS, DOC, DCT, CT, etc. can be derived by measuring the stress distribution of the glass using a measuring device such as FSM-6000 or SLP-1000 manufactured by Orihara Seisakusho, for example.
  • the lower limit range of the Young's modulus of the glass article 1 is preferably 55 GPa or more, 57 GPa or more, 60 GPa or more, or 62 GPa or more.
  • the upper limit range of the Young's modulus of the glass article 1 is preferably 90 GPa or less.
  • the overflow down-draw method is preferable from the viewpoint of cost and production volume, but the thinner the sheet, the more rapidly the glass is cooled, the lower the CS, and the deeper the DOC tends to be. . It is also known that when thin glass is ion-exchanged, it is difficult to obtain a high CS compared to thick glass because there is less glass inside to suppress the volumetric expansion of the ion-exchanged portion. Therefore, for thin glass, it is not easy to achieve both high CS and shallow DOC at a high level, which is more than just a matter of design. That is, it is necessary to appropriately select the glass composition, glass forming method, and strengthening conditions.
  • an alkali aluminosilicate glass suitable for chemical strengthening is suitable, and a composition that can obtain a particularly high surface compressive stress value among alkali aluminosilicate glasses is suitable.
  • a compositional balance is preferred that achieves a high liquidus viscosity to enable.
  • the glass article 1 has, for example, a glass composition of 50 to 80% SiO 2 , 5 to 25% Al 2 O 3 , 0 to 35% B 2 O 3 , 0 to 20% Li 2 O, and 0 to 20% Na 2 O as a glass composition. It is preferable to contain 1 to 20% of K 2 O and 0 to 10% of K 2 O.
  • SiO 2 is a component that forms the glass network. If the content of SiO 2 is too low, it becomes difficult to vitrify, and the coefficient of thermal expansion becomes too high, making it easy to reduce thermal shock resistance. Therefore, the preferable lower limit range of SiO 2 is 50% or more, 55% or more, 57% or more, 59% or more, especially 61% or more in terms of mol%. On the other hand, if the content of SiO 2 is too large, meltability and moldability tend to decrease, and the coefficient of thermal expansion becomes too low, making it difficult to match the coefficient of thermal expansion of surrounding materials. Therefore, the preferable upper limit range of SiO 2 is 80% or less, 70% or less, 68% or less, 66% or less, 65% or less, particularly 64.5% or less.
  • Al 2 O 3 is a component that improves ion exchange performance, and is also a component that increases strain point, Young's modulus, fracture toughness, and Vickers hardness. Therefore, the preferable lower limit range of Al 2 O 3 is 5% or more, 8% or more, 10% or more, 11% or more, and 11.2% or more in terms of mol%. On the other hand, if the content of Al 2 O 3 is too large, the high temperature viscosity increases and the meltability and moldability tend to decrease. Furthermore, devitrification crystals tend to precipitate in the glass, making it difficult to form it into a plate shape using an overflow down-draw method or the like.
  • the preferable upper limit range of Al 2 O 3 is 25% or less, 21% or less, 20.5% or less, 20% or less, 19.9% or less, 19.5% or less, 19.0% or less, especially 18 .9% or less.
  • B 2 O 3 is a component that lowers high-temperature viscosity and density, stabilizes the glass, makes it difficult for crystals to precipitate, and lowers the liquidus temperature. It is also a component that suppresses Young's modulus and increases bending strength and crack resistance. However, if the content of B 2 O 3 is too high, ion exchange treatment tends to cause surface discoloration called discoloration, decrease in water resistance, and decrease in the compressive stress value of the compressive stress layer. There is.
  • the preferable lower limit range of B 2 O 3 is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, 0.3% or more in mol%, and the preferable upper limit range is is 35% or less, 30% or less, 25% or less, 22% or less, 20% or less, particularly 15% or less.
  • the content of B 2 O 3 can be more preferably 0.2 to 5% and 0.3 to 1%.
  • the upper limit range of the B 2 O 3 content is preferably 1% or more, 1.5% or more, and 2% or more.
  • the lower limit range can be 5% or less, 4.5% or less, 4% or less, or 3% or less.
  • the content of B 2 O 3 can be more preferably 10 to 25%, 15 to 23%, or 18 to 22%.
  • Li 2 O is an ion exchange component, and in particular is a component that ion exchanges Li ions contained in the glass with K ions in the molten salt to obtain a high surface compressive stress value. Moreover, Li 2 O is a component that lowers high temperature viscosity and improves meltability and moldability. Therefore, the preferable lower limit range of Li 2 O is 0% or more, 3% or more, 4% or more, 4.2% or more, 5% or more, 5.5% or more, 6.5% or more, 7% by mole. % or more, 7.3% or more, 7.5% or more, 7.8% or more, especially 8% or more.
  • the preferable upper limit range of Li 2 O is 20% or less, 15% or less, 13% or less, 12% or less, 11.5% or less, 11% or less, 10.5% or less, less than 10%, especially 9. 9% or less, 9% or less, 8.9% or less.
  • Na 2 O is an ion exchange component, and also a component that lowers high temperature viscosity and improves meltability and moldability.
  • Na 2 O is also a component that improves devitrification resistance and reaction devitrification with molded refractories, especially alumina refractories. If the content of Na 2 O is too low, the meltability will be reduced, the coefficient of thermal expansion will be too low, and the ion exchange rate will tend to be reduced. Therefore, the preferred lower limit range of Na 2 O is 1% or more, 5% or more, 7% or more, 8% or more, 8.5% or more, 9% or more, 9.5% or more, 10% or more in terms of mol%. , 11% or more, 12% or more, especially 12.5% or more.
  • the preferred upper limit ranges of Na 2 O are 20% or less, 19.5% or less, 19% or less, 18% or less, 17% or less, 16.5% or less, 16% or less, 15.5% or less, especially It is 15% or less.
  • K 2 O is a component that lowers high temperature viscosity and improves meltability and moldability. Furthermore, it is a component that improves devitrification resistance and increases Vickers hardness. However, if the content of K 2 O is too large, the viscosity at which phase separation occurs tends to decrease. Furthermore, acid resistance tends to decrease, the glass composition lacks component balance, and devitrification resistance tends to decrease. Therefore, the preferable lower limit range of K 2 O is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, 0.5% or more, 1% or more, 1.5% by mole. % or more, 2% or more, 2.5% or more, 3% or more, especially 3.5% or more, and the preferable upper limit range is 10% or less, 5.5% or less, 5% or less, especially 4.5%. less than
  • Li 2 O and Na 2 O are components that obtain a high surface compressive stress value by ion exchange with K ions in the molten salt, and either of them is an essential component for the present invention. Therefore, the preferable lower limit range of Li 2 O + Na 2 O is 1% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% by mole. % or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, especially 18.5% or more.
  • a preferable upper limit range of Li 2 O+Na 2 O is 20% or less, particularly 19% or less.
  • the glass article 1 may also contain, for example, the following components as a glass composition.
  • MgO is a component that lowers high-temperature viscosity, increases meltability and moldability, and increases strain point and Young's modulus.
  • MgO is a component that has the greatest effect on improving ion exchange performance. be.
  • the preferable upper limit range of MgO is 12% or less, 10% or less, 8% or less, 6% or less, especially 5% or less.
  • the preferable lower limit range of MgO is 0.1% or more, 0.5% or more, 1% or more, especially 2% or more in mol%.
  • CaO Compared to other components, CaO has a large effect of lowering high temperature viscosity, increasing meltability and moldability, and increasing strain point and Young's modulus without reducing devitrification resistance.
  • the content of CaO is preferably 0 to 10%. However, if the content of CaO is too large, the density and coefficient of thermal expansion will increase, and the glass composition will lack component balance, making the glass more likely to devitrify or deteriorate its ion exchange performance. Therefore, the preferred content of CaO is 0 to 5%, 0.01 to 4%, 0.1 to 3%, particularly 1 to 2.5% in terms of mol%.
  • SrO is a component that lowers high-temperature viscosity, improves meltability and moldability, and increases strain point and Young's modulus without reducing devitrification resistance. However, if the content of SrO is too large, the density and coefficient of thermal expansion will increase, the ion exchange performance will decrease, and the component balance of the glass composition will be lacking, making the glass more likely to devitrify.
  • the preferred content range of SrO is 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to less than 0.1% in terms of mol%.
  • BaO is a component that lowers high-temperature viscosity, improves meltability and moldability, and increases strain point and Young's modulus without reducing devitrification resistance. However, if the content of BaO is too large, the density and coefficient of thermal expansion will increase, the ion exchange performance will decrease, and the component balance of the glass composition will be lacking, making the glass more likely to devitrify.
  • the preferred content range of BaO is 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to less than 0.1% in terms of mol%.
  • ZnO is a component that enhances ion exchange performance, and is particularly effective in increasing compressive stress values. It is also a component that reduces high temperature viscosity without reducing low temperature viscosity. However, if the ZnO content is too large, the glass tends to undergo phase separation, the devitrification resistance decreases, the density increases, and the stress depth of the compressive stress layer decreases. Therefore, the content of ZnO is preferably 0 to 6%, 0 to 5%, 0 to 1%, 0 to 0.5%, particularly 0 to less than 0.1% in terms of mol%.
  • ZrO 2 is a component that significantly increases ion exchange performance, and also increases viscosity near the liquidus viscosity and strain point, but if its content is too large, there is a risk that devitrification resistance will decrease significantly. However, there is a risk that the density may become too high. Therefore, the preferable upper limit range of ZrO 2 is 10% or less, 8% or less, 6% or less, particularly 5% or less in terms of mol%. In addition, when it is desired to improve the ion exchange performance, it is preferable to introduce ZrO 2 into the glass composition. In that case, the preferable lower limit range of ZrO 2 is 0.001% or more, 0.01% or more, 0.5%. %, especially 1% or more.
  • P 2 O 5 is a component that enhances ion exchange performance, and particularly increases the stress depth of the compressive stress layer. It is also a component that suppresses Young's modulus to a low level. However, if the content of P 2 O 5 is too large, the glass tends to undergo phase separation. Therefore, the preferable upper limit range of P 2 O 5 is 10% or less, 8% or less, 6% or less, 4% or less, 2% or less, 1% or less, particularly less than 0.1% in terms of mol%.
  • SnO 2 +SO 3 +Cl refers to the total amount of SnO 2 , SO 3 and Cl.
  • the preferred content range of SnO 2 is 0 to 10,000 ppm, 0 to 7,000 ppm, particularly 50 to 6,000 ppm.
  • the preferred content range of Cl is 0 to 1500 ppm, 0 to 1200 ppm, 0 to 800 ppm, 0 to 500 ppm, particularly 50 to 300 ppm.
  • the preferred content range for SO 3 is 0 to 1000 ppm, 0 to 800 ppm, particularly 10 to 500 ppm.
  • Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase Young's modulus, and when a complementary color is added, they are decolored and can control the color of the glass.
  • the cost of the raw material itself is high, and if a large amount is introduced, the devitrification resistance tends to decrease. Therefore, the content of the rare earth oxide is preferably 4% or less, 3% or less, 2% or less, 1% or less, particularly 0.5% or less.
  • the glass article 1 substantially not contain As 2 O 3 , F, PbO, or Bi 2 O 3 .
  • substantially does not contain As 2 O 3 means that although As 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level, and specifically, , indicates that the content of As 2 O 3 is less than 500 ppm.
  • substantially no F means that although F is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that the F content is less than 500 ppm. refers to something.
  • substantially no PbO means that although PbO is not actively added as a glass component, it may be mixed in at an impurity level. Specifically, if the PbO content is less than 500 ppm, refers to something. "Substantially does not contain Bi 2 O 3 " means that although Bi 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, Bi 2 O 3 is not actively added as a glass component. It means that the O 3 content is less than 500 ppm.
  • the glass article 1 may not contain B 2 O 3 as a glass composition, or the content of B 2 O 3 may be limited to a very small amount. That is, the glass article 1 has a glass composition, in mol%, of SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-1%, Li 2 O 0-20%, Na 2 O. It may contain 1 to 20% of K 2 O and 0 to 10% of K 2 O.
  • the glass article 1 may include B 2 O 3 as an essential component in the glass composition. That is, the glass article 1 has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 1-5%, Li 2 O 0-20%, Na 2 It may contain 1 to 20% of O and 0 to 10% of K 2 O.
  • the glass article 1 contains B 2 O 3 as an essential component, there is a concern that the formability of the glass will decrease, so the content of other components such as Al 2 O 3 may be adjusted to maintain balance. may be restricted. That is, the glass article 1 has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-10%, B 2 O 3 1-5%, Li 2 O 0-20%, Na 2 It may contain 1 to 20% of O and 0 to 10% of K 2 O.
  • the method for manufacturing a glass article according to the first embodiment includes a preparation step S1, a chemical strengthening step S2, and a water treatment step S3 in this order.
  • processing glass that is the source of the above-mentioned glass article 1 is prepared.
  • the processing glass is a glass having the same shape and size and glass composition as the glass article 1 described above.
  • the glass for processing is obtained by cutting and processing a plate-like or sheet-like mother glass obtained by a forming method such as an overflow down-draw method, a slot down-draw method, a float method, or a redraw method into small glass pieces.
  • a forming method such as an overflow down-draw method, a slot down-draw method, a float method, or a redraw method into small glass pieces.
  • an overflow down-draw method as the molding method.
  • the overflow down-draw method it is easy to mold glass for processing with a thickness of 0.005 to 0.1 mm without polishing (including mechanical polishing and etching) after molding. Note that when molded by the overflow down-draw method, the processing glass has a molding convergence surface inside.
  • the end face of the glass for treatment is subjected to chamfering and strength improvement treatment by polishing, heat treatment, etching, etc.
  • the main surface of the glass for processing may be polished, but for example, if the main surface has been formed smooth in advance by the overflow down-draw method, or if it has been formed with uniform thickness and precision, the main surface may be polished. may be used without polishing, that is, with the unpolished surface. Note that if the glass is formed by the overflow down-draw method and is not polished, the main surface of the glass for processing will be the fire-finished surface.
  • the glass for treatment is subjected to ion exchange treatment.
  • the glass for treatment is immersed in a molten salt for ion exchange treatment.
  • the molten salt is a salt containing a component that can be ion-exchanged with the component in the chemically strengthened glass, and is typically an alkali metal nitrate.
  • alkali metal nitrates include NaNO 3 , KNO 3 , LiNO 3 , and the like, and each of these can be used alone (at 100% by mass) or in combination.
  • the mixing ratio may be determined arbitrarily, but for example, NaNO 3 5 to 95%, KNO 3 5 to 95%, preferably NaNO 3 30 to 80%, KNO 3 in mass %. 3 20-70%, more preferably NaNO 3 50-70% and KNO 3 30-50%.
  • the temperature of the molten salt is, for example, 350°C to 500°C, preferably 355°C to 470°C, 360°C to 450°C, 365°C to 430°C, or 370°C to 410°C.
  • the immersion time is, for example, 3 to 300 minutes, preferably 5 to 120 minutes, and 7 to 100 minutes.
  • the conditions such as the temperature of the molten salt and the immersion time can be changed as appropriate depending on the glass composition, etc., within a range that allows the above-mentioned stress characteristics to be obtained.
  • the glass for treatment is brought into contact with the treated water for 0.5 hours or more and less than 15 hours.
  • the pen drop strength of the treated glass is improved.
  • the pen drop strength of the treatment glass is maintained even after the water treatment step S3, the pen drop strength of the glass article 1 manufactured from the treatment glass is also improved. Note that if the contact time between the glass for treatment and the treated water (hereinafter referred to as water treatment time) is too short or too long, the pen drop strength improvement effect cannot be fully enjoyed. Therefore, it is important that the water treatment time be within the above numerical range.
  • the lower limit range of the water treatment time is preferably 0.75 hours or more, 1 hour or more, 1.25 hours or more, and 1.5 hours or more.
  • the upper limit range of the water treatment time is preferably 14 hours or less, 13 hours or less, 12 hours or less, or 11 hours or less.
  • the temperature of the treated water is, for example, 10 to 100°C.
  • the lower limit range of the temperature of the treated water is preferably 20°C or higher, 30°C or higher, 40°C or higher, or 46°C or higher.
  • the upper limit range of the temperature of the treated water is preferably 95°C or lower, 90°C or lower, or 85°C or lower. As the temperature of the treated water increases, the treatment time to achieve the desired pen drop strength tends to decrease.
  • the temperature of the treated water is 50 to 95°C and the water treatment time is 0.5 to 10 hours.
  • the electrical conductivity of the treated water is preferably 3 mS/m or less.
  • the electrical conductivity of the treated water is more preferably 1 mS/m or less, 0.1 mS/m or less, or 0.01 mS/m or less. As the electrical conductivity of the treated water decreases, it becomes easier to improve the pen drop strength of the treated glass.
  • the treated water preferably does not contain detergents and their materials (eg, surfactants, water softeners, sequestrants, pH adjusters, stabilizers), and the like.
  • FIG. 4 An example of an embodiment of the water treatment step S3 is shown in FIG. 4.
  • a glass for treatment 6 is immersed in treated water 5 stored in a container 4.
  • the treated water 5 for example, a plurality of pieces of glass for treatment 6 are supported in a vertical position by support stands 7 at predetermined intervals in the thickness direction.
  • the container 4 containing the glass for treatment 6 and the treated water 5 is housed in a constant temperature device (temperature adjustment device) 8 that is maintained at a prescribed temperature for a predetermined period of time, and the glass for treatment 6 is subjected to water treatment. .
  • a constant temperature device temperature adjustment device
  • the method of bringing the treated water into contact with the treated glass is not particularly limited, but as mentioned above, it is preferable to adopt a method of immersing the treated glass in the treated water stored in a container. At this time, it is preferable to leave the glass for treatment still in the treatment water without applying external vibrations such as ultrasonic waves to the treatment water. By immersing the glass in the treated water in this manner, the entire glass for treatment can be efficiently brought into contact with the treated water, making it easier to enjoy the effect of improving pen drop strength.
  • the treated water may be sprayed onto the glass for treatment from a nozzle or the like, or the water may be flowed over the entire surface of the glass for treatment.
  • the glass for treatment may be moved relative to the treated water. Specifically, for example, the glass for treatment immersed in the treatment water may be moved within the treatment water, or the glass for treatment may be moved within an area where the treatment water is sprayed and supplied by a nozzle or the like.
  • a laminate 9 according to the second embodiment includes the above-mentioned glass article 1, a protective layer 10a laminated on one main surface 1a (for example, the front surface) of the glass article 1, and A reinforcing layer 10b laminated on the other main surface 1a (for example, the back surface) is provided.
  • the protective layer 10a since the glass article 1 is protected by the protective layer 10a, higher pen drop strength can be achieved.
  • the bending strength of the glass article 1 can be improved by the reinforcing layer 10b, and damage during bending can be suppressed.
  • the protective layer 10a is provided on the front side of the glass article 1 that a pen or the like comes into contact with, and the reinforcing layer 10b is provided on the back side of the glass article 1 that a pen or the like does not come into contact with. Note that only one of the protective layer 10a and the reinforcing layer 10b may be provided.
  • Examples of the protective layer 10a and the reinforcing layer 10b include plate-shaped or sheet-shaped resins, metals, glass, etc., and these can be formed in a single layer or in a combination of multiple layers. However, when applying the laminate 9 to a foldable type device, the protective layer 10a and the reinforcing layer 10b are preferably made of resin that easily imparts flexibility.
  • the thickness of the resin contained in the protective layer 10a and the reinforcing layer 10b is preferably 0.5 to 200 ⁇ m, 1 to 150 ⁇ m, and 2 to 100 ⁇ m.
  • the resin material included in the protective layer 10 include polycarbonate (PC), acrylic, polyethylene terephthalate (PET), polyether ether ketone (PEEK), polyamide (PA), polyvinyl chloride (PVC), and polyethylene (PE). ), polypropylene (PP), polyethylene naphthalate (PEN), polyimide (PI), cycloolefin polymer (COP), epoxy, and the like.
  • the protective layer 10a and the reinforcing layer 10b are, for example, laminated on the main surface 1a of the glass article 1 via the adhesive layer 11.
  • the thickness of the adhesive layer 11 is preferably 0.1 to 100 ⁇ m, 0.2 to 90 ⁇ m, or 0.3 to 80 ⁇ m.
  • the material for the adhesive layer 11 include acrylic adhesive, silicone adhesive, rubber adhesive, ultraviolet curable acrylic adhesive, ultraviolet curable epoxy adhesive, thermosetting epoxy adhesive, and heat-curable epoxy adhesive.
  • examples include curable melamine adhesives, thermosetting phenolic adhesives, ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), and cycloolefin polymers (COP).
  • the protective layer 10 may be directly formed on the main surface 1a of the glass article 1 by any method such as coating, without using the adhesive layer 11.
  • the method for manufacturing a glass article according to the third embodiment includes, in this order, a preparation step S11, a chemical strengthening step S12, a surface layer etching step S13, and a water treatment step S14.
  • the steps other than the surface layer etching step S13 are the same as the corresponding steps in the above-described embodiment, so detailed explanations will be omitted.
  • the surface layer etching step S13 is a step of etching the processing glass in a shallower range than the compressive stress layer after the chemical strengthening step S12 and before the water treatment step S14.
  • the entire processing glass is immersed in a liquid etching medium, and the entire surface of the processing glass is wet-etched. According to such a treatment, the entire glass for treatment can be uniformly etched, so that it is possible to suppress the occurrence of variations in thickness due to the etching treatment.
  • the surface of the glass for treatment is constituted by an etched surface.
  • an acidic or alkaline aqueous solution capable of etching glass can be used as the etching medium.
  • an acidic aqueous solution containing HF can be used as the acidic etching medium.
  • an aqueous solution containing HF is used, the etching rate for glass is high and production efficiency is good.
  • the aqueous solution containing HF is, for example, an aqueous solution containing only HF, or a combination of HF and HCl, HF and HNO 3 , HF and H 2 SO 4 , or HF and NH 4 F.
  • concentration of each compound of HF, HCl, HNO 3 , H 2 SO 4 and NH 4 F is preferably 0.1 to 30 mol/L.
  • the temperature of the acidic aqueous solution is, for example, 10 to 30° C.
  • the time for immersing the glass to be treated is preferably, for example, 0.1 to 60 minutes.
  • an alkaline aqueous solution containing NaOH or KOH can be used as the alkaline etching medium. Since the alkaline aqueous solution has a relatively lower etching rate for glass than the etching medium containing HF described above, it has the advantage that the amount of etching can be easily controlled precisely. This is particularly suitable when it is necessary to control the thickness, DOC, etc. of the glass in units of several ⁇ m.
  • the concentration of the alkaline component in the aqueous solution containing NaOH or KOH is preferably 1 to 20 mol/L.
  • the temperature of the alkaline aqueous solution is, for example, 10 to 130° C.
  • the time for immersing the glass to be treated is preferably, for example, 0.5 to 120 minutes.
  • the etching rate is more important, it is preferable to use an aqueous solution of NaOH.
  • the removed thickness of the surface layer of the glass for treatment in the surface layer etching step S13 is preferably 0.25 ⁇ m or more and 3 ⁇ m or less.
  • the removed thickness of the surface layer of the glass for treatment is more preferably 0.4 ⁇ m or more and 2.7 ⁇ m or less, 0.6 ⁇ m or more and 2.5 ⁇ m or less, and 0.8 ⁇ m or more and 2.3 ⁇ m or less.
  • the entire surface of the glass article manufactured through the surface layer etching step S13 that is, both the front and back principal surfaces and the end surfaces, be etched surfaces. In this way, defects are reduced over the entire surface of the glass article and high strength, especially high pen drop strength, can be achieved.
  • the method for manufacturing a glass article according to the fourth embodiment includes a preparation step S21, a thinning step S22, a chemical strengthening step S23, a surface layer etching step S24, and a water treatment step S25. Prepare in this order.
  • the steps other than the thinning step S22 are the same as the corresponding steps in the above-described embodiment, and therefore detailed explanations will be omitted.
  • the surface layer etching step S24 may not be provided.
  • the thinning step S22 is a step in which the thickness of the processing glass is reduced to a range of 0.005 to 0.1 mm by etching.
  • the entire processing glass is immersed in a liquid etching medium, and the entire surface of the processing glass is wet-etched.
  • the etching medium used in the surface layer etching step S24 can be similarly used.
  • the removed thickness of the surface layer of the processing glass in the thinning step S22 is not particularly limited because it depends on the original thickness (initial thickness) of the processing glass before the thinning step S22.
  • the thickness may be larger than the removal thickness of the surface layer.
  • the method for manufacturing a glass article according to the fifth embodiment includes a preparation step S31, a thinning step S32, and a water treatment step S33 in this order.
  • Each step is similar to the corresponding step in the above-described embodiment, but this embodiment differs in that it does not include a chemical strengthening step.
  • the unreinforced treatment glass comes into contact with the treated water.
  • the pen drop strength of the treated glass tends to be higher than when chemically strengthened treated glass is brought into contact with treated water. Therefore, high pen drop strength can be obtained even in a glass article manufactured through the water treatment step S33 in which unstrengthened treatment glass is brought into contact with treated water.
  • the glass article is not limited to chemically strengthened glass.
  • chemically strengthened glass articles tend to have higher bending strength. Therefore, from the viewpoint of achieving both pen drop strength and bending strength, the glass article is preferably chemically strengthened glass.
  • the thinning step S32 is provided, but in the case where a processing glass preformed to a thickness of 0.005 to 0.1 mm by an overflow down-draw method or the like can be prepared in the preparation step S31, , it is not necessary to provide the thinning step S32.
  • the method for manufacturing a glass article according to the sixth embodiment shows a modification of the water treatment process in the above embodiment.
  • the temperature of the treated water in the water treatment step is 100°C or lower, but in this embodiment, the temperature of the treated water is 100°C or higher.
  • An example of the water treatment step of the present embodiment includes immersing the glass for treatment in treatment water at a temperature of 100° C. or higher in a pressurized atmosphere. Specifically, the glass for treatment is immersed in treated water stored in a container. Thereafter, with this container housed in a pressurizing device, the inside of the pressurizing device is pressurized and the treated water is heated to 100° C. or higher. By controlling the temperature of the treated water to 100° C. or higher in this way, the effect of shortening the water treatment time until the desired pen drop strength is obtained can be expected.
  • the temperature of the treated water is preferably higher than 100°C and lower than 200°C.
  • the lower limit range of the temperature of the treated water is more preferably 105°C or higher, 110°C or higher, or 120°C or higher.
  • the upper limit range of the temperature of the treated water is more preferably 190°C or lower, 180°C or lower, or 170°C or lower.
  • the pressure of the pressurized atmosphere is preferably 0.15 to 2.0 MPa.
  • the lower limit range of the pressure of the pressurized atmosphere is more preferably 0.17 MPa or more, 0.2 MPa or more, or 0.25 MPa or more.
  • the upper limit range of the pressure of the pressurized atmosphere is more preferably 1.9 MPa or less, 1.8 MPa or less, or 1.7 MPa or less.
  • the lower limit range of the water treatment time is preferably 0.6 hours or more, 0.75 hours or more, and 1 hour or more.
  • the upper limit range of the water treatment time is preferably 12 hours or less, 11 hours or less, and 10 hours or less.
  • the treated water may be converted into superheated steam at 100°C or higher and injected onto the glass for treatment.
  • the shape of the glass article is not particularly limited.
  • the shape of the glass article can be, for example, square, rectangular, circular, oval, etc. in plan view.
  • the glass article may be subjected to three-dimensional bending as necessary. Specifically, by performing a three-dimensional bending process on the glass for processing in whole or in part in advance, a three-dimensional bent shape can be imparted to the glass article that is finally manufactured.
  • the chemical strengthening process ion exchange treatment
  • heat treatment may be performed before and after ion exchange.
  • the depth of the compressive stress layer and the like can be controlled by relaxing stress and promoting ion diffusion.
  • the glass for treatment is washed and dried after the chemical strengthening process and before the water treatment process.
  • the stress distribution of the glass article after strengthening is at least one of a bending point, a local maximum value, a local minimum value, or an inflection point in the region of the compressive stress layer 2. may have one or more.
  • the tensile stress in the tensile stress layer 3 may not be constant in the thickness direction.
  • the stress distribution in the tensile stress layer 3 has a minimum value at the center of the thickness of the glass article.
  • the distribution shape can be along a convex quadratic curve.
  • the stress distribution of the glass article may be asymmetric between the front and back sides.
  • Asymmetrical stress distribution on the front and back surfaces can be achieved by polishing one main surface of a glass article after strengthening more than the other, or by chemically strengthening one main surface with a film that inhibits ion exchange. It will be done.
  • a sample was prepared as follows. First, a processing glass having the glass composition shown in Table 1 was prepared. Note that the Young's modulus shown in Table 1 is a value measured by a resonance method.
  • glass raw materials were prepared to have the composition shown in Table 1 and melted in a test melting furnace. Thereafter, the obtained molten glass was formed into a plate or sheet by an overflow down-draw method and cut into a predetermined size to obtain a glass for processing.
  • the plate-shaped or sheet-shaped glass for processing was processed under the conditions listed in Tables 2 to 8 to produce plate-shaped or sheet-shaped glass articles.
  • the thinning process and the surface layer etching process were performed by immersing the glass for treatment in an HF aqueous solution.
  • the chemical strengthening process was performed by immersing the glass for treatment in a 100% KNO 3 molten salt.
  • the water treatment step was performed by immersing the glass for treatment in treated water.
  • No. Nos. 1 to 29 are examples of the present invention, and No. 1 to 29 are examples of the present invention. 30 to 45 are comparative examples.
  • ⁇ Method for manufacturing glass article or laminate> (1) No. of Table 2.
  • the treated glass was subjected to a water treatment process to produce glass articles.
  • No. of Table 2 In Examples 7 and 8, a glass article was manufactured by subjecting the treated glass to a thinning process and a water treatment process in this order. In other words, No. 2 in Table 2.
  • no chemical strengthening process was performed on the glass for treatment.
  • the initial thickness of the processing glass matches the thickness of the glass article; In Nos. 7 and 8, the thickness of the processing glass after the thinning step matches the thickness of the glass article.
  • steps 9 to 14 the treated glass was subjected to a chemical strengthening process and a water treatment process in this order to produce glass articles.
  • No. of Table 3 glass articles were manufactured by subjecting the treated glass to a thinning process, a chemical strengthening process, and a water treatment process in this order.
  • the initial thickness of the processing glass matched the thickness of the glass article;
  • the thickness of the processing glass after the thinning process matches the thickness of the glass article.
  • steps 17 to 24 glass articles were manufactured by subjecting the treated glass to a chemical strengthening process, a surface layer etching process, and a water treatment process in this order.
  • the thickness of the processing glass after the surface layer etching step matches the thickness of the glass article.
  • CS, DOC, and CT of the glass articles were measured.
  • CS, DOC, and CT in Tables 1 to 8 are values measured for each glass article (sample) using a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.
  • the planar dimensions of the glass article 13, PSA sheets 14 and 16, PET board 15, and protective layer were each 50 mm x 50 mm.
  • the dimensions of the SUS plate 17 in plan view were 55 mm x 55 mm.
  • the thickness of the glass article 13 and the protective layer were as shown in Tables 2-8.
  • the thickness of the PSA sheets 14 and 16 was 50 ⁇ m.
  • the thickness of the PET board 15 was 125 ⁇ m.
  • the thickness of the SUS plate 17 was 3 mm.
  • the ballpoint pen 18 is Orange EG0.7 manufactured by BIC, and has a ball diameter of 0.7 mm and a mass of 5.7 g.
  • the height of the tip of the pen before dropping with reference to the top surface of the measurement sample 12 was defined as a falling height H, and the initial value was set to 1 cm, and the pen was dropped.
  • the height was raised by 1 cm and the glass article 13 was dropped again. In this way, trials of increasing the drop height H and dropping are repeated until the glass article 13 included in the measurement sample 12 is broken. Then, the 60% failure height and the maximum failure height were determined as the pen drop strength.
  • the 60% failure height is the falling height H when the glass articles 13 included in three measurement samples 12 among the five measurement samples 12 are broken.
  • the maximum breakage height is the fall height H when all the glass articles 13 included in the five measurement samples 12 are broken.
  • the examples (No. 1 to 29) in which a proper water treatment process was carried out either did not carry out a water treatment process at all, or did not carry out a proper water treatment process. It was confirmed that the fracture height was improved by 60% compared to the comparative examples (Nos. 30 to 45).
  • ⁇ Bending fracture test> As shown in FIG. 10, in the bending fracture test, a measurement sample 20 made of a glass article is sandwiched between two plate-shaped bodies 21, and the strength ( Two-point bending strength) was evaluated.
  • the two-point bending strength is No. Glass articles 2, 10, 18, 30, 34, and 38 were evaluated, and 30 measurement samples 20 corresponding to these glass articles were prepared.
  • the dimensions of the measurement sample 20 in plan view were 140 mm x 70 mm.
  • the thickness of the measurement sample 20 is as shown in Tables 2 to 8. 2, 10, 30, and 34, it was 50 ⁇ m, and No. In Nos. 18 and 38, the thickness was 47 ⁇ m.
  • the measurement sample 20 was placed between the plate-like bodies 21 so as to be bent in a U-shape along the long side (140 mm side).
  • the two-point bending strength was calculated from the following formula (4) using the distance D between the two plate-shaped bodies 21 when the glass article 20 was broken by pressing and bending. Then, the median value, maximum value, and minimum value were determined as the two-point bending strength.
  • the median value of the two-point bending strength is the median value when the two-point bending strength data of 30 measurement samples are arranged in ascending order.
  • the maximum value of the two-point bending strength is the maximum value of the two-point bending strengths of the 30 measurement samples.
  • the minimum value of the two-point bending strength is the minimum value of the two-point bending strengths of the 30 measurement samples.
  • 1.198[E ⁇ t/(D ⁇ t)] (4)
  • represents the two-point bending strength [MPa]
  • E represents the Young's modulus [MPa] of the glass article
  • t represents the thickness [mm] of the glass article.
  • the glass article of the present invention can be used, for example, as a cover glass for smartphones, mobile phones, tablet computers, personal computers, digital cameras, touch panel displays, and other display devices, in-vehicle display devices, in-vehicle panels, and the like.

Abstract

A method for producing a glass article which comprises: a preparation step S1 in which an alkali aluminosilicate glass having a glass composition containing an alkali metal oxide is prepared as a glass to be treated; and a water treatment step S3 in which the glass to be treated is kept in contact with treatment water for 0.5-15 hours, excluding 15 hours.

Description

ガラス物品の製造方法、ガラス物品及び積層体Glass article manufacturing method, glass article and laminate
 本発明は、ガラス物品の製造方法、ガラス物品、及びガラス物品を備えた積層体に関する。 The present invention relates to a method for manufacturing a glass article, a glass article, and a laminate including the glass article.
 各種電子端末やディスプレイデバイス等のデバイスのカバーガラスとして、化学強化ガラスが多く用いられている。この種のデバイスの中には、ディスプレイの表示面を折り畳み可能とする、いわゆるフォルダブルタイプのものも開発されており、このようなフォルダブルタイプのデバイスのカバーガラスにも、化学強化ガラスが用いられる場合がある。 Chemically strengthened glass is often used as cover glass for devices such as various electronic terminals and display devices. Among this type of devices, so-called foldable type devices have been developed in which the display surface of the display can be folded, and chemically strengthened glass is also used for the cover glass of such foldable type devices. There may be cases where
 化学強化ガラスは、イオン交換処理によって形成された圧縮応力層を表面に有することにより、表面におけるクラックの形成及び進展を抑制し、高い強度を得られる。強化ガラスの強度は、このような圧縮応力層の形成態様を調整することにより向上できるものと考えられている(例えば、特許文献1)。 By having a compressive stress layer on the surface formed by ion exchange treatment, chemically strengthened glass suppresses the formation and propagation of cracks on the surface and can obtain high strength. It is believed that the strength of tempered glass can be improved by adjusting the formation mode of such a compressive stress layer (for example, Patent Document 1).
国際公開第2013/088856号International Publication No. 2013/088856
 しかしながら、カバーガラス等に用いられるガラス物品において、より高い耐衝撃性を得ることについては未だ改良の余地が残されている。特に、スタイラスペンを用いたペン入力に対応したデバイスの場合、ガラス物品に対して局所的な衝撃が加わり易い。そのため、このようなペン入力にも十分耐え得る、高いペンドロップ強度を有するガラス物品の開発が求められている。 However, there is still room for improvement in obtaining higher impact resistance in glass articles used for cover glasses and the like. Particularly, in the case of a device that supports pen input using a stylus pen, local impact is likely to be applied to the glass article. Therefore, there is a need to develop a glass article that has high pen drop strength and can sufficiently withstand such pen input.
 本発明は、高いペンドロップ強度を有するガラス物品を提供することを課題とする。 An object of the present invention is to provide a glass article having high pen drop strength.
(1) 上記の課題を解決するために創案された本発明に係るガラス物品の製造方法は、ガラス組成としてアルカリ金属酸化物を含むアルカリアルミノシリケートガラスからなる処理用ガラスを準備する準備工程と、処理用ガラスを処理水に0.5時間以上15時間未満接触させる水処理工程とを備えることを特徴とする。 (1) The method for manufacturing a glass article according to the present invention, which was devised to solve the above problems, includes a preparation step of preparing a processing glass made of alkali aluminosilicate glass containing an alkali metal oxide as a glass composition; The present invention is characterized by comprising a water treatment step of bringing the glass for treatment into contact with the treated water for 0.5 hours or more and less than 15 hours.
 本発明者等は、鋭意研究の結果、処理用ガラスがアルカリアルミノシリケートガラスである場合、処理用ガラスを処理水に上記の所定時間接触させる水処理工程を行うことにより、処理用ガラスのペンドロップ強度が大幅に向上することを見いだした。そして、このようなペンドロップ強度向上効果は、水処理工程の後、つまり処理用ガラスと処理水との接触を解除した後も持続する。したがって、高いペンドロップ強度を有するガラス物品を提供できる。 As a result of intensive research, the present inventors have found that when the glass for treatment is alkali aluminosilicate glass, by performing the water treatment process in which the glass for treatment is brought into contact with the treated water for the predetermined period of time, pen drops of the glass for treatment can be reduced. It was found that the strength was significantly improved. Such a pen drop strength improvement effect persists even after the water treatment step, that is, after the contact between the treatment glass and the treated water is removed. Therefore, a glass article having high pen drop strength can be provided.
(2) 上記(1)の構成において、水処理工程では、処理用ガラスを46~100℃の処理水中に浸漬することが好ましい。 (2) In the configuration of (1) above, in the water treatment step, it is preferable that the glass for treatment is immersed in treatment water at a temperature of 46 to 100°C.
 このように処理水の温度を高めれば、処理用ガラスのペンドロップ強度を短時間で効率よく向上させることができる。つまり、所望のペンドロップ強度を得るまでの処理時間(処理用ガラスと処理水との接触時間)を相対的に短くできる。したがって、高いペンドロップ強度を有するガラス物品を効率よく製造できる。 By raising the temperature of the treated water in this way, the pen drop strength of the treated glass can be efficiently improved in a short time. In other words, the processing time (the contact time between the processing glass and the processing water) required to obtain the desired pen drop strength can be relatively shortened. Therefore, glass articles having high pen drop strength can be efficiently manufactured.
(3) 上記(1)の構成において、水処理工程では、処理用ガラスを加圧雰囲気下で100℃以上とした処理水中に浸漬してもよい。 (3) In the configuration of (1) above, in the water treatment step, the glass for treatment may be immersed in treatment water heated to 100° C. or higher in a pressurized atmosphere.
 このように処理水の温度を高めれば、処理用ガラスのペンドロップ強度を短時間で効率よく向上させることができる。つまり、所望のペンドロップ強度を得るまでの処理時間を相対的に短くできる。したがって、高いペンドロップ強度を有するガラス物品を効率よく製造できる。 By raising the temperature of the treated water in this way, the pen drop strength of the treated glass can be efficiently improved in a short time. In other words, the processing time required to obtain the desired pen drop strength can be relatively shortened. Therefore, glass articles having high pen drop strength can be efficiently manufactured.
(4) 上記(1)~(3)のいずれかの構成において、水処理工程では、処理水の電気伝導率が3mS/m以下であることが好ましい。 (4) In any of the configurations (1) to (3) above, in the water treatment step, it is preferable that the electrical conductivity of the treated water is 3 mS/m or less.
 このように電気伝導率の小さい処理水を用いれば、処理用ガラスのペンドロップ強度をさらに向上させることができる。したがって、当該処理用ガラスから製造されるガラス物品のペンドロップ強度もより向上する。 By using treated water with such low electrical conductivity, the pen drop strength of the treated glass can be further improved. Therefore, the pen drop strength of the glass article manufactured from the processing glass is further improved.
(5) 上記(1)~(4)のいずれかの構成において、処理用ガラスは、厚み0.005~0.1mmの板状又はシート状であることが好ましい。 (5) In any of the configurations (1) to (4) above, the glass for processing is preferably in the form of a plate or sheet with a thickness of 0.005 to 0.1 mm.
 このように処理用ガラスが薄くなれば、当該処理用ガラスから製造されるガラス物品をフォルダブルタイプのデバイスにも好適に用いることができる。その反面、ガラス物品の耐衝撃性が必然的に低下し易くなり、ペンドロップ強度の向上がより重要となる。したがって、本発明のペンドロップ強度向上効果がより有用となる。 If the processing glass becomes thinner in this way, a glass article manufactured from the processing glass can also be suitably used for foldable type devices. On the other hand, the impact resistance of the glass article inevitably tends to decrease, making it more important to improve the pen drop strength. Therefore, the pen drop strength improving effect of the present invention becomes more useful.
(6) 上記(5)の構成において、水処理工程前に、処理用ガラスをエッチングにより上記厚みの範囲(0.005~0.1mm)内に薄肉化する薄肉化工程をさらに備えていてもよい。 (6) In the configuration of (5) above, it is also possible to further include a thinning step in which the glass for treatment is thinned to within the above thickness range (0.005 to 0.1 mm) by etching before the water treatment step. good.
(7) 上記(5)の構成において、処理用ガラスは、オーバーフローダウンドロー法により上記厚みの範囲(0.005~0.1mm)内に予め成形されていてもよい。 (7) In the configuration of (5) above, the processing glass may be pre-formed within the above thickness range (0.005 to 0.1 mm) by an overflow down-draw method.
(8) 上記(1)~(7)のいずれかの構成において、水処理工程前に、処理用ガラスをアルカリ金属硝酸塩と接触させて表面に100MPa以上の最大圧縮応力を有する圧縮応力層を形成する化学強化工程をさらに備えることが好ましい。 (8) In any of the configurations (1) to (7) above, before the water treatment step, the treatment glass is brought into contact with an alkali metal nitrate to form a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface. It is preferable to further include a chemical strengthening step.
 このようにすれば、処理用ガラス及びガラス物品が、表面に圧縮応力層を有する化学強化ガラスとなる。そのため、ガラス物品のペンドロップ強度を向上させつつ、曲げ強度も向上させることができる。このように曲げ強度が向上したガラス物品であれば、フォルダブルタイプのデバイスにも好適に用いることができる。 In this way, the glass for processing and the glass article become chemically strengthened glass having a compressive stress layer on the surface. Therefore, the pen drop strength of the glass article can be improved, and the bending strength can also be improved. A glass article with improved bending strength as described above can also be suitably used for foldable type devices.
(9) 上記(8)の構成において、水処理工程では、処理水の温度が50~95℃であり、かつ、処理用ガラスと処理水との接触時間が0.5~10時間であることが好ましい。 (9) In the configuration of (8) above, in the water treatment process, the temperature of the treated water is 50 to 95°C, and the contact time of the treatment glass and the treated water is 0.5 to 10 hours. is preferred.
 このようにすれば、処理用ガラスが化学強化ガラスである場合に特に適した水処理条件となり、化学強化ガラスからなるガラス物品のペンドロップ強度を効率よく向上させることができる。 In this way, the water treatment conditions are particularly suitable when the glass for treatment is chemically strengthened glass, and the pen drop strength of the glass article made of chemically strengthened glass can be efficiently improved.
(10) 上記(8)又は(9)の構成において、処理用ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 5~25%、B23 0~35%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含み、化学強化工程では、アルカリ金属硝酸塩は硝酸カリウムを含む溶融塩であることが好ましい。 (10) In the configuration of (8) or (9) above, the glass for treatment has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-80%. In the chemical strengthening process, the alkali metal nitrate is preferably a molten salt containing potassium nitrate .
 このようにすれば、処理用ガラスが薄い場合でも、ガラス物品のペンドロップ強度及び曲げ強度を共に向上させ易くなる。 In this way, even if the glass for processing is thin, both the pen drop strength and bending strength of the glass article can be easily improved.
(11) 上記(8)~(10)のいずれかの構成において、イオン交換工程後、水処理工程前に、圧縮応力層よりも浅い範囲で処理用ガラスをエッチングする表層エッチング工程をさらに備えることが好ましい。 (11) In any of the configurations (8) to (10) above, further comprising a surface layer etching step of etching the processing glass in a shallower range than the compressive stress layer after the ion exchange step and before the water treatment step. is preferred.
 このようにすれば、イオン交換工程等において、処理用ガラスに形成された表面欠陥を減少させることができるため、ガラス物品のペンドロップ強度及び/又は曲げ強度を向上させることができる。 In this way, surface defects formed on the processing glass during the ion exchange process etc. can be reduced, so the pen drop strength and/or bending strength of the glass article can be improved.
(12) 上記の課題を解決するために創案された本発明に係るガラス物品は、厚み0.005~0.1mmの板状又はシート状のガラス物品であって、直径0.7mmの球状先端を有する5.7gのボールペンを主表面に落下させるペンドロップ試験において、60%破壊高さが5cm以上であることを特徴とする。 (12) The glass article according to the present invention, which was invented to solve the above problems, is a plate-shaped or sheet-shaped glass article with a thickness of 0.005 to 0.1 mm, and has a spherical tip with a diameter of 0.7 mm. In a pen drop test in which a 5.7 g ballpoint pen having a weight of 5.7 g is dropped onto the main surface, the 60% fracture height is 5 cm or more.
 このようにすれば、ペン入力にも十分耐え得る、高いペンドロップ強度を有するガラス物品となる。 In this way, a glass article with high pen drop strength that can sufficiently withstand pen input can be obtained.
(13) 上記(12)の構成において、表面に100MPa以上の最大圧縮応力を有する圧縮応力層を備えることが好ましい。 (13) In the configuration of (12) above, it is preferable that the surface is provided with a compressive stress layer having a maximum compressive stress of 100 MPa or more.
 このようにすれば、ペンドロップ強度に加えて曲げ強度も向上するため、フォルダブルタイプのデバイスにも好適に用いることができる。 In this way, the bending strength is improved in addition to the pen drop strength, so it can be suitably used for foldable type devices.
(14) 上記の課題を解決するために創案された本発明に係る積層体は、上記(12)又は(13)の構成を備えるガラス物品と、ガラス物品の少なくとも一方の主表面に積層された保護層または補強層とを備えることを特徴とする。 (14) The laminate according to the present invention, which was created to solve the above problems, is a glass article having the configuration of (12) or (13) above, and is laminated on at least one main surface of the glass article. It is characterized by comprising a protective layer or a reinforcing layer.
 このようにすれば、保護層によりガラス物品を保護してより高いペンドロップ強度を実現したり、補強層によりガラス物品を補強してより高い曲げ強度を実現したりできる。 In this way, the protective layer can protect the glass article to achieve higher pen drop strength, and the reinforcing layer can reinforce the glass article to achieve higher bending strength.
 本発明によれば、高いペンドロップ強度を有するガラス物品を提供できる。 According to the present invention, a glass article having high pen drop strength can be provided.
本発明の第一実施形態に係るガラス物品の断面を示す概略図である。FIG. 1 is a schematic diagram showing a cross section of a glass article according to a first embodiment of the present invention. 本発明の第一実施形態に係るガラス物品の厚さ方向の応力分布のイメージ図である。FIG. 3 is an image diagram of stress distribution in the thickness direction of the glass article according to the first embodiment of the present invention. 本発明の第一実施形態に係るガラス物品の製造方法のフロー図である。It is a flow diagram of a manufacturing method of a glass article concerning a first embodiment of the present invention. 本発明の第一実施形態に係るガラス物品の製造方法に含まれる水処理工程の実施態様を示す断面図である。It is a sectional view showing an embodiment of the water treatment process included in the manufacturing method of the glass article concerning the first embodiment of the present invention. 本発明の第二実施形態に係る積層体の断面を示す概略図である。It is a schematic diagram showing the cross section of the layered product concerning a second embodiment of the present invention. 本発明の第三実施形態に係るガラス物品の製造方法のフロー図である。It is a flowchart of the manufacturing method of the glass article based on 3rd embodiment of this invention. 本発明の第四実施形態に係るガラス物品の製造方法のフロー図である。It is a flowchart of the manufacturing method of the glass article based on 4th embodiment of this invention. 本発明の第五実施形態に係るガラス物品の製造方法のフロー図である。It is a flowchart of the manufacturing method of the glass article based on 5th embodiment of this invention. ペンドロップ試験の実施態様を示す側面図である。FIG. 2 is a side view showing an embodiment of a pen drop test. 曲げ破壊試験の実施態様を示す側面図である。FIG. 3 is a side view showing an embodiment of a bending fracture test.
 以下、本発明の実施形態について図面を参照しながら説明する。なお、各実施形態において対応する構成要素には同一符号を付すことにより、重複する説明を省略する場合がある。各実施形態において構成の一部分のみを説明している場合、当該構成の他の部分については、先行して説明した他の実施形態の構成を適用することができる。また、各実施形態の説明において明示している構成の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても複数の実施形態の構成同士を部分的に組み合わせることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that redundant explanation may be omitted by assigning the same reference numerals to corresponding components in each embodiment. When only a part of the configuration is described in each embodiment, the configuration of the other embodiments previously described can be applied to other parts of the configuration. Furthermore, in addition to the combinations of configurations specified in the description of each embodiment, configurations of a plurality of embodiments may be partially combined even if not explicitly specified, as long as no particular problem arises in the combination.
(第一実施形態)
<ガラス物品>
 図1に示すように、第一実施形態に係るガラス物品1は、板状又はシート状である。ガラス物品1の厚みtは、特に限定されるものではないが、好ましくは0.005~0.1mmである。本発明は、このようは薄いガラスに対して特に有用である。
(First embodiment)
<Glass articles>
As shown in FIG. 1, the glass article 1 according to the first embodiment has a plate shape or a sheet shape. The thickness t of the glass article 1 is not particularly limited, but is preferably 0.005 to 0.1 mm. The invention is particularly useful for such thin glasses.
 ガラス物品1は、直径0.7mmの球状先端を有する5.7gのペンを主表面に落下させるペンドロップ試験において、60%破壊高さが5cm以上であることが好ましい。ガラス物品1の60%破壊高さは、より好ましくは7cm以上、10cm以上、15cm以上である。 The glass article 1 preferably has a 60% fracture height of 5 cm or more in a pen drop test in which a 5.7 g pen having a spherical tip with a diameter of 0.7 mm is dropped onto the main surface. The 60% fracture height of the glass article 1 is more preferably 7 cm or more, 10 cm or more, or 15 cm or more.
 本実施形態では、ガラス物品1は、イオン交換により化学強化された化学強化ガラスであり、圧縮応力層2と、引張応力層3とを備える。これにより、ペンドロップ強度の向上に加えて、曲げ強度の向上を図ることができる。 In this embodiment, the glass article 1 is chemically strengthened glass that has been chemically strengthened by ion exchange, and includes a compressive stress layer 2 and a tensile stress layer 3. Thereby, in addition to improving the pen drop strength, it is possible to improve the bending strength.
 ガラス物品1が化学強化ガラスである場合、ガラス物品1の二点曲げ強度は、900MPa以上であることが好ましい。ガラス物品1の二点曲げ強度は、より好ましくは1000MPa以上、1100MPa以上、1200MPa以上である。 When the glass article 1 is chemically strengthened glass, the two-point bending strength of the glass article 1 is preferably 900 MPa or more. The two-point bending strength of the glass article 1 is more preferably 1000 MPa or more, 1100 MPa or more, or 1200 MPa or more.
 圧縮応力層2は、ガラス物品1の主表面1a及び端面1bを含む表層部に形成されている。引張応力層3は、ガラス物品1の内部、すなわち、圧縮応力層2よりも深い位置に形成されている。ここで、主表面とは、板状又はシート状のガラス表面全体のうち端面を除いた表裏の面を指す。 The compressive stress layer 2 is formed on the surface layer portion of the glass article 1 including the main surface 1a and the end surface 1b. The tensile stress layer 3 is formed inside the glass article 1, that is, at a deeper position than the compressive stress layer 2. Here, the main surface refers to the front and back surfaces of the entire plate-shaped or sheet-shaped glass surface excluding the end surfaces.
 ガラス物品1の応力分布の一例を図2に示す。図2において、縦軸は応力値を示し、横軸は表面からの深さを示す。なお、図2は応力分布を直線近似により模式的に示したイメージ図であるが、応力分布は他の関数(例えば、単一の曲線関数または複数の曲線関数の組み合わせ)により近似され得る。また、本明細書においては特に断りがない限り、各応力の大きさは絶対値で示される。ガラス物品1の応力分布は、図2に示す態様に限定されない。 An example of the stress distribution of the glass article 1 is shown in FIG. 2. In FIG. 2, the vertical axis shows the stress value, and the horizontal axis shows the depth from the surface. Note that although FIG. 2 is an image diagram schematically showing the stress distribution by linear approximation, the stress distribution may be approximated by other functions (for example, a single curve function or a combination of multiple curve functions). Further, in this specification, unless otherwise specified, the magnitude of each stress is indicated by an absolute value. The stress distribution of the glass article 1 is not limited to the embodiment shown in FIG. 2 .
 図2に示す応力分布は、ガラス物品1が一段階のイオン交換処理を施された強化ガラスである場合を例示したものである。ガラス物品1の応力分布では、表面において圧縮応力が最大(最大圧縮応力CS)となり、表面からの深さが深くなるほど応力が漸減し、深さDOCにおいて応力がゼロとなる。すなわち、DOCは圧縮応力の深さと同義である。深さDOCより深い領域には引張応力を有する引張応力層3が延在する。ガラス物品1の応力分布は、図2に示すように表裏対称的であることが好ましい。 The stress distribution shown in FIG. 2 illustrates the case where the glass article 1 is tempered glass that has been subjected to one-step ion exchange treatment. In the stress distribution of the glass article 1, the compressive stress is maximum at the surface (maximum compressive stress CS), the stress gradually decreases as the depth from the surface increases, and the stress becomes zero at the depth DOC. That is, DOC is synonymous with the depth of compressive stress. A tensile stress layer 3 having tensile stress extends in a region deeper than the depth DOC. The stress distribution of the glass article 1 is preferably symmetrical on the front and back sides, as shown in FIG.
 引張応力層3は、引張応力がガラス物品1の厚み方向に変動する第一領域A1と、引張応力が厚み方向に一定となる第二領域A2とを備える。より詳細には、第一領域A1は、圧縮応力層2の深さDOCから引張応力収束深さDCTまで延在し、深さが深くなるほど引張応力の絶対値が漸増する(図2に示す負数標記では漸減する)領域である。第二領域A2は、引張応力収束深さDCTより深い領域に延在し、引張応力が厚み方向に一定となる領域である。なお、「引張応力が一定」とは、深さ方向の応力の変化量が0.5MPa/μm以下であることを指し、当該変化量は例えば、深さ0.1μm間隔でサンプリングした応力の微分値により算出し得る。 The tensile stress layer 3 includes a first region A1 where the tensile stress varies in the thickness direction of the glass article 1, and a second region A2 where the tensile stress is constant in the thickness direction. More specifically, the first region A1 extends from the depth DOC of the compressive stress layer 2 to the tensile stress convergence depth DCT, and the absolute value of the tensile stress gradually increases as the depth increases (the negative number shown in FIG. 2 In the title, it is a region (gradually decreasing). The second region A2 extends deeper than the tensile stress convergence depth DCT, and is a region where the tensile stress is constant in the thickness direction. Note that "tensile stress is constant" refers to the amount of change in stress in the depth direction being 0.5 MPa/μm or less, and the amount of change is, for example, the differential of stress sampled at intervals of 0.1 μm in depth. It can be calculated by the value.
 ガラス物品1の圧縮応力層2の深さDOCは、好ましくは20μm以下、1μm以上19μm以下、2μm以上18μm以下、3μm以上17.5μm以下、4μm以上17μm以下である。破壊時において危険な破壊様態とならない表面の圧縮応力値、圧縮応力層の深さの閾値について発明者らが種々検討の結果、例えば0.1mm以下の薄いガラスにおいては、圧縮応力層の深さを20μm以下とすることが効果的であることを見いだした。こうすることで曲げに対する十分な強度を持ちながら、安全性も確保できる。 The depth DOC of the compressive stress layer 2 of the glass article 1 is preferably 20 μm or less, 1 μm or more and 19 μm or less, 2 μm or more and 18 μm or less, 3 μm or more and 17.5 μm or less, and 4 μm or more and 17 μm or less. As a result of various studies by the inventors regarding the threshold value of the compressive stress value on the surface and the depth of the compressive stress layer that does not cause a dangerous fracture mode at the time of fracture, for example, in thin glass of 0.1 mm or less, the depth of the compressive stress layer is It has been found that it is effective to make the thickness 20 μm or less. By doing this, it is possible to ensure safety while having sufficient strength against bending.
 ガラス物品1の圧縮応力層2における最大圧縮応力CSは、好ましくは100MPa以上、200MPa以上1000MPa以下、300MPa以上900MPa以下、400MPa以上870MPa以下、430MPa以上850MPa以下、450MPa以上800MPa以下である。CSをこのような範囲とすることで、高い曲げ強度を得ることができる。 The maximum compressive stress CS in the compressive stress layer 2 of the glass article 1 is preferably 100 MPa or more, 200 MPa or more and 1000 MPa or less, 300 MPa or more and 900 MPa or less, 400 MPa or more and 870 MPa or less, 430 MPa or more and 850 MPa or less, or 450 MPa or more and 800 MPa or less. By setting CS within such a range, high bending strength can be obtained.
 圧縮応力層2の深さDOCは、ガラス物品1の厚みtと下式(2)を満たす。
 DOC/t≦ 0.25  (2)
 DOCとtの比率を上記範囲に制限することにより、曲げに対する十分な強度を持ちながら、安全性も確保できる。DOC/tの上限範囲は、好ましくは0.23以下である。DOC/tの下限範囲は、好ましくは0.03以上、0.10以上である。
The depth DOC of the compressive stress layer 2 satisfies the thickness t of the glass article 1 and the following formula (2).
DOC/t≦0.25 (2)
By limiting the ratio of DOC and t to the above range, safety can be ensured while having sufficient strength against bending. The upper limit range of DOC/t is preferably 0.23 or less. The lower limit range of DOC/t is preferably 0.03 or more and 0.10 or more.
 引張応力収束深さDCTは、引張応力が下式(3)により算出することができる。
 DCT=(CS+CT)/(CS/DOC)   (3)
The tensile stress convergence depth DCT can be calculated using the following formula (3).
DCT=(CS+CT)/(CS/DOC) (3)
 第二領域A2の最大引張応力CTの上限範囲は、好ましくは1000MPa以下、500MPa以下、400MPa以下、285MPa以下、250MPa以下、240MPa以下、230MPa以下、220MPa以下、210MPa以下、200MPa以下、190MPa以下、180MPa以下、170MPa以下、160MPa以下、150MPa以下、145MPa以下、140MPa以下、130MPa以下、120MPa以下、110MPa以下、100MPa以下、95MPa以下、85MPa以下、70MPa以下である。最大引張応力CTの下限範囲は、好ましくは10MPa以上、20MPa以上、35MPa以上、50MPa以上、55MPa以上、60MPa以上である。CTを上記のように制限することにより、破壊時において危険な破壊様態とならない安全性を確保しながら、曲げに対する強度を確保できる。 The upper limit range of the maximum tensile stress CT in the second region A2 is preferably 1000 MPa or less, 500 MPa or less, 400 MPa or less, 285 MPa or less, 250 MPa or less, 240 MPa or less, 230 MPa or less, 220 MPa or less, 210 MPa or less, 200 MPa or less, 190 MPa or less, 180 MPa Below, 170 MPa or less, 160 MPa or less, 150 MPa or less, 145 MPa or less, 140 MPa or less, 130 MPa or less, 120 MPa or less, 110 MPa or less, 100 MPa or less, 95 MPa or less, 85 MPa or less, and 70 MPa or less. The lower limit range of the maximum tensile stress CT is preferably 10 MPa or more, 20 MPa or more, 35 MPa or more, 50 MPa or more, 55 MPa or more, and 60 MPa or more. By limiting CT as described above, strength against bending can be ensured while ensuring safety to prevent a dangerous failure mode at the time of failure.
 なお、CS、DOC、DCT、CT等の応力に関する数値は、例えば、折原製作所製FSM-6000やSLP-1000等の測定装置によりガラスの応力分布を測定することにより導出可能である。 Note that numerical values related to stress such as CS, DOC, DCT, CT, etc. can be derived by measuring the stress distribution of the glass using a measuring device such as FSM-6000 or SLP-1000 manufactured by Orihara Seisakusho, for example.
 ガラス物品1のヤング率の下限範囲は、好ましくは55GPa以上、57GPa以上、60GPa以上、62GPa以上である。ガラス物品1のヤング率の上限範囲は、好ましくは90GPa以下である。 The lower limit range of the Young's modulus of the glass article 1 is preferably 55 GPa or more, 57 GPa or more, 60 GPa or more, or 62 GPa or more. The upper limit range of the Young's modulus of the glass article 1 is preferably 90 GPa or less.
 ガラス物品1をシート状に成形する方法として、コストや生産量の観点からオーバーフローダウンドロー法が好適であるが、シートを薄くするほどガラスは急冷され、CSは低く、DOCは深くなる傾向がある。また、薄いガラスをイオン交換する場合、イオン交換部分の体積膨張を抑え込む内部のガラスが少ないため、厚いガラスに比べて高いCSが得られにくいことが知られている。したがって、薄いガラスにとって、高いCS、浅いDOCを高いレベルで両立することは単なる設計事項を超えて容易ではない。すなわち、ガラス組成、ガラスの成形方法、強化条件を適切に選定する必要がある。よって、ガラス物品1は、化学強化に適したアルカリアルミノシリケートガラスが適しており、アルカリアルミノシリケートガラスの中でも特に高い表面圧縮応力値を得られる組成が適しており、さらに、オーバーフローダウンドロー法による成形を可能にするために高い液相粘度を実現するような組成バランスが好ましい。 As a method for forming the glass article 1 into a sheet, the overflow down-draw method is preferable from the viewpoint of cost and production volume, but the thinner the sheet, the more rapidly the glass is cooled, the lower the CS, and the deeper the DOC tends to be. . It is also known that when thin glass is ion-exchanged, it is difficult to obtain a high CS compared to thick glass because there is less glass inside to suppress the volumetric expansion of the ion-exchanged portion. Therefore, for thin glass, it is not easy to achieve both high CS and shallow DOC at a high level, which is more than just a matter of design. That is, it is necessary to appropriately select the glass composition, glass forming method, and strengthening conditions. Therefore, for the glass article 1, an alkali aluminosilicate glass suitable for chemical strengthening is suitable, and a composition that can obtain a particularly high surface compressive stress value among alkali aluminosilicate glasses is suitable. A compositional balance is preferred that achieves a high liquidus viscosity to enable.
 ガラス物品1は、例えば、ガラス組成としてモル%で、SiO2 50~80%、Al23 5~25%、B23 0~35%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含有することが好ましい。 The glass article 1 has, for example, a glass composition of 50 to 80% SiO 2 , 5 to 25% Al 2 O 3 , 0 to 35% B 2 O 3 , 0 to 20% Li 2 O, and 0 to 20% Na 2 O as a glass composition. It is preferable to contain 1 to 20% of K 2 O and 0 to 10% of K 2 O.
 SiO2は、ガラスのネットワークを形成する成分である。SiO2の含有量が少な過ぎると、ガラス化し難くなり、また熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。よって、SiO2の好適な下限範囲はモル%で、50%以上、55%以上、57%以上、59%以上、特に61%以上である。一方、SiO2の含有量が多過ぎると、溶融性や成形性が低下し易くなり、また熱膨張係数が低くなり過ぎて、周辺材料の熱膨張係数に整合させ難くなる。よって、SiO2の好適な上限範囲は80%以下、70%以下、68%以下、66%以下、65%以下、特に64.5%以下である。 SiO 2 is a component that forms the glass network. If the content of SiO 2 is too low, it becomes difficult to vitrify, and the coefficient of thermal expansion becomes too high, making it easy to reduce thermal shock resistance. Therefore, the preferable lower limit range of SiO 2 is 50% or more, 55% or more, 57% or more, 59% or more, especially 61% or more in terms of mol%. On the other hand, if the content of SiO 2 is too large, meltability and moldability tend to decrease, and the coefficient of thermal expansion becomes too low, making it difficult to match the coefficient of thermal expansion of surrounding materials. Therefore, the preferable upper limit range of SiO 2 is 80% or less, 70% or less, 68% or less, 66% or less, 65% or less, particularly 64.5% or less.
 Al23は、イオン交換性能を高める成分であり、また歪点、ヤング率、破壊靱性、ビッカース硬度を高める成分である。よって、Al23の好適な下限範囲はモル%で、5%以上、8%以上、10%以上、11%以上、11.2%以上である。一方、Al23の含有量が多過ぎると、高温粘度が上昇して、溶融性や成形性が低下し易くなる。また、ガラスに失透結晶が析出し易くなって、オーバーフローダウンドロー法等で板状に成形し難くなる。特に、成形体耐火物としてアルミナ系耐火物を用いて、オーバーフローダウンドロー法でガラス板を成形する場合、アルミナ系耐火物との界面にスピネルの失透結晶が析出し易くなる。更に耐酸性も低下し、酸処理工程に適用し難くなる。よって、Al23の好適な上限範囲は25%以下、21%以下、20.5%以下、20%以下、19.9%以下、19.5%以下、19.0%以下、特に18.9%以下である。イオン交換性能への影響の大きいAl23の含有量を好適な範囲にすれば、薄いガラスにおいてもCS/DOCを高い値に設計し易くなる。 Al 2 O 3 is a component that improves ion exchange performance, and is also a component that increases strain point, Young's modulus, fracture toughness, and Vickers hardness. Therefore, the preferable lower limit range of Al 2 O 3 is 5% or more, 8% or more, 10% or more, 11% or more, and 11.2% or more in terms of mol%. On the other hand, if the content of Al 2 O 3 is too large, the high temperature viscosity increases and the meltability and moldability tend to decrease. Furthermore, devitrification crystals tend to precipitate in the glass, making it difficult to form it into a plate shape using an overflow down-draw method or the like. In particular, when a glass plate is formed by an overflow down-draw method using an alumina-based refractory as the molded refractory, spinel devitrification crystals tend to precipitate at the interface with the alumina-based refractory. Furthermore, the acid resistance also decreases, making it difficult to apply to acid treatment steps. Therefore, the preferable upper limit range of Al 2 O 3 is 25% or less, 21% or less, 20.5% or less, 20% or less, 19.9% or less, 19.5% or less, 19.0% or less, especially 18 .9% or less. By setting the content of Al 2 O 3 , which has a large influence on ion exchange performance, within a suitable range, it becomes easy to design a high CS/DOC value even in thin glass.
 B23は、高温粘度や密度を低下させると共に、ガラスを安定化させて結晶を析出させ難くし、液相温度を低下させる成分である。またヤング率を抑制し、曲げ強度やクラックレジスタンスを高める成分である。しかし、B23の含有量が多過ぎると、イオン交換処理によって、ヤケと呼ばれる表面の着色が発生したり、耐水性が低下したり、圧縮応力層の圧縮応力値が低下したりする傾向がある。よって、B23の好適な下限範囲はモル%で、0%以上、0.01%以上、0.02%以上、0.1%以上、0.3%以上であり、好適な上限範囲は、35%以下、30%以下、25%以下、22%以下、20%以下、特に15%以下である。なお、CSを高くする事を優先する観点では、B23の含有量は、さらに好ましくは0.2~5%、0.3~1%とすることできる。また、エッチング処理時における欠陥抑制等を目的に化学的耐久性を向上させる観点では、B23の含有量の上限範囲は好ましくは1%以上、1.5%以上、2%以上とすることができ、下限範囲は5%以下、4.5%以下、4%以下、3%以下とすることができる。一方、ヤング率を抑制する事を優先する観点では、B23の含有量は、さらに好ましくは10~25%、15~23%、18~22%とすることできる。 B 2 O 3 is a component that lowers high-temperature viscosity and density, stabilizes the glass, makes it difficult for crystals to precipitate, and lowers the liquidus temperature. It is also a component that suppresses Young's modulus and increases bending strength and crack resistance. However, if the content of B 2 O 3 is too high, ion exchange treatment tends to cause surface discoloration called discoloration, decrease in water resistance, and decrease in the compressive stress value of the compressive stress layer. There is. Therefore, the preferable lower limit range of B 2 O 3 is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, 0.3% or more in mol%, and the preferable upper limit range is is 35% or less, 30% or less, 25% or less, 22% or less, 20% or less, particularly 15% or less. In addition, from the viewpoint of giving priority to increasing CS, the content of B 2 O 3 can be more preferably 0.2 to 5% and 0.3 to 1%. In addition, from the viewpoint of improving chemical durability for the purpose of suppressing defects during etching processing, the upper limit range of the B 2 O 3 content is preferably 1% or more, 1.5% or more, and 2% or more. The lower limit range can be 5% or less, 4.5% or less, 4% or less, or 3% or less. On the other hand, from the viewpoint of giving priority to suppressing Young's modulus, the content of B 2 O 3 can be more preferably 10 to 25%, 15 to 23%, or 18 to 22%.
 Li2Oは、イオン交換成分であり、特にガラス中に含まれるLiイオンと溶融塩中のKイオンをイオン交換して、高い表面圧縮応力値を得る成分である。また、Li2Oは、高温粘度を低下させて、溶融性や成形性を高める成分である。よって、Li2Oの好適な下限範囲はモル%で、0%以上、3%以上、4%以上、4.2%以上、5%以上、5.5%以上、6.5%以上、7%以上、7.3%以上、7.5%以上、7.8%以上、特に8%以上である。よって、Li2Oの好適な上限範囲は20%以下、15%以下、13%以下、12%以下、11.5%以下、11%以下、10.5%以下、10%未満、特に9.9%以下、9%以下、8.9%以下である。 Li 2 O is an ion exchange component, and in particular is a component that ion exchanges Li ions contained in the glass with K ions in the molten salt to obtain a high surface compressive stress value. Moreover, Li 2 O is a component that lowers high temperature viscosity and improves meltability and moldability. Therefore, the preferable lower limit range of Li 2 O is 0% or more, 3% or more, 4% or more, 4.2% or more, 5% or more, 5.5% or more, 6.5% or more, 7% by mole. % or more, 7.3% or more, 7.5% or more, 7.8% or more, especially 8% or more. Therefore, the preferable upper limit range of Li 2 O is 20% or less, 15% or less, 13% or less, 12% or less, 11.5% or less, 11% or less, 10.5% or less, less than 10%, especially 9. 9% or less, 9% or less, 8.9% or less.
 Na2Oは、イオン交換成分であり、また高温粘度を低下させて、溶融性や成形性を高める成分である。また、Na2Oは、耐失透性、成形体耐火物、特にアルミナ耐火物との反応失透性を改善する成分でもある。Na2Oの含有量が少な過ぎると、溶融性が低下したり、熱膨張係数が低下し過ぎたり、イオン交換速度が低下し易くなる。よって、Na2Oの好適な下限範囲はモル%で、1%以上、5%以上、7%以上、8%以上、8.5%以上、9%以上、9.5%以上、10%以上、11%以上、12%以上、特に12.5%以上である。一方、Na2Oの含有量が多過ぎると、分相発生粘度が低下し易くなる。また耐酸性が低下したり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する場合がある。よって、Na2Oの好適な上限範囲は20%以下、19.5%以下、19%以下、18%以下、17%以下、16.5%以下、16%以下、15.5%以下、特に15%以下である。 Na 2 O is an ion exchange component, and also a component that lowers high temperature viscosity and improves meltability and moldability. Na 2 O is also a component that improves devitrification resistance and reaction devitrification with molded refractories, especially alumina refractories. If the content of Na 2 O is too low, the meltability will be reduced, the coefficient of thermal expansion will be too low, and the ion exchange rate will tend to be reduced. Therefore, the preferred lower limit range of Na 2 O is 1% or more, 5% or more, 7% or more, 8% or more, 8.5% or more, 9% or more, 9.5% or more, 10% or more in terms of mol%. , 11% or more, 12% or more, especially 12.5% or more. On the other hand, if the content of Na 2 O is too large, the viscosity at which phase separation occurs tends to decrease. In addition, acid resistance may be lowered, or the glass composition may lack component balance, resulting in a lower devitrification resistance. Therefore, the preferred upper limit ranges of Na 2 O are 20% or less, 19.5% or less, 19% or less, 18% or less, 17% or less, 16.5% or less, 16% or less, 15.5% or less, especially It is 15% or less.
 K2Oは、高温粘度を低下させて、溶融性や成形性を高める成分である。更に耐失透性を改善したり、ビッカース硬度を高める成分でもある。しかし、K2Oの含有量が多過ぎると、分相発生粘度が低下し易くなる。また耐酸性が低下したり、ガラス組成の成分バランスを欠き、かえって耐失透性が低下する傾向がある。よって、K2Oの好適な下限範囲はモル%で、0%以上、0.01%以上、0.02%以上、0.1%以上、0.5%以上、1%以上、1.5%以上、2%以上、2.5%以上、3%以上、特に3.5%以上であり、好適な上限範囲は10%以下、5.5%以下、5%以下、特に4.5%未満である。 K 2 O is a component that lowers high temperature viscosity and improves meltability and moldability. Furthermore, it is a component that improves devitrification resistance and increases Vickers hardness. However, if the content of K 2 O is too large, the viscosity at which phase separation occurs tends to decrease. Furthermore, acid resistance tends to decrease, the glass composition lacks component balance, and devitrification resistance tends to decrease. Therefore, the preferable lower limit range of K 2 O is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, 0.5% or more, 1% or more, 1.5% by mole. % or more, 2% or more, 2.5% or more, 3% or more, especially 3.5% or more, and the preferable upper limit range is 10% or less, 5.5% or less, 5% or less, especially 4.5%. less than
 Li2OとNa2Oは、いずれも溶融塩中のKイオンとイオン交換して、高い表面圧縮応力値を得る成分であり、本発明にいずれかが必須となる成分である。よって、Li2O+Na2Oの好適な下限範囲は、モル%で1%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、特に18.5%以上である。一方、Li2O+Na2Oの含有量が多過ぎると、熱膨張係数が高くなり過ぎて、耐熱衝撃性が低下し易くなる。またガラス組成の成分バランスが崩れて、かえって耐失透性が低下する場合がある。よって、Li2O+Na2Oの好適な上限範囲は、20%以下、特に19%以下である。 Both Li 2 O and Na 2 O are components that obtain a high surface compressive stress value by ion exchange with K ions in the molten salt, and either of them is an essential component for the present invention. Therefore, the preferable lower limit range of Li 2 O + Na 2 O is 1% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% or more, 10% by mole. % or more, 11% or more, 12% or more, 13% or more, 14% or more, 15% or more, 16% or more, 17% or more, 18% or more, especially 18.5% or more. On the other hand, if the content of Li 2 O + Na 2 O is too large, the coefficient of thermal expansion becomes too high and the thermal shock resistance tends to decrease. Moreover, the component balance of the glass composition may be disrupted, and the devitrification resistance may be reduced on the contrary. Therefore, a preferable upper limit range of Li 2 O+Na 2 O is 20% or less, particularly 19% or less.
 上記成分以外にも、ガラス物品1は、ガラス組成として、例えば以下の成分を含有してもよい。 In addition to the above components, the glass article 1 may also contain, for example, the following components as a glass composition.
 MgOは、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分であり、アルカリ土類金属酸化物の中では、イオン交換性能を高める効果が大きい成分である。しかし、MgOの含有量が多過ぎると、密度や熱膨張係数が高くなり易く、またガラスが失透し易くなる。よって、MgOの好適な上限範囲は、12%以下、10%以下、8%以下、6%以下、特に5%以下である。なお、ガラス組成中にMgOを導入する場合、MgOの好適な下限範囲は、モル%で0.1%以上、0.5%以上、1%以上、特に2%以上である。 MgO is a component that lowers high-temperature viscosity, increases meltability and moldability, and increases strain point and Young's modulus. Among alkaline earth metal oxides, MgO is a component that has the greatest effect on improving ion exchange performance. be. However, if the content of MgO is too large, the density and coefficient of thermal expansion tend to increase, and the glass tends to devitrify. Therefore, the preferable upper limit range of MgO is 12% or less, 10% or less, 8% or less, 6% or less, especially 5% or less. In addition, when introducing MgO into the glass composition, the preferable lower limit range of MgO is 0.1% or more, 0.5% or more, 1% or more, especially 2% or more in mol%.
 CaOは、他の成分と比較して、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める効果が大きい。CaOの含有量は0~10%が好ましい。しかし、CaOの含有量が多過ぎると、密度や熱膨張係数が高くなり、またガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなったり、イオン交換性能が低下し易くなる。よって、CaOの好適な含有量は、モル%で0~5%、0.01~4%、0.1~3%、特に1~2.5%である。 Compared to other components, CaO has a large effect of lowering high temperature viscosity, increasing meltability and moldability, and increasing strain point and Young's modulus without reducing devitrification resistance. The content of CaO is preferably 0 to 10%. However, if the content of CaO is too large, the density and coefficient of thermal expansion will increase, and the glass composition will lack component balance, making the glass more likely to devitrify or deteriorate its ion exchange performance. Therefore, the preferred content of CaO is 0 to 5%, 0.01 to 4%, 0.1 to 3%, particularly 1 to 2.5% in terms of mol%.
 SrOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、SrOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。SrOの好適な含有範囲は、モル%で0~5%、0~3%、0~1%、特に0~0.1%未満である。 SrO is a component that lowers high-temperature viscosity, improves meltability and moldability, and increases strain point and Young's modulus without reducing devitrification resistance. However, if the content of SrO is too large, the density and coefficient of thermal expansion will increase, the ion exchange performance will decrease, and the component balance of the glass composition will be lacking, making the glass more likely to devitrify. The preferred content range of SrO is 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to less than 0.1% in terms of mol%.
 BaOは、耐失透性の低下を伴うことなく、高温粘度を低下させて、溶融性や成形性を高めたり、歪点やヤング率を高める成分である。しかし、BaOの含有量が多過ぎると、密度や熱膨張係数が高くなったり、イオン交換性能が低下したり、ガラス組成の成分バランスを欠いて、かえってガラスが失透し易くなる。BaOの好適な含有範囲は、モル%で0~5%、0~3%、0~1%、特に0~0.1%未満である。 BaO is a component that lowers high-temperature viscosity, improves meltability and moldability, and increases strain point and Young's modulus without reducing devitrification resistance. However, if the content of BaO is too large, the density and coefficient of thermal expansion will increase, the ion exchange performance will decrease, and the component balance of the glass composition will be lacking, making the glass more likely to devitrify. The preferred content range of BaO is 0 to 5%, 0 to 3%, 0 to 1%, particularly 0 to less than 0.1% in terms of mol%.
 ZnOは、イオン交換性能を高める成分であり、特に圧縮応力値を増大させる効果が大きい成分である。また低温粘性を低下させずに、高温粘性を低下させる成分である。しかし、ZnOの含有量が多過ぎると、ガラスが分相したり、耐失透性が低下したり、密度が高くなったり、圧縮応力層の応力深さが小さくなる傾向がある。よって、ZnOの含有量は、モル%で0~6%、0~5%、0~1%、0~0.5%、特に0~0.1%未満が好ましい。 ZnO is a component that enhances ion exchange performance, and is particularly effective in increasing compressive stress values. It is also a component that reduces high temperature viscosity without reducing low temperature viscosity. However, if the ZnO content is too large, the glass tends to undergo phase separation, the devitrification resistance decreases, the density increases, and the stress depth of the compressive stress layer decreases. Therefore, the content of ZnO is preferably 0 to 6%, 0 to 5%, 0 to 1%, 0 to 0.5%, particularly 0 to less than 0.1% in terms of mol%.
 ZrO2は、イオン交換性能を顕著に高める成分であると共に、液相粘度付近の粘性や歪点を高める成分であるが、その含有量が多過ぎると、耐失透性が著しく低下する虞があり、また密度が高くなり過ぎる虞がある。よって、ZrO2の好適な上限範囲は、モル%で10%以下、8%以下、6%以下、特に5%以下である。なお、イオン交換性能を高めたい場合、ガラス組成中にZrO2を導入することが好ましく、その場合、ZrO2の好適な下限範囲は、0.001%以上、0.01%以上、0.5%、特に1%以上である。 ZrO 2 is a component that significantly increases ion exchange performance, and also increases viscosity near the liquidus viscosity and strain point, but if its content is too large, there is a risk that devitrification resistance will decrease significantly. However, there is a risk that the density may become too high. Therefore, the preferable upper limit range of ZrO 2 is 10% or less, 8% or less, 6% or less, particularly 5% or less in terms of mol%. In addition, when it is desired to improve the ion exchange performance, it is preferable to introduce ZrO 2 into the glass composition. In that case, the preferable lower limit range of ZrO 2 is 0.001% or more, 0.01% or more, 0.5%. %, especially 1% or more.
 P25は、イオン交換性能を高める成分であり、特に圧縮応力層の応力深さを大きくする成分である。また、ヤング率を低く抑制する成分である。しかし、P25の含有量が多過ぎると、ガラスが分相し易くなる。よって、P25の好適な上限範囲は、モル%で10%以下、8%以下、6%以下、4%以下、2%以下、1%以下、特に0.1%未満である。 P 2 O 5 is a component that enhances ion exchange performance, and particularly increases the stress depth of the compressive stress layer. It is also a component that suppresses Young's modulus to a low level. However, if the content of P 2 O 5 is too large, the glass tends to undergo phase separation. Therefore, the preferable upper limit range of P 2 O 5 is 10% or less, 8% or less, 6% or less, 4% or less, 2% or less, 1% or less, particularly less than 0.1% in terms of mol%.
 清澄剤として、As23、Sb23、SnO2、F、Cl、SO3の群(好ましくはSnO2、Cl、SO3の群)から選択された一種又は二種以上を0~30000ppm(3%)導入してもよい。SnO2+SO3+Clの含有量は、清澄効果を的確に享受する観点から、好ましくは0~10000ppm、50~5000ppm、80~4000ppm、100~3000ppm、特に300~3000ppmである。ここで、「SnO2+SO3+Cl」は、SnO2、SO3及びClの合量を指す。 As a clarifier, one or more selected from the group of As 2 O 3 , Sb 2 O 3 , SnO 2 , F, Cl, and SO 3 (preferably the group of SnO 2 , Cl, and SO 3 ) is used in an amount of 0 to 2. 30000 ppm (3%) may be introduced. The content of SnO 2 +SO 3 +Cl is preferably 0 to 10,000 ppm, 50 to 5,000 ppm, 80 to 4,000 ppm, 100 to 3,000 ppm, particularly 300 to 3,000 ppm, from the viewpoint of accurately enjoying the clarification effect. Here, "SnO 2 +SO 3 +Cl" refers to the total amount of SnO 2 , SO 3 and Cl.
 SnO2の好適な含有範囲は、0~10000ppm、0~7000ppm、特に50~6000ppmである。Clの好適な含有範囲は、0~1500ppm、0~1200ppm、0~800ppm、0~500ppm、特に50~300ppmである。SO3の好適な含有範囲は、0~1000ppm、0~800ppm、特に10~500ppmである。 The preferred content range of SnO 2 is 0 to 10,000 ppm, 0 to 7,000 ppm, particularly 50 to 6,000 ppm. The preferred content range of Cl is 0 to 1500 ppm, 0 to 1200 ppm, 0 to 800 ppm, 0 to 500 ppm, particularly 50 to 300 ppm. The preferred content range for SO 3 is 0 to 1000 ppm, 0 to 800 ppm, particularly 10 to 500 ppm.
 Nd23、La23等の希土類酸化物は、ヤング率を高める成分であり、また補色となる色を加えると、消色して、ガラスの色味をコントロールし得る成分である。しかし、原料自体のコストが高く、また多量に導入すると、耐失透性が低下し易くなる。よって、希土類酸化物の含有量は、好ましくは4%以下、3%以下、2%以下、1%以下、特に0.5%以下である。 Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase Young's modulus, and when a complementary color is added, they are decolored and can control the color of the glass. However, the cost of the raw material itself is high, and if a large amount is introduced, the devitrification resistance tends to decrease. Therefore, the content of the rare earth oxide is preferably 4% or less, 3% or less, 2% or less, 1% or less, particularly 0.5% or less.
 ガラス物品1は、環境面の配慮から、実質的にAs23、F、PbO、Bi23を含有しないことが好ましい。ここで、「実質的にAs23を含有しない」とは、ガラス成分として積極的にAs23を添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、As23の含有量が500ppm未満であることを指す。「実質的にFを含有しない」とは、ガラス成分として積極的にFを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、Fの含有量が500ppm未満であることを指す。「実質的にPbOを含有しない」とは、ガラス成分として積極的にPbOを添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、PbOの含有量が500ppm未満であることを指す。「実質的にBi23を含有しない」とは、ガラス成分として積極的にBi23を添加しないものの、不純物レベルで混入する場合を許容する趣旨であり、具体的には、Bi23の含有量が500ppm未満であることを指す。 From environmental considerations, it is preferable that the glass article 1 substantially not contain As 2 O 3 , F, PbO, or Bi 2 O 3 . Here, "substantially does not contain As 2 O 3 " means that although As 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level, and specifically, , indicates that the content of As 2 O 3 is less than 500 ppm. "Substantially no F" means that although F is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that the F content is less than 500 ppm. refers to something. "Substantially no PbO" means that although PbO is not actively added as a glass component, it may be mixed in at an impurity level. Specifically, if the PbO content is less than 500 ppm, refers to something. "Substantially does not contain Bi 2 O 3 " means that although Bi 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, Bi 2 O 3 is not actively added as a glass component. It means that the O 3 content is less than 500 ppm.
 一例として、ガラス物品1は、ガラス組成としてB23を含まないか、或いはB23の含有量がごく少量に制限されたものであってもよい。すなわち、ガラス物品1は、ガラス組成、モル%で、SiO2 50~80%、Al23 5~25%、B23 0~1%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含有するものとしてもよい。 As an example, the glass article 1 may not contain B 2 O 3 as a glass composition, or the content of B 2 O 3 may be limited to a very small amount. That is, the glass article 1 has a glass composition, in mol%, of SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-1%, Li 2 O 0-20%, Na 2 O. It may contain 1 to 20% of K 2 O and 0 to 10% of K 2 O.
 別の例として、ガラス物品1はガラス組成としてB23を必須成分として含むものとしてもよい。すなわち、ガラス物品1は、ガラス組成として、モル%で、SiO2 50~80%、Al23 5~25%、B23 1~5%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含有するものとしてもよい。 As another example, the glass article 1 may include B 2 O 3 as an essential component in the glass composition. That is, the glass article 1 has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 1-5%, Li 2 O 0-20%, Na 2 It may contain 1 to 20% of O and 0 to 10% of K 2 O.
 なお、ガラス物品1はガラス組成としてB23を必須成分として含む場合、ガラスの成形性が下がる懸念があるため、バランスを取るために例えばAl23の等の他の成分の含有量を制限してもよい。すなわち、ガラス物品1は、ガラス組成として、モル%で、SiO2 50~80%、Al23 5~10%、B23 1~5%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含有するものとしてもよい。 Note that if the glass article 1 contains B 2 O 3 as an essential component, there is a concern that the formability of the glass will decrease, so the content of other components such as Al 2 O 3 may be adjusted to maintain balance. may be restricted. That is, the glass article 1 has, as a glass composition, SiO 2 50-80%, Al 2 O 3 5-10%, B 2 O 3 1-5%, Li 2 O 0-20%, Na 2 It may contain 1 to 20% of O and 0 to 10% of K 2 O.
<ガラス物品の製造方法>
 図3に示すように、第一実施形態に係るガラス物品の製造方法は、準備工程S1、化学強化工程S2と、水処理工程S3とを、この順に備える。
<Method for manufacturing glass articles>
As shown in FIG. 3, the method for manufacturing a glass article according to the first embodiment includes a preparation step S1, a chemical strengthening step S2, and a water treatment step S3 in this order.
 準備工程S1では、上述のガラス物品1の元となるガラス(以下、処理用ガラスという)を準備する。処理用ガラスは、上述のガラス物品1と同様の形状寸法及びガラス組成により構成されたガラスである。 In the preparation step S1, glass (hereinafter referred to as processing glass) that is the source of the above-mentioned glass article 1 is prepared. The processing glass is a glass having the same shape and size and glass composition as the glass article 1 described above.
 処理用ガラスは、例えば、オーバーフローダウンドロー法、スロットダウンドロー法、フロート法、リドロー法等の成形方法により得られた板状又はシート状のマザーガラスを小片ガラスに切断、加工して得られる。平滑な表面を得るためには成形方法としてオーバーフローダウンドロー法を用いることが好ましい。また、オーバーフローダウンドロー法であれば、成形後に研磨(機械研磨、エッチングを含む)しなくても、厚み0.005~0.1mmの処理用ガラスを成形し易い。なお、オーバーフローダウンドロー法で成形された場合、処理用ガラスは、内部に成形合流面を有する。 The glass for processing is obtained by cutting and processing a plate-like or sheet-like mother glass obtained by a forming method such as an overflow down-draw method, a slot down-draw method, a float method, or a redraw method into small glass pieces. In order to obtain a smooth surface, it is preferable to use an overflow down-draw method as the molding method. Furthermore, if the overflow down-draw method is used, it is easy to mold glass for processing with a thickness of 0.005 to 0.1 mm without polishing (including mechanical polishing and etching) after molding. Note that when molded by the overflow down-draw method, the processing glass has a molding convergence surface inside.
 処理用ガラスの端面は、研磨、熱処理、エッチング等により面取りや強度向上のための処理が施されることが好ましい。処理用ガラスの主表面は研磨処理されてよいが、例えば、オーバーフローダウンドロー法により主表面が予め平滑に成形されている場合や、厚みが均一且つ精度良く成形されている場合には主表面には研磨処理を施さず、すなわち非研磨面のまま用いてよい。なお、オーバーフローダウンドロー法により成形され、研磨されていない場合、処理用ガラスの主表面は火造り面となる。 It is preferable that the end face of the glass for treatment is subjected to chamfering and strength improvement treatment by polishing, heat treatment, etching, etc. The main surface of the glass for processing may be polished, but for example, if the main surface has been formed smooth in advance by the overflow down-draw method, or if it has been formed with uniform thickness and precision, the main surface may be polished. may be used without polishing, that is, with the unpolished surface. Note that if the glass is formed by the overflow down-draw method and is not polished, the main surface of the glass for processing will be the fire-finished surface.
 化学強化工程S2では、処理用ガラスがイオン交換処理される。本実施形態では、処理用ガラスは、イオン交換処理用の溶融塩に浸漬される。このように処理用ガラスをイオン交換処理により化学強化ガラスとすることで、処理用ガラスの曲げ強度が向上する。 In the chemical strengthening step S2, the glass for treatment is subjected to ion exchange treatment. In this embodiment, the glass for treatment is immersed in a molten salt for ion exchange treatment. By making the glass for treatment into chemically strengthened glass through ion exchange treatment in this way, the bending strength of the glass for treatment is improved.
 溶融塩は、化学強化用ガラス中の成分とイオン交換可能な成分を含む塩であり、典型的にはアルカリ金属硝酸塩である。アルカリ金属硝酸塩としては、NaNO3、KNO3、LiNO3等が挙げられ、これらを各々単独で(100質量%で)又は複数種を混合して用いることができる。複数種のアルカリ金属硝酸塩を混合する場合の混合比率は任意に定めてよいが、例えば、質量%でNaNO3 5~95%、KNO3 5~95%、好ましくはNaNO3 30~80%、KNO3 20~70%、より好ましくはNaNO3 50~70%、KNO3 30~50%とすることができる。 The molten salt is a salt containing a component that can be ion-exchanged with the component in the chemically strengthened glass, and is typically an alkali metal nitrate. Examples of the alkali metal nitrates include NaNO 3 , KNO 3 , LiNO 3 , and the like, and each of these can be used alone (at 100% by mass) or in combination. When mixing multiple types of alkali metal nitrates, the mixing ratio may be determined arbitrarily, but for example, NaNO 3 5 to 95%, KNO 3 5 to 95%, preferably NaNO 3 30 to 80%, KNO 3 in mass %. 3 20-70%, more preferably NaNO 3 50-70% and KNO 3 30-50%.
 溶融塩の温度は、例えば、350℃~500℃であり、好ましくは355℃~470℃、360℃~450℃、365℃~430℃、370℃~410℃である。また、浸漬時間は、例えば、3~300分間であり、好ましくは5~120分間、7~100分間である。もちろん、溶融塩の温度及び浸漬時間等の条件は、上記応力特性を得られる範囲で、ガラス組成等に応じて適宜変更できる。 The temperature of the molten salt is, for example, 350°C to 500°C, preferably 355°C to 470°C, 360°C to 450°C, 365°C to 430°C, or 370°C to 410°C. The immersion time is, for example, 3 to 300 minutes, preferably 5 to 120 minutes, and 7 to 100 minutes. Of course, the conditions such as the temperature of the molten salt and the immersion time can be changed as appropriate depending on the glass composition, etc., within a range that allows the above-mentioned stress characteristics to be obtained.
 水処理工程S3では、処理用ガラスを処理水に0.5時間以上15時間未満接触させる。このように処理用ガラスを処理水と接触させることで、処理用ガラスのペンドロップ強度が向上する。また、水処理工程S3後も処理用ガラスのペンドロップ強度は維持されるため、処理用ガラスから製造されるガラス物品1のペンドロップ強度も向上する。なお、処理用ガラスと処理水との接触時間(以下、水処理時間という)が短すぎても長すぎても、ペンドロップ強度向上効果を十分に享受できない。したがって、水処理時間は、上記の数値範囲内とすることが重要である。 In the water treatment step S3, the glass for treatment is brought into contact with the treated water for 0.5 hours or more and less than 15 hours. By bringing the treated glass into contact with treated water in this manner, the pen drop strength of the treated glass is improved. Further, since the pen drop strength of the treatment glass is maintained even after the water treatment step S3, the pen drop strength of the glass article 1 manufactured from the treatment glass is also improved. Note that if the contact time between the glass for treatment and the treated water (hereinafter referred to as water treatment time) is too short or too long, the pen drop strength improvement effect cannot be fully enjoyed. Therefore, it is important that the water treatment time be within the above numerical range.
 水処理時間の下限範囲は、好ましくは0.75時間以上、1時間以上、1.25時間以上、1.5時間以上である。水処理時間の上限範囲は、好ましくは14時間以下、13時間以下、12時間以下、11時間以下である。 The lower limit range of the water treatment time is preferably 0.75 hours or more, 1 hour or more, 1.25 hours or more, and 1.5 hours or more. The upper limit range of the water treatment time is preferably 14 hours or less, 13 hours or less, 12 hours or less, or 11 hours or less.
 処理水の温度は、例えば、10~100℃である。処理水の温度の下限範囲は、好ましくは、20℃以上、30℃以上、40℃以上、46℃以上である。処理水の温度の上限範囲は、好ましくは、95℃以下、90℃以下、85℃以下である。処理水の温度が高くなるに連れて、所望のペンドロップ強度を得るまでの処理時間が短くなる傾向がある。 The temperature of the treated water is, for example, 10 to 100°C. The lower limit range of the temperature of the treated water is preferably 20°C or higher, 30°C or higher, 40°C or higher, or 46°C or higher. The upper limit range of the temperature of the treated water is preferably 95°C or lower, 90°C or lower, or 85°C or lower. As the temperature of the treated water increases, the treatment time to achieve the desired pen drop strength tends to decrease.
 処理用ガラスが化学強化ガラスである場合、水処理工程S3では、処理水の温度が50~95℃であり、かつ、水処理時間が0.5~10時間であることが好ましい。 When the glass for treatment is chemically strengthened glass, in the water treatment step S3, it is preferable that the temperature of the treated water is 50 to 95°C and the water treatment time is 0.5 to 10 hours.
 処理水の電気伝導率は、3mS/m以下であることが好ましい。処理水の電気伝導率は、より好ましくは、1mS/m以下、0.1mS/m以下、0.01mS/m以下である。処理水の電気伝導率が低くなるに連れて、処理用ガラスのペンドロップ強度を向上させ易くなる。処理水は、洗剤、およびその材料(例えば、界面活性剤、水軟化剤、金属封鎖剤、pH調整剤、安定化剤)等を含まないことが好ましい。 The electrical conductivity of the treated water is preferably 3 mS/m or less. The electrical conductivity of the treated water is more preferably 1 mS/m or less, 0.1 mS/m or less, or 0.01 mS/m or less. As the electrical conductivity of the treated water decreases, it becomes easier to improve the pen drop strength of the treated glass. The treated water preferably does not contain detergents and their materials (eg, surfactants, water softeners, sequestrants, pH adjusters, stabilizers), and the like.
 水処理工程S3の実施態様の一例を図4に示す。図4に示すように、容器4に貯留された処理水5中に処理用ガラス6を浸漬する。処理水5中では、例えば、複数枚の処理用ガラス6が、縦姿勢の状態で、厚み方向に所定の間隔を置いて支持台7によって支持される。そして、処理用ガラス6及び処理水5を含む容器4が、所定時間・所定温度に維持された恒温装置(温度調整装置)8内に収容され、処理用ガラス6に対して水処理がなされる。 An example of an embodiment of the water treatment step S3 is shown in FIG. 4. As shown in FIG. 4, a glass for treatment 6 is immersed in treated water 5 stored in a container 4. In the treated water 5, for example, a plurality of pieces of glass for treatment 6 are supported in a vertical position by support stands 7 at predetermined intervals in the thickness direction. Then, the container 4 containing the glass for treatment 6 and the treated water 5 is housed in a constant temperature device (temperature adjustment device) 8 that is maintained at a prescribed temperature for a predetermined period of time, and the glass for treatment 6 is subjected to water treatment. .
 処理水を処理用ガラスと接触させる方法は、特に限定されるものではないが、上述のように、容器に貯留された処理水中に処理用ガラスを浸漬する方法を採用することが好ましい。この際、処理水には、超音波等の外的振動を付与せず、処理水中に処理用ガラスを静置することが好ましい。このように処理水に浸漬すれば、処理用ガラス全体を処理水と効率よく接触させることができ、ペンドロップ強度向上効果を享受し易くなる。なお、処理水は、処理用ガラスに対してノズル等から噴射するようにしてもよく、処理用ガラスの全表面に流水を流してもよい。 The method of bringing the treated water into contact with the treated glass is not particularly limited, but as mentioned above, it is preferable to adopt a method of immersing the treated glass in the treated water stored in a container. At this time, it is preferable to leave the glass for treatment still in the treatment water without applying external vibrations such as ultrasonic waves to the treatment water. By immersing the glass in the treated water in this manner, the entire glass for treatment can be efficiently brought into contact with the treated water, making it easier to enjoy the effect of improving pen drop strength. The treated water may be sprayed onto the glass for treatment from a nozzle or the like, or the water may be flowed over the entire surface of the glass for treatment.
 処理用ガラスは、処理水に対して相対移動させてもよい。具体的には、例えば、処理水に浸漬された処理用ガラスを処理水中で移動させてもよいし、処理水がノズル等によって噴射供給されるエリア内で処理用ガラスを移動させてもよい。 The glass for treatment may be moved relative to the treated water. Specifically, for example, the glass for treatment immersed in the treatment water may be moved within the treatment water, or the glass for treatment may be moved within an area where the treatment water is sprayed and supplied by a nozzle or the like.
(第二実施形態)
<積層体>
 図5に示すように、第二実施形態に係る積層体9は、上述のガラス物品1と、ガラス物品1の一方の主表面1a(例えば表面)に積層された保護層10aと、ガラス物品の他方の主表面1a(例えば裏面)に積層された補強層10bとを備える。このようにすれば、保護層10aによってガラス物品1が保護されるため、より高いペンドロップ強度を実現できる。また、補強層10bによりガラス物品1の曲げ強度を向上し、折曲げ時の破損を抑制できる。保護層10aは、ペン等が接触するガラス物品1の表面側に設けられ、補強層10bは、ペン等が接触しないガラス物品1の裏面側に設けられることが好ましい。なお、保護層10aおよび補強層10bのうちの一方のみが、設けられていてもよい。
(Second embodiment)
<Laminated body>
As shown in FIG. 5, a laminate 9 according to the second embodiment includes the above-mentioned glass article 1, a protective layer 10a laminated on one main surface 1a (for example, the front surface) of the glass article 1, and A reinforcing layer 10b laminated on the other main surface 1a (for example, the back surface) is provided. In this way, since the glass article 1 is protected by the protective layer 10a, higher pen drop strength can be achieved. Moreover, the bending strength of the glass article 1 can be improved by the reinforcing layer 10b, and damage during bending can be suppressed. It is preferable that the protective layer 10a is provided on the front side of the glass article 1 that a pen or the like comes into contact with, and the reinforcing layer 10b is provided on the back side of the glass article 1 that a pen or the like does not come into contact with. Note that only one of the protective layer 10a and the reinforcing layer 10b may be provided.
 保護層10a、補強層10bとしては、板状又はシート状の樹脂、金属、ガラスなどが挙げられ、これらを単層または複数層組み合わせて形成することができる。ただし、積層体9をフォルダブルタイプのデバイスに適用する場合には、保護層10a、補強層10bは、可撓性を付与し易い樹脂であることが好ましい。 Examples of the protective layer 10a and the reinforcing layer 10b include plate-shaped or sheet-shaped resins, metals, glass, etc., and these can be formed in a single layer or in a combination of multiple layers. However, when applying the laminate 9 to a foldable type device, the protective layer 10a and the reinforcing layer 10b are preferably made of resin that easily imparts flexibility.
 保護層10a、補強層10bに含まれる樹脂の厚さは、好ましくは0.5~200μm、1~150μm、2~100μmである。保護層10に含まれる樹脂の材質としては、例えば、ポリカーボネート(PC)、アクリル、ポリエチレンテレフタレート(PET)、ポリエーテルエーテルケトン(PEEK)、ポリアミド(PA)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンナフタレート(PEN)、ポリイミド(PI)、シクロオレフィンポリマー(COP)、エポキシ等が挙げられる。 The thickness of the resin contained in the protective layer 10a and the reinforcing layer 10b is preferably 0.5 to 200 μm, 1 to 150 μm, and 2 to 100 μm. Examples of the resin material included in the protective layer 10 include polycarbonate (PC), acrylic, polyethylene terephthalate (PET), polyether ether ketone (PEEK), polyamide (PA), polyvinyl chloride (PVC), and polyethylene (PE). ), polypropylene (PP), polyethylene naphthalate (PEN), polyimide (PI), cycloolefin polymer (COP), epoxy, and the like.
 保護層10a、補強層10bは、例えば、ガラス物品1の主表面1aに接着層11を介して積層される。接着層11の厚さは、好ましくは0.1~100μm、0.2~90μm、0.3~80μmである。接着層11の材質としては、例えば、アクリル系粘着剤、シリコーン系粘着剤、ゴム系粘着剤、紫外線硬化性アクリル系接着剤、紫外線硬化性エポキシ系接着剤、熱硬化性エポキシ系接着剤、熱硬化性メラミン系接着剤、熱硬化性フェノール系接着剤、エチレンビニルアセテート(EVA)、ポリビニルブチラール(PVB)、シクロオレフィンポリマー(COP)等が挙げられる。なお、保護層10は、ガラス物品1の主表面1aに塗布等の任意の方法により、接着層11を介さずに直接形成してもよい。 The protective layer 10a and the reinforcing layer 10b are, for example, laminated on the main surface 1a of the glass article 1 via the adhesive layer 11. The thickness of the adhesive layer 11 is preferably 0.1 to 100 μm, 0.2 to 90 μm, or 0.3 to 80 μm. Examples of the material for the adhesive layer 11 include acrylic adhesive, silicone adhesive, rubber adhesive, ultraviolet curable acrylic adhesive, ultraviolet curable epoxy adhesive, thermosetting epoxy adhesive, and heat-curable epoxy adhesive. Examples include curable melamine adhesives, thermosetting phenolic adhesives, ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), and cycloolefin polymers (COP). Note that the protective layer 10 may be directly formed on the main surface 1a of the glass article 1 by any method such as coating, without using the adhesive layer 11.
(第三実施形態)
<ガラス物品の製造方法>
 図6に示すように、第三実施形態に係るガラス物品の製造方法は、準備工程S11と、化学強化工程S12と、表層エッチング工程S13と、水処理工程S14とを、この順に備える。このうち、表層エッチング工程S13以外の工程は、上述の実施形態の対応する工程と同様であるため、詳しい説明を省略する。
(Third embodiment)
<Method for manufacturing glass articles>
As shown in FIG. 6, the method for manufacturing a glass article according to the third embodiment includes, in this order, a preparation step S11, a chemical strengthening step S12, a surface layer etching step S13, and a water treatment step S14. Among these steps, the steps other than the surface layer etching step S13 are the same as the corresponding steps in the above-described embodiment, so detailed explanations will be omitted.
 表層エッチング工程S13は、化学強化工程S12後、水処理工程S14前に、圧縮応力層よりも浅い範囲で処理用ガラスをエッチングする工程である。このように表層エッチング工程S13を行うことにより、化学強化工程S12等で処理用ガラスに形成された表面欠陥を減少させることができる。そのため、処理用ガラスやガラス物品のペンドロップ強度及び/又は曲げ強度を向上させることができる。 The surface layer etching step S13 is a step of etching the processing glass in a shallower range than the compressive stress layer after the chemical strengthening step S12 and before the water treatment step S14. By performing the surface layer etching step S13 in this manner, it is possible to reduce surface defects formed in the processing glass in the chemical strengthening step S12 and the like. Therefore, the pen drop strength and/or bending strength of processing glass and glass articles can be improved.
 表層エッチング工程S13では、例えば、処理用ガラス全体を液状のエッチング媒質に浸漬し、処理用ガラスの全表面をウェットエッチングする。このような処理によれば、処理用ガラス全体を均一にエッチングできるため、エッチング処理に起因する厚みのバラツキの発生を抑制できる。このようなエッチング処理を施した場合、処理用ガラスの表面はエッチング面により構成されることとなる。 In the surface layer etching step S13, for example, the entire processing glass is immersed in a liquid etching medium, and the entire surface of the processing glass is wet-etched. According to such a treatment, the entire glass for treatment can be uniformly etched, so that it is possible to suppress the occurrence of variations in thickness due to the etching treatment. When such an etching treatment is performed, the surface of the glass for treatment is constituted by an etched surface.
 エッチング媒質としては、ガラスをエッチング可能な酸性又はアルカリ性の水溶液を使用可能である。 As the etching medium, an acidic or alkaline aqueous solution capable of etching glass can be used.
 酸性のエッチング媒質としては、例えば、HFを含む酸性水溶液を用いることができる。HFを含む水溶液を用いた場合、ガラスに対するエッチングレートが高く、生産効率がよい。 As the acidic etching medium, for example, an acidic aqueous solution containing HF can be used. When an aqueous solution containing HF is used, the etching rate for glass is high and production efficiency is good.
 HFを含む水溶液は、例えば、HFのみ、或いはHFとHClとを、HFとHNO3とを、HFとH2SO4、HFとNH4Fとを、各々組み合わせて含有した水溶液である。HF、HCl、HNO3、H2SO4、NH4F各々の化合物の濃度は、0.1~30mol/Lであることが好ましい。HFを含む水溶液を用いたエッチングにおいては、ガラス成分を含むフッ化物が副産物として生成され、エッチングレートの低下や欠陥の要因となり得るが、上述のようにHCl、HNO3、又はH2SO4等の他の酸との混酸とすることにより、当該副産物を分解して生産性の低下を抑制できる。酸性水溶液を用いてエッチングを行う場合、酸性水溶液の温度は例えば10~30℃であり、処理用ガラスを浸漬する時間は例えば0.1~60分間であることが好ましい。 The aqueous solution containing HF is, for example, an aqueous solution containing only HF, or a combination of HF and HCl, HF and HNO 3 , HF and H 2 SO 4 , or HF and NH 4 F. The concentration of each compound of HF, HCl, HNO 3 , H 2 SO 4 and NH 4 F is preferably 0.1 to 30 mol/L. In etching using an aqueous solution containing HF, fluoride containing a glass component is produced as a by-product, which can reduce the etching rate and cause defects . By forming a mixed acid with other acids, it is possible to decompose the by-products and suppress a decrease in productivity. When etching is performed using an acidic aqueous solution, the temperature of the acidic aqueous solution is, for example, 10 to 30° C., and the time for immersing the glass to be treated is preferably, for example, 0.1 to 60 minutes.
 アルカリ性のエッチング媒質としては、NaOH又はKOHを含有したアルカリ水溶液を用いることができる。アルカリ水溶液は、上述のHFを含むエッチング媒質に比べガラスに対するエッチングレートが比較的小さいため、エッチング量を精密にコントロールし易い利点がある。特に、数μm単位でガラスの厚みやDOC等を制御する必要がある場合には好適である。 As the alkaline etching medium, an alkaline aqueous solution containing NaOH or KOH can be used. Since the alkaline aqueous solution has a relatively lower etching rate for glass than the etching medium containing HF described above, it has the advantage that the amount of etching can be easily controlled precisely. This is particularly suitable when it is necessary to control the thickness, DOC, etc. of the glass in units of several μm.
 NaOH又はKOHを含む水溶液においてアルカリ成分の濃度は、1~20mol/Lであることが好ましい。アルカリ水溶液を用いてエッチングを行う場合、アルカリ水溶液の温度は例えば10~130℃であり、処理用ガラスを浸漬する時間は例えば0.5~120分間であることが好ましい。なお、エッチングレートを上げて生産性を上げる場合、アルカリ水溶液の温度を80℃以上に加温することが好ましい。逆に、より高い精度でエッチング量をコントロールしたい場合、アルカリ水溶液の温度を70℃以下に制限することが好ましい。また、エッチングレートの大きさをより重視する場合はNaOHの水溶液を用いることが好ましい。 The concentration of the alkaline component in the aqueous solution containing NaOH or KOH is preferably 1 to 20 mol/L. When etching is performed using an alkaline aqueous solution, the temperature of the alkaline aqueous solution is, for example, 10 to 130° C., and the time for immersing the glass to be treated is preferably, for example, 0.5 to 120 minutes. Note that when increasing the etching rate to increase productivity, it is preferable to heat the aqueous alkaline solution to 80° C. or higher. On the other hand, if it is desired to control the etching amount with higher precision, it is preferable to limit the temperature of the alkaline aqueous solution to 70° C. or lower. Furthermore, when the etching rate is more important, it is preferable to use an aqueous solution of NaOH.
 表層エッチング工程S13における処理用ガラスの表層部の除去厚みは、0.25μm以上3μm以下であることが好ましい。処理用ガラスの表層部の除去厚みは、さらに好ましくは0.4μm以上2.7μm以下、0.6μm以上2.5μm以下、0.8μm以上2.3μm以下である。エッチング量をこのような範囲とすることで、エッチング前後における最大圧縮応力や圧縮応力深さの変動量を小さくできる。 The removed thickness of the surface layer of the glass for treatment in the surface layer etching step S13 is preferably 0.25 μm or more and 3 μm or less. The removed thickness of the surface layer of the glass for treatment is more preferably 0.4 μm or more and 2.7 μm or less, 0.6 μm or more and 2.5 μm or less, and 0.8 μm or more and 2.3 μm or less. By setting the etching amount within such a range, it is possible to reduce the amount of variation in the maximum compressive stress and compressive stress depth before and after etching.
 表層エッチング工程S13を経て製造されるガラス物品は、全表面、すなわち、表裏の両主面及び端面は、全てエッチング面からなることが好ましい。このようにすれば、ガラス物品の全表面にわたって欠陥が低減され、高い強度、特に高いペンドロップ強度を実現できる。 It is preferable that the entire surface of the glass article manufactured through the surface layer etching step S13, that is, both the front and back principal surfaces and the end surfaces, be etched surfaces. In this way, defects are reduced over the entire surface of the glass article and high strength, especially high pen drop strength, can be achieved.
(第四実施形態)
<ガラス物品の製造方法>
 図7に示すように、第四実施形態に係るガラス物品の製造方法は、準備工程S21と、薄肉化工程S22と、化学強化工程S23と、表層エッチング工程S24と、水処理工程S25とを、この順に備える。このうち、薄肉化工程S22以外の工程は、上述の実施形態の対応する工程と同様であるため、詳しい説明を省略する。なお、表層エッチング工程S24は設けなくてもよい。
(Fourth embodiment)
<Method for manufacturing glass articles>
As shown in FIG. 7, the method for manufacturing a glass article according to the fourth embodiment includes a preparation step S21, a thinning step S22, a chemical strengthening step S23, a surface layer etching step S24, and a water treatment step S25. Prepare in this order. Among these, the steps other than the thinning step S22 are the same as the corresponding steps in the above-described embodiment, and therefore detailed explanations will be omitted. Note that the surface layer etching step S24 may not be provided.
 薄肉化工程S22は、エッチングにより、処理用ガラスの厚みを0.005~0.1mmの範囲内まで薄肉化する工程である。このように薄肉化工程S22を行うことにより、準備工程S21で厚みの大きな処理用ガラスを準備しても、処理用ガラスの厚みを適正な範囲まで薄肉化することができる。 The thinning step S22 is a step in which the thickness of the processing glass is reduced to a range of 0.005 to 0.1 mm by etching. By performing the thinning step S22 in this way, even if a thick glass for processing is prepared in the preparation step S21, the thickness of the glass for processing can be reduced to an appropriate range.
 薄肉化工程S22では、例えば、処理用ガラス全体を液状のエッチング媒質に浸漬し、処理用ガラスの全表面をウェットエッチングする。エッチング媒質としては、表層エッチング工程S24で用いるエッチング媒質を同様に用いることができる。 In the thinning step S22, for example, the entire processing glass is immersed in a liquid etching medium, and the entire surface of the processing glass is wet-etched. As the etching medium, the etching medium used in the surface layer etching step S24 can be similarly used.
 薄肉化工程S22における処理用ガラスの表層部の除去厚みは、薄肉化工程S22前の処理用ガラスの元の厚み(初期厚み)に依存するため特に限定されないが、表層エッチング工程S24における処理用ガラスの表層部の除去厚みよりも大きくなる場合がある。 The removed thickness of the surface layer of the processing glass in the thinning step S22 is not particularly limited because it depends on the original thickness (initial thickness) of the processing glass before the thinning step S22. The thickness may be larger than the removal thickness of the surface layer.
(第五実施形態)
<ガラス物品の製造方法>
 図8に示すように、第五実施形態に係るガラス物品の製造方法は、準備工程S31と、薄肉化工程S32と、水処理工程S33とを、この順に備える。各工程は上述の実施形態の対応する工程と同様であるが、本実施形態では化学強化工程を備えていない点で相違する。
(Fifth embodiment)
<Method for manufacturing glass articles>
As shown in FIG. 8, the method for manufacturing a glass article according to the fifth embodiment includes a preparation step S31, a thinning step S32, and a water treatment step S33 in this order. Each step is similar to the corresponding step in the above-described embodiment, but this embodiment differs in that it does not include a chemical strengthening step.
 このような製造方法によれば、水処理工程S33において、未強化の処理用ガラスが処理水と接触することになる。この場合、処理用ガラスのペンドロップ強度は、化学強化された処理用ガラスを処理水と接触させる場合よりも高くなる傾向がある。そのため、未強化の処理用ガラスを処理水と接触させる水処理工程S33を経て製造されたガラス物品においても、高いペンドロップ強度を得ることができる。つまり、本発明において、ガラス物品は、化学強化ガラスに限定されない。ただし、曲げ強度に関しては、化学強化されたガラス物品の方が高くなる傾向がある。したがって、ペンドロップ強度と曲げ強度を両立させる観点からは、ガラス物品は化学強化ガラスであることが好ましい。 According to such a manufacturing method, in the water treatment step S33, the unreinforced treatment glass comes into contact with the treated water. In this case, the pen drop strength of the treated glass tends to be higher than when chemically strengthened treated glass is brought into contact with treated water. Therefore, high pen drop strength can be obtained even in a glass article manufactured through the water treatment step S33 in which unstrengthened treatment glass is brought into contact with treated water. That is, in the present invention, the glass article is not limited to chemically strengthened glass. However, chemically strengthened glass articles tend to have higher bending strength. Therefore, from the viewpoint of achieving both pen drop strength and bending strength, the glass article is preferably chemically strengthened glass.
 本実施形態では、薄肉化工程S32を設ける場合を例示したが、準備工程S31において、オーバーフローダウンドロー法等により厚み0.005~0.1mmに予め成形された処理用ガラスを準備できる場合には、薄肉化工程S32を設けなくてもよい。 In the present embodiment, the case where the thinning step S32 is provided is illustrated, but in the case where a processing glass preformed to a thickness of 0.005 to 0.1 mm by an overflow down-draw method or the like can be prepared in the preparation step S31, , it is not necessary to provide the thinning step S32.
(第六実施形態)
<ガラス物品の製造方法>
 第六実施形態に係るガラス物品の製造方法では、上述の実施形態における水処理工程の変形例を示す。上述の実施形態では、水処理工程における処理水の温度は100℃以下であるが、本実施形態では、処理水の温度が100℃以上とされる。
(Sixth embodiment)
<Method for manufacturing glass articles>
The method for manufacturing a glass article according to the sixth embodiment shows a modification of the water treatment process in the above embodiment. In the above embodiment, the temperature of the treated water in the water treatment step is 100°C or lower, but in this embodiment, the temperature of the treated water is 100°C or higher.
 本実施形態の水処理工程の一例としては、加圧雰囲気下で100℃以上となった処理水中に処理用ガラスを浸漬することが挙げられる。詳細には、容器に貯留された処理水に処理用ガラスを浸漬する。その後、この容器を加圧装置内に収容した状態で、加圧装置内を加圧し、処理水を100℃以上に加熱する。このように処理水を100℃以上とすることで、所望のペンドロップ強度を得るまでの水処理時間を短くできる効果が期待できる。 An example of the water treatment step of the present embodiment includes immersing the glass for treatment in treatment water at a temperature of 100° C. or higher in a pressurized atmosphere. Specifically, the glass for treatment is immersed in treated water stored in a container. Thereafter, with this container housed in a pressurizing device, the inside of the pressurizing device is pressurized and the treated water is heated to 100° C. or higher. By controlling the temperature of the treated water to 100° C. or higher in this way, the effect of shortening the water treatment time until the desired pen drop strength is obtained can be expected.
 処理水の温度は、100℃超200℃以下であることが好ましい。処理水の温度の下限範囲は、さらに好ましくは105℃以上、110以上、120℃以上である。処理水の温度の上限範囲は、さらに好ましくは、190℃以下、180℃以下、170℃以下である。 The temperature of the treated water is preferably higher than 100°C and lower than 200°C. The lower limit range of the temperature of the treated water is more preferably 105°C or higher, 110°C or higher, or 120°C or higher. The upper limit range of the temperature of the treated water is more preferably 190°C or lower, 180°C or lower, or 170°C or lower.
 加圧雰囲気の圧力は、0.15~2.0MPaであることが好ましい。加圧雰囲気の圧力の下限範囲は、さらに好ましくは0.17MPa以上、0.2MPa以上、0.25MPa以上である。加圧雰囲気の圧力の上限範囲は、さらに好ましくは1.9MPa以下、1.8MPa以下、1.7MPa以下である。 The pressure of the pressurized atmosphere is preferably 0.15 to 2.0 MPa. The lower limit range of the pressure of the pressurized atmosphere is more preferably 0.17 MPa or more, 0.2 MPa or more, or 0.25 MPa or more. The upper limit range of the pressure of the pressurized atmosphere is more preferably 1.9 MPa or less, 1.8 MPa or less, or 1.7 MPa or less.
 水処理時間の下限範囲は、好ましくは0.6時間以上、0.75時間以上、1時間以上である。水処理時間の上限範囲は、好ましくは12時間以下、11時間以下、10時間以下である。 The lower limit range of the water treatment time is preferably 0.6 hours or more, 0.75 hours or more, and 1 hour or more. The upper limit range of the water treatment time is preferably 12 hours or less, 11 hours or less, and 10 hours or less.
 処理用ガラスを100℃以上の処理水に浸漬する代わりに、処理水を100℃以上の過熱水蒸気として、処理用ガラスに噴射してもよい。 Instead of immersing the glass for treatment in treated water at 100°C or higher, the treated water may be converted into superheated steam at 100°C or higher and injected onto the glass for treatment.
 なお、本発明の実施形態について説明したが、本発明の実施形態はこれに限定されるものではなく、本発明の要旨を逸脱しない範囲で種々変更を施すことが可能である。 Although the embodiments of the present invention have been described, the embodiments of the present invention are not limited thereto, and various changes can be made without departing from the gist of the present invention.
 上記の実施形態において、ガラス物品の形状は特に限定されない。ガラス物品の形状は、平面視で、例えば、正方形、長方形、円形、楕円形等とすることができる。 In the above embodiments, the shape of the glass article is not particularly limited. The shape of the glass article can be, for example, square, rectangular, circular, oval, etc. in plan view.
 上記の実施形態において、ガラス物品には、必要に応じて三次元的な曲げ加工を行ってもよい。具体的には、予め処理用ガラスに三次元的な曲げ加工を全体又は部分的に施しておくことにより、最終的に製造されるガラス物品に三次元的な曲げ形状を付与できる。 In the above embodiments, the glass article may be subjected to three-dimensional bending as necessary. Specifically, by performing a three-dimensional bending process on the glass for processing in whole or in part in advance, a three-dimensional bent shape can be imparted to the glass article that is finally manufactured.
 上記の実施形態において、1回の化学強化工程(イオン交換処理)を行う場合を例示したが、2回又は3回以上の化学強化工程を行うようにしてもよい。また、イオン交換の前後において加熱処理を行ってもよい。加熱処理により、応力の緩和や、イオン拡散を促進して圧縮応力層深さ等を制御し得る。化学強化工程を行う場合、化学強化工程の後、水処理工程の前に、処理用ガラスは、洗浄及び乾燥されることが好ましい。なお、上記のような複数回の化学強化を施した場合、強化後のガラス物品の応力分布は、圧縮応力層2の領域において屈曲点、極大値、極小値、または変曲点の少なくともいずれかを1つ以上有し得る。 In the above embodiment, the case where the chemical strengthening process (ion exchange treatment) is performed once is illustrated, but the chemical strengthening process may be performed twice or three times or more. Further, heat treatment may be performed before and after ion exchange. By heat treatment, the depth of the compressive stress layer and the like can be controlled by relaxing stress and promoting ion diffusion. When performing a chemical strengthening process, it is preferable that the glass for treatment is washed and dried after the chemical strengthening process and before the water treatment process. In addition, when chemical strengthening is performed multiple times as described above, the stress distribution of the glass article after strengthening is at least one of a bending point, a local maximum value, a local minimum value, or an inflection point in the region of the compressive stress layer 2. may have one or more.
 上記の実施形態において、引張応力層3における引張応力は厚み方向に一定とならない態様であってもよい。例えば、ガラス物品の厚みtに対するDOCを比較的大きく設定する場合(例えば、DOC≧0.20tの場合)、引張応力層3における応力分布は、ガラス物品の厚みの中心において極小値を有する下に凸の二次曲線に沿った分布形状とすることができる。 In the above embodiment, the tensile stress in the tensile stress layer 3 may not be constant in the thickness direction. For example, when the DOC for the thickness t of the glass article is set relatively large (for example, when DOC≧0.20t), the stress distribution in the tensile stress layer 3 has a minimum value at the center of the thickness of the glass article. The distribution shape can be along a convex quadratic curve.
 上記の実施形態において、ガラス物品の応力分布は、表裏非対称的であっても良い。表裏非対称的な応力分布は強化後のガラス物品の一方主面側を他方面より多く研磨したり、一方主面側にイオン交換を阻害する膜を付与した状態で化学強化したりすることにより得られる。 In the above embodiments, the stress distribution of the glass article may be asymmetric between the front and back sides. Asymmetrical stress distribution on the front and back surfaces can be achieved by polishing one main surface of a glass article after strengthening more than the other, or by chemically strengthening one main surface with a film that inhibits ion exchange. It will be done.
 以下、本発明に係るガラス物品について実施例に基づいて説明する。なお、以下の実施例は単なる例示であって、本発明は、以下の実施例に何ら限定されない。 Hereinafter, the glass article according to the present invention will be explained based on Examples. Note that the following examples are merely illustrative, and the present invention is not limited to the following examples in any way.
 次のようにして試料を作製した。まず、表1に記載のガラス組成を有する処理用ガラスを準備した。なお、表1に示すヤング率は、共振法により測定した値である。 A sample was prepared as follows. First, a processing glass having the glass composition shown in Table 1 was prepared. Note that the Young's modulus shown in Table 1 is a value measured by a resonance method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 具体的には、表1に記載の組成となるようにガラス原料を調合し、試験溶融炉で溶融した。その後、得られた溶融ガラスをオーバーフローダウンドロー法により板状又はシート状に成形し、所定サイズに切断して処理用ガラスを得た。 Specifically, glass raw materials were prepared to have the composition shown in Table 1 and melted in a test melting furnace. Thereafter, the obtained molten glass was formed into a plate or sheet by an overflow down-draw method and cut into a predetermined size to obtain a glass for processing.
 次いで、板状又はシート状の処理用ガラスを表2~8に記載の条件で処理することにより、板状又はシート状のガラス物品を製造した。薄肉化工程及び表層エッチング工程は、処理用ガラスをHF水溶液に浸漬して行った。化学強化工程は、処理用ガラスをKNO3100%の溶融塩に浸漬して行った。水処理工程は、処理用ガラスを処理水に浸漬して行った。表2~8において、No.1~29は本発明の実施例であり、No.30~45は比較例である。 Next, the plate-shaped or sheet-shaped glass for processing was processed under the conditions listed in Tables 2 to 8 to produce plate-shaped or sheet-shaped glass articles. The thinning process and the surface layer etching process were performed by immersing the glass for treatment in an HF aqueous solution. The chemical strengthening process was performed by immersing the glass for treatment in a 100% KNO 3 molten salt. The water treatment step was performed by immersing the glass for treatment in treated water. In Tables 2 to 8, No. Nos. 1 to 29 are examples of the present invention, and No. 1 to 29 are examples of the present invention. 30 to 45 are comparative examples.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
<ガラス物品又は積層体の製造方法>
(1)表2のNo.1~6では、処理用ガラスに水処理工程を行って、ガラス物品を製造した。表2のNo.7~8では、処理用ガラスに薄肉化工程、水処理工程をこの順に行って、ガラス物品を製造した。つまり、表2のNo.1~8では、処理用ガラスに対して化学強化工程は行っていない。なお、No.1~6では、処理用ガラスの初期厚さがガラス物品の厚さと一致し、No.7~8では、処理用ガラスの薄肉化工程後の厚さがガラス物品の厚さと一致する。
<Method for manufacturing glass article or laminate>
(1) No. of Table 2. In Examples 1 to 6, the treated glass was subjected to a water treatment process to produce glass articles. No. of Table 2 In Examples 7 and 8, a glass article was manufactured by subjecting the treated glass to a thinning process and a water treatment process in this order. In other words, No. 2 in Table 2. In Nos. 1 to 8, no chemical strengthening process was performed on the glass for treatment. In addition, No. In Nos. 1 to 6, the initial thickness of the processing glass matches the thickness of the glass article; In Nos. 7 and 8, the thickness of the processing glass after the thinning step matches the thickness of the glass article.
(2)表3のNo.9~14では、処理用ガラスに化学強化工程、水処理工程をこの順に行って、ガラス物品を製造した。表3のNo.15~16では、処理用ガラスに薄肉化工程、化学強化工程、水処理工程をこの順に行って、ガラス物品を製造した。なお、No.9~14では、処理用ガラスの初期厚さがガラス物品の厚さと一致し、No.15~16では、処理用ガラスの薄肉化工程後の厚さがガラス物品の厚さと一致する。 (2) No. of Table 3. In steps 9 to 14, the treated glass was subjected to a chemical strengthening process and a water treatment process in this order to produce glass articles. No. of Table 3 In Nos. 15 and 16, glass articles were manufactured by subjecting the treated glass to a thinning process, a chemical strengthening process, and a water treatment process in this order. In addition, No. Nos. 9 to 14, the initial thickness of the processing glass matched the thickness of the glass article; In Nos. 15 and 16, the thickness of the processing glass after the thinning process matches the thickness of the glass article.
(3)表4のNo.17~24では、処理用ガラスに化学強化工程、表層エッチング工程、水処理工程をこの順に行って、ガラス物品を製造した。なお、No.17~24では、処理用ガラスの表層エッチング工程後の厚さがガラス物品の厚さと一致する。 (3) No. of Table 4. In steps 17 to 24, glass articles were manufactured by subjecting the treated glass to a chemical strengthening process, a surface layer etching process, and a water treatment process in this order. In addition, No. In Nos. 17 to 24, the thickness of the processing glass after the surface layer etching step matches the thickness of the glass article.
(4)表5のNo.25~26では、処理用ガラスに薄肉化工程、化学強化工程、表層エッチング工程、水処理工程をこの順に行って、ガラス物品を製造した。表5のNo.27~29では、処理用ガラスに化学強化工程、表層エッチング工程、水処理工程をこの順に行って、ガラス物品を製造した。さらに、表5のNo.27~29では、ガラス物品の一方の主表面に保護層(PETフィルム、PAフィルム、PIコート)を積層し、積層体を製造した。PETフィルム及びPAフィルムは、厚さ5μmの感圧接着(PSA)シートを介してガラス物品に接合した。PIコートは、ガラス物品の主表面にPIを塗布することにより形成した。なお、No.25~29では、処理用ガラスの表層エッチング工程後の厚さがガラス物品の厚さと一致する。 (4) No. of Table 5. In Nos. 25 and 26, a glass article was manufactured by subjecting the treated glass to a thinning process, a chemical strengthening process, a surface layer etching process, and a water treatment process in this order. No. of Table 5 In Nos. 27 to 29, glass articles were manufactured by performing a chemical strengthening process, a surface layer etching process, and a water treatment process on the treated glass in this order. Furthermore, No. of Table 5. In Examples 27 to 29, a protective layer (PET film, PA film, PI coat) was laminated on one main surface of a glass article to produce a laminate. The PET and PA films were bonded to the glass article via a 5 μm thick pressure sensitive adhesive (PSA) sheet. The PI coat was formed by applying PI to the main surface of the glass article. In addition, No. In Nos. 25 to 29, the thickness of the treated glass after the surface layer etching step matches the thickness of the glass article.
(5)表6のNo.30、31では、処理用ガラスを未処理のままガラス物品とした。表6のNo.32、33では、処理用ガラスに薄肉化工程を行って、ガラス物品を製造した。表6のNo.34、35では、処理用ガラスに化学強化工程を行って、ガラス物品を製造した。表6のNo.36、37では、薄肉化工程、化学強化工程をこの順に行って、ガラス物品を製造した。つまり、表6のNo.30~33では、処理用ガラスに対して化学強化工程及び水処理工程は行っていない。表6のNo.34~37では、処理用ガラスに対して水処理工程は行っていない。なお、No.30、31、34、35では、処理用ガラスの初期厚さがガラス物品の厚さと一致する。No.32、33、36、37では、処理用ガラスの薄肉化工程後の厚さがガラス物品の厚さと一致する。 (5) No. of Table 6. In No. 30 and No. 31, the treated glass was used as a glass article without being treated. No. of Table 6 In No. 32 and No. 33, a glass article was manufactured by performing a thinning process on the treated glass. No. of Table 6 In No. 34 and No. 35, a glass article was manufactured by performing a chemical strengthening process on the treated glass. No. of Table 6 In No. 36 and No. 37, a glass article was manufactured by performing a thinning process and a chemical strengthening process in this order. In other words, No. 6 in Table 6. In Nos. 30 to 33, the chemical strengthening process and water treatment process were not performed on the glass for treatment. No. of Table 6 In Nos. 34 to 37, the water treatment process was not performed on the treated glass. In addition, No. At 30, 31, 34, 35, the initial thickness of the processing glass matches the thickness of the glass article. No. 32, 33, 36, and 37, the thickness of the processing glass after the thinning process matches the thickness of the glass article.
(6)表7のNo.38~39では、処理用ガラスに化学強化工程、表層エッチング工程をこの順に行って、ガラス物品を製造した。表7のNo.40~41では、処理用ガラスに薄肉化工程、化学強化工程、表層エッチング工程をこの順に行って、ガラス物品を製造した。つまり、表7のNo.38~41では、処理用ガラスに対して水処理工程は行っていない。なお、No.38~41では、処理用ガラスの表層エッチング工程後の厚さがガラス物品の厚さと一致する。 (6) No. of Table 7. In Nos. 38 and 39, glass articles were manufactured by subjecting the treated glass to a chemical strengthening step and a surface layer etching step in this order. No. of Table 7 In Nos. 40 and 41, a glass article was manufactured by performing a thinning process, a chemical strengthening process, and a surface layer etching process on the treated glass in this order. In other words, No. 7 in Table 7. In Nos. 38 to 41, the water treatment process was not performed on the treated glass. In addition, No. In Nos. 38 to 41, the thickness of the treated glass after the surface layer etching step matches the thickness of the glass article.
(7)表8のNo.42~45では、処理用ガラスに化学強化工程、表層エッチング工程、水処理工程をこの順に行って、ガラス物品を製造した。なお、No.42~45では、処理用ガラスの表層エッチング工程後の厚さがガラス物品の厚さと一致する。なお、No.42~45では、処理用ガラスに対して水処理工程を行っているが、水処理時間が0.5時間未満或いは15時間以上とされている。 (7) No. of Table 8. In Nos. 42 to 45, a chemical strengthening step, a surface layer etching step, and a water treatment step were performed on the treated glass in this order to produce glass articles. In addition, No. 42 to 45, the thickness of the processing glass after the surface layer etching process matches the thickness of the glass article. In addition, No. In Nos. 42 to 45, the glass for treatment is subjected to a water treatment process, but the water treatment time is less than 0.5 hours or more than 15 hours.
 化学強化工程を行った一部の実施例及び比較例において、ガラス物品のCS、DOC、CTを測定した。表1~8におけるCS、DOC、CTは、折原製作所製の表面応力計FSM-6000LEを用いて各ガラス物品(試料)を測定した値である。 In some examples and comparative examples in which a chemical strengthening process was performed, the CS, DOC, and CT of the glass articles were measured. CS, DOC, and CT in Tables 1 to 8 are values measured for each glass article (sample) using a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.
<ペンドロップ試験>
 図9に示すように、ペンドロップ試験では、測定試料12にボールペン18のペン先を落下させることにより、測定試料12に含まれるガラス物品13の強度(ペンドロップ強度)を評価した。
<Pen drop test>
As shown in FIG. 9, in the pen drop test, the strength (pen drop strength) of the glass article 13 included in the measurement sample 12 was evaluated by dropping the pen tip of the ballpoint pen 18 onto the measurement sample 12.
 No.1~26、30~45に係るペンドロップ試験では、測定試料12として、ガラス物品13、PSAシート14、PET板15、PSAシート16、SUS板17をこの順に積層したものを作製した。一方、No.27~29に係るペンドロップ試験では、上記の測定試料12におけるガラス物品13の上面に、保護層(PETフィルム、PAフィルム、PIコート)をさらに設けた。つまり、No.1~26、30~45に係るペンドロップ試験では、ボールペン18のペン先がガラス物品13と直接接触し、No.27~29に係るペンドロップ試験では、ボールペン18のペン先が保護層と直接接触する。 No. In the pen drop tests related to Nos. 1 to 26 and 30 to 45, a glass article 13, a PSA sheet 14, a PET board 15, a PSA sheet 16, and an SUS board 17 were laminated in this order as the measurement sample 12. On the other hand, No. In the pen drop tests related to Nos. 27 to 29, a protective layer (PET film, PA film, PI coat) was further provided on the top surface of the glass article 13 in the measurement sample 12 described above. In other words, No. In the pen drop tests related to Nos. 1 to 26 and 30 to 45, the pen tip of the ballpoint pen 18 was in direct contact with the glass article 13, and no. In the pen drop tests related to Nos. 27 to 29, the pen tip of the ballpoint pen 18 comes into direct contact with the protective layer.
 ガラス物品13、PSAシート14,16、PET板15及び保護層の平面視寸法は、それぞれ50mm×50mmとした。SUS板17の平面視寸法は55mm×55mmとした。ガラス物品13及び保護層の厚さは、表2~8に記載の通りとした。PSAシート14,16の厚さは50μmとした。PET板15の厚さは125μmとした。SUS板17の厚さは3mmとした。 The planar dimensions of the glass article 13, PSA sheets 14 and 16, PET board 15, and protective layer were each 50 mm x 50 mm. The dimensions of the SUS plate 17 in plan view were 55 mm x 55 mm. The thickness of the glass article 13 and the protective layer were as shown in Tables 2-8. The thickness of the PSA sheets 14 and 16 was 50 μm. The thickness of the PET board 15 was 125 μm. The thickness of the SUS plate 17 was 3 mm.
 ペンドロップ試験では、No.1~45に係る測定試料12をそれぞれ5つずつ準備し、各測定試料12の中央にボールペン18のペン先を落下させる。この際、ボールペン18のペン先が測定試料12に対して垂直に落下するように、ボールペン18を垂直に保持された案内筒19の内孔を通して測定試料12まで落下させる。ボールペン18は、BIC社製のオレンジEG0.7であり、ボール径が0.7mm、質量が5.7gである。測定試料12の上面を基準とした落下前のペン先端の高さを落下高さHとし、その初期値を1cmに設定して落下させた。ボールペン18の落下により測定試料12に含まれるガラス物品13が破損しなかった場合は1cm高さを上昇させて、再度落下させた。このようにして、測定試料12に含まれるガラス物品13が破損するまで落下高さHの上昇及び落下の試行を繰り返す。そして、ペンドロップ強度として、60%破損高さ及び最大破損高さを求めた。60%破損高さは、5つの測定試料12のうち、3つの測定試料12に含まれるガラス物品13が破損した際の落下高さHである。最大破損高さは、5つの測定試料12に含まれるガラス物品13全てが破損した際の落下高さHである。 In the pen drop test, No. Five measurement samples 12 according to Nos. 1 to 45 are prepared, and the tip of the ballpoint pen 18 is dropped into the center of each measurement sample 12. At this time, the ballpoint pen 18 is dropped to the measurement sample 12 through the inner hole of the guide tube 19 held vertically so that the pen tip of the ballpoint pen 18 falls perpendicularly to the measurement sample 12. The ballpoint pen 18 is Orange EG0.7 manufactured by BIC, and has a ball diameter of 0.7 mm and a mass of 5.7 g. The height of the tip of the pen before dropping with reference to the top surface of the measurement sample 12 was defined as a falling height H, and the initial value was set to 1 cm, and the pen was dropped. If the glass article 13 included in the measurement sample 12 was not damaged by the drop of the ballpoint pen 18, the height was raised by 1 cm and the glass article 13 was dropped again. In this way, trials of increasing the drop height H and dropping are repeated until the glass article 13 included in the measurement sample 12 is broken. Then, the 60% failure height and the maximum failure height were determined as the pen drop strength. The 60% failure height is the falling height H when the glass articles 13 included in three measurement samples 12 among the five measurement samples 12 are broken. The maximum breakage height is the fall height H when all the glass articles 13 included in the five measurement samples 12 are broken.
 上記のペンドロップ試験の結果によれば、適正な水処理工程を行った実施例(No.1~29)が、水処理工程を全く行っていないか、或いは適正な水処理工程を行っていない比較例(No.30~45)に比べて、60%破損高さが向上することが確認された。 According to the results of the pen drop test mentioned above, the examples (No. 1 to 29) in which a proper water treatment process was carried out either did not carry out a water treatment process at all, or did not carry out a proper water treatment process. It was confirmed that the fracture height was improved by 60% compared to the comparative examples (Nos. 30 to 45).
<曲げ破壊試験>
 図10に示すように、曲げ破壊試験では、ガラス物品からなる測定試料20を二枚の板状体21で挟み、U字状に曲げが生じるように押し曲げていく所謂二点曲げにより強度(二点曲げ強度)を評価した。二点曲げ強度は、No.2、10、18、30、34、38のみで評価し、これらのガラス物品に対応する測定試料20をそれぞれ30個ずつ準備した。測定試料20の平面視寸法は、140mm×70mmとした。測定試料20の厚さは、表2~8に記載の通り、No.2、10、30、34では50μmとし、No.18、38では47μmとした。そして、長辺(140mmの辺)に沿ってU字状に曲がるように測定試料20を板状体21の間に配置した。
<Bending fracture test>
As shown in FIG. 10, in the bending fracture test, a measurement sample 20 made of a glass article is sandwiched between two plate-shaped bodies 21, and the strength ( Two-point bending strength) was evaluated. The two-point bending strength is No. Glass articles 2, 10, 18, 30, 34, and 38 were evaluated, and 30 measurement samples 20 corresponding to these glass articles were prepared. The dimensions of the measurement sample 20 in plan view were 140 mm x 70 mm. The thickness of the measurement sample 20 is as shown in Tables 2 to 8. 2, 10, 30, and 34, it was 50 μm, and No. In Nos. 18 and 38, the thickness was 47 μm. Then, the measurement sample 20 was placed between the plate-like bodies 21 so as to be bent in a U-shape along the long side (140 mm side).
 二点曲げ強度は、押し曲げによりガラス物品20が破壊したときの二枚の板状体21の間隔Dを用いて、下式(4)から算出した。そして、二点曲げ強度として、中央値、最大値、最小値を求めた。二点曲げ強度の中央値は、30個の測定試料の二点曲げ強度データを大きい順に並べた時の中央の値である。二点曲げ強度の最大値は、30個の測定試料の二点曲げ強度のうちの最大値である。二点曲げ強度の最小値は、30個の測定試料の二点曲げ強度のうちの最小値である。
  σ=1.198[E×t/(D-t)]   (4)
ただし、式中において、σは二点曲げ強度[MPa]、Eはガラス物品のヤング率[MPa]、tはガラス物品の厚さ[mm]を示す。
The two-point bending strength was calculated from the following formula (4) using the distance D between the two plate-shaped bodies 21 when the glass article 20 was broken by pressing and bending. Then, the median value, maximum value, and minimum value were determined as the two-point bending strength. The median value of the two-point bending strength is the median value when the two-point bending strength data of 30 measurement samples are arranged in ascending order. The maximum value of the two-point bending strength is the maximum value of the two-point bending strengths of the 30 measurement samples. The minimum value of the two-point bending strength is the minimum value of the two-point bending strengths of the 30 measurement samples.
σ=1.198[E×t/(D−t)] (4)
However, in the formula, σ represents the two-point bending strength [MPa], E represents the Young's modulus [MPa] of the glass article, and t represents the thickness [mm] of the glass article.
 上記の曲げ破壊試験の結果によれば、化学強化されたガラス物品(No.10、18、34、38)において、化学強化されていないガラス物品(No.2、30)よりも二点曲げ強度が向上することが確認された。特に、化学強化後に表層エッチング工程を行ったガラス物品(No.18、38)において、二点曲げ強度が大幅に向上することが確認された。したがって、ガラス物品のペンドロップ強度及び二点曲げ強度を共に向上させる観点からは、化学強化工程を行いつつ、その後に適正な水処理工程を行うことが好ましいことが分かる。 According to the results of the bending fracture test mentioned above, chemically strengthened glass articles (No. 10, 18, 34, 38) have higher two-point bending strength than non-chemically strengthened glass articles (No. 2, 30). was confirmed to improve. In particular, it was confirmed that the two-point bending strength was significantly improved in the glass articles (Nos. 18 and 38) in which the surface layer etching process was performed after chemical strengthening. Therefore, from the viewpoint of improving both the pen drop strength and the two-point bending strength of the glass article, it is found that it is preferable to perform the chemical strengthening process and then perform an appropriate water treatment process.
 本発明のガラス物品は、例えば、スマートフォン、携帯電話、タブレットコンピュータ、パーソナルコンピュータ、デジタルカメラ、タッチパネルディスプレイ、その他ディスプレイデバイスのカバーガラス、車載用表示デバイス、車載用パネル等に利用可能である。 The glass article of the present invention can be used, for example, as a cover glass for smartphones, mobile phones, tablet computers, personal computers, digital cameras, touch panel displays, and other display devices, in-vehicle display devices, in-vehicle panels, and the like.
1   ガラス物品
2   圧縮応力層
3   引張応力層
4   容器
5   処理水
6   処理用ガラス
7   支持台
8   恒温装置
9   積層体
10a  保護層
10b  補強層
11  接着層
12  測定試料
13  ガラス物品
14  PSAシート
15  PET板
16  PSAシート
17  SUS板
18  ボールペン
19  案内筒
20  測定試料(ガラス物品)
21  板状体
1 Glass article 2 Compressive stress layer 3 Tensile stress layer 4 Container 5 Treated water 6 Processing glass 7 Support stand 8 Constant temperature device 9 Laminated body 10a Protective layer 10b Reinforcement layer 11 Adhesive layer 12 Measurement sample 13 Glass article 14 PSA sheet 15 PET board 16 PSA sheet 17 SUS plate 18 Ballpoint pen 19 Guide tube 20 Measurement sample (glass article)
21 Plate body

Claims (14)

  1.  ガラス組成としてアルカリ金属酸化物を含むアルカリアルミノシリケートガラスからなる処理用ガラスを準備する準備工程と、
     前記処理用ガラスを処理水に0.5時間以上15時間未満接触させる水処理工程とを備えるガラス物品の製造方法。
    a preparation step of preparing a processing glass made of alkali aluminosilicate glass containing an alkali metal oxide as a glass composition;
    A method for manufacturing a glass article, comprising a water treatment step of bringing the glass for treatment into contact with treated water for 0.5 hours or more and less than 15 hours.
  2.  前記水処理工程において、前記処理用ガラスを46~100℃の前記処理水中に浸漬する請求項1に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1, wherein in the water treatment step, the glass for treatment is immersed in the treatment water at a temperature of 46 to 100°C.
  3.  前記水処理工程において、前記処理用ガラスを加圧雰囲気下で100℃以上とした前記処理水中に浸漬する請求項1に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 1, wherein in the water treatment step, the glass for treatment is immersed in the treatment water at a temperature of 100° C. or higher under a pressurized atmosphere.
  4.  前記水処理工程において、前記処理水の電気伝導率が3mS/m以下である請求項1~3のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 3, wherein in the water treatment step, the treated water has an electrical conductivity of 3 mS/m or less.
  5.  前記処理用ガラスは、厚み0.005~0.1mmの板状又はシート状である請求項1~4のいずれか1項に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to any one of claims 1 to 4, wherein the glass for processing is in the form of a plate or sheet with a thickness of 0.005 to 0.1 mm.
  6.  前記水処理工程前に、前記処理用ガラスをエッチングにより前記厚みの範囲内に薄肉化する薄肉化工程をさらに備える請求項5に記載のガラス物品の製造方法。 The method for manufacturing a glass article according to claim 5, further comprising a thinning step of thinning the glass for treatment to within the thickness range by etching before the water treatment step.
  7.  前記処理用ガラスは、オーバーフローダウンドロー法により前記厚みの範囲内に予め成形されている請求項5に記載のガラス物品の製造方法。 6. The method for manufacturing a glass article according to claim 5, wherein the processing glass is preformed within the thickness range by an overflow down-draw method.
  8.  前記水処理工程前に、前記処理用ガラスをアルカリ金属硝酸塩と接触させて表面に100MPa以上の最大圧縮応力を有する圧縮応力層を形成する化学強化工程をさらに備える請求項1~7のいずれか1項に記載のガラス物品の製造方法。 Any one of claims 1 to 7, further comprising, before the water treatment step, a chemical strengthening step of bringing the glass for treatment into contact with an alkali metal nitrate to form a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface. A method for producing a glass article as described in Section 1.
  9.  前記水処理工程において、前記処理水の温度が50~95℃であり、かつ、前記処理用ガラスと前記処理水との接触時間が0.5~10時間である請求項8に記載のガラス物品の製造方法。 The glass article according to claim 8, wherein in the water treatment step, the temperature of the treated water is 50 to 95°C, and the contact time between the treatment glass and the treated water is 0.5 to 10 hours. manufacturing method.
  10.  前記処理用ガラスは、ガラス組成として、モル%で、SiO2 50~80%、Al23 5~25%、B23 0~35%、Li2O 0~20%、Na2O 1~20%、K2O 0~10%を含み、
     前記化学強化工程において、前記アルカリ金属硝酸塩は硝酸カリウムを含む溶融塩である請求項8又は9に記載のガラス物品の製造方法。
    The glass for processing has a glass composition including, in mol%, SiO 2 50-80%, Al 2 O 3 5-25%, B 2 O 3 0-35%, Li 2 O 0-20%, Na 2 O. 1-20%, K 2 O 0-10%,
    The method for manufacturing a glass article according to claim 8 or 9, wherein in the chemical strengthening step, the alkali metal nitrate is a molten salt containing potassium nitrate.
  11.  前記化学強化工程後、前記水処理工程前に、前記圧縮応力層よりも浅い範囲で前記処理用ガラスをエッチングする表層エッチング工程をさらに備える請求項8~10のいずれか1項に記載のガラス物品の製造方法。 The glass article according to any one of claims 8 to 10, further comprising a surface layer etching step of etching the processing glass in a shallower range than the compressive stress layer after the chemical strengthening step and before the water treatment step. manufacturing method.
  12.  厚み0.005~0.1mmの板状又はシート状のガラス物品であって、
     直径0.7mmの球状先端を有する5.7gのボールペンを主表面に落下させるペンドロップ試験において、60%破壊高さが5cm以上であるガラス物品。
    A plate-shaped or sheet-shaped glass article with a thickness of 0.005 to 0.1 mm,
    A glass article having a 60% fracture height of 5 cm or more in a pen drop test in which a 5.7 g ballpoint pen with a spherical tip with a diameter of 0.7 mm is dropped onto the main surface.
  13.  表面に100MPa以上の最大圧縮応力を有する圧縮応力層を備える請求項12に記載のガラス物品。 The glass article according to claim 12, comprising a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface.
  14.  請求項12又は13に記載のガラス物品と、
     前記ガラス物品の少なくとも一方の主表面に積層された保護層または補強層とを備える積層体。
    The glass article according to claim 12 or 13,
    A laminate comprising a protective layer or a reinforcing layer laminated on at least one main surface of the glass article.
PCT/JP2023/008972 2022-03-23 2023-03-09 Method for producing glass article, glass article, and layered product WO2023181955A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047011A JP2023140933A (en) 2022-03-23 2022-03-23 Method for producing glass article, glass article, and layered product
JP2022-047011 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023181955A1 true WO2023181955A1 (en) 2023-09-28

Family

ID=88100784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008972 WO2023181955A1 (en) 2022-03-23 2023-03-09 Method for producing glass article, glass article, and layered product

Country Status (3)

Country Link
JP (1) JP2023140933A (en)
TW (1) TW202400541A (en)
WO (1) WO2023181955A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226539A (en) * 1997-02-09 1998-08-25 Hoya Corp Production of glass substrate for information recording medium and production of information recording medium
JP2015509902A (en) * 2012-01-19 2015-04-02 コーニング インコーポレイテッド How to decorate chemically tempered glass
WO2015146169A1 (en) * 2014-03-27 2015-10-01 日本板硝子株式会社 Method for reducing warpage developing in glass plate due to chemical strengthening treatment, method for producing glass plate for chemical strengthening, and method for producing chemically strengthened glass plate
JP2016216330A (en) * 2015-05-26 2016-12-22 旭硝子株式会社 Method for producing chemical strengthened glass
CN107434354A (en) * 2016-05-25 2017-12-05 中国南玻集团股份有限公司 Alumina silicate glass, antibiotic glass and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10226539A (en) * 1997-02-09 1998-08-25 Hoya Corp Production of glass substrate for information recording medium and production of information recording medium
JP2015509902A (en) * 2012-01-19 2015-04-02 コーニング インコーポレイテッド How to decorate chemically tempered glass
WO2015146169A1 (en) * 2014-03-27 2015-10-01 日本板硝子株式会社 Method for reducing warpage developing in glass plate due to chemical strengthening treatment, method for producing glass plate for chemical strengthening, and method for producing chemically strengthened glass plate
JP2016216330A (en) * 2015-05-26 2016-12-22 旭硝子株式会社 Method for producing chemical strengthened glass
CN107434354A (en) * 2016-05-25 2017-12-05 中国南玻集团股份有限公司 Alumina silicate glass, antibiotic glass and preparation method thereof

Also Published As

Publication number Publication date
JP2023140933A (en) 2023-10-05
TW202400541A (en) 2024-01-01

Similar Documents

Publication Publication Date Title
KR102597033B1 (en) Glass with high surface strength
KR102325873B1 (en) High-strength ultra-thin glass and manufacturing method thereof
KR101665998B1 (en) Method for producing strengthened glass plate, strengthened glass plate and glass plate for strengthening
KR101351366B1 (en) Reinforced glass substrate
KR102560252B1 (en) tempered glass
TWI752252B (en) Chemically strengthened glass and method for producing chemically strengthened glass
KR20210073544A (en) Tempered glass and manufacturing method of tempered glass
KR20160030071A (en) Tempered glass and glass for tempering
KR20150045526A (en) Manufacturing method for tempered glass plate
KR20180116419A (en) Ion exchangeable glass with high surface compressive stress
TW201536699A (en) Method for producing tempered glass and tempered glass
KR20130135943A (en) Toughened glass substrate and process for producing same
US11161782B2 (en) Method of increasing IOX processability on glass articles with multiple thicknesses
KR102642005B1 (en) Glass-based products with sections of different thickness
WO2023181955A1 (en) Method for producing glass article, glass article, and layered product
WO2022065132A1 (en) Tempered glass
WO2019235470A1 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
WO2022190651A1 (en) Tempered glass and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774554

Country of ref document: EP

Kind code of ref document: A1