TW202400541A - Method for producing glass article, glass article, and layered product - Google Patents

Method for producing glass article, glass article, and layered product Download PDF

Info

Publication number
TW202400541A
TW202400541A TW112110208A TW112110208A TW202400541A TW 202400541 A TW202400541 A TW 202400541A TW 112110208 A TW112110208 A TW 112110208A TW 112110208 A TW112110208 A TW 112110208A TW 202400541 A TW202400541 A TW 202400541A
Authority
TW
Taiwan
Prior art keywords
glass
glass product
treatment
water
processing
Prior art date
Application number
TW112110208A
Other languages
Chinese (zh)
Inventor
野田隆行
伊藤茂嘉
三和晋吉
Original Assignee
日商日本電氣硝子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本電氣硝子股份有限公司 filed Critical 日商日本電氣硝子股份有限公司
Publication of TW202400541A publication Critical patent/TW202400541A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments

Abstract

A method for producing a glass article which comprises: a preparation step S1 in which an alkali aluminosilicate glass having a glass composition containing an alkali metal oxide is prepared as a glass to be treated; and a water treatment step S3 in which the glass to be treated is kept in contact with treatment water for 0.5-15 hours, excluding 15 hours.

Description

玻璃製品製造方法、玻璃製品和積層體Glass product manufacturing method, glass product and laminated body

本發明是有關於一種玻璃製品製造方法、玻璃製品和包括玻璃製品的積層體。The present invention relates to a glass product manufacturing method, a glass product, and a laminated body including the glass product.

作為各種電子終端或顯示器元件等元件的蓋玻璃,大多使用化學強化玻璃。此種元件中亦開發出能夠將顯示器的顯示面折疊的、所謂的可折疊(foldable)類型的元件,此種可折疊類型的元件的蓋玻璃中有時亦使用化學強化玻璃。Chemically strengthened glass is mostly used as cover glass for components such as various electronic terminals and display components. Among such devices, so-called foldable-type devices that can fold the display surface of a display have also been developed. Chemically strengthened glass is sometimes used as the cover glass of such foldable-type devices.

化學強化玻璃藉由在表面具有利用離子交換處理而形成的壓縮應力層,而抑制表面上的裂紋的形成及進展,從而獲得高強度。強化玻璃的強度被認為可藉由調整此種壓縮應力層的形成形態而提高(例如,專利文獻1)。 [現有技術文獻] [專利文獻] Chemically strengthened glass has a compressive stress layer formed on the surface by ion exchange treatment, thereby suppressing the formation and progression of cracks on the surface, thereby achieving high strength. It is considered that the strength of tempered glass can be improved by adjusting the formation form of such a compressive stress layer (for example, Patent Document 1). [Prior art documents] [Patent Document]

專利文獻1:國際公開第2013/088856號Patent Document 1: International Publication No. 2013/088856

[發明所欲解決之課題] 然而,於蓋玻璃等中所使用的玻璃製品中,對於獲得更高的耐衝擊性,仍有改良的餘地。尤其是於與使用了觸控筆(stylus pen)的筆輸入的元件的情況下,容易對玻璃製品施加局部的衝擊。因此,要求開發一種亦能夠充分耐受此種筆輸入、且具有高落筆強度的玻璃製品。 [Problem to be solved by the invention] However, there is still room for improvement in obtaining higher impact resistance in glass products used in cover glass and the like. Particularly in the case of components for pen input using a stylus pen, local impact is easily applied to glass products. Therefore, there is a need to develop a glass product that can sufficiently withstand such pen input and has high pen-down strength.

本發明的課題在於提供一種具有高落筆強度的玻璃製品。An object of the present invention is to provide a glass product with high writing strength.

[解決課題之手段] (1) 為解決所述課題而創造的本發明的玻璃製品製造方法的特徵在於包括:準備步驟,準備包括鹼性鋁矽酸玻璃的處理用玻璃,所述鹼性鋁矽酸玻璃包含作為玻璃組成的鹼金屬氧化物;以及水處理步驟,使處理用玻璃與處理水接觸0.5小時以上且小於15小時。 [Means to solve the problem] (1) The glass product manufacturing method of the present invention created to solve the above-mentioned problems is characterized by including a preparation step of preparing processing glass including an alkaline aluminosilicate glass as a glass an alkali metal oxide of composition; and a water treatment step in which the glass for treatment is contacted with the treatment water for more than 0.5 hours and less than 15 hours.

本發明者等進行了努力研究的結果發現,於處理用玻璃為鹼性矽酸鋁玻璃的情況下,藉由進行使處理用玻璃與處理水接觸所述規定時間的水處理步驟,處理用玻璃的落筆強度大幅提高。而且,於水處理步驟之後、即解除處理用玻璃與處理水的接觸之後,亦持續此種落筆強度提高效果。因此,可提供一種具有高落筆強度的玻璃製品。As a result of diligent research, the present inventors have found that when the processing glass is alkaline aluminosilicate glass, by performing the water treatment step of contacting the processing glass with the processing water for the predetermined time, the processing glass The writing intensity is greatly improved. Furthermore, this writing strength improving effect continues even after the water treatment step, that is, after the contact between the treatment glass and the treatment water is released. Therefore, a glass product having high writing strength can be provided.

(2) 如所述(1)的結構,其中,較佳為於水處理步驟中,將處理用玻璃浸漬於46℃~100℃的處理水中。(2) In the structure of (1) above, in the water treatment step, it is preferable that the glass for treatment is immersed in the treatment water of 46°C to 100°C.

如此,若提高處理水的溫度,則可在短時間內效率良好地提高處理用玻璃的落筆強度。即,可相對地縮短獲得所期望的落筆強度為止的處理時間(處理用玻璃與處理水的接觸時間)。因此,可效率良好地製造具有高落筆強度的玻璃製品。In this way, if the temperature of the treatment water is increased, the writing strength of the treatment glass can be efficiently increased in a short time. That is, the processing time (the contact time between the processing glass and the processing water) until the desired writing strength is obtained can be relatively shortened. Therefore, glass products with high writing strength can be efficiently produced.

(3) 如所述(1)的結構,其中,可於水處理步驟中,在加壓環境下將處理用玻璃浸漬於達到100℃以上的處理水中。(3) The structure according to (1) above, wherein in the water treatment step, the processing glass can be immersed in the processing water reaching 100° C. or higher in a pressurized environment.

如此,若提高處理水的溫度,則可在短時間內效率良好地提高處理用玻璃的落筆強度。即,可相對地縮短獲得所期望的落筆強度為止的處理時間。因此,可效率良好地製造具有高落筆強度的玻璃製品。In this way, if the temperature of the treatment water is increased, the writing strength of the treatment glass can be efficiently increased in a short time. That is, the processing time until the desired writing intensity is obtained can be relatively shortened. Therefore, glass products with high writing strength can be efficiently produced.

(4) 如所述(1)至(3)中任一項的結構,其中,較佳為於水處理步驟中,處理水的電導率為3 mS/m以下。(4) The structure according to any one of (1) to (3), wherein in the water treatment step, the conductivity of the treated water is preferably 3 mS/m or less.

如此,若使用電導率小的處理水,則可進一步提高處理用玻璃的落筆強度。因此,亦進一步提高由所述處理用玻璃製造的玻璃製品的落筆強度。In this way, if treatment water with low electrical conductivity is used, the writing strength of the treatment glass can be further improved. Therefore, the writing strength of the glass product produced from the said processing glass is also further improved.

(5) 如所述(1)至(4)中任一項的結構,其中,較佳為處理用玻璃為厚度0.005 mm~0.1 mm的板狀或片狀。(5) The structure according to any one of (1) to (4) above, wherein the processing glass is preferably in the form of a plate or sheet with a thickness of 0.005 mm to 0.1 mm.

如此,若處理用玻璃變薄,則亦可將由所述處理用玻璃製造的玻璃製品適宜地用於可折疊類型的元件。另一方面,玻璃製品的耐衝擊性必然容易降低,筆落強度的提高變得更重要。因此,更有用的是本發明的落筆強度提高效果。In this way, if the processing glass is thinned, a glass product made of the processing glass can be suitably used for a foldable type element. On the other hand, the impact resistance of glass products is bound to be easily reduced, and the improvement of pen drop strength becomes more important. Therefore, the writing strength improving effect of the present invention is more useful.

(6) 如所述(5)的結構,其中,亦可更包括薄壁化步驟,所述薄壁化步驟於水處理步驟之前,藉由蝕刻將處理用玻璃薄壁化為所述厚度的範圍(0.005 mm~0.1 mm)內。(6) The structure as described in (5), which may further include a thinning step, wherein the processing glass is thinned to the thickness by etching before the water treatment step. Within the range (0.005 mm ~ 0.1 mm).

(7) 如所述(5)的結構,其中,處理用玻璃可藉由溢流下拉法預先成形為所述厚度的範圍(0.005 mm~0.1 mm)內。(7) The structure as described in (5), wherein the processing glass can be preformed into the thickness range (0.005 mm to 0.1 mm) by an overflow down-drawing method.

(8) 如所述(1)至(7)中任一項的結構,其中,較佳為更包括化學強化步驟,所述化學強化步驟於水處理步驟之前,使處理用玻璃與鹼金屬硝酸鹽接觸而形成在表面具有100 MPa以上的最大壓縮應力的壓縮應力層。(8) The structure according to any one of the above (1) to (7), which preferably further includes a chemical strengthening step. The chemical strengthening step is to make the treatment glass and alkali metal nitric acid before the water treatment step. Salt contact forms a compressive stress layer with a maximum compressive stress of more than 100 MPa on the surface.

若如此,則處理用玻璃及玻璃製品成為在表面具有壓縮應力層的化學強化玻璃。因此,可於提高玻璃製品的落筆強度的同時,亦提高彎曲強度。如此,若為彎曲強度得到了提高的玻璃製品,則可將其適宜地用於可折疊類型的元件。In this case, the processing glass and the glass product become chemically strengthened glass having a compressive stress layer on the surface. Therefore, while the writing strength of the glass product can be improved, the bending strength can also be improved. In this way, if it is a glass product with improved bending strength, it can be suitably used for a foldable type element.

(9) 如所述(8)的結構,其中,較佳為於水處理步驟中,處理水的溫度為50℃~95℃、且處理用玻璃與處理水的接觸時間為0.5小時~10小時。(9) The structure as described in (8), wherein in the water treatment step, the temperature of the treated water is preferably 50°C to 95°C, and the contact time between the glass for treatment and the treated water is 0.5 hours to 10 hours. .

若如此,則於處理用玻璃為化學強化玻璃的情況下,成為尤其適合的水處理條件,可效率良好地提高包括化學強化玻璃的玻璃製品的落筆強度。In this case, when the glass for processing is chemically strengthened glass, water treatment conditions are particularly suitable, and the drop strength of glass products including chemically strengthened glass can be efficiently improved.

(10) 如所述(8)或(9)的結構,其中,較佳為處理用玻璃作為玻璃組成以莫耳%計而包含50%~80%的SiO 2、5%~25%的Al 2O 3、0%~35%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O,於化學強化步驟中,鹼金屬硝酸鹽為包含硝酸鉀的熔融鹽。 (10) The structure according to (8) or (9) above, wherein the glass composition for processing is preferably 50% to 80% SiO 2 and 5% to 25% Al in molar %. 2 O 3 , 0% to 35% B 2 O 3 , 0% to 20% Li 2 O, 1% to 20% Na 2 O, 0% to 10% K 2 O, in the chemical strengthening step , alkali metal nitrates are molten salts containing potassium nitrate.

若如此,則即使於處理用玻璃薄的情況下,亦容易一併提高玻璃製品的落筆強度及彎曲強度。In this case, even when the glass for processing is thin, it is easy to improve both the writing strength and the bending strength of the glass product.

(11) 如所述(8)至(10)中任一項的結構,其中,較佳為更包括表層蝕刻步驟,所述表層蝕刻步驟於離子交換步驟之後、水處理步驟之前,在較壓縮應力層而言淺的範圍內對處理用玻璃進行蝕刻。(11) The structure according to any one of (8) to (10), which preferably further includes a surface layer etching step, which is performed after the ion exchange step and before the water treatment step, and in a relatively compressed state. The processing glass is etched within a shallow range of the stress layer.

若如此,則於離子交換步驟中,可減少處理用玻璃中所形成的表面缺陷,因此可提高玻璃製品的落筆強度及/或彎曲強度。If so, surface defects formed in the glass for processing can be reduced during the ion exchange step, thereby improving the pen-down strength and/or bending strength of the glass product.

(12) 為解決所述課題而創造的本發明的玻璃製品為厚度0.005 mm~0.1 mm的板狀或片狀的玻璃製品,其特徵在於,於使具有直徑0.7 mm的球狀前端的5.7 g的圓珠筆落下至主表面的落筆試驗中,60%破壞高度為5 cm以上。(12) The glass product of the present invention created to solve the above problems is a plate-shaped or sheet-shaped glass product with a thickness of 0.005 mm to 0.1 mm, and is characterized by having a spherical tip of 0.7 mm in diameter. In the pen drop test where a ballpoint pen was dropped onto the main surface, 60% of the damage height was more than 5 cm.

若如此,則成為亦能夠充分耐受筆輸入、且具有高落筆強度的玻璃製品。If so, it will be a glass product that can fully withstand pen input and has high pen-down strength.

(13) 如所述(12)的結構,其中,較佳為包括在表面具有100 MPa以上的最大壓縮應力的壓縮應力層。(13) The structure according to (12) above, preferably including a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface.

若如此,則除提高落筆強度以外,亦提高彎曲強度,因此亦可將其適宜地用於可折疊類型的元件。If so, in addition to improving the writing strength, the bending strength is also improved, so it can be suitably used for foldable type components.

(14) 為解決所述課題而創造的本發明的積層體的特徵在於包括:包括如所述(12)或(13)的結構的玻璃製品;以及保護層或增強層,積層於玻璃製品中的至少其中一個主表面。(14) The laminated body of the present invention created to solve the above problems is characterized by including: a glass product having a structure as described in (12) or (13); and a protective layer or a reinforcing layer laminated in the glass product. at least one of its main surfaces.

若如此,則可由保護層保護玻璃製品來實現更高的落筆強度、或由增強層增強玻璃製品來實現更高的彎曲強度。If so, the glass product can be protected by a protective layer to achieve higher writing strength, or the glass product can be reinforced by a reinforcing layer to achieve higher bending strength.

[發明的效果] 藉由本發明,可提供一種具有高落筆強度的玻璃製品。 [Effects of the invention] According to the present invention, a glass product with high writing strength can be provided.

以下,參照圖式對本發明實施方式進行說明。再者,有時藉由在各實施方式中對對應的構成構件標註相同的符號而省略重覆的說明。於在各實施方式中僅對結構的一部分進行說明的情況下,關於該結構的其他部分,可應用之前說明的其他實施方式的結構。另外,不僅可為各實施方式的說明中明示的結構的組合,只要組合並不特別地產生障礙,則即便不明示亦可將多個實施方式的結構彼此進行部分性地組合。Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, by assigning the same reference numerals to corresponding structural members in each embodiment, overlapping descriptions may be omitted. When only a part of the structure is described in each embodiment, the structure of the other embodiments described previously can be applied to the other parts of the structure. In addition, not only the configurations explicitly stated in the description of each embodiment are possible, but as long as the combination does not cause any particular obstacles, the configurations of the plurality of embodiments may be partially combined with each other even if not stated clearly.

(第一實施方式) <玻璃製品> 如圖1所示,第一實施方式的玻璃製品1為板狀或片狀。玻璃製品1的厚度t並無特別限定,較佳為0.005 mm~0.1 mm。本發明尤其有效用於此種薄的玻璃。 (first embodiment) <Glass products> As shown in FIG. 1 , the glass product 1 according to the first embodiment is plate-shaped or sheet-shaped. The thickness t of the glass product 1 is not particularly limited, but is preferably 0.005 mm to 0.1 mm. The invention is particularly effective with such thin glass.

玻璃製品1於使具有直徑0.7 mm的球狀前端的5.7 g的筆落下至主表面的落筆試驗中,60%破壞高度較佳為5 cm以上。玻璃製品1的60%破壞高度更佳為7 cm以上、10 cm以上、15 cm以上。For glass product 1, in a pen drop test in which a 5.7 g pen having a spherical tip with a diameter of 0.7 mm is dropped onto the main surface, the 60% destruction height is preferably 5 cm or more. The 60% destruction height of the glass product 1 is more preferably 7 cm or more, 10 cm or more, or 15 cm or more.

於本實施方式中,玻璃製品1是藉由離子交換進行化學強化而得的化學強化玻璃,且包括壓縮應力層2、以及拉伸應力層3。藉此,除實現落筆強度的提高以外,亦可實現彎曲強度的提高。In this embodiment, the glass product 1 is chemically strengthened glass obtained by chemical strengthening through ion exchange, and includes a compressive stress layer 2 and a tensile stress layer 3 . In this way, in addition to improving the writing strength, the bending strength can also be improved.

於玻璃製品1是化學強化玻璃的情況下,玻璃製品1的兩點彎曲強度較佳為900 MPa以上。玻璃製品1的兩點彎曲強度更佳為1000 MPa以上、1100 MPa以上、1200 MPa以上。When the glass product 1 is chemically strengthened glass, the two-point bending strength of the glass product 1 is preferably 900 MPa or more. The two-point bending strength of the glass product 1 is more preferably 1000 MPa or more, 1100 MPa or more, or 1200 MPa or more.

壓縮應力層2形成於玻璃製品1的包含主表面1a及端面1b的表層部。拉伸應力層3形成於玻璃製品1的內部、即較壓縮應力層2而言更深的位置。此處,所謂主表面是指板狀或片狀的玻璃表面整體中除端面以外的表背的面。The compressive stress layer 2 is formed on the surface layer portion of the glass product 1 including the main surface 1a and the end surface 1b. The tensile stress layer 3 is formed inside the glass product 1 , that is, at a deeper position than the compressive stress layer 2 . Here, the main surface refers to the front and back surfaces of the entire plate-shaped or sheet-shaped glass surface excluding the end surfaces.

圖2中示出玻璃製品1的應力分佈的一例。圖2中,縱軸表示應力值,橫軸表示距表面的深度。再者,圖2是藉由直線近似示意性地示出應力分佈的圖像圖,應力分佈可藉由其他函數(例如,單一的曲線函數或多個曲線函數的組合)進行近似。另外,於本說明書中只要無特別說明,則各應力的大小以絕對值表示。玻璃製品1的應力分佈並不限定於圖2所示的形態。An example of the stress distribution of the glass product 1 is shown in FIG. 2 . In Figure 2, the vertical axis represents the stress value, and the horizontal axis represents the depth from the surface. Furthermore, FIG. 2 is an image diagram schematically showing the stress distribution by linear approximation. The stress distribution can be approximated by other functions (for example, a single curve function or a combination of multiple curve functions). In this specification, unless otherwise specified, the magnitude of each stress is expressed as an absolute value. The stress distribution of the glass product 1 is not limited to the form shown in FIG. 2 .

圖2所示的應力分佈例示了玻璃製品1是實施了一個階段的離子交換處理的強化玻璃的情況。於玻璃製品1的應力分佈中,表面中壓縮應力為最大(最大壓縮應力CS),且距表面的深度越深應力越逐漸減少,於深度DOC,應力為零。即,DOC與壓縮應力的深度為相同含義。於較深度DOC深的區域中延伸有具有拉伸應力的拉伸應力層3。玻璃製品1的應力分佈較佳為如圖2所示為表背對稱。The stress distribution shown in FIG. 2 illustrates the case where the glass product 1 is tempered glass that has been subjected to one stage of ion exchange treatment. In the stress distribution of glass product 1, the compressive stress on the surface is the maximum (maximum compressive stress CS), and the stress gradually decreases the deeper it is from the surface, and at the depth DOC, the stress is zero. That is, DOC and the depth of compressive stress have the same meaning. A tensile stress layer 3 having tensile stress extends in a region deeper than the depth DOC. The stress distribution of the glass product 1 is preferably symmetrical on the front and back as shown in Figure 2 .

拉伸應力層3包括拉伸應力於玻璃製品1的厚度方向上變動的第一區域A1、以及拉伸應力於厚度方向上成為恆定的第二區域A2。更詳細而言,第一區域A1為如下區域、即自壓縮應力層2的深度DOC延伸至拉伸應力收斂深度DCT,深度越深拉伸應力的絕對值越增大(在圖2中所示的負數標記中逐漸減少)的區域。第二區域A2為於較拉伸應力收斂深度DCT深的區域延伸並且拉伸應力於厚度方向上成為恆定的區域。再者,所謂「拉伸應力恆定」是指深度方向上的應力的變化量為0.5 MPa/μm以下,該變化量例如可以深度0.1 μm的間隔並根據所採取的應力的微分值來算出。The tensile stress layer 3 includes a first region A1 in which the tensile stress varies in the thickness direction of the glass product 1 and a second region A2 in which the tensile stress becomes constant in the thickness direction. More specifically, the first region A1 is a region extending from the depth DOC of the compressive stress layer 2 to the tensile stress convergence depth DCT. The deeper the depth, the greater the absolute value of the tensile stress (as shown in FIG. 2 The area marked by gradually decreasing negative numbers). The second region A2 extends deeper than the tensile stress convergence depth DCT and is a region in which the tensile stress becomes constant in the thickness direction. In addition, "tensile stress is constant" means that the change amount of stress in the depth direction is 0.5 MPa/μm or less. This change amount can be calculated from the differential value of the stress taken at intervals of 0.1 μm in depth, for example.

玻璃製品1的壓縮應力層2的深度DOC較佳為20 μm以下、1 μm以上且19 μm以下、2 μm以上且18 μm以下、3 μm以上且17.5 μm以下、4 μm以上且17 μm以下。發明者等人對在破壞時不會成為危險的破壞樣態的表面的壓縮應力值、壓縮應力層的深度的臨限值進行了各種研究,結果發現,有效果的是例如於0.1 mm以下的薄的玻璃中,將壓縮應力層的深度設為20 μm以下。藉此,可具有相對於彎曲而言的充分的強度,同時亦可確保安全性。The depth DOC of the compressive stress layer 2 of the glass product 1 is preferably 20 μm or less, 1 μm or more and 19 μm or less, 2 μm or more and 18 μm or less, 3 μm or more and 17.5 μm or less, or 4 μm or more and 17 μm or less. The inventors conducted various studies on the compressive stress value of the surface and the critical value of the depth of the compressive stress layer that will not cause dangerous damage when it breaks. As a result, they found that the effective ones are, for example, 0.1 mm or less. In thin glass, the depth of the compressive stress layer should be 20 μm or less. This ensures sufficient strength against bending and ensures safety.

玻璃製品1的壓縮應力層2中的最大壓縮應力CS較佳為100 MPa以上、200 MPa以上且1000 MPa以下、300 MPa以上且900 MPa以下、400 MPa以上且870 MPa以下、430 MPa以上且850 MPa以下、450 MPa以上且800 MPa以下。藉由將CS設為所述範圍,可獲得高彎曲強度。The maximum compressive stress CS in the compressive stress layer 2 of the glass product 1 is preferably 100 MPa or more, 200 MPa or more and 1000 MPa or less, 300 MPa or more and 900 MPa or less, 400 MPa or more and 870 MPa or less, 430 MPa or more and 850 MPa or more. Below MPa, above 450 MPa and below 800 MPa. By setting CS in the above range, high bending strength can be obtained.

壓縮應力層2的深度DOC與玻璃製品1的厚度t滿足下式(2)。 DOC/t≦0.25   (2) 藉由將DOC與t的比率限制於所述範圍,可具有相對於彎曲而言的充分的強度,同時亦可確保安全性。DOC/t的上限範圍較佳為0.23以下。DOC/t的下限範圍較佳為0.03以上且0.10以上。 The depth DOC of the compressive stress layer 2 and the thickness t of the glass product 1 satisfy the following equation (2). DOC/t≦0.25 (2) By limiting the ratio of DOC to t within the above range, sufficient strength with respect to bending can be obtained and safety can be ensured. The upper limit range of DOC/t is preferably 0.23 or less. The lower limit range of DOC/t is preferably from 0.03 to 0.10.

拉伸應力收斂深度DCT可藉由下式(3)算出拉伸應力。 DCT=(CS+CT)/(CS/DOC)   (3) The tensile stress convergence depth DCT can be calculated from the following equation (3). DCT=(CS+CT)/(CS/DOC) (3)

第二區域A2的最大拉伸應力CT的上限範圍較佳為1000 MPa以下、500 MPa以下、400 MPa以下、285 MPa以下、250 MPa以下、240 MPa以下、230 MPa以下、220 MPa以下、210 MPa以下、200 MPa以下、190 MPa以下、180 MPa以下、170 MPa以下、160 MPa以下、150 MPa以下、145 MPa以下、140 MPa以下、130 MPa以下、120 MPa以下、110 MPa以下、100 MPa以下、95 MPa以下、85 MPa以下、70 MPa以下。最大拉伸應力CT的下限範圍較佳為10 MPa以上、20 MPa以上、35 MPa以上、50 MPa以上、55 MPa以上、60 MPa以上。藉由如上所述限制CT,可確保在破壞時不會成為危險的破壞樣態的安全性,同時可確保相對於彎曲而言的強度。The upper limit range of the maximum tensile stress CT in the second region A2 is preferably 1000 MPa or less, 500 MPa or less, 400 MPa or less, 285 MPa or less, 250 MPa or less, 240 MPa or less, 230 MPa or less, 220 MPa or less, 210 MPa. Below, below 200 MPa, below 190 MPa, below 180 MPa, below 170 MPa, below 160 MPa, below 150 MPa, below 145 MPa, below 140 MPa, below 130 MPa, below 120 MPa, below 110 MPa, below 100 MPa, Below 95 MPa, below 85 MPa, below 70 MPa. The lower limit range of the maximum tensile stress CT is preferably 10 MPa or more, 20 MPa or more, 35 MPa or more, 50 MPa or more, 55 MPa or more, or 60 MPa or more. By limiting CT as described above, it is possible to ensure safety so that no dangerous damage pattern occurs when broken, and at the same time, strength relative to bending is ensured.

再者,與CS、DOC、DCT、CT等應力相關的數值例如能夠藉由利用折原製作所製造的FSM-6000或SLP-1000等測定裝置對玻璃的應力分佈進行測定來導出。Furthermore, numerical values related to stresses such as CS, DOC, DCT, and CT can be derived by measuring the stress distribution of glass using a measuring device such as FSM-6000 or SLP-1000 manufactured by Orihara Seisakusho.

玻璃製品1的楊氏模量的下限範圍較佳為55 GPa以上、57 GPa以上、60 GPa以上、62 GPa以上。玻璃製品1的楊氏模量的上限範圍較佳為90 GPa以下。The lower limit range of the Young's modulus of the glass product 1 is preferably 55 GPa or more, 57 GPa or more, 60 GPa or more, or 62 GPa or more. The upper limit range of the Young's modulus of the glass product 1 is preferably 90 GPa or less.

就成本或生產量的觀點而言,作為將玻璃製品1成形為片狀的方法,適宜的是溢流下拉法,但有使片越薄,則玻璃越急速冷卻,CS越低、DOC越變深的傾向。另外,已知於對薄的玻璃進行離子交換的情況下,由於抑制離子交換部分的體積膨脹的內部的玻璃少,因此與厚的玻璃相比難以獲得高CS。因此,對於薄的玻璃而言,以高水準兼顧高CS、淺的DOC的情況並不容易超過簡單的設計事項。即,需要適當地選定玻璃組成、玻璃的成形方法、強化條件。因此,玻璃製品1適合的是適於化學強化的鹼性矽酸鋁玻璃,於鹼性矽酸鋁玻璃中,特別適合的是亦可獲得高的表面壓縮應力值的組成,進而,為了能夠利用溢流下拉法進行成形,較佳為實現高液相黏度般的組成平衡。From the viewpoint of cost and throughput, the overflow down-drawing method is suitable as a method for forming the glass product 1 into a sheet. However, the thinner the sheet, the faster the glass is cooled, the lower the CS, and the lower the DOC. Deep tendency. In addition, it is known that when thin glass is ion-exchanged, it is difficult to obtain high CS compared with thick glass because there is less glass inside to suppress the volume expansion of the ion-exchange portion. Therefore, for thin glass, balancing high CS and shallow DOC at a high level does not easily exceed simple design matters. That is, it is necessary to appropriately select the glass composition, glass forming method, and strengthening conditions. Therefore, the glass product 1 is suitable for alkaline aluminum silicate glass suitable for chemical strengthening. Among alkaline aluminum silicate glasses, a composition that can also obtain a high surface compressive stress value is particularly suitable. Furthermore, in order to be able to utilize Forming by the overflow down-draw method is preferred to achieve a composition balance such as high liquid phase viscosity.

玻璃製品1較佳為例如作為玻璃組成以莫耳%計而含有50%~80%的SiO 2、5%~25%的Al 2O 3、0%~35%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O。 The glass product 1 preferably contains, for example, a glass composition of 50% to 80% SiO 2 , 5% to 25% Al 2 O 3 , 0% to 35% B 2 O 3 , and 0% in molar %. ~20% Li 2 O, 1% ~ 20% Na 2 O, 0% ~ 10% K 2 O.

SiO 2是形成玻璃的網狀結構(network)的成分。若SiO 2的含量過少,則難以玻璃化,而且熱膨脹係數變得過高,耐熱衝擊性容易降低。因此,SiO 2的適宜的下限範圍以莫耳%計而為50%以上、55%以上、57%以上、59%以上、尤其是61%以上。另一方面,若SiO 2的含量過多,則熔融性或成形性容易降低,而且熱膨脹係數變得過低而難以與周邊材料的熱膨脹係數相匹配。因此,SiO 2的適宜的上限範圍為80%以下、70%以下、68%以下、66%以下、65%以下、尤其是64.5%以下。 SiO 2 is a component that forms the network of glass. If the content of SiO 2 is too small, vitrification is difficult, the thermal expansion coefficient becomes too high, and the thermal shock resistance is likely to decrease. Therefore, the suitable lower limit range of SiO 2 is 50% or more, 55% or more, 57% or more, 59% or more, and especially 61% or more in mol%. On the other hand, if the content of SiO2 is too high, the meltability or formability is likely to decrease, and the thermal expansion coefficient becomes too low, making it difficult to match the thermal expansion coefficient of surrounding materials. Therefore, the suitable upper limit range of SiO 2 is 80% or less, 70% or less, 68% or less, 66% or less, 65% or less, especially 64.5% or less.

Al 2O 3是提高離子交換性能的成分,而且是提高應變點、楊氏模量、斷裂韌性、維氏硬度的成分。因此,Al 2O 3的適宜的下限範圍以莫耳%計而為5%以上、8%以上、10%以上、11%以上、11.2%以上。另一方面,若Al 2O 3的含量過多,則高溫黏度上升,熔融性或成形性容易降低。另外,於玻璃中容易析出失透結晶而難以利用溢流下拉法等成形為板狀。尤其是於使用氧化鋁系耐火物作為成形體耐火物,並利用溢流下拉法成形玻璃板的情況下,於與氧化鋁系耐火物的界面容易析出尖晶石的失透結晶。進而,耐酸性亦降低,難以應用於酸處理步驟。因此,Al 2O 3的適宜的上限範圍為25%以下、21%以下、20.5%以下、20%以下、19.9%以下、19.5%以下、19.0%以下、尤其是18.9%以下。若使對離子交換性能的影響大的Al 2O 3的含量處於適宜的範圍,則即使在薄的玻璃中亦容易將CS/DOC設計為高的值。 Al 2 O 3 is a component that improves ion exchange performance, and also improves strain point, Young's modulus, fracture toughness, and Vickers hardness. Therefore, the suitable lower limit range of Al 2 O 3 is 5% or more, 8% or more, 10% or more, 11% or more, or 11.2% or more in mol%. On the other hand, if the content of Al 2 O 3 is too high, the high-temperature viscosity increases, and the meltability or formability is likely to decrease. In addition, devitrification crystals tend to precipitate in glass, making it difficult to form into a plate shape by overflow down-drawing or the like. Especially when an alumina-based refractory is used as a molded refractory and a glass plate is formed by the overflow down-draw method, devitrification crystals of spinel are likely to precipitate at the interface with the alumina-based refractory. Furthermore, the acid resistance also decreases, making it difficult to apply to the acid treatment step. Therefore, the suitable upper limit range of Al 2 O 3 is 25% or less, 21% or less, 20.5% or less, 20% or less, 19.9% or less, 19.5% or less, 19.0% or less, especially 18.9% or less. If the content of Al 2 O 3 , which has a large influence on ion exchange performance, is within an appropriate range, CS/DOC can be easily designed to have a high value even in thin glass.

B 2O 3是使高溫黏度或密度降低,並且使玻璃穩定化而使結晶不易析出,並使液相溫度降低的成分。另外,是抑制楊氏模量、提高彎曲強度或抗裂性的成分。但是,若B 2O 3的含量過多,則因離子交換處理而有如下傾向:產生被稱為泛黃的表面的著色,或耐水性降低,或壓縮應力層的壓縮應力值降低。因此,B 2O 3的適宜的下限範圍以莫耳%計而為0%以上、0.01%以上、0.02%以上、0.1%以上、0.3%以上,適宜的上限範圍為35%以下、30%以下、25%以下、22%以下、20%以下、尤其是15%以下。再者,就優先提高CS的觀點而言,B 2O 3的含量進而較佳為可設為0.2%~5%、0.3%~1%。另外,就以抑制蝕刻處理時的缺陷等為目的而提高化學耐久性的觀點而言,B 2O 3的含量的上限範圍較佳為可設為1%以上、1.5%以上、2%以上,下限範圍可設為5%以下、4.5%以下、4%以下、3%以下。另一方面,就優先抑制楊氏模量的觀點而言,B 2O 3的含量進而較佳為可設為10%~25%、15%~23%、18%~22%。 B 2 O 3 is a component that reduces high-temperature viscosity or density, stabilizes glass so that crystals are less likely to precipitate, and lowers the liquidus temperature. In addition, it is a component that suppresses Young's modulus and improves bending strength or crack resistance. However, if the content of B 2 O 3 is too high, surface coloring called yellowing due to ion exchange treatment may occur, water resistance may decrease, or the compressive stress value of the compressive stress layer may decrease. Therefore, the suitable lower limit range of B 2 O 3 is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, and 0.3% or more in terms of mol%, and the suitable upper limit range is 35% or less and 30% or less. , below 25%, below 22%, below 20%, especially below 15%. Furthermore, from the viewpoint of preferentially increasing CS, the content of B 2 O 3 can be further preferably set to 0.2% to 5% or 0.3% to 1%. In addition, from the viewpoint of improving chemical durability for the purpose of suppressing defects during etching, the upper limit of the content of B 2 O 3 is preferably 1% or more, 1.5% or more, or 2% or more. The lower limit range can be set to 5% or less, 4.5% or less, 4% or less, or 3% or less. On the other hand, from the viewpoint of preferentially suppressing Young's modulus, the content of B 2 O 3 can be further preferably set to 10% to 25%, 15% to 23%, or 18% to 22%.

Li 2O是離子交換成分,且尤其是將玻璃中所含的Li離子與熔融鹽中的K離子進行離子交換,而獲得高表面壓縮應力值的成分。另外,Li 2O是使高溫黏度降低並提高熔融性或成形性的成分。因此,Li 2O的適宜的下限範圍以莫耳%計而為0%以上、3%以上、4%以上、4.2%以上、5%以上、5.5%以上、6.5%以上、7%以上、7.3%以上、7.5%以上、7.8%以上、尤其是8%以上。因此,Li 2O的適宜的上限範圍為20%以下、15%以下、13%以下、12%以下、11.5%以下、11%以下、10.5%以下、小於10%、尤其是9.9%以下、9%以下、8.9%以下。 Li 2 O is an ion exchange component, and in particular, Li ions contained in the glass are ion exchanged with K ions in the molten salt to obtain a high surface compressive stress value. Li 2 O is a component that reduces high-temperature viscosity and improves meltability or formability. Therefore, the suitable lower limit range of Li 2 O is 0% or more, 3% or more, 4% or more, 4.2% or more, 5% or more, 5.5% or more, 6.5% or more, 7% or more, 7.3% in mol%. % or more, 7.5% or more, 7.8% or more, especially 8% or more. Therefore, the suitable upper limit range of Li 2 O is 20% or less, 15% or less, 13% or less, 12% or less, 11.5% or less, 11% or less, 10.5% or less, less than 10%, especially 9.9% or less, 9 % or less, 8.9% or less.

Na 2O是離子交換成分,而且是使高溫黏度降低並提高熔融性或成形性的成分。另外,Na 2O亦是改善耐失透性、與成形體耐火物、尤其是氧化鋁耐火物的反應失透性的成分。若Na 2O的含量過少,則熔融性降低,或熱膨脹係數過於降低,或離子交換速度容易降低。因此,Na 2O的適宜的下限範圍以莫耳%計而為1%以上、5%以上、7%以上、8%以上、8.5%以上、9%以上、9.5%以上、10%以上、11%以上、12%以上、尤其是12.5%以上。另一方面,若Na 2O的含量過多,則分相產生黏度容易降低。另外,存在耐酸性降低,或缺乏玻璃組成的成分平衡,反而耐失透性降低的情況。因此,Na 2O的適宜的上限範圍為20%以下、19.5%以下、19%以下、18%以下、17%以下、16.5%以下、16%以下、15.5%以下、尤其是15%以下。 Na 2 O is an ion exchange component and is a component that reduces high-temperature viscosity and improves meltability or formability. In addition, Na 2 O is also a component that improves devitrification resistance and reaction devitrification with formed refractories, especially alumina refractories. If the content of Na 2 O is too small, the meltability will decrease, the thermal expansion coefficient will decrease too much, or the ion exchange rate will tend to decrease. Therefore, the suitable lower limit range of Na 2 O is 1% or more, 5% or more, 7% or more, 8% or more, 8.5% or more, 9% or more, 9.5% or more, 10% or more, 11% in mol%. % or more, 12% or more, especially 12.5% or more. On the other hand, if the content of Na 2 O is too high, phase separation occurs and the viscosity is likely to decrease. In addition, the acid resistance may be reduced, or the component balance of the glass composition may be lacking, and the devitrification resistance may be reduced instead. Therefore, a suitable upper limit range of Na 2 O is 20% or less, 19.5% or less, 19% or less, 18% or less, 17% or less, 16.5% or less, 16% or less, 15.5% or less, especially 15% or less.

K 2O是使高溫黏度降低並提高熔融性或成形性的成分。進而亦是改善耐失透性,或提高維氏硬度的成分。但是,若K 2O的含量過多,則分相產生黏度容易降低。另外,有耐酸性降低,或缺乏玻璃組成的成分平衡,反而耐失透性降低的傾向。因此,K 2O的適宜的下限範圍以莫耳%計而為0%以上、0.01%以上、0.02%以上、0.1%以上、0.5%以上、1%以上、1.5%以上、2%以上、2.5%以上、3%以上、尤其是3.5%以上,適宜的上限範圍為10%以下、5.5%以下、5%以下、尤其是小於4.5%。 K 2 O is a component that reduces high-temperature viscosity and improves meltability or formability. Furthermore, it is a component that improves devitrification resistance or increases Vickers hardness. However, if the content of K 2 O is too high, phase separation occurs and the viscosity is likely to decrease. In addition, the acid resistance tends to decrease, or the component balance of the glass composition is lacking, and the devitrification resistance tends to decrease. Therefore, the suitable lower limit range of K 2 O is 0% or more, 0.01% or more, 0.02% or more, 0.1% or more, 0.5% or more, 1% or more, 1.5% or more, 2% or more, 2.5% in mol%. % or more, 3% or more, especially 3.5% or more, and the suitable upper limit range is 10% or less, 5.5% or less, 5% or less, especially less than 4.5%.

Li 2O與Na 2O均是與熔融鹽中的K離子進行離子交換,而獲得高表面壓縮應力值的成分,且於本發明中均為必需的成分。因此,Li 2O+Na 2O的適宜的下限範圍以莫耳%計而為1%以上、3%以上、4%以上、5%以上、6%以上、7%以上、8%以上、9%以上、10%以上、11%以上、12%以上、13%以上、14%以上、15%以上、16%以上、17%以上、18%以上、尤其是18.5%以上。另一方面,若Li 2O+Na 2O的含量過多,則熱膨脹係數變得過高,而耐熱衝擊性容易降低。另外,存在玻璃組成的成分平衡崩潰,反而耐失透性降低的情況。因此,Li 2O+Na 2O的適宜的上限範圍為20%以下、尤其是19%以下。 Both Li 2 O and Na 2 O are components that perform ion exchange with K ions in the molten salt to obtain high surface compressive stress values, and are essential components in the present invention. Therefore, the suitable lower limit range of Li 2 O + Na 2 O is 1% or more, 3% or more, 4% or more, 5% or more, 6% or more, 7% or more, 8% or more, 9% in mol%. More than %, more than 10%, more than 11%, more than 12%, more than 13%, more than 14%, more than 15%, more than 16%, more than 17%, more than 18%, especially more than 18.5%. On the other hand, if the content of Li 2 O + Na 2 O is too high, the thermal expansion coefficient becomes too high, and the thermal shock resistance is likely to decrease. In addition, the component balance of the glass composition may collapse, and the devitrification resistance may decrease instead. Therefore, a suitable upper limit range of Li 2 O+Na 2 O is 20% or less, especially 19% or less.

除了所述成分以外,玻璃製品1亦可含有例如以下成分作為玻璃組成。In addition to the above-mentioned components, the glass product 1 may also contain, for example, the following components as a glass composition.

MgO是使高溫黏度降低並提高熔融性或成形性,或提高應變點或楊氏模量的成分,且於鹼土金屬氧化物中是提高離子交換性能的效果大的成分。但是,若MgO的含量過多,則密度或熱膨脹係數容易變高,而且玻璃容易失透。因此,MgO的適宜的上限範圍為12%以下、10%以下、8%以下、6%以下、尤其是5%以下。再者,於向玻璃組成中導入MgO的情況下,MgO的適宜的下限範圍以莫耳%計而為0.1%以上、0.5%以上、1%以上、尤其是2%以上。MgO is a component that reduces high-temperature viscosity and improves meltability or formability, or increases strain point or Young's modulus. MgO is a component that is most effective in improving ion exchange performance among alkaline earth metal oxides. However, if the content of MgO is too high, the density or thermal expansion coefficient is likely to be high, and the glass is likely to be devitrified. Therefore, the suitable upper limit range of MgO is 12% or less, 10% or less, 8% or less, 6% or less, especially 5% or less. Furthermore, when MgO is introduced into the glass composition, a suitable lower limit range of MgO is 0.1% or more, 0.5% or more, 1% or more, and especially 2% or more in mol%.

CaO與其他成分相比,不會伴隨耐失透性的降低而使高溫黏度降低並提高熔融性或成形性,或提高應變點或楊氏模量的效果大。CaO的含量較佳為0%~10%。但是,若CaO的含量過多,則密度或熱膨脹係數變高,而且缺乏玻璃組成的成分平衡,反而玻璃容易失透,或離子交換性能容易降低。因此,CaO的適宜的含量以莫耳%計而為0%~5%、0.01%~4%、0.1%~3%、尤其是1%~2.5%。Compared with other components, CaO has a greater effect of reducing high-temperature viscosity without reducing devitrification resistance, improving meltability or formability, and increasing strain point or Young's modulus. The content of CaO is preferably 0% to 10%. However, if the CaO content is too high, the density or thermal expansion coefficient will be high, and the component balance of the glass composition will be lacking. On the contrary, the glass will easily devitrify, or the ion exchange performance will easily decrease. Therefore, the suitable content of CaO is 0% to 5%, 0.01% to 4%, 0.1% to 3%, and especially 1% to 2.5% in terms of molar %.

SrO是不會伴隨耐失透性的降低而使高溫黏度降低並提高熔融性或成形性,或提高應變點或楊氏模量的成分。但是,若SrO的含量過多,則密度或熱膨脹係數變高,或離子交換性能降低,或缺乏玻璃組成的成分平衡,反而玻璃容易失透。SrO的適宜的含有範圍以莫耳%計而為0%~5%、0%~3%、0%~1%、尤其是0%~小於0.1%。SrO is a component that reduces high-temperature viscosity without reducing devitrification resistance, improves meltability or formability, or increases strain point or Young's modulus. However, if the content of SrO is too high, the density or thermal expansion coefficient will be high, or the ion exchange performance will be reduced, or the component balance of the glass composition will be lacking, and the glass will be prone to devitrification. The suitable content range of SrO is 0% to 5%, 0% to 3%, 0% to 1%, and especially 0% to less than 0.1% in molar %.

BaO是不會伴隨耐失透性的降低而使高溫黏度降低並提高熔融性或成形性,或提高應變點或楊氏模量的成分。但是,若BaO的含量過多,則密度或熱膨脹係數變高,或離子交換性能降低,或缺乏玻璃組成的成分平衡,反而玻璃容易失透。BaO的適宜的含有範圍以莫耳%計而為0%~5%、0%~3%、0%~1%、尤其是0%~小於0.1%。BaO is a component that reduces high-temperature viscosity without reducing devitrification resistance, improves meltability or formability, or increases strain point or Young's modulus. However, if the content of BaO is too high, the density or thermal expansion coefficient will increase, or the ion exchange performance will decrease, or the component balance of the glass composition will be lacking, and the glass will be prone to devitrification. The suitable content range of BaO is 0% to 5%, 0% to 3%, 0% to 1%, and especially 0% to less than 0.1% in terms of molar %.

ZnO是提高離子交換性能的成分,且是增大壓縮應力值的效果尤其大的成分。另外,是不使低溫黏性降低而使高溫黏性降低的成分。但是,若ZnO的含量過多,則有玻璃分相,或耐失透性降低,或密度變高,或壓縮應力層的應力深度變小的傾向。因此,ZnO的含量較佳為以莫耳%計而為0%~6%、0%~5%、0%~1%、0%~0.5%、尤其是0%~小於0.1%。ZnO is a component that improves ion exchange performance and is particularly effective in increasing the compressive stress value. In addition, it is a component that reduces the high-temperature viscosity without reducing the low-temperature viscosity. However, if the content of ZnO is too high, the glass tends to separate, the devitrification resistance decreases, the density increases, or the stress depth of the compressive stress layer decreases. Therefore, the content of ZnO is preferably 0% to 6%, 0% to 5%, 0% to 1%, 0% to 0.5%, especially 0% to less than 0.1% in terms of molar %.

ZrO 2是顯著提高離子交換性能的成分,並且是提高液相黏度附近的黏性或應變點的成分,但若其含量過多,則有耐失透性顯著降低之虞,而且有密度變得過高之虞。因此,ZrO 2的適宜的上限範圍以莫耳%計而為10%以下、8%以下、6%以下、尤其是5%以下。再者,於欲提高離子交換性能的情況下,較佳為向玻璃組成中導入ZrO 2,於該情況下,ZrO 2的適宜的下限範圍為0.001%以上、0.01%以上、0.5%、尤其是1%以上。 ZrO 2 is a component that significantly improves ion exchange performance and increases the viscosity or strain point near the liquid phase viscosity. However, if its content is too high, the devitrification resistance may significantly decrease, and the density may become excessive. High risk. Therefore, the suitable upper limit range of ZrO 2 is 10% or less, 8% or less, 6% or less, and especially 5% or less in mol%. Furthermore, when it is desired to improve the ion exchange performance, it is preferable to introduce ZrO 2 into the glass composition. In this case, the suitable lower limit range of ZrO 2 is 0.001% or more, 0.01% or more, 0.5%, especially More than 1%.

P 2O 5是提高離子交換性能的成分,且尤其是增大壓縮應力層的應力深度的成分。另外,是將楊氏模量抑制得低的成分。但是,若P 2O 5的含量過多,則玻璃容易分相。因此,P 2O 5的適宜的上限範圍以莫耳%計而為10%以下、8%以下、6%以下、4%以下、2%以下、1%以下、尤其是小於0.1%。 P 2 O 5 is a component that improves ion exchange performance, and particularly increases the stress depth of the compressive stress layer. In addition, it is a component that suppresses Young's modulus to a low level. However, if the content of P 2 O 5 is too high, the glass will easily separate into phases. Therefore, the suitable upper limit range of P 2 O 5 is 10% or less, 8% or less, 6% or less, 4% or less, 2% or less, 1% or less, and especially less than 0.1% in molar %.

作為澄清劑,亦可導入0 ppm~30000 ppm(3%)的選自As 2O 3、Sb 2O 3、SnO 2、F、Cl、SO 3的群組(較佳為SnO 2、Cl、SO 3的群組)中的一種或兩種以上。就確切地享有澄清效果的觀點而言,SnO 2+SO 3+Cl的含量較佳為0 ppm~10000 ppm、50 ppm~5000 ppm、80 ppm~4000 ppm、100 ppm~3000 ppm、尤其是300 ppm~3000 ppm。此處,「SnO 2+SO 3+Cl」是指SnO 2、SO 3與Cl的合計量。 As a clarifier, 0 ppm to 30000 ppm (3%) of a group selected from As 2 O 3 , Sb 2 O 3 , SnO 2 , F, Cl, SO 3 (preferably SnO 2 , Cl, One or more of the groups SO 3 ). From the viewpoint of reliably enjoying the clarification effect, the content of SnO 2 +SO 3 +Cl is preferably 0 ppm to 10000 ppm, 50 ppm to 5000 ppm, 80 ppm to 4000 ppm, 100 ppm to 3000 ppm, and especially 300 ppm. ppm~3000 ppm. Here, "SnO 2 +SO 3 +Cl" means the total amount of SnO 2 , SO 3 and Cl.

SnO 2的適宜的含有範圍為0 ppm~10000 ppm、0 ppm~7000 ppm、尤其是50 ppm~6000 ppm。Cl的適宜的含有範圍為0 ppm~1500 ppm、0 ppm~1200 ppm、0 ppm~800 ppm、0 ppm~500 ppm、尤其是50 ppm~300 ppm。SO 3的適宜的含有範圍為0 ppm~1000 ppm、0 ppm~800 ppm、尤其是10 ppm~500 ppm。 The suitable content range of SnO 2 is 0 ppm to 10000 ppm, 0 ppm to 7000 ppm, especially 50 ppm to 6000 ppm. The suitable content range of Cl is 0 ppm to 1500 ppm, 0 ppm to 1200 ppm, 0 ppm to 800 ppm, 0 ppm to 500 ppm, especially 50 ppm to 300 ppm. The suitable content range of SO 3 is 0 ppm to 1000 ppm, 0 ppm to 800 ppm, especially 10 ppm to 500 ppm.

Nd 2O 3、La 2O 3等稀土氧化物是提高楊氏模量的成分,而且是若加入作為互補色的顏色,則會消色,且可控制玻璃的色澤的成分。但是,原料自身的成本高,而且若大量地導入,則耐失透性容易降低。因此,稀土氧化物的含量較佳為4%以下、3%以下、2%以下、1%以下、尤其是0.5%以下。 Rare earth oxides such as Nd 2 O 3 and La 2 O 3 are components that increase Young's modulus, and are components that can cause color loss and control the color of glass when a complementary color is added. However, the cost of the raw material itself is high, and if introduced in large amounts, the devitrification resistance is likely to decrease. Therefore, the content of the rare earth oxide is preferably less than 4%, less than 3%, less than 2%, less than 1%, especially less than 0.5%.

出於環境方面的考慮,玻璃製品1較佳為實質上不含有As 2O 3、F、PbO、Bi 2O 3。此處,所謂「實質上不含有As 2O 3」,是指雖然未積極地添加As 2O 3作為玻璃成分,但是容許以雜質水準混入的情況,具體而言,是指As 2O 3的含量小於500 ppm。所謂「實質上不含有F」,是指雖然未積極地添加F作為玻璃成分,但是容許以雜質水準混入的情況,具體而言,是指F的含量小於500 ppm。所謂「實質上不含有PbO」,是指雖然未積極地添加PbO作為玻璃成分,但是容許以雜質水準混入的情況,具體而言,是指PbO的含量小於500 ppm。所謂「實質上不含有Bi 2O 3」,是指雖然未積極地添加Bi 2O 3作為玻璃成分,但是容許以雜質水準混入的情況,具體而言,是指Bi 2O 3的含量小於500 ppm。 From environmental considerations, the glass product 1 is preferably substantially free of As 2 O 3 , F, PbO, and Bi 2 O 3 . Here, "substantially does not contain As 2 O 3 " means that although As 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that As 2 O 3 The content is less than 500 ppm. "Substantially does not contain F" means that although F is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that the content of F is less than 500 ppm. The term "substantially does not contain PbO" means that although PbO is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that the content of PbO is less than 500 ppm. The term "substantially does not contain Bi 2 O 3 " means that although Bi 2 O 3 is not actively added as a glass component, it is allowed to be mixed in at an impurity level. Specifically, it means that the content of Bi 2 O 3 is less than 500 ppm.

作為一例,玻璃製品1可為不包含作為玻璃組成的B 2O 3、或將B 2O 3的含量限制為極少量者。即,玻璃製品1可作為玻璃組成以莫耳%計而含有50%~80%的SiO 2、5%~25%的Al 2O 3、0%~1%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O。 As an example, the glass product 1 may not contain B 2 O 3 as a glass component, or the content of B 2 O 3 may be limited to a very small amount. That is, the glass product 1 may contain 50% to 80% SiO 2 , 5% to 25% Al 2 O 3 , 0% to 1% B 2 O 3 , 0% to 20% Li 2 O, 1% to 20% Na 2 O, 0% to 10% K 2 O.

作為另一例,玻璃製品1可為包含以作為玻璃組成的B 2O 3為必需成分者。即,玻璃製品1可作為玻璃組成以莫耳%計而含有50%~80%的SiO 2、5%~25%的Al 2O 3、1%~5%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O。 As another example, the glass product 1 may contain B 2 O 3 as a glass composition as an essential component. That is, the glass product 1 may contain 50% to 80% SiO 2 , 5% to 25% Al 2 O 3 , 1% to 5% B 2 O 3 , 0% to 20% Li 2 O, 1% to 20% Na 2 O, 0% to 10% K 2 O.

再者,於玻璃製品1包含作為玻璃組成的B 2O 3為必需成分的情況下,存在玻璃的成形性下降的擔憂,因此為了取得平衡例如可限制Al 2O 3等其他成分的含量。即,玻璃製品1可作為玻璃組成以莫耳%計而含有50%~80%的SiO 2、5%~10%的Al 2O 3、1%~5%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O。 Furthermore, when the glass product 1 contains B 2 O 3 as an essential component of the glass composition, there is a concern that the formability of the glass is reduced. Therefore, in order to achieve a balance, for example, the content of other components such as Al 2 O 3 may be limited. That is, the glass product 1 may contain 50% to 80% SiO 2 , 5% to 10% Al 2 O 3 , 1% to 5% B 2 O 3 , 0% to 20% Li 2 O, 1% to 20% Na 2 O, 0% to 10% K 2 O.

<玻璃製品製造方法> 如圖3所示,第一實施方式的玻璃製品製造方法依序包括準備步驟S1、化學強化步驟S2、以及水處理步驟S3。 <Glass product manufacturing method> As shown in FIG. 3 , the glass product manufacturing method of the first embodiment includes a preparation step S1, a chemical strengthening step S2, and a water treatment step S3 in sequence.

於準備步驟中,準備作為所述玻璃製品1的基礎的玻璃(以下,稱為處理用玻璃)。處理用玻璃是藉由與所述玻璃製品1相同的形狀尺寸及玻璃組成而構成的玻璃。In the preparation step, glass (hereinafter referred to as processing glass) as a base of the glass product 1 is prepared. The processing glass is glass composed of the same shape, size and glass composition as the glass product 1 .

處理用玻璃例如是將藉由溢流下拉法、流孔下引法、浮式法、下拉法等成形方法獲得的板狀或片狀的素玻璃(mother glass)切斷成小片玻璃並進行加工而獲得。為了獲得平滑的表面,較佳為使用溢流下拉法作為成形方法。另外,若為溢流下拉法,則即使於成形後不進行研磨(包含機械研磨、蝕刻)亦容易成形厚度0.005 mm~0.1 mm的處理用玻璃。再者,於藉由溢流下拉法成形的情況下,處理用玻璃於內部具有成形合流面。Glass for processing is, for example, plate-like or sheet-like mother glass obtained by forming methods such as overflow down-drawing, orifice down-drawing, float, down-drawing, etc., cut into small pieces of glass and processed And get. In order to obtain a smooth surface, it is preferable to use the overflow down-draw method as the forming method. In addition, if the overflow down-draw method is used, processing glass with a thickness of 0.005 mm to 0.1 mm can be easily formed without polishing (including mechanical polishing and etching) after forming. Furthermore, in the case of molding by the overflow down-draw method, the processing glass has a molding merging surface inside.

處理用玻璃的端面較佳為藉由研磨、熱處理、蝕刻等實施倒角或用以提高強度的處理。處理用玻璃的主表面可進行研磨處理,例如,於藉由溢流下拉法使主表面預先平滑地成形的情況下或厚度均勻且精度良好地成形的情況下,可不對主表面實施研磨處理,即可直接使用非研磨面。再者,於藉由溢流下拉法成形且未進行研磨的情況下,處理用玻璃的主表面成為煆造面。The end surface of the processing glass is preferably chamfered by grinding, heat treatment, etching, or the like, or treated to increase strength. The main surface of the processing glass may be ground. For example, when the main surface is smoothly formed in advance by the overflow down-drawing method or when the thickness is uniform and accurately formed, the main surface does not need to be ground. You can use the non-abrasive surface directly. Furthermore, when it is formed by the overflow down-drawing method and is not polished, the main surface of the processing glass becomes a molded surface.

於化學強化步驟S2中,對處理用玻璃進行離子交換處理。於本實施方式中,處理用玻璃浸漬於離子交換處理用的熔融鹽中。藉由如此利用離子交換處理將處理用玻璃形成為化學強化玻璃,處理用玻璃的彎曲強度提高。In the chemical strengthening step S2, the processing glass is subjected to ion exchange treatment. In this embodiment, the glass for processing is immersed in the molten salt for ion exchange processing. By forming the processing glass into chemically strengthened glass by the ion exchange treatment in this way, the bending strength of the processing glass is improved.

熔融鹽是包含能夠與化學強化用玻璃中的成分進行離子交換的成分的鹽,典型的是鹼金屬硝酸鹽。作為鹼金屬硝酸鹽,可列舉NaNO 3、KNO 3、LiNO 3等,可將該些分別單獨(以100質量%計)或者混合多種來使用。混合多種鹼金屬硝酸鹽時的混合比率可任意地決定,例如,以質量%計可設為5%~95%的NaNO 3、5%~95%的KNO 3,較佳為可設為30%~80%的NaNO 3、20%~70%的KNO 3,更佳為可設為50%~70%的NaNO 3、30%~50%的KNO 3The molten salt is a salt containing a component capable of ion exchange with a component in the chemically strengthened glass, and is typically an alkali metal nitrate. Examples of alkali metal nitrates include NaNO 3 , KNO 3 , LiNO 3 and the like, and these may be used individually (100% by mass) or in combination of multiple types. The mixing ratio when mixing multiple alkali metal nitrates can be determined arbitrarily. For example, it can be 5% to 95% NaNO 3 and 5% to 95% KNO 3 in terms of mass %, and preferably it can be 30%. ~80% of NaNO 3 and 20% to 70% of KNO 3 , more preferably 50% to 70% of NaNO 3 and 30% to 50% of KNO 3 .

熔融鹽的溫度例如為350℃~500℃,較佳為355℃~470℃、360℃~450℃、365℃~430℃、370℃~410℃。另外,浸漬時間例如為3分鐘~300分鐘,較佳為5分鐘~120分鐘、7分鐘~100分鐘。當然,熔融鹽的溫度及浸漬時間等條件可於獲得所述應力特性的範圍內根據玻璃組成等適當進行變更。The temperature of the molten salt is, for example, 350°C to 500°C, preferably 355°C to 470°C, 360°C to 450°C, 365°C to 430°C, or 370°C to 410°C. In addition, the immersion time is, for example, 3 minutes to 300 minutes, preferably 5 minutes to 120 minutes, and 7 minutes to 100 minutes. Of course, conditions such as the temperature of the molten salt and the immersion time can be appropriately changed depending on the glass composition and the like within the range in which the stress characteristics are obtained.

於水處理步驟S3中,使處理用玻璃與處理水接觸0.5小時以上且小於15小時。藉由如此使處理用玻璃與處理水接觸,處理用玻璃的落筆強度提高。另外,於水處理步驟S3之後,處理用玻璃的落筆強度亦得到維持,因此由處理用玻璃製造的玻璃製品1的落筆強度亦提高。再者,無論處理用玻璃與處理水的接觸時間(以下,稱為水處理時間)過短還是過長,均無法充分享有落筆強度提高效果。因此,重要的是將水處理時間設為所述數值範圍內。In the water treatment step S3, the treatment glass is brought into contact with the treatment water for 0.5 hours or more and less than 15 hours. By bringing the processing glass into contact with the processing water in this way, the writing strength of the processing glass is improved. In addition, after the water treatment step S3, the drop strength of the glass for processing is also maintained, and therefore the drop strength of the glass product 1 made of the glass for processing is also improved. Furthermore, whether the contact time between the processing glass and the processing water (hereinafter referred to as water processing time) is too short or too long, the effect of improving the writing strength cannot be fully enjoyed. Therefore, it is important to set the water treatment time within the stated numerical range.

水處理時間的下限範圍較佳為0.75小時以上、1小時以上、1.25小時以上、1.5小時以上。水處理時間的上限範圍較佳為14小時以下、13小時以下、12小時以下、11小時以下。The lower limit range of the water treatment time is preferably 0.75 hours or more, 1 hour or more, 1.25 hours or more, or 1.5 hours or more. The upper limit range of the water treatment time is preferably 14 hours or less, 13 hours or less, 12 hours or less, or 11 hours or less.

處理水的溫度例如為10℃~100℃。處理水的溫度的下限範圍較佳為20℃以上、30℃以上、40℃以上、46℃以上。處理水的溫度的上限範圍較佳為95℃以下、90℃以下、85℃以下。隨著處理水的溫度變高,有獲得所期望的落筆強度為止的處理時間變短的傾向。The temperature of the treatment water is, for example, 10°C to 100°C. The lower limit range of the temperature of the treated water is preferably 20°C or higher, 30°C or higher, 40°C or higher, or 46°C or higher. The upper limit range of the temperature of the treated water is preferably 95°C or lower, 90°C or lower, or 85°C or lower. As the temperature of the treatment water becomes higher, the treatment time until the desired writing strength is obtained tends to become shorter.

於處理用玻璃是化學強化玻璃的情況下,於水處理步驟S3中,較佳為處理水的溫度為50℃~95℃、且水處理時間為0.5小時~10小時。When the glass for processing is chemically strengthened glass, in the water treatment step S3, it is preferable that the temperature of the treatment water is 50°C to 95°C, and the water treatment time is 0.5 hours to 10 hours.

處理水的電導率較佳為3 mS/m以下。處理水的電導率更佳為1 mS/m以下、0.1 mS/m以下、0.01 mS/m以下。隨著處理水的電導率變低,容易提高處理用玻璃的落筆強度。處理水較佳為不包含洗滌劑及其他材料(例如,界面活性劑、水軟化劑、金屬封閉劑、pH值調整劑、穩定劑)等。The conductivity of the treated water is preferably 3 mS/m or less. The conductivity of the treated water is preferably 1 mS/m or less, 0.1 mS/m or less, or 0.01 mS/m or less. As the electrical conductivity of the treatment water becomes lower, the writing strength of the treatment glass becomes easier to increase. The treated water preferably does not contain detergents and other materials (eg, surfactants, water softeners, metal sealants, pH adjusters, stabilizers), etc.

圖4中示出水處理步驟S3的實施形態的一例。如圖4所示,將處理用玻璃6浸漬於容器4中所貯存的處理水5中。於處理水5中,例如多張處理用玻璃6以縱向姿勢的狀態,沿厚度方向隔開規定間隔由支撐台7支撐。而且,包含處理用玻璃6及處理水5的容器4被收容於維持在規定時間、規定溫度的恆溫裝置(溫度調整裝置)8內,對處理用玻璃6進行水處理。An example of the embodiment of the water treatment step S3 is shown in FIG. 4 . As shown in FIG. 4 , the processing glass 6 is immersed in the processing water 5 stored in the container 4 . In the treated water 5 , for example, a plurality of sheets of processing glass 6 are supported by the support table 7 in a vertical position at predetermined intervals in the thickness direction. And the container 4 containing the processing glass 6 and the processing water 5 is accommodated in the thermostat (temperature adjustment device) 8 maintained at a predetermined time and a predetermined temperature, and the processing glass 6 is subjected to water treatment.

使處理水與處理用玻璃接觸的方法並無特別限定,如上所述,較佳為採用將處理用玻璃浸漬於容器中所貯存的處理水中的方法。此時,較佳為不對處理水賦予超音波等以外的振動而於處理水中靜置處理用玻璃。若如此浸漬於處理水中,則可使處理用玻璃整體與處理水效率良好地接觸,容易享有落筆強度提高效果。再者,處理水可自噴嘴等噴射至處理用玻璃,亦可使流水流至處理用玻璃的整個表面。The method of bringing the treatment water into contact with the treatment glass is not particularly limited. As mentioned above, a method of immersing the treatment glass in the treatment water stored in the container is preferred. At this time, it is preferable to leave the processing glass in the processing water without imparting vibrations other than ultrasonic waves or the like to the processing water. If it is immersed in the treatment water in this way, the entire treatment glass can be brought into efficient contact with the treatment water, and the effect of improving the writing strength can be easily enjoyed. Furthermore, the treatment water may be sprayed onto the treatment glass from a nozzle or the like, or the flowing water may flow to the entire surface of the treatment glass.

處理用玻璃可相對於處理水相對移動。具體而言,例如,可使浸漬於處理水中的處理用玻璃於處理水中移動,或亦可使處理用玻璃於藉由噴嘴等噴射供給處理水的區域內移動。The treatment glass can move relative to the treatment water. Specifically, for example, the processing glass immersed in the processing water may be moved in the processing water, or the processing glass may be moved in a region where the processing water is sprayed and supplied by a nozzle or the like.

(第二實施方式) <積層體> 如圖5所示,第二實施方式的積層體9包括上述玻璃製品1、積層於玻璃製品1的其中一個主表面1a(例如表面)的保護層10a、以及積層於玻璃製品1的另一個主表面1a(例如背面)的增強層10b。若如此,則由保護層10a保護玻璃製品1,因此可實現更高的落筆強度。另外,可藉由增強層10b提高玻璃製品1的彎曲強度,抑制彎折時的破損。較佳為保護層10a設置於筆等接觸到的玻璃製品1的表面側,增強層10b設置於筆等接觸不到的玻璃製品1的背面側。再者,亦可僅設置保護層10a及增強層10b中的其中一者。 (Second Embodiment) <Laminated body> As shown in FIG. 5 , the laminated body 9 of the second embodiment includes the above-mentioned glass product 1 , a protective layer 10 a laminated on one of the main surfaces 1 a (for example, the surface) of the glass product 1 , and the other main surface 1 a of the glass product 1 . Reinforcement layer 10b for surface 1a (eg backside). If so, since the glass product 1 is protected by the protective layer 10a, higher writing strength can be achieved. In addition, the reinforcing layer 10b can improve the bending strength of the glass product 1 and suppress damage during bending. It is preferable that the protective layer 10a is provided on the surface side of the glass product 1 that is in contact with the pen and the like, and the reinforcement layer 10b is provided on the back side of the glass product 1 that is not in contact with the pen and the like. Furthermore, only one of the protective layer 10a and the reinforcement layer 10b may be provided.

作為保護層10a、增強層10b,可列舉板狀或片狀的樹脂、金屬、玻璃等,可將該些形成單層或組合多層來形成。其中,於將積層體9適用於可折疊類型的元件的情況下,保護層10a、增強層10b較佳為容易賦予可撓性的樹脂。Examples of the protective layer 10a and the reinforcing layer 10b include plate-like or sheet-like resin, metal, glass, and the like, and these may be formed into a single layer or a combination of multiple layers. Among them, when the laminated body 9 is applied to a foldable type device, it is preferable that the protective layer 10a and the reinforcing layer 10b are resins that can easily provide flexibility.

保護層10a、增強層10b中所含的樹脂的厚度較佳為0.5 μm~200 μm、1 μm~150 μm、2 μm~100 μm。作為保護層10中所含的樹脂的材質,例如可列舉:聚碳酸酯(polycarbonate,PC)、丙烯酸、聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)、聚醚醚酮(poly ether ether ketone,PEEK)、聚醯胺(polyamide,PA)、聚氯乙烯(polyvinyl chloride,PVC)、聚乙烯(poly ethylen,PE)、聚丙烯(polypropylene,PP)、聚萘二甲酸乙二酯(polyethylene naphthalate,PEN)、聚醯亞胺(polyimide,PI)、環烯烴聚合物(cyclo olefin polymer,COP)、環氧等。The thickness of the resin contained in the protective layer 10a and the reinforcing layer 10b is preferably 0.5 μm to 200 μm, 1 μm to 150 μm, or 2 μm to 100 μm. Examples of the material of the resin contained in the protective layer 10 include: polycarbonate (PC), acrylic, polyethylene terephthalate (PET), polyetheretherketone (polyetheretherketone) ketone (PEEK), polyamide (PA), polyvinyl chloride (PVC), polyethylene (polyethylen, PE), polypropylene (PP), polyethylene naphthalate (polyethylene naphthalate (PEN), polyimide (PI), cyclo olefin polymer (COP), epoxy, etc.

保護層10a、增強層10b例如介隔黏著層11而積層於玻璃製品1的主表面1a。黏著層11的厚度較佳為0.1 μm~100 μm、0.2 μm~90 μm、0.3 μm~80 μm。作為黏著層11的材質,例如可列舉:丙烯酸系黏接劑、矽酮系黏接劑、橡膠系黏接劑、紫外線硬化性丙烯酸系黏著劑、紫外線硬化性環氧系黏著劑、熱硬化性環氧系黏著劑、熱硬化性三聚氰胺系黏著劑、熱硬化性酚系黏著劑、乙烯乙酸乙烯酯(ethylene vinyl acetate,EVA)、聚乙烯縮丁醛(polyvinyl butyral,PVB)、環烯烴聚合物(COP)等。再者,保護層10可不介隔黏著層11而藉由塗佈等任意的方法直接形成於玻璃製品1的主表面1a。The protective layer 10a and the reinforcing layer 10b are laminated on the main surface 1a of the glass product 1 via the adhesive layer 11, for example. The thickness of the adhesive layer 11 is preferably 0.1 μm to 100 μm, 0.2 μm to 90 μm, or 0.3 μm to 80 μm. Examples of the material of the adhesive layer 11 include: acrylic adhesive, silicone adhesive, rubber adhesive, ultraviolet curable acrylic adhesive, ultraviolet curable epoxy adhesive, thermosetting adhesive Epoxy adhesive, thermosetting melamine adhesive, thermosetting phenol adhesive, ethylene vinyl acetate (EVA), polyvinyl butyral (PVB), cyclic olefin polymer (COP) etc. Furthermore, the protective layer 10 can be directly formed on the main surface 1 a of the glass product 1 by any method such as coating without interposing the adhesive layer 11 .

(第三實施方式) <玻璃製品製造方法> 如圖6所示,第三實施方式的玻璃製品製造方法依序包括準備步驟S11、化學強化步驟S12、表層蝕刻步驟S13、以及水處理步驟S14。其中,表層蝕刻步驟S13以外的步驟與所述實施方式所對應的步驟相同,因此省略詳細的說明。 (Third Embodiment) <Glass product manufacturing method> As shown in FIG. 6 , the glass product manufacturing method of the third embodiment sequentially includes a preparation step S11 , a chemical strengthening step S12 , a surface etching step S13 , and a water treatment step S14 . Among them, the steps other than the surface layer etching step S13 are the same as those corresponding to the above-described embodiment, and therefore detailed descriptions are omitted.

表層蝕刻步驟S13為如下步驟:於化學強化步驟S12之後、水處理步驟S14之前,在較壓縮應力層而言淺的範圍內對處理用玻璃進行蝕刻。藉由如此進行表層蝕刻步驟S13可減少於化學強化步驟S12等中在處理用玻璃中所形成的表面缺陷。因此可提高處理用玻璃或玻璃製品的落筆強度及/或彎曲強度。The surface layer etching step S13 is a step in which, after the chemical strengthening step S12 and before the water treatment step S14, the processing glass is etched in a range shallower than the compressive stress layer. By performing the surface layer etching step S13 in this manner, surface defects formed in the processing glass in the chemical strengthening step S12 and the like can be reduced. Therefore, the writing strength and/or the bending strength of the glass or glass product for handling can be improved.

於表層蝕刻步驟S13中,例如將處理用玻璃整體浸漬於液狀的蝕刻媒質中並對處理用玻璃的整個表面進行濕式蝕刻。藉由此種處理,可對處理用玻璃整體均勻地進行蝕刻,因此可抑制由蝕刻處理引起的厚度的偏差的產生。於實施此種蝕刻處理的情況下,處理用玻璃的表面由蝕刻面構成。In the surface layer etching step S13, for example, the entire processing glass is immersed in a liquid etching medium and the entire surface of the processing glass is wet etched. By such a process, the entire glass for processing can be etched uniformly, and therefore the occurrence of variations in thickness caused by the etching process can be suppressed. When such an etching process is performed, the surface of the glass for processing is an etching surface.

作為蝕刻媒質,能夠使用可對玻璃進行蝕刻的酸性或鹼性的水溶液。As the etching medium, an acidic or alkaline aqueous solution capable of etching glass can be used.

作為酸性的蝕刻媒質,例如可使用包含氫氟酸(hydrogen fluoride,HF)的酸性水溶液。於使用包含HF的水溶液的情況下,對玻璃的蝕刻速率高,生產效率良好。As an acidic etching medium, for example, an acidic aqueous solution containing hydrofluoric acid (hydrogen fluoride, HF) can be used. When an aqueous solution containing HF is used, the etching rate for glass is high and the production efficiency is good.

包含HF的水溶液例如是僅含有HF,或者將HF與HCl、HF與HNO 3、HF與H 2SO 4、HF與NH 4F分別組合而含有的水溶液。HF、HCl、HNO 3、H 2SO 4、NH 4F各自的化合物的濃度較佳為0.1 mol/L~30 mol/L。於使用包含HF的水溶液的蝕刻中,生成包含玻璃成分的氟化物作為副產物,可能成為蝕刻速率的降低或缺陷的主要原因,但藉由如上所述般設為與HCl、HNO 3、或者H 2SO 4等其他酸的混酸,可將該副產物分解而抑制生產性的降低。於使用酸性水溶液進行蝕刻的情況下,酸性水溶液的溫度例如為10℃~30℃,浸漬處理用玻璃的時間例如較佳為0.1分鐘~60分鐘。 The aqueous solution containing HF is, for example, an aqueous solution containing only HF or a combination of HF and HCl, HF and HNO 3 , HF and H 2 SO 4 , or HF and NH 4 F. The concentration of each compound of HF, HCl, HNO 3 , H 2 SO 4 and NH 4 F is preferably 0.1 mol/L to 30 mol/L. During etching using an aqueous solution containing HF, fluoride containing a glass component is generated as a by-product, which may cause a decrease in the etching rate or cause defects . Mixed acids with other acids such as 2 SO 4 can decompose this by-product and suppress the decrease in productivity. When etching is performed using an acidic aqueous solution, the temperature of the acidic aqueous solution is, for example, 10°C to 30°C, and the time for immersing the processing glass is preferably, for example, 0.1 minutes to 60 minutes.

作為鹼性的蝕刻媒質,可使用含有NaOH或KOH的鹼水溶液。鹼水溶液與包含所述HF的蝕刻媒質相比,對玻璃的蝕刻速率相對較小,因此具有容易精密地控制蝕刻量的優點。尤其是在需要以幾μm為單位來控制玻璃的厚度或DOC等的情況下為適宜。As an alkaline etching medium, an alkali aqueous solution containing NaOH or KOH can be used. The alkali aqueous solution has a relatively small etching rate for glass compared with the etching medium containing the HF, and therefore has the advantage of being easy to precisely control the etching amount. This is particularly suitable when it is necessary to control the thickness of glass, DOC, etc. in units of several μm.

於包含NaOH或KOH的水溶液中,鹼成分的濃度較佳為1 mol/L~20 mol/L。於使用鹼水溶液進行蝕刻的情況下,鹼水溶液的溫度例如為10℃~130℃,浸漬處理用玻璃的時間例如較佳為0.5分鐘~120分鐘。再者,於提高蝕刻速率而提高生產性的情況下,較佳為將鹼水溶液的溫度加溫至80℃以上。相反,於欲以更高的精度控制蝕刻量的情況下,較佳為將鹼水溶液的溫度限制於70℃以下。另外,於更重視蝕刻速率的大小的情況下,較佳為使用NaOH的水溶液。In an aqueous solution containing NaOH or KOH, the concentration of the alkali component is preferably 1 mol/L to 20 mol/L. When etching is performed using an alkali aqueous solution, the temperature of the alkali aqueous solution is, for example, 10°C to 130°C, and the time for immersing the processing glass is preferably, for example, 0.5 minutes to 120 minutes. Furthermore, when increasing the etching rate and improving productivity, it is preferable to heat the alkali aqueous solution to 80° C. or higher. On the contrary, when it is desired to control the etching amount with higher accuracy, it is preferable to limit the temperature of the alkali aqueous solution to 70° C. or lower. In addition, when more emphasis is placed on the etching rate, it is preferable to use an aqueous solution of NaOH.

表層蝕刻步驟S13中的處理用玻璃的表層部的除去厚度較佳為0.25 μm以上且3 μm以下。處理用玻璃的表層部的除去厚度進而佳為0.4 μm以上且2.7 μm以下、0.6 μm以上且2.5 μm以下、0.8 μm以上且2.3 μm以下。藉由將蝕刻量設為此種範圍,可減小蝕刻前後的最大壓縮應力或壓縮應力深度的變動量。The removal thickness of the surface layer portion of the processing glass in the surface layer etching step S13 is preferably 0.25 μm or more and 3 μm or less. The removed thickness of the surface layer portion of the processing glass is more preferably 0.4 μm or more and 2.7 μm or less, 0.6 μm or more and 2.5 μm or less, or 0.8 μm or more and 2.3 μm or less. By setting the etching amount within such a range, the variation in the maximum compressive stress or compressive stress depth before and after etching can be reduced.

經過表層蝕刻步驟S13製造的玻璃製品較佳為整個表面、即表背的兩個主表面及端面全部由蝕刻面構成。若如此,則於玻璃製品的整個表面上缺陷減少,可實現高強度、尤其是高落筆強度。It is preferable that the entire surface of the glass product manufactured through the surface etching step S13, that is, the two main surfaces of the front and back and the end surface, is composed of etched surfaces. If so, defects will be reduced on the entire surface of the glass product, and high strength, especially high writing strength, can be achieved.

(第四實施方式) <玻璃製品製造方法> 如圖7所示,第四實施方式的玻璃製品製造方法依序包括準備步驟S21、薄壁化步驟S22、化學強化步驟S23、表層蝕刻步驟S24、以及水處理步驟S25。其中,薄壁化步驟S22以外的步驟與上述實施方式所對應的步驟相同,因此省略詳細的說明。再者,亦可不設置表層蝕刻步驟S24。 (Fourth Embodiment) <Glass product manufacturing method> As shown in FIG. 7 , the glass product manufacturing method of the fourth embodiment includes a preparation step S21, a thinning step S22, a chemical strengthening step S23, a surface etching step S24, and a water treatment step S25. Among them, the steps other than the thinning step S22 are the same as those corresponding to the above-described embodiment, and therefore detailed descriptions are omitted. Furthermore, the surface layer etching step S24 may not be provided.

薄壁化步驟S22是藉由蝕刻將處理用玻璃的厚度薄壁化至0.005 mm~0.1 mm的範圍內的步驟。藉由如此進行薄壁化步驟S22,即使於準備步驟S21中準備厚度大的處理用玻璃,亦可將處理用玻璃的厚度薄壁化至適當的範圍。The thinning step S22 is a step of thinning the thickness of the processing glass to a range of 0.005 mm to 0.1 mm by etching. By performing the thinning step S22 in this way, even if a thick processing glass is prepared in the preparation step S21, the thickness of the processing glass can be thinned to an appropriate range.

於薄壁化步驟S22中,例如將處理用玻璃整體浸漬於液狀的蝕刻媒質中並對處理用玻璃的整個表面進行濕式蝕刻。作為蝕刻媒質,可同樣地使用於表層蝕刻步驟S24中使用的蝕刻媒質。In the thinning step S22, for example, the entire processing glass is immersed in a liquid etching medium and the entire surface of the processing glass is wet etched. As the etching medium, the same etching medium used in the surface layer etching step S24 can be used.

薄壁化步驟S22中的處理用玻璃的表層部的除去厚度依賴於薄壁化步驟S22之前的處理用玻璃的原始厚度(初始厚度),因此並無特別限定,但有時會大於表層蝕刻步驟S24中的處理用玻璃的表層部的除去厚度。The thickness of the removed surface layer of the processing glass in the thinning step S22 depends on the original thickness (initial thickness) of the processing glass before the thinning step S22 and is therefore not particularly limited. However, it may be greater than that in the surface layer etching step. The thickness of the surface layer of the processing glass removed in S24.

(第五實施方式) <玻璃製品製造方法> 如圖8所示,第五實施方式的玻璃製品製造方法依序包括準備步驟S31、薄壁化步驟S32、以及水處理步驟S33。各步驟與上述實施方式所對應的步驟相同,但不同之處在於,於本實施方式中不包括化學強化步驟。 (fifth embodiment) <Glass product manufacturing method> As shown in FIG. 8 , the glass product manufacturing method of the fifth embodiment includes a preparation step S31, a thinning step S32, and a water treatment step S33 in sequence. Each step is the same as the corresponding step in the above embodiment, but the difference is that the chemical strengthening step is not included in this embodiment.

根據此種製造方法,在水處理步驟S33中,未經強化的處理用玻璃與處理水接觸。在此情況下,處理用玻璃的落筆強度有較使經化學強化的處理用玻璃與處理水接觸時高的傾向。因此,即使於經過使未經強化的處理用玻璃與處理水接觸的水處理步驟S33製造的玻璃製品中,亦可獲得高落筆強度。即,於本發明中,玻璃製品並不限定於化學強化玻璃。其中,關於彎曲強度,經化學強化的玻璃製品有變高的傾向。因此,就兼顧落筆強度與彎曲強度的觀點而言,玻璃製品較佳為化學強化玻璃。According to this manufacturing method, in the water treatment step S33, the unstrengthened treatment glass comes into contact with the treatment water. In this case, the writing strength of the processing glass tends to be higher than when the chemically strengthened processing glass is brought into contact with the processing water. Therefore, even in the glass product produced through the water treatment step S33 of bringing unstrengthened treatment glass into contact with the treatment water, high writing strength can be obtained. That is, in the present invention, the glass product is not limited to chemically strengthened glass. Among them, chemically strengthened glass products tend to have higher bending strength. Therefore, from the viewpoint of taking into consideration both writing strength and bending strength, the glass product is preferably chemically strengthened glass.

於本實施方式中,例示了設置薄壁化步驟S32的情況,但於準備步驟S31中,在可準備藉由溢流下拉法等預先成形為厚度0.005 mm~0.1 mm的處理用玻璃的情況下,亦可不設置薄壁化步驟S32。In this embodiment, the case where the thinning step S32 is provided is exemplified. However, in the preparation step S31, it is possible to prepare processing glass that is preformed to a thickness of 0.005 mm to 0.1 mm by an overflow down-draw method or the like. , the thinning step S32 may not be provided.

(第六實施方式) <玻璃製品製造方法> 於第六實施方式的玻璃製品製造方法中,示出上述實施方式中的水處理步驟的變形例。於上述實施方式中,水處理步驟中的處理水的溫度為100℃以下,但於本實施方式中,處理水的溫度設為100℃以上。 (Sixth Embodiment) <Glass product manufacturing method> In the glass product manufacturing method of 6th Embodiment, the modification of the water treatment step in the said embodiment is shown. In the above embodiment, the temperature of the treated water in the water treatment step is 100°C or lower. However, in this embodiment, the temperature of the treated water is set to 100°C or higher.

作為本實施方式的水處理步驟的一例,可列舉於加壓環境下將處理用玻璃浸漬於達到100℃以上的處理水中。詳細而言,將處理用玻璃浸漬於容器中所貯存的處理水中。然後,於將該容器收容於加壓裝置內的狀態下,對加壓裝置內進行加壓,將處理水加熱至100℃以上。藉由如此將處理水設為100℃以上,可期待能夠縮短獲得所期望的落筆強度為止的水處理時間的效果。As an example of the water treatment step of this embodiment, immersing the glass for treatment in the treatment water reaching 100 degreeC or more under a pressurized environment is mentioned. Specifically, the processing glass is immersed in the processing water stored in the container. Then, with the container accommodated in the pressurizing device, the inside of the pressurizing device is pressurized to heat the treated water to 100° C. or higher. By setting the treated water to 100° C. or higher in this way, an effect can be expected to shorten the water treatment time until the desired writing strength is obtained.

處理水的溫度較佳為超過100℃且200℃以下。處理水的溫度的下限範圍進而佳為105℃以上、110℃以上、120℃以上。處理水的溫度的上限範圍進而佳為190℃以下、180℃以下、170℃以下。The temperature of the treated water is preferably over 100°C and below 200°C. The lower limit range of the temperature of the treated water is more preferably 105°C or higher, 110°C or higher, or 120°C or higher. The upper limit range of the temperature of the treated water is more preferably 190°C or lower, 180°C or lower, or 170°C or lower.

加壓環境下的壓力較佳為0.15 MPa~2.0 MPa。加壓環境下的壓力的下限範圍進而佳為0.17 MPa以上、0.2 MPa以上、0.25 MPa以上。加壓環境下的壓力的上限範圍進而佳為1.9 MPa以下、1.8 MPa以下、1.7 MPa以下。The pressure in the pressurized environment is preferably 0.15 MPa to 2.0 MPa. The lower limit range of the pressure in the pressurized environment is more preferably 0.17 MPa or more, 0.2 MPa or more, or 0.25 MPa or more. The upper limit range of the pressure in the pressurized environment is further preferably 1.9 MPa or less, 1.8 MPa or less, or 1.7 MPa or less.

水處理時間的下限範圍較佳為0.6小時以上、0.75小時以上、1小時以上。水處理時間的上限範圍較佳為12小時以下、11小時以下、10小時以下。The lower limit range of the water treatment time is preferably 0.6 hours or more, 0.75 hours or more, or 1 hour or more. The upper limit range of the water treatment time is preferably 12 hours or less, 11 hours or less, or 10 hours or less.

亦可將處理水作為100℃以上的過熱水蒸氣噴射至處理用玻璃,以代替將處理用玻璃浸漬於100℃以上的處理水中。Instead of immersing the processing glass in the processing water of 100°C or higher, the processing water may be sprayed onto the processing glass as superheated vapor at 100°C or higher.

再者,雖然對本發明的實施方式進行了說明,但本發明的實施方式並不限定於此,於不脫離本發明的主旨的範圍內能夠實施各種變更。Furthermore, although the embodiment of the present invention has been described, the embodiment of the present invention is not limited thereto, and various modifications can be made without departing from the gist of the present invention.

於所述實施方式中,玻璃製品的形狀並無特別限定。玻璃製品的形狀可設為於俯視時例如呈正方形、長方形、圓形、橢圓形等。In the above embodiment, the shape of the glass product is not particularly limited. The shape of the glass product may be, for example, square, rectangular, circular, oval, etc. when viewed from above.

於所述實施方式中,亦可視需要對玻璃製品進行三維彎曲加工。具體而言,藉由預先對處理用玻璃全部或部分地實施三維彎曲加工,可對最終製造出的玻璃製品賦予三維彎曲形狀。In the above embodiment, the glass product may also be subjected to three-dimensional bending processing if necessary. Specifically, by performing a three-dimensional bending process on all or part of the processing glass in advance, a three-dimensional curved shape can be given to the finally manufactured glass product.

於所述實施方式中,例示了進行一次化學強化步驟(離子交換處理)的情況,但亦可進行兩次或三次以上的化學強化步驟。另外,亦可於離子交換前後進行加熱處理。藉由加熱處理,可緩和應力、或促進離子擴散而控制壓縮應力層深度等。當進行化學強化步驟時,較佳為於化學強化步驟之後、水處理步驟之前,將處理用玻璃清洗及乾燥。再者,在實施如上所述的多次化學強化的情況下,強化後的玻璃製品的應力分佈在壓縮應力層2的區域中可具有一個以上的屈曲點、極大值、極小值或拐點中的至少任一者。In the above embodiment, the case where the chemical strengthening step (ion exchange treatment) is performed once is exemplified, but the chemical strengthening step may be performed two or three times or more. In addition, heat treatment can also be performed before and after ion exchange. Heat treatment can relax stress or promote ion diffusion to control the depth of the compressive stress layer. When the chemical strengthening step is performed, it is preferable to clean and dry the processing glass after the chemical strengthening step and before the water treatment step. Furthermore, when multiple chemical strengthenings are performed as described above, the stress distribution of the strengthened glass product may have more than one buckling point, maximum value, minimum value or inflection point in the area of the compressive stress layer 2. At least either one.

於所述實施方式中,拉伸應力層3中的拉伸應力可為於厚度方向上不恆定的形態。例如,在將玻璃製品的DOC相對於厚度t設定得較大的情況下(例如,DOC≧0.20t的情況下),拉伸應力層3中的應力分佈可形成為沿著於玻璃製品的厚度的中心具有極小值的向下凸出的二次曲線的分佈形狀。In the embodiment, the tensile stress in the tensile stress layer 3 may be in a non-constant form in the thickness direction. For example, when the DOC of the glass product is set large relative to the thickness t (for example, when DOC≧0.20t), the stress distribution in the tensile stress layer 3 can be formed along the thickness of the glass product. The distribution shape of a downwardly convex quadratic curve with a minimum value in the center.

於所述實施方式中,玻璃製品的應力分佈亦可為表背不對稱。表背不對稱的應力分佈是藉由如下方式獲得:於將強化後的玻璃製品的其中一個主表面側研磨得較另一個面而言多,或於其中一個主表面側賦予了阻礙離子交換的膜的狀態下進行化學強化。 [實施例] In the above embodiment, the stress distribution of the glass product may also be asymmetrical between the front and back. The asymmetric stress distribution on the front and back is obtained by grinding one of the main surface sides of the strengthened glass product more than the other side, or by providing one of the main surface sides with an ion-exchange-impeding surface. Chemical strengthening is carried out in the film state. [Example]

以下,基於實施例對本發明的玻璃製品進行說明。再者,以下的實施例僅是示例,並且本發明並不受以下實施例任何限定。Hereinafter, the glass product of this invention is demonstrated based on an Example. Furthermore, the following examples are only examples, and the present invention is not limited by the following examples.

以如下方式製作了試樣。首先,準備具有表1中記載的玻璃組成的處理用玻璃。再者,表1所示的楊氏模量是利用共振法進行測定而得的值。Samples were prepared as follows. First, processing glass having the glass composition described in Table 1 is prepared. In addition, the Young's modulus shown in Table 1 is a value measured using the resonance method.

[表1] (mol%) A B SiO 2 66.4 69.9 Al 2O 3 11.5 8.67 MgO 4.8 4.7 CaO 0.1 0.1 B 2O 3 0.5 2.3 ZnO - - ZrO 2 - - Li 2O 0.02 0.03 Na 2O 15.2 13.7 K 2O 1.4 0.45 P 2O 5 - - SnO 2 0.1 0.15 楊氏模量(GPa) 72.1 70.1 [Table 1] (mol%) A B SiO 2 66.4 69.9 Al 2 O 3 11.5 8.67 MgO 4.8 4.7 CaO 0.1 0.1 B 2 O 3 0.5 2.3 ZnO - - ZrO 2 - - Li 2 O 0.02 0.03 Na 2 O 15.2 13.7 K 2 O 1.4 0.45 P 2 O 5 - - SnO 2 0.1 0.15 Young's modulus (GPa) 72.1 70.1

具體而言,以成為表1中記載的組成的方式調配玻璃原料,於試驗熔融爐中進行熔融。然後,藉由溢流下拉法將所獲得的熔融玻璃成形為板狀或片狀,切斷成規定尺寸,獲得處理用玻璃。Specifically, glass raw materials were prepared so as to have the composition described in Table 1 and melted in a test melting furnace. Then, the obtained molten glass is shaped into a plate or sheet shape by an overflow down-drawing method, and cut into a predetermined size to obtain glass for processing.

接著,藉由在表2~表8中記載的條件下對板狀或片狀的處理用玻璃進行處理,製造板狀或片狀的玻璃製品。薄壁化步驟及表層蝕刻步驟是將處理用玻璃浸漬於HF水溶液中而進行。化學強化步驟是將處理用玻璃浸漬於KNO 3100%的熔融鹽中而進行。水處理步驟是將處理用玻璃浸漬於處理水中而進行。於表2~表8中,No.1~No.29是本發明的實施例,No.30~No.45是比較例。 Next, the plate-like or sheet-like processing glass is processed under the conditions described in Tables 2 to 8 to produce plate-like or sheet-like glass products. The thinning step and the surface layer etching step are performed by immersing the glass for processing in an HF aqueous solution. The chemical strengthening step is performed by immersing the treatment glass in 100% molten salt of KNO 3 . The water treatment step is performed by immersing the glass for treatment in the treatment water. In Tables 2 to 8, No. 1 to No. 29 are examples of the present invention, and Nos. 30 to No. 45 are comparative examples.

[表2] No. 1 2 3 4 5 6 7 8 組成 A A A B A B A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - 薄壁化 蝕刻液 濃度 溫度 時間 - - - - - - HF 0.1 mol/L 30℃ 20分鐘 HF 5 mol/L 30℃ 36分鐘 化學強化 熔融鹽 溫度 時間 - - - - - - - - 表層蝕刻 蝕刻液 濃度 溫度 時間 - - - - - - - - 水處理 電導率 溫度 時間 加壓 0.01 mS/m 80℃ 1小時 - 0.1 mS/m 80℃ 2小時 - 1 mS/m 80℃ 4小時 - 0.1 mS/m 80℃ 4小時 - 0.1 mS/m 150℃ 1小時 0.8 MPa 0.1 mS/m 150℃ 2小時 0.8 MPa 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 保護層 (積層體) 材質 厚度 - - - - - - - - 落筆強度 最大破壞高度 60%破壞高度 15 cm 13 cm 14 cm 11 cm 12 cm 11 cm 15 cm 12 cm 14 cm 12 cm 14 cm 11 cm 14 cm 11 cm 13 cm 11 cm 兩點彎曲強度 中央值 最大值 最小值 - 691 MPa 1728 MPa 310 MPa - - - - - - [Table 2] No. 1 2 3 4 5 6 7 8 composition A A A B A B A A thickness Initial thickness after thinning and surface etching 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - Thin wall Etching solution concentration temperature time - - - - - - HF 0.1 mol/L 30℃ 20 minutes HF 5 mol/L 30℃ 36 minutes chemical strengthening molten salt temperature time - - - - - - - - Surface etching Etching solution concentration temperature time - - - - - - - - water treatment conductivity temperature time pressurization 0.01 mS/m 80℃ 1 hour- 0.1 mS/m 80℃ 2 hours- 1 mS/m 80℃ 4 hours- 0.1 mS/m 80℃ 4 hours- 0.1 mS/m 150℃ 1 hour 0.8 MPa 0.1 mS/m 150℃ 2 hours 0.8 MPa 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- Protective layer (laminate) Material thickness - - - - - - - - Pen down strength Maximum damage height 60% of damage height 15 cm 13 cm 14 cm 11 cm 12 cm 11 cm 15 cm 12 cm 14 cm 12 cm 14 cm 11 cm 14 cm 11 cm 13 cm 11 cm Two point bending strength central value maximum value minimum value - 691 MPa 1728 MPa 310 MPa - - - - - -

[表3] No. 9 10 11 12 13 14 15 16 組成 A A A B A B A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - 薄壁化 蝕刻液 濃度 溫度 時間 - - - - - - HF 0.1 mol/L 30℃ 20分鐘 HF 5 mol/L 30℃ 36分鐘 化學強化 熔融鹽 溫度 時間 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 表層蝕刻 蝕刻液 濃度 溫度 時間 - - - - - - - - 水處理 電導率 溫度 時間 加壓 0.01 mS/m 80℃ 1小時 - 0.1 mS/m 80℃ 2小時 - 1 mS/m 80℃ 4小時 - 0.1 mS/m 80℃ 4小時 - 0.1 mS/m 150℃ 1小時 0.8 MPa 0.1 mS/m 150℃ 2小時 0.8 MPa 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 保護層 (積層體) 材質 厚度 - - - - - - - - 落筆強度 最大破壞高度 60%破壞高度 8 cm 5 cm 7 cm 5 cm 6 cm 5 cm 6 cm 5 cm 7 cm 6 cm 7 cm 6 cm 7 cm 6 cm 7 cm 6 cm 兩點彎曲強度 中央值 最大值 最小值 - 1443 MPa 2253 MPa 1051 MPa - 1490 MPa 2104 MPa 1023 MPa - - - - CS - 669 MPa - - - - - - DOL - 11.2 μm - - - - - - CT - 133 MPa - - - - - - [table 3] No. 9 10 11 12 13 14 15 16 composition A A A B A B A A thickness Initial thickness after thinning and surface etching 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - Thin wall Etching solution concentration temperature time - - - - - - HF 0.1 mol/L 30℃ 20 minutes HF 5 mol/L 30℃ 36 minutes chemical strengthening molten salt temperature time KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes Surface etching Etching solution concentration temperature time - - - - - - - - water treatment conductivity temperature time pressurization 0.01 mS/m 80℃ 1 hour- 0.1 mS/m 80℃ 2 hours- 1 mS/m 80℃ 4 hours- 0.1 mS/m 80℃ 4 hours- 0.1 mS/m 150℃ 1 hour 0.8 MPa 0.1 mS/m 150℃ 2 hours 0.8 MPa 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- Protective layer (laminate) Material thickness - - - - - - - - Pen down strength Maximum damage height 60% of damage height 8 cm 5 cm 7 cm 5 cm 6 cm 5 cm 6 cm 5 cm 7 cm 6 cm 7 cm 6 cm 7 cm 6 cm 7 cm 6 cm Two point bending strength central value maximum value minimum value - 1443 MPa 2253 MPa 1051 MPa - 1490 MPa 2104 MPa 1023 MPa - - - - CS - 669MPa - - - - - - DOL - 11.2 μm - - - - - - CT - 133MPa - - - - - -

[表4] No. 17 18 19 20 21 22 23 24 組成 A A A B A A A B 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 薄壁化 蝕刻液 濃度 溫度 時間 - - - - - - - - 化學強化 熔融鹽 溫度 時間 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 表層蝕刻 蝕刻液 濃度 溫度 時間 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 水處理 電導率 溫度 時間 加壓 0.01 mS/m 80℃ 1小時 - 0.1 mS/m 80℃ 2小時 - 1 mS/m 80℃ 4小時 - 0.1 mS/m 80℃ 4小時 - 0.1 mS/m 20℃ 10小時 - 0.1 mS/m 50℃ 5小時 - 0.1 mS/m 150℃ 1小時 0.8 MPa 0.1 mS/m 150℃ 2小時 0.8 MPa 保護層 (積層體) 材質 厚度 - - - - - - - - 落筆強度 最大破壞高度 60%破壞高度 10 cm 9 cm 9 cm 9 cm 8 cm 7 cm 9 cm 7 cm 8 cm 7 cm 8 cm 7 cm 9 cm 8 cm 10 cm 8 cm 兩點彎曲強度 中央值 最大值 最小值 - 3837 MPa 5165 MPa 1956 MPa - - - - - - CS - 588 MPa - - - - - - DOL - 10.3 μm - - - - - - CT - 92 MPa - - - - - - [Table 4] No. 17 18 19 20 twenty one twenty two twenty three twenty four composition A A A B A A A B thickness Initial thickness after thinning and surface etching 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm Thin wall Etching solution concentration temperature time - - - - - - - - chemical strengthening molten salt temperature time KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes Surface etching Etching solution concentration temperature time HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes water treatment conductivity temperature time pressurization 0.01 mS/m 80℃ 1 hour- 0.1 mS/m 80℃ 2 hours- 1 mS/m 80℃ 4 hours- 0.1 mS/m 80℃ 4 hours- 0.1 mS/m 20℃ 10 hours- 0.1 mS/m 50℃ 5 hours- 0.1 mS/m 150℃ 1 hour 0.8 MPa 0.1 mS/m 150℃ 2 hours 0.8 MPa Protective layer (laminate) Material thickness - - - - - - - - Pen down strength Maximum damage height 60% of damage height 10 cm 9 cm 9 cm 9 cm 8 cm 7 cm 9 cm 7 cm 8 cm 7 cm 8 cm 7 cm 9 cm 8 cm 10 cm 8 cm Two point bending strength central value maximum value minimum value - 3837 MPa 5165 MPa 1956 MPa - - - - - - CS - 588MPa - - - - - - DOL - 10.3 μm - - - - - - CT - 92 MPa - - - - - -

[表5] No. 25 26 27 28 29 組成 A A A A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm 48 μm 47 μm 300 μm 50 μm 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 薄壁化 蝕刻液 濃度 溫度 時間 HF 0.1 mol/L 30℃ 13分鐘 HF 0.1 mol/L 30℃ 36分鐘 - - - 化學強化 熔融鹽 溫度 時間 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 表層蝕刻 蝕刻液 濃度 溫度 小時 HF 0.1 mol/L 30℃ 7分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 水處理 電導率 溫度 時間 加壓 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 0.1 mS/m 80℃ 2小時 - 保護層 (積層體) 材質 厚度 - - PET膜 50 μm PET膜 50 μm PI塗層 20 μm 落筆強度 最大破壞高度 60%破壞高度 11 cm 9 cm 10 cm 9 cm 25 cm 22 cm 23 cm 21 cm 14 cm 13 cm 兩點彎曲強度 中央值 最大值 最小值 - - - - - [table 5] No. 25 26 27 28 29 composition A A A A A thickness Initial thickness after thinning and surface etching 50 μm 48 μm 47 μm 300 μm 50 μm 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm Thin wall Etching solution concentration temperature time HF 0.1 mol/L 30℃ 13 minutes HF 0.1 mol/L 30℃ 36 minutes - - - chemical strengthening molten salt temperature time KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes Surface etching Etching solution concentration temperature hours HF 0.1 mol/L 30℃ 7 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes water treatment conductivity temperature time pressurization 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- 0.1 mS/m 80℃ 2 hours- Protective layer (laminate) Material thickness - - PET film 50 μm PET film 50 μm PI coating 20 μm Pen down strength Maximum damage height 60% of damage height 11 cm 9 cm 10 cm 9 cm 25 cm 22 cm 23 cm 21 cm 14 cm 13 cm Two point bending strength central value maximum value minimum value - - - - -

[表6] No. 30 31 32 33 34 35 36 37 組成 A B A A A B A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - 薄壁化 蝕刻液 濃度 溫度 時間 - - HF 0.1 mol/L 30℃ 20分鐘 HF 5 mol/L 30℃ 36分鐘 - - HF 0.1 mol/L 30℃ 20分鐘 HF 5 mol/L 30℃ 36分鐘 化學強化 熔融鹽 溫度 時間 - - - - KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 表層蝕刻 蝕刻液 濃度 溫度 時間 - - - - - - - - 水處理 電導率 溫度 時間 加壓 - - - - - - - - 保護層 (積層體) 材質 厚度 - - - - - - - - 落筆強度 最大破壞高度 60%破壞高度 4 cm 3 cm 6 cm 5 cm 4 cm 3 cm 3 cm 2 cm 3 cm 2 cm 4 cm 3 cm 3 cm 2 cm 3 cm 2 cm 兩點彎曲強度 中央值 最大值 最小值 760 MPa 1753 MPa 337 MPa 682 MPa 1374 MPa 282 MPa - - 1516 MPa 2124 MPa 1057 MPa - - - CS - - - - 674 MPa - - - DOL - - - - 11.7 μm - - - CT - - - - 135 MPa - - - [Table 6] No. 30 31 32 33 34 35 36 37 composition A B A A A B A A thickness Initial thickness after thinning and surface etching 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - 50 μm - - 50 μm - - 50 μm 47 μm - 300 μm 50 μm - Thin wall Etching solution concentration temperature time - - HF 0.1 mol/L 30℃ 20 minutes HF 5 mol/L 30℃ 36 minutes - - HF 0.1 mol/L 30℃ 20 minutes HF 5 mol/L 30℃ 36 minutes chemical strengthening molten salt temperature time - - - - KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes Surface etching Etching solution concentration temperature time - - - - - - - - water treatment conductivity temperature time pressurization - - - - - - - - Protective layer (laminate) Material thickness - - - - - - - - Pen down strength Maximum damage height 60% of damage height 4 cm 3 cm 6 cm 5 cm 4 cm 3 cm 3 cm 2 cm 3 cm 2 cm 4 cm 3 cm 3 cm 2 cm 3 cm 2 cm Two point bending strength central value maximum value minimum value 760 MPa 1753 MPa 337 MPa 682 MPa 1374 MPa 282 MPa - - 1516 MPa 2124 MPa 1057 MPa - - - CS - - - - 674 MPa - - - DOL - - - - 11.7 μm - - - CT - - - - 135 MPa - - -

[表7] No. 38 39 40 41 組成 A B A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - 47 μm 50 μm - 47 μm 50 μm 48 μm 47 μm 300 μm 50 μm 47 μm 薄壁化 蝕刻液 濃度 溫度 時間 - - HF 0.1 mol/L 30℃ 13分鐘 HF 5 mol/L 30℃ 36分鐘 化學強化 熔融鹽 溫度 時間 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 15分鐘 表層蝕刻 蝕刻液 濃度 溫度 時間 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 7分鐘 HF 0.1 mol/L 30℃ 20分鐘 水處理 電導率 溫度 時間 加壓 - - - - 保護層 (積層體) 材質 厚度 - - - - 落筆強度 最大破壞高度 60%破壞高度 3 cm 3 cm 4 cm 3 cm 4 cm 3 cm 3 cm 3 cm 兩點彎曲強度 中央值 最大值 最小值 3733 MPa 5302 MPa 2050 MPa - - - CS 597 MPa - - - DOL 10.5 μm - - - CT 103 MPa - - - [Table 7] No. 38 39 40 41 composition A B A A thickness Initial thickness after thinning and surface etching 50 μm - 47 μm 50 μm - 47 μm 50 μm 48 μm 47 μm 300 μm 50 μm 47 μm Thin wall Etching solution concentration temperature time - - HF 0.1 mol/L 30℃ 13 minutes HF 5 mol/L 30℃ 36 minutes chemical strengthening molten salt temperature time KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 15 minutes Surface etching Etching solution concentration temperature time HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 7 minutes HF 0.1 mol/L 30℃ 20 minutes water treatment conductivity temperature time pressurization - - - - Protective layer (laminate) Material thickness - - - - Pen down strength Maximum damage height 60% of damage height 3 cm 3 cm 4 cm 3 cm 4 cm 3 cm 3 cm 3 cm Two point bending strength central value maximum value minimum value 3733 MPa 5302 MPa 2050 MPa - - - CS 597MPa - - - DOL 10.5 μm - - - CT 103MPa - - -

[表8] No. 42 43 44 45 組成 A A A A 厚度 初始厚度 薄壁化後 表層蝕刻後 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 薄壁化 蝕刻液 濃度 溫度 時間 - - - - 化學強化 熔融鹽 溫度 時間 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 KNO 3390℃ 15分鐘 KNO 3390℃ 30分鐘 表層蝕刻 蝕刻液 濃度 溫度 時間 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 HF 0.1 mol/L 30℃ 20分鐘 水處理 電導率 溫度 時間 加壓 0.1 mS/m 80℃ 0.1小時 - 0.1 mS/m 80℃ 0.25小時 - 0.1 mS/m 80℃ 15小時 - 0.1 mS/m 80℃ 30小時 - 保護層 (積層體) 材質 厚度 - - - - 落筆強度 最大破壞高度 60%破壞高度 4 cm 3 cm 6 cm 4 cm 6 cm 4 cm 5 cm 4 cm 兩點彎曲強度 中央值 最大值 最小值 - - - - [Table 8] No. 42 43 44 45 composition A A A A thickness Initial thickness after thinning and surface etching 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm 50 μm - 47 μm Thin wall Etching solution concentration temperature time - - - - chemical strengthening molten salt temperature time KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes KNO 3 390℃ 15 minutes KNO 3 390℃ 30 minutes Surface etching Etching solution concentration temperature time HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes HF 0.1 mol/L 30℃ 20 minutes water treatment conductivity temperature time pressurization 0.1 mS/m 80℃ 0.1 hour- 0.1 mS/m 80℃ 0.25 hours- 0.1 mS/m 80℃ 15 hours- 0.1 mS/m 80℃ 30 hours- Protective layer (laminate) Material thickness - - - - Pen down strength Maximum damage height 60% of damage height 4 cm 3 cm 6 cm 4 cm 6 cm 4 cm 5 cm 4 cm Two point bending strength central value maximum value minimum value - - - -

<玻璃製品或積層體的製造方法> (1)於表2的No.1~No.6中,對處理用玻璃進行水處理步驟,製造玻璃製品。於表2的No.7~No.8中,對處理用玻璃依序進行薄壁化步驟、水處理步驟,製造玻璃製品。即,於表2的No.1~No.8中,未對處理用玻璃進行化學強化步驟。再者,於No.1~No.6中,處理用玻璃的初始厚度與玻璃製品的厚度一致,於No.7~No.8中,處理用玻璃的薄壁化步驟之後的厚度與玻璃製品的厚度一致。 <Manufacturing method of glass products or laminates> (1) In No. 1 to No. 6 of Table 2, perform a water treatment step on the glass for processing to produce glass products. In No. 7 to No. 8 of Table 2, the glass for processing was subjected to a thinning step and a water treatment step in order to produce glass products. That is, in No. 1 to No. 8 of Table 2, the processing glass was not subjected to the chemical strengthening step. Furthermore, in No. 1 to No. 6, the initial thickness of the processing glass is consistent with the thickness of the glass product, and in No. 7 to No. 8, the thickness of the processing glass after the thinning step is consistent with the thickness of the glass product. The thickness is consistent.

(2)於表3的No.9~No.14中,對處理用玻璃依序進行化學強化步驟、水處理步驟,製造玻璃製品。於表3的No.15~No.16中,對處理用玻璃依序進行薄壁化步驟、化學強化步驟、水處理步驟,製造玻璃製品。再者,於No.9~No.14中,處理用玻璃的初始厚度與玻璃製品的厚度一致,於No.15~No.16中,處理用玻璃的薄壁化步驟之後的厚度與玻璃製品的厚度一致。(2) In No. 9 to No. 14 of Table 3, the glass for treatment is sequentially subjected to a chemical strengthening step and a water treatment step to produce glass products. In No. 15 to No. 16 of Table 3, the glass for processing was subjected to a thinning step, a chemical strengthening step, and a water treatment step in order to produce glass products. Furthermore, in No. 9 to No. 14, the initial thickness of the processing glass is consistent with the thickness of the glass product, and in No. 15 to No. 16, the thickness of the processing glass after the thinning step is consistent with the thickness of the glass product. The thickness is consistent.

(3)於表4的No.17~No.24中,對處理用玻璃依序進行化學強化步驟、表層蝕刻步驟、水處理步驟,製造玻璃製品。再者,於No.17~No.24中,處理用玻璃的表層蝕刻步驟之後的厚度與玻璃製品的厚度一致。(3) In No. 17 to No. 24 of Table 4, the chemical strengthening step, the surface layer etching step, and the water treatment step are sequentially performed on the glass for processing to produce glass products. Furthermore, in Nos. 17 to 24, the thickness of the processing glass after the surface layer etching step is consistent with the thickness of the glass product.

(4)於表5的No.25~No.26中,對處理用玻璃依序進行薄壁化步驟、化學強化步驟、表層蝕刻步驟、水處理步驟,製造玻璃製品。於表5的No.27~No.29中,對處理用玻璃依序進行化學強化步驟、表層蝕刻步驟、水處理步驟,製造玻璃製品。進而,於表5的No.27~No.29中,將保護層(PET膜、PA膜、PI塗層)積層於玻璃製品的其中一個主表面,製造積層體。PET膜及PA膜介隔厚度為5 μm的壓敏黏著(壓敏黏著劑(pressure sensitive adhesive,PSA))片而與玻璃製品接合。PI塗層是藉由將PI塗佈於玻璃製品的主表面而形成。再者,於No.25~No.29中,處理用玻璃的表層蝕刻步驟之後的厚度與玻璃製品的厚度一致。(4) In No. 25 to No. 26 of Table 5, the glass for processing is sequentially subjected to a thinning step, a chemical strengthening step, a surface etching step, and a water treatment step to produce a glass product. In No. 27 to No. 29 of Table 5, the chemical strengthening step, the surface layer etching step, and the water treatment step were sequentially performed on the glass for processing to produce glass products. Furthermore, in No. 27 to No. 29 of Table 5, a protective layer (PET film, PA film, PI coating) was laminated on one of the main surfaces of the glass product to produce a laminated body. PET film and PA film are bonded to glass products through a pressure-sensitive adhesive (PSA) sheet with a thickness of 5 μm. The PI coating is formed by coating PI on the main surface of the glass product. Furthermore, in Nos. 25 to 29, the thickness of the processing glass after the surface layer etching step is consistent with the thickness of the glass product.

(5)於表6的No.30、No.31中,將處理用玻璃於未經處理的狀態下製成玻璃製品。於表6的No.32、No.33中,對處理用玻璃進行薄壁化步驟,製造玻璃製品。於表6的No.34、No.35中,對處理用玻璃進行化學強化步驟,製造玻璃製品。於表6的No.36、No.37中,依序進行薄壁化步驟、化學強化步驟,製造玻璃製品。即,於表6的No.30~No.33中,未對處理用玻璃進行化學強化步驟及水處理步驟。於表6的No.34~No.37中,未對處理用玻璃進行水處理步驟。再者,於No.30、No.31、No.34、No.35中,處理用玻璃的初始厚度與玻璃製品的厚度一致。於No.32、No.33、No.36、No.37中,處理用玻璃的薄壁化步驟之後的厚度與玻璃製品的厚度一致。(5) In No. 30 and No. 31 of Table 6, the glass for treatment was made into glass products in an untreated state. In No. 32 and No. 33 of Table 6, the processing glass was subjected to a thinning step to produce glass products. In No. 34 and No. 35 of Table 6, a chemical strengthening step was performed on the glass for processing to produce glass products. In No. 36 and No. 37 of Table 6, the thinning step and the chemical strengthening step were performed in order to produce glass products. That is, in No. 30 to No. 33 of Table 6, the chemical strengthening step and the water treatment step were not performed on the glass for processing. In No. 34 to No. 37 of Table 6, the water treatment step was not performed on the glass for treatment. Furthermore, in No. 30, No. 31, No. 34, and No. 35, the initial thickness of the processing glass is consistent with the thickness of the glass product. In No. 32, No. 33, No. 36, and No. 37, the thickness of the processing glass after the thinning step is consistent with the thickness of the glass product.

(6)於表7的No.38~No.39中,對處理用玻璃依序進行化學強化步驟、表層蝕刻步驟,製造玻璃製品。於表7的No.40~No.41中,對處理用玻璃依序進行薄壁化步驟、化學強化步驟、表層蝕刻步驟,製造玻璃製品。即,於表7的No.38~No.41中,未對處理用玻璃進行水處理步驟。再者,於No.38~No.41中,處理用玻璃的表層蝕刻步驟之後的厚度與玻璃製品的厚度一致。(6) In No. 38 to No. 39 of Table 7, perform a chemical strengthening step and a surface etching step on the glass for processing in order to produce glass products. In No. 40 to No. 41 of Table 7, the glass for processing was subjected to a thinning step, a chemical strengthening step, and a surface etching step in order to produce a glass product. That is, in No. 38 to No. 41 of Table 7, the water treatment step was not performed on the glass for processing. Furthermore, in Nos. 38 to 41, the thickness of the processing glass after the surface layer etching step is consistent with the thickness of the glass product.

(7)於表8的No.42~No.45中,對處理用玻璃依序進行化學強化步驟、表層蝕刻步驟、水處理步驟,製造玻璃製品。再者,於No.42~No.45中,處理用玻璃的表層蝕刻步驟之後的厚度與玻璃製品的厚度一致。再者,於No.42~No.45中,對處理用玻璃進行水處理步驟,水處理時間設為小於0.5小時或15小時以上。(7) In No. 42 to No. 45 of Table 8, the chemical strengthening step, the surface layer etching step, and the water treatment step are sequentially performed on the glass for processing to produce glass products. Furthermore, in Nos. 42 to 45, the thickness of the processing glass after the surface layer etching step is consistent with the thickness of the glass product. Furthermore, in Nos. 42 to 45, the glass for treatment is subjected to a water treatment step, and the water treatment time is less than 0.5 hours or more than 15 hours.

於進行了化學強化步驟的一部分的實施例及比較例中,對玻璃製品的CS、DOC、CT進行測定。表1~表8中的CS、DOC、CT是使用折原製作所製造的表面應力計FSM-6000LE來對各玻璃製品(試樣)進行測定而得的值。In Examples and Comparative Examples in which a part of the chemical strengthening step was performed, CS, DOC, and CT of the glass products were measured. CS, DOC, and CT in Tables 1 to 8 are values measured on each glass product (sample) using a surface stress meter FSM-6000LE manufactured by Orihara Seisakusho.

<落筆試驗> 如圖9所示,於落筆試驗中,使圓珠筆18的筆尖落下至測定試樣12,藉此來評價測定試樣12中所含的玻璃製品13的強度(落筆強度)。 <Pen drop test> As shown in FIG. 9 , in the pen-down test, the pen tip of the ball-point pen 18 is dropped onto the measurement sample 12 to evaluate the strength (pen-down strength) of the glass product 13 included in the measurement sample 12 .

於No.1~No.26、No.30~No.45的落筆試驗中,作為測定試樣12,製作了依序積層玻璃製品13、PSA片14、PET板15、PSA片16、SUS板17而成的試樣。另一方面,於No.27~No.29的落筆試驗中,於所述測定試樣12中的玻璃製品13的上表面進而設置保護層(PET膜、PA膜、PI塗層)。即,於No.1~No.26、No.30~No.45的落筆試驗中,圓珠筆18的筆尖與玻璃製品13直接接觸,於No.27~No.29的落筆試驗中,圓珠筆18的筆尖與保護層直接接觸。In the writing test of Nos. 1 to 26 and Nos. 30 to 45, as the measurement sample 12, a glass product 13, a PSA sheet 14, a PET sheet 15, a PSA sheet 16, and a SUS sheet were sequentially laminated. 17 samples. On the other hand, in the pen-down tests of Nos. 27 to 29, a protective layer (PET film, PA film, PI coating) was further provided on the upper surface of the glass product 13 in the measurement sample 12. That is, in the pen-down tests No. 1 to No. 26 and No. 30 to No. 45, the pen tip of the ball-point pen 18 was in direct contact with the glass product 13. In the pen-down tests No. 27 to No. 29, the tip of the ball-point pen 18 was in direct contact with the glass product 13. The pen tip is in direct contact with the protective layer.

玻璃製品13、PSA片14、PSA片16、PET板15及保護層的俯視尺寸分別設為50 mm×50 mm。SUS板17的俯視尺寸設為55 mm×55 mm。玻璃製品13及保護層的厚度設為如表2~表8所記載般。PSA片14、PSA片16的厚度設為50 μm。PET板15的厚度設為125 μm。SUS板17的厚度設為3 mm。The top view dimensions of the glass product 13, PSA sheet 14, PSA sheet 16, PET plate 15 and protective layer are respectively set to 50 mm × 50 mm. The top view size of the SUS board 17 is set to 55 mm×55 mm. The thickness of the glass product 13 and the protective layer is as described in Tables 2 to 8. The thickness of the PSA sheets 14 and 16 was set to 50 μm. The thickness of the PET plate 15 was set to 125 μm. The thickness of the SUS board 17 is set to 3 mm.

於落筆試驗中,分別準備各五個No.1~No.45的測定試樣12,使圓珠筆18的筆尖落下至各測定試樣12的中央處。此時,使圓珠筆18穿過經垂直保持的導向筒19的內孔而落下至測定試樣12,以使圓珠筆18的筆尖相對於測定試樣12垂直地落下。圓珠筆18為比克(BIC)公司製造的橙色(orange)EG 0.7,球直徑為0.7 mm,質量為5.7 g。將以測定試樣12的上表面為基準的落下前的筆前端的高度設為落下高度H,將其初始值設定為1 cm而使其落下。於藉由圓珠筆18的落下而測定試樣12中所含的玻璃製品13未發生破損的情況下,使其上升1 cm高度再次落下。如此,反覆嘗試落下高度H的上升及落下,直至測定試樣12中所含的玻璃製品13發生破損。而且,作為落筆強度求出60%破損高度及最大破損高度。60%破損高度為五個測定試樣12中三個測定試樣12中所含的玻璃製品13發生破損時的落下高度H。最大破損高度為五個測定試樣12中所含的玻璃製品13全部發生破損時的落下高度H。In the pen drop test, five measurement samples 12 of No. 1 to No. 45 are prepared, and the tip of the ballpoint pen 18 is dropped to the center of each measurement sample 12 . At this time, the ballpoint pen 18 is passed through the inner hole of the vertically held guide tube 19 and dropped to the measurement sample 12 so that the tip of the ballpoint pen 18 falls vertically relative to the measurement sample 12 . The ballpoint pen 18 is orange EG 0.7 manufactured by BIC Company, with a ball diameter of 0.7 mm and a mass of 5.7 g. The height of the tip of the pen before dropping based on the upper surface of the measurement sample 12 was set as the drop height H, and the pen tip was dropped with its initial value set to 1 cm. When the glass product 13 included in the measurement sample 12 is not damaged by dropping the ballpoint pen 18, it is raised to a height of 1 cm and dropped again. In this way, the rise and fall of the drop height H are repeatedly attempted until the glass product 13 included in the measurement sample 12 is damaged. Furthermore, the 60% damage height and the maximum damage height were determined as the writing strength. The 60% damage height is the drop height H when the glass product 13 contained in three of the five measurement samples 12 is damaged. The maximum damage height is the drop height H when all the glass products 13 included in the five measurement samples 12 are damaged.

根據所述落筆試驗的結果,確認到進行了適當的水處理步驟的實施例(No.1~No.29)與未完全進行水處理步驟、或未進行適當的水處理步驟的比較例(No.30~No.45)相比,60%破損高度提高。Based on the results of the pen-down test, it was confirmed that the appropriate water treatment step was performed in the Examples (No. 1 to No. 29) and the Comparative Example (No. 1) in which the water treatment step was not completely performed or the appropriate water treatment step was not performed. .30~No.45), the damage height is increased by 60%.

<彎曲破壞試驗> 如圖10所示,於彎曲破壞試驗中,藉由利用兩張板狀體21夾著包括玻璃製品的測定試樣20,並以呈U字狀產生彎曲的方式進行按壓彎曲的、所謂兩點彎曲來評價強度(兩點彎曲強度)。兩點彎曲強度僅藉由No.2、No.10、No.18、No.30、No.34、No.38來進行評價,並分別準備各30個與該些玻璃製品對應的測定試樣20。測定試樣20的俯視尺寸設為140 mm×70 mm。測定試樣20的厚度如表2~表8所記載般,於No.2、No.10、No.30、No.34中設為50 μm,於No.18、No.38中設為47 μm。而且,以沿著長邊(140 mm的邊)並呈U字狀彎曲的方式將測定試樣20配置於板狀體21之間。 <Bend failure test> As shown in FIG. 10 , in the bending failure test, a measurement sample 20 including a glass product is sandwiched between two plate-shaped bodies 21 and is pressed and bent to produce a U-shaped bend, so-called two-point bending. Strength is evaluated by bending (two-point bending strength). The two-point bending strength was evaluated only by No.2, No.10, No.18, No.30, No.34, and No.38, and 30 measurement samples corresponding to these glass products were prepared. 20. The plan view size of the measurement sample 20 is 140 mm×70 mm. The thickness of the measured sample 20 was as described in Tables 2 to 8, and was set to 50 μm in No. 2, No. 10, No. 30, and No. 34, and was set to 47 in No. 18 and No. 38. μm. Then, the measurement sample 20 is arranged between the plate-shaped bodies 21 so as to be bent in a U-shape along the long side (140 mm side).

兩點彎曲強度是使用因按壓彎曲而玻璃製品20破壞時的兩張板狀體21的間隔D並根據下式(4)來算出。而且,作為兩點彎曲強度,求出中央值、最大值、最小值。兩點彎曲強度的中央值是按照自大到小的順序排列30個測定試樣的兩點彎曲強度資料時的中央的值。兩點彎曲強度的最大值是30個測定試樣的兩點彎曲強度中的最大值。兩點彎曲強度的最小值是30個測定試樣的兩點彎曲強度中的最小值。 σ=1.198[E×t/(D-t)]   (4) 其中,式中,σ表示兩點彎曲強度[MPa],E表示玻璃製品的楊氏模量[MPa],t表示玻璃製品的厚度[mm]。 The two-point bending strength is calculated based on the following equation (4) using the distance D between the two plate-shaped bodies 21 when the glass product 20 is broken due to press bending. Furthermore, as the two-point bending strength, the central value, the maximum value, and the minimum value were obtained. The median value of the two-point bending strength is the median value when the two-point bending strength data of 30 measured samples are arranged in descending order. The maximum value of the two-point bending strength is the maximum value among the two-point bending strengths of the 30 measured specimens. The minimum value of the two-point bending strength is the minimum value among the two-point bending strengths of the 30 measured specimens. σ=1.198[E×t/(D-t)] (4) Among them, σ represents the two-point bending strength [MPa], E represents the Young's modulus of the glass product [MPa], and t represents the thickness of the glass product [mm].

根據所述彎曲破壞試驗的結果,可確認到經化學強化的玻璃製品(No.10、No.18、No.34、No.38)中,較未經化學強化的玻璃製品(No.2、No.30)而言兩點彎曲強度提高。確認到尤其是於化學強化後進行了表層蝕刻步驟的玻璃製品(No.18、No.38)中,兩點彎曲強度大幅提高。因此,就一併提高玻璃製品的落筆強度及兩點彎曲強度的觀點而言,可知較佳為於進行化學強化步驟的同時,然後進行適當的水處理步驟。 [產業上的可利用性] According to the results of the bending failure test, it was confirmed that among the chemically strengthened glass products (No. 10, No. 18, No. 34, and No. 38), the glass products that were not chemically strengthened (No. 2, No.30), the two-point bending strength is improved. In particular, it was confirmed that the two-point bending strength was greatly improved in the glass products (No. 18 and No. 38) that were subjected to a surface etching step after chemical strengthening. Therefore, from the viewpoint of simultaneously improving the pen-down strength and the two-point bending strength of glass products, it is found that it is preferable to perform a chemical strengthening step and then perform an appropriate water treatment step. [Industrial availability]

本發明的玻璃製品例如能夠用於智慧型手機、行動電話、平板電腦、個人電腦、數位相機、觸控面板顯示器、其他顯示器元件的蓋玻璃、車載用顯示元件、車載用面板等。The glass product of the present invention can be used, for example, in cover glass for smartphones, mobile phones, tablets, personal computers, digital cameras, touch panel displays, other display components, in-vehicle display components, in-vehicle panels, and the like.

1:玻璃製品 1a:主表面 1b:端面 2:壓縮應力層 3:拉伸應力層 4:容器 5:處理水 6:處理用玻璃 7:支撐台 8:恆溫裝置(溫度調整裝置) 9:積層體 10a:保護層 10b:增強層 11:黏著層 12:測定試樣 13:玻璃製品 14:PSA片 15:PET板 16:PSA片 17:SUS板 18:圓珠筆 19:導向筒 20:測定試樣(玻璃製品) 21:板狀體 A1:第一區域 A2:第二區域 CS:最大壓縮應力 CT:最大拉伸應力 D:間隔 DCT:拉伸應力收斂深度 DOC:深度 H:落下高度 S1、S11、S21、S31:準備步驟 S2、S12、S23:化學強化步驟 S3、S14、S25、S33:水處理步驟 S13、S24:表層蝕刻步驟 S22、S32:薄壁化步驟 t:厚度 1:Glass products 1a: Main surface 1b: End face 2: Compressive stress layer 3: Tensile stress layer 4:Container 5: Treat water 6: Glass for handling 7: Support platform 8: Thermostatic device (temperature adjustment device) 9: Laminated body 10a:Protective layer 10b: Enhancement layer 11:Adhesive layer 12: Measure the sample 13:Glass products 14:PSA piece 15:PET board 16:PSA piece 17:SUS board 18:Ballpoint pen 19: Guide cylinder 20: Measurement sample (glass products) 21: plate-like body A1: The first area A2:Second area CS: maximum compressive stress CT: maximum tensile stress D:interval DCT: tensile stress convergence depth DOC: depth H: drop height S1, S11, S21, S31: Preparatory steps S2, S12, S23: chemical strengthening steps S3, S14, S25, S33: water treatment steps S13, S24: Surface etching step S22, S32: Thin-walling step t:Thickness

圖1是表示本發明第一實施方式的玻璃製品的剖面的概略圖。 圖2是本發明第一實施方式的玻璃製品的厚度方向上的應力分佈的圖像圖。 圖3是本發明第一實施方式的玻璃製品製造方法的流程圖。 圖4是表示本發明第一實施方式的玻璃製品製造方法中所含的水處理步驟的實施形態的剖面圖。 圖5是表示本發明第二實施方式的積層體的剖面的概略圖。 圖6是本發明第三實施方式的玻璃製品製造方法的流程圖。 圖7是本發明第四實施方式的玻璃製品製造方法的流程圖。 圖8是本發明第五實施方式的玻璃製品製造方法的流程圖。 圖9是表示落筆試驗的實施形態的側面圖。 圖10是表示彎曲破壞試驗的實施形態的側面圖。 FIG. 1 is a schematic cross-sectional view showing a glass product according to the first embodiment of the present invention. FIG. 2 is an image diagram of stress distribution in the thickness direction of the glass product according to the first embodiment of the present invention. Fig. 3 is a flow chart of the glass product manufacturing method according to the first embodiment of the present invention. 4 is a cross-sectional view showing an embodiment of the water treatment step included in the glass product manufacturing method according to the first embodiment of the present invention. FIG. 5 is a schematic diagram showing a cross section of a laminated body according to a second embodiment of the present invention. Fig. 6 is a flow chart of the glass product manufacturing method according to the third embodiment of the present invention. Fig. 7 is a flow chart of a glass product manufacturing method according to the fourth embodiment of the present invention. Fig. 8 is a flow chart of the glass product manufacturing method according to the fifth embodiment of the present invention. FIG. 9 is a side view showing an embodiment of the pen-down test. Fig. 10 is a side view showing an embodiment of the bending failure test.

S1:準備步驟 S1: Preparatory steps

S2:化學強化步驟 S2: Chemical strengthening step

S3:水處理步驟 S3: Water treatment steps

Claims (14)

一種玻璃製品製造方法,包括:準備步驟,準備包括鹼性鋁矽酸玻璃的處理用玻璃,所述鹼性鋁矽酸玻璃包含作為玻璃組成的鹼金屬氧化物;以及 水處理步驟,使所述處理用玻璃與處理水接觸0.5小時以上且小於15小時。 A method for manufacturing a glass product, including: a preparation step of preparing a treatment glass including an alkaline aluminosilicate glass containing an alkali metal oxide as a glass component; and In the water treatment step, the glass for treatment is contacted with the treatment water for more than 0.5 hours and less than 15 hours. 如請求項1所述的玻璃製品製造方法,其中於所述水處理步驟中,將所述處理用玻璃浸漬於46℃~100℃的所述處理水中。The glass product manufacturing method according to claim 1, wherein in the water treatment step, the glass for treatment is immersed in the treatment water at 46°C to 100°C. 如請求項1所述的玻璃製品製造方法,其中於所述水處理步驟中,在加壓環境下將所述處理用玻璃浸漬於達到100℃以上的所述處理水中。The glass product manufacturing method according to claim 1, wherein in the water treatment step, the glass for treatment is immersed in the treatment water reaching 100° C. or higher in a pressurized environment. 如請求項1至3中任一項所述的玻璃製品製造方法,其中於所述水處理步驟中,所述處理水的電導率為3 mS/m以下。The glass product manufacturing method according to any one of claims 1 to 3, wherein in the water treatment step, the conductivity of the treated water is 3 mS/m or less. 如請求項1至4中任一項所述的玻璃製品製造方法,其中所述處理用玻璃為厚度0.005 mm~0.1 mm的板狀或片狀。The method for manufacturing a glass product according to any one of claims 1 to 4, wherein the processing glass is in the form of a plate or sheet with a thickness of 0.005 mm to 0.1 mm. 如請求項5所述的玻璃製品製造方法,更包括薄壁化步驟,所述薄壁化步驟於所述水處理步驟之前,藉由蝕刻將所述處理用玻璃薄壁化為所述厚度的範圍內。The glass product manufacturing method according to claim 5, further comprising a thinning step, which thins the processing glass to the thickness by etching before the water treatment step. within the range. 如請求項5所述的玻璃製品製造方法,其中所述處理用玻璃藉由溢流下拉法預先成形為所述厚度的範圍內。The glass product manufacturing method according to claim 5, wherein the processing glass is preformed into the thickness range by an overflow down-drawing method. 如請求項1至7中任一項所述的玻璃製品製造方法,更包括化學強化步驟,所述化學強化步驟於所述水處理步驟之前,使所述處理用玻璃與鹼金屬硝酸鹽接觸而形成在表面具有100 MPa以上的最大壓縮應力的壓縮應力層。The method for manufacturing glass products according to any one of claims 1 to 7, further comprising a chemical strengthening step, which, before the water treatment step, brings the treatment glass into contact with an alkali metal nitrate. A compressive stress layer with a maximum compressive stress of more than 100 MPa is formed on the surface. 如請求項8所述的玻璃製品製造方法,其中於所述水處理步驟中,所述處理水的溫度為50℃~95℃、且所述處理用玻璃與所述處理水的接觸時間為0.5小時~10小時。The glass product manufacturing method according to claim 8, wherein in the water treatment step, the temperature of the treatment water is 50°C to 95°C, and the contact time between the treatment glass and the treatment water is 0.5 hours to 10 hours. 如請求項8或9所述的玻璃製品製造方法,其中所述處理用玻璃作為玻璃組成以莫耳%計而包含50%~80%的SiO 2、5%~25%的Al 2O 3、0%~35%的B 2O 3、0%~20%的Li 2O、1%~20%的Na 2O、0%~10%的K 2O, 於所述化學強化步驟中,所述鹼金屬硝酸鹽為包含硝酸鉀的熔融鹽。 The manufacturing method of glass products according to claim 8 or 9, wherein the glass for processing contains 50% to 80% SiO 2 , 5% to 25% Al 2 O 3 , 0% to 35% B 2 O 3 , 0% to 20% Li 2 O, 1% to 20% Na 2 O, 0% to 10% K 2 O, in the chemical strengthening step, The alkali metal nitrate is a molten salt containing potassium nitrate. 如請求項8至10中任一項所述的玻璃製品製造方法,更包括表層蝕刻步驟,所述表層蝕刻步驟於所述化學強化步驟之後、所述水處理步驟之前,在較所述壓縮應力層而言淺的範圍內對所述處理用玻璃進行蝕刻。The method for manufacturing glass products according to any one of claims 8 to 10, further comprising a surface etching step, which is performed after the chemical strengthening step and before the water treatment step. The processing glass is etched within a shallow range. 一種玻璃製品,為厚度0.005 mm~0.1 mm的板狀或片狀的玻璃製品,其中, 於使具有直徑0.7 mm的球狀前端的5.7 g的圓珠筆落下至主表面的落筆試驗中,60%破壞高度為5 cm以上。 A glass product, which is a plate-shaped or sheet-shaped glass product with a thickness of 0.005 mm to 0.1 mm, wherein, In a pen-drop test in which a 5.7-g ballpoint pen with a spherical tip with a diameter of 0.7 mm was dropped onto the main surface, the 60% damage height was 5 cm or more. 如請求項12所述的玻璃製品,包括在表面具有100 MPa以上的最大壓縮應力的壓縮應力層。The glass product according to claim 12, including a compressive stress layer having a maximum compressive stress of 100 MPa or more on the surface. 一種積層體,包括:如請求項12或13所述的玻璃製品;以及 保護層或增強層,積層於所述玻璃製品中的至少其中一個主表面。 A laminated body including: the glass product according to claim 12 or 13; and A protective layer or reinforcing layer is laminated on at least one of the main surfaces of the glass product.
TW112110208A 2022-03-23 2023-03-20 Method for producing glass article, glass article, and layered product TW202400541A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047011A JP2023140933A (en) 2022-03-23 2022-03-23 Method for producing glass article, glass article, and layered product
JP2022-047011 2022-03-23

Publications (1)

Publication Number Publication Date
TW202400541A true TW202400541A (en) 2024-01-01

Family

ID=88100784

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112110208A TW202400541A (en) 2022-03-23 2023-03-20 Method for producing glass article, glass article, and layered product

Country Status (3)

Country Link
JP (1) JP2023140933A (en)
TW (1) TW202400541A (en)
WO (1) WO2023181955A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023429B2 (en) * 1997-02-09 2000-03-21 ホーヤ株式会社 Method for manufacturing glass substrate for information recording medium and method for manufacturing information recording medium
EP2617690B1 (en) * 2012-01-19 2017-11-22 Corning Incorporated Method of decorating chemically strengthened glass
KR102254593B1 (en) * 2014-03-27 2021-05-21 니혼 이타가라스 가부시키가이샤 Method for reducing warpage developing in glass plate due to chemical strengthening treatment, method for producing glass plate for chemical strengthening, and method for producing chemically strengthened glass plate
JP6544043B2 (en) * 2015-05-26 2019-07-17 Agc株式会社 Method of producing chemically strengthened glass
CN107434354A (en) * 2016-05-25 2017-12-05 中国南玻集团股份有限公司 Alumina silicate glass, antibiotic glass and preparation method thereof

Also Published As

Publication number Publication date
JP2023140933A (en) 2023-10-05
WO2023181955A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
EP3313795B1 (en) Glass with high surface strength
JP6394110B2 (en) Method for producing tempered glass
CN108025964B (en) Tempered glass
JP6168288B2 (en) Tempered glass and tempered glass plate
JP6697399B2 (en) Laminated glass article and method for forming the same
JP5467490B2 (en) Method for producing tempered glass substrate and tempered glass substrate
TWI820462B (en) tempered glass
JP5483262B2 (en) Laminated glass
JP6791757B2 (en) Ion-exchangeable glass articles for 3D molding
JP6300177B2 (en) Method for producing tempered glass
US20150093581A1 (en) Toughened glass substrate and manufacturing process therefor
TWI752252B (en) Chemically strengthened glass and method for producing chemically strengthened glass
CN110446604B (en) Glass-based articles with engineered stress distribution and methods of manufacture
JP2021523079A (en) Ultra-thin glass with special chamfer shape and high strength
JP2016528152A (en) Alkali-doped and alkali-free boroaluminosilicate glass
JP6990192B2 (en) How to make reinforced lithium-based glass articles and lithium-based glass articles
TW201837006A (en) Coated glass-based articles with engineered stress profiles and methods of manufacture
CN113248159A (en) Method of improving IOX processability on glass articles having multiple thicknesses
CN113853359A (en) Thin glass substrate having high bending strength and method for manufacturing the same
US11655184B2 (en) Glass-based articles with sections of different thicknesses
TW202400541A (en) Method for producing glass article, glass article, and layered product
US20230312393A1 (en) Tempered glass
WO2019235470A1 (en) Chemically strengthened glass and method for manufacturing chemically strengthened glass
JP2022139011A (en) Strengthened glass and method for manufacturing the same