WO2023181554A1 - 機能部品付き収容体及びタイヤ - Google Patents

機能部品付き収容体及びタイヤ Download PDF

Info

Publication number
WO2023181554A1
WO2023181554A1 PCT/JP2022/047511 JP2022047511W WO2023181554A1 WO 2023181554 A1 WO2023181554 A1 WO 2023181554A1 JP 2022047511 W JP2022047511 W JP 2022047511W WO 2023181554 A1 WO2023181554 A1 WO 2023181554A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional component
container
tire
functional
opening
Prior art date
Application number
PCT/JP2022/047511
Other languages
English (en)
French (fr)
Inventor
雅公 成瀬
Original Assignee
横浜ゴム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 横浜ゴム株式会社 filed Critical 横浜ゴム株式会社
Publication of WO2023181554A1 publication Critical patent/WO2023181554A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre

Definitions

  • the present invention relates to a container with a functional component and a tire, and more specifically, the present invention relates to a container with a functional component and a tire.
  • the present invention relates to a container with functional parts and a tire that can prevent damage.
  • Functional components for example, a sensor unit including a sensor
  • tire internal information such as internal pressure and temperature
  • a container made of rubber or the like is attached to the inner surface of the tire, and the functional component is housed inside the attached container.
  • the functional component is not sufficiently restrained by the container, for example, if the outer circumference of the functional component is equal to or smaller than the inner circumference of the container, There is a problem in that the movement of the functional components increases during high-speed travel, and heat generation increases due to friction between the housing and the functional components, leading to damage to the housing of the functional components.
  • An object of the present invention is to improve the high-speed durability of functional parts and prevent damage to the functional parts by devising the dimensional relationship between the functional parts and the functional parts.
  • the purpose of the present invention is to provide a container with a tire and a tire.
  • a functional component-equipped container for achieving the above object is a functional component-equipped container comprising a functional component for acquiring tire information, and a container for accommodating this functional component, which comprises:
  • the container has a bottom portion fixed to the inner surface of the tire, a crown portion protruding from the bottom portion, a storage space formed by the bottom portion and the crown portion, and an opening communicating with the storage space,
  • the width of the opening is narrower than the minimum width of the accommodation space
  • the circumference D2 u of the upper part of the accommodation space and the circumference D1 u of the upper part of the functional component are 0.60 ⁇ D2 u /D1 u It is characterized by satisfying the relationship of ⁇ 0.95.
  • the tire of the present invention is characterized in that the above-mentioned functional component-attached housing body is fixed to the inner surface of the tire, and the functional component is housed in the housing space.
  • a storage body with a functional component that includes a functional component for acquiring tire information and a storage body that houses the functional component, the housing body having a bottom portion fixed to the inner surface of the tire; It has a crown part protruding from the bottom part, a housing space formed by the bottom part and the crown part, and an opening communicating with the housing space, and the width of the opening part is narrower than the minimum width of the housing space.
  • the circumferential length D2 u of the upper part and the circumferential length D1 u of the upper part of the functional component satisfy the relationship 0.60 ⁇ D2 u /D1 u ⁇ 0.95, the restraining force of the container on the functional component Since the movement of the functional parts can be suppressed, the casing of the functional parts can be prevented from being damaged during high-speed driving. Furthermore, since there is a good balance between the restraining force of the housing body on the functional component and the degree of deformation that does not cause damage to the housing body, damage to the housing body can also be prevented. This makes it possible to prevent damage to the container while improving the high-speed durability of the functional component.
  • the ratio D2 u /D1 u of the circumference D2 u of the upper portion of the housing space to the circumference D1 u of the upper portion of the functional component is the circumference D1 L of the lower portion of the functional component. It is preferable that the ratio D2 L /D1 L of the circumferential length D2 L of the lower part of the accommodation space to the lower part of the accommodation space is equal to or smaller than that.
  • the end of the crown part has a locking part bent toward the opening, and the height H1 of the functional component and the total inner height H2 of the container have a relationship of 0.85 ⁇ H2/H1 ⁇ 0.98. It is preferable to satisfy the following. This provides a good balance between the restraining force of the housing on the functional component and the degree of deformation that does not cause damage to the housing, thereby improving the durability of the functional component during high-speed travel.
  • the circumferential length D2 O of the opening of the container and the circumferential length D1 u of the upper portion of the functional component satisfy the relationship of 0.4 ⁇ D2 O /D1 u ⁇ 0.8. This provides a good balance between the restraining force of the housing on the functional component and the degree of deformation that does not cause damage to the housing, thereby improving the durability of the functional component during high-speed travel. Furthermore, the opening of the container does not become excessively narrow, making it suitable for removing functional components.
  • the total cross-sectional area Sc of the housing space and the opening when no functional component is stored in the housing space and the cross-sectional area Ss of the functional component in the total cross-sectional area Sc of the housing space and the opening are 0.6 ⁇ Sc It is preferable to satisfy the relationship: /Ss ⁇ 0.9. This increases the restraining force of the container with respect to the functional component and suppresses the movement of the functional component, thereby improving the high-speed durability of the functional component and preventing the occurrence of cracks in the container.
  • the inclination angle of the crown part with respect to the bottom part measured on the outer wall side of the crown part with the functional component housed in the housing space, is 90° to 115°.
  • the modulus of the container at 100% elongation at 20° C. is preferably 0.5 MPa or more and less than 10.0 MPa, and the loss modulus of the container at 60° C. is preferably 0.4 MPa or more and less than 20.0 MPa.
  • the container is preferably made of vulcanized rubber. Further, it is preferable that the container is fixed to the inner surface of the tire with an adhesive.
  • the tire of the present invention is preferably a pneumatic tire, but may be a non-pneumatic tire.
  • its interior can be filled with air, an inert gas such as nitrogen, or other gas.
  • FIG. 1(A) to (D) illustrate an embodiment of the functional component-equipped storage body before and after accommodating functional components
  • FIG. 1(A) is a perspective view of the state in which functional components are not accommodated
  • FIG. ) is a cross-sectional view of a state in which functional components are not accommodated
  • FIG. 1(C) is a perspective view of a state in which functional components are accommodated
  • FIG. 1(D) is a cross-sectional view of a state in which functional components are accommodated
  • FIG. 2 is a half-sectional view of the container for explaining the dimensions of the container in a state where no functional components are accommodated.
  • FIG. 5 is a meridian cross-sectional view illustrating an embodiment of a pneumatic tire in which a functional component-attached container is fixed to the inner surface of the tire.
  • FIG. 6 is an enlarged cross-sectional view of the functional component-equipped container shown in FIG. 5.
  • the functional component-equipped container 1 illustrated in FIGS. 1A to 1D includes a functional component 20 for acquiring tire information, and a container 10 that accommodates the functional component 20.
  • the housing body 1 with functional components shown in FIGS. 1(A) and 1(B) is in a state where the functional component 20 is not stored in the housing body 10, and the housing body 1 with functional components shown in FIGS. 1(C) and (D) 1 shows a state in which the functional component 20 is housed in the housing body 10.
  • the container 10 includes a flat bottom portion 11 fixed to the inner surface of the tire, a cylindrical crown portion 12 protruding from the bottom portion 11, a storage space 13 formed by the bottom portion 11 and the crown portion 12, and a housing space 13 formed by the bottom portion 11 and the crown portion 12. It has an opening 14 that communicates with the accommodation space 13.
  • the bottom portion 11 is the longest (has the largest diameter) among the parts that make up the container 10.
  • the crown portion 12 is formed to be inclined inward from a direction perpendicular to the bottom portion 11. Therefore, the accommodation space 13 formed by the bottom part 11 and the crown part 12 has a substantially trapezoidal cross-sectional shape. That is, the cross-sectional width of the accommodation space 13 gradually decreases toward the upper portion, and the cross-sectional width becomes narrowest at the maximum height position. Further, the crown portion 12 has a locking portion 12e formed at one end 12a so as to be bent toward the opening 14, and the other end 12b is fixed to the bottom portion 11.
  • the locking portion 12e comes into contact with the upper surface of the functional component 20, and plays the role of fixing the functional component 20 when the functional component 20 is accommodated.
  • the width of the opening 14 into which the functional component 20 is inserted is narrower than the minimum width of the housing space 13 in a cross-sectional view (width at a position adjacent to the opening 14).
  • the bottom portion 11, the crown portion 12, and the opening portion 14 all have a circular planar shape, and the accommodation space 13 has a truncated cone shape.
  • the planar shapes of the bottom portion 11, the crown portion 12, and the opening portion 14 are not particularly limited, and may be configured with other arbitrary planar shapes or may be configured with mutually different planar shapes. Further, the shape of the accommodation space 13 is not particularly limited either.
  • the functional component 20 includes a housing 21 and an electronic component 22, as illustrated in FIG. 1(D).
  • the housing 21 has a hollow structure, and the electronic component 22 is housed therein.
  • the electronic component 22 can be configured to appropriately include a sensor 23 for acquiring tire information, a transmitter, a receiver, a control circuit, a battery, and the like.
  • the tire information acquired by the sensor 23 includes the internal temperature and internal pressure of the pneumatic tire, the amount of wear on the tread, and the like.
  • temperature sensors and pressure sensors are used to measure internal temperature and pressure.
  • a piezoelectric sensor having a piezoelectric element can be used as the sensor 23, and the piezoelectric element detects an output voltage according to tire deformation during running, and based on the output voltage. Detects the amount of wear on the tread. Besides that, it is also possible to use an acceleration sensor or a magnetic sensor. Furthermore, the functional component 20 is configured to transmit tire information acquired by the sensor 23 to the outside of the tire. Furthermore, in order to make it easier to hold the functional component 20, a knob protruding from the top surface of the casing 21 may be provided, and this knob may also have the function of an antenna.
  • the sensor 23 may be fixed to the container 10 with adhesive tape, adhesive, or the like, or may not be fixed to the container 10.
  • the circumference D2 u of the upper part of the accommodation space 13 and the circumference D1 u of the upper part of the functional component 20 are 0.60 ⁇ D2 u /D1 u ⁇ 0.95. It is configured to satisfy the following relationship. That is, by setting the circumferential length D2 u of the housing space 13 to be smaller than the circumferential length D1 u of the functional component 20 within a specific range, it is intended to increase the restraining force of the housing body 10 .
  • the circumferential length D2 u of the housing space 13 is 3/4 (0.75 ⁇ H2) of the total inner height H2 of the housing body 10 in the state before the functional component 20 is housed.
  • the height of the storage space 13 is set as h2, and the accommodation space 13 is located at three positions: the position of this height h2 and the position corresponding to ⁇ 25% (0.25 x h2) of the height h2 based on the position of height h2.
  • the circumferences measured at these three positions are averaged.
  • the circumference D1 u of the upper part of the functional component 20 is determined by measuring the circumference of the functional component 20 at positions corresponding to the above three positions in the functional component 20, and averaging the circumferences measured at these three positions. This is what I did.
  • the total inner height H2 of the container 10 is the height from the upper surface of the bottom portion 11 to the lower surface of the locking portion 12e before the functional component 20 is stored.
  • the functional component-equipped container described above is a functional component-equipped container that includes a functional component 20 for acquiring tire information and a container 10 that accommodates the functional component 20. It has a bottom portion 11 fixed to the inner surface, a crown portion 12 protruding from the bottom portion 11, a housing space 13 formed by the bottom portion 11 and the crown portion 12, and an opening portion 14 communicating with the housing space 13.
  • the width of the opening 14 is narrower than the minimum width of the accommodation space 13, and the circumference D2 u of the upper part of the accommodation space 13 and the circumference D1 u of the upper part of the functional component 20 are 0.60 ⁇ D2 u /D1 Since the relationship of u ⁇ 0.95 is satisfied, the binding force of the container 10 to the functional component 20 can be increased and the movement of the functional component 20 can be suppressed, so that the housing 21 of the functional component 20 is not damaged during high-speed driving. can be prevented. Furthermore, since there is a good balance between the restraining force of the housing body 10 on the functional component 20 and the degree of deformation that does not cause damage to the housing body 10, damage to the housing body 10 can also be prevented. Thereby, damage to the housing body 10 can be prevented while improving the high-speed durability of the functional component 20.
  • the ratio D2 u /D1 u is less than 0.60, although the restraining force by the container 10 becomes large, the degree of deformation of the crown portion 12 also increases, so that cracks may occur in the container 10 during long distance travel. This increases the possibility that the container 10 will be damaged.
  • the ratio D2 u /D1 u is larger than 0.95, the restraint force by the container 10 becomes smaller and the movement of the functional component 20 within the container 10 increases, so that the container 10 and the functional component 20 Heat generation increases due to friction with the functional component 20, leading to damage to the housing 21 of the functional component 20.
  • the ratio D2 u /D1 u of the circumference D2 u of the upper portion of the housing space 13 to the circumference D1 u of the upper portion of the functional component 20 is the circumference of the lower portion of the functional component 20. It is preferable that the ratio D2 L /D1 L of the circumferential length D2 L of the lower portion of the accommodation space 13 to D1 L is equal to or smaller than that. That is, by setting the ratio D2 u /D1 u of the upper part to be equal to or smaller than the ratio D2 L /D1 L of the lower part, it is intended to increase the restraint force by the container 10 in the upper part than in the lower part. are doing.
  • the circumferential length D2 L of the lower part of the housing space 13 is 1/4 (0.0.5 mm) of the total inner height H2 of the housing body 10 in the state before the functional component 20 is housed.
  • 25 x H2) is set as h2', and the position of this height h2' and the position corresponding to ⁇ 25% of height h2' (0.25 x h2') based on the position of height h2'
  • the circumferential length of the accommodation space 13 was measured at a total of three positions, and the circumferential lengths measured at these three positions were averaged.
  • the circumference D1 L of the lower part of the functional component 20 is determined by measuring the circumference of the functional component 20 at positions corresponding to the above three positions in the functional component 20, and calculating the circumference measured at these three positions. It is an average.
  • the restraining force by the container 10 is higher in the upper part than in the lower part, so that The applied load can be reduced, and the durability of the container 10 can be improved.
  • the ratio D2 u /D1 u of the upper part becomes larger than the ratio D2 L /D1 L of the lower part, so a load is applied to the root of the container 10. This causes the container 10 to be easily damaged during long-distance travel.
  • the circumferential length D2 O of the opening 14 of the container 10 and the circumferential length D1 u of the upper portion of the functional component 20 satisfy the relationship of 0.4 ⁇ D2 O /D1 u ⁇ 0.8.
  • the circumferential length D2 O of the opening 14 is the circumferential length of the opening 14 measured when the functional component 20 is not accommodated in the container 10.
  • the ratio D2 O /D1 u is less than 0.4, the opening 14 becomes excessively narrow, making it difficult to remove the functional component 20.
  • the ratio D2 O /D1 u is larger than 0.8, the restraining force by the container 10 becomes smaller and the movement of the functional component 20 within the container 10 increases, so that the container 10 and the functional component 20 Heat generation increases due to friction with the functional component 20, leading to damage to the housing 21 of the functional component 20.
  • the inclination angle ⁇ 2 of the crown portion 12 with respect to the bottom portion 11 (see FIG. 1(D)) when the functional component 20 is housed in the housing space 13 is such that the functional component 20 is housed in the housing space 13. It is preferable that the inclination angle ⁇ 1 of the crown portion 12 with respect to the bottom portion 11 is smaller than the inclination angle ⁇ 1 (see FIG. 1(B)) when the crown portion 12 is not tilted.
  • These inclination angles ⁇ 1 and ⁇ 2 are both angles measured on the outer wall side of the crown portion 12.
  • the crown part 12 falls outward and deforms so that the width of the opening 14 expands, thereby causing the crown part 12 to tilt with respect to the bottom part 11.
  • the angle ⁇ becomes smaller.
  • the angular difference ( ⁇ 1- ⁇ 2) between the inclination angle ⁇ 1 before the functional component 20 is accommodated and the inclination angle ⁇ 2 after the functional component 20 is accommodated is preferably in the range of 5° to 15°.
  • the container 10 with the functional component 20 stored therein can be , it is possible to prevent excessive deformation while ensuring a sufficient restraining force to restrain the functional component 20.
  • the angular difference ( ⁇ 1- ⁇ 2) between the inclination angles before and after housing the functional component 20 is in the range of 5° to 15°, the restraining force of the housing 10 on the functional component 20 and the housing 10 may be damaged.
  • the balance between the degree of deformation and the degree of deformation is extremely good. Thereby, damage to the container 10 can be prevented while preventing the functional component 20 from falling off during travel.
  • the angle when measuring the inclination angle ⁇ ( ⁇ 1, ⁇ 2) of the crown portion 12, the angle can be calculated using a CT scan or the like. Further, only when measuring the inclination angle ⁇ of the crown portion 12, as shown in FIG. 3(A), 1/2 (0.5 ⁇ H) position and 1/4 (0.25 ⁇ H) position, the straight line L1 passing through the two points is regarded as the crown part 12, and the inclination angle ⁇ 1 before storing the functional component 20 and the The inclination angle ⁇ 2 after accommodation is measured.
  • the total height H (maximum height H) of the housing body 10 changes before and after housing the functional component 20, and the inclination angle ⁇ ( ⁇ 1, ⁇ 2) of the crown portion 12 is measured based on each height.
  • the lower end of the projection is The inclination angle ⁇ of the crown portion 12 is measured based on a straight line defined as a new reference point. Note that the total height H of the container 10 is the height from the lower surface of the bottom portion 11 to the upper surface of the locking portion 12e.
  • the angular difference ( ⁇ 1- ⁇ 2) in the inclination angle becomes smaller than 5°, the restraining force of the container 10 on the functional component 20 decreases, and the risk of the functional component 20 falling off during driving increases. The movement of the functional component 20 increases, and the durability of the container 10 decreases.
  • the angular difference ( ⁇ 1- ⁇ 2) between the inclination angles is larger than 15°, the deformation of the container 10 becomes excessively large, and cracks are likely to occur in the container 10 during long-distance traveling.
  • the inclination angle ⁇ 2 of the crown portion 12 with respect to the bottom portion 11 with the functional component 20 housed in the housing space 13 is preferably 90° or more, and more preferably in the range of 90° to 115°.
  • the inclination angle ⁇ 2 after housing the functional component 20 becomes smaller than 90°, the stress concentration at the root of the crown portion 12 of the container 10 increases, and the strain energy during traveling increases. Cracks are more likely to occur at the root of the
  • the inclination angle ⁇ 2 after storing the functional component 20 is larger than 115°, the width of the opening 14 will become excessively narrow because the crown portion 12 will still be tilted down excessively even after the functional component 20 is stored. , the functional component 20 becomes difficult to remove.
  • the thickness Ga of the crown portion 12 is 1.0 mm to 3.5 mm when the functional component 20 is housed in the housing space 13.
  • h is a height that is half of the total height H of the container 10 after storing the functional components 20, and the position of this height h (center position) is taken as a reference.
  • the center range C is within the range of ⁇ 30% (0.3 ⁇ h) of the height h.
  • the thickness Ga of the crown portion 12 measured in the horizontal direction be in the range of 1.0 mm to 3.5 mm over the entire center range C.
  • the thickness Ga of the crown portion 12 By appropriately setting the thickness Ga of the crown portion 12 in this way, it is possible to suppress the occurrence of cracks in the crown portion 12 of the container 10 and improve the durability of the container 10. Furthermore, if the thickness Ga of the crown portion 12 of the container 10 is too thick, the heat generated by the container 10 increases, but if the thickness Ga is within the above range, the heat generation of the container 10 can be suppressed. , damage to the housing 21 of the functional component 20 can be prevented.
  • the thickness Ga of the crown part 12 is less than 1.0 mm, the thickness Ga of the crown part 12 is too thin, and cracks are likely to occur in the crown part 12.
  • the thickness Ga of the crown portion 12 is greater than 3.5 mm, the housing 10 (for example, rubber) generates a large amount of heat, and the housing 21 of the functional component 20 is likely to be damaged.
  • the end portion 12a of the crown portion 12 has a locking portion 12e bent toward the opening 14, and the height H1 of the functional component 20 and the total inner height H2 of the container 10 are 0.85 ⁇ H2/ It is preferable to satisfy the relationship H1 ⁇ 0.98.
  • the height H1 of the functional component 20 is the maximum height within the range where the functional component 20 is accommodated in the container 10 in the state after the functional component 20 is accommodated, as shown in FIG. 3(B). In other words, it is the maximum height of the functional component 20 within the accommodation space 13. This means that, for example, when the knob provided at the top of the functional component 20 protrudes from the housing space 13, the height H1 of the functional component 20 does not include the height of the portion of the knob that is outside the housing space 13. means.
  • the restraining force of the container 10 on the functional component 20 and the degree of deformation that does not cause damage to the container 10 can be achieved.
  • the durability of the functional component 20 during high-speed running can be improved.
  • the ratio H2/H1 is less than 0.85, the locking portion 12e cannot be accommodated so as to cover the functional component 20, so the effect of improving the durability of the functional component 20 during high-speed running is reduced.
  • the ratio H2/H1 is larger than 0.98, the restraining force of the container 10 will be weakened and the movement of the functional component 20 within the container 10 will increase, which will reduce the durability of the functional component 20 during high-speed running. It becomes impossible to obtain the effect of improving sex.
  • the total cross-sectional area Sc of the housing space 13 and the opening 14 when the functional component 20 is not stored in the housing space 13 and the cross-sectional area of the functional component 20 in the total cross-sectional area Sc of the housing space 13 and the opening 14 It is preferable that Ss satisfies the relationship 0.6 ⁇ Sc/Ss ⁇ 0.9.
  • the total cross-sectional area Sc of the container 10 is the sum of the cross-sectional area of the housing space 13 and the cross-sectional area of the opening 14, and corresponds to the area of the shaded area in FIG.
  • the cross-sectional area Ss of the component 20 is the cross-sectional area of the functional component 20, and corresponds to the area of the shaded portion in FIG. 4(B).
  • the total cross-sectional area Sc of the container 10 and the cross-sectional area Ss of the functional component 20 can be calculated by photographing the container 10 and the functional component 20 using a CT scan or the like. Note that, for example, when a knob provided at the top of the functional component 20 protrudes from the opening 14, the cross-sectional area Ss of the functional component 20 does not include the cross-sectional area of the portion of the knob that protrudes from the opening 14. Not possible.
  • the binding force of the housing body 10 to the functional component 20 is increased, and the functional component 20 is Since the movement can be suppressed, the high-speed durability of the functional component 20 can be improved, and the occurrence of cracks in the container 10 can be prevented.
  • the ratio Sc/Ss is less than 0.6, the restraining force of the housing body 10 on the functional component 20 increases, and although the high-speed durability of the functional component 20 improves, the restraining force of the housing body 10 is excessive. As the strength increases, the amount of deformation of the container 10 is large, and cracks are likely to occur in the container 10 during long-distance travel. On the other hand, if the ratio Sc/Ss is larger than 0.9, it is not possible to obtain a sufficient restraining force of the container 10 to the functional component 20, and it is difficult to obtain the effect of improving the durability of the functional component 20 during high-speed running. become unable to do so.
  • the container 10 can be made of rubber, elastomer, resin, or the like. Further, it is preferable that the constituent material of the container 10 has the following physical properties. It is preferable that the modulus of the container 10 at 100% elongation at 20° C. is 0.5 MPa or more and less than 10.0 MPa, and the loss modulus of the container 10 at 60° C. is 0.4 MPa or more and less than 20.0 MPa. By appropriately setting the modulus in this way, it is possible to achieve both durability of the housing 10 and ease of housing the functional component 20 in the housing 10. Further, by appropriately setting the loss modulus in this way, it is possible to prevent damage to the housing 21 of the functional component 20 caused by rubbing of the functional component 20 against the container 10 or repeated deformation of the container 10.
  • the constituent material of the container 10 has the following physical properties. It is preferable that the elongation at break measured in accordance with JIS K6251 is 80% to 800% at 20°C. The tan ⁇ measured in accordance with JIS K6394 is preferably 0.04 to 0.40 at 60°C.
  • FIG. 5 shows a pneumatic tire in which a housing with functional parts is fixed to the inner surface of the tire.
  • the pneumatic tire T includes a tread portion t extending in the tire circumferential direction and forming an annular shape, a pair of sidewall portions s disposed on both sides of the tread portion t, and a pair of sidewall portions s disposed on both sides of the tread portion t.
  • a pair of bead portions b are arranged on the inner side of the wall portion s in the tire radial direction.
  • a carcass layer 4 is mounted between the pair of bead portions b.
  • This carcass layer 4 includes a plurality of reinforcing cords extending in the tire radial direction, and is folded back from the inside of the tire to the outside around bead cores 5 arranged at each bead portion b.
  • a bead filler 6 made of a rubber composition and having a triangular cross section is arranged on the outer periphery of the bead core 5.
  • An inner liner layer 9 is arranged in the region between the pair of bead portions b on the tire inner surface Ts. This inner liner layer 9 forms the tire inner surface Ts.
  • a plurality of belt layers 7 are embedded in the outer peripheral side of the carcass layer 4 in the tread portion t.
  • These belt layers 7 include a plurality of reinforcing cords that are inclined with respect to the tire circumferential direction, and the reinforcing cords are arranged so as to cross each other between layers.
  • the inclination angle of the reinforcing cords with respect to the tire circumferential direction is set, for example, in the range of 10° to 40°.
  • the reinforcing cord for the belt layer 7 a steel cord is preferably used.
  • At least one belt cover layer 8 made of reinforcing cords arranged at an angle of, for example, 5° or less with respect to the circumferential direction of the tire is disposed on the outer circumferential side of the belt layer 7 for the purpose of improving high-speed durability.
  • the reinforcing cord for the belt cover layer 8 organic fiber cords such as nylon and aramid are preferably used.
  • tire internal structure described above shows a typical example of a pneumatic tire, but is not limited thereto.
  • At least one functional component-equipped container 1 is attached to the inner surface Ts of the tire.
  • the functional component-attached container 1 is fixed to the tire inner surface Ts with an adhesive.
  • This adhesive has a storage modulus at -40°C in the range of 5.0 ⁇ 10 8 Pa to 1.0 ⁇ 10 10 Pa, and a storage modulus at 150°C in the range of 1.0 ⁇ 10 6 Pa to 5 It is preferably in the range of .0 ⁇ 10 7 Pa.
  • Examples of adhesives having such physical properties include instant adhesives, epoxy adhesives, acrylic adhesives, rubber adhesives, and urethane adhesives.
  • the functional component-equipped container 1 can be attached to any part of the inner surface Ts of the tire, but since it is not easily deformed during running and is difficult to come off due to centrifugal force, it can be attached to the tread part t, the sidewall part. It is particularly desirable to attach it to the tire inner surface Ts corresponding to the tread part t among the bead parts b.
  • the tire size is 225/45ZR18, and includes a functional component for acquiring tire information and a container that houses the functional component, and the container has a bottom fixed to the inner surface of the tire and a crown protruding from the bottom. a storage space formed by a bottom portion and a crown portion, and an opening communicating with the storage space, the width of the opening is narrower than the minimum width of the storage space, and the functional component is stored in the storage body.
  • a container with functional parts is fixed to the inner surface of the tire, and the relationship between the ratio D2 u /D1 u , the ratio D2 u /D1 u and the ratio D2 L /D1 L , the ratio H2/H1, the ratio D2O/D1 u , and the ratio Tires of Conventional Examples 1 and 2 and Examples 1 to 24 were manufactured in which Sc/Ss and the inclination angle ⁇ 2 of the crown portion after accommodation were set as shown in Tables 1 and 2.
  • High speed durability (functional parts): Each test tire was assembled onto a wheel with a rim size of 18 x 7 1/2 JJ, loaded with a load of 88% of the maximum load capacity, and subjected to a running test using a drum tester at an air pressure of 360 kPa. Specifically, the speed was increased by 10 km/h every 10 minutes from an initial speed of 120 km/h, and the vehicle was run until the casing of the functional component was damaged, and the distance traveled was measured. The evaluation results were expressed as an index, with the measured value of Conventional Example 1 being 100. The larger the index value, the better the high-speed durability.
  • Removability (functional parts): The operation of removing the functional component inserted into the container for each test tire with a functional component was repeated 10 times, and the time required for each removal operation was measured. The evaluation results are shown as " ⁇ (excellent)" if the time required for each of the 10 times was less than 20 seconds, and if the time required for each of the 10 times was more than 20 seconds and less than 60 seconds. Cases where the required time for each of the 10 tests exceeded 60 seconds were given a three-level rating of "x (unsatisfactory)".
  • Durability (container): Each test tire was assembled on a wheel with a rim size of 18 x 7 1/2 JJ, and a running test was conducted on a drum test machine under the conditions of an air pressure of 540 kPa, 160% of the maximum load, a running speed of 81 km, and a running distance of 20,000 km. The containers were visually observed for damage and cracks, and the total number of cracks was measured. The evaluation results were expressed as an index using the reciprocal of the measured value, with Conventional Example 1 being 100. The larger the index value, the better the durability.
  • the pneumatic tires of Examples 1 to 24 had improved high-speed durability of the functional parts and crack resistance of the container, compared to Conventional Example 1.
  • the pneumatic tires of Examples 11 to 24 had improved removability of functional parts compared to Conventional Example 1.
  • the durability of the container was improved compared to Conventional Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Abstract

機能部品を収容する収容体と機能部品の寸法関係を工夫することにより、機能部品の高速耐久性を改善しながら、収容体の損傷を防止することを可能にした機能部品付き収容体及びタイヤを提供する。タイヤ情報を取得するための機能部品20と、この機能部品20を収容する収容体10とを備えた機能部品付き収容体1であって、収容体10は、タイヤ内表面に固定される底部11と、この底部11から突出したクラウン部12と、底部11とクラウン部12により形成される収容空間13と、この収容空間13に連通する開口部14とを有し、開口部14の幅は収容空間13の最小幅よりも狭く、収容空間13の上側部分の周長D2uと機能部品の上側部分の周長D1uとは0.60≦D2u/D1u≦0.95の関係を満たしている。

Description

機能部品付き収容体及びタイヤ
 本発明は、機能部品付き収容体及びタイヤに関し、更に詳しくは、機能部品を収容する収容体と機能部品の寸法関係を工夫することにより、機能部品の高速耐久性を改善しながら、収容体の損傷を防止することを可能にした機能部品付き収容体及びタイヤに関する。
 内圧や温度等のタイヤ内部情報を取得する機能部品(例えば、センサを含むセンサユニット)をタイヤ内表面に設置することが行われている(例えば、特許文献1,2参照)。機能部品を設置する際、ゴム等からなる収容体(コンテナ)をタイヤ内表面に貼り付け、その貼り付けられた収容体の内部に機能部品を収容する。しかしながら、機能部品を収容体に収容した際に、収容体により機能部品が十分に拘束されていない場合、例えば機能部品の外周長が収容体の内周長と同等又はそれより小さい場合などは、高速走行時に機能部品の動きが大きくなり、収容体と機能部品との摩擦によって発熱が増大し、機能部品の筐体が破損に至るという問題がある。
日本国特許第6272225号公報 日本国特表2016-505438号公報
 本発明の目的は、機能部品を収容する収容体と機能部品の寸法関係を工夫することにより、機能部品の高速耐久性を改善しながら、収容体の損傷を防止することを可能にした機能部品付き収容体及びタイヤを提供することにある。
 上記目的を達成するための本発明の機能部品付き収容体は、タイヤ情報を取得するための機能部品と、この機能部品を収容する収容体とを備えた機能部品付き収容体であって、前記収容体が、タイヤ内表面に固定される底部と、この底部から突出したクラウン部と、前記底部と前記クラウン部により形成される収容空間と、この収容空間に連通する開口部とを有し、前記開口部の幅が前記収容空間の最小幅よりも狭く、前記収容空間の上側部分の周長D2uと前記機能部品の上側部分の周長D1uとが0.60≦D2u/D1u≦0.95の関係を満たすことを特徴とするものである。
 また、本発明のタイヤは、上記の機能部品付き収容体が前記タイヤ内表面に固定され、前記収容空間に前記機能部品が収容されていることを特徴とするものである。
 本発明では、タイヤ情報を取得するための機能部品と、この機能部品を収容する収容体とを備えた機能部品付き収容体であって、収容体は、タイヤ内表面に固定される底部と、この底部から突出したクラウン部と、底部とクラウン部により形成される収容空間と、この収容空間に連通する開口部とを有し、開口部の幅は収容空間の最小幅よりも狭く、収容空間の上側部分の周長D2uと機能部品の上側部分の周長D1uとは0.60≦D2u/D1u≦0.95の関係を満たしているので、機能部品に対する収容体の拘束力を高め、機能部品の動きを抑制できるため、高速走行時に機能部品の筐体が破損することを防止することができる。更に、機能部品に対する収容体の拘束力と、収容体に損傷が生じない変形度合とのバランスが良好であるため、収容体の損傷も防止することができる。これにより、機能部品の高速耐久性を改善しながら、収容体の損傷を防止することができる。
 本発明の機能部品付き収容体において、機能部品の上側部分の周長D1uに対する収容空間の上側部分の周長D2uの比D2u/D1uは機能部品の下側部分の周長D1Lに対する収容空間の下側部分の周長D2Lの比D2L/D1Lと同等又はそれよりも小さいことが好ましい。これにより、収容体10による拘束力が下側部分よりも上側部分で高まるため、収容体の根本に掛かる負荷を低減させることができ、収容体の耐久性を改善することができる。
 クラウン部の端部は開口部に向かって屈曲した係止部を有し、機能部品の高さH1と収容体の内側総高さH2とは0.85≦H2/H1≦0.98の関係を満たすことが好ましい。これにより、機能部品に対する収容体の拘束力と、収容体に損傷が生じない変形度合とのバランスが良好になり、高速走行時における機能部品の耐久性を向上させることができる。
 収容体の開口部の周長D2Oと機能部品の上側部分の周長D1uとは0.4≦D2O/D1u≦0.8の関係を満たすことが好ましい。これにより、機能部品に対する収容体の拘束力と、収容体に損傷が生じない変形度合とのバランスが良好になり、高速走行時における機能部品の耐久性を向上させることができる。更に、収容体の開口部が過度に狭くならず、機能部品を取り外す際にも好適である。
 収容空間に機能部品が収容されていない状態での収容空間及び開口部の断面積の総和Scと収容空間及び開口部の断面積の総和Scにおける機能部品の断面積Ssとは0.6≦Sc/Ss≦0.9の関係を満たすことが好ましい。これにより、機能部品に対する収容体の拘束力を高め、機能部品の動きを抑制できるため、機能部品の高速耐久性を改善すると共に、収容体のクラックの発生を防止することができる。
 収容空間に機能部品が収容された状態でクラウン部の外壁側で測定されるクラウン部の底部に対する傾斜角度は90°~115°であることが好ましい。これにより、収容体のクラウン部の根本における応力集中を緩和することができ、収容体の耐久性を向上させることができる。更に、収容体の開口部が過度に狭くならず、機能部品を取り外す際にも好適である。
 収容体の20℃における100%伸張時のモジュラスは0.5MPa以上10.0MPa未満であり、収容体の60℃における損失弾性率は0.4MPa以上20.0MPa未満であることが好ましい。このようにモジュラスを適度に設定することにより、収容体の耐久性と収容体への機能部品の収容し易さとを両立することができる。また、このように損失弾性率を適度に設定することにより、機能部品の収容体に対する擦れや収容体の繰り返し変形によって生じる機能部品の筐体の破損を防止することができる。
 収容体は加硫ゴムからなると良い。また、収容体は接着剤によりタイヤ内表面に固定されていると良い。
 本発明のタイヤは、空気入りタイヤであることが好ましいが、非空気式タイヤであっても良い。空気入りタイヤの場合、その内部には空気、窒素等の不活性ガス又はその他の気体を充填することができる。
図1(A)~(D)は機能部品の収容前後における機能部品付き収容体の実施形態を例示し、図1(A)は機能部品が収容されていない状態の斜視図、図1(B)は機能部品が収容されていない状態の断面図、図1(C)は機能部品が収容された状態の斜視図、図1(D)は機能部品が収容された状態の断面図である。 図2は機能部品が収容されていない状態の収容体の寸法を説明するための収容体の半断面図である。 図3(A),(B)はそれぞれ機能部品が収容された状態の収容体の寸法を説明するための機能部品付き収容体の半断面図である。 図4(A),(B)は収容体と機能部品の断面積を説明するためのものであり、図4(A)は収容体の説明図であり、図4(B)は機能部品の説明図である。 図5は機能部品付き収容体がタイヤ内表面に固定された空気入りタイヤの実施形態を例示する子午線断面図である。 図6は図5の機能部品付き収容体を拡大して示す断面図である。
 以下、本発明の機能部品付き収容体の実施形態を添付の図面を参照しながら詳細に説明する。図1(A)~(D)に例示する機能部品付き収容体1は、タイヤ情報を取得するための機能部品20と、この機能部品20を収容する収容体10とを備えている。図1(A),(B)の機能部品付き収容体1は、収容体10に機能部品20が収容されていない状態であり、図1(C),(D)の機能部品付き収容体1は、収容体10に機能部品20が収容された状態である。
 収容体10は、タイヤ内表面に固定される平板状の底部11と、この底部11から突出した筒状のクラウン部12と、これら底部11とクラウン部12により形成される収容空間13と、この収容空間13に連通する開口部14とを有している。
 底部11は、収容体10を構成する部位の中で最長である(最大径を有している)。クラウン部12は、底部11に対して直交する方向から内側に傾斜するように形成されている。そのため、底部11とクラウン部12により形成される収容空間13は略台形の断面形状を有している。即ち、収容空間13は、上側部分に向かって断面幅が漸減し、最大高さ位置において最も断面幅が狭くなる。また、クラウン部12は、一方側の端部12aに開口部14に向かって屈曲するように形成された係止部12eを有し、他方側の端部12bが底部11に固定されている。機能部品20の収容後において、係止部12eは、機能部品20の上面に当接し、機能部品20の収容時に固定する役割を果たす。機能部品20が挿入される開口部14の幅は、収容空間13の断面視での最小幅(開口部14に隣接する位置での幅)よりも狭くなっている。
 なお、図1において、底部11とクラウン部12と開口部14はいずれも円形の平面形状を有しており、収容空間13は円錐台の形状を有している。底部11とクラウン部12と開口部14の平面形状は、特に限定されるものではなく、他の任意の平面形状で構成しても良く、互いに異なる平面形状で構成しても良い。また、収容空間13の形状も、特に限定されるものではない。
 機能部品20は、図1(D)に例示するように、筐体21と電子部品22とを含むものである。筐体21は中空構造を有し、その内部に電子部品22が収容される。電子部品22は、タイヤ情報を取得するためのセンサ23、送信機、受信機、制御回路及びバッテリー等を適宜含むように構成することができる。センサ23により取得されるタイヤ情報として、空気入りタイヤの内部温度や内圧、トレッド部の摩耗量等を挙げることができる。例えば、内部温度や内圧の測定には温度センサや圧力センサが使用される。トレッド部の摩耗量を検出する場合、センサ23として、圧電素子を有する圧電センサを用いることができ、その圧電素子が走行時のタイヤ変形に応じた出力電圧を検出し、その出力電圧に基づいてトレッド部の摩耗量を検出する。それ以外に、加速度センサや磁気センサを使用することも可能である。また、機能部品20は、センサ23により取得されたタイヤ情報をタイヤ外部に送信するよう構成されている。更に、機能部品20を把持し易くするため、筐体21の上面から突出したつまみ部を設けても良く、このつまみ部にアンテナの機能を担持させることもできる。
 なお、図1(D)に示す機能部品20の内部構造は一例であり、これに限定されるものではない。センサ23は、収容体10に対して粘着テープや接着剤等により固定されていても良く、収容体10に対して固定されていなくとも良い。
 このような機能部品付き収容体1において、収容空間13の上側部分の周長D2uと機能部品20の上側部分の周長D1uとは、0.60≦D2u/D1u≦0.95の関係を満たすように構成されている。即ち、収容空間13の周長D2uを機能部品20の周長D1uに対して特定の範囲で小さく設定することにより、収容体10による拘束力を高めることを意図している。ここで、収容空間13の周長D2uは、図2に示すように、機能部品20の収容前の状態において、収容体10の内側総高さH2の3/4(0.75×H2)の高さをh2とし、この高さh2の位置と、高さh2の位置を基準として高さh2の±25%(0.25×h2)に相当する位置の計3つの位置で収容空間13の周長を測定し、これら3つの位置で測定された周長を平均したものである。また、機能部品20の上側部分の周長D1uは、機能部品20における上記3つの位置に対応する位置で機能部品20の周長を測定し、これら3つの位置で測定された周長を平均したものである。なお、収容体10の内側総高さH2は、機能部品20の収容前における底部11の上面から係止部12eの下面までの高さである。
 上述した機能部品付き収容体では、タイヤ情報を取得するための機能部品20と、この機能部品20を収容する収容体10とを備えた機能部品付き収容体であって、収容体10は、タイヤ内表面に固定される底部11と、この底部11から突出したクラウン部12と、底部11とクラウン部12により形成される収容空間13と、この収容空間13に連通する開口部14とを有し、開口部14の幅は収容空間13の最小幅よりも狭く、収容空間13の上側部分の周長D2uと機能部品20の上側部分の周長D1uとは0.60≦D2u/D1u≦0.95の関係を満たしているので、機能部品20に対する収容体10の拘束力を高め、機能部品20の動きを抑制できるため、高速走行時に機能部品20の筐体21が破損することを防止することができる。更に、機能部品20に対する収容体10の拘束力と、収容体10に損傷が生じない変形度合とのバランスが良好であるため、収容体10の損傷も防止することができる。これにより、機能部品20の高速耐久性を改善しながら、収容体10の損傷を防止することができる。
 ここで、比D2u/D1uが0.60未満であると、収容体10による拘束力が大きくなるものの、クラウン部12の変形度合も増大するので、長距離走行時に収容体10にクラックが発生し、収容体10が破損する可能性が高まる。逆に、比D2u/D1uが0.95より大きいと、収容体10による拘束力が小さくなり、収容体10内での機能部品20の動きが大きくなるため、収容体10と機能部品20との摩擦によって発熱が増大し、機能部品20の筐体21が破損に至る。
 上記機能部品付き収容体において、機能部品20の上側部分の周長D1uに対する収容空間13の上側部分の周長D2uの比D2u/D1uは、機能部品20の下側部分の周長D1Lに対する収容空間13の下側部分の周長D2Lの比D2L/D1Lと同等又はそれよりも小さいことが好ましい。即ち、上側部分の比D2u/D1uを下側部分の比D2L/D1Lと同等又は小さく設定することにより、収容体10による拘束力を下側部分よりも上側部分で高めることを意図している。ここで、収容空間13の下側部分の周長D2Lは、図2に示すように、機能部品20の収容前の状態において、収容体10の内側総高さH2の1/4(0.25×H2)の高さをh2´とし、この高さh2´の位置と、高さh2´の位置を基準として高さh2´の±25%(0.25×h2´)に相当する位置の計3つの位置で収容空間13の周長を測定し、これら3つの位置で測定された周長を平均したものである。また、機能部品20の下側部分の周長D1Lは、機能部品20における上記3つの位置に対応する位置で機能部品20の周長を測定し、これら3つの位置で測定された周長を平均したものである。
 このように比D2u/D1uと比D2L/D1Lの関係を適度に設定することで、収容体10による拘束力が下側部分よりも上側部分で高まるため、収容体10の根本に掛かる負荷を低減させることができ、収容体10の耐久性を改善することができる。ここで、上側部分の比D2u/D1uが下側部分の比D2L/D1Lよりも大きくなると、収容体10による拘束力が下側部分で高くなるため、収容体10の根本に負荷が掛かり、長距離走行時に収容体10が破損し易くなる。
 更に、収容体10の開口部14の周長D2Oと機能部品20の上側部分の周長D1uとは、0.4≦D2O/D1u≦0.8の関係を満たすことが好ましい。ここで、開口部14の周長D2Oは、機能部品20が収容体10に収容されていない状態で測定される開口部14の周長である。このように開口部14の周長D2Oと機能部品20の周長D1uを適度に設定することで、機能部品20に対する収容体10の拘束力と、収容体10に損傷が生じない変形度合とのバランスが良好になり、高速走行時における機能部品20の耐久性を向上させることができる。更に、収容体10の開口部14が過度に狭くならず、機能部品20を取り外す際にも好適である。
 ここで、比D2O/D1uが0.4未満であると、開口部14が過度に狭くなるので、機能部品20が取り外し難くなる。逆に、比D2O/D1uが0.8より大きいと、収容体10による拘束力が小さくなり、収容体10内での機能部品20の動きが大きくなるので、収容体10と機能部品20との摩擦によって発熱が増大し、機能部品20の筐体21が破損に至る。
 上記機能部品付き収容体において、収容空間13に機能部品20が収容された状態でクラウン部12の底部11に対する傾斜角度θ2(図1(D)参照)は、収容空間13に機能部品20が収容されていない状態でクラウン部12の底部11に対する傾斜角度θ1(図1(B)参照)よりも小さくなるように構成されていると良い。これら傾斜角度θ1,θ2は、いずれもクラウン部12の外壁側で測定される角度である。機能部品20が開口部14から収容空間13に収容されると、クラウン部12が外側に向かって倒れ、開口部14の幅が拡張するように変形することにより、クラウン部12の底部11に対する傾斜角度θが小さくなる。特に、機能部品20の収容前の傾斜角度θ1と機能部品20の収容後の傾斜角度θ2との角度差(θ1-θ2)は、5°~15°の範囲にあると良い。
 このように機能部品20の収容後におけるクラウン部12の傾斜角度θ2が機能部品20の収容前におけるクラウン部12の傾斜角度θ1よりも小さいことで、機能部品20を収容した状態の収容体10において、機能部品20を十分に拘束できる拘束力を確保しながら、過度な変形を防止することができる。特に、機能部品20の収容前後における傾斜角度の角度差(θ1-θ2)が5°~15°の範囲にあると、機能部品20に対する収容体10の拘束力と、収容体10に損傷が生じない変形度合とのバランスが極めて良い。これにより、走行中の機能部品20の脱落を防止しながら、収容体10の損傷を防止することができる。
 ここで、クラウン部12の傾斜角度θ(θ1,θ2)を測定する際、CTスキャン等を用いて角度を算出することができる。また、クラウン部12の傾斜角度θを測定する際に限って、図3(A)に示すように、クラウン部12の外表面における収容体10の総高さHの1/2(0.5×H)の位置と1/4(0.25×H)の位置の2点を通る直線L1をクラウン部12と見做して、機能部品20の収容前の傾斜角度θ1と機能部品20の収容後の傾斜角度θ2をそれぞれ測定する。収容体10の総高さH(最大高さH)は、機能部品20の収容前後で変わり、それぞれの高さに基づいてクラウン部12の傾斜角度θ(θ1,θ2)を測定する。また、収容体10の総高さHの1/2の位置及び/又は1/4の位置においてクラウン部12の外表面に突起が形成されている場合、この突起を含めずに突起の下端部を新たな基準点として規定される直線に基づいて、クラウン部12の傾斜角度θを測定するものとする。なお、収容体10の総高さHは、底部11の下面から係止部12eの上面までの高さである。
 ここで、傾斜角度の角度差(θ1-θ2)が5°より小さくなると、機能部品20に対する収容体10の拘束力が低下するため、走行中に機能部品20が脱落するリスクが増大すると共に、機能部品20の動きが大きくなり、収容体10の耐久性が低下する。逆に、傾斜角度の角度差(θ1-θ2)が15°より大きくなると、収容体10の変形が過度に大きくなり、長距離走行時に収容体10にクラックが発生し易くなる。
 特に、収容空間13に機能部品20が収容された状態でクラウン部12の底部11に対する傾斜角度θ2は、90°以上であることが好ましく、90°~115°の範囲にあることがより好ましい。このように機能部品20の収容後の傾斜角度θ2を適度に設定することで、収容体10のクラウン部12の根本における応力集中を緩和することができ、収容体10の耐久性を向上させることができる。更に、収容体10の開口部14が過度に狭くならず、機能部品20を取り外す際にも好適である。
 ここで、機能部品20の収容後の傾斜角度θ2が90°より小さくなると、収容体10のクラウン部12の根本における応力集中が増大すると共に、走行中の歪エネルギーが増大するため、クラウン部12の根本でクラックが発生し易くなる。一方、機能部品20の収容後の傾斜角度θ2が115°より大きくなると、機能部品20の収容後もクラウン部12の倒れ込みが過度に大きい状態であるので、開口部14の幅が過度に狭くなり、機能部品20が取り外し難くなる。
 また、収容空間13に機能部品20が収容された状態で、クラウン部12の厚さGaは、1.0mm~3.5mmであることが好ましい。ここで、図3(B)に示すように、機能部品20の収容後における収容体10の総高さHの半分の高さをhとし、この高さhの位置(中心位置)を基準として高さhの±30%(0.3×h)の範囲内を中心範囲Cとする。このとき、中心範囲Cの全域において、水平方向に測定されるクラウン部12の厚さGaが1.0mm~3.5mmの範囲にあるように構成されていると良い。
 このようにクラウン部12の厚さGaを適度に設定することで、収容体10のクラウン部12におけるクラックの発生を抑制し、収容体10の耐久性を向上させることができる。更に、収容体10のクラウン部12の厚さGaが過度に厚いと収容体10の発熱が大きくなるが、上記の厚さGaの範囲内であれば収容体10の発熱を抑制することができ、機能部品20の筐体21の破損を防止することができる。
 ここで、クラウン部12の厚さGaが1.0mm未満であると、クラウン部12の厚さGaが過度に薄く、クラウン部12でクラックが発生し易くなる。逆に、クラウン部12の厚さGaが3.5mmより大きいと、収容体10(例えばゴム)の発熱が大きくなり、機能部品20の筐体21の破損が生じ易くなる。
 クラウン部12の端部12aは開口部14に向かって屈曲した係止部12eを有し、機能部品20の高さH1と収容体10の内側総高さH2とは、0.85≦H2/H1≦0.98の関係を満たすことが好ましい。ここで、機能部品20の高さH1は、図3(B)に示すように、機能部品20の収容後の状態において、機能部品20が収容体10に収容された範囲内での最大高さ、言い換えれば、収容空間13内での機能部品20の最大高さである。これは、例えば、機能部品20の上部に設けられたつまみ部が収容空間13から突き出ている場合、機能部品20の高さH1はつまみ部における収容空間13外の部位の高さを含まないことを意味する。
 このように機能部品20の高さH1と収容体10の内側総高さH2を適度に設定することで、機能部品20に対する収容体10の拘束力と、収容体10に損傷が生じない変形度合とのバランスが良好になり、高速走行時における機能部品20の耐久性を向上させることができる。
 ここで、比H2/H1が0.85未満であると、係止部12eが機能部品20を覆うように収容できなくなるので、高速走行時における機能部品20の耐久性の改善効果が低下する。逆に、比H2/H1が0.98より大きいと、収容体10の拘束力が弱くなり、収容体10内での機能部品20の動きが大きくなるので、高速走行時における機能部品20の耐久性の改善効果を得ることができなくなる。
 収容空間13に機能部品20が収容されていない状態での収容空間13及び開口部14の断面積の総和Scと、収容空間13及び開口部14の断面積の総和Scにおける機能部品20の断面積Ssとは、0.6≦Sc/Ss≦0.9の関係を満たすことが好ましい。具体的に、収容体10の断面積の総和Scは、収容空間13の断面積と開口部14の断面積を合計した面積であり、図4(A)の斜線部の面積に相当し、機能部品20の断面積Ssは、機能部品20の断面積であり、図4(B)の斜線部の面積に相当する。これら収容体10の断面積の総和Scと機能部品20の断面積Ssは、CTスキャン等を用いて収容体10と機能部品20を撮影することにより算出することができる。なお、例えば、機能部品20の上部に設けられたつまみ部が開口部14から突き出ている場合、機能部品20の断面積Ssには、つまみ部における開口部14から突出した部位の断面積は含まれない。
 このように収容体10の断面積の総和Scと機能部品20の断面積Ssの比Sc/Ssを適度に設定することで、機能部品20に対する収容体10の拘束力を高め、機能部品20の動きを抑制できるため、機能部品20の高速耐久性を改善すると共に、収容体10のクラックの発生を防止することができる。
 ここで、比Sc/Ssが0.6未満であると、機能部品20に対する収容体10の拘束力が高まり、機能部品20の高速耐久性は向上するものの、収容体10による拘束力が過度に強くなるため、収容体10の変形量が大きく、長距離走行時に収容体10にクラックが発生し易くなる。逆に、比Sc/Ssが0.9より大きいと、機能部品20に対する収容体10の拘束力を十分に得ることができず、高速走行時における機能部品20の耐久性の改善効果を得ることができなくなる。
 上記機能部品付き収容体において、収容体10は、ゴムやエラストマー、樹脂等により構成することができる。また、収容体10の構成材料は以下の物性を有すると良い。収容体10の20℃における100%伸張時のモジュラスは0.5MPa以上10.0MPa未満であり、収容体10の60℃における損失弾性率は0.4MPa以上20.0MPa未満であることが好ましい。このようにモジュラスを適度に設定することにより、収容体10の耐久性と収容体10への機能部品20の収容し易さとを両立することができる。また、このように損失弾性率を適度に設定することにより、機能部品20の収容体10に対する擦れや収容体10の繰り返し変形によって生じる機能部品20の筐体21の破損を防止することができる。
 更に、収容体10の構成材料は以下の物性を有することがより好ましい。JIS K6251に準拠して測定した破断伸びが20℃において80%~800%であることが好ましい。JIS K6394に準拠して測定したtanδが60℃において0.04~0.40であることが好ましい。
 図5は機能部品付き収容体がタイヤ内表面に固定された空気入りタイヤを示すものである。図5に例示するように、空気入りタイヤTは、タイヤ周方向に延在して環状をなすトレッド部tと、該トレッド部tの両側に配置された一対のサイドウォール部sと、これらサイドウォール部sのタイヤ径方向内側に配置された一対のビード部bとを備えている。
 一対のビード部b間にはカーカス層4が装架されている。このカーカス層4は、タイヤ径方向に延びる複数本の補強コードを含み、各ビード部bに配置されたビードコア5の廻りにタイヤ内側から外側へ折り返されている。ビードコア5の外周上には断面三角形状のゴム組成物からなるビードフィラー6が配置されている。そして、タイヤ内表面Tsにおける一対のビード部b間の領域にはインナーライナー層9が配置されている。このインナーライナー層9はタイヤ内表面Tsをなす。
 一方、トレッド部tにおけるカーカス層4の外周側には複数層のベルト層7が埋設されている。これらベルト層7はタイヤ周方向に対して傾斜する複数本の補強コードを含み、かつ層間で補強コードが互いに交差するように配置されている。ベルト層7において、補強コードのタイヤ周方向に対する傾斜角度は例えば10°~40°の範囲に設定されている。ベルト層7の補強コードとしては、スチールコードが好ましく使用される。ベルト層7の外周側には、高速耐久性の向上を目的として、補強コードをタイヤ周方向に対して例えば5°以下の角度で配列してなる少なくとも1層のベルトカバー層8が配置されている。ベルトカバー層8の補強コードとしては、ナイロンやアラミド等の有機繊維コードが好ましく使用される。
 なお、上述したタイヤ内部構造は空気入りタイヤにおける代表的な例を示すものであるが、これに限定されるものではない。
 上記空気入りタイヤにおいて、タイヤ内表面Tsには少なくとも一つの機能部品付き収容体1が取り付けられている。機能部品付き収容体1は、接着剤によりタイヤ内表面Tsに固定されている。この接着剤は、-40℃における貯蔵弾性率が5.0×108Pa~1.0×1010Paの範囲にあり、かつ150℃における貯蔵弾性率が1.0×106Pa~5.0×107Paの範囲にあることが好ましい。このような物性を有する接着剤として、例えば、瞬間接着剤、エポキシ系接着剤、アクリル系接着剤、ゴム系接着剤、ウレタン系接着剤が挙げられる。上述したように接着剤の貯蔵弾性率を適度に設定することで、タイヤ走行中に印加される繰り返し変形や負荷荷重に対して、収容体10の脱落を防止することができる。また、走行時に発熱しても、収容体10の耐久性を十分に確保することができる。
 また、機能部品付き収容体1は、タイヤ内表面Tsのいずれの部位にも取付可能であるが、走行中の変形が少なく、遠心力が掛かるので外れ難いことから、トレッド部t、サイドウォール部s、ビード部bのうち、特にトレッド部tに対応するタイヤ内表面Tsに取り付けることが望ましい。
 ここで、図6に例示するように、機能部品付き収容体1がタイヤ内表面に固定された状態で、傾斜角度θ1,θ2を測定する場合、断面視における両側のクラウン部12の他方側の端部12bを通る直線L2とクラウン部12とがなす角度を測定する。また、例えば、底部に相当する部材がなく、クラウン部がタイヤ内表面に直接的に固定された機能部品付き収容体であっても上記と同様の方法で測定することができる。
 上述した実施形態では、機能部品付き収容体を空気入りタイヤに取り付けた例について説明したが、これに限定されるものではなく、非空気式タイヤに適用することもできる。
 タイヤサイズ225/45ZR18で、タイヤ情報を取得するための機能部品と、この機能部品を収容する収容体とを備え、収容体は、タイヤ内表面に固定される底部と、この底部から突出したクラウン部と、底部とクラウン部により形成される収容空間と、この収容空間に連通する開口部とを有し、開口部の幅は収容空間の最小幅よりも狭く、収容体に機能部品が収容された機能部品付き収容体がタイヤ内表面に固定され、比D2u/D1u、比D2u/D1uと比D2L/D1Lの大小関係、比H2/H1、比D2О/D1u、比Sc/Ss、収容後のクラウン部の傾斜角度θ2を表1及び表2のように設定した従来例1,2及び実施例1~24のタイヤを製作した。
 なお、表1及び表2において、「比D2u/D1uと比D2L/D1Lの大小関係」について、比D2u/D1uが比D2L/D1Lより大きい場合には「大きい」と示し、比D2u/D1uが比D2L/D1Lと同等の場合には「同等」と示し、比D2u/D1uが比D2L/D1Lより小さい場合には「小さい」と示した。
 これら試験タイヤについて、下記試験方法により、機能部品における高速耐久性及び取り外し性を評価すると共に、収容体における耐クラック性及び耐久性を評価し、その結果を表1及び表2に併せて示した。
 高速耐久性(機能部品):
 各試験タイヤをリムサイズ18×7 1/2JJのホイールに組み付け、最大負荷能力の88%の荷重を負荷し、空気圧360kPaの条件でドラム試験機にて走行試験を実施した。具体的には、初期速度120km/hから10分毎に10km/hずつ速度を増加させ、機能部品の筐体の破損が発生するまで走行させ、その走行距離を測定した。評価結果は、従来例1の測定値を100とする指数にて示した。この指数値が大きいほど高速耐久性が優れていることを意味する。
 取り外し性(機能部品):
 各試験タイヤの機能部品付き収容体について、収容体に挿入された機能部品を取り外す作業を10回繰り返し、それぞれの取り外し作業に要した時間を測定した。評価結果は、10回それぞれの所要時間がいずれも20秒以内であった場合を「◎(優)」で示し、10回それぞれの所要時間がいずれも20秒超え60秒以内であった場合を「○(良)」で示し、10回それぞれの所要時間がいずれも60秒超えであった場合を「×(不可)」の3段階で示した。
 耐クラック性(収容体):
 各試験タイヤをリムサイズ18×7 1/2JJのホイールに組み付け、80℃で5日間、酸素雰囲気で劣化処理をした後に、最大負荷能力の80%の荷重を負荷し、空気圧250kPaの条件でドラム試験機にて走行試験を実施した。具体的には、初期速度120km/hから24時間毎に10km/hずつ速度を増加させ、170km/hの速度に到達するまで走行させた後、収容体におけるクラック又は皺の発生を目視で確認した。評価結果は、クラック及び皺がない場合を「◎(優)」で示し、皺のみがあった場合を「○(良)」で示し、クラックがあった場合を「×(不可)」の3段階で示した。
 耐久性(収容体):
 各試験タイヤをリムサイズ18×7 1/2JJのホイールに組み付け、空気圧540kPa、最大負荷荷重に対して160%、走行速度81km、走行距離20000kmの条件でドラム試験機にて走行試験を実施した後、収容体の破損及びクラックの発生を目視し、その発生箇所の総数を測定した。評価結果は、測定値の逆数を用いて、従来例1を100とする指数にて示した。この指数値が大きいほど耐久性が優れていることを意味する。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 これら表1及び表2から判るように、実施例1~24の空気入りタイヤは、従来例1に比して、機能部品の高速耐久性及び収容体の耐クラック性が改善されていた。特に、実施例11~24の空気入りタイヤは、従来例1に比して、機能部品の取り外し性が改善されていた。実施例1~24の空気入りタイヤは、従来例1に比して、収容体の耐久性が改善されていた。
 一方、従来例2においては、比D2u/D1uが本発明で規定する数値よりも大きく設定されていたため、収容体による拘束力が小さくなり、収容体内での機能部品の動きが大きくなったので、高速耐久性が悪化した。
 1 機能部品付き収容体
 10 収容体
 11 底部
 12 クラウン部
 13 収容空間
 14 開口部
 20 機能部品
 T 空気入りタイヤ
 Ts タイヤ内表面
 t トレッド部
 s サイドウォール部
 b ビード部

Claims (10)

  1.  タイヤ情報を取得するための機能部品と、この機能部品を収容する収容体とを備えた機能部品付き収容体であって、
     前記収容体が、タイヤ内表面に固定される底部と、この底部から突出したクラウン部と、前記底部と前記クラウン部により形成される収容空間と、この収容空間に連通する開口部とを有し、
     前記開口部の幅が前記収容空間の最小幅よりも狭く、前記収容空間の上側部分の周長D2uと前記機能部品の上側部分の周長D1uとが0.60≦D2u/D1u≦0.95の関係を満たすことを特徴とする機能部品付き収容体。
  2.  前記機能部品の上側部分の周長D1uに対する前記収容空間の上側部分の周長D2uの比D2u/D1uが前記機能部品の下側部分の周長D1Lに対する前記収容空間の下側部分の周長D2Lの比D2L/D1Lと同等又はそれよりも小さいことを特徴とする請求項1に記載の機能部品付き収容体。
  3.  前記クラウン部の端部が前記開口部に向かって屈曲した係止部を有し、前記機能部品の高さH1と前記収容体の内側総高さH2とが0.85≦H2/H1≦0.98の関係を満たすことを特徴とする請求項1又は2に記載の機能部品付き収容体。
  4.  前記収容体の開口部の周長D2Oと前記機能部品の上側部分の周長D1uとが0.4≦D2O/D1u≦0.8の関係を満たすことを特徴とする請求項1~3のいずれかに記載の機能部品付き収容体。
  5.  前記収容空間に前記機能部品が収容されていない状態での前記収容空間及び前記開口部の断面積の総和Scと前記収容空間及び前記開口部の断面積の総和Scにおける前記機能部品の断面積Ssとが0.6≦Sc/Ss≦0.9の関係を満たすことを特徴とする請求項1~4のいずれかに記載の機能部品付き収容体。
  6.  前記収容空間に前記機能部品が収容された状態で前記クラウン部の外壁側で測定される前記クラウン部の前記底部に対する傾斜角度が90°~115°であることを特徴とする請求項1~5のいずれかに記載の機能部品付き収容体。
  7.  前記収容体の20℃における100%伸張時のモジュラスが0.5MPa以上10.0MPa未満であり、前記収容体の60℃における損失弾性率が0.4MPa以上20.0MPa未満であることを特徴とする請求項1~6のいずれかに記載の機能部品付き収容体。
  8.  前記収容体が加硫ゴムからなることを特徴とする請求項1~7のいずれかに記載の機能部品付き収容体。
  9.  前記収容体が接着剤により前記タイヤ内表面に固定されていることを特徴とする請求項1~8のいずれかに記載の機能部品付き収容体。
  10.  請求項1~9のいずれかに記載の機能部品付き収容体が前記タイヤ内表面に固定され、前記収容空間に前記機能部品が収容されていることを特徴とするタイヤ。
PCT/JP2022/047511 2022-03-23 2022-12-23 機能部品付き収容体及びタイヤ WO2023181554A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022047067A JP2023140972A (ja) 2022-03-23 2022-03-23 機能部品付き収容体及びタイヤ
JP2022-047067 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023181554A1 true WO2023181554A1 (ja) 2023-09-28

Family

ID=88100476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047511 WO2023181554A1 (ja) 2022-03-23 2022-12-23 機能部品付き収容体及びタイヤ

Country Status (2)

Country Link
JP (1) JP2023140972A (ja)
WO (1) WO2023181554A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016277A (ja) * 2016-07-29 2018-02-01 株式会社ブリヂストン 機能部品取付台座
US20180154708A1 (en) * 2016-12-02 2018-06-07 Infac Elecs Co., Ltd. Tire sensor and method of manufacturing the same
JP2018094968A (ja) * 2016-12-08 2018-06-21 株式会社ブリヂストン 取付台座及びタイヤ
JP2019064543A (ja) * 2017-10-05 2019-04-25 株式会社ブリヂストン 機能部品取付台座及びタイヤ
JP2019093996A (ja) * 2017-11-27 2019-06-20 株式会社ブリヂストン 機能部品取付台座及びタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018016277A (ja) * 2016-07-29 2018-02-01 株式会社ブリヂストン 機能部品取付台座
US20180154708A1 (en) * 2016-12-02 2018-06-07 Infac Elecs Co., Ltd. Tire sensor and method of manufacturing the same
JP2018094968A (ja) * 2016-12-08 2018-06-21 株式会社ブリヂストン 取付台座及びタイヤ
JP2019064543A (ja) * 2017-10-05 2019-04-25 株式会社ブリヂストン 機能部品取付台座及びタイヤ
JP2019093996A (ja) * 2017-11-27 2019-06-20 株式会社ブリヂストン 機能部品取付台座及びタイヤ

Also Published As

Publication number Publication date
JP2023140972A (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
US7740037B2 (en) Runflat tire
US10464378B2 (en) Run-flat radial tire
AU2015212144B2 (en) Run-flat radial tyre
EP3103660A1 (en) Run-flat radial tire
JP2020121687A (ja) 空気入りタイヤ
JP2002301911A (ja) ランフラットタイヤ
US20220258536A1 (en) Tire
EP1992506B1 (en) Heavy-load tire
JP2006298162A (ja) 空気入りタイヤ
WO2023181554A1 (ja) 機能部品付き収容体及びタイヤ
WO2023181553A1 (ja) 機能部品付き収容体及びタイヤ
JP2011512297A (ja) ランフラット型タイヤ
US8151847B2 (en) Pneumatic tire
WO2023182143A1 (ja) 機能部品付き収容体及びタイヤ
WO2023204152A1 (ja) 機能部品付き収容体及びタイヤ
WO2023182144A1 (ja) 機能部品付き収容体及びタイヤ
US20230373251A1 (en) Mini rim tire
US9056529B2 (en) Carcass reinforcement for an airplane tire
WO2021166792A1 (ja) 空気入りタイヤ
WO2023182125A1 (ja) 機能部品組立体およびそれを備えたタイヤ
JP4556644B2 (ja) 小型トラック用空気入りラジアルタイヤ
WO2021079708A1 (ja) ランフラットタイヤ
US20230043670A1 (en) Cavity noise reduction tire
WO2023002703A1 (ja) タイヤ
JP2023143004A (ja) 機能部品組立体およびそれを備えたタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933681

Country of ref document: EP

Kind code of ref document: A1