WO2023181496A1 - 光接続ユニット - Google Patents

光接続ユニット Download PDF

Info

Publication number
WO2023181496A1
WO2023181496A1 PCT/JP2022/043170 JP2022043170W WO2023181496A1 WO 2023181496 A1 WO2023181496 A1 WO 2023181496A1 JP 2022043170 W JP2022043170 W JP 2022043170W WO 2023181496 A1 WO2023181496 A1 WO 2023181496A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
ferrule
mode field
connection unit
Prior art date
Application number
PCT/JP2022/043170
Other languages
English (en)
French (fr)
Inventor
章浩 中間
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2023181496A1 publication Critical patent/WO2023181496A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/32Optical coupling means having lens focusing means positioned between opposed fibre ends

Definitions

  • the present invention relates to an optical connection unit.
  • This application claims priority based on Japanese Patent Application No. 2022-048415 filed in Japan on March 24, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses an optical connection structure that includes a substrate, an optical integrated circuit, and a ferrule through which an optical fiber is inserted.
  • CPO Co-Packaged Optics
  • an optical fiber is brought into contact and directly connected to an optical integrated circuit mounted on an electronic board
  • Patent Document 1 a CPO structure having a structure in which a plurality of optical fibers are held in the same ferrule and these plurality of optical fibers are collectively connected to an optical integrated circuit.
  • the ferrule may hold a plurality of types of optical fibers having different mode field diameters.
  • the form of the optical signal entering the optical fiber and the optical signal output from the optical fiber is adjusted for each type of optical fiber. It is necessary to match it to the circuit side. Although it is conceivable to match the configuration of the optical integrated circuit for each type of optical fiber held in the ferrule, it is desirable to match the form of the optical signal on the ferrule side as much as possible.
  • the present invention has been made in view of the above-mentioned circumstances, and is an optical connection unit capable of suppressing connection loss between multiple types of optical fibers with different mode field diameters and an optical integrated circuit without changing the form of the optical integrated circuit.
  • the purpose is to provide
  • An optical connection unit is an optical connection unit connected to an optical integrated circuit, and includes a plurality of types of optical fibers having different mode field diameters, and a ferrule that holds the plurality of types of the optical fibers. a ferrule-side microlens array that transmits optical signals directed from the distal end surface of the optical fiber held by the ferrule toward the optical integrated circuit; A plurality of corresponding light adjustment sections are provided, and the configuration of the plurality of light adjustment sections differs depending on the mode field diameter so that the optical signal transmitted through the light adjustment section becomes parallel light.
  • connection loss between a plurality of types of optical fibers and an optical integrated circuit can be suppressed without changing the form of the optical integrated circuit.
  • FIG. 2 is a cross-sectional view showing a state in which the optical connection unit of FIG. 1 is connected to an optical integrated circuit.
  • FIG. 3 is a diagram of the circuit-side microlens array of FIG. 2 viewed from the rear side.
  • FIG. 3 is a diagram of the ferrule-side microlens array of FIG. 2 viewed from its front end surface side.
  • FIG. 3 is a sectional view showing main parts of the optical connection unit and optical integrated circuit of FIG. 2;
  • FIG. 7 is a sectional view showing a first example of an optical connection unit and a main part of an optical integrated circuit according to a second embodiment.
  • FIG. 2 is a cross-sectional view showing a second example of an optical connection unit and a main part of an optical integrated circuit according to a second embodiment.
  • the optical connection unit 10 constitutes the optical connection structure 1 together with the optical integrated circuit 30 provided on the substrate 20.
  • the optical connection structure 1 includes a substrate 20, an optical integrated circuit 30, an optical connection unit 10, and a receptacle 40.
  • the optical connection unit 10 includes a plurality of optical fibers 11 and a ferrule 12 that holds the plurality of optical fibers 11.
  • the ferrule 12 is formed with a plurality of fiber holes 121 into which a plurality of optical fibers 11 can be respectively inserted.
  • the plurality of fiber holes 121 are arranged along one direction perpendicular to the longitudinal direction of each fiber hole 121.
  • an XYZ orthogonal coordinate system is set to explain the positional relationship of each component.
  • the X-axis direction is a direction along the longitudinal direction of the fiber hole 121.
  • the Y-axis direction is the direction in which the plurality of fiber holes 121 are arranged.
  • the Z-axis direction is the direction in which the substrate 20 and the optical integrated circuit 30 are lined up.
  • the X-axis direction may be referred to as the longitudinal direction X
  • the Y-axis direction may be referred to as the first direction Y
  • the Z-axis direction may be referred to as the second direction Z.
  • the direction from the optical connection unit 10 toward the optical integrated circuit 30 along the longitudinal direction X is referred to as the +X direction or the front.
  • the direction opposite to the +X direction is referred to as the -X direction or backward.
  • One direction along the first direction Y is referred to as the +Y direction or the left direction.
  • the direction opposite to the +Y direction is referred to as the -Y direction or the right direction.
  • the direction from the substrate 20 toward the optical integrated circuit 30 along the second direction Z is referred to as the +Z direction or upward.
  • the direction opposite to the +Z direction is referred to as the -Z direction or downward direction.
  • an electric circuit C and a pattern are mounted on the upper surface of the substrate 20.
  • the electric circuit C may be, for example, a switch circuit.
  • a plurality of optical integrated circuits 30 are arranged on the substrate 20.
  • the number of optical integrated circuits 30 arranged on the substrate 20 is not limited to the number illustrated in FIG. 1, and can be changed as appropriate.
  • the plurality of optical integrated circuits 30 are arranged so as to surround the electric circuit C.
  • Each optical integrated circuit 30 is electrically connected to the substrate 20 via a socket S.
  • the optical integrated circuit 30 may be attachable to and detachable from the socket S, for example.
  • the socket S may be replaced with a spacer, for example.
  • the optical integrated circuit 30 and the substrate 20 may be electrically connected by wiring (not shown). Further, the optical integrated circuit 30 may be directly mounted on the upper surface of the substrate 20, for example.
  • the optical integrated circuit 30 is formed into a rectangular parallelepiped shape.
  • the optical integrated circuit 30 includes a light receiving element (not shown) that converts an optical signal into an electrical signal, and a light emitting element (not shown) that converts the electrical signal into an optical signal.
  • a light receiving element for example, a photodetector such as a photodiode can be used.
  • the light emitting element for example, a semiconductor laser, a light emitting diode, etc. can be used.
  • the optical integrated circuit 30 has a plurality of waveguides 31.
  • the mode field diameters of the plurality of waveguides 31 are equal to each other.
  • the plurality of waveguides 31 are arranged in the first direction Y.
  • Each waveguide 31 is optically connected to the above-mentioned light receiving element and light emitting element.
  • Each waveguide 31 extends along the longitudinal direction X.
  • Each waveguide 31 is made of silicon, for example.
  • the refractive index of the waveguide 31 is higher than the refractive index of a portion of the optical integrated circuit 30 other than the waveguide 31. Thereby, the optical signal is confined inside the waveguide 31, and the optical signal propagates in the longitudinal direction X.
  • the waveguide 31 may be provided on the surface (upper surface) of the optical integrated circuit 30 or may be provided inside the optical integrated circuit 30. At the rear end of each waveguide 31, an input/output section 31a is provided. The input/output section 31a is a part of the waveguide 31, and receives and transmits optical signals.
  • the input/output section 31a receives an optical signal transmitted from the optical fiber 11, which will be described later.
  • the optical signal received at the input/output section 31a propagates through the waveguide 31.
  • the optical signal is then converted into an electrical signal by the light receiving element of the optical integrated circuit 30 and delivered to the substrate 20.
  • the electrical signal transmitted from the substrate 20 to the optical integrated circuit 30 is converted into an optical signal by the light emitting element of the optical integrated circuit 30. Then, the optical signal propagates through the waveguide 31 and is transmitted from the input/output section 31a toward the optical fiber 11.
  • the optical integrated circuit 30 has a circuit-side microlens array 32.
  • the circuit-side microlens array 32 is made of a material that can transmit light.
  • the circuit-side microlens array 32 may be formed of, for example, quartz glass or a silicon substrate.
  • the circuit-side microlens array 32 is formed into a plate shape with the longitudinal direction X being the thickness direction.
  • the circuit-side microlens array 32 has a front surface 32a and a rear surface 32b.
  • a plurality of circuit-side lenses 321 (circuit-side lens group 321) and a plurality of dummy lenses 322 (dummy lens group 322) are formed on the rear surface 32b of the circuit-side microlens array 32.
  • the number of circuit-side lenses 321 is the same as the number of waveguides 31 (input/output portions 31a).
  • the plurality of circuit-side lenses 321 are arranged in the first direction Y similarly to the waveguide 31.
  • Each of the plurality of circuit-side lenses 321 and each of the plurality of waveguides 31 correspond one-to-one.
  • Each circuit-side lens 321 is lined up in the longitudinal direction X with respect to the input/output section 31a.
  • the distance from the entrance/exit part 31a to the circuit-side lens 321 in the longitudinal direction X is equal between the plurality of circuit-side lenses 321.
  • the optical axis of the circuit-side lens 321 and the optical axis of the waveguide 31 substantially match. Note that “approximately matching” includes cases where the two optical axes can be considered to match if manufacturing errors are removed. The same applies to the following description.
  • the radii of curvature of the plurality of circuit-side lenses 321 are equal to each other.
  • the plurality of dummy lenses 322 are formed above and below the plurality of circuit-side lenses 321. Dummy lens 322 is not used for propagating optical signals.
  • the main body portion of the optical integrated circuit 30 including the plurality of waveguides 31 shown in FIGS. 2 and 5 and the circuit-side microlens array 32 are fixed with an adhesive.
  • the front surface 32a of the circuit-side microlens array 32 is adhesively fixed to the rear surface (input/output portion 31a of the plurality of waveguides 31) of the main body portion of the optical integrated circuit 30.
  • the adhesive is preferably transparent to light since the optical signal passes through the layer of adhesive. Note that in order to adjust the propagation characteristics of optical signals in the adhesive layer, the refractive index of the adhesive may be adjusted as appropriate.
  • the optical connection unit 10 is connected to the optical integrated circuit 30.
  • the number of optical connection units 10 corresponds to the number of optical integrated circuits 30.
  • optical signals can be transmitted and received between the optical fiber 11 of the optical connection unit 10 and the optical integrated circuit 30.
  • the optical connection unit 10 includes a plurality of optical fibers 11, a ferrule 12, a ferrule-side microlens array 13, and a plurality of light adjustment sections 14.
  • the plurality of optical fibers 11 include a plurality of types of optical fibers 11 having different mode field diameters.
  • the optical connection unit 10 has two types of optical fibers 11 (11A, 11B).
  • One of the two types of optical fibers 11, 11A is a single mode optical fiber.
  • the first optical fiber 11A is used, for example, to receive an optical signal from the optical integrated circuit 30.
  • the other optical fiber 11B (second optical fiber 11B) of the two types of optical fibers 11 is a polarization-maintaining optical fiber.
  • the mode field diameter of a polarization maintaining optical fiber is smaller than that of a single mode optical fiber.
  • the second optical fiber 11B is used, for example, to transmit an optical signal to the optical integrated circuit 30.
  • polarization-maintaining optical fibers such as a PANDA type, a bowtie type, and an elliptical clad type.
  • the ferrule 12 is detachably attached to a receptacle 40, which will be described later.
  • the ferrule 12 holds a plurality of optical fibers 11 (first optical fiber 11A and second optical fiber 11B).
  • the ferrule 12 has a plurality of fiber holes 121 and a fiber insertion hole 122.
  • the plurality of fiber holes 121 are lined up in the first direction Y. Each fiber hole 121 extends forward from a fiber insertion hole 122, which will be described later.
  • the optical fiber 11 is inserted into each fiber hole 121.
  • the longitudinal direction of the optical fiber 11 inserted into the fiber hole 121 corresponds to the longitudinal direction X of the fiber hole 121.
  • Each fiber hole 121 has a tip 121a, and the optical fiber 11 is inserted up to the tip 121a of the fiber hole 121.
  • the tip 121a of each fiber hole 121 is closed by a ferrule-side microlens array 13, which will be described later.
  • a plurality of optical fibers 11 attached to the same ferrule 12 are collectively coated to form a so-called tape core.
  • the configuration of the optical fiber 11 is not limited to this, and for example, each optical fiber 11 may be individually coated.
  • the fiber insertion hole 122 is a hole that is recessed forward from the rear surface 12b of the ferrule 12.
  • the fiber insertion hole 122 communicates with the plurality of fiber holes 121.
  • each fiber hole 121 opens into the fiber insertion hole 122.
  • the fiber insertion hole 122 functions as an entrance when the optical fiber 11 is inserted into the fiber hole 121.
  • an inclined surface 122a is formed on the bottom surface (front surface) of the fiber insertion hole 122.
  • the inclined surface 122a is inclined so as to gradually approach the fiber hole 121 toward the front.
  • the inclined surface 122a guides the optical fiber 11 inserted into the fiber insertion hole 122 from the rear surface 12b of the ferrule 12 toward the front to the fiber hole 121.
  • the ferrule 12 does not need to have the fiber insertion hole 122 and the inclined surface 122a.
  • each fiber hole 121 may be opened on the rear surface 12b of the ferrule 12.
  • the ferrule-side microlens array 13 is made of a material that can transmit optical signals. As shown in FIG. 5, the ferrule-side microlens array 13 receives optical signals directed from the tip surfaces 111 of the plurality of optical fibers 11 held by the ferrule 12 toward the optical integrated circuit 30, and a plurality of optical signals from the optical integrated circuit 30. The optical signal directed toward the distal end surface 111 of the fiber 11 is transmitted.
  • the ferrule-side microlens array 13 is arranged so as to close the tips 121a of the plurality of fiber holes 121 of the ferrule 12. Note that the ferrule-side microlens array 13 may be arranged, for example, in front of the tips 121a of the plurality of fiber holes 121 at intervals.
  • the plurality of light adjustment units 14 are arranged in the ferrule side microlens array 13.
  • the number of the plurality of light adjustment sections 14 is the same as the number of fiber holes 121.
  • the plurality of light adjustment units 14 are arranged in the first direction Y similarly to the fiber holes 121.
  • Each of the plurality of light adjustment sections 14 corresponds to each of the plurality of optical fibers 11 held in each of the plurality of fiber holes 121 of the ferrule 12. That is, each of the plurality of light adjusting sections 14 and each of the plurality of optical fibers 11 correspond one-to-one.
  • Each light adjusting section 14 is lined up in the longitudinal direction X with respect to the optical fiber 11 (fiber hole 121).
  • the optical adjustment unit 14 adjusts the optical signal emitted from the distal end surface 111 of the optical fiber 11 located at the distal end 121a of the fiber hole 121, and the optical signal incident toward the distal end surface 111 of the optical fiber 11 from the outside. That is, the light adjustment section 14 adjusts the optical signal that passes through the light adjustment section 14.
  • Each light adjustment section 14 includes a ferrule side lens (lens) 141 and an intermediate section 142.
  • the ferrule-side lens 141 is arranged to face the distal end surface 111 of the optical fiber 11 located at the distal end 121a of the fiber hole 121 in the longitudinal direction X. That is, each of the plurality of light adjustment units 14 is provided with a ferrule-side lens 141 disposed opposite to the distal end surface 111 of the optical fiber 11, and between the ferrule-side lens 141 and the distal end surface 111 of the optical fiber 11.
  • An intermediate portion 142 is provided.
  • the ferrule side lens 141 is arranged so that the optical axis of the ferrule side lens 141 and the optical axis of the optical fiber 11 substantially coincide with each other.
  • the ferrule side lens 141 functions, for example, as a collimating lens. Specifically, the ferrule-side lens 141 adjusts the optical signal emitted from the distal end surface 111 of the optical fiber 11 so that the beam diameter expands into parallel light. Further, the ferrule-side lens 141 adjusts the optical signal so as to collect the optical signal directed toward the distal end surface 111 of the optical fiber 11 and make the optical signal enter the distal end surface 111 of the optical fiber 11 .
  • the intermediate portion 142 is provided between the ferrule-side lens 141 and the distal end surface 111 of the optical fiber 11 .
  • the ferrule side lens 141 is arranged on the front surface 142a of the intermediate portion 142 facing forward.
  • the intermediate portion 142 transmits an optical signal between the ferrule-side lens 141 and the distal end surface 111 of the optical fiber 11 .
  • the intermediate portion 142 By positioning the intermediate portion 142 between the distal end surface 111 of the optical fiber 11 and the ferrule side lens 141, the distal end surface 111 of the optical fiber 11 and the ferrule side lens 141 are positioned with an interval between them.
  • the intermediate portions 142 of the plurality of light adjusting portions 14 are arranged in the first direction Y and are integrally formed.
  • the front surfaces 142a of the plurality of intermediate portions 142 in which the plurality of ferrule-side lenses 141 are disposed touch the bottom surface of the recess 15 that is recessed backward from the front surface 12a of the ferrule 12. It consists of Further, the plurality of ferrule-side lenses 141 are located within the recess 15 so as not to protrude outward from the front surface 12a of the ferrule 12. Note that the ferrule 12 does not need to have the recess 15, for example. In this case, the front surface 142a of the intermediate portion 142 may be located on the same plane as the front surface 12a of the ferrule 12.
  • the ferrule-side microlens array 13 is formed integrally with the ferrule 12. Note that the ferrule-side microlens array 13 may be formed separately from the ferrule 12 and then fixed to the ferrule 12, for example.
  • the receptacle 40 shown in FIG. 2 is fixed to the optical integrated circuit 30.
  • the receptacle 40 is fixed to the circuit-side microlens array 32 of the optical integrated circuit 30 by adhesive or the like.
  • the receptacle 40 is fixed to the main body portion of the optical integrated circuit 30 including the plurality of waveguides 31 via the circuit-side microlens array 32.
  • the receptacle 40 may be directly fixed to the main body portion of the optical integrated circuit 30, for example, by adhesive or the like.
  • the receptacle 40 is fixed to the circuit-side microlens array 32 via the main body portion of the optical integrated circuit 30.
  • the receptacle 40 is arranged on the upper surface of the substrate 20, but the present invention is not limited thereto.
  • the ferrule 12 of the optical connection unit 10 is detachably attached to the receptacle 40. With the ferrule 12 attached to the receptacle 40, the optical connection unit 10 is positioned with respect to the circuit-side microlens array 32.
  • the receptacle 40 of this embodiment has a protrusion 41 for positioning. The protrusion 41 is inserted into the positioning groove 123 formed in the ferrule 12 with the ferrule 12 attached to the receptacle 40 . Thereby, the optical connection unit 10 is positioned with respect to the circuit-side microlens array 32.
  • the positioning structure of the optical connection unit 10 by the receptacle 40 is not limited to the above-mentioned structure, and may be arbitrary. Further, although not shown, the receptacle 40 is configured to hold the ferrule 12 attached to the receptacle 40 so that the ferrule 12 does not come off unexpectedly from the receptacle 40.
  • each of the plurality of ferrule-side lenses 141 and each of the plurality of circuit-side lenses 321 correspond one-to-one, and each ferrule-side lens 141 and each circuit-side lens 321 face each other in the longitudinal direction X. do.
  • the optical axis of each circuit-side lens 321 and the optical axis of each ferrule-side lens 141 substantially match.
  • the optical axis of the waveguide 31 (input/output section 31a), the optical axis of the circuit-side lens 321, the optical axis of the ferrule-side lens 141, and the optical axis of the optical fiber 11 substantially coincide with each other.
  • the configuration of the plurality of light adjustment sections 14 is such that the mode field diameter of the optical fiber 11 is adjusted so that the optical signal emitted from the distal end surface 111 of the optical fiber 11 and transmitted through the light adjustment section 14 becomes parallel light. It depends. This point will be explained below.
  • the numerical aperture (NA) value of the optical fiber 11 also differs.
  • NA numerical aperture
  • the beam diameter of the optical signal emitted from the other type of optical fiber 11 continues to expand even after passing through the optical adjustment section 14 (ferrule side lens 141) tailored to one type of optical fiber 11. That is, the optical signal traveling from the optical adjustment section 14 toward the optical integrated circuit 30 does not become parallel light. Then, when the optical signal whose beam diameter continues to expand is focused by the circuit-side lens 321, the focal point position of the optical signal shifts to the front (+X direction) of the input/output section 31a of the waveguide 31. As a result, the connection loss between the other types of optical fibers 11 and the optical integrated circuit 30 increases.
  • the beam diameter of the optical signal emitted from the other type of optical fiber 11 is reduced by passing through the optical adjustment section 14 (ferrule side lens 141) that is matched to one type of optical fiber 11. That is, the optical signal traveling from the optical adjustment section 14 toward the optical integrated circuit 30 does not become parallel light. Therefore, when an optical signal whose beam diameter decreases is condensed by the circuit-side lens 321, the focal point position of the optical signal is rearward (in the -X direction) from the input/output section 31a of the waveguide 31. It shifts. As a result, the connection loss between the other types of optical fibers 11 and the optical integrated circuit 30 increases.
  • the configurations of the plurality of light adjustment sections 14 differ depending on the mode field diameter of the optical fiber 11 so that the optical signal transmitted through the light adjustment section 14 becomes parallel light.
  • the dimension L That is, the distances between the distal end surface 111 of the optical fiber 11 and the ferrule-side lens 141 are equal to each other.
  • the radii of curvature of the ferrule-side lenses 141 of the plurality of light adjustment units 14 differ from each other depending on the mode field diameter.
  • the radius of curvature of the ferrule side lens 141 is large.
  • the radius of curvature of the ferrule side lens 141 is small. That is, the radius of curvature of the ferrule side lens 141 is set to increase as the mode field diameter increases.
  • the radius of curvature of each ferrule-side lens 141 is set so that the optical signal emitted from the distal end surface 111 of the optical fiber 11 and transmitted through the ferrule-side lens 141 becomes parallel light.
  • the numerical aperture value of the optical fiber 11 is small. Therefore, the beam diameter of the optical signal collimated by the ferrule side lens 141 is relatively small.
  • the second optical fiber 11B having a relatively small mode field diameter the value of the numerical aperture of the optical fiber 11 is large. Therefore, the beam diameter of the optical signal collimated by the ferrule side lens 141 is larger than that of the first optical fiber 11A.
  • the optical signal traveling from the optical adjustment unit 14 to the optical integrated circuit 30 becomes parallel light, so that the position of the focal point of the optical signal condensed at the circuit side lens 321 is It is possible to effectively suppress displacement of the waveguide 31 in the longitudinal direction X with respect to the input/output section 31a. Thereby, connection loss between multiple types of optical fibers 11 having different mode field diameters and the optical integrated circuit 30 can be suppressed to a low level.
  • the optical connection unit 10 includes a plurality of types of optical fibers 11 having different mode field diameters, a ferrule 12 holding the plurality of types of optical fibers 11, and a light beam held by the ferrule 12.
  • a ferrule-side microlens array 13 through which optical signals directed from the distal end surface 111 of the fiber 11 to the optical integrated circuit 30 are transmitted, and a plurality of light adjustment devices arranged in the ferrule-side microlens array 13 and corresponding to a plurality of types of optical fibers 11, respectively.
  • a portion 14 is provided.
  • the shapes of the plurality of light adjustment sections 14 differ depending on the mode field diameter of the optical fiber 11 so that the optical signal transmitted through the light adjustment section 14 becomes parallel light.
  • connection loss between multiple types of optical fibers 11 having different mode field diameters and the optical integrated circuit 30 can be suppressed to a low level. That is, the connection loss between the plurality of types of optical fibers 11 and the optical integrated circuit 30 can be suppressed without changing the form of the optical integrated circuit 30.
  • the radius of curvature of the ferrule-side lens 141 is different between the plurality of optical adjustment sections 14 corresponding to the plurality of types of optical fibers 11 having different mode field diameters.
  • the form of the optical signal between the optical fiber 11 and the optical integrated circuit 30 can be adjusted to correspond to a plurality of types of optical fibers 11 having different mode field diameters.
  • the ferrule side of the plurality of light adjustment units 14 is configured so that the optical signal emitted from the distal end surface 111 of the optical fiber 11 and transmitted through the ferrule side lens 141 becomes parallel light.
  • the radius of curvature of each lens 141 is set. Thereby, connection loss between the optical integrated circuit 30 and a plurality of types of optical fibers 11 having different mode field diameters can be suppressed.
  • the radius of curvature of the ferrule side lens 141 corresponding to the optical fiber 11 with a large mode field diameter is the radius of curvature of the ferrule side lens 141 corresponding to the optical fiber 11 with a small mode field diameter. Larger than the radius. Thereby, connection loss between the optical fiber 11 and the optical integrated circuit 30 can be effectively suppressed.
  • the plurality of types of optical fibers 11 include a single mode optical fiber and a polarization maintaining optical fiber whose mode field diameter is smaller than that of the single mode optical fiber. Therefore, a single mode optical fiber can be used for receiving optical signals from the optical integrated circuit 30, and a polarization maintaining optical fiber can be used for transmitting optical signals to the optical integrated circuit 30. Furthermore, single-mode optical fibers are cheaper than polarization-maintaining optical fibers. Therefore, by using a single mode optical fiber as the receiving optical fiber 11, the manufacturing cost of the optical connection unit 10 can be kept lower than when using a polarization maintaining optical fiber.
  • the optical connection unit 10D has two types of optical fibers 11 (11A, 11B), a ferrule 12, and a ferrule side micro It includes a lens array 13 and a plurality of light adjustment sections 14.
  • the configuration of the plurality of light adjustment sections 14 is similar to that of the first embodiment, so that the optical signal emitted from the distal end surface 111 of the optical fiber 11 and transmitted through the light adjustment section 14 is It differs depending on the mode field diameter of the optical fiber 11 so that the light becomes parallel.
  • the curvature radii of the ferrule-side lenses 141 of the plurality of light adjustment units 14 are equal to each other.
  • the dimensions L of the intermediate portions 142 of the plurality of light adjustment sections 14 differ from each other depending on the mode field diameter.
  • the dimension L (LA) of the intermediate section 142 is large.
  • the dimension L (LB) of the intermediate section 142 is small. That is, the dimension L of the intermediate portion 142 in the longitudinal direction X is set to increase as the mode field diameter increases.
  • the dimension L of each intermediate portion 142 is set so that the optical signal emitted from the tip surface 111 of the optical fiber 11 and transmitted through the ferrule side lens 141 becomes parallel light.
  • the positions of the front surfaces 142a of the intermediate portions 142 in the longitudinal direction X are equal to each other between the first optical adjustment section 14A and the second optical adjustment section 14B. That is, the front surfaces 142a of the plurality of intermediate portions 142 form the same plane.
  • the position of the tip 121a of the fiber hole 121 (the tip surface 111 of the optical fiber 11) in the longitudinal direction X is different between the first light adjustment section 14A and the second light adjustment section 14B.
  • the dimension L of the intermediate portion 142 in the longitudinal direction X is different between the first light adjustment section 14A and the second light adjustment section 14B.
  • the position of the tip 121a of the fiber hole 121 (the tip surface 111 of the optical fiber 11) is between the first optical adjustment section 14A and the second optical adjustment section 14B. equal to each other.
  • the position of the front surface 142a of the intermediate portion 142 in the longitudinal direction X is different between the first light adjustment section 14A and the second light adjustment section 14B.
  • the dimension L of the intermediate portion 142 in the longitudinal direction X is different between the first light adjustment section 14A and the second light adjustment section 14B.
  • the optical signal traveling from the optical adjustment section 14 to the optical integrated circuit 30 becomes parallel light regardless of the mode field diameter of the optical fiber 11. , it is possible to effectively suppress the position of the focal point of the optical signal condensed by the circuit-side lens 321 from shifting in the longitudinal direction X with respect to the input/output section 31a of the waveguide 31. Thereby, connection loss between multiple types of optical fibers 11 having different mode field diameters and the optical integrated circuit 30 can be suppressed to a low level.
  • the optical connection unit 10D according to the second embodiment provides the same effects as the first embodiment. Further, in the optical connection unit 10D according to the second embodiment, the dimension L of the intermediate portion 142 in the longitudinal direction It's different. Thereby, the form of the optical signal between the optical fiber 11 and the optical integrated circuit can be adjusted to correspond to a plurality of types of optical fibers 11 having different mode field diameters.
  • the optical signal emitted from the distal end surface 111 of the optical fiber 11 and transmitted through the ferrule side lens 141 becomes parallel light.
  • the dimensions L of the portions 142 are respectively set.
  • the dimension L (LA) of the intermediate portion 142 corresponding to the optical fiber 11 having a large mode field diameter is the same as the dimension L (LA) of the intermediate portion 142 corresponding to the optical fiber 11 having a small mode field diameter. is larger than the dimension L (LB).
  • the two types of optical fibers 11 included in the optical connection unit may be, for example, two types of single mode optical fibers having different mode field diameters.
  • the optical connection unit 10 may include, for example, three or more types of optical fibers 11 having different mode field diameters.
  • the optical axis of the circuit-side lens 321 and the optical axis of the ferrule-side lens 141 do not need to substantially coincide. If optical signals can be exchanged between the circuit-side lens 321 and the ferrule-side lens 141, the optical axis of the circuit-side lens 321 and the optical axis of the ferrule-side lens 141 may be misaligned or tilted. Good too. Further, the distance between the circuit-side lens 321 and the ferrule-side lens 141 in the longitudinal direction X may be changed as appropriate.
  • the optical axis of the waveguide 31 and the optical axis of the circuit-side lens 321 do not need to substantially coincide, for example.
  • the optical axis of the waveguide 31 and the optical axis of the circuit-side lens 321 may be shifted from each other or tilted.
  • the distance in the longitudinal direction X between the input/output section 31a and the circuit-side lens 321 may be changed as appropriate.
  • the optical axis of the ferrule-side lens 141 and the optical axis of the optical fiber 11 do not need to substantially coincide, for example.
  • the optical axis of the ferrule side lens 141 and the optical axis of the optical fiber 11 may be shifted from each other or tilted.
  • the optical connection unit 10 may be detachably attached to the optical integrated circuit 30 as in the above embodiment, but it may also be provided so as not to be detachable from the optical integrated circuit 30, for example.
  • Optical connection unit 11... Optical fiber, 111... Tip surface, 12... Ferrule, 13... Ferrule side microlens array, 14... Light adjustment unit, 141... Ferrule side lens, 142... Intermediate part , 30... Optical integrated circuit, L... Dimensions of intermediate portion 142

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

光集積回路に接続される光接続ユニットは、モードフィールド径が異なる複数種類の光ファイバと、複数種類の前記光ファイバを保持するフェルールと、前記フェルールに保持された前記光ファイバの先端面から前記光集積回路に向かう光信号を透過させるフェルール側マイクロレンズアレイと、前記フェルール側マイクロレンズアレイに配置された、複数種類の前記光ファイバに各々対応する複数の光調整部と、を備え、複数の前記光調整部の形態は、前記光調整部を透過した光信号が平行光となるよう、前記モードフィールド径に応じて異なる。

Description

光接続ユニット
 本発明は、光接続ユニットに関する。
 本願は、2022年3月24日に、日本に出願された特願2022-048415号に基づき優先権を主張し、その内容をここに援用する。
 例えば、特許文献1には、基板と、光集積回路と、光ファイバが挿通されるフェルールと、を備える光接続構造が開示されている。
米国特許出願公開第2021/0055489号明細書
 従来、データ通信の高速化を目的として、複数の電子基板の間を光ファイバで接続する技術が用いられている。データ通信をさらに高速化するべく、電子基板上に実装された光集積回路に光ファイバを接触させて直接接続するCPO(Co-Packaged Optics)構造が注目されている(例えば、特許文献1を参照)。
 このようなCPO構造には、複数の光ファイバを同一のフェルールに保持させ、これら複数の光ファイバを一括して光集積回路に接続する構造を備えるCPO構造がある。そして、フェルールには、モードフィールド径が異なる複数種類の光ファイバが保持されることがある。このため、各種類の光ファイバと光集積回路との接続損失が小さくなるように、各種類の光ファイバ毎に、光ファイバに入射する光信号及び光ファイバから出射する光信号の形態を光集積回路側にあわせる必要がある。なお、フェルールに保持される光ファイバの種類毎に、光集積回路側の構成をあわせることも考えられるが、可能な限りフェルール側で光信号の形態を整合させることが望まれている。
 本発明は、上述した事情に鑑みてなされ、光集積回路の形態を変えることなく、モードフィールド径が異なる複数種類の光ファイバと光集積回路との接続損失を小さく抑えることが可能な光接続ユニットを提供することを目的とする。
 本発明の一態様に係る光接続ユニットは、光集積回路に接続される光接続ユニットであって、モードフィールド径が異なる複数種類の光ファイバと、複数種類の前記光ファイバを保持するフェルールと、前記フェルールに保持された前記光ファイバの先端面から前記光集積回路に向かう光信号を透過させるフェルール側マイクロレンズアレイと、前記フェルール側マイクロレンズアレイに配置された、複数種類の前記光ファイバに各々対応する複数の光調整部と、を備え、複数の前記光調整部の形態は、前記光調整部を透過した光信号が平行光となるよう、前記モードフィールド径に応じて異なる。
 本発明によれば、光集積回路の形態を変えることなく、複数種類の光ファイバと光集積回路との接続損失を小さく抑えることができる。
第一実施形態に係る光接続ユニットを含む光接続構造の全体を示す斜視図である。 図1の光接続ユニットが光集積回路に接続された状態を示す断面図である。 図2の回路側マイクロレンズアレイをその後面側から見た図である。 図2のフェルール側マイクロレンズアレイをその前端面側から見た図である。 図2の光接続ユニット及び光集積回路の要部を示す断面図である。 第二実施形態に係る光接続ユニットの第一例及び光集積回路の要部を示す断面図である。 第二実施形態に係る光接続ユニットの第二例及び光集積回路の要部を示す断面図である。
(第一実施形態)
 以下、第一実施形態に係る光接続ユニットについて図面に基づいて説明する。
 図1及び図2に示すように、光接続ユニット10は、基板20に設けられた光集積回路30と共に、光接続構造1を構成している。光接続構造1は、基板20と、光集積回路30と、光接続ユニット10と、レセプタクル40と、を備える。光接続ユニット10は、複数の光ファイバ11と、複数の光ファイバ11を保持するフェルール12と、を有する。詳しくは後述するが、フェルール12には、複数の光ファイバ11をそれぞれ挿入可能な複数のファイバ孔121が形成されている。複数のファイバ孔121は、各ファイバ孔121の長手方向に直交する一方向に沿って配列されている。
(方向定義)
 本実施形態では、XYZ直交座標系を設定して各構成の位置関係を説明する。X軸方向は、ファイバ孔121の長手方向に沿う方向である。Y軸方向は、複数のファイバ孔121が配列される方向である。Z軸方向は、基板20と光集積回路30とが並ぶ方向である。本明細書では、X軸方向を長手方向Xと称し、Y軸方向を第一方向Yと称し、Z軸方向を第二方向Zと称する場合がある。長手方向Xに沿って、光接続ユニット10から光集積回路30に向かう方向を、+X方向または前方と称する。+X方向とは反対の方向を、-X方向または後方と称する。第一方向Yに沿う一方向を、+Y方向または左方と称する。+Y方向とは反対の方向を、-Y方向または右方と称する。第二方向Zに沿って、基板20から光集積回路30に向かう方向を、+Z方向または上方と称する。+Z方向とは反対の方向を、-Z方向または下方と称する。
 図1に示すように、基板20の上面には、電気回路Cおよび不図示のパターンが実装されている。電気回路Cは、例えば、スイッチ回路等であってもよい。また、基板20上には、複数の光集積回路30が配置されている。基板20に配置される光集積回路30の数は、図1に例示する数に限らず、適宜変えることができる。複数の光集積回路30は、電気回路Cを取り囲むように配置されている。各光集積回路30は、ソケットSを介して基板20と電気的に接続されている。光集積回路30は、例えばソケットSに対して着脱可能であってよい。なお、ソケットSは、例えばスペーサに置き換えられてもよい。この場合、光集積回路30と基板20とが不図示の配線によって電気的に接続されていてもよい。また、光集積回路30は、例えば基板20の上面に直接実装されてもよい。
 本実施形態において、光集積回路30は、直方体状に形成されている。光集積回路30は、光信号を電気信号に変換する不図示の受光素子と、電気信号を光信号に変換する不図示の発光素子と、を有する。受光素子としては、例えばフォトダイオード等のフォトディテクターを用いることができる。発光素子としては、例えば半導体レーザや発光ダイオード等を用いることができる。
 図5に示すように、光集積回路30は、複数の導波路31を有する。複数の導波路31のモードフィールド径は互いに等しい。複数の導波路31は、第一方向Yに配列されている。各導波路31は、上述した受光素子及び発光素子と光学的に接続されている。各導波路31は、長手方向Xに沿って延びている。各導波路31は、例えばシリコンによって形成されている。導波路31の屈折率は、光集積回路30のうち導波路31以外の部分の屈折率よりも高い。これにより、光信号が導波路31の内部に閉じ込められ、光信号は長手方向Xに伝搬する。導波路31は、光集積回路30の表面(上面)に設けられていてもよいし、光集積回路30の内部に設けられていてもよい。各導波路31の後端には、入出射部31aが設けられている。入出射部31aは、導波路31の一部分であり、光信号の受信及び送信を行う。
 入出射部31aは、後述する光ファイバ11から送信された光信号を受信する。入出射部31aにおいて受信した光信号は、導波路31中を伝播する。そして、当該光信号は、光集積回路30の受光素子によって電気信号に変換され、基板20に受け渡される。また、基板20から光集積回路30に伝わってきた電気信号は、光集積回路30の発光素子によって光信号に変換される。そして、当該光信号は、導波路31中を伝播して、入射出部31aから光ファイバ11に向けて送信される。
 図2及び図3に示すように、光集積回路30は、回路側マイクロレンズアレイ32を有する。回路側マイクロレンズアレイ32は、光を透過できる部材で形成されている。回路側マイクロレンズアレイ32は、例えば、石英ガラスやシリコン基板によって形成されていてもよい。本実施形態において、回路側マイクロレンズアレイ32は、長手方向Xを厚さ方向とする板状に形成されている。回路側マイクロレンズアレイ32は、前面32aと、後面32bと、を有する。
 回路側マイクロレンズアレイ32の後面32bには、複数の回路側レンズ321(回路側レンズ群321)及び複数のダミーレンズ322(ダミーレンズ群322)が形成されている。
 図5に示すように、回路側レンズ321の数は、導波路31(入出射部31a)の数と同じである。複数の回路側レンズ321は、導波路31と同様に第一方向Yに配列されている。複数の回路側レンズ321の各々と複数の導波路31の各々とは一対一に対応している。各回路側レンズ321は、入出射部31aに対して長手方向Xに並んでいる。長手方向Xにおける入出射部31aから回路側レンズ321までの距離は、複数の回路側レンズ321の間で互いに等しい。本実施形態においては、回路側レンズ321の光学軸と導波路31の光学軸とが略一致する。なお、「略一致」には、製造誤差を取り除けば2つの光学軸が一致しているとみなせる場合も含まれる。以下の記載においても同様である。複数の回路側レンズ321の曲率半径は互いに等しい。
 図3に示すように、複数のダミーレンズ322は、複数の回路側レンズ321の上方および下方に形成されている。ダミーレンズ322は、光信号の伝搬には用いられない。
 図2及び図5に示す複数の導波路31を含む光集積回路30の本体部分と回路側マイクロレンズアレイ32とは、接着剤によって固定されている。具体的には、回路側マイクロレンズアレイ32の前面32aが、光集積回路30の本体部分の後面(複数の導波路31の入出射部31a)に接着固定されている。光信号は当該接着剤の層を通過するため、接着剤は光を透過することが好ましい。なお、接着剤の層における光信号の伝搬特性を調整するために、接着剤の屈折率が適宜調整されてもよい。
 図1及び図2に示すように、光接続ユニット10は、光集積回路30に接続される。本実施形態において、光接続ユニット10の数は、光集積回路30の数に対応している。光接続ユニット10が光集積回路30に接続された状態では、当該光接続ユニット10の光ファイバ11と光集積回路30との間で光信号の送受信を行うことができる。
 図2及び図5に示すように、光接続ユニット10は、複数の光ファイバ11と、フェルール12と、フェルール側マイクロレンズアレイ13と、複数の光調整部14と、を有する。
 複数の光ファイバ11には、モードフィールド径が異なる複数種類の光ファイバ11が含まれている。本実施形態において、光接続ユニット10は、2種類の光ファイバ11(11A,11B)を有する。2種類の光ファイバ11のうち一方の光ファイバ11A(第一光ファイバ11A)は、シングルモード光ファイバである。第一光ファイバ11Aは、例えば光集積回路30からの光信号の受信に用いられる。2種類の光ファイバ11のうち他方の光ファイバ11B(第二光ファイバ11B)は、偏波保持光ファイバである。偏波保持光ファイバのモードフィールド径は、シングルモード光ファイバのモードフィールド径よりも小さい。第二光ファイバ11Bは、例えば光集積回路30への光信号の送信に用いられる。偏波保持光ファイバとしては、PANDA型、ボウタイ型、楕円クラッド型などの種々のタイプが挙げられる。
 フェルール12は、後述するレセプタクル40に対して着脱自在に取り付けられる。フェルール12は、複数の光ファイバ11(第一光ファイバ11A及び第二光ファイバ11B)を保持する。フェルール12は、複数のファイバ孔121と、ファイバ挿入孔122と、を有する。
 複数のファイバ孔121は、第一方向Yに並んでいる。各ファイバ孔121は、後述するファイバ挿入孔122から前方に向けて延びている。各ファイバ孔121には、光ファイバ11が挿入される。ファイバ孔121に挿入された光ファイバ11の長手方向は、ファイバ孔121の長手方向Xに一致する。各ファイバ孔121は、先端121aを有し、光ファイバ11は、ファイバ孔121の先端121aまで挿入される。本実施形態において、各ファイバ孔121の先端121aは、後述するフェルール側マイクロレンズアレイ13によって塞がれている。
 図1に示すように、本実施形態では、同一のフェルール12に取り付けられる複数の光ファイバ11が、まとめて被覆され、いわゆるテープ心線を構成している。なお、光ファイバ11の構成はこれに限られず、例えば、各光ファイバ11が個別に被覆されていてもよい。
 図2に示すように、ファイバ挿入孔122は、フェルール12の後面12bから前方に向けて窪む孔である。ファイバ挿入孔122は、複数のファイバ孔121に連通している。言い換えれば、各ファイバ孔121は、ファイバ挿入孔122に開口している。ファイバ挿入孔122は、光ファイバ11をファイバ孔121に挿入する際の入口として機能する。本実施形態において、ファイバ挿入孔122の底面(前面)には、傾斜面122aが形成されている。傾斜面122aは、前方に向かうにしたがって漸次ファイバ孔121に近づくように傾斜している。傾斜面122aは、フェルール12の後面12bから前方に向けてファイバ挿入孔122に挿入された光ファイバ11を、ファイバ孔121に案内する。なお、フェルール12はファイバ挿入孔122及び傾斜面122aを有していなくてもよい。この場合、各ファイバ孔121がフェルール12の後面12bに開口してよい。
 フェルール側マイクロレンズアレイ13は、光信号を透過可能な材料からなる。図5に示すように、フェルール側マイクロレンズアレイ13は、フェルール12に保持された複数の光ファイバ11の先端面111から光集積回路30に向かう光信号、及び、光集積回路30から複数の光ファイバ11の先端面111に向かう光信号を透過させる。フェルール側マイクロレンズアレイ13は、フェルール12の複数のファイバ孔121の先端121aを塞ぐように配置される。なお、フェルール側マイクロレンズアレイ13は、例えば複数のファイバ孔121の先端121aの前方に間隔をあけて配置されてもよい。
 複数の光調整部14は、フェルール側マイクロレンズアレイ13に配置される。複数の光調整部14の数は、ファイバ孔121の数と同じである。複数の光調整部14は、ファイバ孔121と同様に第一方向Yに配列されている。複数の光調整部14の各々は、フェルール12の複数のファイバ孔121の各々に保持された複数の光ファイバ11の各々に対応している。すなわち、複数の光調整部14の各々と複数の光ファイバ11の各々とは、一対一に対応している。各光調整部14は、光ファイバ11(ファイバ孔121)に対して長手方向Xにおいて並んでいる。光調整部14は、ファイバ孔121の先端121aに位置する光ファイバ11の先端面111から出射する光信号、及び、外部から光ファイバ11の先端面111に向けて入射する光信号を調整する。すなわち、光調整部14は、光調整部14を透過する光信号を調整する。
 各光調整部14は、フェルール側レンズ(レンズ)141と、中間部142と、を有する。フェルール側レンズ141は、長手方向Xにおいてファイバ孔121の先端121aに位置する光ファイバ11の先端面111に対向して配置される。即ち、複数の光調整部14はそれぞれ、光ファイバ11の先端面111に対向して配置されたフェルール側レンズ141と、フェルール側レンズ141と光ファイバ11の先端面111との間に設けられた中間部142と、を備える。フェルール側レンズ141は、当該フェルール側レンズ141の光学軸と光ファイバ11の光学軸とが略一致するように配置されている。フェルール側レンズ141は、例えばコリメートレンズとして機能する。具体的に、フェルール側レンズ141は、光ファイバ11の先端面111から出射されてビーム径が拡大する光信号を平行光とするように、当該光信号を調整する。また、フェルール側レンズ141は、光ファイバ11の先端面111に向かう光信号を集光した上で光ファイバ11の先端面111に入射させるように、当該光信号を調整する。
 中間部142は、フェルール側レンズ141と光ファイバ11の先端面111との間に設けられる。フェルール側レンズ141は、前方を向く中間部142の前面142aに配置される。中間部142は、フェルール側レンズ141と光ファイバ11の先端面111との間で光信号を透過させる。中間部142が光ファイバ11の先端面111とフェルール側レンズ141との間に位置することで、光ファイバ11の先端面111とフェルール側レンズ141とが間隔をあけて位置する。
 複数の光調整部14の中間部142は、第一方向Yに並んでおり、一体に形成されている。
 図2及び図4に示すように、本実施形態では、複数のフェルール側レンズ141が配置される複数の中間部142の前面142aが、フェルール12の前面12aから後方に窪む凹部15の底面を構成している。また、複数のフェルール側レンズ141は、フェルール12の前面12aから外側に突出しないように、凹部15内に位置する。なお、フェルール12は、例えば凹部15を有していなくてもよい。この場合、中間部142の前面142aは、フェルール12の前面12aと同一平面となるように位置してよい。
 図2及び図5に示すように、本実施形態では、フェルール側マイクロレンズアレイ13が、フェルール12と一体に形成されている。なお、フェルール側マイクロレンズアレイ13は、例えばフェルール12と別に形成された上で、フェルール12に固定されてもよい。
 図2に示すレセプタクル40は、光集積回路30に固定されている。本実施形態において、レセプタクル40は、光集積回路30の回路側マイクロレンズアレイ32に対して接着等によって固定されている。これにより、レセプタクル40は、回路側マイクロレンズアレイ32を介して、複数の導波路31を含む光集積回路30の本体部分に固定されている。なお、レセプタクル40は、例えば光集積回路30の本体部分に接着等によって直接固定されてもよい。この場合、レセプタクル40は、光集積回路30の本体部分を介して回路側マイクロレンズアレイ32に固定される。図2において、レセプタクル40は、基板20の上面に配置されているが、これに限ることはない。
 レセプタクル40には、光接続ユニット10のフェルール12が着脱自在に取り付けられる。フェルール12がレセプタクル40に取り付けられた状態では、光接続ユニット10が回路側マイクロレンズアレイ32に対して位置決めされる。本実施形態のレセプタクル40は、位置決め用の突起41を有する。突起41は、フェルール12をレセプタクル40に取り付けた状態で、フェルール12に形成された位置決め用の溝123に挿入される。これにより、光接続ユニット10が回路側マイクロレンズアレイ32に対して位置決めされる。なお、レセプタクル40による光接続ユニット10の位置決め構造は、上記した構成に限らず、任意であってよい。
 また、図示しないが、レセプタクル40は、レセプタクル40に取り付けられたフェルール12を保持して、フェルール12がレセプタクル40から不意に外れないように構成されている。
 光接続ユニット10が回路側マイクロレンズアレイ32に対して位置決めされた状態では、図5に示すように、光接続ユニット10のフェルール側レンズ141と光集積回路30の回路側レンズ321とが対向する。具体的には、複数のフェルール側レンズ141の各々と複数の回路側レンズ321の各々とが一対一に対応しており、各フェルール側レンズ141と各回路側レンズ321とが長手方向Xにおいて対向する。また、各回路側レンズ321の光学軸と各フェルール側レンズ141の光学軸とが略一致する。つまり、導波路31(入出射部31a)の光学軸と、回路側レンズ321の光学軸と、フェルール側レンズ141の光学軸と、光ファイバ11の光学軸とが、互いに略一致する。
 前述したように、光接続ユニット10では、モードフィールド径が異なる2種類の光ファイバ11が同一のフェルール12に保持されている。これに対し、複数の光調整部14の形態は、光ファイバ11の先端面111から出射されて光調整部14を透過した光信号が平行光となるように、光ファイバ11のモードフィールド径に応じて異なる。以下、この点について説明する。
 光ファイバ11のモードフィールド径が異なると、光ファイバ11の開口数(NA:Numerical Aperture)の値も異なる。例えば、光ファイバ11のモードフィールド径が大きい程、光ファイバ11の開口数の値は小さくなる。このため、全ての光調整部14の形態を、1種類の光ファイバ11のモードフィールド径にあわせると、当該1種類の光ファイバ11と光集積回路30との接続損失は抑制されるが、モードフィールド径が異なる他の種類の光ファイバ11と光集積回路30との接続損失が大きくなる。
 例えば、他の種類の光ファイバ11のモードフィールド径が上記1種類の光ファイバ11のモードフィールド径よりも大きい場合を考える。この場合、他の種類の光ファイバ11から出射した光信号のビーム径は、1種類の光ファイバ11にあわせた光調整部14(フェルール側レンズ141)を通過しても拡大し続ける。すなわち、光調整部14から光集積回路30側に向かう光信号は平行光にならない。そして、ビーム径が拡大し続ける光信号が回路側レンズ321において集光されると、当該光信号の焦点の位置は、導波路31の入出射部31aよりも前方(+X方)にずれる。これにより、他の種類の光ファイバ11と光集積回路30との接続損失が大きくなる。
 次に、他の種類の光ファイバ11のモードフィールド径が上記1種類の光ファイバ11のモードフィールド径よりも小さい場合を考える。この場合、他の種類の光ファイバ11から出射した光信号のビーム径は、1種類の光ファイバ11にあわせた光調整部14(フェルール側レンズ141)を通過することで縮小していく。すなわち、光調整部14から光集積回路30側に向かう光信号が平行光にならない。このため、ビーム径が縮小していく光信号が回路側レンズ321において集光されると、当該光信号の焦点の位置は、導波路31の入出射部31aよりも後方(-X方)にずれる。これにより、他の種類の光ファイバ11と光集積回路30との接続損失が大きくなる。
 以上のことから、複数の光調整部14の形態は、光調整部14を透過した光信号が平行光となるよう、光ファイバ11のモードフィールド径に応じて異なっている。本実施形態では、光調整部14を透過した光信号が平行光となるような複数の光調整部14の形態として、長手方向Xにおいて、複数の光調整部14の中間部142の寸法L(すなわち光ファイバ11の先端面111とフェルール側レンズ141との距離)が互いに等しい。そして、これら複数の光調整部14のフェルール側レンズ141の曲率半径がモードフィールド径に応じて互いに異なっている。
 具体的に、モードフィールド径が比較的大きい第一光ファイバ11Aに対応する光調整部14(第一光調整部14A)では、フェルール側レンズ141の曲率半径が大きい。一方、モードフィールド径が比較的小さい第二光ファイバ11Bに対応する光調整部14(第二光調整部14B)では、フェルール側レンズ141の曲率半径が小さい。すなわち、フェルール側レンズ141の曲率半径は、モードフィールド径が大きくなる程大きくなるように設定されている。そして、各フェルール側レンズ141の曲率半径は、光ファイバ11の先端面111から出射されてフェルール側レンズ141を透過した光信号が平行光となるように設定されている。
 モードフィールド径が比較的大きい第一光ファイバ11Aでは、光ファイバ11の開口数の値が小さい。このため、フェルール側レンズ141においてコリメートされた光信号のビーム径は、比較的小さい。一方、モードフィールド径が比較的小さい第二光ファイバ11Bでは、光ファイバ11の開口数の値が大きい。このため、フェルール側レンズ141においてコリメートされた光信号のビーム径は、第一光ファイバ11Aと比較して大きい。
 そして、光ファイバ11のモードフィールド径に関わらず、光調整部14から光集積回路30に向かう光信号が平行光となることで、回路側レンズ321において集光した光信号の焦点の位置が、導波路31の入出射部31aに対して長手方向Xにずれることを効果的に抑制することができる。これにより、モードフィールド径が異なる複数種類の光ファイバ11と光集積回路30との接続損失を小さく抑えることができる。
 以上説明したように、本実施形態に係る光接続ユニット10は、モードフィールド径が異なる複数種類の光ファイバ11と、複数種類の光ファイバ11を保持するフェルール12と、フェルール12に保持された光ファイバ11の先端面111から光集積回路30に向かう光信号が透過するフェルール側マイクロレンズアレイ13と、フェルール側マイクロレンズアレイ13に配置され、複数種類の光ファイバ11に各々対応する複数の光調整部14と、を備える。そして、複数の光調整部14の形態は、光調整部14を透過した光信号が平行光となるように、光ファイバ11のモードフィールド径に応じて異なっている。これにより、モードフィールド径が異なる複数種類の光ファイバ11と光集積回路30との接続損失を小さく抑えることができる。すなわち、光集積回路30の形態を変えることなく、複数種類の光ファイバ11と光集積回路30との接続損失を小さく抑えることができる。
 また、本実施形態に係る光接続ユニット10では、モードフィールド径が異なる複数種類の光ファイバ11に対応する複数の光調整部14の間において、フェルール側レンズ141の曲率半径が互いに異なっている。これにより、モードフィールド径が異なる複数種類の光ファイバ11に対応するように、光ファイバ11と光集積回路30との間における光信号の形態を調整することができる。
 また、本実施形態に係る光接続ユニット10では、光ファイバ11の先端面111から出射されてフェルール側レンズ141を透過した光信号が平行光となるように、複数の光調整部14におけるフェルール側レンズ141の曲率半径がそれぞれ設定される。これにより、モードフィールド径が異なる複数種類の光ファイバ11と光集積回路30との接続損失を抑えることができる。
 また、本実施形態に係る光接続ユニット10において、モードフィールド径が大きい光ファイバ11に対応するフェルール側レンズ141の曲率半径は、モードフィールド径が小さい光ファイバ11に対応するフェルール側レンズ141の曲率半径に比べて大きい。これにより、光ファイバ11と光集積回路30との接続損失を効果的に抑えることができる。
 また、本実施形態に係る光接続ユニット10において、複数種類の光ファイバ11には、シングルモード光ファイバと、シングルモード光ファイバよりもモードフィールド径が小さい偏波保持光ファイバと、がある。このため、シングルモード光ファイバを光集積回路30からの光信号の受信に用いることができ、偏波保持光ファイバを光集積回路30への光信号の送信に用いることができる。
 そして、シングルモード光ファイバは偏波保持光ファイバと比較して安価である。このため、受信用の光ファイバ11として、シングルモード光ファイバを用いることで、偏波保持光ファイバを用いる場合と比較して光接続ユニット10の製造コストを低く抑えることができる。
(第二実施形態)
 次に、第二実施形態について説明するが、第一実施形態と基本的な構成は同様である。このため、同様の構成には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
 図6及び図7に示すように、第二実施形態に係る光接続ユニット10Dは、第一実施形態と同様に、2種類の光ファイバ11(11A,11B)と、フェルール12と、フェルール側マイクロレンズアレイ13と、複数の光調整部14と、を備える。
 第二実施形態の光接続ユニット10Dにおいて、複数の光調整部14の形態は、第一実施形態と同様に、光ファイバ11の先端面111から出射されて光調整部14を透過した光信号が平行光となるように、光ファイバ11のモードフィールド径に応じて異なっている。ただし、第二実施形態では、複数の光調整部14のフェルール側レンズ141の曲率半径が互いに等しい。そして、長手方向Xにおいて、複数の光調整部14の中間部142の寸法Lがモードフィールド径に応じて互いに異なっている。
 具体的に、モードフィールド径が比較的大きい第一光ファイバ11Aに対応する第一光調整部14Aでは、中間部142の寸法L(LA)が大きい。一方、モードフィールド径が比較的小さい第二光ファイバ11Bに対応する第二光調整部14Bでは、中間部142の寸法L(LB)が小さい。すなわち、長手方向Xにおける中間部142の寸法Lは、モードフィールド径が大きくなる程大きくなるように設定されている。そして、各中間部142の寸法Lは、光ファイバ11の先端面111から出射されてフェルール側レンズ141を透過した光信号が平行光となるように設定されている。
 図6に示す第一例の光接続ユニット10D1では、第一光調整部14Aと第二光調整部14Bとの間において、長手方向Xにおける中間部142の前面142aの位置が互いに等しい。すなわち、複数の中間部142の前面142aが同一の平面を形成している。そして、長手方向Xにおけるファイバ孔121の先端121a(光ファイバ11の先端面111)の位置が、第一光調整部14Aと第二光調整部14Bとの間において異なっている。これにより、長手方向Xにおける中間部142の寸法Lが、第一光調整部14Aと第二光調整部14Bとの間において異なっている。
 図7に示す第二例の光接続ユニット10D2では、第一光調整部14Aと第二光調整部14Bとの間において、ファイバ孔121の先端121a(光ファイバ11の先端面111)の位置が互いに等しい。そして、長手方向Xにおける中間部142の前面142aの位置が、第一光調整部14Aと第二光調整部14Bとの間において異なっている。これにより、長手方向Xにおける中間部142の寸法Lが、第一光調整部14Aと第二光調整部14Bとの間において異なっている。
 第二実施形態の光接続ユニット10Dでは、第一実施形態と同様に、光ファイバ11のモードフィールド径に関わらず、光調整部14から光集積回路30に向かう光信号が平行光となることで、回路側レンズ321において集光した光信号の焦点の位置が、導波路31の入出射部31aに対して長手方向Xにずれることを効果的に抑制することができる。これにより、モードフィールド径が異なる複数種類の光ファイバ11と光集積回路30との接続損失を小さく抑えることができる。
 以上説明したように、第二実施形態に係る光接続ユニット10Dによれば、第一実施形態と同様の効果を奏する。
 また、第二実施形態に係る光接続ユニット10Dでは、モードフィールド径が異なる複数種類の光ファイバ11に対応する複数の光調整部14の間において、長手方向Xにおける中間部142の寸法Lが互いに異なっている。これにより、モードフィールド径が異なる複数種類の光ファイバ11に対応するように、光ファイバ11と光集積回路との間における光信号の形態を調整することができる。
 また、第二実施形態に係る光接続ユニット10Dでは、光ファイバ11の先端面111から出射されてフェルール側レンズ141を透過した光信号が平行光となるように、複数の光調整部14における中間部142の寸法Lがそれぞれ設定される。これにより、モードフィールド径が異なる複数種類の光ファイバ11と光集積回路30との接続損失を抑えることができる。
 また、第二実施形態に係る光接続ユニット10Dにおいて、モードフィールド径が大きい光ファイバ11に対応する中間部142の寸法L(LA)は、モードフィールド径が小さい光ファイバ11に対応する中間部142の寸法L(LB)に比べて大きい。これにより、光ファイバ11と光集積回路30との接続損失を効果的に抑えることができる。
 なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 本発明において、光接続ユニットが備える2種類の光ファイバ11は、例えばモードフィールド径が異なる2種類のシングルモード光ファイバであってよい。
 また、本発明において、光接続ユニット10は、例えばモードフィールド径が異なる3種類以上の光ファイバ11を有してもよい。
 本発明において、回路側レンズ321の光学軸とフェルール側レンズ141の光学軸とは、略一致してなくてもよい。回路側レンズ321とフェルール側レンズ141との間で光信号の受け渡しが可能であれば、回路側レンズ321の光学軸とフェルール側レンズ141の光学軸とが互いにずれていたり、傾いていたりしてもよい。また、回路側レンズ321とフェルール側レンズ141との間の長手方向Xにおける距離が適宜変更されてもよい。
 同様に、本発明において、導波路31の光学軸と回路側レンズ321の光学軸とは、例えば略一致しなくてもよい。導波路31と回路側レンズ321との間で光信号の受け渡しが可能であれば、導波路31の光学軸と回路側レンズ321の光学軸とが互いにずれていたり、傾いていたりしてもよい。あるいは、入出射部31aと回路側レンズ321との間の長手方向Xにおける距離が適宜変更されてもよい。
 同様に、本発明において、フェルール側レンズ141の光学軸と光ファイバ11の光学軸とは、例えば略一致しなくてもよい。フェルール側レンズ141と光ファイバ11との間で光信号の受け渡しが可能であれば、フェルール側レンズ141の光学軸と光ファイバ11の光学軸とが互いにずれたり、傾いていたりしてもよい。
 本発明において、光接続ユニット10は、上記実施形態のように光集積回路30に対して着脱自在とされてもよいが、例えば光集積回路30に対して着脱できないように設けられてもよい。
 その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
10,10D,10D1,10D2…光接続ユニット、11…光ファイバ、111…先端面、12…フェルール、13…フェルール側マイクロレンズアレイ、14…光調整部、141…フェルール側レンズ、142…中間部、30…光集積回路、L…中間部142の寸法

Claims (6)

  1.  光集積回路に接続される光接続ユニットであって、
     モードフィールド径が異なる複数種類の光ファイバと、
     複数種類の前記光ファイバを保持するフェルールと、
     前記フェルールに保持された前記光ファイバの先端面から前記光集積回路に向かう光信号を透過させるフェルール側マイクロレンズアレイと、
     前記フェルール側マイクロレンズアレイに配置された、複数種類の前記光ファイバに各々対応する複数の光調整部と、を備え、
     複数の前記光調整部の形態は、前記光調整部を透過した光信号が平行光となるよう、前記モードフィールド径に応じて異なる光接続ユニット。
  2.  複数の前記光調整部はそれぞれ、前記光ファイバの先端面に対向して配置されたレンズと、前記レンズと前記光ファイバの先端面との間に設けられた中間部と、を有し、
     前記光ファイバの長手方向において、複数の前記光調整部の前記中間部の寸法が互いに等しく、かつ、複数の前記光調整部の前記レンズの曲率半径が前記モードフィールド径に応じて互いに異なる請求項1に記載の光接続ユニット。
  3.  前記モードフィールド径が大きい前記光ファイバに対応する前記レンズの曲率半径は、前記モードフィールド径が小さい前記光ファイバに対応する前記レンズの曲率半径に比べて大きい請求項2に記載の光接続ユニット。
  4.  複数の前記光調整部はそれぞれ、前記光ファイバの先端面に対向して配置されたレンズと、前記レンズと前記光ファイバの先端面との間に設けられた中間部と、を有し、
     複数の前記光調整部の前記レンズの曲率半径が互いに等しく、かつ、前記光ファイバの長手方向において、複数の前記光調整部の前記中間部の寸法が前記モードフィールド径に応じて互いに異なる請求項1に記載の光接続ユニット。
  5.  前記モードフィールド径が大きい前記光ファイバに対応する前記中間部の寸法は、前記モードフィールド径が小さい前記光ファイバに対応する前記中間部の寸法に比べて大きい請求項4に記載の光接続ユニット。
  6.  複数種類の前記光ファイバには、少なくとも、シングルモード光ファイバと、前記シングルモード光ファイバよりもモードフィールド径が小さい偏波保持光ファイバと、がある請求項1から請求項5のいずれか一項に記載の光接続ユニット。
PCT/JP2022/043170 2022-03-24 2022-11-22 光接続ユニット WO2023181496A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048415 2022-03-24
JP2022048415 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023181496A1 true WO2023181496A1 (ja) 2023-09-28

Family

ID=88100405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043170 WO2023181496A1 (ja) 2022-03-24 2022-11-22 光接続ユニット

Country Status (1)

Country Link
WO (1) WO2023181496A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113518A (ja) * 1991-10-21 1993-05-07 Fujitsu Ltd 光フアイバ結合レンズシステム
JP2011197018A (ja) * 2010-03-17 2011-10-06 Alps Electric Co Ltd 光学素子モジュール
US20130084039A1 (en) * 2011-08-16 2013-04-04 International Business Machines Corporation Lens array optical coupling to photonic chip
WO2016016915A1 (ja) * 2014-07-31 2016-02-04 Nttエレクトロニクス株式会社 光モジュール及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05113518A (ja) * 1991-10-21 1993-05-07 Fujitsu Ltd 光フアイバ結合レンズシステム
JP2011197018A (ja) * 2010-03-17 2011-10-06 Alps Electric Co Ltd 光学素子モジュール
US20130084039A1 (en) * 2011-08-16 2013-04-04 International Business Machines Corporation Lens array optical coupling to photonic chip
WO2016016915A1 (ja) * 2014-07-31 2016-02-04 Nttエレクトロニクス株式会社 光モジュール及びその製造方法

Similar Documents

Publication Publication Date Title
US9322987B2 (en) Multicore fiber coupler between multicore fibers and optical waveguides
JP5445579B2 (ja) 光導波路モジュール
US7136551B2 (en) Optical printed circuit board and optical interconnection block using optical fiber bundle
JP2015515027A (ja) 光ファイバトレー、光ファイバモジュール及び光ファイバの処理方法
US9366832B2 (en) Optical connection structure
JP2020060796A (ja) 光コネクタ及び光コネクタシステム並びにこれらを備えたアクティブ光ケーブル
US9791640B2 (en) Interposer with separable interface
US10345542B2 (en) Opto-mechanical coupler
JP2004212847A (ja) 光結合器
US20160091677A1 (en) Optical signal processor and optical assembly
WO2023181496A1 (ja) 光接続ユニット
JP2007272159A (ja) 光導波路コネクタ及びそれを用いた光接続構造、並びに光導波路コネクタの製造方法
JP4898257B2 (ja) 光接続構造およびそれを用いた光電気モジュール、並びに光導波路ユニット
JP2009020280A (ja) 光導波路保持部材及び光トランシーバ
JP2006010891A (ja) 光結合装置及びその実装構造
JPWO2018042984A1 (ja) 光接続構造
JP4965699B2 (ja) 光接続構造体およびそれを用いた光電気モジュール、並びに光導波路ユニット
EP3757639A1 (en) Interposer
JP2016212414A (ja) 導波路用結合回路
WO2020039636A1 (ja) 光コネクタ部、及び、光接続構造体
US10162118B2 (en) Optical coupling element
JP5085796B2 (ja) 光接続構造体およびそれを用いた光電気モジュール、並びに光導波路ユニット
US20150212267A1 (en) Optical Assembly
WO2023042471A1 (ja) 光接続構造
JP2011053303A (ja) 光素子モジュール、光トランシーバ及び光アクティブケーブル

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933626

Country of ref document: EP

Kind code of ref document: A1