WO2023181425A1 - ネットワークノード及び通信方法 - Google Patents

ネットワークノード及び通信方法 Download PDF

Info

Publication number
WO2023181425A1
WO2023181425A1 PCT/JP2022/014746 JP2022014746W WO2023181425A1 WO 2023181425 A1 WO2023181425 A1 WO 2023181425A1 JP 2022014746 W JP2022014746 W JP 2022014746W WO 2023181425 A1 WO2023181425 A1 WO 2023181425A1
Authority
WO
WIPO (PCT)
Prior art keywords
crmf
terminal
container
information
resource
Prior art date
Application number
PCT/JP2022/014746
Other languages
English (en)
French (fr)
Inventor
淳 巳之口
健太 山内
政宏 澤田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/014746 priority Critical patent/WO2023181425A1/ja
Publication of WO2023181425A1 publication Critical patent/WO2023181425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • H04L41/0897Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities by horizontal or vertical scaling of resources, or by migrating entities, e.g. virtual resources or entities

Definitions

  • the present invention relates to a network node and a communication method in a wireless communication system.
  • NR New Radio
  • 5G New Radio
  • EPC Evolved Packet Core
  • the network architecture includes 5GC (5G Core Network) and NG-RAN (Next Generation - Radio Access Network), which corresponds to E-UTRAN (Evolved Universal Terrestrial Radio Access Network), which is RAN (Radio Access Network) in LTE network architecture.
  • 5GC 5G Core Network
  • NG-RAN Next Generation - Radio Access Network
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • RAN Radio Access Network
  • a subscriber can use the computing resource as a termination point for incoming and outgoing communications related to the subscriber.
  • the subscriber may place an application program that consumes computing power on the computing resource, connect the computing resource to the terminal, and use the terminal as an output terminal.
  • the computing resources also move.
  • the present invention has been made in view of the above points, and an object of the present invention is to move computational resources on a network in accordance with the movement of subscribers.
  • a receiving unit that receives information indicating the attributes of a computing resource configured for a subscriber and the location of the subscriber's terminal, the attribute of the computing resource, and the location of the subscriber's terminal.
  • a network node comprising: a control unit that controls the calculation resource to be moved to another network node based on information indicating the calculation resource.
  • a technology is provided that allows computing resources on a network to be moved as subscribers move.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a core network according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a CRMF session establishment procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram illustrating an example of the flow of a CRMF session change procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a service request procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a CRMF session release procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a CRMF registration procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a PDU session establishment procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram illustrating an example of the flow of an incoming packet transfer determination procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of an incoming packet transfer procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of a container registration procedure according to an embodiment of the present invention.
  • FIG. 2 is a sequence diagram showing an example of the flow of an inter-container communication procedure according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of a functional configuration of a base station according to an embodiment of the present invention.
  • 1 is a diagram illustrating an example of a functional configuration of a terminal according to an embodiment of the present invention.
  • FIG. 1 is a diagram showing an example of the hardware configuration of a base station or a terminal according to an embodiment of the present invention.
  • 1 is a diagram showing an example of the configuration of a vehicle according to an embodiment of the present invention.
  • LTE Long Term Evolution
  • NR NR-Advanced
  • SS Synchronization signal
  • PSS Primary SS
  • SSS Secondary SS
  • PBCH Physical broadcast channel
  • PRACH Physical Terms such as random access channel
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the duplex method may be a TDD (Time Division Duplex) method, an FDD (Frequency Division Duplex) method, or another method (for example, Flexible Duplex, etc.). This method may also be used.
  • “configuring" wireless parameters etc. may mean pre-configuring predetermined values, or It may also be possible to set wireless parameters notified from.
  • FIG. 1 is a diagram for explaining a wireless communication system according to an embodiment of the present invention.
  • the wireless communication system according to the embodiment of the present invention includes a base station 10 and a terminal 20, as shown in FIG. Although one base station 10 and one terminal 20 are shown in FIG. 1, this is just an example, and there may be a plurality of each.
  • the base station 10 is a communication device that provides one or more cells and performs wireless communication with the terminal 20.
  • the physical resources of a radio signal are defined in the time domain and the frequency domain, and the time domain may be defined by the number of OFDM (Orthogonal Frequency Division Multiplexing) symbols, and the frequency domain may be defined by the number of subcarriers or resource blocks. Good too.
  • a TTI Transmission Time Interval
  • a TTI Transmission Time Interval
  • the base station 10 transmits a synchronization signal and system information to the terminal 20.
  • the synchronization signals are, for example, NR-PSS and NR-SSS.
  • System information is transmitted, for example, on NR-PBCH, and is also referred to as broadcast information.
  • the synchronization signal and system information may be called SSB (SS/PBCH block).
  • the base station 10 transmits a control signal or data to the terminal 20 on the DL (Downlink), and receives the control signal or data from the terminal 20 on the UL (Uplink).
  • Both the base station 10 and the terminal 20 can perform beamforming to transmit and receive signals. Further, both the base station 10 and the terminal 20 can apply MIMO (Multiple Input Multiple Output) communication to DL or UL.
  • MIMO Multiple Input Multiple Output
  • both the base station 10 and the terminal 20 may communicate via a secondary cell (SCell) and a primary cell (PCell) using CA (Carrier Aggregation). Furthermore, the terminal 20 may communicate via a primary cell of the base station 10 and a primary SCG cell (PSCell) of another base station 10 using DC (Dual Connectivity).
  • SCell secondary cell
  • PCell primary cell
  • DC Direct Connectivity
  • the terminal 20 is a communication device equipped with a wireless communication function, such as a smartphone, a mobile phone, a tablet, a wearable terminal, or a communication module for M2M (Machine-to-Machine). As shown in FIG. 1, the terminal 20 receives control signals or data from the base station 10 via DL, and transmits control signals or data to the base station 10 via UL, thereby receiving various types of information provided by the wireless communication system. Use communication services. Furthermore, the terminal 20 receives various reference signals transmitted from the base station 10, and measures the channel quality based on the reception results of the reference signals. Note that the terminal 20 may be called a UE, and the base station 10 may be called a gNB.
  • FIG. 2 is a diagram showing an example of the configuration of a core network according to an embodiment of the present invention.
  • the wireless communication system includes a RAN (Radio Access Network) 10, a terminal 20, a core network 30, and a DN (Data Network) 40.
  • RAN Radio Access Network
  • DN Data Network
  • the core network 30 is a network that includes an exchange, a subscriber information management device, and the like.
  • the core network 30 includes a network node that implements a U-Plane function and a network node group that implements a C-Plane function group.
  • the U-Plane function is a function that executes user data transmission and reception processing.
  • a network node that realizes the U-Plane function is, for example, a UPF (User plane function) 380.
  • the UPF 380 is a network node that has functions such as a PDU (Protocol Data Unit) session point to the outside for interconnection with the DN 40, packet routing and forwarding, and user plane QoS (Quality of Service) handling.
  • the UPF 380 controls data transmission and reception between the DN 40 and the terminal 20.
  • UPF 380 and DN 40 may be composed of one or more network slices.
  • the C-Plane function group is a function group that executes a series of control processes for establishing communication and the like.
  • the network nodes that realize the C-Plane function group include, for example, AMF (Access and Mobility Management Function) 310, UDM (Unified Data Management) 320, NEF (Network Exposure Function) 330, and NRF (Network Repository Function).
  • AUSF Authentication Server Function
  • PCF Policy Control Function
  • SMF Session Management Function
  • AF Application Function
  • the RAN 10 is a network node that is communicably connected between the core network 30 and the terminal 20 and includes a base station, a line control device, and the like.
  • RAN10 is communicatively connected to AMF310 and UPF380.
  • the base station 10 is also called RAN10.
  • the AMF 310 is a network node that has functions such as RAN interface termination, NAS (Non-Access Stratum) termination, registration management, connection management, reachability management, and mobility management.
  • the NRF 340 is a network node that has a function of discovering an NF (Network Function) instance that provides a service.
  • UDM 320 is a network node that manages subscriber data and authentication data.
  • the UDM 320 includes a UDR (User Data Repository) 321 that holds the data, and a FE (Front End) 322.
  • FE 322 processes subscriber information.
  • the SMF 370 is a network node that has functions such as session management, IP (Internet Protocol) address assignment and management of the terminal 20, DHCP (Dynamic Host Configuration Protocol) function, ARP (Address Resolution Protocol) proxy, and roaming function.
  • the NEF 330 is a network node that has a function of notifying other NFs (Network Functions) of capabilities and events.
  • the PCF 360 is a network node that has a function of controlling network policy.
  • An AF (Application Function) 390 is a network node that has a function of controlling an application server.
  • the terminal 20 and AMF 310 are communicably connected as an N1 link.
  • AMF 310 and RAN 10 are communicably connected as an N2 link.
  • the UPF 380 and the RAN 10 are communicably connected as an N3 link.
  • the UPF 380 and the SMF 370 are communicably connected as an N4 link.
  • the UPF 380 and the DN 40 are communicably connected as an N6 link.
  • the core network 30 further includes a CRMF (Computing Resource Management Function) 371 and a UCRF (User Computing Resource Function) 381.
  • CRMF Computer Resource Management Function
  • UCRF User Computing Resource Function
  • the UCRF 381 is a function (hereinafter also referred to as user calculation resource function) that provides calculation resources that can be used by users (subscribers). Computational resources are also referred to as containers below. Note that the computing resource may include an execution environment for executing various applications that is installed on the computing resource. That is, the UCRF 381 includes one or more containers 382.
  • the UCRF 381 is included in the U-Plane function, and is communicably connected to the UPF 380 as a Ny link. Further, the UCRF 381 and the DN 40 are communicably connected as an N6 link.
  • the CRMF 371 is a function for managing computational resources (hereinafter also referred to as a computational resource management function).
  • the CRMF 371 is included in the C-Plane functional group and is communicably connected to other network nodes included in the C-Plane functional group.
  • the CRMF 371 and UCRF 381 are communicably connected as an Nx link. Note that the names of the Nx link and Ny link are just examples, and other names may be used.
  • FIG. 3 is a sequence diagram showing an example of the flow of the CRMF session establishment procedure according to the embodiment of the present invention.
  • the terminal 20 transmits a CRMF session establishment request to the AMF 310.
  • the terminal 20 may set, in the CRMF session establishment request, a CRMF session ID related to the termination in the AMF and a requested resource capacity indicating the capacity of the requested computational resource.
  • the "capacity of computing resources" described below may include the execution environment, capacity, etc. in addition to the capacity of computing resources.
  • the AMF 310 transmits a CRMF session establishment request to the CRMF 371.
  • the AMF 310 includes the CRMF session ID set by the terminal 20 in the CRMF session establishment request.
  • the AMF 310 may include the requested resource capacity set by the terminal 20 in the CRMF session establishment request.
  • the CRMF 371 transmits subscriber information confirmation to the UDM 320 to obtain subscriber information.
  • the UDM 320 transmits a subscriber information response to the CRMF 371.
  • the CRMF 371 determines whether the CRMF session establishment request from the terminal 20 is accepted based on the acquired subscriber information. If the CRMF session establishment request from the terminal 20 is accepted as a result of the determination, the process may proceed to step S105. On the other hand, if the CRMF session establishment request from the terminal 20 is not accepted based on the determination, the CRMF 371 may transmit a response to the AMF 310 indicating that the CRMF session establishment request has been rejected. AMF 310 may transmit the response to terminal 20.
  • the CRMF 371 transmits the requested resource capacity acquired by the CRMF session establishment request to the PCF 360.
  • the PCF 360 determines the capacity of the computing resource to be provided to the terminal 20 based on the information included in the obtained requested resource capacity and the policy of the communication carrier, and adds information including the determined capacity to the requested resource capacity. It is sent to the CRMF 371 as a response.
  • the PCF 360 may decide to provide the terminal 20 with computing resources of the same capacity as the requested resource capacity, or may decide to provide the terminal 20 with computing resources with a capacity less than the requested resource capacity. , it may be determined to provide the terminal 20 with computing resources having a capacity exceeding the requested resource capacity.
  • the CRMF 371 selects the UCRF 381. For example, the CRMF 371 may select a UCRF 381 that is close to the terminal 20 based on the location information of the terminal 20.
  • the CRMF 371 transmits a UCRF session establishment request to the UCRF 381.
  • the CRMF 371 sets a computational resource generation request in the UCRF session establishment request.
  • the computational resource generation request may be set based on the requested resource capacity, or may include information indicating the capacity of the computational resource based on the requested resource capacity response obtained from the PCF 360.
  • the UCRF 381 sets a container.
  • the container may be set based on the capacity of the computational resources obtained from the CRMF 371.
  • the UCRF 381 transmits a UCRF session establishment response to the CRMF 371.
  • the CRMF 371 transmits a CRMF session establishment response to the AMF 310.
  • the AMF 310 transmits a CRMF session establishment response to the terminal 20.
  • the UCRF 381 may obtain an external communication IP address from the interface with the DN, for example. Further, in step S114, the UCRF 381 may launch an in-container application.
  • the application may be a communication application that uses the acquired external communication IP address.
  • the terminal 20 may use the container set in the UCRF 381 to receive services from the communication carrier.
  • FIG. 4 is a sequence diagram showing an example of the flow of the CRMF session change procedure according to the embodiment of the present invention.
  • step S200 it is assumed that the CRMF session has been established.
  • step S201 the terminal 20 specifies the CRMF session ID and transmits a CRMF session change request to the AMF 310.
  • the terminal 20 may set, in the CRMF session change request, the change resource capacity, which is information requesting a change in the capacity, capability, execution environment, etc. of the computational resources of the container to be changed.
  • the AMF 310 transmits a CRMF session change request to the CRMF 371.
  • the AMF 310 includes the CRMF session ID set by the terminal 20 in the CRMF session change request.
  • the AMF 310 may include the changed resource capacity set by the terminal 20 in the CRMF session change request.
  • the CRMF 371 determines whether the CRMF session change request from the terminal 20 is accepted, based on the subscriber information already acquired by its own node. If the CRMF session change request from the terminal 20 is accepted based on the determination, the process may proceed to step S204.
  • the CRMF 371 transmits the changed resource capacity acquired by the CRMF session change request to the PCF 360.
  • the PCF 360 determines the capacity of the computing resource to be provided to the terminal 20 based on the information included in the acquired changed resource capacity and the policy of the communication carrier, and changes the information including the determined capacity to the changed resource capacity. It is sent to the CRMF 371 as a response.
  • the PCF 360 may decide to provide the terminal 20 with computational resources of the same capacity as the modified resource capacity, or may decide to provide the terminal 20 with computational resources with a capacity less than the modified resource capacity. , it may be determined to provide the terminal 20 with computing resources having a capacity exceeding the modified resource capacity capacity.
  • the CRMF 371 transmits a UCRF session change request to the UCRF 381.
  • the CRMF 371 sets a computational resource change request in the UCRF session change request.
  • the computing resource change request may be set based on the changed resource capacity, or may include information indicating the capacity of the computing resource based on the changed resource capacity response obtained from the PCF 360.
  • the UCRF 381 changes the container based on the UCRF session change request.
  • the container may be changed based on the capacity of the computational resources obtained from the CRMF 371.
  • the UCRF 381 transmits a UCRF session change response to the CRMF 371.
  • the CRMF 371 transmits a CRMF session change response to the AMF 310.
  • the AMF 310 transmits a CRMF session change response to the terminal 20.
  • FIG. 5 is a sequence diagram showing an example of the flow of a service request procedure according to an embodiment of the present invention.
  • step S300 it is assumed that the CRMF session has been established.
  • step S301 the UCRF 381 detects that the container is not in use.
  • step S302 the UCRF 381 deactivates the container.
  • UCRF 381 may deactivate a container based on the carrier's policy if the container is not used for a certain period of time.
  • step S303 the terminal 20 specifies the CRMF session ID in the list of containers requiring activation and transmits a service request to the AMF 310.
  • step S304 the AMF 310 transmits to the CRMF 371 a context update request including an information element (IE: Information Element) indicating the container state set to "active". Note that “activating”, “activated”, or “inactivated” may be set as the value of the information element indicating the container state.
  • IE Information Element
  • the CRMF 371 transmits a UCRF session change request to the UCRF 381.
  • the CRMF 371 sets a computational resource change request in the UCRF session change request.
  • the CRMF 371 may set an information element indicating the container state obtained from the context update request in the calculation resource change request.
  • the UCRF 381 activates the container based on the UCRF session change request.
  • the UCRF 381 transmits a UCRF session change response to the CRMF 371.
  • the CRMF 371 transmits a context update response to the AMF 310.
  • the AMF 310 transmits a service response to the terminal 20.
  • FIG. 6 is a sequence diagram showing an example of the flow of the CRMF session release procedure according to the embodiment of the present invention.
  • step S400 it is assumed that the CRMF session has been established.
  • step S401 the terminal 20 specifies the CRMF session ID and transmits a CRMF session release request to the AMF 310.
  • the AMF 310 transmits a CRMF session release request to the CRMF 371.
  • the AMF 310 includes the CRMF session ID set by the terminal 20 in the CRMF session release request.
  • the CRMF 371 transmits a UCRF session release request to the UCRF 381 to release the UCRF session corresponding to the CRMF session specified by the received CRMF session release request.
  • the UCRF 381 releases the corresponding container based on the received UCRF session release request.
  • the UCRF 381 transmits a UCRF session release response to the CRMF 371.
  • the CRMF 371 transmits a CRMF session release response to the AMF 310.
  • the AMF 310 transmits a CRMF session release response to the terminal 20.
  • FIG. 7 is a sequence diagram showing an example of the flow of the CRMF registration procedure according to the embodiment of the present invention.
  • the CRMF registration procedure is a procedure for registering the CRMF 371 in the UDM 320.
  • the "Ncrmf_CRMFSession" service that controls the CRMF session context included in the CRMF 371 is introduced into the C-Plane function group.
  • the CRMF 371 sends a "Nudm_UECM_Registration" request to the UDM 320 (step S451).
  • the "Nudm_UECM_Registration” request may include the NF instance ID of the CRMF 371, the CRMF session ID assigned by the terminal 20 at the time of the container generation request, the SUPI (Subscription Permanent Identifier) of the terminal, and the like.
  • the "Nudm_UECM_Registration” request is an example of a request to register the CRMF 371 to the UDM 320.
  • the UDM 320 transmits a "Nudm_UECM_Registration" response to the CRFM 371 (step S452).
  • FIG. 8 is a sequence diagram showing an example of the flow of the PDU session establishment procedure according to the embodiment of the present invention.
  • the PDU session establishment procedure is a procedure for establishing a PDU session, and has the same flow as the conventional procedure. Below, we will mainly explain the differences from the conventional method.
  • the terminal 20 transmits a PDU session establishment request to the AMF 310 (step S501).
  • the PDU session establishment request may include an information element requesting "responseless container transfer” in addition to the conventional information element.
  • a "non-responsive container transfer” is a transfer to a container without responding.
  • the AMF 310 transmits a PDU session establishment request to the SMF 370 (step S502).
  • the SMF 370 transmits a PDU session compatible policy request to the PCF 360 (step S503).
  • the PCF 360 transmits the PDU session corresponding policy response to the SMF 370 (step S504).
  • the SMF 370 transmits a PDU session establishment response to the AMF 310 (step S505).
  • the AMF 310 notifies the terminal 20 of the PDU session establishment response (step S506).
  • the PDU session correspondence policy may include an information element requesting "responseless container transfer".
  • the subscriber can set or change the PDU session correspondence policy owned by the PCF 360 via the NEF 330.
  • the SMF 370 receives a request for "container transfer without response” from the terminal 20 or PCF 360, it may store an information element requesting "container transfer without response" as the context of the PDU session.
  • the established PDU session will be in a preservation state.
  • the transfer procedure when a packet arrives at the PDU session will be described below.
  • FIG. 9 is a sequence diagram illustrating an example of the flow of the incoming packet transfer determination procedure according to the embodiment of the present invention.
  • the incoming packet transfer determination procedure is a procedure for determining whether or not to transfer an incoming packet to the container 382.
  • the UPF 380 receives a packet from the originating terminal 20A (step S601).
  • the calling terminal 20A is an example of a receiving party.
  • the destination may be an external terminal or an external application (such as a network node that executes processing specified in an application program).
  • the UPF 380 buffers (stores) the packet.
  • the UPF 380 is an example of a first network node that stores packets to be transferred to computational resources set for each subscriber.
  • the UPF 380 notifies the SMF 370 of the packet arrival (step S602).
  • the SMF 370 determines whether the context of the PDU session includes "no response container transfer” (step S603). If the SMF 370 determines that the context of the PDU session includes "container transfer without response,” it determines that the incoming packet should be transferred to the container (step S604).
  • the SMF 370 determines that the context of the PDU session does not include "responseless container transfer", it transmits a terminal call request to the AMF 310 (step S605).
  • AMF 310 transmits the terminal call to receiving terminal 20B (step S606).
  • the receiving terminal 20B transmits a service request to the AMF 310 (step S607).
  • the AMF 310 determines whether "container transfer” is included in the service request (step S608). If the AMF 310 determines that "container transfer” is included in the service request, it transmits an "Nsmf_PDUSession_UpdateSMContext" request including an information element requesting the container to transfer the incoming packet to the SMF 370 (step S609). Therefore, the SMF 370 determines that the incoming packet should be forwarded to the container 382 (step S610).
  • the AMF 310 determines that "container transfer” is not included in the service request, it transmits an "Nsmf_PDUSession_UpdateSMContext" request that does not include an information element requesting the container to transfer the incoming packet to the SMF 370 (step S611). . Therefore, the SMF 370 determines that the incoming packet should not be forwarded to the container 382 (step S612).
  • FIG. 10 is a sequence diagram showing an example of the flow of the incoming packet transfer procedure according to the embodiment of the present invention.
  • the incoming packet transfer procedure is a procedure for transferring an incoming packet when the SMF 370 determines that the incoming packet should be transferred to the container 382 in the incoming packet transfer determination procedure shown in FIG.
  • the SMF 370 transmits a "Nudm_UECM_Get” request to the UDM 320 (step S701).
  • the UDM 320 transmits a "Nudm_UECM_Get” response to the SMF 370 (step S702).
  • the "Nudm_UECM_Get” response includes the CRMF-NF instance ID and CRMF session ID.
  • the SMF 370 transmits a "Ncrmf_CRMFSession_UpdateCRMContext" request to the CRMF 371 (step S703).
  • the "Ncrmf_CRMFSession_UpdateCRMContext" request includes the CRMF session ID and the UPF 380 termination point information.
  • the SMF 370 is an example of a third network node that sends a notification to the CRMF 371 that the UPF 380 stores a packet to be transferred to the container 382.
  • the CRMF 371 sets the termination point of the UPF 380 to the UCRF 381 (and container 382) corresponding to the CRMF session ID (step S704).
  • the termination point of UPF 380 is a termination point that receives packets transmitted from UCRF 381 (and container 382).
  • the CRMF 371 is an example of a second network node that notifies the UCRF 381 (and the container 382) of setting information for transferring packets.
  • the UCRF 381 transmits the termination point information of the UCRF 381 (and the container 382), which receives the packet transmitted from the UPF 380, to the CRMF 371 (step S705).
  • the CRMF 371 transmits the "Ncrmf_CRMFSession_UpdateCRMContext" response to the SMF 370 (step S706).
  • the SMF 370 sets the termination point of the UCRF 381 (and the container 382) to the UPF 380 (step S707).
  • the termination point of UCRF 381 (and container 382) is a termination point that receives packets transmitted from UPF 380.
  • the UPF 380 transfers the incoming packet to the container 382 (step S708).
  • the incoming packet is a packet that the UPF 380 receives from the originating terminal 20A in step S601 of the incoming packet transfer determination procedure shown in FIG. 9, and is buffered.
  • the core network 30 can forward the incoming packet to the container 382 by the incoming packet forwarding determination procedure shown in FIG. 9 and the incoming packet forwarding procedure shown in FIG.
  • a container will be positioned as a UF (User Function) similar to an NF (Network Function).
  • UF User Function
  • Nnrf_UFManagement is defined as a new service similar to the existing service
  • Nnrf_UFDiscovery is defined as a new service similar to the existing service "Nnrf_NFDiscovery” in the NRF 340.
  • UProfile is defined as a new information element similar to the existing information element "NFProfile”.
  • FIG. 11 is a sequence diagram showing an example of the flow of the container registration procedure according to the embodiment of the present invention. Note that, as a premise, the container 382 (or CRMF 371) acquires the internal communication IP address and the external communication IP address of the container 382 when the container 382 is generated.
  • the CRMF 371 creates "UFProfile” for the container 382 (step S801).
  • "UFProfile” includes a UF instance ID, SUPI, internal communication IP address, external communication IP address, CRMF-NF instance ID, and the like.
  • the CRMF 371 transmits a "Nnrf_UFManagement_UFRegister" request to the NRF 340 (step S802).
  • NRF 340 is an example of a network management node that manages the network to discover NF instances that provide services.
  • the container 382 may create its own “UFProfile”. In this case, the container 382 creates its own “UFProfile” and sends a "Nnrf_UFManagement_UFRegister” request to the NRF 340.
  • FIG. 12 is a sequence diagram showing an example of the flow of the inter-container communication procedure according to the embodiment of the present invention.
  • the communication source container 382-1 transmits "Nnrf_UFDiscovery_Request" to the NRF 340 (step S901).
  • "Nnrf_UFDiscovery_Request” has the SUPI of the destination set as a search key.
  • the NRF 340 transmits "Nnrf_UFDiscovery_Response” to the communication source container 382-1 (step S902).
  • "Nnrf_UFDiscovery_Response” includes "UFProfile” of the communication destination container 382-2.
  • the communication source container 382-1 starts communication to the communication destination container 382-2 (step S903).
  • the communication source container can discover and communicate with the communication destination container.
  • the core network 30 (CRMF 371) may operate in any of the following three operation modes regarding container movement.
  • Container movement mode 1 the CRMF 371 does not move containers.
  • Container movement mode 1 is assumed to be used when a network in which UCRFs are arranged in a concentrated manner is adopted.
  • the CRMF 371 stops and deletes the container in use, and then sets a new container at the movement destination.
  • the CRMF 371 sets a new container at the movement destination while leaving the container in use running. Then, after the application within the container moves the context, the CRMF 371 stops and deletes the container in use.
  • Container movement mode 2 and container movement mode 3 are assumed to be used when a network in which UCRFs are distributed and arranged is adopted.
  • the CRMF 371 may decide the necessity of container movement and the selection of the container movement mode in accordance with the judgment of the PCF 360, or may decide on its own.
  • the PCF 360 or CRMF 371 receives the terminal location (for example, information obtained from the AMF terminal location disclosure service), the subscriber's preferences regarding container movement (for example, the information notified by the terminal when the target container was created, subscriber information), etc.
  • the necessity of container movement or the selection of a container movement mode may be made based on the received information.
  • FIG. 13 is a sequence diagram showing an example of the flow of a container movement procedure according to container movement mode 2 according to the embodiment of the present invention.
  • the CRMF 371 determines the movement of the container (step S1001). Next, the CRMF 371 requests the NRF 340 for the "UFProfile" of the source container (step S1002). The NRF 340 responds to the CRMF 371 with the "UFProfile” of the source container (step S1003).
  • step S1004 the CRMF 371 stops and deletes the source container.
  • step S1005 the CRMF 371 sets a destination container.
  • the destination container may be a container that has the same "UFProfile" as the source container.
  • the CRMF 371 may assign the same CRMF session ID as the source container to the destination container and add a CRMF session ID child number.
  • the destination container obtains an internal communication IP address and an external communication IP address.
  • the CRMF 371 transmits a "Nnrf_UFManagement_UFUpdate” request to the NRF 340 (step S1006).
  • the NRF 340 registers "UFProfile” corresponding to the destination container as an overwrite of "UFProfile” of the source container.
  • FIG. 14 is a sequence diagram showing an example of the flow of a container movement procedure according to container movement mode 3 according to the embodiment of the present invention.
  • the CRMF 371 determines the movement of the container (step S1101). Next, the CRMF 371 requests the "UFProfile” of the source container 382-3 from the NRF 340 (step S1102). The NRF 340 responds with the "UFProfile” of the source container 382-3 to the CRMF 371 (step S1103).
  • the CRMF 371 sets the destination container 382-4 (step S1104).
  • the specific procedure may be the same as steps S108 to S110 of the CRMF session establishment procedure shown in FIG. 3.
  • the destination container 382-4 may be a container that has the same "UFProfile" as the source container 382-3.
  • the CRMF 371 may assign the same CRMF session ID as the source container 382-3 to the destination container 382-4 and add a CRMF session ID child number.
  • the CRMF session ID child number may be a serial number starting from 1, for example.
  • the destination container 382-4 obtains an internal communication IP address and an external communication IP address.
  • the CRMF 371 notifies the destination container 382-4 of the internal communication IP address of the source container 382-3 (step S1105). Then, the CRMF 371 notifies the source container 382-3 of the internal communication IP address of the destination container 382-4 (step S1106).
  • the source container 382-3 moves the context to the destination container 382-4 (step S1107).
  • the context may be, for example, various data, application programs, setting information, etc.
  • the CRMF 371 stops and deletes the source container 382-3 when the timer expires or the like (step S1108). Then, the CRMF 371 transmits a "Nnrf_UFManagement_UFUpdate” request to the NRF 340 (step S1109).
  • the NRF 340 registers "UFProfile” corresponding to the destination container 382-4 as an overwrite of "UFProfile” in the source container 382-3.
  • the core network 30 can move containers in accordance with subscriber movement, etc.
  • Base station 10, terminal 20, and various network nodes include functionality to implement the embodiments described above. However, the base station 10, the terminal 20, and various network nodes may each have only some of the functions in the embodiment.
  • FIG. 15 is a diagram showing an example of the functional configuration of the base station 10.
  • base station 10 includes a transmitting section 110, a receiving section 120, a setting section 130, and a control section 140.
  • the functional configuration shown in FIG. 15 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
  • the network node may have the same functional configuration as the base station 10. Further, a network node having a plurality of different functions in the system architecture may be configured from a plurality of network nodes separated for each function.
  • the transmitting unit 110 includes a function of generating a signal to be transmitted to the terminal 20 or another network node, and transmitting the signal by wire or wirelessly.
  • the receiving unit 120 includes a function of receiving various signals transmitted from the terminal 20 or other network nodes, and acquiring, for example, information on a higher layer from the received signals.
  • the setting unit 130 stores preset setting information and various setting information to be sent to the terminal 20 in a storage device, and reads them from the storage device as necessary.
  • the contents of the setting information include, for example, settings related to communication using NTN.
  • control unit 140 performs processing related to communication using NTN. Further, the control unit 140 performs processing related to communication with the terminal 20. Further, the control unit 140 performs processing related to verifying the geographical position of the terminal 20.
  • a functional unit related to signal transmission in the control unit 140 may be included in the transmitting unit 110, and a functional unit related to signal reception in the control unit 140 may be included in the receiving unit 120.
  • FIG. 16 is a diagram showing an example of the functional configuration of the terminal 20.
  • the terminal 20 includes a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240.
  • the functional configuration shown in FIG. 16 is only an example. As long as the operations according to the embodiments of the present invention can be carried out, the functional divisions and functional parts may have any names.
  • the USIM attached to the terminal 20 may include a transmitting section 210, a receiving section 220, a setting section 230, and a control section 240, like the terminal 20.
  • the transmitter 210 creates a transmission signal from the transmission data and wirelessly transmits the transmission signal.
  • the receiving unit 220 wirelessly receives various signals and obtains higher layer signals from the received physical layer signals. Furthermore, the receiving unit 220 has a function of receiving NR-PSS, NR-SSS, NR-PBCH, DL/UL control signals, reference signals, etc. transmitted from network nodes.
  • the setting unit 230 stores various setting information received from the network node by the receiving unit 220 in a storage device, and reads it from the storage device as necessary.
  • the setting unit 230 also stores setting information that is set in advance.
  • the network node of this embodiment may be configured as a network node shown in each section below. Additionally, the following communication method may be implemented.
  • (Section 4) receiving information indicating attributes of computing resources configured for a subscriber and the location of the subscriber's terminal; controlling the movement of the computational resource to another network node based on attributes of the computational resource and information indicating the location of the subscriber's terminal; A communication method performed by network nodes.
  • any of the above configurations provides a technique that allows computing resources on the network to be moved in accordance with the movement of subscribers.
  • the destination computational resource can be set.
  • the context of the source computing resource can be moved to the destination computing resource.
  • each functional block may be realized using one physically or logically coupled device, or may be realized using two or more physically or logically separated devices directly or indirectly (e.g. , wired, wireless, etc.) and may be realized using a plurality of these devices.
  • the functional block may be realized by combining software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, exploration, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, consideration, These include, but are not limited to, broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, and assigning. I can't do it.
  • a functional block (configuration unit) that performs transmission is called a transmitting unit or a transmitter. In either case, as described above, the implementation method is not particularly limited.
  • the network node, terminal 20, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 17 is a diagram illustrating an example of the hardware configuration of the base station 10 and the terminal 20 according to an embodiment of the present disclosure.
  • the network node may have a similar hardware configuration to the base station 10.
  • the USIM may have the same hardware configuration as the terminal 20.
  • the base station 10 and terminal 20 described above are physically configured as a computer device including a processor 1001, a storage device 1002, an auxiliary storage device 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, etc. Good too.
  • the word “apparatus” can be read as a circuit, a device, a unit, etc.
  • the hardware configuration of the base station 10 and the terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured not to include some of the devices.
  • Each function in the base station 10 and the terminal 20 is performed by loading predetermined software (programs) onto hardware such as the processor 1001 and the storage device 1002, so that the processor 1001 performs calculations and controls communication by the communication device 1004. This is realized by controlling at least one of reading and writing data in the storage device 1002 and the auxiliary storage device 1003.
  • the processor 1001 for example, operates an operating system to control the entire computer.
  • the processor 1001 may be configured with a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 140, control unit 240, etc. may be implemented by the processor 1001.
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the auxiliary storage device 1003 and the communication device 1004 to the storage device 1002, and executes various processes in accordance with these.
  • programs program codes
  • software modules software modules
  • data etc.
  • the program a program that causes a computer to execute at least part of the operations described in the above embodiments is used.
  • the control unit 140 of the base station 10 shown in FIG. 15 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • the control unit 240 of the terminal 20 shown in FIG. 16 may be realized by a control program stored in the storage device 1002 and operated on the processor 1001.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via a telecommunications line.
  • the storage device 1002 is a computer-readable recording medium, such as at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically Erasable Programmable ROM), RAM (Random Access Memory), etc. may be configured.
  • the storage device 1002 may be called a register, cache, main memory, or the like.
  • the storage device 1002 can store executable programs (program codes), software modules, and the like to implement a communication method according to an embodiment of the present disclosure.
  • the auxiliary storage device 1003 is a computer-readable recording medium, such as an optical disk such as a CD-ROM (Compact Disc ROM), a hard disk drive, a flexible disk, a magneto-optical disk (for example, a compact disk, a digital versatile disk, a Blu-ray disk, etc.). -ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, etc.
  • the above-mentioned storage medium may be, for example, a database including at least one of the storage device 1002 and the auxiliary storage device 1003, a server, or other suitable medium.
  • the communication device 1004 is hardware (transmission/reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as a network device, network controller, network card, communication module, etc., for example.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the transmitting and receiving unit may be physically or logically separated into a transmitting unit and a receiving unit.
  • the input device 1005 is an input device (eg, keyboard, mouse, microphone, switch, button, sensor, etc.) that accepts input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside. Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the storage device 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses for each device.
  • the base station 10 and the terminal 20 also include hardware such as a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), and a field programmable gate array (FPGA).
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a part or all of each functional block may be realized by the hardware.
  • processor 1001 may be implemented using at least one of these hardwares.
  • FIG. 18 shows an example of the configuration of the vehicle 2001.
  • the vehicle 2001 includes a drive unit 2002, a steering unit 2003, an accelerator pedal 2004, a brake pedal 2005, a shift lever 2006, a front wheel 2007, a rear wheel 2008, an axle 2009, an electronic control unit 2010, and various sensors 2021 to 2029. , an information service section 2012 and a communication module 2013.
  • Each aspect/embodiment described in this disclosure may be applied to a communication device mounted on vehicle 2001, for example, may be applied to communication module 2013.
  • the drive unit 2002 is composed of, for example, an engine, a motor, or a hybrid of an engine and a motor.
  • the steering unit 2003 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels and the rear wheels based on the operation of the steering wheel operated by the user.
  • the electronic control unit 2010 is composed of a microprocessor 2031, memory (ROM, RAM) 2032, and communication port (IO port) 2033. Signals from various sensors 2021 to 2029 provided in the vehicle 2001 are input to the electronic control unit 2010.
  • the electronic control unit 2010 may also be called an ECU (Electronic Control Unit).
  • Signals from various sensors 2021 to 2029 include a current signal from a current sensor 2021 that senses the motor current, a front wheel and rear wheel rotation speed signal obtained by a rotation speed sensor 2022, and a front wheel rotation speed signal obtained by an air pressure sensor 2023. and rear wheel air pressure signals, vehicle speed signals acquired by vehicle speed sensor 2024, acceleration signals acquired by acceleration sensor 2025, accelerator pedal depression amount signals acquired by accelerator pedal sensor 2029, and brake pedal sensor 2026. These include a brake pedal depression amount signal, a shift lever operation signal acquired by the shift lever sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028, and the like.
  • the information service department 2012 includes various devices such as car navigation systems, audio systems, speakers, televisions, and radios that provide various information such as driving information, traffic information, and entertainment information, as well as one or more devices that control these devices. It consists of an ECU.
  • the information service unit 2012 provides various multimedia information and multimedia services to the occupants of the vehicle 2001 using information acquired from an external device via the communication module 2013 and the like.
  • the driving support system unit 2030 includes a millimeter wave radar, LiDAR (Light Detection and Ranging), a camera, a positioning locator (for example, GNSS, etc.), map information (for example, a high-definition (HD) map, an autonomous vehicle (AV) map, etc.) ), gyro systems (e.g., IMU (Inertial Measurement Unit), INS (Inertial Navigation System), etc.), AI (Artificial Intelligence) chips, and AI processors that prevent accidents and reduce the driver's driving burden.
  • the system is comprised of various devices that provide functions for the purpose and one or more ECUs that control these devices. Further, the driving support system unit 2030 transmits and receives various information via the communication module 2013, and realizes a driving support function or an automatic driving function.
  • Communication module 2013 can communicate with microprocessor 2031 and components of vehicle 2001 via a communication port.
  • the communication module 2013 communicates with the drive unit 2002, steering unit 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheels 2007, rear wheels 2008, axle 2009, electronic Data is transmitted and received between the microprocessor 2031, memory (ROM, RAM) 2032, and sensors 2021 to 29 in the control unit 2010.
  • the communication module 2013 is a communication device that can be controlled by the microprocessor 2031 of the electronic control unit 2010 and can communicate with external devices. For example, various information is transmitted and received with an external device via wireless communication.
  • the communication module 2013 may be located either inside or outside the electronic control unit 2010.
  • the external device may be, for example, a base station, a mobile station, or the like.
  • the communication module 2013 transmits the current signal from the current sensor input to the electronic control unit 2010 to an external device via wireless communication.
  • the communication module 2013 also receives the front wheel and rear wheel rotational speed signals inputted to the electronic control unit 2010 and acquired by the rotational speed sensor 2022, the front wheel and rear wheel air pressure signals acquired by the air pressure sensor 2023, and the vehicle speed sensor. 2024, an acceleration signal obtained by acceleration sensor 2025, an accelerator pedal depression amount signal obtained by accelerator pedal sensor 2029, a brake pedal depression amount signal obtained by brake pedal sensor 2026, and a shift lever.
  • a shift lever operation signal acquired by the sensor 2027, a detection signal for detecting obstacles, vehicles, pedestrians, etc. acquired by the object detection sensor 2028 are also transmitted to the external device via wireless communication.
  • the communication module 2013 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device, and displays it on the information service section 2012 provided in the vehicle 2001.
  • Communication module 2013 also stores various information received from external devices into memory 2032 that can be used by microprocessor 2031 . Based on the information stored in the memory 2032, the microprocessor 2031 controls the drive section 2002, steering section 2003, accelerator pedal 2004, brake pedal 2005, shift lever 2006, front wheel 2007, rear wheel 2008, and axle 2009 provided in the vehicle 2001. , sensors 2021 to 2029, etc. may be controlled.
  • the operations of a plurality of functional sections may be physically performed by one component, or the operations of one functional section may be physically performed by a plurality of components.
  • the order of processing may be changed as long as there is no contradiction.
  • Software operated by the processor included in the base station 10 according to the embodiment of the present invention and software operated by the processor included in the terminal 20 according to the embodiment of the present invention are respectively random access memory (RAM), flash memory, and read-only memory. (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server, or any other suitable storage medium.
  • the notification of information is not limited to the aspects/embodiments described in this disclosure, and may be performed using other methods.
  • the notification of information may be physical layer signaling (e.g., DCI (Downlink Control Information), UCI (Uplink Control Information)), upper layer signaling (e.g., RRC (Radio Resource Control) signaling, MAC (Medium Access Control) signaling). , broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be called an RRC message, and may be, for example, an RRC Connection Setup message, an RRC Connection Reconfiguration message, or the like.
  • Each aspect/embodiment described in this disclosure is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), 5G (5th generation mobile communication system). system), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is an integer or decimal number, for example)), FRA (Future Radio Access), NR (new Radio), New radio access ( NX), Future generation radio access (FX), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi (registered trademark)), IEEE 802 Systems that utilize .16 (WiMAX (registered trademark)), IEEE 802.20, UWB (Ultra-WideBand), Bluetooth (registered trademark), and other appropriate systems, and that are extended, modified, created, and defined based on these.
  • the present invention may be
  • the base station 10 may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal 20 are performed by the base station 10 and other network nodes other than the base station 10. It is clear that this can be done by at least one of the following: for example, MME or S-GW (possible, but not limited to).
  • MME Mobility Management Entity
  • S-GW Packet Control Function
  • the other network node may be a combination of multiple other network nodes (for example, MME and S-GW).
  • the information, signals, etc. described in this disclosure can be output from an upper layer (or lower layer) to a lower layer (or upper layer). It may be input/output via multiple network nodes.
  • the input/output information may be stored in a specific location (for example, memory) or may be managed using a management table. Information etc. to be input/output may be overwritten, updated, or additionally written. The output information etc. may be deleted. The input information etc. may be transmitted to other devices.
  • the determination in the present disclosure may be performed based on a value represented by 1 bit (0 or 1), a truth value (Boolean: true or false), or a comparison of numerical values (e.g. , comparison with a predetermined value).
  • Software includes instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, whether referred to as software, firmware, middleware, microcode, hardware description language, or by any other name. , should be broadly construed to mean an application, software application, software package, routine, subroutine, object, executable, thread of execution, procedure, function, etc.
  • software, instructions, information, etc. may be sent and received via a transmission medium.
  • a transmission medium For example, if the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to create a website, When transmitted from a server or other remote source, these wired and/or wireless technologies are included within the definition of transmission medium.
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. which may be referred to throughout the above description, may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may also be represented by a combination of
  • At least one of the channel and the symbol may be a signal.
  • the signal may be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” are used interchangeably.
  • radio resources may be indicated by an index.
  • Base Station BS
  • wireless base station base station
  • base station fixed station
  • NodeB eNodeB
  • gNodeB gNodeB
  • a base station can accommodate one or more (eg, three) cells. If a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is divided into multiple subsystems (e.g., small indoor base stations (RRHs)). Communication services can also be provided by Remote Radio Head).
  • RRHs small indoor base stations
  • Communication services can also be provided by Remote Radio Head).
  • the term "cell” or “sector” refers to part or all of the coverage area of a base station and/or base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by a person skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable terminology.
  • At least one of a base station and a mobile station may be called a transmitting device, a receiving device, a communication device, etc.
  • the base station and the mobile station may be a device mounted on a mobile body, the mobile body itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, etc.), an unmanned moving object (for example, a drone, a self-driving car, etc.), or a robot (manned or unmanned). ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced by a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of terminals 20 (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • the terminal 20 may have the functions that the base station 10 described above has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be replaced with side channels.
  • the user terminal in the present disclosure may be replaced with a base station.
  • the base station may have the functions that the user terminal described above has.
  • determining may encompass a wide variety of operations.
  • “Judgment” and “decision” include, for example, judging, calculating, computing, processing, deriving, investigating, looking up, search, and inquiry. (e.g., searching in a table, database, or other data structure), and regarding an ascertaining as a “judgment” or “decision.”
  • judgment and “decision” refer to receiving (e.g., receiving information), transmitting (e.g., sending information), input, output, and access.
  • (accessing) may include considering something as a “judgment” or “decision.”
  • judgment and “decision” refer to resolving, selecting, choosing, establishing, comparing, etc. as “judgment” and “decision”. may be included.
  • judgment and “decision” may include regarding some action as having been “judged” or “determined.”
  • judgment (decision) may be read as “assuming", “expecting", “considering”, etc.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements and to each other. It may include the presence of one or more intermediate elements between two elements that are “connected” or “coupled.”
  • the bonds or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be replaced with "access.”
  • two elements may include one or more electrical wires, cables, and/or printed electrical connections, as well as in the radio frequency domain, as some non-limiting and non-inclusive examples. , electromagnetic energy having wavelengths in the microwave and optical (both visible and non-visible) ranges.
  • the reference signal can also be abbreviated as RS (Reference Signal), and may be called a pilot depending on the applied standard.
  • RS Reference Signal
  • the phrase “based on” does not mean “based solely on” unless explicitly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • any reference to elements using the designations "first,” “second,” etc. does not generally limit the amount or order of those elements. These designations may be used in this disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • a radio frame may be composed of one or more frames in the time domain. Each frame or frames in the time domain may be called a subframe. A subframe may also be composed of one or more slots in the time domain. A subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter applied to the transmission and/or reception of a certain signal or channel. Numerology includes, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration, and transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • transmitter/receiver transmitter/receiver. It may also indicate at least one of a specific filtering process performed in the frequency domain, a specific windowing process performed by the transceiver in the time domain, and the like.
  • a slot may be composed of one or more symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbols, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbols, etc.) in the time domain.
  • a slot may be a unit of time based on numerology.
  • a slot may include multiple mini-slots. Each minislot may be made up of one or more symbols in the time domain. Furthermore, a mini-slot may also be called a sub-slot. A minislot may be made up of fewer symbols than a slot.
  • PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals. Other names may be used for the radio frame, subframe, slot, minislot, and symbol.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. It's okay.
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (for example, 1-13 symbols), or a period longer than 1ms. It may be.
  • the unit representing the TTI may be called a slot, minislot, etc. instead of a subframe.
  • TTI refers to, for example, the minimum time unit for scheduling in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each terminal 20) to each terminal 20 on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each terminal 20
  • TTI is not limited to this.
  • the TTI may be a transmission time unit of a channel-coded data packet (transport block), a code block, a codeword, etc., or may be a processing unit of scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) to which transport blocks, code blocks, code words, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling.
  • the number of slots (minislot number) that constitutes the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in LTE Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than the normal TTI may be referred to as an abbreviated TTI, short TTI, partial or fractional TTI, shortened subframe, short subframe, minislot, subslot, slot, etc.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, short TTI, etc. It may also be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more continuous subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of the numerology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on newerology.
  • the time domain of an RB may include one or more symbols, and may be one slot, one minislot, one subframe, or one TTI in length.
  • One TTI, one subframe, etc. may each be composed of one or more resource blocks.
  • one or more RBs include physical resource blocks (PRBs), sub-carrier groups (SCGs), resource element groups (REGs), PRB pairs, RB pairs, etc. May be called.
  • PRBs physical resource blocks
  • SCGs sub-carrier groups
  • REGs resource element groups
  • PRB pairs RB pairs, etc. May be called.
  • a resource block may be configured by one or more resource elements (REs).
  • REs resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a bandwidth part (which may also be called a partial bandwidth or the like) may represent a subset of consecutive common resource blocks (RBs) for a certain numerology in a certain carrier.
  • the common RB may be specified by an RB index based on a common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include a UL BWP (UL BWP) and a DL BWP (DL BWP).
  • UL BWP UL BWP
  • DL BWP DL BWP
  • One or more BWPs may be configured for the terminal 20 within one carrier.
  • At least one of the configured BWPs may be active, and the terminal 20 does not need to assume that it transmits or receives a given signal/channel outside the active BWP.
  • Note that "cell”, “carrier”, etc. in the present disclosure may be replaced with "BWP”.
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of symbols included in an RB, Configurations such as the number of subcarriers, the number of symbols in a TTI, the symbol length, and the cyclic prefix (CP) length can be changed in various ways.
  • a and B are different may mean “A and B are different from each other.” Note that the term may also mean that "A and B are each different from C”. Terms such as “separate” and “coupled” may also be interpreted similarly to “different.”
  • notification of prescribed information is not limited to being done explicitly, but may also be done implicitly (for example, not notifying the prescribed information). Good too.
  • Base station (RAN) 110 Transmitting section 120 Receiving section 130 Setting section 140 Control section 20 Terminal 30 Core network 40 DN 210 Transmitting section 220 Receiving section 230 Setting section 240 Control section 310 AMF 320UDM 330 NEF 340 NRF 350 AUSF 360 PCF 370 SMF 371 CRMF 380 UPF 381 UCRF 382 Container 390 AF 1001 Processor 1002 Storage device 1003 Auxiliary storage device 1004 Communication device 1005 Input device 1006 Output device 2001 Vehicle 2002 Drive section 2003 Steering section 2004 Accelerator pedal 2005 Brake pedal 2006 Shift lever 2007 Front wheel 2008 Rear wheel 2009 Axle 2010 Electronic control section 2012 Information service Department 2013 Communication module 2021 Current sensor 2022 Rotational speed sensor 2023 Air pressure sensor 2024 Vehicle speed sensor 2025 Acceleration sensor 2026 Brake pedal sensor 2027 Shift lever sensor 2028 Object detection sensor 2029 Accelerator pedal sensor 2030 Driving support system section 2031 Microprocessor 2032 Memory (ROM, RAM) 2033 Communication port (IO port)

Abstract

加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信する受信部と、前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御する制御部と、を備えるネットワークノードである。

Description

ネットワークノード及び通信方法
 本発明は、無線通信システムにおけるネットワークノード及び通信方法に関する。
 LTE(Long Term Evolution)の後継システムであるNR(New Radio)(「5G」ともいう。)においては、LTE(Long Term Evolution)のネットワークアーキテクチャにおけるコアネットワークであるEPC(Evolved Packet Core)に対応する5GC(5G Core Network)及びLTEのネットワークアーキテクチャにおけるRAN(Radio Access Network)であるE-UTRAN(Evolved Universal Terrestrial Radio Access Network)に対応するNG-RAN(Next Generation - Radio Access Network)を含むネットワークアーキテクチャが検討されている(例えば非特許文献1及び非特許文献2)。
3GPP TS 23.501 V17.2.0(2021-09) 3GPP TS 23.502 V17.2.1(2021-09)
 ネットワーク内の計算資源を加入者に貸与するサービスを、通信事業者が提供することが想定される。加入者は、自らに関わる通信の発着信の終端点として、当該計算資源を用いることができる。加入者は、当該計算資源に計算能力を消費するアプリケーションプログラムを配置し、当該計算資源と端末を接続し、端末を出力端末として使用しても良い。低遅延を実現するため、当該計算資源は、加入者の近傍に配置することが望ましい。また、加入者の移動に伴い、当該計算資源も移動することが望ましい。しかしながら、既存の技術において、計算資源の移動は困難であった。
 本発明は上記の点に鑑みてなされたものであり、ネットワーク上の計算資源を、加入者の移動に伴って移動させることを目的とする。
 開示の技術によれば、加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信する受信部と、前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御する制御部と、を備えるネットワークノードが提供される。
 開示の技術によれば、ネットワーク上の計算資源を、加入者の移動に伴って移動させることを可能とする技術が提供される。
本発明の実施の形態に係る無線通信システムについて説明するための図である。 本発明の実施の形態に係るコアネットワークの構成の一例を示す図である。 本発明の実施の形態に係るCRMFセッション確立手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るCRMFセッション変更手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るサービス要求手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るCRMFセッション解放手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るCRMF登録手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るPDUセッション確立手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係る着信パケット転送判断手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係る着信パケット転送手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るコンテナ登録手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係るコンテナ間通信手順の流れの一例を示すシーケンス図である。 本発明の実施の形態のコンテナ移動モード2に係るコンテナ移動手順の流れの一例を示すシーケンス図である。 本発明の実施の形態のコンテナ移動モード3に係るコンテナ移動手順の流れの一例を示すシーケンス図である。 本発明の実施の形態に係る基地局の機能構成の一例を示す図である。 本発明の実施の形態に係る端末の機能構成の一例を示す図である。 本発明の実施の形態に係る基地局又は端末のハードウェア構成の一例を示す図である。 本発明の実施の形態に係る車両の構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例であり、本発明が適用される実施の形態は、以下の実施の形態に限られない。
 本発明の実施の形態の無線通信システムの動作にあたっては、適宜、既存技術が使用されてよい。当該既存技術は、例えば既存のNRあるいはLTEであるが、既存のNRあるいはLTEに限られない。また、本明細書で使用する用語「LTE」は、特に断らない限り、LTE-Advanced、及び、LTE-Advanced以降の方式(例:NR)を含む広い意味を有するものとする。
 また、以下で説明する本発明の実施の形態では、既存のLTEで使用されているSS(Synchronization signal)、PSS(Primary SS)、SSS(Secondary SS)、PBCH(Physical broadcast channel)、PRACH(Physical random access channel)、PDCCH(Physical Downlink Control Channel)、PDSCH(Physical Downlink Shared Channel)、PUCCH(Physical Uplink Control Channel)、PUSCH(Physical Uplink Shared Channel)等の用語を使用する。これは記載の便宜上のためであり、これらと同様の信号、機能等が他の名称で呼ばれてもよい。また、NRにおける上述の用語は、NR-SS、NR-PSS、NR-SSS、NR-PBCH、NR-PRACH等に対応する。ただし、NRに使用される信号であっても、必ずしも「NR-」と明記しない。
 また、本発明の実施の形態において、複信(Duplex)方式は、TDD(Time Division Duplex)方式でもよいし、FDD(Frequency Division Duplex)方式でもよいし、又はそれ以外(例えば、Flexible Duplex等)の方式でもよい。
 また、本発明の実施の形態において、無線パラメータ等が「設定される(Configure)」とは、所定の値が予め設定(Pre-configure)されることであってもよいし、基地局又は端末から通知される無線パラメータが設定されることであってもよい。
 (システム構成)
 図1は、本発明の実施の形態に係る無線通信システムについて説明するための図である。
本発明の実施の形態に係る無線通信システムは、図1に示されるように、基地局10及び端末20を含む。図1には、基地局10及び端末20が1つずつ示されているが、これは例であり、それぞれ複数であってもよい。
 基地局10は、1つ以上のセルを提供し、端末20と無線通信を行う通信装置である。無線信号の物理リソースは、時間領域及び周波数領域で定義され、時間領域はOFDM(Orthogonal Frequency Division Multiplexing)シンボル数で定義されてもよいし、周波数領域はサブキャリア数又はリソースブロック数で定義されてもよい。また、時間領域におけるTTI(Transmission Time Interval)がスロットであってもよいし、TTIがサブフレームであってもよい。
 基地局10は、同期信号及びシステム情報を端末20に送信する。同期信号は、例えば、NR-PSS及びNR-SSSである。システム情報は、例えば、NR-PBCHにて送信され、報知情報ともいう。同期信号及びシステム情報は、SSB(SS/PBCH block)と呼ばれてもよい。図1に示されるように、基地局10は、DL(Downlink)で制御信号又はデータを端末20に送信し、UL(Uplink)で制御信号又はデータを端末20から受信する。基地局10及び端末20はいずれも、ビームフォーミングを行って信号の送受信を行うことが可能である。また、基地局10及び端末20はいずれも、MIMO(Multiple Input Multiple Output)による通信をDL又はULに適用することが可能である。また、基地局10及び端末20はいずれも、CA(Carrier Aggregation)によるセカンダリセル(SCell:Secondary Cell)及びプライマリセル(PCell:Primary Cell)を介して通信を行ってもよい。さらに、端末20は、DC(Dual Connectivity)による基地局10のプライマリセル及び他の基地局10のプライマリセカンダリセルグループセル(PSCell:Primary SCG Cell)を介して通信を行ってもよい。
 端末20は、スマートフォン、携帯電話機、タブレット、ウェアラブル端末、M2M(Machine-to-Machine)用通信モジュール等の無線通信機能を備えた通信装置である。図1に示されるように、端末20は、DLで制御信号又はデータを基地局10から受信し、ULで制御信号又はデータを基地局10に送信することで、無線通信システムにより提供される各種通信サービスを利用する。また、端末20は、基地局10から送信される各種の参照信号を受信し、当該参照信号の受信結果に基づいて伝搬路品質の測定を実行する。なお、端末20をUEと呼び、基地局10をgNBと呼んでもよい。
 図2は、本発明の実施の形態に係るコアネットワークの構成の一例を示す図である。無線通信システムは、RAN(Radio Access Network)10と、端末20と、コアネットワーク30と、DN(Data Network)40と、を備える。
 コアネットワーク30は、交換機、加入者情報管理装置等を備えるネットワークである。コアネットワーク30は、U-Plane機能を実現させるネットワークノードと、C-Plane機能群を実現させるネットワークノード群とを備える。
 U-Plane機能は、ユーザデータの送受信処理を実行する機能である。U-Plane機能を実現させるネットワークノードは、例えばUPF(User plane function)380である。UPF380は、DN40と相互接続するための外部に対するPDU(Protocol Data Unit)セッションポイント、パケットのルーティング及びフォワーディング、ユーザプレーンのQoS(Quality of Service)ハンドリング等の機能を有するネットワークノードである。UPF380は、DN40と端末20との間のデータの送受信を制御する。UPF380及びDN40は、1または複数のネットワークスライスから構成されていてもよい。
 C-Plane機能群は、通信の確立などのための一連の制御処理を実行する機能群である。C-Plane機能群を実現させるネットワークノード群は、例えば、AMF(Access and Mobility Management Function)310と、UDM(Unified Data Management)320と、NEF(Network Exposure Function)330と、NRF(Network Repository Function)340と、AUSF(Authentication Server Function)350と、PCF(Policy Control Function)360と、SMF(Session Management Function)370と、AF(Application Function)390とを含む。
 RAN10は、コアネットワーク30と端末20との間で通信可能に接続され、基地局、回線制御装置等を含むネットワークノードである。RAN10は、AMF310およびUPF380と通信可能に接続されている。なお、以下では、基地局10をRAN10ともいう。
 AMF310は、RANインタフェースの終端、NAS(Non-Access Stratum)の終端、登録管理、接続管理、到達性管理、モビリティ管理等の機能を有するネットワークノードである。NRF340は、サービスを提供するNF(Network Function)インスタンスを発見する機能を有するネットワークノードである。UDM320は、加入者データ及び認証データを管理するネットワークノードである。UDM320は、当該データを保持するUDR(User Data Repository)321と、FE(Front End)322と、を含む。FE322は、加入者情報を処理する。
 SMF370は、セッション管理、端末20のIP(Internet Protocol)アドレス割り当て及び管理、DHCP(Dynamic Host Configuration Protocol)機能、ARP(Address Resolution Protocol)プロキシ、ローミング機能等の機能を有するネットワークノードである。NEF330は、他のNF(Network Function)に能力及びイベントを通知する機能を有するネットワークノードである。PCF360は、ネットワークのポリシ制御を行う機能を有するネットワークノードである。
 AF(Application Function)390は、アプリケーションサーバを制御する機能を有するネットワークノードである。
 端末20とAMF310とは、N1リンクとして通信可能に接続されている。AMF310とRAN10とは、N2リンクとして通信可能に接続されている。UPF380とRAN10とは、N3リンクとして通信可能に接続されている。UPF380とSMF370とは、N4リンクとして通信可能に接続されている。UPF380とDN40とは、N6リンクとして通信可能に接続されている。
 また、本実施の形態に係るコアネットワーク30は、上述した従来の構成に加えて、CRMF(Computing Resource Management Function)371とUCRF(User Computing Resource Function)381とをさらに備える。
 UCRF381は、ユーザ(加入者)が使用可能な計算資源を提供する機能(以下、ユーザ計算資源機能ともいう)である。計算資源を、以下ではコンテナともいう。なお、計算資源は、当該計算資源にインストールされる、各種アプリケーションを実行するための実行環境を含んでもよい。すなわち、UCRF381は、1または複数のコンテナ382を備える。UCRF381は、U-Plane機能に含まれ、UPF380と、Nyリンクとして通信可能に接続されている。また、UCRF381とDN40とはN6リンクとして通信可能に接続されている。
 CRMF371は、計算資源を管理する機能(以下、計算資源管理機能ともいう)である。CRMF371は、C-Plane機能群に含まれ、C-Plane機能群に含まれる他のネットワークノードと通信可能に接続されている。
 CRMF371とUCRF381とは、Nxリンクとして通信可能に接続されている。なお、NxリンクおよびNyリンクの名称は一例であって他でもよい。
 図3は、本発明の実施の形態に係るCRMFセッション確立手順の流れの一例を示すシーケンス図である。ステップS101において、端末20は、CRMFセッション確立要求をAMF310に送信する。端末20は、AMFにおける終端に係るCRMFセッションID及び要求する計算資源の容量を示す要求資源能力容量をCRMFセッション確立要求に、設定してもよい。なお、以下記載する「計算資源の容量」とは、計算資源の容量に加え、実行環境、能力等を含んでもよい。
 続くステップS102において、AMF310は、CRMFセッション確立要求をCRMF371に送信する。AMF310は、CRMFセッション確立要求に、端末20が設定したCRMFセッションIDを含める。AMF310は、CRMFセッション確立要求に、端末20が設定した要求資源能力容量を含めてもよい。
 続くステップS103において、CRMF371は、加入者情報を取得するため加入者情報確認をUDM320に送信する。続くステップS104において、UDM320は、加入者情報応答をCRMF371に送信する。CRMF371は、取得した加入者情報に基づいて、端末20からのCRMFセッション確立要求が許容されるか判定する。当該判定により端末20からのCRMFセッション確立要求が許容される場合、ステップS105に進んでもよい。一方、当該判定により端末20からのCRMFセッション確立要求が許容されない場合、CRMF371は、CRMFセッション確立要求が拒絶されたことを示す応答をAMF310に送信してもよい。AMF310は当該応答を端末20に送信してもよい。
 続くステップS105において、CRMF371は、CRMFセッション確立要求により取得した要求資源能力容量をPCF360に送信する。続くステップS106において、PCF360は、取得した要求資源能力容量に含まれる情報及び通信事業者のポリシに基づいて端末20に提供する計算資源の容量を決定し、決定した容量を含む情報を要求資源能力応答としてCRMF371に送信する。
 例えば、PCF360は、要求資源能力容量と同一容量の計算資源を端末20に提供すると決定してもよいし、要求資源能力容量未満の容量の計算資源を端末20に提供すると決定してもよいし、要求資源能力容量を超える容量の計算資源を端末20に提供すると決定してもよい。
 続くステップS107において、CRMF371は、UCRF381を選択する。例えば、CRMF371は、端末20の位置情報に基づいて、端末20と近接するUCRF381を選択してもよい。続くステップS108において、CRMF371は、UCRFセッション確立要求をUCRF381に送信する。CRMF371は、UCRFセッション確立要求に、計算資源生成要求を設定する。計算資源生成要求は、要求資源能力容量に基づいて設定されてもよいし、PCF360から取得した要求資源能力応答に基づく計算資源の容量を示す情報を含んでもよい。
 続くステップS109において、UCRF381は、コンテナを設定する。当該コンテナは、CRMF371から取得した計算資源の容量に基づいて設定されてもよい。続くステップS110において、UCRF381は、UCRFセッション確立応答をCRMF371に送信する。
 続くステップS111において、CRMF371は、CRMFセッション確立応答をAMF310に送信する。続くステップS112において、AMF310は、CRMFセッション確立応答を端末20に送信する。
 また、ステップS113において、UCRF381は、例えばDNとのインタフェースから外部通信用IPアドレスを取得してもよい。また、ステップS114において、UCRF381は、コンテナ内アプリを起動してもよい。当該アプリは、取得した外部通信用IPアドレスを使用する通信アプリであってもよい。
 なお、ステップS114以降、端末20は、UCRF381に設定されたコンテナを使用して通信事業者のサービスを受けてもよい。
 図4は、本発明の実施の形態に係るCRMFセッション変更手順の流れの一例を示すシーケンス図である。ステップS200において、CRMFセッションは確立済の状態であるものとする。
 ステップS201において、端末20は、CRMFセッションIDを指定してCRMFセッション変更要求をAMF310に送信する。端末20は、変更するコンテナの計算資源の容量、能力、実行環境等の変更を要求する情報である変更資源能力容量をCRMFセッション変更要求に設定してもよい。
 続くステップS202において、AMF310は、CRMFセッション変更要求をCRMF371に送信する。AMF310は、CRMFセッション変更要求に、端末20が設定したCRMFセッションIDを含める。AMF310は、CRMFセッション変更要求に、端末20が設定した変更資源能力容量を含めてもよい。
 続くステップS203において、CRMF371は、自ノードで取得済の加入者情報に基づいて、端末20からのCRMFセッション変更要求が許容されるか判定する。当該判定により端末20からのCRMFセッション変更要求が許容される場合、ステップS204に進んでもよい。
 続くステップS204において、CRMF371は、CRMFセッション変更要求により取得した変更資源能力容量をPCF360に送信する。続くステップS205において、PCF360は、取得した変更資源能力容量に含まれる情報及び通信事業者のポリシに基づいて端末20に提供する計算資源の容量を決定し、決定した容量を含む情報を変更資源能力応答としてCRMF371に送信する。
 例えば、PCF360は、変更資源能力容量と同一容量の計算資源を端末20に提供すると決定してもよいし、変更資源能力容量未満の容量の計算資源を端末20に提供すると決定してもよいし、変更資源能力容量を超える容量の計算資源を端末20に提供すると決定してもよい。
 続くステップS206において、CRMF371は、UCRFセッション変更要求をUCRF381に送信する。CRMF371は、UCRFセッション変更要求に、計算資源変更要求を設定する。計算資源変更要求は、変更資源能力容量に基づいて設定されてもよいし、PCF360から取得した変更資源能力応答に基づく計算資源の容量を示す情報を含んでもよい。
 続くステップS207において、UCRF381は、UCRFセッション変更要求に基づいてコンテナを変更する。当該コンテナは、CRMF371から取得した計算資源の容量に基づいて変更されてもよい。続くステップS208において、UCRF381は、UCRFセッション変更応答をCRMF371に送信する。
 続くステップS209において、CRMF371は、CRMFセッション変更応答をAMF310に送信する。続くステップS210において、AMF310は、CRMFセッション変更応答を端末20に送信する。
 図5は、本発明の実施の形態に係るサービス要求手順の流れの一例を示すシーケンス図である。ステップS300において、CRMFセッションは確立済の状態であるものとする。
 ステップS301において、UCRF381は、コンテナ非使用を検出する。続くステップS302において、UCRF381は、コンテナを不活性化する。UCRF381は、コンテナが一定期間使用されない場合、通信事業者のポリシに基づいて、当該コンテナを不活性化してもよい。
 ステップS303において、端末20は、活性化要コンテナリストにCRMFセッションIDを指定して、サービス要求をAMF310に送信する。続くステップS304において、AMF310は、「活性化中」に設定したコンテナ状態を示す情報要素(IE: Information Element)を含むコンテキスト更新要求をCRMF371に送信する。なお、当該コンテナ状態を示す情報要素の値に、「活性化中」、「活性化済」又は「不活性化済」が設定可能であってもよい。
 続くステップS305において、CRMF371は、UCRFセッション変更要求をUCRF381に送信する。CRMF371は、UCRFセッション変更要求に、計算資源変更要求を設定する。CRMF371は、計算資源変更要求に、コンテキスト更新要求から取得したコンテナ状態を示す情報要素を設定してもよい。
 続くステップS306において、UCRF381は、UCRFセッション変更要求に基づいてコンテナを活性化する。続くステップS307において、UCRF381は、UCRFセッション変更応答をCRMF371に送信する。
 続くステップS308において、CRMF371は、コンテキスト更新応答をAMF310に送信する。続くステップS309において、AMF310は、サービス応答を端末20に送信する。
 図6は、本発明の実施の形態に係るCRMFセッション解放手順の流れの一例を示すシーケンス図である。ステップS400において、CRMFセッションは確立済の状態であるものとする。
 ステップS401において、端末20は、CRMFセッションIDを指定してCRMFセッション解放要求をAMF310に送信する。続くステップS402において、AMF310は、CRMFセッション解放要求をCRMF371に送信する。AMF310は、CRMFセッション解放要求に、端末20が設定したCRMFセッションIDを含める。
 続くステップS403において、CRMF371は、受信したCRMFセッション解放要求により指定されたCRMFセッションに対応するUCRFセッションを解放するUCRFセッション解放要求をUCRF381に送信する。続くステップS404において、UCRF381は、受信したUCRFセッション解放要求に基づいて、対応するコンテナを解放する。続くステップS405において、UCRF381は、UCRFセッション解放応答をCRMF371に送信する。
 続くステップS406において、CRMF371は、CRMFセッション解放応答をAMF310に送信する。続くステップS407において、AMF310は、CRMFセッション解放応答を端末20に送信する。
 (着信パケットのコンテナへの転送)
 次に、端末20への着信をコンテナ382に転送する手順について説明する。
 図7は、本発明の実施の形態に係るCRMF登録手順の流れの一例を示すシーケンス図である。CRMF登録手順は、UDM320にCRMF371を登録する手順である。前提として、CRMF371に含まれるCRMFセッションコンテキストを制御する"Ncrmf_CRMFSession"サービスをC-Plane機能群に導入しておく。
 CRMF371は、コンテナ382が生成された後に、"Nudm_UECM_Registration"要求をUDM320に送信する(ステップS451)。"Nudm_UECM_Registration"要求は、CRMF371のNFインスタンスID、コンテナ生成要求時に端末20によって割り当てられたCRMFセッションID、端末のSUPI(Subscription Permanent Identifier)等を含んでもよい。"Nudm_UECM_Registration"要求は、UDM320へのCRMF371の登録要求の一例である。
 UDM320は、"Nudm_UECM_Registration"応答をCRFM371に送信する(ステップS452)。
 これによって、SMF370は、UDM320にアクセスして、転送先のコンテナおよび転送先のUCRF381を管理するCRMF371を見つけることができるようになる。
 図8は、本発明の実施の形態に係るPDUセッション確立手順の流れの一例を示すシーケンス図である。PDUセッション確立手順は、PDUセッションを確立する手順であって、従来と同様の流れである。以下、従来との相違点を中心に説明する。
 端末20は、PDUセッション確立要求をAMF310に送信する(ステップS501)。ここで、PDUセッション確立要求は、従来のものに加えて、"無応答コンテナ転送"を要求する情報要素を含んでもよい。"無応答コンテナ転送"は、応答せずにコンテナに転送することである。
 AMF310は、PDUセッション確立要求をSMF370に送信する(ステップS502)。SMF370は、PDUセッション対応ポリシ要求をPCF360に送信する(ステップS503)。PCF360は、PDUセッション対応ポリシの応答をSMF370に送信する(ステップS504)。
 SMF370は、PDUセッション確立の応答をAMF310に送信する(ステップS505)。AMF310は、PDUセッション確立の応答を端末20に通知する(ステップS506)。
 ここで、PDUセッション対応ポリシは、従来のものに加えて、"無応答コンテナ転送"を要求する情報要素を含んでもよい。なお、加入者は、NEF330を介して、PCF360が所持するPDUセッション対応ポリシの設定または変更をすることができる。SMF370は、端末20またはPCF360から"無応答コンテナ転送"の要求を受けた場合、当該PDUセッションのコンテキストとして"無応答コンテナ転送"を要求する情報要素を保存してもよい。
 確立されたPDUセッションは維持(すなわち、preservation)状態となる。以下、パケットが当該PDUセッションに到着した場合における転送手順について説明する。
 図9は、本発明の実施の形態に係る着信パケット転送判断手順の流れの一例を示すシーケンス図である。着信パケット転送判断手順は、着信パケットをコンテナ382に転送するか否かを判断する手順である。
 UPF380は、発信端末20Aからパケットを受信する(ステップS601)。なお、発信端末20Aは、着信元の一例である。着信元は外部の端末または外部のアプリケーション(アプリケーションプログラムに規定された処理を実行するネットワークノード等)であってもよい。UPF380は、当該パケットをバッファ(記憶)する。なお、UPF380は、加入者ごとに設定された計算資源に転送するべきパケットを記憶する第一のネットワークノードの一例である。次に、UPF380は、パケット着信をSMF370に通知する(ステップS602)。
 SMF370は、PDUセッションのコンテキストに"無応答コンテナ転送"が含まれているか否かを判定する(ステップS603)。SMF370は、PDUセッションのコンテキストに"無応答コンテナ転送"が含まれていると判定すると、コンテナに着信パケットを転送すべきと判断する(ステップS604)。
 また、SMF370は、PDUセッションのコンテキストに"無応答コンテナ転送"が含まれていないと判定すると、AMF310に端末呼出要求を送信する(ステップS605)。AMF310は、端末呼出を着信端末20Bに送信する(ステップS606)。着信端末20Bは、サービス要求をAMF310に送信する(ステップS607)。
 AMF310は、サービス要求内に"コンテナ転送"が含まれているか否かを判定する(ステップS608)。AMF310は、サービス要求内に"コンテナ転送"が含まれていると判定すると、コンテナに着信パケットを転送するよう要求する情報要素を含む"Nsmf_PDUSession_UpdateSMContext"要求をSMF370に送信する(ステップS609)。したがって、SMF370は、コンテナ382に着信パケットを転送すべきと判断する(ステップS610)。
 また、AMF310は、サービス要求内に"コンテナ転送"が含まれていないと判定すると、コンテナに着信パケットを転送するよう要求する情報要素を含まない"Nsmf_PDUSession_UpdateSMContext"要求をSMF370に送信する(ステップS611)。したがって、SMF370は、コンテナ382に着信パケットを転送すべきでないと判断する(ステップS612)。
 図10は、本発明の実施の形態に係る着信パケット転送手順の流れの一例を示すシーケンス図である。着信パケット転送手順は、図9に示した着信パケット転送判断手順において、SMF370が、コンテナ382に着信パケットを転送すべきと判断した場合において、着信パケットを転送する手順である。
 SMF370は、"Nudm_UECM_Get"要求をUDM320に送信する(ステップS701)。"Nudm_UECM_Get"要求は、NF種別=CRMF371、SUPI=着信端末20BのSUPIと設定されている。
 UDM320は、"Nudm_UECM_Get"応答をSMF370に送信する(ステップS702)。"Nudm_UECM_Get"応答は、CRMF-NFインスタンスIDおよびCRMFセッションIDを含む。
 次に、SMF370は、"Ncrmf_CRMFSession_UpdateCRMContext"要求をCRMF371に送信する(ステップS703)。"Ncrmf_CRMFSession_UpdateCRMContext"要求は、当該CRMFセッションIDおよびUPF380の終端点情報を含む。なお、SMF370は、UPF380がコンテナ382に転送するべきパケットを記憶していることの通知を、CRMF371に送信する第三のネットワークノードの一例である。
 CRMF371は、UPF380の終端点をCRMFセッションIDに対応するUCRF381(およびコンテナ382)に設定する(ステップS704)。UPF380の終端点とは、UCRF381(およびコンテナ382)から送信されるパケットを受信する終端点である。なお、CRMF371は、UCRF381(およびコンテナ382)に、パケットを転送するための設定情報を通知する第二のネットワークノードの一例である。UCRF381は、UPF380から送信されるパケットを受信する、UCRF381(およびコンテナ382)の終端点情報をCRMF371に送信する(ステップS705)。
 CRMF371は、"Ncrmf_CRMFSession_UpdateCRMContext"応答をSMF370に送信する(ステップS706)。SMF370は、UCRF381(およびコンテナ382)の終端点をUPF380に設定する(ステップS707)。UCRF381(およびコンテナ382)の終端点とは、UPF380から送信されるパケットを受信する終端点である。
 そして、UPF380は、着信パケットをコンテナ382に転送する(ステップS708)。当該着信パケットは、UPF380が、図9に示した着信パケット転送判断手順のステップS601において発信端末20Aから受信し、バッファされたパケットである。
 コアネットワーク30は、図9に示した着信パケット転送判断手順と図10に示した着信パケット転送手順によって、着信パケットをコンテナ382に転送することができる。
 (コンテナ間通信)
 次に、コンテナが、他のコンテナを発見して通信を行う例について説明する。例えば、コンテナは、AI等を搭載したアプリケーションプログラムの実行によって、他のコンテナを探索し、発見された他のコンテナに対して自律的に通信を行うことを想定する。
 以下、コンテナをNF(Network Function)に類似したUF(User Function)と位置づける。前提として、NRF340に、既存サービス"Nnrf_NFManagement"に類似した新規サービスとして"Nnrf_UFManagement"、既存サービス"Nnrf_NFDiscovery"に類似した新規サービスとして"Nnrf_UFDiscovery"を定義する。また、既存の情報要素"NFProfile"に類似した新規の情報要素として、"UFProfile"を定義する。
 図11は、本発明の実施の形態に係るコンテナ登録手順の流れの一例を示すシーケンス図である。なお、前提として、コンテナ382(またはCRMF371)は、当該コンテナ382の生成時に、当該コンテナ382の内部通信用IPアドレスおよび外部通信用IPアドレスを取得しておく。
 CRMF371は、コンテナ382の"UFProfile"を作成する(ステップS801)。"UFProfile"は、UFインスタンスID、SUPI、内部通信用IPアドレス、外部通信用IPアドレス、CRMF-NFインスタンスID等を含む。
 CRMF371は、"Nnrf_UFManagement_UFRegister"要求をNRF340に送信する(ステップS802)。NRF340は、サービスを提供するNFインスタンスを発見するためにネットワークを管理するネットワーク管理ノードの一例である。
 なお、コンテナ382が、自身の"UFProfile"を作成してもよい。この場合、コンテナ382は、自身の"UFProfile"を作成し、"Nnrf_UFManagement_UFRegister"要求をNRF340に送信する。
 図12は、本発明の実施の形態に係るコンテナ間通信手順の流れの一例を示すシーケンス図である。通信元コンテナ382-1は、"Nnrf_UFDiscovery_Request"をNRF340に送信する(ステップS901)。"Nnrf_UFDiscovery_Request"は、宛先のSUPIなどが検索キーとして設定されている。
 NRF340は、"Nnrf_UFDiscovery_Response"を通信元コンテナ382-1に送信する(ステップS902)。"Nnrf_UFDiscovery_Response"は、通信先コンテナ382-2の"UFProfile"を含む。
 続いて、通信元コンテナ382-1は、通信先コンテナ382-2への通信を開始する(ステップS903)。
 コンテナ登録手順およびコンテナ間通信手順によって、通信元のコンテナは、通信先のコンテナを発見して通信することができる。
 (コンテナ移動)
 次に、加入者移動などに伴ってコンテナを移動させる例について説明する。
 コアネットワーク30(CRMF371)は、コンテナの移動について、以下の3つの動作モードのいずれかの動作を行ってもよい。
 コンテナ移動モード1では、CRMF371は、コンテナを移動しない。コンテナ移動モード1は、UCRFを集約して配置する形のネットワークを採用する場合に利用されることが想定される。
 コンテナ移動モード2では、CRMF371は、使用中のコンテナを停止削除した後に、移動先に新規にコンテナを設定する。
 コンテナ移動モード3では、CRMF371は、使用中のコンテナを起動させたまま、移動先に新規にコンテナを設定する。そして、CRMF371は、コンテナ内のアプリケーションがコンテキストを移動した後に、使用中のコンテナを停止削除する。
 コンテナ移動モード2およびコンテナ移動モード3は、UCRFを分散して配置する形のネットワークを採用する場合に利用されることが想定される。
 なお、CRMF371は、コンテナ移動の必要性およびコンテナ移動モードの選択を、PCF360の判断に従うか、または自ら決定してもよい。PCF360またはCRMF371は、端末位置(例えば、AMF端末位置開示サービスから得る情報)、コンテナ移動に関する加入者の選好(例えば、対象となるコンテナの生成時に端末が通知した情報、加入者情報)等を受信し、受信した情報に基づいて、コンテナ移動の必要性またはコンテナ移動モードの選択を行ってもよい。
 図13は、本発明の実施の形態のコンテナ移動モード2に係るコンテナ移動手順の流れの一例を示すシーケンス図である。
 CRMF371は、コンテナの移動を決定する(ステップS1001)。次に、CRMF371は、移動元コンテナの"UFProfile"をNRF340に要求する(ステップS1002)。NRF340は、移動元コンテナの"UFProfile"をCRMF371に応答する(ステップS1003)。
 次に、CRMF371は、移動元コンテナを停止および削除する(ステップS1004)。続いて、CRMF371は、移動先コンテナを設定する(ステップS1005)。これらの具体的な手順については、図3に示したCRMFセッション確立手順のステップS108からステップS110までと同様であってもよい。
 なお、移動先コンテナは、移動元コンテナと同等の"UFProfile"を有するコンテナであってもよい。その際、CRMF371は、移動先コンテナに、移動元コンテナと同一のCRMFセッションIDを割り当て、CRMFセッションID子番号を付加してもよい。移動先コンテナは、内部通信用IPアドレスおよび外部通信用IPアドレスを得る。
 CRMF371は、"Nnrf_UFManagement_UFUpdate"要求をNRF340に送信する(ステップS1006)。NRF340は、移動元コンテナの"UFProfile"の上書きとして、移動先コンテナに対応する"UFProfile"を登録する。
 図14は、本発明の実施の形態のコンテナ移動モード3に係るコンテナ移動手順の流れの一例を示すシーケンス図である。
 CRMF371は、コンテナの移動を決定する(ステップS1101)。次に、CRMF371は、移動元コンテナ382-3の"UFProfile"をNRF340に要求する(ステップS1102)。NRF340は、移動元コンテナ382-3の"UFProfile"をCRMF371に応答する(ステップS1103)。
 続いて、CRMF371は、移動先コンテナ382-4を設定する(ステップS1104)。具体的な手順については、図3に示したCRMFセッション確立手順のステップS108からステップS110までと同様であってもよい。
 なお、移動先コンテナ382-4は、移動元コンテナ382-3と同等の"UFProfile"を有するコンテナであってもよい。その際、CRMF371は、移動先コンテナ382-4に、移動元コンテナ382-3と同一のCRMFセッションIDを割り当て、CRMFセッションID子番号を付加してもよい。CRMFセッションID子番号は、例えば1からの連番であってもよい。移動先コンテナ382-4は、内部通信用IPアドレスおよび外部通信用IPアドレスを得る。
 次に、CRMF371は、移動元コンテナ382-3の内部通信用IPアドレスを移動先コンテナ382-4に通知する(ステップS1105)。そして、CRMF371は、移動先コンテナ382-4の内部通信用IPアドレスを移動元コンテナ382-3に通知する(ステップS1106)。
 移動元コンテナ382-3は、コンテキストを移動先コンテナ382-4に移動する(ステップS1107)。コンテキストは、例えば、各種データ、アプリケーションプログラム、設定情報等であってもよい。
 次に、CRMF371は、タイマ満了時などを契機として、移動元コンテナ382-3を停止および削除する(ステップS1108)。そして、CRMF371は、"Nnrf_UFManagement_UFUpdate"要求をNRF340に送信する(ステップS1109)。NRF340は、移動元コンテナ382-3の"UFProfile"の上書きとして、移動先コンテナ382-4に対応する"UFProfile"を登録する。
 図13または図14に示したコンテナ移動手順によって、コアネットワーク30は、加入者移動等に伴って、コンテナを移動させることができる。
 (装置構成)
 次に、これまでに説明した処理及び動作を実施する基地局10、端末20および各種のネットワークノードの機能構成例を説明する。基地局10、端末20および各種のネットワークノードは、上述した実施例を実施する機能を含む。ただし、基地局10、端末20および各種のネットワークノードは、それぞれ、実施例の中の一部の機能のみを備えることとしてもよい。
 <基地局10及びネットワークノード>
 図15は、基地局10の機能構成の一例を示す図である。図15に示されるように、基地局10は、送信部110と、受信部120と、設定部130と、制御部140とを有する。図15に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。なお、ネットワークノードは、基地局10と同様の機能構成を有してもよい。また、システムアーキテクチャ上で複数の異なる機能を有するネットワークノードは、機能ごとに分離された複数のネットワークノードから構成されてもよい。
 送信部110は、端末20又は他のネットワークノードに送信する信号を生成し、当該信号を有線又は無線で送信する機能を含む。受信部120は、端末20又は他のネットワークノードから送信された各種の信号を受信し、受信した信号から、例えばより上位のレイヤの情報を取得する機能を含む。
 設定部130は、予め設定される設定情報、及び、端末20に送信する各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。設定情報の内容は、例えば、NTNを利用する通信に係る設定等である。
 制御部140は、実施例において説明したように、NTNを利用する通信に係る処理を行う。また、制御部140は、端末20との通信に係る処理を行う。また、制御部140は、端末20の地理的位置検証に係る処理を行う。制御部140における信号送信に関する機能部を送信部110に含め、制御部140における信号受信に関する機能部を受信部120に含めてもよい。
 <端末20>
 図16は、端末20の機能構成の一例を示す図である。図16に示されるように、端末20は、送信部210と、受信部220と、設定部230と、制御部240とを有する。図16に示される機能構成は一例に過ぎない。本発明の実施の形態に係る動作を実施できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。端末20が装着するUSIMは、端末20と同様に、送信部210と、受信部220と、設定部230と、制御部240とを有してもよい。
 送信部210は、送信データから送信信号を作成し、当該送信信号を無線で送信する。受信部220は、各種の信号を無線受信し、受信した物理レイヤの信号からより上位のレイヤの信号を取得する。また、受信部220は、ネットワークノードから送信されるNR-PSS、NR-SSS、NR-PBCH、DL/UL制御信号又は参照信号等を受信する機能を有する。
 設定部230は、受信部220によりネットワークノードから受信した各種の設定情報を記憶装置に格納し、必要に応じて記憶装置から読み出す。また、設定部230は、予め設定される設定情報も格納する。
 本実施の形態のネットワークノードは、下記の各項に示すネットワークノードとして構成されてもよい。また、下記の通信方法が実施されてもよい。
 <本実施の形態に関する構成>
(第1項)
 加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信する受信部と、
 前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御する制御部と、を備える、
 ネットワークノード。
(第2項)
 前記制御部は、移動元の計算資源の停止または削除を実行した後に、移動先の計算資源を設定する、
 第1項に記載のネットワークノード。
(第3項)
 前記制御部は、移動先の計算資源を設定し、移動元の計算資源のコンテキストを前記移動先の計算資源に移動するように制御する、
 第1項に記載のネットワークノード。
(第4項)
 加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信するステップと、
 前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御するステップと、を備える、
 ネットワークノードが実行する通信方法。
 上記構成のいずれによっても、ネットワーク上の計算資源を、加入者の移動に伴って移動させることを可能とする技術が提供される。第2項によれば、移動元の計算資源の停止または削除を実行した後に、移動先の計算資源を設定することができる。第3項によれば、移動元の計算資源のコンテキストを移動先の計算資源に移動することができる。
 (ハードウェア構成)
 上記実施形態の説明に用いたブロック図(図15及び図16)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。たとえば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施の形態におけるネットワークノード、端末20等は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図17は、本開示の一実施の形態に係る基地局10及び端末20のハードウェア構成の一例を示す図である。ネットワークノードは、基地局10と同様のハードウェア構成を有してもよい。USIMは、端末20と同様のハードウェア構成を有してもよい。上述の基地局10及び端末20は、物理的には、プロセッサ1001、記憶装置1002、補助記憶装置1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニット等に読み替えることができる。基地局10及び端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 基地局10及び端末20における各機能は、プロセッサ1001、記憶装置1002等のハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、記憶装置1002及び補助記憶装置1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタ等を含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。例えば、上述の制御部140、制御部240等は、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータ等を、補助記憶装置1003及び通信装置1004の少なくとも一方から記憶装置1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図15に示した基地局10の制御部140は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図16に示した端末20の制御部240は、記憶装置1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001によって実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。
 記憶装置1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)等の少なくとも1つによって構成されてもよい。記憶装置1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)等と呼ばれてもよい。記憶装置1002は、本開示の一実施の形態に係る通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュール等を保存することができる。
 補助記憶装置1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)等の光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップ等の少なくとも1つによって構成されてもよい。上述の記憶媒体は、例えば、記憶装置1002及び補助記憶装置1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、送受信アンテナ、アンプ部、送受信部、伝送路インタフェース等は、通信装置1004によって実現されてもよい。送受信部は、送信部と受信部とで、物理的に、または論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ等)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカ、LEDランプ等)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及び記憶装置1002等の各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及び端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)等のハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
 図18に車両2001の構成例を示す。図18に示すように、車両2001は駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010、各種センサ2021~2029、情報サービス部2012と通信モジュール2013を備える。本開示において説明した各態様/実施形態は、車両2001に搭載される通信装置に適用されてもよく、例えば、通信モジュール2013に適用されてもよい。
 駆動部2002は例えば、エンジン、モータ、エンジンとモータのハイブリッドで構成される。操舵部2003は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪及び後輪の少なくとも一方を操舵するように構成される。
 電子制御部2010は、マイクロプロセッサ2031、メモリ(ROM、RAM)2032、通信ポート(IOポート)2033で構成される。電子制御部2010には、車両2001に備えられた各種センサ2021~2029からの信号が入力される。電子制御部2010は、ECU(Electronic Control Unit)と呼んでも良い。
 各種センサ2021~2029からの信号としては、モータの電流をセンシングする電流センサ2021からの電流信号、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等がある。
 情報サービス部2012は、カーナビゲーションシステム、オーディオシステム、スピーカ、テレビ、ラジオといった、運転情報、交通情報、エンターテイメント情報等の各種情報を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部2012は、外部装置から通信モジュール2013等を介して取得した情報を利用して、車両2001の乗員に各種マルチメディア情報及びマルチメディアサービスを提供する。
 運転支援システム部2030は、ミリ波レーダ、LiDAR(Light Detection and Ranging)、カメラ、測位ロケータ(例えば、GNSS等)、地図情報(例えば、高精細(HD)マップ、自動運転車(AV)マップ等)、ジャイロシステム(例えば、IMU(Inertial Measurement Unit)、INS(Inertial Navigation System)等)、AI(Artificial Intelligence)チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部2030は、通信モジュール2013を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。
 通信モジュール2013は通信ポートを介して、マイクロプロセッサ2031および車両2001の構成要素と通信することができる。例えば、通信モジュール2013は通信ポート2033を介して、車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、電子制御部2010内のマイクロプロセッサ2031及びメモリ(ROM、RAM)2032、センサ2021~29との間でデータを送受信する。
 通信モジュール2013は、電子制御部2010のマイクロプロセッサ2031によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール2013は、電子制御部2010の内部と外部のどちらにあってもよい。外部装置は、例えば、基地局、移動局等であってもよい。
 通信モジュール2013は、電子制御部2010に入力された電流センサからの電流信号を、無線通信を介して外部装置へ送信する。また、通信モジュール2013は、電子制御部2010に入力された、回転数センサ2022によって取得された前輪や後輪の回転数信号、空気圧センサ2023によって取得された前輪や後輪の空気圧信号、車速センサ2024によって取得された車速信号、加速度センサ2025によって取得された加速度信号、アクセルペダルセンサ2029によって取得されたアクセルペダルの踏み込み量信号、ブレーキペダルセンサ2026によって取得されたブレーキペダルの踏み込み量信号、シフトレバーセンサ2027によって取得されたシフトレバーの操作信号、物体検知センサ2028によって取得された障害物、車両、歩行者等を検出するための検出信号等についても無線通信を介して外部装置へ送信する。
 通信モジュール2013は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報等)を受信し、車両2001に備えられた情報サービス部2012へ表示する。また、通信モジュール2013は、外部装置から受信した種々の情報をマイクロプロセッサ2031によって利用可能なメモリ2032へ記憶する。メモリ2032に記憶された情報に基づいて、マイクロプロセッサ2031が車両2001に備えられた駆動部2002、操舵部2003、アクセルペダル2004、ブレーキペダル2005、シフトレバー2006、前輪2007、後輪2008、車軸2009、センサ2021~2029等の制御を行ってもよい。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、基地局10及び端末20は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従って基地局10が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って端末20が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本開示で説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング)、報知情報(MIB(Master Information Block)、SIB(System Information Block))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージ等であってもよい。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、FRA(Future Radio Access)、NR(new Radio)、New radio access(NX)、Future generation radio access(FX)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張、修正、作成、規定された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせ等)適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャート等は、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局10によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局10を有する1つ又は複数のネットワークノード(network nodes)からなるネットワークにおいて、端末20との通信のために行われる様々な動作は、基地局10及び基地局10以外の他のネットワークノード(例えば、MME又はS-GW等が考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局10以外の他のネットワークノードが1つである場合を例示したが、他のネットワークノードは、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。
 本開示において説明した情報又は信号等は、上位レイヤ(又は下位レイヤ)から下位レイヤ(又は上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。
 入出力された情報等は特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報等は、上書き、更新、又は追記され得る。出力された情報等は削除されてもよい。入力された情報等は他の装置へ送信されてもよい。
 本開示における判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:true又はfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(CC:Component Carrier)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)」、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数の端末20間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能を端末20が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末が有する機能を基地局が有する構成としてもよい。
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1又はそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみが採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 無線フレームは時間領域において1つ又は複数のフレームによって構成されてもよい。時間領域において1つ又は複数の各フレームはサブフレームと呼ばれてもよい。サブフレームは更に時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジ(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ニューメロロジは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボル等)で構成されてもよい。スロットは、ニューメロロジに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(又はPUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各端末20に対して、無線リソース(各端末20において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジに基づいて決定されてもよい。
 また、RBの時間領域は、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックで構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジ用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。端末20に対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、端末20は、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において説明した各態様/実施形態は単独で用いられてもよいし、組み合わせて用いられてもよいし、実行に伴って切り替えて用いられてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。
10    基地局(RAN)
110   送信部
120   受信部
130   設定部
140   制御部
20    端末
30    コアネットワーク
40    DN
210   送信部
220   受信部
230   設定部
240   制御部
310   AMF
320   UDM
330   NEF
340   NRF
350   AUSF
360   PCF
370   SMF
371   CRMF
380   UPF
381   UCRF
382   コンテナ
390   AF
1001  プロセッサ
1002  記憶装置
1003  補助記憶装置
1004  通信装置
1005  入力装置
1006  出力装置
2001  車両
2002  駆動部
2003  操舵部
2004  アクセルペダル
2005  ブレーキペダル
2006  シフトレバー
2007  前輪
2008  後輪
2009  車軸
2010  電子制御部
2012  情報サービス部
2013  通信モジュール
2021  電流センサ
2022  回転数センサ
2023  空気圧センサ
2024  車速センサ
2025  加速度センサ
2026  ブレーキペダルセンサ
2027  シフトレバーセンサ
2028  物体検出センサ
2029  アクセルペダルセンサ
2030  運転支援システム部
2031  マイクロプロセッサ
2032  メモリ(ROM,RAM)
2033  通信ポート(IOポート)

Claims (4)

  1.  加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信する受信部と、
     前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御する制御部と、を備える、
     ネットワークノード。
  2.  前記制御部は、移動元の計算資源の停止または削除を実行した後に、移動先の計算資源を設定する、
     請求項1に記載のネットワークノード。
  3.  前記制御部は、移動先の計算資源を設定し、移動元の計算資源のコンテキストを前記移動先の計算資源に移動するように制御する、
     請求項1に記載のネットワークノード。
  4.  加入者に設定された計算資源の属性、および前記加入者の端末の位置を示す情報を受信するステップと、
     前記計算資源の属性、および前記加入者の端末の位置を示す情報に基づいて、前記計算資源を他のネットワークノードに移動するように制御するステップと、を備える、
     ネットワークノードが実行する通信方法。
PCT/JP2022/014746 2022-03-25 2022-03-25 ネットワークノード及び通信方法 WO2023181425A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014746 WO2023181425A1 (ja) 2022-03-25 2022-03-25 ネットワークノード及び通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014746 WO2023181425A1 (ja) 2022-03-25 2022-03-25 ネットワークノード及び通信方法

Publications (1)

Publication Number Publication Date
WO2023181425A1 true WO2023181425A1 (ja) 2023-09-28

Family

ID=88100332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014746 WO2023181425A1 (ja) 2022-03-25 2022-03-25 ネットワークノード及び通信方法

Country Status (1)

Country Link
WO (1) WO2023181425A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114889A1 (ja) * 2011-02-23 2012-08-30 日本電気株式会社 アプリケーション構築配置システム、アプリケーション構築配置方法、およびプログラム
JP2014229135A (ja) * 2013-05-23 2014-12-08 日本電信電話株式会社 制御装置、計算資源管理方法及び計算資源管理プログラム
JP2019062510A (ja) * 2017-09-28 2019-04-18 Kddi株式会社 管理装置及びその制御方法、並びにプログラム
JP2020144540A (ja) * 2019-03-05 2020-09-10 富士通株式会社 停止コンテナ判定方法、情報処理装置および停止コンテナ判定プログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012114889A1 (ja) * 2011-02-23 2012-08-30 日本電気株式会社 アプリケーション構築配置システム、アプリケーション構築配置方法、およびプログラム
JP2014229135A (ja) * 2013-05-23 2014-12-08 日本電信電話株式会社 制御装置、計算資源管理方法及び計算資源管理プログラム
JP2019062510A (ja) * 2017-09-28 2019-04-18 Kddi株式会社 管理装置及びその制御方法、並びにプログラム
JP2020144540A (ja) * 2019-03-05 2020-09-10 富士通株式会社 停止コンテナ判定方法、情報処理装置および停止コンテナ判定プログラム

Similar Documents

Publication Publication Date Title
WO2023181425A1 (ja) ネットワークノード及び通信方法
WO2023181424A1 (ja) ネットワークノード及び通信方法
WO2023181423A1 (ja) ネットワークノード及び通信方法
WO2023181422A1 (ja) ネットワークノード及び通信方法
WO2024004156A1 (ja) ネットワークノード、基地局及び通信方法
WO2024062583A1 (ja) ネットワークノード及び通信方法
WO2023218509A1 (ja) ネットワークノード、無線通信システム及び通信方法
WO2023223512A1 (ja) ネットワークノード及び通信方法
WO2023223511A1 (ja) ネットワークノード及び通信方法
WO2024095490A1 (ja) ネットワークノード及び通信方法
WO2023181421A1 (ja) 端末、基地局及び通信方法
WO2023195111A1 (ja) ネットワークノード及び通信方法
WO2024062582A1 (ja) ネットワークノード、通信システム及び通信方法
WO2024038483A1 (ja) ネットワークノード及び同期制御方法
WO2024057549A1 (ja) ネットワークノード及び通信方法
WO2023218670A1 (ja) ネットワークノード及び通信方法
WO2023218671A1 (ja) ネットワークノード及び通信方法
WO2024043007A1 (ja) ネットワークノード及び同期制御方法
WO2023145032A1 (ja) ネットワークノード、基地局、コアネットワーク及び通信方法
WO2023145033A1 (ja) ネットワークノード及び通信方法
WO2023100237A1 (ja) ネットワークノード及び通信方法
WO2024038482A1 (ja) ネットワークノード及び同期制御方法
WO2024034135A1 (ja) ネットワークノード及び認可方法
WO2023175969A1 (ja) ネットワーク装置及び無線基地局
WO2023243107A1 (ja) ネットワークノード、基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933562

Country of ref document: EP

Kind code of ref document: A1