WO2023181285A1 - Hybrid vehicle - Google Patents

Hybrid vehicle Download PDF

Info

Publication number
WO2023181285A1
WO2023181285A1 PCT/JP2022/014067 JP2022014067W WO2023181285A1 WO 2023181285 A1 WO2023181285 A1 WO 2023181285A1 JP 2022014067 W JP2022014067 W JP 2022014067W WO 2023181285 A1 WO2023181285 A1 WO 2023181285A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
control
power generation
regenerative
generator
Prior art date
Application number
PCT/JP2022/014067
Other languages
French (fr)
Japanese (ja)
Inventor
京太郎 小山
洋史 矢倉
宏樹 林
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to PCT/JP2022/014067 priority Critical patent/WO2023181285A1/en
Publication of WO2023181285A1 publication Critical patent/WO2023181285A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration

Definitions

  • This case relates to a hybrid vehicle that implements regenerative motoring control.
  • hybrid vehicles have been known that can obtain regenerative braking force by charging a battery with regenerative power generated in a driving motor.
  • this type of hybrid vehicle there is a risk that regenerative braking power may not be obtained if the battery charging is restricted (for example, when the battery is near full charge or when the battery fails).
  • a control regenerative motoring control
  • balances the power balance by causing a motor other than the travel motor to consume regenerative power and idle the engine. Through such control, regenerative braking force can be ensured while limiting charging of the battery (see, for example, Patent Document 1).
  • the rotational speed when the engine is idle is set according to the magnitude of the regenerative power.
  • the engine starting conditions are met when the accelerator pedal is pressed during regenerative motoring control and regenerative power generation ends, the engine will rotate independently at a rotation speed that corresponds to the accelerator opening. controlled by. This causes a problem in that the rotational speed of the engine changes rapidly, which may give a sense of discomfort to the driver.
  • the accelerator pedal is lightly depressed in a situation where the engine rotational speed is relatively high during regenerative motoring control, the engine rotational speed may suddenly decrease, causing engine noise and vibration to become extremely low.
  • the driver feels as if the engine is sluggish even though he/she is trying to accelerate the vehicle. Therefore, the driver feels that the operation of the vehicle and the actual behavior of the vehicle are not in harmony, and a good driving feeling cannot be obtained.
  • One of the purposes of this invention which was created in light of the above-mentioned issues, is to provide a hybrid vehicle that can improve the driving feeling.
  • this purpose is not limited to this purpose, and it is also possible to achieve effects derived from each configuration shown in "Details for Carrying Out the Invention" that will be described later, which cannot be obtained with conventional techniques. It is positioned as a purpose.
  • the disclosed hybrid vehicle can be realized as the embodiments or application examples disclosed below, and solves at least part of the above problems.
  • the disclosed hybrid vehicle includes an engine, a motor that drives wheels and performs regenerative braking, a generator that generates electricity using the driving force of the engine and drives the engine, and a battery that is connected to the motor and the generator. Be prepared.
  • the vehicle also includes a control device that performs regenerative motoring control that supplies regenerative power of the motor to the generator while the vehicle is running and the accelerator is off to motor the engine at a predetermined target rotational speed.
  • the control device stops the regenerative motoring control when the accelerator is turned on while the regenerative motoring control is being performed, and controls the firing of the engine while fixing the engine rotational speed to the target rotational speed at that time.
  • a first power generation control is performed in which the generator is caused to generate power while performing the first power generation control.
  • the first power generation control is control that causes the generator to generate power while firing the engine while keeping the engine rotation speed fixed at the target rotation speed at that time.
  • FIG. 1 is a block diagram showing the configuration of a hybrid vehicle. It is a graph illustrating the relationship between accelerator opening and driver requested output. It is a graph which illustrates the relationship between vehicle speed and target rotational speed of an engine. It is a flowchart which illustrates the flow of first power generation control and second power generation control. It is a time chart illustrating the effect of the first power generation control and the second power generation control. It is a graph illustrating the output characteristics of an engine.
  • the disclosed hybrid vehicle can be implemented by the following embodiments.
  • FIG. 1 is a block diagram illustrating the configuration of a hybrid vehicle 1 as an example.
  • This hybrid vehicle 1 (also simply referred to as vehicle 1) is a hybrid vehicle (hybrid electric vehicle, HEV, Hybrid Electric Vehicle) or plug-in hybrid electric vehicle (PHEV, Plug-in Hybrid Electric Vehicle).
  • a plug-in hybrid vehicle means a hybrid vehicle in which the battery 5 can be externally charged or power can be externally supplied from the battery 5.
  • Plug-in hybrid vehicles are equipped with a charging port (inlet) into which a charging cable that supplies power from an external charging facility is inserted, and an outlet (outlet) for external power supply.
  • the engine 2 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine.
  • a generator 4 is connected to the drive shaft of the engine 2 .
  • the generator 4 is a generator (electric motor/generator) that has both the function of driving the engine 2 with the electric power of the battery 5 and the function of generating electricity using the driving force of the engine 2.
  • the power generated by the generator 4 is used to drive the motor 3 and charge the battery 5.
  • a transmission mechanism (not shown) may be interposed on the power transmission path connecting the engine 2 and the generator 4.
  • the motor 3 is an electric motor (motor/generator) that has both the function of driving the vehicle 1 using the electric power of the battery 5 and the electric power generated by the generator 4, and the function of charging the battery 5 with electric power generated by regenerative power generation.
  • the battery 5 is, for example, a secondary battery such as a lithium ion secondary battery or a nickel hydride battery.
  • a drive shaft of the motor 3 is connected to drive wheels of the vehicle 1.
  • a transmission mechanism (not shown) may be interposed on the power transmission path connecting the motor 3 and the drive wheels.
  • a clutch 6 is interposed on the power transmission path connecting the engine 2 and the motor 3.
  • the engine 2 is connected to the driving wheels via the clutch 6, and the motor 3 is arranged closer to the driving wheels than the clutch 6.
  • the generator 4 is connected closer to the engine 2 than the clutch 6 is.
  • the clutch 6 is disengaged (released)
  • the engine 2 and generator 4 are disconnected from the drive wheels, and the motor 3 is connected to the drive wheels. Therefore, for example, by operating only the motor 3, "EV driving (motor independent driving)" is realized.
  • series running is realized by operating the engine 2 and causing the generator 4 to generate electricity.
  • Series running means running with the driving force of the motor 3 while causing the generator 4 to generate electricity using the driving force of the engine 2.
  • the operating states of the engine 2, motor 3, generator 4, battery 5, and clutch 6 are controlled by a control device 10.
  • the control device 10 is a computer (electronic control unit, ECU, Electronic Control Unit) that has a function of controlling at least the operating states of the engine 2 and the generator 4.
  • the control device 10 includes a processor (arithmetic processing unit) and a memory (storage device).
  • the contents of control (control program) executed by the control device 10 are stored in a memory, and are executed by being read into the processor as appropriate.
  • the accelerator opening sensor 7 is a sensor that detects parameters (accelerator opening, accelerator pedal stroke, throttle opening, etc.) corresponding to the amount of depression of the accelerator pedal.
  • the brake opening sensor 8 is a sensor that detects parameters (brake opening, brake pedal stroke, brake fluid pressure, etc.) corresponding to the amount of depression of the brake pedal.
  • the vehicle speed sensor 9 is a sensor that detects the traveling speed (vehicle speed) of the vehicle 1. Information detected by each of these sensors 7 to 9 is transmitted to the control device 10.
  • FIG. 2 is a graph illustrating a characteristic defining the relationship between the accelerator opening [%] detected by the accelerator opening sensor 7 and the driver required output [kW] set by the control device 10.
  • the accelerator opening degree is the amount of depression of the accelerator pedal (for example, the accelerator pedal stroke, the rotation angle of the accelerator pedal with respect to the fulcrum, etc.) expressed as a percentage.
  • the driver-required output is a parameter corresponding to the magnitude of the output (in other words, horsepower, electric power, and power) that the driver requests in order to run the vehicle 1.
  • the driver request output is set to a larger value as the accelerator opening degree becomes larger. Note that the output of the drive source of the vehicle 1 is controlled such that, for example, the larger the driver requested output or vehicle speed is, the larger the output is.
  • FIG. 3 is a graph illustrating the relationship between the vehicle speed [km/h] detected by the vehicle speed sensor 9 and the target rotational speed [rpm] of the engine 2.
  • the solid line graph in FIG. 3 shows the characteristics when engine 2 is motoring (when vehicle 1 is decelerating), and the broken line graph in FIG. 3 shows the characteristics when engine 2 is firing (when vehicle 1 is accelerating). show.
  • Motoring means running the engine 2 idly using the generator 4 (driving the engine 2 to rotate without burning the fuel mixture in the cylinder), and firing means running the engine 2 idly using the generator 4. This means that the cylinder rotates independently by supplying intake air (burning the fuel mixture in the cylinder). Firing can be performed at least in a driving mode in which the engine 2 is operating, and can be performed, for example, during series driving.
  • the target rotational speed of the engine 2 during motoring is set to increase as the vehicle speed increases, as shown by the solid line graph in FIG. However, in a high-speed region where the vehicle speed is equal to or higher than a predetermined vehicle speed, the target rotational speed of the engine 2 is fixed to a predetermined upper limit rotational speed. Further, the target rotational speed of the engine 2 during firing is set to a smaller value than the target rotational speed set during motoring for the same vehicle speed, as shown by the broken line graph in FIG.
  • the target rotational speed will inevitably decrease when the state of the engine 2 transitions from the motoring state to the firing state, and the drive feeling may deteriorate.
  • the control device 10 of the present embodiment is configured to operate as shown in the broken line graph in FIG. Set a target rotation speed that is different from the characteristics of.
  • the control device 10 performs at least regenerative motoring control and first power generation control. Preferably, in addition to these controls, second power generation control is performed.
  • Regenerative motoring control means that regenerative power from the motor 3 is supplied to the generator 4 while driving and when the accelerator is off (the accelerator opening is below a predetermined opening, the driver required torque and the driver required output are below a threshold). This is a control in which the engine 2 is motored (idle running) at a predetermined target rotational speed.
  • the conditions for implementing the regenerative motoring control include at least that the vehicle 1 is traveling and the accelerator is off.
  • conditions such as the charging rate of the battery 5, presence or absence of battery failure, battery temperature, brake opening, braking force required of the vehicle 1, operating state of the friction brake device (not shown), and road surface condition are checked for the regenerative motor. It may be included in the ring control execution conditions.
  • the first power generation control is a control that is executed instead of the regenerative motoring control when the accelerator is turned on while the regenerative motoring control is being performed, and the rotational speed of the engine 2 is adjusted at that moment (when the accelerator is turned on).
  • This control is to cause the generator 4 to generate electricity while firing the engine 2 while keeping the target rotational speed fixed at the target rotational speed at the time point).
  • the first power generation control means that when the accelerator is turned on during regenerative motoring control, setting of the target rotation speed based on the broken line graph in FIG. 3 is suspended, and the target rotation speed at that point is It is a control that maintains the As a result, sudden changes in the noise and vibration of the engine 2 before and after the accelerator is turned on are suppressed, and the driving feeling is improved.
  • the torque of the engine 2 can be set to be larger as the accelerator opening (or the corresponding driver requested output) is larger.
  • the target rotational speed is fixed, the actual rotational speed of the engine 2 is maintained.
  • the rotational speed of the engine 2 can be changed by adjusting the load of the generator 4 on the engine 2 (power that the generator 4 converts into electric power). In this way, during the first power generation control, the control device 10 can function to maintain the rotational speed of the engine 2 while increasing the torque of the engine 2 as the accelerator opening becomes larger.
  • the conditions for ending the first power generation control include at least that the accelerator is off (the accelerator opening is less than or equal to a predetermined opening). If this condition is satisfied, the control device 10 can terminate the first power generation control and restart the regenerative motoring control. Furthermore, the conditions for ending the first power generation control in this embodiment include that the driver requested output exceeds a predetermined value. When this condition is satisfied, the control device 10 ends the first power generation control and implements the second power generation control.
  • the second power generation control means that during the first power generation control, if the driver requested output exceeds a predetermined value (or if the accelerator opening exceeds a predetermined opening), the first power generation control is stopped and the rotational speed of the engine 2 is changed.
  • This is a control that increases the
  • the second power generation control is a control that restarts the setting of the target rotational speed based on the broken line graph in FIG. 3 when the driver depresses the accelerator pedal significantly.
  • the noise and vibration of the engine 2 increase as the accelerator opening degree increases, and a driving feeling that is natural and easy to intuitively understand is realized.
  • the conditions for ending the second power generation control include at least that the accelerator is off. If this condition is satisfied, the control device 10 can end the second power generation control and restart the regenerative motoring control.
  • FIG. 4 is a flowchart illustrating the flow of the first power generation control and the second power generation control.
  • the control shown in this flowchart is repeatedly executed within the control device 10 at a predetermined period, for example, when the power switch of the vehicle 1 (not shown) is on and the vehicle 1 is ready to travel (in a READY state).
  • Steps A1 to A3 mainly correspond to regenerative motoring control
  • steps A4 to A8 mainly correspond to first power generation control
  • step A9 correspond to second power generation control.
  • step A1 it is determined whether conditions for implementing regenerative motoring control are satisfied. If this condition is met, control proceeds to step A2. On the other hand, if the condition of step A1 is not satisfied, the control in this cycle ends.
  • step A2 a target rotational speed of the engine 2 is set in accordance with the vehicle speed based on, for example, the characteristics shown in the solid line graph in FIG. Here, the higher the vehicle speed is, the higher the target rotational speed of the engine 2 is set. In other words, the faster the vehicle speed is, the greater the regenerative power generated by the motor 3 becomes, so the target rotational speed of the engine 2 driven by the generator 4 is set so that the generator 4 consumes an amount of power commensurate with the regenerated power. set high.
  • step A3 regenerative motoring control is performed based on the target rotational speed set in step A2. That is, the regenerated power of the motor 3 is supplied to the generator 4, and the generator 4 motors the engine 2 so that the rotational speed of the engine 2 reaches the target rotational speed.
  • step A4 it is determined whether the accelerator is on. Here, if it is determined that the accelerator is not on, the control in this cycle ends. From the next period onwards, the regenerative motoring control is continued as long as the conditions for implementing the regenerative motoring control are satisfied. On the other hand, if it is determined in step A4 that the accelerator is on, the control proceeds to step A5.
  • step A5 the driver required output is calculated based on the accelerator opening based on the characteristics as shown in FIG. 2, for example.
  • the larger the accelerator opening the larger the driver request output is set.
  • step A6 it is determined whether the driver request output calculated in step A5 is less than or equal to a predetermined value. If this condition is met, control proceeds to step A7.
  • step A7 the first power generation control is performed to cause the generator 4 to generate electricity while firing the engine 2 while keeping the rotational speed of the engine 2 fixed at the target rotational speed at that time.
  • the operating state of the engine 2 shifts from the motoring state to the firing state.
  • the torque of the engine 2 is set according to the driver's requested output.
  • the target rotational speed of the engine 2 in the firing state is maintained at the same speed as the target rotational speed of the engine 2 in the motoring state. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
  • step A8 it is determined whether the accelerator is off. Here, if it is determined that the accelerator is not off, the control returns to step A5 and the driver requested output is calculated again. Thereafter, the first power generation control is continued as long as the driver requested output is equal to or less than the predetermined value. Further, if it is determined in step A8 that the accelerator is off, the control in this cycle ends. From the next cycle onward, regenerative motoring control is restarted as long as the conditions for implementing regenerative motoring control are met.
  • step A6 If it is determined in step A6 that the driver requested output exceeds the predetermined value, control proceeds to step A9.
  • step A9 the second power generation control is performed instead of the first power generation control, and the rotational speed of the engine 2 is changed to a rotational speed higher than the target rotational speed at that time.
  • the torque of the engine 2 is set according to the driver's requested output.
  • the output of the engine 2 becomes larger than during the first power generation control, and the power generated by the generator 4 also increases.
  • step A8 it is determined whether the accelerator is off. Here, if it is determined that the accelerator is not off, the control returns to step A5 and the driver requested output is calculated again. Thereafter, the second power generation control is continued as long as the driver requested output exceeds the predetermined value. Further, if it is determined in step A8 that the accelerator is off, the control in this cycle ends. From the next cycle onward, regenerative motoring control is restarted as long as the conditions for implementing regenerative motoring control are met.
  • FIG. 5 is a time chart illustrating the effects of the first power generation control and the second power generation control.
  • regenerative motoring control has been performed before time t1 and the accelerator is off.
  • the accelerator pedal is slightly depressed to turn on the accelerator at time t1
  • the regenerative motoring control is stopped and the first power generation control is started.
  • the state of the engine 2 transitions from a motoring state to a firing state at time t1 .
  • the target rotational speed of the engine 2 is maintained at the target rotational speed before time t1 , and the actual rotational speed of the engine 2 also becomes a constant value. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
  • the target rotational speed of the engine 2 at time t1 may be set to a relatively low value, so the actual rotational speed of the engine 2 may be changed as shown by the broken line in FIG. It will drop to .
  • the rotational speed of the engine 2 since the first power generation control is performed, the rotational speed of the engine 2 does not substantially change and remains constant before and after time t1 .
  • the torque of the engine 2 may reach a somewhat large value, as shown by the two-dot chain line in FIG.
  • the rotational speed of the engine 2 is higher than when the first power generation control is not performed, so the torque value for the same output (power) is smaller. Therefore, by reducing the torque by the amount that the rotational speed of the engine 2 has increased compared to the case where the first power generation control is not performed (in other words, so that the product of the rotational speed and the torque is constant), the generator It becomes possible to maintain the rotational speed of the engine 2 without changing the generated power of the engine 4. Further, the output of the battery 5 (power extracted from the battery 5) is equal to the power consumption of the motor 3 and various auxiliary machines minus the power generated by the generator 4.
  • the accelerator pedal When the accelerator pedal is pressed back and the accelerator is turned off at time t2 , the first power generation control is stopped and the regenerative motoring control is restarted.
  • the state of the engine 2 transitions from the firing state to the motoring state at time t2 .
  • the target rotational speed of the engine 2 is kept constant even after time t2 , and the actual rotational speed also remains constant. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
  • the regenerative motoring control is stopped and the first power generation control is restarted.
  • the state of the engine 2 transitions from the motoring state to the firing state at time t3 .
  • the target rotational speed of the engine 2 is kept constant even after time t3 , and the actual rotational speed also remains constant. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
  • the torque of the engine 2 is set to be greater as the accelerator opening degree is greater.
  • the target rotational speed of the engine 2 is kept constant even after time t4 , the output of the engine 2 (the product of rotational speed and torque) increases as the torque increases, and the power generated by the generator 4 also gradually increases. increases to Thereafter, when the driver requested output exceeds a predetermined value at time t5 , second power generation control is performed instead of first power generation control. In the second power generation control, setting of the target rotation speed based on the broken line graph in FIG. 3 is restarted.
  • FIG. 6 is a graph illustrating the output characteristics (relationship between rotational speed and torque) of the engine 2.
  • the thick solid line in FIG. 6 shows the relationship between the rotational speed of the engine 2 and the maximum torque.
  • the thin solid lines in FIG. 6 are curves connecting operating points at which the same thermal efficiency (fuel efficiency) can be obtained at fixed thermal efficiency intervals, and are contour lines regarding the level of thermal efficiency.
  • the operating point P 0 in FIG. 6 is the operating point of the engine 2 when the first power generation control is not performed at times t 1 to t 2 and times t 3 to t 4 in FIG. 5, and the operating point P 1 is This is the operating point of the engine 2 when the first power generation control is performed at times t 1 to t 2 and times t 3 to t 4 in FIG. 5 .
  • the operating point P1 is set so that the output (product of rotational speed and torque) at the operating point P1 is the same as the output at the operating point P0 . Therefore, the power generated by the generator 4 does not need to be changed depending on whether the first power generation control is performed or not. Furthermore, the thermal efficiency at the operating point P1 is slightly lower than that at the operating point P0 . From this, it can be seen that implementing the first power generation control is slightly more disadvantageous in terms of fuel efficiency than not implementing the first power generation control.
  • the operating point P 2 in FIG. 6 is the operating point of the engine 2 when the torque is increased while the rotational speed of the engine 2 is fixed from time t 4 to t 5 in FIG. 5, and the operating point P 3 is an operating point of the engine 2 in the second power generation control after time t5 in FIG. 5 , and is an operating point located near the maximum torque of the engine 2, for example.
  • Operating point P2 has a slightly higher thermal efficiency than operating point P1 . From this, it can be seen that in the first power generation control, the disadvantage in terms of fuel consumption decreases as the accelerator opening degree increases. Furthermore, since the operating point P3 is located to the upper right of the operating point P2 in FIG. 6, it can be seen that the output (the product of rotational speed and torque) is increasing.
  • the hybrid vehicle 1 of this embodiment includes an engine 2, a motor 3 that drives wheels and performs regenerative braking, a generator 4 that generates electricity using the driving force of the engine 2 and drives the engine 2, and a motor 3 and a generator that drive the engine 2. 4 and a battery 5 connected to the battery 5.
  • the vehicle also includes a control device 10 that performs regenerative motoring control that supplies regenerative power from the motor 3 to the generator 4 and motors the engine 2 at a predetermined target rotational speed when the vehicle is running and the accelerator is off.
  • the control device 10 stops the regenerative motoring control and performs the first power generation control.
  • the first power generation control is control that causes the generator 4 to generate electricity while firing the engine 2 while keeping the rotational speed of the engine 2 fixed at the target rotational speed at that time.
  • the initial value of the torque of the engine 2 in the first power generation control (torque T 1 at the operating point P 1 in FIG. 6) is set so that the output at the operating point P 1 is the same as the output at the operating point P 0 . be done. With such a setting, the output of the engine 2 can be made the same as the existing control, and the power generated by the generator 4 can also be made the same.
  • the control device 10 described above can perform control to maintain the rotational speed of the engine 2 while increasing the torque of the engine 2 as the accelerator opening is larger.
  • a driver requested output is set based on the characteristics shown in FIG. 2, and the torque of the engine 2 is controlled based on this driver requested output.
  • the amount of power generated by the generator 4 can be increased. Therefore, the electric power for driving the motor 3 can be increased, and a good feeling of acceleration can be achieved.
  • the control device 10 described above can perform a second power generation control in which the first power generation control is stopped and the rotational speed of the engine 2 is increased when the driver requested output exceeds a predetermined value.
  • the driver required output increases as after time t5 in FIG. 5, by increasing the rotational speed of the engine 2 within a range equal to or higher than the target rotational speed, it is possible to realize a behavior of the engine 2 that does not cause any discomfort. , can improve drive feeling. Further, by increasing the power generated by the generator 4, the acceleration performance of the vehicle 1 can be improved, and the driving feeling can be improved.
  • the above control device 10 can restart regenerative motoring control when the accelerator is turned off during execution of first power generation control. With such control, regenerative motoring control can be restarted without changing the noise or vibration of the engine 2 when transitioning from the firing state to the motoring state. Therefore, the drive feeling after the first power generation control can be improved.
  • the control device 10 that performs regenerative motoring control, first power generation control, and second power generation control is illustrated, but the second power generation control can be omitted.
  • the regenerative motoring control when the accelerator is turned off during execution of the first power generation control, the regenerative motoring control is restarted, but such control is not essential.
  • the torque of the engine 2 in the first power generation control may be set according to the accelerator opening degree, may be set based on other parameters, or may be set to a preset fixed value. At least, by shifting the regenerative motoring control to the first power generation control while fixing the rotational speed of the engine 2 to the current target rotational speed, the same effects as in the above embodiment can be obtained.
  • the present invention can be used in the manufacturing industry of hybrid vehicles, and can also be used in the manufacturing industry of control devices for hybrid vehicles.
  • Vehicle (hybrid vehicle) 2 Engine 3 Motor 4 Generator 5 Battery 6 Clutch 7 Accelerator opening sensor 8 Brake opening sensor 9 Vehicle speed sensor 10 Control device

Abstract

Disclosed is a hybrid vehicle (1) comprising an engine (2), a motor (3) for driving the wheels and carrying out regenerative braking, a generator (4) for generating power by means of the driving force of the engine (2) and driving the engine (2), and a battery (5) connected to the motor (3) and the generator (4). In addition, this hybrid vehicle comprises a control device (10) for executing a regenerative motoring control wherein regenerative power of the motor (3) is supplied to the generator (4) and the engine (2) is motored at a prescribed target rotation speed during driving while the accelerator is off. The control device (10) stops regenerative motoring control when the accelerator is on during regenerative motoring control, and executes a first power generation control for causing the generator (4) to generate power while firing of the engine (2) is carried out, with the rotation speed of the engine fixed at the target rotation speed at that point in time.

Description

ハイブリッド車両hybrid vehicle
 本件は、回生モータリング制御を実施するハイブリッド車両に関する。 This case relates to a hybrid vehicle that implements regenerative motoring control.
 従来、走行用モータに生じる回生電力をバッテリに充電することで、回生制動力を得られるようにしたハイブリッド車両が知られている。この種のハイブリッド車両では、バッテリへの充電が制限される状況になった場合(例えば、バッテリが満充電に近い場合やバッテリが故障した場合など)に、回生制動力を得られなくなるおそれがある。そこで、走行用モータとは別のモータに回生電力を消費させてエンジンを空回しすることで、電力収支を均衡させる制御(回生モータリング制御)が提案されている。このような制御により、バッテリへの充電を制限しつつ回生制動力を確保できる(例えば、特許文献1参照)。 Hitherto, hybrid vehicles have been known that can obtain regenerative braking force by charging a battery with regenerative power generated in a driving motor. In this type of hybrid vehicle, there is a risk that regenerative braking power may not be obtained if the battery charging is restricted (for example, when the battery is near full charge or when the battery fails). . Therefore, a control (regenerative motoring control) has been proposed that balances the power balance by causing a motor other than the travel motor to consume regenerative power and idle the engine. Through such control, regenerative braking force can be ensured while limiting charging of the battery (see, for example, Patent Document 1).
特開2020-049974号公報Japanese Patent Application Publication No. 2020-049974
 上記の回生モータリング制御において、エンジンを空回しするときの回転速度は、回生電力の大きさに応じて設定される。一方、回生モータリング制御中にアクセルペダルが踏み込まれて回生発電が終了したときに、エンジンの始動条件が成立していた場合には、アクセル開度に応じた回転速度でエンジンが自立回転するように制御される。これにより、エンジンの回転速度が急激に変動し、ドライバ(運転者)に違和感を与えうるという課題がある。 In the regenerative motoring control described above, the rotational speed when the engine is idle is set according to the magnitude of the regenerative power. On the other hand, if the engine starting conditions are met when the accelerator pedal is pressed during regenerative motoring control and regenerative power generation ends, the engine will rotate independently at a rotation speed that corresponds to the accelerator opening. controlled by. This causes a problem in that the rotational speed of the engine changes rapidly, which may give a sense of discomfort to the driver.
 例えば、回生モータリング制御時におけるエンジン回転速度が比較的高速である状況において、アクセルペダルが軽く踏み込まれると、エンジン回転速度が急激に低下し、エンジン音や振動が極端に小さくなることがある。このときドライバは、車両を加速させようとしているにもかかわらず、エンジンがおとなしくなったような感触を抱く。したがって、ドライバにとって車両に対する操作と実際の挙動とが調和していないように感じられ、良好なドライブフィーリングが得られない。 For example, if the accelerator pedal is lightly depressed in a situation where the engine rotational speed is relatively high during regenerative motoring control, the engine rotational speed may suddenly decrease, causing engine noise and vibration to become extremely low. At this time, the driver feels as if the engine is sluggish even though he/she is trying to accelerate the vehicle. Therefore, the driver feels that the operation of the vehicle and the actual behavior of the vehicle are not in harmony, and a good driving feeling cannot be obtained.
 本件の目的の一つは、上記のような課題に照らして創案されたものであり、ドライブフィーリングを改善できるようにしたハイブリッド車両を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けられる。 One of the purposes of this invention, which was created in light of the above-mentioned issues, is to provide a hybrid vehicle that can improve the driving feeling. In addition, this purpose is not limited to this purpose, and it is also possible to achieve effects derived from each configuration shown in "Details for Carrying Out the Invention" that will be described later, which cannot be obtained with conventional techniques. It is positioned as a purpose.
 開示のハイブリッド車両は、以下に開示する態様または適用例として実現でき、上記の課題の少なくとも一部を解決する。
 開示のハイブリッド車両は、エンジンと、車輪の駆動及び回生制動を行うモータと、前記エンジンの駆動力による発電及び前記エンジンの駆動を行うジェネレータと、前記モータ及び前記ジェネレータに接続されるバッテリと、を備える。また、走行中かつアクセルオフ時に前記モータの回生電力を前記ジェネレータに供給し前記エンジンを所定の目標回転速度でモータリングする回生モータリング制御を実施する制御装置を備える。前記制御装置は、前記回生モータリング制御の実施中にアクセルオンになったときに前記回生モータリング制御をやめて、エンジン回転速度をその時点の前記目標回転速度に固定したまま前記エンジンのファイアリングを行いつつ前記ジェネレータに発電させる第一発電制御を実施する。
The disclosed hybrid vehicle can be realized as the embodiments or application examples disclosed below, and solves at least part of the above problems.
The disclosed hybrid vehicle includes an engine, a motor that drives wheels and performs regenerative braking, a generator that generates electricity using the driving force of the engine and drives the engine, and a battery that is connected to the motor and the generator. Be prepared. The vehicle also includes a control device that performs regenerative motoring control that supplies regenerative power of the motor to the generator while the vehicle is running and the accelerator is off to motor the engine at a predetermined target rotational speed. The control device stops the regenerative motoring control when the accelerator is turned on while the regenerative motoring control is being performed, and controls the firing of the engine while fixing the engine rotational speed to the target rotational speed at that time. A first power generation control is performed in which the generator is caused to generate power while performing the first power generation control.
 開示のハイブリッド車両によれば、回生モータリング制御の実施中にアクセルオンになったときに、回生モータリング制御をやめて第一発電制御が実施される。第一発電制御とは、エンジン回転速度をその時点の目標回転速度に固定したままエンジンのファイアリングを行いつつ、ジェネレータに発電させる制御である。このような第一発電制御を実施することで、回生モータリング制御から第一発電制御への移行過程におけるエンジン回転速度の変動を抑制することができ、エンジンの騒音や振動を変化させることなくジェネレータの発電を実施することができる。したがって、回生モータリング制御からの加速時におけるドライブフィーリングを改善できる。 According to the disclosed hybrid vehicle, when the accelerator is turned on while regenerative motoring control is being performed, regenerative motoring control is stopped and first power generation control is performed. The first power generation control is control that causes the generator to generate power while firing the engine while keeping the engine rotation speed fixed at the target rotation speed at that time. By implementing such first power generation control, it is possible to suppress fluctuations in engine speed during the transition process from regenerative motoring control to first power generation control, and the generator can be controlled without changing engine noise or vibration. power generation can be carried out. Therefore, the drive feeling during acceleration from regenerative motoring control can be improved.
ハイブリッド車両の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of a hybrid vehicle. アクセル開度とドライバ要求出力との関係を例示するグラフである。It is a graph illustrating the relationship between accelerator opening and driver requested output. 車速とエンジンの目標回転速度との関係を例示するグラフである。It is a graph which illustrates the relationship between vehicle speed and target rotational speed of an engine. 第一発電制御及び第二発電制御の流れを例示するフローチャートである。It is a flowchart which illustrates the flow of first power generation control and second power generation control. 第一発電制御及び第二発電制御の作用を例示するタイムチャートである。It is a time chart illustrating the effect of the first power generation control and the second power generation control. エンジンの出力特性を例示するグラフである。It is a graph illustrating the output characteristics of an engine.
 開示のハイブリッド車両は、以下の実施例によって実施されうる。 The disclosed hybrid vehicle can be implemented by the following embodiments.
[1.装置構成]
 図1は、実施例としてのハイブリッド車両1の構成を例示するブロック図である。このハイブリッド車両1(単に車両1とも呼ぶ)は、駆動源としてのエンジン2及びモータ3と発電装置としてのジェネレータ4と蓄電装置としてのバッテリ5とが搭載されたハイブリッド自動車(ハイブリッド電気自動車,HEV,Hybrid Electric Vehicle)またはプラグインハイブリッド自動車(プラグインハイブリッド電気自動車,PHEV,Plug-in Hybrid Electric Vehicle)である。プラグインハイブリッド自動車とは、バッテリ5に対する外部充電、または、バッテリ5からの外部給電が可能なハイブリッド自動車を意味する。プラグインハイブリッド自動車には、外部充電設備からの電力が送給される充電ケーブルを差し込むための充電口(インレット)や、外部給電用のコンセント(アウトレット)が設けられる。
[1. Device configuration]
FIG. 1 is a block diagram illustrating the configuration of a hybrid vehicle 1 as an example. This hybrid vehicle 1 (also simply referred to as vehicle 1) is a hybrid vehicle (hybrid electric vehicle, HEV, Hybrid Electric Vehicle) or plug-in hybrid electric vehicle (PHEV, Plug-in Hybrid Electric Vehicle). A plug-in hybrid vehicle means a hybrid vehicle in which the battery 5 can be externally charged or power can be externally supplied from the battery 5. Plug-in hybrid vehicles are equipped with a charging port (inlet) into which a charging cable that supplies power from an external charging facility is inserted, and an outlet (outlet) for external power supply.
 エンジン2は、例えばガソリンエンジンやディーゼルエンジンなどの内燃機関である。エンジン2の駆動軸には、ジェネレータ4が連結される。ジェネレータ4は、バッテリ5の電力でエンジン2を駆動する機能とエンジン2の駆動力を利用して発電する機能とを兼ね備えた発電機(電動機兼発電機)である。ジェネレータ4の発電電力は、モータ3の駆動やバッテリ5の充電に用いられる。エンジン2とジェネレータ4とを繋ぐ動力伝達経路上には、図示しない変速機構が介装されうる。 The engine 2 is, for example, an internal combustion engine such as a gasoline engine or a diesel engine. A generator 4 is connected to the drive shaft of the engine 2 . The generator 4 is a generator (electric motor/generator) that has both the function of driving the engine 2 with the electric power of the battery 5 and the function of generating electricity using the driving force of the engine 2. The power generated by the generator 4 is used to drive the motor 3 and charge the battery 5. A transmission mechanism (not shown) may be interposed on the power transmission path connecting the engine 2 and the generator 4.
 モータ3は、バッテリ5の電力やジェネレータ4の発電電力を用いて車両1を走行させる機能と回生発電によって生じる電力をバッテリ5に充電する機能とを兼ね備えた電動機(電動機兼発電機)である。バッテリ5は、例えばリチウムイオン二次電池やニッケル水素電池などの二次電池である。モータ3の駆動軸は、車両1の駆動輪に連結される。モータ3と駆動輪とを繋ぐ動力伝達経路上には、図示しない変速機構が介装されうる。 The motor 3 is an electric motor (motor/generator) that has both the function of driving the vehicle 1 using the electric power of the battery 5 and the electric power generated by the generator 4, and the function of charging the battery 5 with electric power generated by regenerative power generation. The battery 5 is, for example, a secondary battery such as a lithium ion secondary battery or a nickel hydride battery. A drive shaft of the motor 3 is connected to drive wheels of the vehicle 1. A transmission mechanism (not shown) may be interposed on the power transmission path connecting the motor 3 and the drive wheels.
 エンジン2とモータ3とを繋ぐ動力伝達経路上には、クラッチ6が介装される。エンジン2はクラッチ6を介して駆動輪に接続され、モータ3はクラッチ6よりも駆動輪側に配置される。また、ジェネレータ4はクラッチ6よりもエンジン2側に接続される。クラッチ6が切断(解放)されると、エンジン2及びジェネレータ4が駆動輪に対して非接続の状態となり、モータ3が駆動輪に対して接続された状態となる。したがって、例えばモータ3のみを作動させることで、「EV走行(モータ単独走行)」が実現される。これに加えて、エンジン2を作動させてジェネレータ4に発電させることで、「シリーズ走行」が実現される。シリーズ走行とは、エンジン2の駆動力でジェネレータ4に発電させつつモータ3の駆動力で走行することを意味する。 A clutch 6 is interposed on the power transmission path connecting the engine 2 and the motor 3. The engine 2 is connected to the driving wheels via the clutch 6, and the motor 3 is arranged closer to the driving wheels than the clutch 6. Furthermore, the generator 4 is connected closer to the engine 2 than the clutch 6 is. When the clutch 6 is disengaged (released), the engine 2 and generator 4 are disconnected from the drive wheels, and the motor 3 is connected to the drive wheels. Therefore, for example, by operating only the motor 3, "EV driving (motor independent driving)" is realized. In addition to this, "series running" is realized by operating the engine 2 and causing the generator 4 to generate electricity. Series running means running with the driving force of the motor 3 while causing the generator 4 to generate electricity using the driving force of the engine 2.
 一方、クラッチ6が接続(締結)されると、エンジン2,モータ3,ジェネレータ4の三者が駆動輪に対して接続された状態となる。したがって、例えばエンジン2のみを作動させることで、「エンジン走行(エンジン単独走行)」が実現される。これに加えて、モータ3やジェネレータ4を駆動することで、「パラレル走行」が実現される。上記のシリーズ走行及びパラレル走行は、ともに「ハイブリッド走行」とも呼ばれる。 On the other hand, when the clutch 6 is connected (fastened), the engine 2, motor 3, and generator 4 are connected to the drive wheels. Therefore, for example, by operating only the engine 2, "engine running (engine independent running)" is realized. In addition to this, "parallel running" is realized by driving the motor 3 and generator 4. Both the series running and parallel running described above are also called "hybrid running."
 エンジン2,モータ3,ジェネレータ4,バッテリ5,クラッチ6の作動状態は、制御装置10によって制御される。制御装置10は、少なくともエンジン2及びジェネレータ4の作動状態を制御する機能を持ったコンピュータ(電子制御装置,ECU,Electronic Control Unit)である。制御装置10は、プロセッサ(演算処理装置)及びメモリ(記憶装置)を内蔵する。制御装置10が実施する制御の内容(制御プログラム)はメモリに保存され、その内容がプロセッサに適宜読み込まれることによって実行される。 The operating states of the engine 2, motor 3, generator 4, battery 5, and clutch 6 are controlled by a control device 10. The control device 10 is a computer (electronic control unit, ECU, Electronic Control Unit) that has a function of controlling at least the operating states of the engine 2 and the generator 4. The control device 10 includes a processor (arithmetic processing unit) and a memory (storage device). The contents of control (control program) executed by the control device 10 are stored in a memory, and are executed by being read into the processor as appropriate.
 本実施例の制御装置10には、アクセル開度センサ7,ブレーキ開度センサ8,車速センサ9が接続される。アクセル開度センサ7は、アクセルペダルの踏み込み量に相当するパラメータ(アクセル開度,アクセルペダルストローク,スロットル開度等)を検出するセンサである。ブレーキ開度センサ8は、ブレーキペダルの踏み込み量に相当するパラメータ(ブレーキ開度,ブレーキペダルストローク,ブレーキ液圧等)を検出するセンサである。車速センサ9は、車両1の走行速度(車速)を検出するセンサである。これらの各センサ7~9で検出された情報は、制御装置10に伝達される。 An accelerator opening sensor 7, a brake opening sensor 8, and a vehicle speed sensor 9 are connected to the control device 10 of this embodiment. The accelerator opening sensor 7 is a sensor that detects parameters (accelerator opening, accelerator pedal stroke, throttle opening, etc.) corresponding to the amount of depression of the accelerator pedal. The brake opening sensor 8 is a sensor that detects parameters (brake opening, brake pedal stroke, brake fluid pressure, etc.) corresponding to the amount of depression of the brake pedal. The vehicle speed sensor 9 is a sensor that detects the traveling speed (vehicle speed) of the vehicle 1. Information detected by each of these sensors 7 to 9 is transmitted to the control device 10.
 図2は、アクセル開度センサ7で検出されるアクセル開度[%]と制御装置10で設定されるドライバ要求出力[kW]との関係を規定する特性を例示するグラフである。アクセル開度とは、アクセルペダルの踏み込み量(例えば、アクセルペダルストロークやアクセルペダルの支点に対する回動角など)を百分率で表したものである。また、ドライバ要求出力とは、ドライバが車両1を走行させるために要求している出力(言い換えれば、馬力や電力や仕事率)の大きさに相当するパラメータである。ドライバ要求出力は、おおむねアクセル開度が大きいほど大きな値に設定される。なお、車両1の駆動源の出力は、例えばドライバ要求出力や車速が大きいほど大出力になるように制御される。 FIG. 2 is a graph illustrating a characteristic defining the relationship between the accelerator opening [%] detected by the accelerator opening sensor 7 and the driver required output [kW] set by the control device 10. The accelerator opening degree is the amount of depression of the accelerator pedal (for example, the accelerator pedal stroke, the rotation angle of the accelerator pedal with respect to the fulcrum, etc.) expressed as a percentage. Further, the driver-required output is a parameter corresponding to the magnitude of the output (in other words, horsepower, electric power, and power) that the driver requests in order to run the vehicle 1. Generally, the driver request output is set to a larger value as the accelerator opening degree becomes larger. Note that the output of the drive source of the vehicle 1 is controlled such that, for example, the larger the driver requested output or vehicle speed is, the larger the output is.
 図3は、車速センサ9で検出される車速[km/h]とエンジン2の目標回転速度[rpm]との関係を例示するグラフである。図3中の実線グラフは、エンジン2のモータリング時(車両1の減速時)における特性を示し、図3中の破線グラフは、エンジン2のファイアリング時(車両1の加速時)における特性を示す。モータリングとは、ジェネレータ4を用いてエンジン2を空回しする(燃料混合気を筒内で燃焼させずにエンジン2を回転駆動する)ことを意味し、ファイアリングとは、エンジン2に燃料や吸入空気を供給することで自立回転させる(燃料混合気を筒内で燃焼させる)ことを意味する。ファイアリングは、少なくともエンジン2が作動している走行モードで実施されうるものであり、例えばシリーズ走行時に実施されうる。 FIG. 3 is a graph illustrating the relationship between the vehicle speed [km/h] detected by the vehicle speed sensor 9 and the target rotational speed [rpm] of the engine 2. The solid line graph in FIG. 3 shows the characteristics when engine 2 is motoring (when vehicle 1 is decelerating), and the broken line graph in FIG. 3 shows the characteristics when engine 2 is firing (when vehicle 1 is accelerating). show. Motoring means running the engine 2 idly using the generator 4 (driving the engine 2 to rotate without burning the fuel mixture in the cylinder), and firing means running the engine 2 idly using the generator 4. This means that the cylinder rotates independently by supplying intake air (burning the fuel mixture in the cylinder). Firing can be performed at least in a driving mode in which the engine 2 is operating, and can be performed, for example, during series driving.
 モータリング時におけるエンジン2の目標回転速度は、図3中に実線グラフで示すように、車速が上昇するにつれて増大するように設定される。ただし、車速が所定車速以上の高速領域では、エンジン2の目標回転速度が所定の上限回転速度に固定される。また、ファイアリング時におけるエンジン2の目標回転速度は、図3中に破線グラフで示すように、同一の車速に対してモータリング時に設定される目標回転速度よりも小さい値に設定される。 The target rotational speed of the engine 2 during motoring is set to increase as the vehicle speed increases, as shown by the solid line graph in FIG. However, in a high-speed region where the vehicle speed is equal to or higher than a predetermined vehicle speed, the target rotational speed of the engine 2 is fixed to a predetermined upper limit rotational speed. Further, the target rotational speed of the engine 2 during firing is set to a smaller value than the target rotational speed set during motoring for the same vehicle speed, as shown by the broken line graph in FIG.
 図3のような目標回転速度の設定を厳守した場合、エンジン2の状態がモータリング状態からファイアリング状態へと移行したときには必然的に目標回転速度が低下し、ドライブフィーリングが悪化しうる。例えば、回生モータリング制御中にアクセルペダルが踏み込まれてエンジン2がファイアリング状態になったとき、エンジン2の回転速度(エンジン回転速度)が急激に低下し、ドライバに違和感を与えてしまう。このような課題を踏まえ、本実施例の制御装置10は、回生モータリング制御の実施中にアクセルオン(アクセル開度が所定開度を超えた状態)になったときには、図3中の破線グラフの特性とは異なる目標回転速度の設定を行う。 If the setting of the target rotational speed as shown in FIG. 3 is strictly adhered to, the target rotational speed will inevitably decrease when the state of the engine 2 transitions from the motoring state to the firing state, and the drive feeling may deteriorate. For example, when the accelerator pedal is depressed during regenerative motoring control and the engine 2 enters a firing state, the rotational speed of the engine 2 (engine rotational speed) decreases rapidly, giving the driver a sense of discomfort. In consideration of such issues, the control device 10 of the present embodiment is configured to operate as shown in the broken line graph in FIG. Set a target rotation speed that is different from the characteristics of.
[2.制御構成]
 制御装置10は、少なくとも回生モータリング制御及び第一発電制御を実施する。好ましくは、これらの制御に加えて、第二発電制御を実施する。
 回生モータリング制御とは、走行中かつアクセルオフ(アクセル開度が所定開度以下の状態,ドライバ要求トルクやドライバ要求出力が閾値以下の状態)の時に、モータ3の回生電力をジェネレータ4に供給し、エンジン2を所定の目標回転速度でモータリング(空回し)する制御である。回生モータリング制御の実施条件には、少なくとも車両1が走行中であってアクセルオフであることが含まれる。これに加えて、バッテリ5の充電率,バッテリ故障の有無,バッテリ温度,ブレーキ開度,車両1に要求される制動力,図示しない摩擦ブレーキ装置の作動状態,路面状態などの条件を、回生モータリング制御の実施条件に含ませてもよい。
[2. Control configuration]
The control device 10 performs at least regenerative motoring control and first power generation control. Preferably, in addition to these controls, second power generation control is performed.
Regenerative motoring control means that regenerative power from the motor 3 is supplied to the generator 4 while driving and when the accelerator is off (the accelerator opening is below a predetermined opening, the driver required torque and the driver required output are below a threshold). This is a control in which the engine 2 is motored (idle running) at a predetermined target rotational speed. The conditions for implementing the regenerative motoring control include at least that the vehicle 1 is traveling and the accelerator is off. In addition, conditions such as the charging rate of the battery 5, presence or absence of battery failure, battery temperature, brake opening, braking force required of the vehicle 1, operating state of the friction brake device (not shown), and road surface condition are checked for the regenerative motor. It may be included in the ring control execution conditions.
 第一発電制御は、回生モータリング制御の実施中にアクセルオンになったときに、回生モータリング制御の代わりに実施される制御であり、エンジン2の回転速度をその時点(アクセルオンになった時点)の目標回転速度に固定したまま、エンジン2のファイアリングを行いつつジェネレータ4に発電させる制御である。言い換えれば、第一発電制御とは、回生モータリング制御の実施中にアクセルオンになったときに、図3中の破線グラフに基づく目標回転速度の設定を保留して、その時点における目標回転速度を維持する制御である。これにより、アクセルオンの前後におけるエンジン2の騒音,振動の急変が抑制され、ドライブフィーリングが改善される。 The first power generation control is a control that is executed instead of the regenerative motoring control when the accelerator is turned on while the regenerative motoring control is being performed, and the rotational speed of the engine 2 is adjusted at that moment (when the accelerator is turned on). This control is to cause the generator 4 to generate electricity while firing the engine 2 while keeping the target rotational speed fixed at the target rotational speed at the time point). In other words, the first power generation control means that when the accelerator is turned on during regenerative motoring control, setting of the target rotation speed based on the broken line graph in FIG. 3 is suspended, and the target rotation speed at that point is It is a control that maintains the As a result, sudden changes in the noise and vibration of the engine 2 before and after the accelerator is turned on are suppressed, and the driving feeling is improved.
 第一発電制御では、アクセル開度(またはこれに対応するドライバ要求出力)が大きいほどエンジン2のトルクが大きく設定されうる。一方、目標回転速度が固定されているため、実際のエンジン2の回転速度は維持される。エンジン2の回転速度は、エンジン2に対するジェネレータ4の負荷(ジェネレータ4が電力に変換する動力)を調節することで変更可能である。このように、制御装置10は、第一発電制御に際し、アクセル開度が大きいほどエンジン2のトルクを増大させつつエンジン2の回転速度を維持するように機能しうる。 In the first power generation control, the torque of the engine 2 can be set to be larger as the accelerator opening (or the corresponding driver requested output) is larger. On the other hand, since the target rotational speed is fixed, the actual rotational speed of the engine 2 is maintained. The rotational speed of the engine 2 can be changed by adjusting the load of the generator 4 on the engine 2 (power that the generator 4 converts into electric power). In this way, during the first power generation control, the control device 10 can function to maintain the rotational speed of the engine 2 while increasing the torque of the engine 2 as the accelerator opening becomes larger.
 第一発電制御の終了条件には、少なくともアクセルオフであること(アクセル開度が所定開度以下であること)が含まれる。この条件が成立した場合、制御装置10は第一発電制御を終了させて回生モータリング制御を再開させうる。また、本実施形態の第一発電制御の終了条件には、ドライバ要求出力が所定値を超えたことが含まれる。この条件が成立した場合、制御装置10は、第一発電制御を終了させて第二発電制御を実施する。 The conditions for ending the first power generation control include at least that the accelerator is off (the accelerator opening is less than or equal to a predetermined opening). If this condition is satisfied, the control device 10 can terminate the first power generation control and restart the regenerative motoring control. Furthermore, the conditions for ending the first power generation control in this embodiment include that the driver requested output exceeds a predetermined value. When this condition is satisfied, the control device 10 ends the first power generation control and implements the second power generation control.
 第二発電制御とは、第一発電制御に際し、ドライバ要求出力が所定値を超えた場合(またはアクセル開度が所定開度を超えた場合)に、第一発電制御をやめてエンジン2の回転速度を上昇させる制御である。言い換えれば、第二発電制御とは、ドライバがアクセルペダルを大きく踏み込んだ場合に、図3中の破線グラフに基づく目標回転速度の設定を再開する制御である。これにより、アクセル開度を増加させるにつれてエンジン2の騒音,振動が大きくなり、自然で直感的に理解しやすいドライブフィーリングが実現される。なお、第二発電制御の終了条件には、少なくともアクセルオフであることが含まれる。この条件が成立した場合、制御装置10は、第二発電制御を終了させて回生モータリング制御を再開させうる。 The second power generation control means that during the first power generation control, if the driver requested output exceeds a predetermined value (or if the accelerator opening exceeds a predetermined opening), the first power generation control is stopped and the rotational speed of the engine 2 is changed. This is a control that increases the In other words, the second power generation control is a control that restarts the setting of the target rotational speed based on the broken line graph in FIG. 3 when the driver depresses the accelerator pedal significantly. As a result, the noise and vibration of the engine 2 increase as the accelerator opening degree increases, and a driving feeling that is natural and easy to intuitively understand is realized. Note that the conditions for ending the second power generation control include at least that the accelerator is off. If this condition is satisfied, the control device 10 can end the second power generation control and restart the regenerative motoring control.
[3.フローチャート]
 図4は、第一発電制御及び第二発電制御の流れを例示するフローチャートである。このフローチャートに示す制御は、例えば図示しない車両1のパワースイッチがオンであって走行可能である(READY状態である)場合に、制御装置10の内部で所定の周期で繰り返し実行される。ステップA1~A3はおもに回生モータリング制御に対応し、ステップA4~A8はおもに第一発電制御に対応し、ステップA9は第二発電制御に対応する。
[3. flowchart]
FIG. 4 is a flowchart illustrating the flow of the first power generation control and the second power generation control. The control shown in this flowchart is repeatedly executed within the control device 10 at a predetermined period, for example, when the power switch of the vehicle 1 (not shown) is on and the vehicle 1 is ready to travel (in a READY state). Steps A1 to A3 mainly correspond to regenerative motoring control, steps A4 to A8 mainly correspond to first power generation control, and step A9 correspond to second power generation control.
 ステップA1では、回生モータリング制御の実施条件が成立するか否かが判定される。この条件が成立した場合には、制御がステップA2に進む。一方、ステップA1の条件が成立しない場合には、この周期での制御が終了する。
 ステップA2では、例えば図3中の実線グラフのような特性に基づき、車速に応じてエンジン2の目標回転速度が設定される。ここでは、車速が速いほどエンジン2の目標回転速度が高く設定される。つまり、車速が速いほどモータ3で生成される回生電力が大きくなるため、その回生電力の見合った大きさの電力をジェネレータ4に消費させるべく、ジェネレータ4によって駆動されるエンジン2の目標回転速度が高く設定される。
In step A1, it is determined whether conditions for implementing regenerative motoring control are satisfied. If this condition is met, control proceeds to step A2. On the other hand, if the condition of step A1 is not satisfied, the control in this cycle ends.
In step A2, a target rotational speed of the engine 2 is set in accordance with the vehicle speed based on, for example, the characteristics shown in the solid line graph in FIG. Here, the higher the vehicle speed is, the higher the target rotational speed of the engine 2 is set. In other words, the faster the vehicle speed is, the greater the regenerative power generated by the motor 3 becomes, so the target rotational speed of the engine 2 driven by the generator 4 is set so that the generator 4 consumes an amount of power commensurate with the regenerated power. set high.
 ステップA3では、ステップA2で設定された目標回転速度に基づいて回生モータリング制御が実施される。すなわち、モータ3の回生電力がジェネレータ4に供給され、そのジェネレータ4によってエンジン2の回転速度が目標回転速度になるようにモータリング(空回し)される。
 ステップA4では、アクセルオンであるか否かが判定される。ここで、アクセルオンではないと判定された場合には、この周期での制御が終了する。次周期以降は、回生モータリング制御の実施条件が成立する限り回生モータリング制御が継続される。一方、ステップA4においてアクセルオンであると判定された場合には、制御がステップA5に進む。
In step A3, regenerative motoring control is performed based on the target rotational speed set in step A2. That is, the regenerated power of the motor 3 is supplied to the generator 4, and the generator 4 motors the engine 2 so that the rotational speed of the engine 2 reaches the target rotational speed.
In step A4, it is determined whether the accelerator is on. Here, if it is determined that the accelerator is not on, the control in this cycle ends. From the next period onwards, the regenerative motoring control is continued as long as the conditions for implementing the regenerative motoring control are satisfied. On the other hand, if it is determined in step A4 that the accelerator is on, the control proceeds to step A5.
 ステップA5では、例えば図2のような特性に基づき、アクセル開度に基づいてドライバ要求出力が算出される。アクセル開度が大きいほど、ドライバ要求出力が大きな値に設定される。続くステップA6では、ステップA5で算出されたドライバ要求出力が所定値以下であるか否かが判定される。この条件が成立する場合には、制御がステップA7に進む。 In step A5, the driver required output is calculated based on the accelerator opening based on the characteristics as shown in FIG. 2, for example. The larger the accelerator opening, the larger the driver request output is set. In the following step A6, it is determined whether the driver request output calculated in step A5 is less than or equal to a predetermined value. If this condition is met, control proceeds to step A7.
 ステップA7では、エンジン2の回転速度をその時点の目標回転速度に固定したまま、エンジン2のファイアリングを行いつつジェネレータ4に発電させる第一発電制御が実施される。これにより、エンジン2の作動状態は、モータリング状態からファイアリング状態へと移行する。エンジン2のトルクは、ドライバ要求出力に応じて設定される。一方、ファイアリング状態でのエンジン2の目標回転速度は、モータリング状態でのエンジン2の目標回転速度と同一速度に維持される。したがって、エンジン2の騒音や振動がほとんど変化せず、ドライブフィーリングが改善される。 In step A7, the first power generation control is performed to cause the generator 4 to generate electricity while firing the engine 2 while keeping the rotational speed of the engine 2 fixed at the target rotational speed at that time. As a result, the operating state of the engine 2 shifts from the motoring state to the firing state. The torque of the engine 2 is set according to the driver's requested output. On the other hand, the target rotational speed of the engine 2 in the firing state is maintained at the same speed as the target rotational speed of the engine 2 in the motoring state. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
 続くステップA8では、アクセルオフであるか否かが判定される。ここで、アクセルオフではないと判定された場合には、制御がステップA5に戻り、再びドライバ要求出力が算出される。その後、ドライバ要求出力が所定値以下である限り、第一発電制御が継続される。また、ステップA8において、アクセルオフであると判定された場合には、この周期での制御が終了する。次周期以降は、回生モータリング制御の実施条件が成立する限り回生モータリング制御が再開される。 In the following step A8, it is determined whether the accelerator is off. Here, if it is determined that the accelerator is not off, the control returns to step A5 and the driver requested output is calculated again. Thereafter, the first power generation control is continued as long as the driver requested output is equal to or less than the predetermined value. Further, if it is determined in step A8 that the accelerator is off, the control in this cycle ends. From the next cycle onward, regenerative motoring control is restarted as long as the conditions for implementing regenerative motoring control are met.
 ステップA6でドライバ要求出力が所定値を超えていると判定された場合には、制御がステップA9に進む。ステップA9では、第一発電制御の代わりに第二発電制御が実施され、エンジン2の回転速度がその時点の目標回転速度よりも高い回転速度に変更される。エンジン2のトルクは、ドライバ要求出力に応じて設定される。第二発電制御時には、第一発電制御時と比較してエンジン2の出力が大きくなり、ジェネレータ4での発電電力も増加する。 If it is determined in step A6 that the driver requested output exceeds the predetermined value, control proceeds to step A9. In step A9, the second power generation control is performed instead of the first power generation control, and the rotational speed of the engine 2 is changed to a rotational speed higher than the target rotational speed at that time. The torque of the engine 2 is set according to the driver's requested output. During the second power generation control, the output of the engine 2 becomes larger than during the first power generation control, and the power generated by the generator 4 also increases.
 続くステップA8では、アクセルオフであるか否かが判定される。ここで、アクセルオフではないと判定された場合には、制御がステップA5に戻り、再びドライバ要求出力が算出される。その後、ドライバ要求出力が所定値を超えている限り、第二発電制御が継続される。また、ステップA8において、アクセルオフであると判定された場合には、この周期での制御が終了する。次周期以降は、回生モータリング制御の実施条件が成立する限り回生モータリング制御が再開される。 In the following step A8, it is determined whether the accelerator is off. Here, if it is determined that the accelerator is not off, the control returns to step A5 and the driver requested output is calculated again. Thereafter, the second power generation control is continued as long as the driver requested output exceeds the predetermined value. Further, if it is determined in step A8 that the accelerator is off, the control in this cycle ends. From the next cycle onward, regenerative motoring control is restarted as long as the conditions for implementing regenerative motoring control are met.
[4.作用]
 図5は、第一発電制御及び第二発電制御の作用を例示するタイムチャートである。ここでは、時刻tよりも前に回生モータリング制御が実施されており、アクセルオフの状態であるとする。時刻tにアクセルペダルがわずかに踏み込まれてアクセルオンになると、回生モータリング制御が停止するとともに第一発電制御が開始される。エンジン2の状態は、時刻tを境としてモータリング状態からファイアリング状態へと移行する。一方、第一発電制御では、エンジン2の目標回転速度が時刻tよりも前の目標回転速度に維持され、実際のエンジン2の回転速度も一定の値となる。したがって、エンジン2の騒音や振動がほとんど変化せず、ドライブフィーリングが改善される。
[4. Effect】
FIG. 5 is a time chart illustrating the effects of the first power generation control and the second power generation control. Here, it is assumed that regenerative motoring control has been performed before time t1 and the accelerator is off. When the accelerator pedal is slightly depressed to turn on the accelerator at time t1 , the regenerative motoring control is stopped and the first power generation control is started. The state of the engine 2 transitions from a motoring state to a firing state at time t1 . On the other hand, in the first power generation control, the target rotational speed of the engine 2 is maintained at the target rotational speed before time t1 , and the actual rotational speed of the engine 2 also becomes a constant value. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
 なお、仮に第一発電制御を実施しない場合には、時刻tにエンジン2の目標回転速度が比較的低く設定されうることから、実際のエンジン2の回転速度が図5中に破線で示すように低下してしまう。しかしながら、本実施例では第一発電制御が実施されるため、時刻tの前後においてエンジン2の回転速度がほぼ変化せず一定になる。また、第一発電制御を実施しない場合には、図5中に二点鎖線で示すように、エンジン2のトルクがやや大きな値になりうる。 Note that if the first power generation control is not performed, the target rotational speed of the engine 2 at time t1 may be set to a relatively low value, so the actual rotational speed of the engine 2 may be changed as shown by the broken line in FIG. It will drop to . However, in this embodiment, since the first power generation control is performed, the rotational speed of the engine 2 does not substantially change and remains constant before and after time t1 . Furthermore, when the first power generation control is not performed, the torque of the engine 2 may reach a somewhat large value, as shown by the two-dot chain line in FIG.
 一方、本実施例では第一発電制御を実施しない場合よりもエンジン2の回転速度が高くなるため、同一の出力(仕事率)に対するトルクの値が小さくなる。したがって、第一発電制御を実施しない場合と比較してエンジン2の回転速度が上昇した分だけ(言い換えれば、回転速度とトルクとの積が一定になるように)トルクを低下させることで、ジェネレータ4の発電電力を変更することなくエンジン2の回転速度を保つことが可能となる。また、バッテリ5の出力(バッテリ5から取り出される電力)は、モータ3や各種補機類の消費電力からジェネレータ4の発電電力を減じた大きさとなる。 On the other hand, in this embodiment, the rotational speed of the engine 2 is higher than when the first power generation control is not performed, so the torque value for the same output (power) is smaller. Therefore, by reducing the torque by the amount that the rotational speed of the engine 2 has increased compared to the case where the first power generation control is not performed (in other words, so that the product of the rotational speed and the torque is constant), the generator It becomes possible to maintain the rotational speed of the engine 2 without changing the generated power of the engine 4. Further, the output of the battery 5 (power extracted from the battery 5) is equal to the power consumption of the motor 3 and various auxiliary machines minus the power generated by the generator 4.
 時刻tにアクセルペダルが踏み戻されてアクセルオフになると、第一発電制御が停止するとともに回生モータリング制御が再開される。エンジン2の状態は、時刻tを境としてファイアリング状態からモータリング状態へと移行する。一方、時刻t以降もエンジン2の目標回転速度は一定に保たれ、実際の回転速度も一定の値となる。したがって、エンジン2の騒音や振動がほとんど変化せず、ドライブフィーリングが改善される。 When the accelerator pedal is pressed back and the accelerator is turned off at time t2 , the first power generation control is stopped and the regenerative motoring control is restarted. The state of the engine 2 transitions from the firing state to the motoring state at time t2 . On the other hand, the target rotational speed of the engine 2 is kept constant even after time t2 , and the actual rotational speed also remains constant. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
 時刻tに再びアクセルペダルが踏み込まれてアクセルオンになると、回生モータリング制御が停止するとともに第一発電制御が再開される。エンジン2の状態は、時刻tを境としてモータリング状態からファイアリング状態へと移行する。一方、時刻t以降もエンジン2の目標回転速度は一定に保たれ、実際の回転速度も一定の値となる。したがって、エンジン2の騒音や振動がほとんど変化せず、ドライブフィーリングが改善される。 When the accelerator pedal is depressed again at time t3 and the accelerator is turned on, the regenerative motoring control is stopped and the first power generation control is restarted. The state of the engine 2 transitions from the motoring state to the firing state at time t3 . On the other hand, the target rotational speed of the engine 2 is kept constant even after time t3 , and the actual rotational speed also remains constant. Therefore, the noise and vibration of the engine 2 hardly change, and the drive feeling is improved.
 時刻tにアクセルペダルの踏み増しが開始されると、アクセル開度が大きいほどエンジン2のトルクが大きく設定される。一方、時刻t以降もエンジン2の目標回転速度は一定に保たれるため、トルクの上昇に伴いエンジン2の出力(回転速度とトルクとの積)が増加し、ジェネレータ4の発電電力も徐々に増加する。その後、時刻tにドライバ要求出力が所定値を超えると、第一発電制御の代わりに第二発電制御が実施される。第二発電制御では、図3中の破線グラフに基づく目標回転速度の設定が再開される。これにより、エンジン2の回転速度が上昇するとともに、エンジン2のトルクやジェネレータ4の発電電力もさらに増加する。したがって、アクセル開度を増加させるにつれてエンジン2の騒音,振動が大きくなり、自然で直感的に理解しやすいドライブフィーリングが実現される。 When further depression of the accelerator pedal is started at time t4 , the torque of the engine 2 is set to be greater as the accelerator opening degree is greater. On the other hand, since the target rotational speed of the engine 2 is kept constant even after time t4 , the output of the engine 2 (the product of rotational speed and torque) increases as the torque increases, and the power generated by the generator 4 also gradually increases. increases to Thereafter, when the driver requested output exceeds a predetermined value at time t5 , second power generation control is performed instead of first power generation control. In the second power generation control, setting of the target rotation speed based on the broken line graph in FIG. 3 is restarted. As a result, the rotational speed of the engine 2 increases, and the torque of the engine 2 and the power generated by the generator 4 also increase. Therefore, as the accelerator opening degree increases, the noise and vibration of the engine 2 increase, and a natural and intuitively understandable drive feeling is realized.
 図6は、エンジン2の出力特性(回転速度とトルクとの関係)を例示するグラフである。図6中の太実線は、エンジン2の回転速度と最大トルクとの関係を示す。図6中の細実線は、一定の熱効率間隔で同一の熱効率(燃費)が得られる運転点を繋いだ曲線であって、熱効率の高低についての等高線である。図6中の運転点Pは、図5の時刻t~tや時刻t~tにおいて第一発電制御を実施しない場合のエンジン2の運転点であり、運転点Pは、図5の時刻t~tや時刻t~tにおいて第一発電制御を実施した場合のエンジン2の運転点である。 FIG. 6 is a graph illustrating the output characteristics (relationship between rotational speed and torque) of the engine 2. The thick solid line in FIG. 6 shows the relationship between the rotational speed of the engine 2 and the maximum torque. The thin solid lines in FIG. 6 are curves connecting operating points at which the same thermal efficiency (fuel efficiency) can be obtained at fixed thermal efficiency intervals, and are contour lines regarding the level of thermal efficiency. The operating point P 0 in FIG. 6 is the operating point of the engine 2 when the first power generation control is not performed at times t 1 to t 2 and times t 3 to t 4 in FIG. 5, and the operating point P 1 is This is the operating point of the engine 2 when the first power generation control is performed at times t 1 to t 2 and times t 3 to t 4 in FIG. 5 .
 運転点Pは、運転点Pにおける出力(回転速度とトルクとの積)が運転点Pにおける出力と同一になるように設定される。したがって、ジェネレータ4の発電電力は、第一発電制御を実施した場合と実施しない場合とで変更する必要はない。また、運転点Pは運転点Pと比較して熱効率がやや低い。このことから、第一発電制御を実施することは、第一発電制御を実施しない場合よりも燃費面でやや不利であることがわかる。 The operating point P1 is set so that the output (product of rotational speed and torque) at the operating point P1 is the same as the output at the operating point P0 . Therefore, the power generated by the generator 4 does not need to be changed depending on whether the first power generation control is performed or not. Furthermore, the thermal efficiency at the operating point P1 is slightly lower than that at the operating point P0 . From this, it can be seen that implementing the first power generation control is slightly more disadvantageous in terms of fuel efficiency than not implementing the first power generation control.
 また、図6中の運転点Pは、図5の時刻t~tにおいてエンジン2の回転速度を固定したままトルクを上昇させたときのエンジン2の運転点であり、運転点Pは図5の時刻t以降の第二発電制御におけるエンジン2の運転点であって、例えばエンジン2の最大トルクの近傍に位置する運転点である。運転点Pは、運転点Pと比較して熱効率がやや高い。このことから、第一発電制御では、アクセル開度を増大させるにつれて燃費面でのデメリットが減少することがわかる。また、運転点Pは、図6中において運転点Pよりも右上に位置するため、出力(回転速度とトルクとの積)が増大していることがわかる。 Further, the operating point P 2 in FIG. 6 is the operating point of the engine 2 when the torque is increased while the rotational speed of the engine 2 is fixed from time t 4 to t 5 in FIG. 5, and the operating point P 3 is an operating point of the engine 2 in the second power generation control after time t5 in FIG. 5 , and is an operating point located near the maximum torque of the engine 2, for example. Operating point P2 has a slightly higher thermal efficiency than operating point P1 . From this, it can be seen that in the first power generation control, the disadvantage in terms of fuel consumption decreases as the accelerator opening degree increases. Furthermore, since the operating point P3 is located to the upper right of the operating point P2 in FIG. 6, it can be seen that the output (the product of rotational speed and torque) is increasing.
[5.効果]
 (1)本実施例のハイブリッド車両1は、エンジン2と、車輪の駆動及び回生制動を行うモータ3と、エンジン2の駆動力による発電及びエンジン2の駆動を行うジェネレータ4と、モータ3及びジェネレータ4に接続されるバッテリ5とを備える。また、走行中かつアクセルオフ時にモータ3の回生電力をジェネレータ4に供給しエンジン2を所定の目標回転速度でモータリングする回生モータリング制御を実施する制御装置10を備える。制御装置10は、回生モータリング制御の実施中にアクセルオンになったときに回生モータリング制御をやめて、第一発電制御を実施する。第一発電制御とは、エンジン2の回転速度をその時点の目標回転速度に固定したままエンジン2のファイアリングを行いつつジェネレータ4に発電させる制御である。
[5. effect]
(1) The hybrid vehicle 1 of this embodiment includes an engine 2, a motor 3 that drives wheels and performs regenerative braking, a generator 4 that generates electricity using the driving force of the engine 2 and drives the engine 2, and a motor 3 and a generator that drive the engine 2. 4 and a battery 5 connected to the battery 5. The vehicle also includes a control device 10 that performs regenerative motoring control that supplies regenerative power from the motor 3 to the generator 4 and motors the engine 2 at a predetermined target rotational speed when the vehicle is running and the accelerator is off. When the accelerator is turned on while the regenerative motoring control is being performed, the control device 10 stops the regenerative motoring control and performs the first power generation control. The first power generation control is control that causes the generator 4 to generate electricity while firing the engine 2 while keeping the rotational speed of the engine 2 fixed at the target rotational speed at that time.
 このような制御を実施することで、回生モータリング制御から第一発電制御への移行過程において、エンジン2の回転速度の変動を抑制することができる。つまり、モータリング状態からファイアリング状態への移行に際し、ファイアリング状態でのエンジン2の目標回転速度を、モータリング状態でのエンジン2の目標回転速度と同一速度にすることができ、エンジン2の騒音や振動の変化を抑制できる。したがって、回生モータリング制御からの加速時におけるドライブフィーリングを改善できる。 By implementing such control, fluctuations in the rotational speed of the engine 2 can be suppressed in the transition process from regenerative motoring control to first power generation control. In other words, when transitioning from the motoring state to the firing state, the target rotational speed of the engine 2 in the firing state can be made the same as the target rotational speed of the engine 2 in the motoring state. Changes in noise and vibration can be suppressed. Therefore, the drive feeling during acceleration from regenerative motoring control can be improved.
 なお、第一発電制御におけるエンジン2のトルクの初期値(図6中の運転点PにおけるトルクT)は、運転点Pにおける出力が運転点Pにおける出力と同一になるように設定される。このような設定により、エンジン2の出力を既存の制御と同一にすることができ、ジェネレータ4の発電電力も同一にすることができる。 Note that the initial value of the torque of the engine 2 in the first power generation control (torque T 1 at the operating point P 1 in FIG. 6) is set so that the output at the operating point P 1 is the same as the output at the operating point P 0 . be done. With such a setting, the output of the engine 2 can be made the same as the existing control, and the power generated by the generator 4 can also be made the same.
 (2)上記の制御装置10は、第一発電制御に際し、アクセル開度が大きいほどエンジン2のトルクを増大させつつエンジン2の回転速度を維持する制御を実施しうる。例えば、図2に示すような特性に基づいてドライバ要求出力が設定され、このドライバ要求出力に基づいてエンジン2のトルクが制御される。このような制御により、エンジン2の出力を増大させつつ、エンジン2の騒音や振動の変化を抑制することができ、回生モータリング制御からの加速時におけるドライブフィーリングを改善できる。また、エンジン2の出力を増大させることで、ジェネレータ4の発電量を増加させることができる。したがって、モータ3を駆動するための電力を増大させることができ、良好な加速感を実現できる。 (2) In the first power generation control, the control device 10 described above can perform control to maintain the rotational speed of the engine 2 while increasing the torque of the engine 2 as the accelerator opening is larger. For example, a driver requested output is set based on the characteristics shown in FIG. 2, and the torque of the engine 2 is controlled based on this driver requested output. With such control, it is possible to increase the output of the engine 2 while suppressing changes in noise and vibration of the engine 2, and it is possible to improve the drive feeling during acceleration from regenerative motoring control. Furthermore, by increasing the output of the engine 2, the amount of power generated by the generator 4 can be increased. Therefore, the electric power for driving the motor 3 can be increased, and a good feeling of acceleration can be achieved.
 (3)上記の制御装置10は、第一発電制御に際し、ドライバ要求出力が所定値を超えた場合に、第一発電制御をやめてエンジン2の回転速度を上昇させる第二発電制御を実施しうる。例えば図5中の時刻t以降のように、ドライバ要求出力が増加した場合にはエンジン2の回転速度を目標回転速度以上の範囲で上昇させることで、違和感のないエンジン2の挙動を実現でき、ドライブフィーリングを改善できる。また、ジェネレータ4の発電電力を増加させて、車両1の加速性能を向上させることができ、ドライブフィーリングを改善できる。 (3) During the first power generation control, the control device 10 described above can perform a second power generation control in which the first power generation control is stopped and the rotational speed of the engine 2 is increased when the driver requested output exceeds a predetermined value. . For example, when the driver required output increases as after time t5 in FIG. 5, by increasing the rotational speed of the engine 2 within a range equal to or higher than the target rotational speed, it is possible to realize a behavior of the engine 2 that does not cause any discomfort. , can improve drive feeling. Further, by increasing the power generated by the generator 4, the acceleration performance of the vehicle 1 can be improved, and the driving feeling can be improved.
 (4)上記の制御装置10は、第一発電制御の実施中にアクセルオフになったときに、回生モータリング制御を再開させうる。このような制御により、ファイアリング状態からモータリング状態への移行に際し、エンジン2の騒音や振動を変化させずに回生モータリング制御を再開させることができる。したがって、第一発電制御後のドライブフィーリングを改善できる。 (4) The above control device 10 can restart regenerative motoring control when the accelerator is turned off during execution of first power generation control. With such control, regenerative motoring control can be restarted without changing the noise or vibration of the engine 2 when transitioning from the firing state to the motoring state. Therefore, the drive feeling after the first power generation control can be improved.
[6.その他]
 上記の実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施できる。また、本実施例の各構成は、必要に応じて取捨選択でき、あるいは、適宜組み合わせることができる。
[6. others]
The above-described embodiments are merely illustrative, and there is no intention to exclude the application of various modifications and techniques not specified in the present embodiments. Each configuration of this embodiment can be modified and implemented in various ways without departing from the spirit thereof. Further, each configuration of this embodiment can be selected or combined as necessary, or can be combined as appropriate.
 例えば、上記の実施例では、回生モータリング制御と第一発電制御と第二発電制御とを実施する制御装置10を例示したが、第二発電制御は省略可能である。また、上記の実施例では、第一発電制御の実施中にアクセルオフになったときに、回生モータリング制御を再開させているが、このような制御は必須ではない。また、第一発電制御におけるエンジン2のトルクは、アクセル開度に応じて設定してもよいし、他のパラメータに基づいて設定してもよく、あるいはあらかじめ設定された固定値にしてもよい。少なくとも、エンジン2の回転速度をその時点の目標回転速度に固定したまま回生モータリング制御を第一発電制御へと移行させることで、上述の実施例と同様の作用効果を獲得できる。 For example, in the above embodiment, the control device 10 that performs regenerative motoring control, first power generation control, and second power generation control is illustrated, but the second power generation control can be omitted. Further, in the above embodiment, when the accelerator is turned off during execution of the first power generation control, the regenerative motoring control is restarted, but such control is not essential. Further, the torque of the engine 2 in the first power generation control may be set according to the accelerator opening degree, may be set based on other parameters, or may be set to a preset fixed value. At least, by shifting the regenerative motoring control to the first power generation control while fixing the rotational speed of the engine 2 to the current target rotational speed, the same effects as in the above embodiment can be obtained.
 本件は、ハイブリッド車両の製造産業に利用可能であり、ハイブリッド車両の制御装置の製造産業にも利用可能である。 The present invention can be used in the manufacturing industry of hybrid vehicles, and can also be used in the manufacturing industry of control devices for hybrid vehicles.
1 車両(ハイブリッド車両)
2 エンジン
3 モータ
4 ジェネレータ
5 バッテリ
6 クラッチ
7 アクセル開度センサ
8 ブレーキ開度センサ
9 車速センサ
10 制御装置
1 Vehicle (hybrid vehicle)
2 Engine 3 Motor 4 Generator 5 Battery 6 Clutch 7 Accelerator opening sensor 8 Brake opening sensor 9 Vehicle speed sensor 10 Control device

Claims (4)

  1.  エンジンと、
     車輪の駆動及び回生制動を行うモータと、
     前記エンジンの駆動力による発電及び前記エンジンの駆動を行うジェネレータと、
     前記モータ及び前記ジェネレータに接続されるバッテリと、
     走行中かつアクセルオフ時に前記モータの回生電力を前記ジェネレータに供給し前記エンジンを所定の目標回転速度でモータリングする回生モータリング制御を実施する制御装置とを備え、
     前記制御装置が、前記回生モータリング制御の実施中にアクセルオンになったときに前記回生モータリング制御をやめて、エンジン回転速度をその時点の前記目標回転速度に固定したまま前記エンジンのファイアリングを行いつつ前記ジェネレータに発電させる第一発電制御を実施する
    ことを特徴とする、ハイブリッド車両。
    engine and
    A motor that drives the wheels and performs regenerative braking;
    a generator that generates electricity using the driving force of the engine and drives the engine;
    a battery connected to the motor and the generator;
    a control device that performs regenerative motoring control that supplies regenerative power of the motor to the generator while the vehicle is running and the accelerator is off, and motors the engine at a predetermined target rotational speed;
    The control device stops the regenerative motoring control when the accelerator is turned on while performing the regenerative motoring control, and fires the engine while fixing the engine rotational speed to the target rotational speed at that time. A hybrid vehicle characterized in that a first power generation control is performed in which the generator is caused to generate electricity while performing the first power generation control.
  2.  前記制御装置は、前記第一発電制御に際し、アクセル開度が大きいほど前記エンジンのトルクを増大させつつ前記エンジン回転速度を維持する
    ことを特徴とする、請求項1記載のハイブリッド車両。
    2. The hybrid vehicle according to claim 1, wherein the control device maintains the engine rotation speed while increasing the torque of the engine as the accelerator opening becomes larger during the first power generation control.
  3.  前記制御装置は、前記第一発電制御に際し、ドライバ要求出力が所定値を超えた場合に、前記第一発電制御をやめて前記エンジン回転速度を上昇させる第二発電制御を実施する
    ことを特徴とする、請求項1または2記載のハイブリッド車両。
    The control device is characterized in that, during the first power generation control, if the driver requested output exceeds a predetermined value, the first power generation control is stopped and the second power generation control is performed to increase the engine rotation speed. , A hybrid vehicle according to claim 1 or 2.
  4.  前記制御装置は、前記第一発電制御の実施中に前記アクセルオフになったときに、前記回生モータリング制御を再開させる
    ことを特徴とする、請求項1~3のいずれか一項に記載のハイブリッド車両。
    The control device according to any one of claims 1 to 3, wherein the control device restarts the regenerative motoring control when the accelerator is turned off during the execution of the first power generation control. hybrid vehicle.
PCT/JP2022/014067 2022-03-24 2022-03-24 Hybrid vehicle WO2023181285A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014067 WO2023181285A1 (en) 2022-03-24 2022-03-24 Hybrid vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014067 WO2023181285A1 (en) 2022-03-24 2022-03-24 Hybrid vehicle

Publications (1)

Publication Number Publication Date
WO2023181285A1 true WO2023181285A1 (en) 2023-09-28

Family

ID=88100720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014067 WO2023181285A1 (en) 2022-03-24 2022-03-24 Hybrid vehicle

Country Status (1)

Country Link
WO (1) WO2023181285A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031030A (en) * 2014-07-28 2016-03-07 富士重工業株式会社 Vehicle control device
WO2019116584A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Control method for hybrid vehicle and control apparatus for hybrid vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016031030A (en) * 2014-07-28 2016-03-07 富士重工業株式会社 Vehicle control device
WO2019116584A1 (en) * 2017-12-15 2019-06-20 日産自動車株式会社 Control method for hybrid vehicle and control apparatus for hybrid vehicle

Similar Documents

Publication Publication Date Title
EP1693267B1 (en) Electric oil pump control system in hybrid vehicle
JP5711256B2 (en) Hybrid vehicle rapid deceleration control device
JP4519085B2 (en) Control device for internal combustion engine
KR100862432B1 (en) Method for control engine touque of HEV
JP5725037B2 (en) Vehicle and vehicle control method
WO2012096045A1 (en) Regeneration control device, hybrid automobile, regeneration control method, and program
US10486685B2 (en) Driving control mechanism and driving control device
JP6988913B2 (en) Hybrid vehicle control method and hybrid vehicle control device
JP4475203B2 (en) Control device for hybrid vehicle
JP3791195B2 (en) Hybrid car
JP5692140B2 (en) Drive control device
JP2008094238A (en) Controller for hybrid car
JPH06319206A (en) Brake control device of hybrid automobile
WO2023181285A1 (en) Hybrid vehicle
JP2001211506A (en) Driving control equipment for parallel hybrid vehicle
JP7252996B2 (en) vehicle controller
WO2023181286A1 (en) Hybrid vehicle
JP2023064224A (en) Control device of vehicle
JP3062567B2 (en) Hybrid vehicle
WO2023181123A1 (en) Hybrid vehicle
JP2014180969A (en) Hybrid vehicle controller, and hybrid vehicle control method
JP7433712B2 (en) Hybrid vehicle control device
JP2019025986A (en) Hybrid vehicle
JP2001103602A (en) Regeneration control method for hybrid vehicle
JP7235783B2 (en) control unit and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933425

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)