WO2023179659A1 - 多酰胺类化合物、其制备方法及其医药用途 - Google Patents

多酰胺类化合物、其制备方法及其医药用途 Download PDF

Info

Publication number
WO2023179659A1
WO2023179659A1 PCT/CN2023/083063 CN2023083063W WO2023179659A1 WO 2023179659 A1 WO2023179659 A1 WO 2023179659A1 CN 2023083063 W CN2023083063 W CN 2023083063W WO 2023179659 A1 WO2023179659 A1 WO 2023179659A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
group
amino
compound
stereoisomer
Prior art date
Application number
PCT/CN2023/083063
Other languages
English (en)
French (fr)
Inventor
侯媛媛
徐祥清
于民权
赵松
郭强
王伟
张大同
冯翔宇
程启东
王奥
何晓静
徐昌达
董莹莹
邱印利
陆爱军
陈剑辉
Original Assignee
江苏恩华药业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏恩华药业股份有限公司 filed Critical 江苏恩华药业股份有限公司
Publication of WO2023179659A1 publication Critical patent/WO2023179659A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides

Definitions

  • the present invention relates to the field of medicine, and specifically to a synthetic polyamide compound or its pharmaceutically acceptable salt, stereoisomer and composition containing the same, as well as its application in the field of medicine.
  • Opioid receptors are an important type of G protein-coupled receptors and are the binding targets for endogenous opioid peptides and opioid drugs. After activation of opioid receptors, they have a regulatory effect on the nervous system, immunity and endocrine system. Opioids are Currently the most powerful and commonly used central analgesic. Opioid receptors present in the central nervous system include ⁇ , ⁇ , ⁇ receptors, etc.
  • ⁇ -opioid receptor (KOR) consists of 380 amino acids and is expressed in sensory neurons, dorsal root ganglion cells and primary afferent neuron terminals. It is involved in pain, neuroendocrine, and emotional behavior. and important physiological activities such as cognition.
  • KOR agonists have good application prospects as drugs in the pharmaceutical industry.
  • CN108290926A discloses a class of phenylpropionamide derivatives that can be used as KOR agonists
  • CN 101627049 A also discloses a class of synthetic peptide amides that can be used as KOR agonists, wherein compound D-Phe-D-Phe-D -Leu-D-Lys-[ ⁇ (4-aminopiperidine-4-carboxylic acid)]-OH (R&D code CR845) has entered clinical research.
  • KOR agonists already exist in the state of the art, there is still a need for new KOR agonists with improved activity and/or druggability.
  • the present invention provides a novel kappa opioid receptor (KOR receptor) agonist compound that surprisingly exhibits excellent effects and effects.
  • this new class of amide bond-containing compounds not only has excellent KOR receptor agonistic potency (high affinity for kappa opioid receptors), but also has very good hydrophilicity and thus smaller blood penetration. brain barrier and lower ability to enter the brain.
  • the compounds of the present invention also have higher selectivity for kappa opioid receptors compared to mu and delta opioid receptors.
  • the compounds of the invention also have lower addictive properties, better physicochemical properties (e.g., solubility, physical and/or chemical stability), improved pharmacokinetic properties (e.g., cytochrome Lower inhibition of P 450 isoenzymes, improved bioavailability, suitable half-life and duration of action), improved safety (lower toxicity and/or fewer side effects (e.g. side effects on the central nervous system, Respiratory depression, sedation, hallucination, antidiuresis, nausea, constipation, dependence, etc.)), good patient compliance, and/or less likely to develop tolerance and other superior pharmaceutical properties.
  • compounds of the present invention have improved safety, that is, lower acute toxicity and cardiotoxicity.
  • compounds of the present invention have an improved safety window (eg, have a larger range of doses that can be safely administered, or are less likely to experience side effects at the same dose).
  • compounds of the invention have improved pharmacokinetic properties (eg, improved bioavailability, longer half-life, etc.).
  • One aspect of the present invention provides a compound represented by formula IA, its stereoisomer or its pharmaceutically acceptable salt:
  • R 1A is H or -COOH, preferably H
  • R bA is selected from C 1-6 alkyl, C 6-14 aryl, 5-14 yuan hetero Aryl group, C 3
  • R 1A and R 2A together with the carbon atoms to which they are attached form an optionally substituted 9-10 membered bicyclic moiety.
  • the bicyclic moiety together with the piperidine ring to which it is attached forms a structure selected from the following:
  • n2A is selected from 0, 1, 2 and 3,
  • the bicyclic moiety together with the piperidine ring to which it is attached forms a structure selected from the following: More preferably, it is selected from Even more preferably, it is selected from
  • R 3A is selected from H or -(CH 2 ) mA NR cA R dA ;
  • R cA and R dA are each independently selected from H, C 1-6 alkyl, amidino, C 1-6 alkoxycarbonyl;
  • nA and nA are each independently 0, 1, 2, 3, 4, or 5.
  • Another aspect of the invention provides a method for preparing the compound of the invention, which is selected from the following methods:
  • Method one includes the following steps:
  • Method two includes the following steps:
  • R 1A ' is R 1A or R 1A in which NH 2 is protected by an amino protecting group
  • R 2A ' is R 2A or R 2A in which NH 2 is protected by an amino protecting group
  • R 3A ' is R 3A or R 2A in which NH 2 is protected by an amino protecting group.
  • R 3A protected by an amino protecting group R 1A , R 2A , R 3A , R 4A and nA are as defined before, and R xA is an amino protecting group,
  • the amino protecting group is preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl Phenylsulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl or ethoxycarbonyl.
  • the present invention also provides a compound represented by the following general formula, its stereoisomer or its salt,
  • R 1A ' is R 1A or R 1A in which NH 2 is protected by an amino protecting group
  • R 2A ' is R 2A or R 2A in which NH 2 is protected by an amino protecting group
  • R 3A ' is R 3A or R 2A in which NH 2 is protected by an amino protecting group.
  • R 3A protected by an amino protecting group R 1A , R 2A , R 3A , R 4A and nA are as defined before, and R xA is an amino protecting group,
  • the amino protecting group is preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl Phenylsulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl or ethoxycarbonyl.
  • One aspect of the present invention provides a compound represented by formula IB, its stereoisomer or its pharmaceutically acceptable salt:
  • R 1B is selected from H, C 1-6 alkyl (such as methyl), C 1-6 alkylcarbonyl (such as methylcarbonyl), C 1-6 alkoxycarbonyl (such as methoxycarbonyl), C 6 -14 aryl, C 6-14 arylcarbonyl, C 6-14 aryloxycarbonyl, C 3-8 cycloalkyl, C 3-8 cycloalkylcarbonyl, C 3-8 cycloalkoxycarbonyl, 5 -14-membered heteroaryl, 5-14-membered heteroarylcarbonyl, 5-14-membered heteroaryloxycarbonyl, 3-8-membered heterocyclyl, 3-8-membered heterocyclylcarbonyl, 3-8-membered heterocyclic oxy Carbonyl group, preferably selected from H, C 1-6 alkyl (such as methyl), C 1-6 alkylcarbonyl (such as methylcarbonyl), C 1-6 alkoxycarbonyl (such as methoxycarbony
  • R 2B and R 3B are each independently selected from H, C 1-6 alkyl (such as methyl, isopropyl), amidino, C 1-6 alkoxycarbonyl (such as methoxycarbonyl);
  • nB and nB are each independently 0, 1, 2, 3, 4, or 5, for example, mB is 3, and/or nB is 0.
  • Another aspect of the present invention provides a method for preparing the compound of the present invention, comprising the following steps:
  • R 1B , R 4B , mB and nB are as defined before, and R xB and R yB are amino protecting groups, preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, and allyloxycarbonyl. , trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-toluenesulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, or ethoxycarbonyl .
  • Another aspect of the present invention provides a compound of formula iB-1, its stereoisomer or its salt,
  • R 1B , R 4B , mB and nB are as defined before, and R xB and R yB are amino protecting groups, preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, and allyloxycarbonyl. , trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-toluenesulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, or ethoxycarbonyl .
  • One aspect of the present invention provides a compound represented by formula IC, its stereoisomer or its pharmaceutically acceptable salt:
  • Ring A is C 3-8 cycloalkyl, C 6-14 aryl or 5-14 membered heteroaryl, preferably phenyl;
  • Y is selected from CH or N;
  • R 1C is selected from H or -(CH 2 ) t NR aC R bC ;
  • CR 4C R 5C forms a 3-8 membered heterocycle or a 9-10 membered bicyclic moiety, which together with the piperidine ring to which it is connected, forms a structure selected from the following:
  • the group is optionally substituted -(CH 2 ) n2C -, or is absent,
  • n2C is selected from 0, 1, 2 and 3,
  • the 3-8 membered heterocyclic ring or 9-10 membered bicyclic moiety together with the piperidine ring to which it is connected forms a structure selected from the following: More preferably, it is selected from
  • R aC and R bC are each independently selected from H, C 1-6 alkyl, amidino, C 1-6 alkoxycarbonyl;
  • R dC is selected from C 1-6 alkyl, C 6-14 aryl, 5-14 membered heteroaryl, C 3-8 cycloalkyl, 3-8 membered heterocyclyl, preferably selected from C 1-6 Alkyl, 3-8 membered heterocyclyl, more preferably selected from C 1-6 alkyl, More preferably, it is selected from C 1-6 alkyl,
  • R eC and R fC are each independently -(CH 2 ) n1C - and -(CH 2 ) n1C' -, n1C and n1C' are each independently selected from 0, 1, 2 and 3, preferably 2, and n1C and n1C' are not
  • p and t are each independently selected from 0, 1, 2, 3, 4 or 5;
  • mC is independently selected from 1, 2, 3, and 4 on each occurrence
  • Another aspect of the invention provides a method for preparing the compound of the invention, which is selected from the following methods:
  • Method one includes the following steps:
  • Method two includes the following steps:
  • the compound of formula iiC-2 is prepared by a method selected from the following:
  • Method three includes the following steps: the compound represented by formula iiC-4-a and the compound represented by formula iiC-5-a are subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • the compound shown in -2 is subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • condensation reaction hydrolysis reaction
  • optional amino protecting group removal reaction amino protecting reaction
  • Method 4 includes the following steps: the compound represented by formula iiC-4-b and the compound represented by formula iiC-5-b undergo condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC The compound shown in -2,
  • Method 5 includes the following steps: the compound represented by formula iiC-4-c and the compound represented by formula iiC-5-c are subjected to a condensation reaction, a hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • a condensation reaction e.g., a hydrolysis reaction
  • optional amino protecting group removal reaction e.g., amino protecting reaction
  • Method six includes the following steps: the compound represented by formula iiC-4-d and the compound represented by formula iiC-5-d are subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • the compound shown in -2 is subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • condensation reaction hydrolysis reaction
  • optional amino protecting group removal reaction amino protecting reaction
  • the formula iC-2 is
  • said iiC-2 is selected from:
  • R 0 ' is R 0 or R 0 in which NH 2 is protected by an amino protecting group
  • R 1C ' and R 1C ′′ are R 1C or R 1C , R 2C ′ and R 2C in which NH 2 is protected by an amino protecting group.
  • R 3C ' and R 3C is R 3C or R 3C where NH 2 or the cyclic imino group is protected by an amino protecting group
  • G' is G or where NH 2 and/or cyclic imino group is protected by amino protecting group and/or carboxyl group is protected by carboxyl protecting group G
  • Rw is carboxyl protecting group
  • ring A, Y, R 0 , R 1C , R 2C , R 3C , G and p is as defined before, Rs, Rt and Ru are each independently selected from H and amino protecting groups;
  • the amino protecting groups are each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl, 1-phenylethyl or ethoxycarbonyl; the carboxyl protecting groups are each independent is selected from C 1-6 alkyl, allyl, benzyl, 2,4-dimethoxybenzyl, p-methoxybenzyl, methoxyethoxymethyl, pentafluorophenyl, 4-p-methylbenzyloxybenzyl.
  • Another aspect of the present invention provides a compound represented by the following general formula, its stereoisomer or its salt,
  • formula iiC-2-X is selected from:
  • R 0 ' is R 0 or R 0 in which NH 2 is protected by amino protecting group
  • R 1C ' is R 1C or R 1C in which NH 2 is protected by amino protecting group
  • R 2C ' is R 2C or wherein NH 2 R 2C protected by an amino protecting group
  • R 3C ' is R 3C or where NH 2 or the cyclic imino group is protected by an amino protecting group R 3C
  • G' is G or where NH 2 and/or the cyclic imino group is protected by an amino group G is protected and/or the carboxyl group is protected by a carboxyl protecting group
  • ring A, Y, R 0 , R 1C , R 2C , R 3C , G and p are as defined before, Rs and Rt are each independently selected from H and amino protection group, Rv is selected from H and carboxyl protecting group;
  • the amino protecting groups are each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl, 1-phenylethyl or ethoxycarbonyl; the carboxyl protecting groups are each independent is selected from C 1-6 alkyl, allyl, benzyl, 2,4-dimethoxybenzyl, p-methoxybenzyl, methoxyethoxymethyl, pentafluorophenyl, 4-p-Methylbenzyloxybenzyl.
  • Another aspect of the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising a prophylactically or therapeutically effective amount of a compound of the present invention, its stereoisomer or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier or excipient, and Optional other therapeutic agents.
  • Another aspect of the invention provides the use of a compound of the invention, a stereoisomer thereof or a pharmaceutically acceptable salt thereof or a pharmaceutical composition for the preparation of a medicament for agonizing kappa opioid receptors.
  • Another aspect of the invention provides a method for preventing and/or treating related diseases mediated by kappa opioid receptors, comprising administering an effective amount of a compound of the invention, a stereoisomer thereof, or a pharmaceutically acceptable thereof salts or pharmaceutical compositions.
  • Another aspect of the present invention provides the use of the compounds of the present invention, their stereoisomers or pharmaceutically acceptable salts or pharmaceutical compositions thereof in the preparation of medicaments, particularly for the prevention and/or treatment of ⁇ Opioid receptor-mediated related disorders.
  • the relevant diseases mediated by kappa opioid receptors in this disclosure are selected from the group consisting of pain, inflammation, pruritus, edema, hyponatremia, hypokalemia, intestinal obstruction, cough and glaucoma, with pain being preferred.
  • Pain in this disclosure is selected from neuropathic pain, truncal pain, visceral pain, cutaneous pain, arthritic pain, kidney stone pain, uterine cramps, dysmenorrhea, endometriosis, dyspepsia, post-surgical pain, medical management posterior pain, eye pain, otitis pain, breakthrough cancer pain, and pain associated with GI disorders.
  • the present invention adopts conventional methods such as mass spectrometry, NMR, HPLC, protein chemistry, biochemistry, recombinant DNA technology and pharmacology within the technical scope of the art.
  • mass spectrometry NMR, HPLC, protein chemistry, biochemistry, recombinant DNA technology and pharmacology
  • specific definitions are provided, the nomenclature and laboratory procedures and techniques chemically relevant to the analytical chemistry, synthetic organic chemistry, and medical and medicinal chemistry described herein are known to those skilled in the art.
  • the foregoing techniques and steps may be carried out by conventional methods that are well known in the art and described in various general and more specific documents, which are cited and discussed in this specification.
  • alkyl refers to an aliphatic hydrocarbon group, which may be branched or straight chain. Depending on the structure, an alkyl group can be a monovalent group or a bivalent group (i.e., an alkylene group). In the present invention, the alkyl group is preferably an alkyl group having 1 to 8 carbon atoms, more preferably a “lower alkyl group” having 1 to 6 carbon atoms, and even more preferably an alkyl group having 1 to 4 carbon atoms. Typical alkyl groups include, but are not limited to, methyl, ethyl, propyl, butyl, pentyl, hexyl, etc.
  • alkyl includes all possible configurations and conformations of the alkyl group.
  • the "propyl” mentioned herein includes n-propyl and isopropyl
  • the "butyl” includes n-butyl. base, isobutyl and tert-butyl
  • "pentyl” includes n-pentyl, isopropyl, neopentyl, tert-pentyl, and pentyl-3-yl, etc.
  • an alkyl group is optionally substituted with 1 or more (such as 1 to 3) suitable substituents.
  • aryl refers to an all-carbon monocyclic or polycyclic aromatic group having a conjugated pi electron system.
  • C 6-14 aryl refers to an aromatic group containing 6 to 14 carbon atoms.
  • C 6-14 aryl is preferably C 6-10 aryl.
  • Examples of aryl groups may include phenyl, naphthyl, anthracene, and the like.
  • an aryl group is optionally substituted with 1 or more (such as 1 to 3) suitable substituents.
  • heteroaryl refers to a monocyclic or polycyclic aromatic group containing one or more heteroatoms, which may be the same or different, such as oxygen, nitrogen or sulfur.
  • heteroaryl refers to a monocyclic, bicyclic or tricyclic aromatic group, which has 5, 6, 8, 9, 10, 11, 12, 13 or 14 ring atoms, especially 1 or 2 Or 3 or 4 or 5 or 6 or 9 or 10 carbon atoms, and it contains at least one heteroatom which may be the same or different, such as oxygen, nitrogen or sulfur; and the heteroaryl group may be Benzo-fused groups.
  • the heteroaryl group is selected from thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl , thiadiazolyl, etc., and their benzo derivatives; or pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, etc., and their benzo derivatives.
  • heteroaryl groups are optionally substituted with 1 or more (such as 1 to 3) suitable substituents.
  • cycloalkyl refers to a saturated or unsaturated non-aromatic monocyclic or polycyclic (such as bicyclic) hydrocarbon ring radical (e.g., a monocyclic ring such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl base, cyclooctyl, cyclononyl, or bicyclo, including spiro, fused or bridged systems, such as bicyclo[1.1.1]pentyl, bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl base or bicyclo[5.2.0]nonyl, decalinyl, etc.).
  • a monocyclic ring such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl base, cyclooctyl, cyclononyl, or
  • Non-limiting examples of cycloalkyl include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and the like.
  • the cycloalkyl group is optionally substituted with 1 or more (such as 1 to 3) suitable substituents.
  • heterocyclyl refers to a saturated or unsaturated monocyclic or polycyclic group having, for example, 3-12 ring atoms or 3-8 ring atoms in the ring, the ring atoms including carbon atoms and one or more (For example, one, two, three or four) heteroatoms selected from nitrogen, oxygen, and sulfur; the heterocyclic group may be connected to the molecule through any one of the carbon atoms or the nitrogen atom (if present) The rest is connected.
  • the sulfur atoms of the rings can optionally be oxidized to S-oxides, such as SO, SO2 .
  • a 3-8-membered heterocyclyl group is a group with 3-8 ring atoms including carbon atoms and heteroatoms, including but not limited to oxiranyl, aziridinyl, azetidinyl, oxygen Heterocyclylbutyl, thietanyl, tetrahydrofuranyl, dioxolyl, pyrrolidinyl, pyrrolidonyl, imidazolidinyl, pyrazolidinyl, pyrrolinyl, tetrahydropyranyl, piperidine base, morpholinyl, thiomorpholinyl, piperazinyl, pyrimidinedione, 2-oxopyrrolidinyl, 3,5-dioxopiperidyl, sulfolane, 1,1-dioxothio Morpholinyl, 1,1-d
  • the heterocyclyl group is optionally substituted by 1 or more (such as 1 to 3) Substitute with suitable substituents.
  • the 3-8 membered heterocyclyl group is a 3-8 membered heterocyclyl group containing a heteroatom selected from oxygen, nitrogen, and sulfur; in some embodiments, the 3-8 membered heterocyclyl group is Among them, WA , R eA , R fA , WC , R eC and R fC are as defined in this specification.
  • alkoxy refers to alkyl-O-, where alkyl is as defined herein. Typical alkoxy groups include, but are not limited to, methoxy, ethoxy, propoxy, butoxy, pentyloxy, hexyloxy, etc.
  • aryloxy refers to aryl-O-, where aryl is as defined herein.
  • heteroaryloxy refers to heteroaryl-O-, where heteroaryl is as defined herein.
  • cycloalkoxy refers to cycloalkyl-O-, where cycloalkyl is as defined herein.
  • heterocyclyloxy refers to heterocyclyl-O-, wherein heterocyclyl is as defined herein.
  • cyano refers to a group - CN, in which carbon atoms and nitrogen atoms are connected through a triple bond.
  • halogen refers to fluorine, chlorine, bromine and iodine.
  • haloalkyl refers to an alkyl group in which at least one hydrogen is replaced by a halogen atom. In certain embodiments, if two or more hydrogen atoms are replaced by halogen atoms, the halogen atoms may be the same as or different from each other. Examples of haloalkyl groups include, but are not limited to, monofluoromethyl, difluoromethyl, trifluoromethyl, monofluoroethyl, difluoroethyl, trifluoroethyl, and the like.
  • aminoalkyl refers to an alkyl group substituted by an amino group.
  • alkylamino refers to an amino group substituted by an alkyl group.
  • C 1 -C 6 or "C 1-6” encompasses the range of 1 to 6 carbon atoms and is to be understood to also encompass any subrange therein, as well as each point value, including, for example, C 1 -C 6 , C 2 -C 6 , C 3 -C 6 , C 4 -C 6 , C 5 -C 6 , C 1 -C 5 , C 2 -C 5 , C 3 -C 5 , C 4 -C 5 , C 1 -C 4 , C 2 -C 4 , C 3 -C 4 , C 1 -C 3 , C 2 -C 3 , C 1 -C 2 etc., and C 1 , C 2 , C 3 , C 4 , C 5 , C 6 , etc.
  • C 3 -C 8 or “C 3-8” encompasses a range of 3 to 8 carbon atoms, and is understood to also encompass any sub-range therein, as well as every point value, including, for example, C 3 -C 6, etc., and C 3 , C 4 , C 5 , C 6 , C 7 , C 8 , etc.
  • the expression “3-8 yuan” should be understood to cover any sub-range and every point value therein, such as 3-7 yuan, 3-6 yuan, 3-5 yuan, 4-8 yuan, and 3, 4, 5, 6, 7, 8 yuan, etc.
  • the expression “5-14 dollars” should be understood to encompass any subrange therein and every point value, such as 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 dollars, etc. Other similar expressions in this article should be understood in a similar manner.
  • One or more in the expression “substituted by one or more groups selected from” or “optionally substituted by one or more groups selected from” means 1 to 5, or 1 to 4, or 1 to 3, or 1 to 2 groups are substituted, provided that the valence requirements are met.
  • C 6-14 arylcarbonyl and “C 6-14 aryloxycarbonyl” mean that the aryl group is C 6-14 aryl
  • heteroarylcarbonyl and “5-14-membered “Heteroaryloxycarbonyl” means that the heteroaryl group is a 5-14-membered heteroaryl group
  • heteroaryl group and the terms “3-8-membered heterocyclylcarbonyl” and “3-8-membered heterocyclyloxycarbonyl” refer to the heteroaryl group in it.
  • the ring group is a 3-8 membered heterocyclyl group
  • C 1-6 alkoxycarbonyl refers to the alkyl group in which it is a C 1-6 alkyl group.
  • C 1-6 aminoalkyl refers to The alkyl group is C 1-6 alkyl.
  • pharmaceutically acceptable carrier refers to those substances that have no significant irritating effect on the organism and do not impair the biological activity and properties of the active compound.
  • “Pharmaceutically acceptable carrier” includes, but is not limited to, glidants, sweeteners, diluents, preservatives, dyes, colorants, flavoring agents, surfactants, wetting agents, dispersants, disintegrants, stabilizers, etc. agents, solvents or emulsifiers.
  • the structures mentioned in this disclosure Refers to the aromatic ring.
  • the structure when any one of Q 1A /Q 1C -Q 4A /Q 4C is N and the rest are C, the structure is a pyridine ring, while in Q 1A /Q 1C -Q 4A /Q 4C When both are C, the structure is a benzene ring.
  • the remainder is C in the above expression means that the ring atoms are C. According to the valence bond theory, it actually means "the remainder is CH”.
  • the compounds of the present invention or salts thereof may contain one or more stereocenters, and each stereocenter exists independently in the R or S configuration, and thus enantiomers, diastereomers and other stereoisomers may be generated Isomeric forms, which may be defined in terms of absolute stereochemistry as (R)- or (S)-, or as (D)- or (L)- of amino acids.
  • the present invention is intended to include all such possible isomeric forms or mixtures thereof, such as substantially pure enantiomers, diastereomers, racemates or mixtures thereof.
  • preferred compounds are those isomeric compounds that exhibit superior biological activity.
  • Purified or partially purified isomers and stereoisomers, or racemic or diastereomeric mixtures of the compounds of the invention are also included within the scope of the invention. Purification and isolation of such materials can be accomplished by standard techniques known in the art.
  • compounds of the present disclosure are racemic. In some embodiments, compounds of the present disclosure are single enantiomers. In some embodiments, compounds of the present disclosure are substantially free of other isomers. In some embodiments, a compound of the present disclosure is a single isomer substantially free of other isomers. In some embodiments, a compound of the present disclosure contains 25% or less other isomers, or contains 20% or less other isomers, or contains 15% or less other isomers, or contains 10% or less of other isomers, or contain 5% or less of other isomers, or contain 1% or less of other isomers.
  • a compound of the present disclosure has a stereochemical purity of at least 75%, or has a stereochemical purity of at least 80%, or has a stereochemical purity of at least 85%, or has a stereochemical purity of at least 90%, or Having a stereochemical purity of at least 95%, or having a stereochemical purity of at least 96%, or having a stereochemical purity of at least 97%, or having a stereochemical purity of at least 98%, or having a stereochemical purity of at least 99%.
  • the asymmetric carbon atoms in the compounds of the present disclosure may exist in racemic or enantioenriched forms, such as (R)-, (S)- or (R,S)-configurations Form exists.
  • the asymmetric carbon atoms in the (S)- or (R)-configuration of the compounds of the present disclosure have at least 50% enantiomeric excess, at least 60% enantiomeric excess, at least 70% enantiomeric excess Enantiomeric excess, at least 80% enantiomeric excess, At least 90% enantiomeric excess, at least 95% enantiomeric excess, or at least 99% enantiomeric excess.
  • substantially pure or “substantially free of other isomers” means that the product contains other isomers in an amount less than 10% by weight, preferably less than 5%, relative to the preferred isomer. %, preferably less than 4%, preferably less than 3%, preferably less than 2%, preferably less than 1%. It should be understood that when the disclosure refers to or indicates that the configuration of a compound is an absolute configuration, it means that it is a substantially pure form of the absolute configuration; similarly, the disclosure refers to or indicates that a compound is a single enantiomer. It is meant that the enantiomeric form is substantially pure.
  • R 1A is H or -COOH, preferably H
  • R bA is selected from C 1-6 alkyl, C 6-14 aryl, 5-14 membered heteroaryl, C 3- 8- cycloalkyl, 3-8 membered heterocyclyl (preferably ), preferably selected
  • R aA is H.
  • RaA is C 1-6 alkyl substituted by amino , C 1-6 alkylamino, or C 1-6 alkoxy, such as methoxyethyl, methylaminoethyl , aminopropyl, or aminoethyl, etc.
  • R aA is H or C 1-6 aminoalkyl.
  • R 1A and R 2A together with the carbon atom to which they are attached, form an optionally substituted 9-10 membered bicyclic moiety (specifically a 9-10 membered fused ring).
  • the bicyclic moiety together with the piperidine ring to which it is attached forms a structure selected from the following:
  • Optionally substituted -(CH 2 ) n2A -, n2A is selected from 0, 1, 2 and 3.
  • the bicyclic moiety together with the piperidine ring to which it is attached forms a structure selected from the following: More preferably selected from Even more preferably, it is selected from
  • R 3A is selected from H or -(CH 2 ) mA NR cA R dA , wherein R cA and R dA are each independently selected from H, C 1-6 alkyl (e.g., methyl, isopropyl etc.), amidine group, C 1-6 alkoxycarbonyl group (such as methoxycarbonyl group, etc.), mA is selected from 0, 1, 2, 3, 4 or 5.
  • R 3A is H.
  • R cA and R dA are each independently selected from H, C 1-6 alkoxycarbonyl (eg, methoxycarbonyl, etc.).
  • R cA and R dA are each H.
  • R cA is H and R dA is C 1-6 alkoxycarbonyl, preferably methoxycarbonyl.
  • mA is selected from 0, 1, 2 or 3, with 3 being preferred.
  • nA is 0, 1, 2, 3, 4, or 5, preferably 0, 1, 2, or 3, and more preferably 0.
  • Formula IA is as shown in Formula IIA, preferably as shown in Formula IIIA, even more preferably as shown in Formula IVA, even more preferably as shown in Formula VA:
  • Formula IA is represented by Formula VIA:
  • R aA in formula VIA is H or C 1-6 alkyl substituted by amino, C 1-6 alkylamino, or C 1-6 alkoxy, more preferably H or C 1-6 amino. alkyl.
  • the compounds of the present invention are selected from the following compounds, their stereoisomers or their pharmaceutically acceptable salts:
  • the present disclosure also provides compounds of the following general formula, their stereoisomers or salts thereof, which are intermediates for preparing the above compounds of the present disclosure,
  • R 1A ' is R 1A or R 1A in which NH 2 is protected by an amino protecting group
  • R 2A ' is R 2A or R 2A in which NH 2 is protected by an amino protecting group
  • R 3A ' is R 3A or R 2A in which NH 2 is protected by an amino protecting group.
  • R 3A protected by an amino protecting group R 1A , R 2A , R 3A , R 4A and nA are as defined before, and R xA is an amino protecting group,
  • the amino protecting group is preferably each independently selected from tert-butoxycarbonyl (Boc), 9-fluorenylmethoxycarbonyl (Fmoc), allyloxycarbonyl (Alloc), trichloroethoxycarbonyl (Troc), trimethyl Silicon ethoxycarbonyl (Teoc), benzyloxycarbonyl (CBz), p-toluenesulfonyl (Tosyl), p-nitrobenzenesulfonyl (Nosyl), tert-butyl (t-Bu), trifluoroacetyl (Tfa ), methoxycarbonyl, tert-butylsulfinyl or ethoxycarbonyl.
  • Boc tert-butoxycarbonyl
  • Fmoc 9-fluorenylmethoxycarbonyl
  • Alloc allyloxycarbonyl
  • Troc trichloroethoxycarbonyl
  • compounds shown in the present invention can be prepared by methods selected from the following:
  • Method one includes the following steps:
  • Method two includes the following steps:
  • R 1A ' is R 1A or R 1A in which NH 2 is protected by an amino protecting group
  • R 2A ' is R 2A or R 2A in which NH 2 is protected by an amino protecting group
  • R 3A ' is R 3A or R 2A in which NH 2 is protected by an amino protecting group.
  • R 3A protected by an amino protecting group R 1A , R 2A , R 3A , R 4A and nA are as defined before, and R xA is an amino protecting group,
  • the amino protecting group is preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl Phenylsulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl or ethoxycarbonyl.
  • R 1B is selected from H, C 1-6 alkyl (such as methyl), C 1-6 alkylcarbonyl (such as methylcarbonyl), C 1-6 alkoxycarbonyl (such as methoxycarbonyl), C 6 -14 aryl, C 6-14 arylcarbonyl, C 6-14 aryloxycarbonyl, C 3-8 cycloalkyl, C 3-8 cycloalkylcarbonyl, C 3-8 cycloalkoxycarbonyl, 5 -14-membered heteroaryl, 5-14-membered heteroarylcarbonyl, 5-14-membered heteroaryloxycarbonyl, 3-8-membered heterocyclyl, 3-8-membered heterocyclylcarbonyl, 3-8-membered heterocyclic oxy Carbonyl group, preferably selected from H, C 1-6 alkyl (such as methyl), C 1-6 alkylcarbonyl (such as methylcarbonyl), C 1-6 alkoxycarbonyl (such as methoxycarbony
  • R 2B and R 3B are each independently selected from H, C 1-6 alkyl (such as methyl, isopropyl), amidino, C 1-6 alkoxycarbonyl (such as methoxycarbonyl);
  • nB and nB are each independently 0, 1, 2, 3, 4 or 5, for example mB is 3 and/or nB is 0.
  • R 1B is selected from H, C 1-6 alkyl, C 1-6 alkylcarbonyl, C 1-6 alkoxycarbonyl, C 6-14 aryl, C 6-14 arylcarbonyl , C 6-14 aryloxycarbonyl, C 3-8 cycloalkyl, C 3-8 cycloalkylcarbonyl, C 3-8 cycloalkoxycarbonyl, 5-14 membered heteroaryl, 5-14 membered hetero Aryl Carbonyl, 5-14-membered heteroaryloxycarbonyl, 3-8-membered heterocyclyl, 3-8-membered heterocyclylcarbonyl, 3-8-membered heterocyclyloxycarbonyl, preferably selected from C 1-6 alkyl, C 1-6 alkylcarbonyl, preferably selected from H, C 1-6 alkyl, C 1-6 alkylcarbonyl, C 1-6 alkoxycarbonyl, more preferably selected from C 1-6 alkyl, C 1-6 alkylcarbonyl
  • R 2B and R 3B are each independently selected from H, C 1-6 alkyl, amidino, C 1-6 alkoxycarbonyl. In some embodiments, R 2B and R 3B are each independently selected from H, C 1-6 alkoxycarbonyl. In some embodiments, R 2B and R 3B are both H. In some embodiments, R 2B is H and R 3B is C 1-6 alkoxycarbonyl, preferably methoxycarbonyl.
  • mB and nB are each independently 0, 1, 2, 3, 4, or 5. In some embodiments, mB is 0, 1, 2, 3, 4 or 5, with 3 being preferred. In some embodiments, nB is 0, 1, 2 or 3, preferably 0.
  • Formula IB is preferably represented by Formula IIB,
  • the compounds of the present invention are selected from the following compounds, their stereoisomers or their pharmaceutically acceptable salts:
  • the present disclosure also provides compounds of formula iB-1, stereoisomers thereof or salts thereof, which are intermediates for the preparation of compounds of the present invention,
  • R 1B , R 4B , mB and nB are as defined before, and R xB and R yB are amino protecting groups, preferably each independently selected from tert-butoxycarbonyl (Boc), 9-fluorenylmethoxycarbonyl (Fmoc ), allyloxycarbonyl (Alloc), trichloroethoxycarbonyl (Troc), trimethylsilylethoxycarbonyl (Teoc), benzyloxycarbonyl (CBz), p-toluenesulfonyl (Tosyl), p-nitrobenzenesulfonyl (Nosyl), tert-butyl (t-Bu), trifluoroacetyl (Tfa), methoxy Carbonyl, or ethoxycarbonyl.
  • Boc tert-butoxycarbonyl
  • Fmoc 9-fluorenylmethoxycarbonyl
  • Alloc allyl
  • the present disclosure also provides compounds of formula iB-4, stereoisomers thereof, or salts thereof,
  • R 1B , R 2B , R 3B , R 4B , mB, nB and R xB are as defined before.
  • the compounds shown in the present invention can be prepared by the following method, which method includes the following steps:
  • R 1B , R 4B , mB and nB are as defined before, and R xB and R yB are amino protecting groups, preferably each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, and allyloxycarbonyl. , trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-toluenesulfonyl, p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, or ethoxycarbonyl .
  • Ring A is C 3-8 cycloalkyl, C 6-14 aryl (preferably monocyclic aryl) or 5-14 membered heteroaryl (preferably monocyclic heteroaryl), such as For cyclopropyl, cyclopentyl, phenyl, pyridyl and pyrimidinyl. In some embodiments, Ring A is phenyl.
  • Y is selected from CH or N. In some embodiments, Y is N.
  • CR 4C R 5C forms a 3-8-membered heterocyclic ring or a 9-10-membered bicyclic part (specifically a 9-10-membered fused ring), and the 3-8-membered heterocyclic ring or 9-10-membered bicyclic part together with the connected
  • the piperidine ring forms a structure selected from:
  • the group is optionally substituted -(CH 2 ) n2C -, or is absent,
  • n2C is selected from 0, 1, 2 and 3,
  • the 3-8 membered heterocyclic ring or 9-10 membered bicyclic moiety together with the piperidine ring to which it is connected forms a structure selected from the following: More preferably, it is selected from
  • G is -CR 4C R 5C -, wherein R 4C is H and R 5C is -NR cC C(O)OR dC , wherein R cC and R dC are as defined above.
  • G is -CR 4C R 5C -, wherein R 4C is -NR 8 R 9 and R 5C is -C(O)OR 7 , wherein R 7 , R 8 and R 9 are as defined above.
  • R 8 and R 9 are both H.
  • R 1C is selected from H or -(CH 2 ) t NR aC R bC , wherein R aC and R bC are each independently selected from H, C 1-6 alkyl (e.g., methyl, isopropyl etc.), amidine group, C 1-6 alkoxycarbonyl group (such as methoxycarbonyl group, etc.), t is selected from 0, 1, 2, 3, 4 or 5.
  • R 1C is H.
  • R aC and R bC are each independently selected from H, C 1-6 alkoxycarbonyl (eg, methoxycarbonyl, etc.).
  • each R aC and R bC is H.
  • t is selected from 0, 1, 2 or 3, with 3 being preferred.
  • R 4C is H.
  • p is 0, 1, 2, 3, 4, or 5, preferably 0, 1, 2, or 3, and more preferably 0.
  • Formula IC is represented by Formula IIC-1 or IIC-2:
  • R 2C is C 1-6 aminoalkyl or amino
  • R 3C is H or C 1-6 alkyl
  • R 2C is amino
  • R 3C is H.
  • R 2C is C 1-6 aminoalkyl or amino
  • R 3C is H or C 1-6 alkyl
  • R 2C is H or C 1-6 alkyl
  • R 3C is C 1-6 aminoalkyl or 3-8 membered nitrogen-containing heterocyclic group.
  • Formula IC is as shown in Formula IIIC or Formula IVC:
  • R 1C is -(CH 2 ) t NR aC R bC , preferably -(CH 2 ) 3 NH 2 ;
  • Ring A is phenyl
  • G is selected from one of the following:
  • (2)G is -CR 4C R 5C -, R 4C is H, R 5C is -NR cC C(O)OR dC ;
  • Formula IC is represented by Formula IVC-1, IVC-2 or IVC-3:
  • a compound of the present disclosure is selected from the group consisting of the following compounds, stereoisomers thereof, or pharmaceutically acceptable salts thereof:
  • the present disclosure also provides compounds of the following general formula, their stereoisomers or salts thereof, which are intermediates for preparing the above compounds of the present disclosure:
  • R 0 ' is R 0 or R 0 in which NH 2 is protected by amino protecting group
  • R 1C ' is R 1C or R 1C in which NH 2 is protected by amino protecting group
  • R 2C ' is R 2C or wherein NH 2 R 2C protected by an amino protecting group
  • R 3C ' is R 3C or where NH 2 or the cyclic imino group is protected by an amino protecting group R 3C
  • G' is G or where NH 2 and/or the cyclic imino group is protected by an amino group G is protected and/or the carboxyl group is protected by a carboxyl protecting group
  • rings A, Y, R 0 , R 1C , R 2C , R 3C , G and p are as defined before, Rv is selected from H and a carboxyl protecting group.
  • Formula iiC-2-X is selected from:
  • Rt are each independently selected from H and amino protecting group.
  • the amino protecting groups are each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl , p-Toluenesulfonyl, p-Nitrophenylsulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl, 1-phenylethyl or ethoxycarbonyl.
  • the carboxyl protecting groups are each independently selected from C 1-6 alkyl, allyl, benzyl, 2,4-dimethoxybenzyl, p-methoxybenzyl, methoxy Ethoxymethyl, pentafluorophenyl, 4-p-methylbenzyloxybenzyl.
  • compounds shown in the present invention can be prepared by methods selected from the following:
  • Method 1 includes the following steps: a compound represented by formula iC-2 and a compound represented by formula iC-3-a or iC-3-b or iC-3-c undergo a condensation reaction to generate a compound represented by formula iC-1, Then, the compound represented by formula IC is generated through the removal reaction of the protecting group,
  • Method 2 includes the following steps: the compound represented by formula iiC-2 and the compound represented by formula iiC-3 undergo a condensation reaction to generate a compound represented by formula iiC-1, and then undergo a protective group removal reaction to generate a compound represented by formula IC ,
  • the compound of formula iiC-2 is prepared by a method selected from the following:
  • Method three includes the following steps: the compound represented by formula iiC-4-a and the compound represented by formula iiC-5-a are subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • the compound shown in -2 is subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • condensation reaction hydrolysis reaction
  • optional amino protecting group removal reaction amino protecting reaction
  • Method 4 includes the following steps: the compound represented by formula iiC-4-b and the compound represented by formula iiC-5-b undergo condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC The compound shown in -2,
  • Method 5 includes the following steps: the compound represented by formula iiC-4-c and the compound represented by formula iiC-5-c are subjected to a condensation reaction, a hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • a condensation reaction e.g., a hydrolysis reaction
  • optional amino protecting group removal reaction e.g., amino protecting reaction
  • Method six includes the following steps: the compound represented by formula iiC-4-d and the compound represented by formula iiC-5-d are subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • the compound shown in -2 is subjected to condensation reaction, hydrolysis reaction and optional amino protecting group removal reaction and amino protecting reaction to obtain formula iiC
  • condensation reaction hydrolysis reaction
  • optional amino protecting group removal reaction amino protecting reaction
  • the formula iC-2 is
  • said iiC-2 is selected from:
  • R 0 ' is R 0 or R 0 in which NH 2 is protected by an amino protecting group
  • R 1C ' and R 1C ′′ are R 1C or R 1C , R 2C ′ and R 2C in which NH 2 is protected by an amino protecting group.
  • R 3C ' and R 3C is R 3C or R 3C where NH 2 or the cyclic imino group is protected by an amino protecting group
  • G' is G or where NH 2 and/or cyclic imino group is protected by amino protecting group and/or carboxyl group is protected by carboxyl protecting group G
  • Rw is carboxyl protecting group
  • ring A, Y, R 0 , R 1C , R 2C , R 3C , G and p is as defined before, Rs, Rt and Ru are each independently selected from H and amino protecting groups;
  • the amino protecting groups are each independently selected from tert-butoxycarbonyl, 9-fluorenylmethoxycarbonyl, allyloxycarbonyl, trichloroethoxycarbonyl, trimethylsilylethoxycarbonyl, benzyloxycarbonyl, p-methyl p-nitrobenzenesulfonyl, tert-butyl, trifluoroacetyl, methoxycarbonyl, tert-butylsulfinyl, 1-phenylethyl or ethoxycarbonyl; the carboxyl protecting groups are each independent is selected from C 1-6 alkyl, allyl, benzyl, 2,4-dimethoxybenzyl, p-methoxybenzyl, methoxyethoxymethyl, pentafluorophenyl, 4-p-Methylbenzyloxybenzyl.
  • the condensation reaction refers to iiC-4 (specifically refers to iiC-4-a, iiC-4-b, iiC-4-c, iiC-4-d ) perform condensation reactions with iiC-5 (specifically iiC-5-a, iiC-5-b, iiC-5-c, iiC-5-d) to form a condensation product; the hydrolysis reaction is intended to remove the condensation product.
  • the hydrolyzate is the compound represented by iiC-2. In some embodiments, the hydrolyzate is further subjected to an amino protection reaction to obtain the compound represented by formula iiC-2. In some embodiments, the hydrolyzate is further subjected to an amino protecting group removal reaction and an amino protecting reaction to obtain the compound represented by formula iiC-2.
  • intermediate 2 (structure shown below) was purchased from Hangzhou Peptide Biotechnology Co., Ltd.
  • CDI N,N-carbonyldiimidazole
  • DIPEA N,N-diisopropylethylamine
  • HATU 2-(7-azabenzotriazole)-N,N,N',N'-tetramethylurea hexafluorophosphate
  • reaction solution was then spun to dryness to obtain a yellow oily crude product, which was purified by reversed-phase column chromatography (conditions are as follows: C18 chromatography column, mobile phase, solvent ACN and solvent H 2 O (FA, 0.1%), 10% to 50 % gradient for 10 minutes, UV254 nanometer detector), and the fraction was spun to dryness to obtain compound 16-3 (950 mg, 35.05%, purity: 99%).
  • reaction solution was purified by reversed-phase column chromatography (conditions are as follows: C18 chromatography column, mobile phase, solvent ACN and solvent H 2 O (0.1% FA), 10% to 50% gradient for 10 minutes, UV254 nanometer detector), fraction Spin to dryness to obtain compound 16-11 (50 mg, 70.68%, purity: 99%).
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • compound 21-1 (34.53 mg, 0.256 mmol, 4 equiv) was added to a solution of intermediate 3 (50 mg, 0.064 mmol, 1 equiv) in DMF (10 mL) at room temperature. After stirring for 2 hours, HATU was added dropwise at room temperature. (36.42mg, 0.096mmol, 1.5equiv) and DIPEA (16.51mg, 0.128mmol, 2equiv). The resulting mixture was extracted with EA (3x100 mL), the organic layer was washed with brine (3x10 mL) and dried over Na2SO4 .
  • the obtained filtrate was concentrated under reduced pressure, and the obtained crude product was purified by reverse-phase column chromatography (conditions are as follows: C18 chromatography column, mobile phase, solvent ACN and solvent H 2 O (0.1% FA), 10% to 50% gradient for 10 minutes, UV200 Nanodetector) to obtain compound 21-2 (58 mg, crude product).
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 8, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 8, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 8, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 8, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • the target compound was prepared according to the similar steps of Example 16, wherein the reaction raw material compound Replace with The details are as follows:
  • Extract with DCM (15mL*3) combine the organic phases, dry and spin-dry to obtain the crude product, which is purified by silica gel column chromatography, elute with PE/EA (1:1), and spin-dry the fraction to obtain 4-[(methoxycarbonyl) Amino]piperidine-1-carboxylic acid benzyl ester.
  • the crude product was purified by silica gel column chromatography, eluted with petroleum ether/ethyl acetate (9:1), and the fraction was spun to dryness to obtain spiro[indene-1,4'-piperidine]-1'-carboxylic acid tert-butyl ester (2.22g ,77.90%, purity: 99%).
  • the crude product is purified by silica gel column chromatography, eluted with PE/EA (1:1), and the fraction is spun to dryness to obtain 1-tert-butyl 4-methyl 4-[(3- Bromopyridin-2-yl)methyl]piperidine-1,4-dicarboxylate (3.7 g, 82.4%, purity: 99%).
  • 1-tert-butyl 4-methyl 4-[(3-bromopyridin-2-yl)methyl]piperidine-1,4-dicarboxylate (1.2g, 2.903mmol LiOH (0.37g, 8.709mmol, 3equiv) was added to methanol. The mixture was stirred at 70°C for 6 hours. The reaction was cooled, and the pH of the mixture was adjusted to 6 with HCl (aq.). Extract with ethyl acetate, combine the organic phases, dry and spin-dry.
  • the crude product is purified by silica gel column chromatography, eluting with PE/EA (1:1), and the fraction is spun-dried to obtain 4-[(3-bromopyridin-2-yl)methane. methyl]-1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (630 mg, 54.34%, purity: 99%).
  • N,O-dimethylhydroxylamine hydrochloride 200 mg, 2.029 mmol, 1 equiv
  • DIPEA tert-butoxycarbonyl)piperidine-4-carboxylic acid
  • reaction solution was quenched with water, extracted with ethyl acetate, the organic phases were combined, dried and spin-dried.
  • the crude product was purified by silica gel column chromatography, eluted with PE/EA (1:1), and the fraction was spun-dried to obtain 4-[(3-bromopyridine). -2-yl)methyl]-4-(methoxy(methyl)carbamoyl)piperidine-1-carboxylic acid tert-butyl ester (120 mg, 13.52%, purity: 99%).
  • Extract with ethyl acetate combine the organic phases, dry and spin-dry, the crude product is purified by silica gel column chromatography, elute with PE/EA (1:1), and the fraction is spun-dried to obtain 5-oxo-7H-spiro[cyclopentadiene] b]pyridine-6,4'-piperidine]-1'-carboxylic acid tert-butyl ester (590 mg, 71.93%, purity: 99%).
  • Extract with ethyl acetate combine the organic phases, dry and spin-dry, the crude product is purified by silica gel column chromatography, elute with PE/EA (1:1), and the fraction is spun-dried to obtain (5Z)-5-[(2-methylpropane- 2-Sulfinyl)imino]-7H-spiro[cyclopentadiene[b]pyridine-6,4'-piperidine]-1'-carboxylic acid tert-butyl ester (10 mg, 29.82%, purity: 99% ).
  • reaction solution was purified by reversed-phase flash chromatography under the following conditions: column, silica gel column; mobile phase, MeCN/water solution, gradient 10% to 100% in 10 minutes; detector, UV 220nm.
  • the fraction was spun to dryness to obtain 5-[(2-methylpropane-2-sulfinyl)amino]-5,7-dihydrospiro[cyclopentadiene[b]pyridine-6,4'-piperidine]-1 '-tert-butyl carboxylate (10 mg, 49.75%, purity: 99%).
  • N- ⁇ 5,7-dihydrospiro[cyclopentadiene[b]pyridine-6,4'-piperidin]-5-yl ⁇ -2-methylpropane- A solution of 2-sulfenamide (66 mg, 0.107 mmol, 1 equiv) and intermediate 2 (126.70 mg, 0.086 mmol, 0.8 equiv) in DMF was stirred for 1 min. To the above mixture were added DIPEA (41.62 mg, 0.323 mmol, 1.5 equiv) and HATU (163.24 mg, 0.430 mmol, 2 equiv) at room temperature. The mixture was stirred at room temperature under nitrogen protection for 3 hours.
  • reaction solution was purified by reversed-phase flash chromatography under the following conditions: column, silica gel; mobile phase, MeCN aqueous solution, gradient 10% to 50% in 10 minutes; detector, UV 220nm.
  • the fraction was rotated to dryness to obtain N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(tert-butoxycarbonyl)amino]-3-phenylpropanol) Acido]-3-phenylpropionylamino]-4-methylpentanoylamino]-6- ⁇ 5-[(2-methylpropane-2-sulfinyl)amino]-5,7-dihydro Spiro[cyclopentadien[c]pyridin-6,4'-piperidin]-1'-yl ⁇ -6-oxohexyl]carbamic acid tert-butyl ester (30 mg, 13.39%, purity: 99%).
  • compound 8A-3 (104 mg, 0.108 mmol, 1 equiv) and TFA (4 mL) were added to DCM (16 mL), and stirred for 3 h. The resulting mixture was concentrated under reduced pressure to obtain a residue. The residue was purified by reversed-phase flash chromatography with the following conditions: column, silica gel; mobile phase, MeCN aqueous solution, gradient 10% to 50% in 10 minutes; detector, UV 254 nm. The fraction was spun to dryness to obtain compound 8A (19.7 mg, 22.73%, purity: 95.0%).
  • compound 10A-3 (2.9g, 5.560mmol, 1equiv) was stirred in a solution of DMF (40mL) and piperidine (10mL) for 6 hours at room temperature. The obtained mixture was filtered, washed with MeOH, the solid was collected and spun dry, and the obtained white crude product (2g) was directly put into the next step.
  • compound 10A-5 (3.54g, 10.021mmol, 1.5equiv) was added to a solution of compound 10A-4 (2g, 6.681mmol, 1equiv) in DMF (10mL) at room temperature, and DIEA (1.30g, 10.021) was added at room temperature.
  • mmol, 1.5 equiv) HOBT (1.35 g, 10.021 mmol, 1.5 equiv) and TBTU (3.22 g, 10.021 mmol, 1.5 equiv).
  • the resulting mixture was filtered and washed with MeOH. The solids were collected and concentrated under reduced pressure.
  • Compound 10A-6 (2.9g, crude product) was obtained.
  • compound 10A-6 (2g, 3.151mmol, 1equiv) was stirred and reacted in a mixed solution of TFA (10mL, 134.631mmol, 42.73equiv) and DCM (40mL, 629.224mmol, 199.71equiv) for 4 hours at room temperature.
  • the filtrate of the obtained mixture was concentrated under reduced pressure and spun to dryness to obtain compound 10A-7 (1.6 g, crude product).
  • compound 10A-8 (229.60 mg, 0.728 mmol, 1.5 equiv) was added to a solution of compound 10A-7 (206 mg, 0.485 mmol, 1 equiv) in DMF (10 mL) at room temperature, and HATU (276.78 mg, 0.728) was added at room temperature. mmol, 1.5 equiv) and DIPEA (125.44 mg, 0.970 mmol, 2 equiv). After stirring the reaction for 4 hours, water was added to quench the reaction, and the resulting mixture was washed with EA (3x 100 mL) was extracted, the organic layer was washed with EA (3x10 mL), and dried over Na 2 SO 4 .
  • compound 10A-9 (165 mg, 0.229 mmol, 1 equiv) was stirred in a solution of piperidine (1 mL) and DCM (10 mL) for 3 h at room temperature.
  • the obtained liquid was concentrated under reduced pressure, and the obtained crude product was purified by reversed-phase column chromatography under the following conditions: C18 chromatography column, mobile phase, solvent ACN and solvent H 2 O (0.1% FA), 10% to 50% gradient for 10 minutes, UV254 Nanodetector, the fraction was spun to dryness to obtain compound 10A-10 (100 mg, 87.5%).
  • compound 10A-12 (1.93g, 4.981mmol, 1.28equiv) was added to a solution of compound 10A-11 (1g, 3.880mmol, 1equiv) in DMF (10mL) at room temperature, and HATU (2.1g, 2.1g, 8.712mmol, 2.25equiv) and DIPEA (1.8g, 13.927mmol, 3.59equiv), stir and react overnight.
  • the resulting mixture was quenched with water, extracted with EA (3x100mL), the organic phases were combined and dried, filtered, and the resulting liquid was concentrated under reduced pressure.
  • the crude product was purified by reverse-phase column chromatography (conditions are as follows: C18 chromatography column, mobile phase, Solvent ACN and solvent H 2 O (0.1% FA), 10% to 50% gradient for 10 minutes, UV254 nanometer detector), and the fraction was spun to dryness to obtain compound 10A-13 (1.86 g, 81.16%, purity: 99%).
  • compound 10A-14 (74.90mg, 0.140mmol, 1equiv) was added to a solution of compound 10A-10 (70mg, 0.140mmol, 1equiv) in DMF (10mL) at room temperature, and HATU (53.27mg, 0.140mmol) was added at room temperature. ,1.5equiv) and DIPEA (24.14mg, 0.187mmol, 1.25equiv), stir and react for 4 hours. The reaction solution was quenched with water, extracted with EA (3x100mL), the organic phases were combined and dried.
  • the crude product obtained was purified by reversed-phase column chromatography (conditions are as follows: C18 chromatography column, mobile phase, solvent ACN and solvent H 2 O (0.1% FA), 10% to 50% gradient for 10 minutes, UV254 nanometer detector), fractions Spin to dryness to obtain compound 10A-15 (118 mg, 83.1%, purity: 99%).
  • compound 10A-15 (118 mg, 0.116 mmol, 1 equiv) was stirred in a solution of piperidine (1 mL) and DCM (10 mL) for 2 h at room temperature. The obtained liquid was concentrated under reduced pressure to obtain compound 10A-16 (94 mg, crude product). The obtained crude product was directly put into the next step.
  • the obtained crude product was purified by a reversed-phase column, with the following conditions: C18 column, mobile phase, solvent ACN and solvent H 2 O (0.1% formic acid), 10% to 50% gradient for 10 minutes, UV200 nanometer detector, and the obtained fraction was spin-dried to obtain N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(tert-butoxycarbonyl)amino]-3]-phenylpropionylamino]- 3-phenylpropionylamino]-4-methylpentanoylamino]-6-(1-imino-1-oxo-1 ⁇ 6-thiomorpholin-4-yl)-6-oxohexyl]amino Tert-butyl formate (600 mg, 69.32%, purity: 99%), as a light yellow solid.
  • the target compound was prepared according to similar steps as in Example 1B, except that the reaction raw materials were Replace with
  • the target compound was prepared according to similar steps as in Example 1B, except that the reaction raw materials were Replace with
  • the target compound was prepared according to similar steps as in Example 1B, except that the reaction raw materials were Replace with
  • This compound was prepared according to the method of Example 5 of CN108290926A.
  • 5-HT 5-hydroxytryptamine
  • Tris trishydroxymethylaminomethane
  • EDTA ethylenediaminetetraacetic acid
  • PEI polyetherimide
  • B Compound preparation: Calculate the theoretical sample volume based on the design concentration and required volume. Use 5.0 ⁇ 10 -3 M as the initial dosage, dissolve it with DMSO, and then dilute it with DMSO to 5.0 ⁇ 10 -4 M ⁇ 5.0 ⁇ 10 -9 M. Dilute the diluted DMSO solution with Buffer to the working concentration, 5.0 ⁇ 10 -5 M ⁇ 5.0 ⁇ 10 -11 M, the final concentration of DMSO in the working solution is 1% (the final concentration of DMSO in the reaction system is 0.2%). After preparation, the test sample is stored at 4°C and discarded after the test is completed.
  • CHO- ⁇ , Kappa, delta and other cells were taken out from the -80°C refrigerator, thawed naturally, and centrifuged at 1000g and 4°C for 10 minutes. Take the precipitate and discard the supernatant. Add Buffer to the precipitate, homogenize for 20-30 seconds, and then centrifuge at 50,000g and 4°C for 15 minutes. Carefully discard the supernatant, add Buffer again, mix, and centrifuge at 50,000g and 4°C for 15 minutes. repeat three times. Store at -80°C.
  • Step 1 Add 50 ⁇ L solvent (1% DMSO) to the total binding tube (TB), add 50 ⁇ L DAMGO (final concentration 1.0 ⁇ 10 -5 M) to the non-specific binding tube (NB), and add 50 ⁇ L to each test compound tube (CB). test compound.
  • solvent 1% DMSO
  • DAMGO final concentration 1.0 ⁇ 10 -5 M
  • Step 2 Add 100 ⁇ L of buffer (homogenate A) to each reaction tube.
  • Step 3 First use homogenate A to prepare the prepared membrane into a 10 mg/mL membrane suspension for later use.
  • Step 4 Add 50 ⁇ L of radioactive ligand [ 3 H]DAMGO to each reaction tube, with a final concentration of 2 nM.
  • Step 5 Add 50 ⁇ L of membrane solution to each reaction tube.
  • Step 6 Incubate each reaction tube at 25°C for 90 minutes. After the reaction is completed, the bound ligands are quickly filtered under reduced pressure.
  • the UniFilter GF/C plate is saturated with 0.5% PEI solution 1 hour in advance, and is fully washed with ice-cold Tris buffer. After suction filtration, put it into a constant temperature drying oven to dry for 30 minutes. Take out the filter plate and add MICROSCINT PS scintillation fluid, 40 ⁇ L/well.
  • Step 7 Place the scintillation cup into the liquid scintillation counter for counting.
  • Step 1 Add 50 ⁇ L of solvent (1% DMSO) to the total binding tube (TB), add 50 ⁇ L of U69593 to the non-specific binding tube (NB) (final concentration 1.0 ⁇ 10 -5 M), and add 50 ⁇ L to each test compound tube (CB) test compound.
  • solvent 1% DMSO
  • NB non-specific binding tube
  • Step 2 Add 100 ⁇ L of buffer (homogenate A) to each reaction tube.
  • Step 3 First use homogenate A to prepare the prepared membrane into a 15 mg/mL membrane suspension for later use.
  • Step 4 Add 50 ⁇ L of radioligand 3 H-U69593 to each reaction tube, with a final concentration of 2 nM.
  • Step 5 Add 50 ⁇ L of membrane solution to each reaction tube.
  • Step 6 Incubate each reaction tube at 25°C for 90 minutes. After the reaction is completed, the bound ligands are quickly filtered through reduced pressure.
  • the UniFilter GF/C plate is saturated with 0.5% PEI solution 1 hour in advance, and is fully washed with ice-cold Tris buffer. After suction filtration, put it into a constant temperature drying oven to dry for 30 minutes. Take out the filter plate and add MICROSCINT PS scintillation solution, 40 ⁇ L/well.
  • Step 7 Place the filter plate into the liquid scintillation counter for counting.
  • Step 1 Add 50 ⁇ L of solvent (1% DMSO) to the total binding tube (TB), add 50 ⁇ L of DADLE to the non-specific binding tube (NB) (final concentration 1.0 ⁇ 10 -5 M), and add 50 ⁇ L to each test compound tube (CB) test compound.
  • solvent 1% DMSO
  • NB non-specific binding tube
  • CB test compound tube
  • Step 2 Add 100 ⁇ L of buffer (homogenate A) to each reaction tube.
  • Step 3 First use homogenate A to prepare the prepared membrane into a 10 mg/mL membrane suspension for later use.
  • Step 4 Add 50 ⁇ L of radioactive ligand 3 H-DADLE to each reaction tube, with a final concentration of 4 nM.
  • Step 5 Add 50 ⁇ L of membrane solution to each reaction tube.
  • Step 6 Incubate each reaction tube at 25°C for 90 minutes. After the reaction is completed, the bound ligands are quickly filtered under reduced pressure.
  • the UniFilter GF/C plate is saturated with 0.5% PEI solution 1 hour in advance, and is fully washed with ice-cold Tris buffer. After suction filtration, put it into a constant temperature drying oven to dry for 30 minutes. Take out the filter plate and add MICROSCINT PS scintillation fluid, 40 ⁇ L/well.
  • Step 7 Place the filter plate into the liquid scintillation counter for counting.
  • the compounds of the present invention have excellent selectivity for kappa opioid receptors and high affinity for kappa opioid receptors.
  • Test example 2 In vitro functional test
  • Cisbio HTRF cAMP-Gi kit was used to detect cAMP concentration changes in the kappa opioid receptor (Kappa) signaling pathway through a microplate reader, and the EC 50 value of the compound was calculated to evaluate the compound's agonistic effect on the kappa opioid receptor.
  • Cell line CHO-K1-OPRK1 stably transformed cell line (Nanjing GenScript Biotechnology Co., Ltd.)
  • cAMP-Gi kit (cisbio, 62AM9PEB)
  • the compound of the present invention has a strong agonistic effect on the kappa opioid receptor.
  • the analgesic effect of the compound after a single administration was examined through the mouse acetic acid writhing test, and its ED 50 was calculated.
  • mice acetic acid writhing test is a classic visceral pain test model. Intraperitoneal injection of 0.6% acetic acid aqueous solution in mice will stimulate the peritoneum and cause a long-lasting pain response, which in turn will lead to a writhing reaction in mice. Analgesic drugs can inhibit the writhing in mice. reaction. After the mice were given drugs by tail vein injection, they adapted for 15 minutes first, and then intraperitoneally injected 0.6% acetic acid solution (0.1mL/10g). A vehicle control group (0.9% sodium chloride injection) was set.
  • Writhing inhibition rate % (number of vehicle groups - number of administration groups) * 100% / number of vehicle groups.
  • mice locomotor activity test is a classic experimental model used to evaluate the inhibitory effects of compounds on the central nervous system.
  • the mice were given a corresponding concentration of the test solution (prepared for current use) through tail vein injection, and the blank group was given a vehicle (0.9% sodium chloride injection).
  • the mice were placed in an autonomous activity box (specification: The video was recorded in a black polyethylene box (29cm ⁇ 29cm ⁇ 30cm) for 30 minutes. At the end of the video, video analysis was performed to evaluate the spontaneous activities of the mice after medication.
  • Sedation is the most significant side effect of peripheral Kappa receptor agonists.
  • the sedation side effect ED 50 voluntary activity test
  • pharmaceutical efficacy ED 50 acetic acid writhing test
  • the experimental results are shown in Table 9.
  • the compound of the present invention has a large safety window, that is, it has a larger safe administration dose range, or the possibility of side effects is smaller at the same dose.
  • Test Example 4 Mouse PK and brain penetration
  • mice The pharmacokinetic characteristics and blood-brain barrier permeability of the disclosed compounds in mice were investigated.
  • Healthy male ICR mice were randomly divided into groups, with 6 animals in each group and 3 groups of animals for each test compound. The first group of animals was used for administration. Blood was collected 5 minutes later and the brains were collected, and the animals in the second and third groups were used for cross-collection at subsequent time points; the test compounds were intravenously administered (1 mg/kg) to the corresponding groups of mice, and blood was collected from the submandibular vein of the mice at different time points.
  • LC -MS/MS method was used to measure the drug content in plasma and brain tissue at different times
  • EXCEL software was used to obtain the brain-blood ratio B/P
  • DAS3.0 software was used to calculate the pharmacokinetic parameters. The experimental results are shown in Table 11.
  • the compound of the present invention has excellent pharmacokinetic properties. Specifically, compared with CR845, the cerebral blood ratio B/P of the compound of the present invention is equivalent to or lower than that of CR845, and it can selectively act on peripheral Kappa receptors. body, and the compounds of the present invention have significantly improved pharmacokinetic characteristics and significantly longer half-life.
  • the compounds of the present invention have lower single-dose toxicity and thus have improved safety.
  • This experiment uses manual patch clamp technology to detect the inhibitory effect of compounds on hERG channels.
  • Non-cardiac drugs may cause prolongation of myocardial action potential duration by inhibiting hERG (IKr) channels, increasing the possibility of life-threatening torsade de pointes (TdP) ventricular arrhythmia.
  • IKr hERG
  • TdP life-threatening torsade de pointes
  • HEK293 cells stably expressing hERG channels were cultured in 35 mm culture dishes and placed in a 37°C/5% CO2 incubator for at least 24 hours before being used for experiments.
  • hERG cell lines were routinely cultured and passaged in DMEM containing 10% fetal calf serum and 250 ⁇ g/ml G418.
  • the components of the extracellular fluid used in whole-cell patch clamp experiments are (mM): NaCl 145; MgCl 2 1; KCl 4; Glucose 10; HEPES 10; CaCl 2 2.
  • Use NaOH to adjust the pH value to 7.4, and use sucrose to adjust the osmotic pressure. Value is adjusted to 300mOsm.
  • the components of the intracellular fluid are (mM): KCl 140; MgCl 2 1; EGTA 5; HEPES 10 and Na 2 ATP 4.
  • KOH KOH to adjust the pH value to 7.2
  • sucrose sucrose to adjust the osmotic pressure to 290mOsm.
  • Electrophysiological recording Take out a culture dish from each experiment, wash it twice with extracellular fluid, and place it on the stage of an inverted microscope. Whole-cell patch-clamp experiments were performed at room temperature, and the tip resistance of the borosilicate glass microelectrode used was 3 to 5 M ⁇ .
  • Voltage stimulation protocol and current recording After whole-cell recording mode, clamp the membrane potential at -80mV, give cells +50mV depolarizing voltage stimulation every 30s, continue for 2s, then repolarize to -50mV, continue for 3s, and then elicit hERG tail current. Before depolarizing voltage stimulation, the cells were given a repolarizing voltage of -50mV for 50ms. The current recorded at this voltage was used as the baseline for calculating the hERG tail current. Only cells that meet the recording criteria are used for the detection of test compounds. hERG tail currents were stably recorded in the extracellular fluid for at least 3 minutes before compound addition. When the hERG tail current amplitude changes less than ⁇ 5% after perfusion administration, the drug effect is considered to have reached steady state. If the current does not reach a steady state within 6 minutes, the detection of compounds at that concentration will also end.
  • the compounds of the present invention have lower cardiotoxicity and therefore improved safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pain & Pain Management (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Rheumatology (AREA)
  • Immunology (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及医药领域,具体涉及式IA、IB和IC所示的合成多酰胺类化合物或其药学上可接受的盐、立体异构体和包含其的组合物,其制备方法,以及在医药领域的应用。

Description

多酰胺类化合物、其制备方法及其医药用途 技术领域
本发明涉及医药领域,具体涉及一种合成多酰胺类化合物或其药学上可接受的盐、立体异构体和包含其的组合物,以及在医药领域的应用。
背景技术
阿片受体是一类重要的G蛋白偶联受体,是内源性阿片肽及阿片类药物结合的靶点,阿片受体激活后对神经系统免疫及内分泌系统具有调节作用,阿片类药物是目前最强且常用的中枢镇痛药。中枢神经系统中存在的阿片受体包括μ、δ、κ受体等。
κ阿片样物质受体(κ-opioid receptor,KOR)由380个氨基酸组成,在感觉神经元、背根神经节细胞和初级传入神经元末梢中均有表达,参与痛觉、神经内分泌、情感行为和认知等重要的生理活动。
KOR激动剂作为药物在医药行业具有良好的应用前景。例如,CN108290926A公开了一类可作为KOR激动剂的苯基丙酰胺类衍生物,CN 101627049 A也公开了一类可作为KOR激动剂的合成肽酰胺,其中化合物D-Phe-D-Phe-D-Leu-D-Lys-[ω(4-氨基哌啶-4-羧酸)]-OH(研发代号CR845)已进入临床研究。
虽然现有技术中已经存在一些KOR激动剂,但是仍然需要具有改善的活性和/或成药性的新型KOR激动剂。
发明内容
本发明提供一种新κ阿片样物质受体(KOR受体)激动剂化合物,其令人惊奇地表现出优异的效果和作用。具体地,这类新型含有酰胺键的化合物不仅具有优异的KOR受体激动效能(对κ阿片样物质受体的高亲和力),还具有非常良好的亲水能力和由此更小的穿透血脑屏障以及更低的进入脑部的能力。在一些实施方式中,本发明的化合物还具有与μ和δ阿片样物质受体相比,对于κ阿片样物质受体更高的选择性。在一些实施方式中,本发明的化合物还具有更低的成瘾性、更好的物理化学性质(例如溶解度、物理和/或化学稳定性)、改善的药物代谢动力学性质(例如对细胞色素P450同工酶较低的抑制、改善的生物利用度、合适的半衰期和作用持续时间)、改善的安全性(较低的毒性和/或较少的副作用(如对中枢神经系统的副作用、呼吸抑制、镇静、致幻、抗利尿、恶心、便秘、依赖等))、良好的患者顺应性,和/或较不易产生耐受性等更优异的成药性质。在一些实施方式中,本发明的化合物具有改善的安全性,即具有较低的急性毒性和心脏毒性。在一些实施方式中,本发明的化合物具有改善的安全窗(例如具有较大的安全给药剂量范围,或者在相同剂量下出现副作用的可能性更小)。在一些实施方式中,本发明的化合物具有改善的药物代谢动力学性质(例如改善的生物利用度和更长的半衰期等)。
本发明的一方面提供一种式IA所示的化合物、其立体异构体或其药学上可接受的盐:
其中,
R1A为H或-COOH,优选为H,R2A为-NRaAC(=O)ORbA或-NRaAS(=O)2ORbA,优选为-NRaAC(=O)ORbA,其中RaA为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或被氨基、C1-6烷基氨基取代的C1-6烷基,RbA选自C1-6烷基、C6-14芳基、5-14元杂 芳基、C3-8环烷基、3-8元杂环基,优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RbA基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReA和RfA各自独立地为-(CH2)n1A-和-(CH2)n1A’-,n1A和n1A’各自独立地选自0、1、2和3,优选为2,且n1A和n1A’不同时为0,WA选自-NH-C(=O)-、-NH-S(=O)2-、-NR5A-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R5A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3;
或者R1A和R2A连同其连接的碳原子形成任选取代的9-10元双环部分,优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构:
当Q1A-Q4A中的任意一个为N时,其余为C,或Q1A-Q4A均为C;
W1A和W2A各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR6A-,-NR6A-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,或不存在,其中R6A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-;优选W1A和W2A不能同时不存在,
W3A为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,
n2A选自0、1、2和3,
更优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构: 更优选为选自 再更优选为选自
R3A选自H或-(CH2)mANRcARdA
RcA和RdA各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基;
R4A选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基;
mA和nA各自独立地为0、1、2、3、4或5。
本发明的又一方面提供一种制备本发明化合物的方法,其选自以下方法:
方法一:
方法一包括以下步骤:
方法二:
方法二包括以下步骤:
其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如前所定义,且RxA为氨基保护基,
所述氨基保护基优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基或乙氧羰基。
本发明还提供一种如下通式所示的化合物、其立体异构体或其盐,
其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如前所定义,且RxA为氨基保护基,
所述氨基保护基优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基或乙氧羰基。
本发明的一方面提供一种式IB所示的化合物、其立体异构体或其药学上可接受的盐:
其中,
R1B选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰基(例如甲氧基羰基)、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,优选为选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰基(例如甲氧基羰基),更优选为选自C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基),上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
R2B和R3B各自独立地选自H、C1-6烷基(例如甲基、异丙基)、脒基、C1-6烷氧基羰基(例如甲氧基羰基);
R4B选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基;
mB和nB各自独立地为0、1、2、3、4或5,例如mB为3,和/或nB为0。
本发明的又一方面提供一种制备本发明化合物的方法,包括以下步骤:
其中,R1B、R4B、mB和nB如前所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、或乙氧羰基。
本发明的又一方面提供一种式iB-1的化合物、其立体异构体或其盐,
其中,R1B、R4B、mB和nB如前所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、或乙氧羰基。
本发明的一方面提供一种式IC所示的化合物、其立体异构体或其药学上可接受的盐:
其中,
环A为C3-8环烷基、C6-14芳基或5-14元杂芳基,优选为苯基;
Y选自CH或N;
G选自-S-、-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、优选为-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、
R1C选自H或-(CH2)tNRaCRbC
R2C选自H、氨基、羟基、C1-6烷基、C1-6烷基氨基、C1-6氨基烷基,其中的烷基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
R3C在Y为CH时,选自H、羟基、C1-6烷基、3-8元杂环基、C1-6烷氧基,且在Y为N时,选自H、C1-6烷基、C3-8环烷基、C3-8环烷基-(CH2)mC-、3-8元杂环基、3-8元杂环基-(CH2)mC-、-(CH2)mCNR10R11,其中的烷基、环烷基、杂环基、烷氧基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基、C1-6烷基氨基的基团取代;
R4C和R5C各自独立地选自H、C1-6烷基、C1-6烷基-O-、羟基、-C(O)OR7、-NR8R9、-NRcCC(O)NR8R9、C1-6烷基氨基、3-8元杂环基-(CH2)mC-、卤素、氰基、-NRcCS(=O)2NR8R9、-NRcCC(O)ORdC、-NRcCS(=O)2ORdC、-NRcCC(O)R7’、-NH(CH2)mCNR8R9,其中所述的烷基、杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
或者CR4CR5C形成3-8元杂环或9-10元双环部分,所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构:
当Q1C-Q4C中的任意一个为N时,其余为C,或Q1C-Q4C均为C;
W1C和W2C各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR12-,-NR12-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-;优选W1C和W2C不能同时不存在,
W3C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在;优选为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,
W4C和W5C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,
n2C选自0、1、2和3,
更优选地,所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构: 更优选为选自
RaC和RbC各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基;
RcC为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或被氨基、C1-6烷基氨基取代的C1-6烷基,
RdC选自C1-6烷基、C6-14芳基、5-14元杂芳基、C3-8环烷基、3-8元杂环基,优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RdC基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReC和RfC各自独立地为-(CH2)n1C-和-(CH2)n1C’-,n1C和n1C’各自独立地选自0、1、2和3,优选为2,且n1C和n1C’不同时为0;WC选自-NH-C(=O)-、-NH-S(=O)2-、-NR12-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-,n3C选自1、2和3;
R6C和R6C’独立地选自H、C1-6烷基、C1-6烷基羰基、C1-6烷基-S(=O)2-、C1-6烷氧基羰基、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
R7和R7’各自独立地选自H、C1-6烷基、C3-8环烷基、3-8元杂环基、C6-14芳基和5-14元杂芳基,其中所述的烷基、环烷基、杂环基、芳基和杂芳基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
R8和R9各自独立地为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,
R10和R11各自独立地为H或C1-6烷基,或者R10和R11连同其连接的氮原子形成3-8元杂环基,其中的烷基和杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
p和t各自独立地选自0、1、2、3、4或5;
mC在每次出现时独立地选自1、2、3、4;
R0选自H、卤素、NO2、氰基、NH2C(=O)-、C1-6烷氧基、任选被一个或多个选自卤素、羟基、氨基、 硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基。
本发明的又一方面提供一种制备本发明化合物的方法,其选自以下方法:
方法一:
方法一包括以下步骤:
方法二:
方法二包括以下步骤:
优选地,式iiC-2化合物由选自以下的方法制备:
方法三:
方法三包括以下步骤:式iiC-4-a所示的化合物与式iiC-5-a所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法四:
方法四包括以下步骤:式iiC-4-b所示的化合物与式iiC-5-b所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法五:
方法五包括以下步骤:式iiC-4-c所示的化合物与式iiC-5-c所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法六:
方法六包括以下步骤:式iiC-4-d所示的化合物与式iiC-5-d所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
优选地,所述式iC-2为
优选地,所述iiC-2选自:
其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’和R1C”为R1C或其中NH2受氨基保护基保护的R1C,R2C’和R2C”为R2C或其中NH2受氨基保护基保护的R2C,R3C’和R3C”为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,Rw为羧基保护基,环A、Y、R0、R1C、R2C、R3C、G和p如前所定义,Rs、Rt和Ru各自独立地选自H和氨基保护基;
优选地,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基;所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、 2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
本发明的又一方面提供一种如下通式所示的化合物、其立体异构体或其盐,
优选地,式iiC-2-X选自:
其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’为R1C或其中NH2受氨基保护基保护的R1C,R2C’为R2C或其中NH2受氨基保护基保护的R2C,R3C’为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,环A、Y、R0、R1C、R2C、R3C、G和p如前所定义,Rs、Rt各自独立地选自H和氨基保护基,Rv选自H和羧基保护基;
优选地,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基;所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
本发明的另一方面提供药物组合物,其包含预防或治疗有效量的本发明的化合物、其立体异构体或其药学上可接受的盐、和药学可接受的载体或赋形剂、以及任选的其它治疗剂。
本发明的另一方面提供本发明的化合物、其立体异构体或其药学上可接受的盐或药物组合物在制备用于激动κ阿片样物质受体的药物中的用途。
本发明的另一方面提供用于预防和/或治疗由κ阿片样物质受体介导的相关疾病的方法,包括施用有效量的本发明的化合物、其立体异构体或其药学上可接受的盐或药物组合物。
本发明的另一方面提供本发明的化合物、其立体异构体或其药学上可接受的盐或药物组合物在制备药物中的用途,特别地所述药物用于预防和/或治疗由κ阿片样物质受体介导的相关疾病。
本公开中由κ阿片样物质受体介导的相关疾病选自疼痛、炎症、瘙痒、水肿、低钠血症、低钾血症、肠梗阻、咳嗽和青光眼,优选疼痛。本公开中的疼痛选自神经性疼痛、躯干痛、内脏痛、皮肤痛、关节炎疼痛、肾结石疼痛、子宫痉挛、痛经、子宫内膜异位症、消化不良、外科手术后疼痛、医疗处理后疼痛、眼部疼痛、耳炎疼痛、爆发性癌症疼痛和GI紊乱相关的疼痛。
具体实施方式
术语
除非另外定义,所有本文使用的科技术语都具有与要求保护的主题所属领域的技术人员一般理解相同的含义。
除非另有说明,本发明采用本领域技术范围内的质谱、NMR、HPLC、蛋白质化学、生物化学、重组DNA技术和药理学等常规方法。除非提供具体的定义,否则与本文描述的分析化学、合成有机化学、以及医学和药物化学等化学上相关的命名和实验室操作和技术,是本领域技术人员已知的。一般而言,前述技术和步骤可以通过本领域众所周知的和在各种一般文献和更具体文献中描述的常规方法来实施,这些文献在本说明书中被引用和讨论。
术语“烷基”是指脂肪族烃基团,可以是支链或直链的烷基。根据结构,烷基可以是单价基团或双价基团(即亚烷基)。在本发明中,烷基优选是具有1-8个碳原子的烷基,更优选具有1-6个碳原子的“低级烷基”,甚至更优选具有1-4个碳原子的烷基。典型的烷基包括但不限于甲基、乙基、丙基、丁基、戊基、己基等。应理解,本文提到的“烷基”包括可能存在的所有构型和构象的该烷基,例如本文提到的“丙基”包括正丙基和异丙基,“丁基”包括正丁基、异丁基和叔丁基,“戊基”包括正戊基、异丙基、新戊基、叔戊基、和戊-3-基等。在一些实施方式中,烷基任选地被1或多个(诸如1至3个)适合的取代基取代。
术语“芳基”具有共轭π电子系统的全碳单环或多环芳族基团。例如,本文所使用的术语“C6-14芳基”是指含有6-14个碳原子的芳族基团。在一些实施方式中,C6-14芳基优选为C6-10芳基。芳基基团的实例可以包括苯基、萘基、蒽,等等。在一些实施方式中,芳基任选地被1或多个(诸如1至3个)适合的取代基取代。
术语“杂芳基”指含有一个或多个相同或不同杂原子的单环或多环芳族基团,所述杂原子例如是氧、氮或硫。例如,本文所使用的术语“5-14元杂芳基”是指具有5-14个环原子的杂芳基。进一步地,所述杂芳基是指单环、双环或三环芳族基团,其具有5、6、8、9、10、11、12、13或14个环原子,特别是1或2或3或4或5或6或9或10个碳原子,且其包含至少一个可以相同或不同的杂原子,所述杂原子例如是氧、氮或硫;并且,所述杂芳基可为苯并稠合的基团。特别地,所述杂芳基选自噻吩基、呋喃基、吡咯基、噁唑基、噻唑基、咪唑基、吡唑基、异噁唑基、异噻唑基、噁二唑基、三唑基、噻二唑基等,以及它们的苯并衍生物;或吡啶基、哒嗪基、嘧啶基、吡嗪基、三嗪基等,以及它们的苯并衍生物。在一些实施方式中,杂芳基任选地被1或多个(诸如1至3个)适合的取代基取代。
术语“环烷基”指饱和或不饱和的非芳族单环或多环(诸如双环)烃环基(例如单环,诸如环丙基、环丁基、环戊基、环己基、环庚基、环辛基、环壬基,或双环,包括螺环、稠合或桥连系统,诸如双环[1.1.1]戊基、双环[2.2.1]庚基、双环[3.2.1]辛基或双环[5.2.0]壬基、十氢化萘基等)。环烷基的非限制性实例包括但不限于环丙基、环丁基、环戊基、环己基等。在一些实施方式中,所述环烷基任选地被1或多个(诸如1至3个)适合的取代基取代。
术语“杂环基”指饱和或不饱和的单环或多环基团,其在环中具有例如3-12个环原子或3-8个环原子,环原子包括碳原子及一个或多个(例如一个、两个、三个或四个)选自氮、氧、硫的杂原子;所述杂环基可以通过所述碳原子中的任一个或氮原子(如果存在的话)与分子的其余部分连接。所述杂环基中的碳原子可以任选地被氧代基(=O)取代。环的硫原子可以任选地被氧化成S-氧化物,例如SO、SO2。环的氮原子可以任选地被氧化成N-氧化合物。例如,3-8元杂环基为具有3-8个包括碳原子及杂原子的环原子的基团,包括但不限于环氧乙烷基、氮丙啶基、氮杂环丁基、氧杂环丁基、硫杂环丁基、四氢呋喃基、二氧杂环戊烯基、吡咯烷基、吡咯烷酮基、咪唑烷基、吡唑烷基、吡咯啉基、四氢吡喃基、哌啶基、吗啉基、硫吗啉基、哌嗪基、嘧啶二酮基、2-氧代吡咯烷基、3,5-二氧代哌啶基、环丁砜基、1,1-二氧代硫代吗啉基、1,1-二氧代四氢噻喃基。在一些实施方式中,所述杂环基任选地被1或多个(诸如1至3个) 适合的取代基取代。在一些实施方式中,3-8元杂环基为含有一个选自氧、氮和硫的杂原子的3-8元杂环基;在一些实施方式中,3-8元杂环基为其中WA、ReA、RfA、WC、ReC、RfC如本说明书所定义。
术语“烷氧基”是指烷基-O-,其中烷基如本文中定义。典型的烷氧基包括但不限于甲氧基、乙氧基、丙氧基、丁氧基、戊氧基、己氧基等。
术语“芳氧基”是指芳基-O-,其中芳基如本文中定义。
术语“杂芳氧基”是指杂芳基-O-,其中杂芳基如本文中定义。
术语“环烷氧基”是指环烷基-O-,其中环烷基如本文中定义。
术语“杂环氧基”是指杂环基-O-,其中杂环基如本文中定义。
术语“羰基”是指由碳和氧两种原子通过双键连接而成的有机官能团-C(=O)-。术语“烷氧基羰基”是指烷氧基-C(=O)-,即该基团通过羰基与化合物其它部分连接。术语“烷基羰基”是指烷基-C(=O)-,即该基团通过羰基与化合物其它部分连接。类似地,术语“芳基羰基”是指芳基-C(=O)-,即该基团通过羰基与化合物其它部分连接;术语“芳氧基羰基”是指芳氧基-C(=O)-,即该基团通过羰基与化合物其它部分连接;依此类推。
术语“氰基”,是指碳原子和氮原子通过三键相连接的基团-CN。
术语“脒基”是指
术语“卤”或“卤素”是指氟、氯、溴和碘。
术语“卤代烷基”是指其中至少一个氢被卤原子替换的烷基。在某些实施方式中,如果两个或更多氢原子被卤原子替换,所述卤原子彼此相同或不同。卤代烷基的实例包括但不限于一氟甲基、二氟甲基、三氟甲基、一氟乙基、二氟乙基、三氟乙基等。
术语“氨基烷基”是指被氨基取代的烷基。
术语“烷基氨基”是指被烷基取代的氨基。
表述“C1-C6”或“C1-6”涵盖1-6个碳原子的范围,并应理解为还涵盖其中的任意亚范围,以及每个点值,包括例如C1-C6、C2-C6、C3-C6、C4-C6、C5-C6、C1-C5、C2-C5、C3-C5、C4-C5、C1-C4、C2-C4、C3-C4、C1-C3、C2-C3、C1-C2等,以及C1、C2、C3、C4、C5、C6等。类似地,表述“C3-C8”或“C3-8”涵盖3-8个碳原子的范围,并应理解为还涵盖其中的任意亚范围,以及每个点值,包括例如C3-C6等,以及C3、C4、C5、C6、C7、C8等。表述“3-8元”应理解为涵盖其中的任意亚范围以及每个点值,例如3-7元、3-6元、3-5元、4-8元,以及3、4、5、6、7、8元等。类似地,表述“5-14元”应理解为涵盖其中的任意亚范围以及每个点值,例如5、6、7、8、9、10、11、12、13、14元等。本文中其他类似的表述也应当以类似的方式理解。
术语“任选取代”或“任选被……取代”是指所提及的基团可以被取代或不被取代。
术语“任选取代”或“取代”是指所提及的基团可以被一个或多个额外的基团取代,所述额外的基团各自并且独立地选自例如烷基、烯基、炔基、卤代烷基、烷氧基、烷硫基、卤素、巯基、羟基、硝基、氨基、氰基、羧基、氧代基、环烷基、杂环基、芳基、杂芳基、NH2C(=O)-、烷基氨基等。
表述“被一个或多个选自……的基团取代”或“任选被一个或多个选自……的基团取代”中的“一个或多个”是指1至5个,或1至4个,或1至3个,或1至2个基团取代,前提条件是满足化合价的要求。
另外,应理解,术语“C6-14芳基羰基”、“C6-14芳氧基羰基”是指其中的芳基为C6-14芳基,术语“C3-8 环烷基羰基”、“C3-8环烷氧基羰基”是指其中的环烷基为C3-8环烷基,术语“5-14元杂芳基羰基”、“5-14元杂芳氧基羰基”是指其中的杂芳基为5-14元杂芳基,术语“3-8元杂环基羰基”、“3-8元杂环氧基羰基”是指其中的杂环基为3-8元杂环基,术语“C1-6烷氧基羰基”是指其中的烷基为C1-6烷基。类似地,“C1-6氨基烷基”是指其中的烷基为C1-6烷基。
术语“药学上可接受的载体”是指对有机体无明显刺激作用,而且不会损害该活性化合物的生物活性及性能的那些物质。“药学上可接受的载体”包括但不限于助流剂、增甜剂、稀释剂、防腐剂、染料着色剂、矫味剂、表面活性剂、润湿剂、分散剂、崩解剂、稳定剂、溶剂或乳化剂。
本公开的化合物的名称“化合物*-0”和“化合物*-100”(其中*为化合物编号)分别为“化合物*”的立体异构体。例如,化合物3为消旋体,化合物3-0和化合物3-100分别为其立体异构体。
本发明“*”表示连接点。例如,当本公开的G为时,表明
另外,应理解,表述“G选自-CR4CR5C-”是指C原子为环原子,即类似地,“G选自-S(=O)(=NR6C’)-”是指S原子为环原子,即
还应理解,本公开中提到的结构是指芳香环,例如,在Q1A/Q1C-Q4A/Q4C中的任意一个为N,其余为C时,该结构为吡啶环,而在Q1A/Q1C-Q4A/Q4C均为C时,该结构为苯环。还应理解,上述表述中“其余为C”是指环原子为C,根据价键理论,实际上是指“其余为CH”。
本发明的化合物或其盐可以含有一个或多个立体中心,并且每个立体中心独立地以R或S构型存在,并且因此可以产生对映异构体、非对映异构体和其它立体异构形式,这些形式在绝对立体化学方面可以被定义为(R)-或(S)-,或者氨基酸的(D)-或(L)-。本发明意在包括所有这些可能的异构体或其混合物的形式,例如基本上纯的对映异构体、非对映异构体、外消旋体或其混合物。在某些实施方案中,优选化合物为那些显示更优生物活性的异构体化合物。本发明化合物已纯化的或部分纯化的异构体和立体异构体、或者外消旋混合物或非对映异构体混合物也均包括于本发明范围内。此类物质的纯化和分离可通过本领域已知的标准技术实现。
在一些实施方式中,本公开的化合物是外消旋的。在一些实施方式中,本公开的化合物是单一对映异构体。在一些实施方式中,本公开的化合物基本上不含其他异构体。在一些实施方式中,本公开的化合物是基本上不含其他异构体的单一异构体。在一些实施方式中,本公开的化合物包含25%或更少的其他异构体,或包含20%或更少的其他异构体,或包含15%或更少的其他异构体,或包含10%或更少的其他异构体,或包含5%或更少的其他异构体,或包含1%或更少的其他异构体。
在一些实施方式中,本公开的化合物具有至少75%的立体化学纯度,或具有至少80%的立体化学纯度,或具有至少85%的立体化学纯度,或具有至少90%的立体化学纯度,或具有至少95%的立体化学纯度,或具有至少96%的立体化学纯度,或具有至少97%的立体化学纯度,或具有至少98%的立体化学纯度,或具有至少99%的立体化学纯度。
在一些实施方式中,本公开的化合物中的不对称碳原子都可以以外消旋或对映体富集的形式存在,例如(R)-、(S)-或(R,S)-构型形式存在。在某些实施方式中,本公开的化合物中呈(S)-或(R)-构型的不对称碳原子具有至少50%对映体过量、至少60%对映体过量、至少70%对映体过量、至少80%对映体过量、 至少90%对映体过量、至少95%对映体过量或至少99%对映体过量。
如本文所用,“基本上纯”或“基本上不含其他异构体”是指相对于优选异构体,产物含有的其他异构体的量按重量计少于10%,优选少于5%,优选少于4%,优选少于3%,优选少于2%,优选少于1%。应理解,本公开提到或标明某化合物构型为绝对构型时是指其为基本上纯的该绝对构型形式;类似地,本公开提到或标明某化合物是单一对映异构体是指其为基本上纯的该对映异构体形式。
以下详述旨在举例说明非限制性实施方式,使本领域其它技术人员更充分地理解本发明的技术方案、其原理及其实际应用。
化合物
本公开提供式IA所示的化合物、其立体异构体或其药学上可接受的盐:
在一些实施方式中,R1A为H或-COOH,优选为H,R2A为-NRaAC(=O)ORbA或-NRaAS(=O)2ORbA,优选为-NRaAC(=O)ORbA,其中RaA为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1- 6烷氧基取代的C1-6烷基,更优选为H或C1-6氨基烷基,RbA选自C1-6烷基、C6-14芳基、5-14元杂芳基、C3-8环烷基、3-8元杂环基(优选为),优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1- 6烷基、更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RbA基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReA和RfA各自独立地为-(CH2)n1A-和-(CH2)n1A’-,且在一些实施方式中分别为-(CH2)n1A-和-(CH2)n1A’-,其中n1A和n1A’各自独立地选自0、1、2和3,优选为2,且n1A和n1A’不同时为0,WA选自-NH-C(=O)-、-NH-S(=O)2-、-NR5A-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R5A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3。在一些实施方式中,RaA为H。在一些实施方式中,RaA为被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,例如为甲氧基乙基、甲基氨基乙基、氨基丙基、或氨基乙基等。在一些实施方式中,RaA为H或C1-6氨基烷基。在一些实施方式中,RbA为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1- 6烷氧基的基团取代的C1-6烷基,例如为甲基、乙基或丙基,优选为甲基。在一些实施方式中,RbA为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的WA选自-NH-C(=O)-、-NH-S(=O)2-、-NR5A-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R5A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3。
在一些实施方式中,R1A和R2A连同其连接的碳原子形成任选取代的9-10元双环部分(具体为9-10元稠环)。优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构:
当Q1A-Q4A中的任意一个为N时,其余为CH,或Q1A-Q4A均为CH;
W1A和W2A各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR6A-,-NR6A-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,或不存在,R6A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3,优选为1;优选W1A和W2A不能同时不存在,
W3A为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,n2A选自0、1、2和3。
更优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构: 更优选选自 再更优选为选自
在一些实施方式中,R3A选自H或-(CH2)mANRcARdA,其中RcA和RdA各自独立地选自H、C1-6烷基(例如甲基、异丙基等)、脒基、C1-6烷氧基羰基(例如甲氧基羰基等),mA选自0、1、2、3、4或5。在一些实施方式中,R3A为H。在一些实施方式中,RcA和RdA各自独立地选自H、C1-6烷氧基羰基(例如甲氧基羰基等)。在一些实施方式中,RcA和RdA各自为H。在一些实施方式中,RcA为H,RdA为C1-6烷氧基羰基,优选为甲氧基羰基。在一些实施方式中,mA选自0、1、2或3,优选为3。
在一些实施方式中,R4A选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基,优选为选自F、Cl、NO2、CH3、CF3、氰基、NH2C(=O)-。
在一些实施方式中,nA为0、1、2、3、4或5,优选为0、1、2、或3,更优选为0。
在一些实施方式中,式IA如式IIA所示,优选为如式IIIA所示,再更优选为如式IVA所示,再更优选为如式VA所示:
优选地,式IA、式IIA、式IIIA、式IVA或式VA中的RbA选自C1-6烷基、优选为其中WA选自-O-、-S(=O)2-。
在一些实施方式中,式IA如式VIA所示:
优选地,式VIA中的RaA为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或C1-6氨基烷基。
在一些实施方式中,本发明的化合物为式IIIA所示的化合物、其立体异构体或其药学上可接受的盐,其中RaA为H,RbA选自C1-6烷基、ReA和RfA分别为-(CH2)n1A-和-(CH2)n1A’-,n1A和n1A’各自独立地选自0、1、2和3,优选为2,且n1A和n1A’不同时为0,WA选自-NH-C(=O)-、-NH-S(=O)2-、-NR5A-、-O-、-S-、-S(=O)2-,R5A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3,RcA和RdA各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基。
在一些实施方式中,本发明的化合物为式IIIA所示的化合物、其立体异构体或其药学上可接受的盐,其中RaA为H,RbA选自C1-6烷基、WA选自-O-、-S(=O)2-,RcA和RdA各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基。
在一些实施方式中,本发明的化合物为式IVA所示的化合物、其立体异构体或其药学上可接受的盐,其中RaA为H,RbA选自C1-6烷基、WA选自-O-、-S(=O)2-。
在一些实施方式中,本发明的化合物选自如下所示的化合物、其立体异构体或其药学上可接受的盐:


本公开还提供以下通式的化合物、其立体异构体或其盐,其为制备本公开上述化合物的中间体,
其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如前所定义,且RxA为氨基保护基,
所述氨基保护基优选为各自独立地选自叔丁氧羰基(Boc)、9-芴甲氧羰基(Fmoc)、烯丙氧羰基(Alloc)、三氯乙氧羰基(Troc)、三甲基硅乙氧羰基(Teoc)、苄氧羰基(CBz)、对甲基苯磺酰基(Tosyl)、对硝基苯磺酰基(Nosyl)、叔丁基(t-Bu)、三氟乙酰基(Tfa)、甲氧羰基、叔丁基亚磺酰基或乙氧羰基。
制备方法
在一些实施方式中,本发明所示化合物可以通过选自以下的方法制备:
方法一:
方法一包括以下步骤:
方法二:
方法二包括以下步骤:
其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如前所定义,且RxA为氨基保护基,
所述氨基保护基优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基或乙氧羰基。
化合物
本公开提供式IB所示的化合物、其立体异构体或其药学上可接受的盐:
R1B选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰基(例如甲氧基羰基)、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,优选为选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰基(例如甲氧基羰基),更优选为选自C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基),上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
R2B和R3B各自独立地选自H、C1-6烷基(例如甲基、异丙基)、脒基、C1-6烷氧基羰基(例如甲氧基羰基);
R4B选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基,优选为选自F、Cl、NO2、CH3、CF3、氰基、NH2C(=O)-;
mB和nB各自独立地为0、1、2、3、4或5,例如mB为3,且/或nB为0。
在一些实施方式中,R1B选自H、C1-6烷基、C1-6烷基羰基、C1-6烷氧基羰基、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基 羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,优选为选自C1-6烷基、C1-6烷基羰基,优选为选自H、C1-6烷基、C1-6烷基羰基、C1-6烷氧基羰基,更优选选自C1-6烷基、C1- 6烷基羰基,上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代。在一些实施方式中,R1B为H。在一些实施方式中,R1B为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的甲基、乙基、丙基、或丁基,更优选为甲基。在一些实施方式中,R1B为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基羰基,优选为任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的甲基羰基、乙基羰基、丙基羰基、丁基羰基,更优选为甲基羰基。
在一些实施方式中,R2B和R3B各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基。在一些实施方式中,R2B和R3B各自独立地选自H、C1-6烷氧基羰基。在一些实施方式中,R2B和R3B均为H。在一些实施方式中,R2B为H,R3B为C1-6烷氧基羰基,优选为甲氧基羰基。
在一些实施方式中,R4B选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基,优选为选自F、Cl、NO2、CH3、CF3、氰基、NH2C(=O)-。
在一些实施方式中,mB和nB各自独立地为0、1、2、3、4或5。在一些实施方式中,mB为0、1、2、3、4或5,优选为3。在一些实施方式中,nB为0、1、2或3,优选为0。
在一些实施方式中,式IB优选如式IIB所示,
进一步优选如式IIIB所示,
再进一步优选如式IVB所示,
在一些实施方式中,在上述通式中,R1B选自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基、C1-6烷基羰基,优选为C1-6烷基或C1-6烷基羰基,更优选为甲基或甲基羰基。
在一些实施方式中,本发明的化合物选自如下所示的化合物、其立体异构体或其药学上可接受的盐:
本公开还提供式iB-1的化合物、其立体异构体或其盐,其为制备本发明化合物的中间体,
其中,R1B、R4B、mB和nB如前所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基(Boc)、9-芴甲氧羰基(Fmoc)、烯丙氧羰基(Alloc)、三氯乙氧羰基(Troc)、三甲基硅乙氧羰基 (Teoc)、苄氧羰基(CBz)、对甲基苯磺酰基(Tosyl)、对硝基苯磺酰基(Nosyl)、叔丁基(t-Bu)、三氟乙酰基(Tfa)、甲氧羰基、或乙氧羰基。
类似地,本公开还提供式iB-4的化合物、其立体异构体或其盐,
其中,R1B、R2B、R3B、R4B、mB、nB和RxB如前所定义。
制备方法
在一些实施方式中,本发明所示化合物可以通过以下方法制备,该方法包括以下步骤:
其中,R1B、R4B、mB和nB如前所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、或乙氧羰基。
化合物
本公开提供式IC所示的化合物、其立体异构体或其药学上可接受的盐:
在一些实施方式中,环A为C3-8环烷基、C6-14芳基(优选为单环芳基)或5-14元杂芳基(优选为单环杂芳基),例如为环丙基、环戊基、苯基、吡啶基和嘧啶基。在一些实施方式中,环A为苯基。
在一些实施方式中,Y选自CH或N。在一些实施方式中,Y为N。
在一些实施方式中,G选自-S-、-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、在一些实施方式中,G选自-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、在一些实施方式中,G为-O-。在一些实施方式中,G为-S(=O)2-。
在一些实施方式中,G为-S(=O)(=NR6C’)-,其中R6C’选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰基(例如甲氧基羰基)、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3- 8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,优选为选自H、C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基)、C1-6烷氧基羰(例如甲氧基羰基),更优选为选自C1-6烷基(例如甲基)、C1-6烷基羰基(例如甲基羰基),上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1- 6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代。
在一些实施方式中,G为-CR4CR5C-,其中R4C和R5C各自独立地选自H、C1-6烷基、C1-6烷基-O-、羟基、-C(O)OR7、-NR8R9、-NRcCC(O)NR8R9、C1-6烷基氨基、3-8元杂环基-(CH2)mC-、卤素、氰基、-NRcCS(=O)2NR8R9、-NRcCC(O)ORdC、-NRcCS(=O)2ORdC、-NRcCC(O)R7’、-NH(CH2)mCNR8R9,其中所述的烷基、杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;R7和R7’各自独立地选自H、C1-6烷基、C3-8环烷基、3-8元杂环基、C6-14芳基和5-14元杂芳基,其中所述的烷基、环烷基、杂环基、芳基和杂芳基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;R8和R9各自独立地为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基;RcC为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或被氨基、C1-6烷基氨基取代的C1-6烷基;RdC选自C1-6烷基、C6-14芳基、5-14元杂芳基、C3-8环烷基、3-8元杂环基,优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RdC基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReC和RfC各自独立地为-(CH2)n1C-和-(CH2)n1C’-,且在一些实施方式中分别为-(CH2)n1C-和-(CH2)n1C’-,其中n1C和n1C’各自独立地选自0、1、2和3,优选为2,且n1C和n1C’不同时为0;WC选自-NH-C(=O)-、-NH-S(=O)2-、-NR12-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-,n3C选自1、2和3;mC选自1、2、3、4;
或者CR4CR5C形成3-8元杂环或9-10元双环部分(具体为9-10元稠环),所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构:
当Q1C-Q4C中的任意一个为N时,其余为CH,或Q1C-Q4C均为CH;
W1C和W2C各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR12-,-NR12-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-;优选W1C和W2C不能同时不存在,
W3C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在;优选为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,
W4C和W5C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,
n2C选自0、1、2和3,
更优选地,所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构: 更优选为选自
在一些实施方式中,G为-CR4CR5C-,其中R4C为H,R5C为-NRcCC(O)ORdC,其中RcC和RdC如上所定义。
在一些实施方式中,G为-CR4CR5C-,其中R4C为-NR8R9,R5C为-C(O)OR7,其中R7、R8和R9如上所定义。在一些实施方式中,R7为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,例如为H或C1-6烷基,例如为H或甲基。在一些实施方式中,R8和R9均为H。
在一些实施方式中,G为-S(=O)(=NR6C’)-,其中R6C’如上所定义。
在一些实施方式中,R1C选自H或-(CH2)tNRaCRbC,其中RaC和RbC各自独立地选自H、C1-6烷基(例如甲基、异丙基等)、脒基、C1-6烷氧基羰基(例如甲氧基羰基等),t选自0、1、2、3、4或5。在一些实施方式中,R1C为H。在一些实施方式中,RaC和RbC各自独立地选自H、C1-6烷氧基羰基(例如甲氧基羰基等)。在一些实施方式中,RaC和RbC各自为H。在一些实施方式中,t选自0、1、2或3,优选为3。
在一些实施方式中,R2C选自H、氨基、羟基、C1-6烷基、C1-6烷基氨基、C1-6氨基烷基,其中的烷基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代。
在一些实施方式中,在Y为CH时,R3C选自H、羟基、C1-6烷基、3-8元杂环基、C1-6烷氧基,且在Y为N时,R3C选自H、C1-6烷基、C3-8环烷基、C3-8环烷基-(CH2)mC-、3-8元杂环基、3-8元杂环基-(CH2)mC-、-(CH2)mCNR10R11,其中的烷基、环烷基、杂环基、烷氧基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基、C1-6烷基氨基的基团取代;R10和 R11各自独立地为H或C1-6烷基,或者R10和R11连同其连接的氮原子形成3-8元杂环基(例如为 ),其中的烷基和杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;mC在每次出现时独立地选自1、2、3、4。
在一些实施方式中,R0选自H、卤素、NO2、氰基、NH2C(=O)-、C1-6烷氧基、任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为选自H、F、Cl、NO2、CH3、CF3、氰基、NH2C(=O)-、C1-6氨基烷基。在一些实施方式中,R4C为H。
在一些实施方式中,p为0、1、2、3、4或5,优选为0、1、2、或3,更优选为0。
在一些实施方式中,式IC如式IIC-1或IIC-2所示:
在一些实施方式中,在IIC-1中,R2C为C1-6氨基烷基或氨基,R3C为H或C1-6烷基;在一些实施方式中,,R2C为氨基,R3C为H。
在一些实施方式中,在式IIC-2中,R2C为C1-6氨基烷基或氨基,R3C为H或C1-6烷基,或者R2C为H或C1-6烷基,R3C为C1-6氨基烷基或3-8元含氮杂环基。
在一些实施方式中,式IC为如式IIIC或式IVC所示:
在一些实施方式中,在上述通式中,满足以下一项或者多项:
(1)R1C为-(CH2)tNRaCRbC,优选为-(CH2)3NH2
(2)环A为苯基;
(3)p为0。
在一些实施方式中,在上述通式中,G选自以下之一:
(1)G为-S(=O)(=NR6C’)-;
(2)G为-CR4CR5C-,R4C为H,R5C为-NRcCC(O)ORdC
(3)G为-CR4CR5C-,R4C为-NR8R9,R5C为-C(O)OR7,R7选自H、C1-6烷基、C3-8环烷基、3-8元杂环基、C6-14芳基和5-14元杂芳基,其中所述的烷基、环烷基、杂环基、芳基和杂芳基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;且R7优选为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基。
在一些实施方式中,式IC如式IVC-1、IVC-2或IVC-3所示:
在一些实施方式中,本公开的化合物选自如下所示的化合物、其立体异构体或其药学上可接受的盐:












本公开还提供以下通式的化合物、其立体异构体或其盐,其为制备本公开上述化合物的中间体:

其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’为R1C或其中NH2受氨基保护基保护的R1C,R2C’为R2C或其中NH2受氨基保护基保护的R2C,R3C’为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,环A、Y、R0、R1C、R2C、R3C、G和p如前所定义,Rv选自H和羧基保护基。
在一些实施方式中,式iiC-2-X选自:
其中Rs、Rt各自独立地选自H和氨基保护基。
在一些实施方式中,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基。
在一些实施方式中,所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
制备方法
在一些实施方式中,本发明所示化合物可以通过选自以下的方法制备:
方法一:
方法一包括以下步骤:式iC-2所示的化合物与式iC-3-a或iC-3-b或iC-3-c所示的化合物经缩合反应生成式iC-1所示的化合物,然后经过保护基脱除反应生成式IC所示的化合物,
方法二:
方法二包括以下步骤:式iiC-2所示的化合物与式iiC-3所示的化合物经缩合反应生成式iiC-1所示的化合物,然后经过保护基脱除反应生成式IC所示的化合物,
优选地,式iiC-2化合物由选自以下的方法制备:
方法三:
方法三包括以下步骤:式iiC-4-a所示的化合物与式iiC-5-a所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法四:
方法四包括以下步骤:式iiC-4-b所示的化合物与式iiC-5-b所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法五:
方法五包括以下步骤:式iiC-4-c所示的化合物与式iiC-5-c所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
方法六:
方法六包括以下步骤:式iiC-4-d所示的化合物与式iiC-5-d所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
优选地,所述式iC-2为
优选地,所述iiC-2选自:
其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’和R1C”为R1C或其中NH2受氨基保护基保护的R1C,R2C’和R2C”为R2C或其中NH2受氨基保护基保护的R2C,R3C’和R3C”为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,Rw为羧基保护基,环A、Y、R0、R1C、R2C、R3C、G和p如前所定义,Rs、Rt和Ru各自独立地选自H和氨基保护基;
优选地,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基;所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
在上述方法三、方法四、方法五和方法六中,所述缩合反应是指iiC-4(具体指iiC-4-a、iiC-4-b、iiC-4-c、iiC-4-d)分别与iiC-5(具体指iiC-5-a、iiC-5-b、iiC-5-c、iiC-5-d)进行缩合反应形成缩合产物;水解反应意在脱除缩合产物中的羧基保护基Rw,但是根据水解条件的不同,在脱除缩合产物中的羧基保护基Rw的同时,缩合产物中的氨基保护基(如果存在)也可能部分或全部脱除,水解反应之后的产物被称为水解产物。在一些实施方式中,该水解产物即为iiC-2所示的化合物。在一些实施方式中,该水解产物再经氨基保护反应而得到式iiC-2所示的化合物。在一些实施方式中,该水解产物再经氨基保护基脱除反应和氨基保护反应而得到式iiC-2所示的化合物。
实施例
下面详细描述本发明的实施例。下面描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。除非另外指明,本文所指的比例、百分比等均以重量计。
本申请所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。具体地,中间体2(结构如下所示)购自杭州肽佳生物科技有限公司。
另外,关于终产物纯化,在各实施例中分别提及为“通过反相快速色谱法纯化”,“通过制备HPLC纯化”,“反相柱层析纯化”,“经过高效液相色谱纯化”,“反相柱纯化”,其中在一些实施例中明确标明了纯化所用流动相条件为“溶剂ACN和溶剂H2O(FA,0.1%)”,但应该理解,在其它实施例中也使用的相同或类似的流动相条件。在这种色谱条件下,某些实施例化合物形成为甲酸盐。但本领域技术人员理解,通过本领域常规的中和反应条件即可形成游离态化合物。
缩写:
ACN:乙腈
BTC:(三氯甲基)碳酸酯
CDI:N,N-碳酰二咪唑
DCM:二氯甲烷
DIEA:二乙胺
DIPEA:N,N-二异丙基乙胺
DMAP:4-二甲氨基吡啶
DMF:二甲基甲酰胺
HATU:2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯
HOBT:1-羟基苯并三唑
TBTU:O-苯并三氮唑-N,N,N',N'-四甲基脲四氟硼酸酯
TEA:三乙胺
TFA:三氟乙酸
TFE:2,2,2-三氟乙醇
THF:四氢呋喃
实施例1化合物1的合成
1.1化合物1-1的合成
在室温下,将4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯盐酸盐(3.7g,12.552mmol,1.00equiv)溶于DMF(37ml),分别加入DIEA(4.87g,37.656mmol,3equiv),(2R)-2-{[(苄氧基)羰基]氨基}-6-[(叔丁氧基羰基)氨基]己酸(5.73g,15.062mmol,1.2equiv)和HATU(5.73g,15.062mmol,1.2equiv)。所得混合物在室温下搅拌过夜。所得混合物用二氯甲烷(2×200mL)萃取。合并的有机层用盐水(2×300mL)洗涤,经无水硫酸钠干燥。过滤后,减压浓缩滤液。残余物通过硅胶柱色谱纯化,用二氯甲烷、甲醇(20:1)洗脱,得到1-[(2R)-2-{[(苄氧基)羰基]氨基}-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(8.97g,94.63%,纯度:82.0%),为灰白色固体。
LC-MS-1-1(ES,m/z):[M+1]=621
1.2化合物1-3的合成
将(2R)-2-氨基-4-甲基戊酸叔丁酯盐酸盐(5g,22.347mmol,1.00equiv)和DIEA(8.66g,67.041mmol,3equiv)溶于DMF(50.00mL,646.052mmol,28.91equiv),加入(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酸(10.39g,26.816mmol,1.2equiv)和HATU(10.20g,26.816mmol,1.2equiv)。所得混合物在室温下搅拌过夜。所得混合物用乙酸乙酯(1×500mL)萃取。合并的有机层用盐水(5x300mL)洗涤,经无水硫酸钠干燥。过滤后,减压浓缩滤液。残余物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(4:1)洗脱,得到(2R)-2-[(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酸叔丁酯(13.94g,97.60%,纯度:87.0%),为白色固体。
LC-MS-1-3(ES,m/z):[M+1]=557
1.3化合物1-2的合成
将1-[(2R)-2-{[(苄氧基)羰基]氨基}-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(8.97g,14.450mmol,1.00equiv)溶于甲醇(162.35毫升),加入Pd/C(922.69mg,w/t,10%)。将所得混合物在氢气氛下于室温搅拌过夜。过滤所得混合物,滤饼用甲醇(3×20mL)洗涤。减压浓缩滤液。残余物通过反向快速色谱法纯化,得到1-[(2R)-2-氨基-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧羰基)氨基]哌啶-4-羧酸甲酯(5.65g,76.53%,纯度:95.0%)。
LC-MS-1-2(ES,m/z):[M+1]=487
1.4化合物1-4的合成
将(2R)-2-[(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酸叔丁酯(13.94g, 25.040mmol)溶于DCM(100mL,1573.005mmol,62.82equiv.),加入TFA(1.00mL,1346.304mmol,53.77equiv)。所得混合物在室温下搅拌过夜。减压浓缩所得混合物。粗产物从二氯甲烷/1M盐酸的水中重结晶,并用1x400mL水洗涤,过滤,收集固体得到(2R)-2-[(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酸(9.43g,74.48%,纯度:98.8%)。
LC-MS-1-4(ES,m/z):[M+1]=501
1.5化合物1-5的合成
将(2R)-2-[(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酸(4.78g,9.539mmol,1.1equiv)和DIEA(3.36g,26.016mmol,3equiv)溶解于DMF(40mL,516.870mmol,59.60equiv),加入1-[(2R)-2-氨基-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(4.22g,8.672mmol,1.00equiv)和HATU(3.96g,10.406mmol,1.2equiv)。所得混合物在室温下搅拌过夜。所得混合物用乙酸乙酯(1x400mL)萃取。合并的有机层用盐水(3x200mL)洗涤,经无水硫酸钠干燥。过滤后,减压浓缩滤液。残留物经硅胶柱层析纯化,用石油醚/乙酸乙酯(1:2)洗脱,馏分旋干得到4-[(叔丁氧基羰基)氨基]-1-[(2R)-6-[(叔丁氧基羰基)氨基]]-2-[(2R)-2-[(2R)-2-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(8.39g,98.12%,纯度:98.3%)。
LC-MS-1-5(ES,m/z):[M+1]=969
1.6化合物1-6的合成
将4-[(叔丁氧基羰基)氨基]-1-[(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2]-{[(9H-芴-9-基甲氧基)羰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(8.93g,9.214mmol,1.00equiv)溶于DCM(80mL),分批加入哌啶(8.90mL,104.487mmol,11.34equiv)。所得混合物在室温下搅拌过夜。减压浓缩所得混合物。残余物通过反相快速色谱法纯化,得到1-[(2R)-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(5.74g,80.98%,纯度:纯度:97.0%)。
LC-MS-1-6(ES,m/z):[M+1]=747
1.7化合物1-7的合成
将羰基咪唑(47.76mg,0.295mmol,1.1equiv)溶于N,N-二甲基甲酰胺(1.60mL),搅拌条件下加入1-[(2R)-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(200mg,0.268mmol,1.00equiv),N-甲基苄胺(32.45mg,0.268mmol,1equiv)和三乙胺(54.19mg,0.536mmol,2equiv)。所得混合物在室温下搅拌过夜。减压浓缩,残余物通过反相快速色谱法纯化,馏分旋干得到1-[(2R)-2-[(2R)-2-[(2R)-2-{[苄基(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧羰基)氨基]哌啶-4-羧酸甲酯(136mg,55.67%,纯度:66.7%)。
LC-MS-1-7(ES,m/z):[M+1]=894
1.8化合物1-8的合成
将1-[(2R)-2-[(2R)-2-[(2R)-2-{[苄基(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(136mg,0.152mmol,1.00equiv)溶于二氧六环(10.00mL),在室温下分批加入4M HCl(气体)的1,4-二氧六环溶液(15.0mL)。所得混合物在室温下搅拌4小时。减压浓缩反应液得4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[苄基(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(115mg,粗品)。
LC-MS-1-8(ES,m/z):[M+1]=694
1.9化合物1的合成
将4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[苄基(甲基)氨基甲酰基]氨基}-3-苯丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(115mg,0.166mmol,1.00equiv)溶于混合溶剂THF(10mL)/水(2mL),加入LiOH.H2O(13.933mg,0.332mmol,2.00equiv)。所得混合物在室温下搅拌1小时。用1M HCl(水溶液)将混合物酸化至pH=7。所得混合物通过反相快速色谱法纯化,得到4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[苄基(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸(60.0mg,49.23%,纯度:95.2%)。
LC-MS-1(ES,m/z):[M+1]=680
1H NMR-1(400MHz,Deuterium Oxide)δ8.38(s,1H),7.36–7.22(m,6H),7.18(dd,J=7.6,2.0Hz,2H),7.03–6.95(m,2H),4.76–4.72(m,1H),4.50(ddd,J=9.0,5.7,3.0Hz,1H),4.43(d,J=16.5Hz,1H),4.38–4.25(m,2H),3.88–3.47(m,4H),3.11(dd,J=13.9,5.8Hz,1H),2.97–2.85(m,3H),2.77(d,J=2.9Hz,3H),2.27–2.06(m,2H),1.93–1.42(m,9H),1.42–1.23(m,2H),0.92–0.77(m,6H).
实施例2化合物2的合成
LC-MS-2-0(ES,m/z):[M+1]=710
1H NMR(400MHz,Deuterium Oxide)δ8.30(s,1H),7.51–7.20(m,8H),7.18–6.96(m,2H),5.52(ddd,J=19.0,10.7,4.7Hz,1H),4.45(dt,J=8.9,6.2Hz,1H),4.30(p,J=4.7Hz,1H),3.75(dp,J=18.4,6.9Hz,2H),3.68–3.38(m,4H),3.10(ddd,J=14.6,9.2,6.3Hz,1H),2.97(dt,J=13.9,10.1Hz,1H),2.87(q,J=7.8Hz,2H),2.53(d,J=5.4Hz,3H),2.30–2.05(m,2H),1.96–1.43(m,9H),1.32(d,J=20.6Hz,2H),0.85(dd,J=16.8,5.6Hz,6H).
LC-MS-2-100(ES,m/z):[M+1]=710
1H NMR(400MHz,Deuterium Oxide)δ8.35(s,2H),7.50–7.10(m,8H),7.03–6.72(m,2H),5.53(dd,J=11.1,4.2Hz,1H),4.86–4.74(m,1H),4.72–4.59(m,1H),4.35(dt,J=9.3,5.2Hz,1H),4.06–3.66(m,3H),3.68–3.37(m,3H),3.34–3.14(m,1H),3.07–2.73(m,3H),2.43(d,J=6.2Hz,3H),2.31–2.01(m,2H),1.97–1.21(m,11H),0.85(dd,J=16.8,5.6Hz,6H).
实施例3化合物3的合成
LC-MS-3(ES,m/z):[M+1]=681
1H NMR-3(400MHz,Deuterium Oxide)δ8.34(s,2H),7.34–7.19(m,6H),7.11(dt,J=7.3,2.2Hz,2H),7.09–7.01(m,2H),4.53(td,J=6.9,6.1,3.1Hz,1H),4.33(ddd,J=7.0,4.9,1.9Hz,1H),4.30–4.21(m,1H),3.88–3.46(m,4H),3.01–2.82(m,5H),2.75(ddd,J=14.1,7.1,4.5Hz,1H),2.28–2.04(m,2H),1.95–1.55(m,6H),1.57–1.26(m,5H),0.82(dd,J=19.0,5.2Hz,6H).
实施例4化合物4的合成
4.1化合物4-1的合成
将1-[(2R)-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧基羰基)氨基]己酰基]-4-[(叔丁氧基羰基)氨基]哌啶-4-羧酸甲酯(120mg,0.161mmol,1.00equiv)溶于DMF(7ml),加入3-[(叔丁氧基羰基)氨基]-3-苯基丙酸(51.15mg,0.193mmol,1.2equiv)、HATU(73.30mg,0.193mmol,1.2equiv)和DIEA(62.29mg,0.483mmol,3equiv)。将所得混合物搅拌过夜,然后用水(30mL)稀释,并用EA(3×20mL)萃取。合并的有机层用无水硫酸钠干燥。减压浓缩得到4-[(叔丁氧基羰基)氨基]-1-[(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2-{3-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(256mg,粗品)。
LC-MS-4-1(ES,m/z):[M+1]=994
4.2化合物4-2的合成
将4-[(叔丁氧基羰基)氨基]-1-[(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2-{3-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(265mg,0.267mmol,1.00equiv)溶于二氧六环(5.3mL),在室温下加入4M HCl(气体)的1,4-二氧六环溶液(8mL)。所得混合物在室温下搅拌2小时。减压浓缩。得到4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-(3-氨基-3-苯基丙酰氨基)-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(101mg,粗品)。
LC-MS-4-2(ES,m/z):[M+1]=694
4.3化合物4-0/100的合成
将4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-(3-氨基-3-苯基丙酰氨基)-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(80mg,0.115mmol,1.00equiv)溶于THF(3mL),加入H2O(0.8mL,44.4075.15mmol),LiOH(5.52mg,0.230mmol,2equiv)。所得混合物在室温下搅拌4小时。用HCl(1N)将混合物酸化至pH 7。所得混合物用水(100ml)稀释。所得混合物用乙酸乙酯(3×100ml)萃取。合并的有机层用无水硫酸钠干燥。过滤后,减压浓缩滤液。残余物通过反相快速色谱法纯化。馏分旋干得到4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-((3R)-3-氨基-3-苯基丙酰氨基)-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸(11mg,13.43%,纯度:95.3%)和4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-[(3S)-3-氨基-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸(11mg,13.74%,纯度:97.5%)。
LC-MS-4-0(ES,m/z):[M+1]=680
化合物4-0:1H NMR(300MHz,Deuterium Oxide)δ8.34(s,2H),7.22(t,J=41.9Hz,10H),4.27(d,J=80.8Hz,4H),3.64(d,J=47.2Hz,4H),2.89(s,6H),2.13(s,2H),1.90–1.48(m,6H),1.37(s,5H),0.76(d,J=20.6Hz,6H).
LC-MS-4-100(ES,m/z):[M+1]=680
化合物4-100:1H NMR(300MHz,Deuterium Oxide)δ8.34(s,2H),7.50–6.77(m,10H),4.59–4.16(m,4H),3.67(d,J=40.1Hz,4H),3.05–2.62(m,6H),2.12(d,J=27.4Hz,2H),1.96–1.52(m,6H),1.54–1.16(m,5H),0.93–0.66(m,6H).
实施例5化合物5的合成
LC-MS-5-0(ES,m/z):[M+1]=680
化合物5-0:1H NMR(300MHz,Deuterium Oxide)δ8.37(s,1H),7.37–7.08(m,10H),4.90(t,J=7.1Hz,1H),4.48–4.39(m,2H),4.20(t,J=7.3Hz,1H),3.86–3.45(m,4H),3.06–2.78(m,4H),2.78–2.50(m,2H),2.26–2.02(m,2H),1.93–1.53(m,6H),1.51–1.19(m,5H),0.80(dd,J=17.5,5.1Hz,6H).
LC-MS-5-100(ES,m/z):[M+1]=680
化合物5-100:1H NMR(300MHz,Deuterium Oxide)δ7.39–7.01(m,10H),4.94(t,J=7.1Hz,1H),4.44(t,J=7.4Hz,2H),4.24(d,J=8.8Hz,1H),3.66(d,J=58.6Hz,4H),2.99–2.56(m,6H),2.14(d,J=20.9Hz,2H),1.92–1.55(m,6H),1.40(d,J=33.6Hz,5H),0.81(dd,J=15.7,4.9Hz,6H).
实施例6化合物6的合成
LC-MS-6-0(ES,m/z):[M+1]=734
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.48–6.81(m,10H),4.66–4.48(m,1H),4.06(q,J=6.6,5.5Hz,1H),3.91–3.44(m,6H),3.25(dd,J=13.1,4.9Hz,1H),3.16–2.48(m,9H),2.35–1.97(m,2H),1.98–1.18(m,15H),0.91(dd,J=18.5,5.3Hz,6H).
LC-MS-6-100(ES,m/z):[M+1]=734
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,3H),7.45–6.86(m,10H),4.68–4.57(m,1H),4.10(d,J=2.8Hz,1H),3.96–3.42(m,5H),3.42–3.17(m,1H),3.02(dt,J=12.5,5.7Hz,1H),2.97–2.77(m,4H),2.71–2.48(m,1H),2.14(dd,J=27.5,13.5Hz,2H),2.02–1.49(m,13H),1.39–1.23(m,2H),1.08–0.79(m,6H).
实施例7化合物7的合成
LC-MS-7(ES,m/z):[M+1]=695
1H NMR(400MHz,Deuterium Oxide)δ8.35(s,2H),7.53–6.99(m,9H),4.39(ddd,J=8.8,5.6,3.0Hz,1H),4.32–3.97(m,5H),3.94–3.63(m,2H),3.58–3.29(m,2H),3.04(dt,J=13.9,5.1Hz,1H),2.93–2.63(m,3H),2.39–1.92(m,2H),1.97–1.18(m,11H),0.79(dd,J=19.1,5.4Hz,6H).
实施例8化合物8的合成
8.1化合物8-1的合成
将(2R)-2-氨基-3-苯基丙酸叔丁酯(480mg,2.169mmol,1.00equiv)和三乙胺(1.85g,18.282mmol,8.43equiv)溶于乙腈(19mL,361.469mmol,166.65equiv),氮气气氛下在0℃搅拌30分钟。向上述混合物中加入N,N'-羰基二咪唑(1.2g,7.401mmol,3.41equiv)和2,2,2-三氟-N-[2-(甲基氨基)-2-苯乙基]乙酰胺(12.80g,51.991mmol,23.97equiv)。将所得混合物在室温和氮气氛下搅拌过夜,减压下浓缩。残余物通过反相快速色谱法纯化,馏分旋干得到(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酸叔丁酯(855mg,79.87%,纯度:100%)。
LC-MS-8-1(ES,m/z):[M+1]=494
8.2化合物8-2的合成
将(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酸叔丁酯(67mg,0.136mmol,1equiv)溶于二氯甲烷(7.70mL),滴加三氟乙酸(7.70mL,78.592mmol,45.09equiv)。所得混合物在空气中搅拌3h。减压浓缩所得混合物,得到(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酸(600mg,粗品)。粗产物混合物无需进一步纯化即可直接用于下一步。
LC-MS-8-2(ES,m/z):[M+1]=438
8.3化合物8-3的合成
在室温下,将{4-[(4-甲基苯基)甲氧基]苯基}甲基(2R)-2-[(2R)-2-氨基-4-甲基戊酰氨基]-6-[(叔丁氧基羰基)氨基]己酸酯(1445.79mg,2.538mmol,3equiv),(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酸(2600mg,5.944mmol,9.15equiv)和HOBT(222mg,1.643mmol,2.53equiv)溶于DMF(50mL,64.609mmol,99.49equiv),加入TBTU(528mg,1.644mmol)。所得混合物在室温和氮气氛下搅拌过夜,得到{4-[(4-甲基苯基)甲氧基]苯基}甲基(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-4-甲基-2-[(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酰氨基]戊酰氨基]己酸酯(2.6g,粗品)。
8.4化合物8-4的合成
在室温下将{4-[(4-甲基苯基)甲氧基]苯基}甲基(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-4-甲基-2-[(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酰氨基]戊酰氨基]己酸酯(2.8g,3.150mmol,1equiv)溶于DCM(20mL),加入三氟乙酸(10mL)。将所得混合物在空气气氛下于室温搅拌2小时,得到(2R)-6-氨基-2-[(2R)-4-甲基-2-[(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲 酰基}氨基)-3-苯基丙酰氨基]戊酰氨基]己酸(470mg,粗品)。
LC-MS-8-4(ES,m/z):[M+1]=679
8.5化合物8-5的合成
在室温下向50mL圆底烧瓶中加入(2R)-6-氨基-2-[(2R)-4-甲基-2-[(2R)-2-({甲基[1-苯基-2-(2,2,2-三氟乙酰氨基)乙基]氨基甲酰基}氨基)-3-苯基丙酰氨基]戊酰氨基]己酸(470mg,0.692mmol,1equiv)、H2O(10mL)和氢氧化锂(33.17mg,1.384mmol,2equiv)。所得混合物在室温下搅拌3小时。将所得混合物减压下浓缩得到(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(2-氨基-1-苯乙基)(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酸(500mg,粗品)。
LC-MS-8-5(ES,m/z):[M+1]=583
8.6化合物8-6的合成
将(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(2-氨基-1-苯乙基)(甲基)氨基甲酰基]氨基}-3-苯丙酰氨基]-4-甲基戊酰氨基]己酸(350mg,0.601mmol,1equiv)和TEA(182.33mg,1.803mmol,3equiv)溶于THF(10mL),加入二碳酸二叔丁酯(262.1202mg,1equiv)。所得混合物在室温下搅拌过夜。将所得混合物减压浓缩,并通过反相快速色谱法纯化,得到(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]]-1-苯基乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酸(260mg,55.29%,纯度:100%)。
LC-MS-8-6(ES,m/z):[M+1]=783
8.7化合物8-7的合成
在室温和氮气下,将(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯基乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酸(60mg,0.077mmol,1equiv),3-甲基-1-(哌啶-4-基)脲(24.10mg),TEA(23.26mg,0.231mmol,3equiv)溶于在DMF(5mL,64.609mmol,843.12equiv)中,加入HATU(43.71mg,0.115mmol,3equiv)。将所得混合物在室温和氮气氛下搅拌过夜。所得混合物通过反相快速色谱法纯化,得到N-[(5R)-5-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯乙基)}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲基氨基甲酰基)氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯(62mg,87.74%,纯度:100%)。
LC-MS-8-7(ES,m/z):[M+1]=922
8.8化合物8的合成
将N-[(5R)-5-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯基乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲基氨基甲酰基)氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯(62mg,0.067mmol,1equiv)溶于二氧六环(10mL),加入HCl(气体)的1,4-二氧六环溶液(5mL)。所得混合物在室温下搅拌2小时。将所得混合物减压浓缩,通过反相快速色谱法纯化,得到(2R)-2-[(2R)-2-{[(2-氨基-1-苯基乙基)(甲基)氨基甲酰基)氨基}-3-苯基丙酰氨基]-N-[(2R)-6-氨基-1-{4-[(甲基氨基甲酰基)氨基]哌啶-1-基}-1-氧代己基-2-基]-4-甲基戊酰胺(13.6mg,26.73%,纯度:95.0%)。
LC-MS-8(ES,m/z):[M+1]=722
1H NMR(400MHz,Deuterium Oxide)δ8.33(s,2H),7.50–7.15(m,8H),7.10(d,J=7.2Hz,2H),5.49(dd,J=10.8,5.2Hz,1H),4.42(dd,J=9.1,6.2Hz,1H),4.37–4.25(m,1H),4.24–4.00(m,1H),3.95–3.40(m,7H),3.26–3.02(m,2H),2.99–2.69(m,4H),2.70–2.42(m,6H),2.02–1.75(m,6H),1.73–1.43(m,4H),1.42–1.13(m,7H),0.80(ddd,J=15.3,6.0,2.9Hz,6H).
实施例9化合物9的合成
LC-MS-9(ES,m/z):[M+1]=671.20
1H NMR(300MHz,Deuterium Oxide)δ8.37(s,1H),7.43–6.81(m,10H),4.49(s,2H),4.46–3.55(m,6H),3.60–2.94(m,5H),3.03–2.52(m,6H),1.83–1.10(m,9H),0.78(dd,J=14.0,5.0Hz,6H).
实施例10化合物10的合成
LC-MS-10(ES,m/z):[M+1]=699.20
1H NMR(300MHz,Deuterium Oxide)δ7.42–6.89(m,10H),5.51(dd,J=10.6,4.8Hz,1H),4.43(dd,J=9.0,6.3Hz,1H),4.34–4.12(m,2H),4.10–3.71(m,2H),3.65–3.44(m,3H),3.32(d,J=19.3Hz,2H),3.18(d,J=17.1Hz,2H),3.09(dd,J=13.8,6.1Hz,1H),3.00–2.93(m,1H),2.85(t,J=7.6Hz,2H),2.57(d,J=31.2Hz,4H),1.82–1.43(m,7H),1.42–1.16(m,2H),0.82(dd,J=12.3,5.0Hz,6H).
实施例11化合物11的合成
LC-MS-11(ES,m/z):[M+1]=695
1H NMR(400MHz,Deuterium Oxide)δ8.39(s,1H),7.40–7.19(m,6H),7.08(ddt,J=27.2,5.4,1.7Hz,4H),4.59–4.47(m,1H),4.30(ddd,J=28.1,8.0,5.5Hz,2H),4.14(dd,J=47.0,13.4Hz,1H),3.88(dd,J=36.1,13.4Hz,1H),3.70–3.50(m,4H),3.24(q,J=13.9,12.7Hz,1H),2.99–2.70(m,7H),2.01–1.80(m,2H),1.76–1.55(m,4H),1.48(q,J=9.6,8.5Hz,3H),1.41–1.17(m,4H),0.83(ddd,J=16.8,5.1,2.1Hz,6H).
实施例12化合物12的合成
12.1化合物12-1的合成
将4-氨基哌啶-1-羧酸叔丁酯(500mg,2.496mmol,1equiv)溶解在DCM中,加入TEA(505.25mg,4.992mmol,2equiv),在0℃和氮气氛下分批加入氯甲酸甲酯(353.84mg,3.744mmol,1.5equiv)。所得混合物在室温下搅拌2小时。在室温下用水淬灭反应。减压浓缩,残余物通过硅胶柱色谱纯化,用PE/EA(5:1)洗脱,馏分旋干得到4-[(甲氧基羰基)氨基]哌啶-1-羧酸叔丁酯(522mg,80.94%,纯度:100%)。
LC-MS-12-1(ES,m/z):[M+1]=259.32
12.2化合物12-2的合成
在室温下,将4-[(甲氧基羰基)氨基]哌啶-1-羧酸叔丁酯(552mg,2.137mmol,1equiv)加入4M HCl(气体)的1,4-二氧六环(5mL)溶液中。所得混合物在室温下搅拌2小时。在室温下用水淬灭反应。在减压下浓缩得N-(哌啶-4-基)氨基甲酸甲酯(455mg,粗品)。粗产物不经进一步纯化直接用于下一步。
LC-MS-12-2(ES,m/z):[M+1]=159.20
12.3化合物12-3的合成
将(2R)-6-[(叔丁氧基羰基)氨基]-2-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯基乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酸(70mg,0.089mmol,1equiv)、TEA(27.14mg,0.267mmol,3equiv)和N-(哌啶-4-基)氨基甲酸甲酯(21.22mg,0.134mmol,1.5equiv)加入DMF(1ml)中,在室温和氮气氛下分批加入HATU(50.99mg,0.134mmol,1.5equiv)。所得混合物在室温下再搅拌2小时。在室温下用水淬灭反应。LCMS可以检测到所需的产品。反应液通过反相快速色谱法纯化,得到N-[(5R)-5-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲氧基羰基)氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯(70mg,83.00%,纯度:100%)。
LC-MS-12-3(ES,m/z):[M+1]=924.1
12.4化合物12的合成
在室温和氮气氛下,将N-[(5R)-5-[(2R)-2-[(2R)-2-[({2-[(叔丁氧基羰基)氨基]-1-苯乙基}(甲基)氨基甲酰基)氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲氧基羰基)氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯(70mg,0.076mmol,1equiv),加入到DCM(4mL)中,滴加TFA(1mL)。所得混合物在室温下再搅拌3小时。减压浓缩所得混合物。残余物通过反相快速色谱法纯化,馏分旋干得到N-{1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(2-氨基-1-苯乙基)(甲基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-基}氨基甲酸甲酯(42.1mg,72.07%,纯度:93.9%)。
LC-MS-12(ES,m/z):[M+1]=723.15
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.58–6.75(m,10H),5.52(s,1H),4.79–4.73(m,1H), 4.50–3.99(m,3H),3.87(d,J=32.6Hz,1H),3.57(s,6H),3.35–3.03(m,2H),3.02–2.68(m,4H),2.48(dd,J=39.8,5.2Hz,3H),1.90(s,2H),1.74–1.07(m,11H),1.01–0.61(m,6H).
实施例13化合物13的合成
13.1化合物13-1的合成
在室温和氮气氛下,向N-[2-(苄基氨基)乙基]氨基甲酸叔丁酯(100mg,0.399mmol,2.98equiv)、TEA(40.64mg,0.402mmol,3equiv)和N,N'-羰基二咪唑(23.88mg,0.147mmol)的ACN(3mL)/DMF(3mL)溶液中,加入1-[(2R)-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧羰基)氨基]哌啶-4-羧酸甲酯(100mg,0.134mmol,1.00equiv)。将所得混合物在室温和氮气氛下搅拌过夜。所得混合物通过反相快速色谱法纯化,馏分旋干得到1-[(2R)-2-[(2R)-2-[(2R)-2-{[苄基({2-[(叔丁氧羰基)氨基]乙基})氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧羰基)氨基]哌啶-4-羧酸甲酯(120mg,87.59%,纯度:100%)。
LC-MS-13-1(ES,m/z):[M+1]=1024.28
13.2化合物13-2的合成
将1-[(2R)-2-[(2R)-2-[(2R)-2-{[苄基({2-[(叔丁氧羰基)氨基]乙基})氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-[(叔丁氧羰基)氨基]己酰基]-4-[(叔丁氧羰基)氨基]哌啶-4-羧酸甲酯(120mg,0.117mmol,1equiv)溶解在DCM(1mL,5.612mmol)中,加入TFA(1mL)。将溶液在室温和氮气氛下搅拌2小时。减压浓缩所得混合物。残余物通过反相快速色谱法纯化,得到4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(2-氨基乙基)(苄基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(75mg,88.47%,纯度:100%)。
LC-MS-13-2(ES,m/z):[M+1]=723.93
1H NMR(400MHz,Deuterium Oxide)δ7.46–7.09(m,6H),6.97(dt,J=14.3,5.4Hz,4H),4.52–4.36(m,2H),4.31(d,J=17.5Hz,1H),4.19(p,J=4.9,4.1Hz,1H),4.07(d,J=14.1Hz,1H),3.92(d,J=14.4Hz,1H),3.73(dt,J=12.4,2.2Hz,3H),3.64(s,1H),3.60–3.31(m,3H),3.30–3.16(m,1H),3.10–2.89(m,3H),2.87–2.57(m,3H),2.36–2.06(m,2H),1.93–1.47(m,6H),1.48–1.18(m,5H),0.92–0.40(m,6H).
13.3化合物13的合成
将4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(2-氨基乙基)(苄基)氨基甲酰基]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸甲酯(75mg,0.104mmol,1equiv)溶解在THF(1mL)和H2O(1mL)中,加入氢氧化锂(5mg,0.209mmol,2.01equiv)。将所得混合物在室温和氮气氛下搅拌2小时。减压浓缩得残余物。残余物通过反相快速色谱法纯化,馏分旋干得到4-氨基-1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-{[(氨基乙基)(苄基)氨基甲酰基]]氨基}-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-羧酸(25.5mg,29.28%,纯度:84.5%)。
LC-MS-13(ES,m/z):[M+1]=709.25
1H NMR(300MHz,Deuterium Oxide)δ8.33(s,2H),7.33–7.15(m,6H),7.00(ddt,J=12.9,5.2,2.6Hz,4H),4.46–4.21(m,4H),3.76–3.36(m,6H),3.13–2.51(m,6H),2.25–1.88(m,2H),1.96–1.49(m,6H),1.50–1.10(m,5H),0.78(dd,J=14.4,5.4Hz,6H).
实施例14化合物14的合成
LC-MS-14(ES,m/z):[M+1]=723.25
1H NMR(300MHz,Deuterium Oxide)δ8.33(s,3H),7.45–6.79(m,10H),5.62–5.41(m,1H),4.49–4.19(m,2H),4.05–3.35(m,8H),3.35–2.59(m,5H),2.45(dd,J=30.9,2.3Hz,3H),2.20(t,J=16.0Hz,2H),2.00–1.10(m,11H),0.81(dt,J=11.9,5.9Hz,6H).
实施例15化合物15的合成
LC-MS-15(ES,m/z):[M+1]=751
1H NMR(400MHz,Deuterium Oxide)δ8.32(s,2H),7.52–6.72(m,10H),5.70–5.31(m,2H),4.48–4.09(m,3H),4.11–3.34(m,7H),3.29–3.14(m,1H),3.14–2.68(m,5H),2.49(d,J=5.1Hz,2H),2.44–2.28(m,1H),2.17(d,J=18.8Hz,2H),1.93–1.34(m,10H),1.20(dd,J=9.0,6.3Hz,8H),1.00–0.59(m,6H).
实施例16化合物16的合成
16.1化合物16-1的合成
将化合物1-3(500mg,0.898mmol,1equiv)溶于DCM(5mL)中,随后把哌啶(0.5mL)滴加到上述体系中,室温搅拌3小时。然后把反应液旋干得到黄色粗品,所得粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(FA,0.1%),10%到50%梯度10分钟,UV254纳米检测器,馏分旋干得到化合物16-1(250mg,83.22%,纯度:99%)。
LC-MS-16-1(ES,m/z):[M+1]=335
16.2化合物16-3的合成
在氮气保护、0℃,向化合物16-1(1482mg,4.438mmol,1equiv)和化合物16-2(711mg,4.438mmol,1.00equiv)的ACN(2mL)/DMF(0.4mL)溶液中,分批加入CDI(791.55mg,4.882mmol,1.1equiv),室温搅拌过夜。然后把反应液旋干得到黄色油状粗品,所得粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(FA,0.1%),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得到化合物16-3(950mg,35.05%,纯度:99%)。
LC-MS-16-3(ES,m/z):[M+1]=611
16.3化合物16-4的合成
将化合物16-3(760mg,1.244mmol,1equiv)溶于DCM(5mL)中,随后把TFA(5mL)滴加到上述体系中,室温搅拌2小时。然后把反应液旋干得到化合物16-4(800mg,粗品)。
LC-MS-16-4(ES,m/z):[M+1]=455
16.4化合物16-5的合成
室温下,将化合物16-4(600mg,1.320mmol,1equiv)溶于THF(20mL)中,随后把TEA(267.13mg,2.640mmol,2equiv),Boc2O(432.11mg,1.980mmol,1.5equiv)滴加到上述体系中,室温搅拌2小时。然后把反应液旋干得到化合物粗品,所得粗品用硅胶柱层析纯化,PE/EA(1/1),馏分旋干得化合物16-5(600mg,81.95%,纯度:99%)。
LC-MS-16-5(ES,m/z):[M+1]=555
16.5化合物16-7的合成
室温下,向100mL单口瓶内加入化合物16-5(600mg,1.320mmol,1equiv),化合物16-6(1975.52 mg,4.328mmol,4equiv),HOBt(292.33mg,2.164mmol,2equiv),DMF(50mL),DIPEA(279.33mg,2.164mmol,2equiv)和TBTU(694.64mg,2.164mmol,2equiv),氮气氛下室温搅拌过夜。将反应液过滤,滤渣分别用甲醇、乙醚洗涤,滤渣旋干得化合物16-7(2.6g,粗品)。
16.6化合物16-8的合成
室温下,向100mL单口瓶内加入化合物16-7(2.6g,2.618mmol,1equiv)、DCM(25mL,393.265mmol,150.24equiv)和TFA(25mL,336.577mmol,128.58equiv),氮气氛下室温搅拌过夜。将反应液过滤,滤渣用TFA/DCM(v/v,1/1)洗涤,滤液旋干得化合物16-8(1g,粗品)。
LC-MS-16-8(ES,m/z):[M+1]=583
16.7化合物16-9的合成
室温下,将化合物16-8(1g,1.716mmol,1equiv)溶于THF(20mL)中,随后把TEA(0.35g,3.432mmol,2equiv)和Boc2O(0.75g,3.432mmol,2equiv)滴加到上述体系中,室温搅拌2小时。然后把反应液旋干得到化合物10粗品,所得粗品用硅胶柱层析纯化,PE/EA(1/1)洗脱,馏分旋干得化合物16-9(700mg,52.10%,纯度:99%)。
LC-MS-16-9(ES,m/z):[M+1]=783
16.8化合物16-11的合成
室温下,向50mL单口瓶内加入化合物16-9(60mg,0.076mmol,1equiv)、化合物16-10(18.18mg,0.115mmol,1.5equiv)、TEA(15.51mg,0.154mmol,2equiv)、DMF(2mL)和HATU(43.71mg,0.115mmol,1.5equiv),氮气氛下室温搅拌过夜。反应液用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得化合物16-11(50mg,70.68%,纯度:99%)。
LC-MS-16-11(ES,m/z):[M+1]=923
16.9化合物16的合成
室温下,向50mL单口瓶内加入化合物16-11(60mg,0.065mmol,1equiv)、DCM(4mL)和TFA(4mL),室温搅拌2小时。将反应液旋干,粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得化合物16(25mg,53.21%,纯度:99.8%)。
LC-MS-16(ES,m/z):[M+1]=723
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.49–7.17(m,6H),7.06(q,J=14.0,8.1Hz,4H),4.58–4.33(m,3H),4.33–3.99(m,2H),3.87(dd,J=36.1,13.2Hz,1H),3.74–3.37(m,6H),3.21(t,J=13.4Hz,1H),3.13–2.68(m,7H),2.02–1.77(m,2H),1.80–1.16(m,11H),0.82(dd,J=18.2,5.7Hz,6H).
实施例17化合物17的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-17(ES,m/z):[M+1]=721
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.32(d,J=7.3Hz,2H),7.30–7.19(m,4H),7.11(d,J=7.0Hz,1H),7.05(dd,J=10.4,6.5Hz,4H),4.49(d,J=16.9Hz,2H),4.45–4.35(m,1H),4.27(s,1H),3.83(t,J=13.7Hz,1H),3.58–3.41(m,2H),3.26–3.13(m,1H),3.02(did,J=19.7,11.6,4.7Hz,3H),2.96–2.87(m,3H),2.87–2.75(m,2H),2.62–2.56(m,2H),2.54(s,1H),1.87(dd,J=19.6,8.9Hz,2H),1.70–1.56(m,4H),1.50–1.43(m,2H),1.40–1.28(m,3H),0.89–0.72(m,6H).
实施例18化合物18的合成
LC-MS-18(ES,m/z):[M+1]=709
1H NMR(400MHz,Deuterium Oxide)δ8.32(s,1H),8.29(s,1H),8.08(d,J=4.9Hz,1H),7.46–7.35(m,1H),7.29(dd,J=8.1,5.1Hz,1H),7.10(dd,J=4.4,2.2Hz,3H),6.96(t,J=4.3Hz,2H),4.48(s,1H),4.46–4.32(m,2H),4.22(t,J=7.0Hz,1H),3.85–3.22(m,7H),3.05–2.87(m,3H),2.83(t,J=7.7Hz,2H),2.73(ddd,J=14.7,9.6,5.7Hz,1H),2.27–1.94(m,2H),1.88–1.09(m,11H),0.86–0.64(m,6H).
实施例19化合物19的合成
LC-MS-19(ES,m/z):[M+1]=710
1H NMR(400MHz,Deuterium Oxide)δ8.95(d,J=2.4Hz,1H),8.37(s,2H),8.35(s,1H),7.09(dq,J=45.5,3.8,3.3Hz,5H),4.61(d,J=18.1Hz,2H),4.52–4.40(m,2H),4.31(t,J=6.7Hz,1H),3.94–3.24(m,6H),3.05(dt,J=22.4,6.0Hz,3H),2.91(t,J=7.7Hz,2H),2.78(ddd,J=14.1,10.2,7.5Hz,1H),2.14(ddd,J=35.9,12.0,5.5Hz,2H), 1.94–1.21(m,11H),0.97–0.69(m,6H).
实施例20化合物20的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-20(ES,m/z):[M+1]=713
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.33(s,1H),7.33–7.23(m,2H),7.27–7.21(m,2H),7.10–7.00(m,5H),4.74(s,1H),4.54–4.44(m,2H),4.39(d,J=17.5Hz,1H),4.28(s,1H),4.20(d,J=15.1Hz,1H),4.05(s,1H),3.98–3.76(m,1H),3.72(d,J=14.2Hz,1H),3.63–3.55(m,1H),3.48(dd,J=13.9,7.6Hz,2H),3.36(s,2H),3.32–3.21(m,1H),3.02(dq,J=20.9,5.7Hz,6H),2.98–2.80(m,1H),2.73–2.64(m,2H),1.68(d,J=6.1Hz,1H),1.62(s,5H),1.47(s,4H),1.35(d,J=12.0Hz,1H),0.85–0.80(d,J=5.5Hz,6H).
实施例21化合物21的合成
21.1化合物21-2的合成
氮气保护,室温下向中间体3(50mg,0.064mmol,1equiv)的DMF(10mL)溶液中加入化合物21-1(34.53mg,0.256mmol,4equiv),搅拌反应2小时后,室温下滴加HATU(36.42mg,0.096mmol,1.5equiv)和DIPEA(16.51mg,0.128mmol,2equiv)。所得混合物用EA(3x100mL)萃取,有机层用盐水(3x10mL)洗涤,用Na2SO4干燥。所得滤液减压浓缩,所得粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV200纳米检测器)得到化合物21-2(58mg,粗品)。
LC-MS-21-2(ES,m/z):[M+1]=900
21.2化合物21的合成
氮气保护,室温下,化合物21-2(40mg,0.044mmol,1equiv)在TFA(1mL)/DCM(4mL)的混合溶液搅拌反应2h。所得混合物滤液减压浓缩,所得粗品用反相柱层析纯化,(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV200纳米检测器),馏分旋干得到化合物21(18.6mg,57.47%,纯度:96.0%)。
LC-MS-21(ES,m/z):[M+1]=700
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.31(d,J=7.3Hz,3H),7.24(q,J=3.6,3.1Hz,3H),7.05(dd,J=12.4,5.8Hz,4H),4.74(s,2H),4.49(dt,J=13.3,4.4Hz,2H),4.39(d,J=17.5Hz,1H),4.28(s,3H),4.19(d,J=14.8Hz,1H),3.88(q,J=15.4,14.7Hz,1H),3.70(d,J=15.5Hz,1H),3.67–3.51(m,1H),3.48(s,1H),3.28(d,J=16.0Hz,1H),3.19(s,2H),3.09–2.96(m,3H),2.87(dt,J=27.6,8.3Hz,3H),1.69(t,J=7.4Hz, 2H),1.62(q,J=7.5Hz,2H),1.47(s,4H),1.35(dt,J=16.9,8.0Hz,2H),0.83(dt,J=19.1,3.9Hz,6H).
实施例22化合物22的合成
LC-MS-22(ES,m/z):[M+1]=784
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),8.11(s,1H),7.61(t,J=7.9Hz,1H),7.40(d,J=3.4Hz,1H),7.31–7.19(m,5H),7.18–6.99(m,5H),4.53–4.38(m,2H),4.36(s,3H),4.28(t,J=7.6Hz,1H),4.00(d,J=13.8Hz,1H),3.89(s,1H),3.61(d,J=13.3Hz,1H),3.55(s,1H),3.47(ddd,J=21.8,14.8,6.7Hz,3H),3.18–2.99(m,3H),2.95–2.82(m,5H),2.17(s,3H),1.99(d,J=17.9Hz,3H),1.92(s,2H),1.62(p,J=6.8Hz,2H),1.47(d,J=7.3Hz,1H),1.37(s,4H),1.20(t,J=7.3Hz,1H),0.82(dt,J=16.5,6.7Hz,6H),0.67(d,J=6.2Hz,1H).
实施例23化合物23的合成
LC-MS-23(ES,m/z):[M+1]=840.46
1H NMR(400MHz,Deuterium Oxide)δ8.29(s,2H),7.31–7.08(m,6H),7.00(dd,J=35.0,7.4Hz,4H),4.80(s,1H),4.48–3.95(m,6H),3.54–3.35(m,3H),3.28–2.66(m,12H),2.15(s,4H),1.79(s,3H),1.65–1.15(m,11H),0.83–0.55(m,6H).
实施例24化合物24的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-24(ES,m/z):[M+1]=793
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.31(d,J=7.4Hz,2H),7.30–7.21(m,3H),7.12(d,J=6.6Hz,1H),7.04(t,J=9.5Hz,4H),4.48(d,J=17.6Hz,3H),4.39(d,J=17.8Hz,1H),4.27(s,1H),4.20(d,J=12.5Hz,1H),4.07(d,J=13.1Hz,2H),3.55(s,5H),3.20(d,J=13.5Hz,1H),2.96(s,6H),2.89(s,1H),1.86(s,4H),1.60(s,6H),1.46(d,J=6.9Hz,1H),1.35(s,6H),0.81-0.66(dd,J=17.8,5.7Hz,6H).
实施例25化合物25的合成
LC-MS-25(ES,m/z):[M+1]=853
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,2H),7.32(d,J=7.3Hz,3H),7.32–7.20(m,3H),7.05(d,J=17.7Hz,1H),7.05(s,3H),4.27(d,J=7.3Hz,1H),3.53(s,4H),3.41(s,1H),3.31(s,1H),3.03(dd,J=15.0,8.3Hz,3H),2.89(q,J=12.2,9.9Hz,3H),2.49(t,J=12.5Hz,2H),2.19–2.09(m,2H),1.82(s,2H),1.63(s,8H),1.51–1.43(m,4H),0.82(dd,J=18.6,5.9Hz,6H).
实施例26化合物26的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-26(ES,m/z):[M+1]=758
1H NMR(400MHz,Deuterium Oxide)δ8.39(s,2H),7.40–7.18(m,6H),7.16–7.00(m,4H),4.56–4.47 (m,2H),4.47–4.35(m,2H),4.30(dq,J=10.1,5.2,4.5Hz,1H),4.20(d,J=12.0Hz,1H),4.10(td,J=13.3,11.5,6.9Hz,1H),3.58(dd,J=15.1,6.5Hz,1H),3.54–3.43(m,1H),3.37(dp,J=11.2,5.1Hz,1H),3.28–3.14(m,1H),3.10–2.94(m,3H),2.92(dd,J=7.8,4.0Hz,1H),2.90–2.77(m,2H),2.56(dd,J=11.6,4.2Hz,3H),2.00(s,1H),1.94(d,J=8.6Hz,1H),1.75–1.55(m,4H),1.55–1.40(m,4H),1.40–1.27(m,3H),0.82(ddd,J=17.6,6.3,2.6Hz,4H),0.74(dd,J=6.8,3.3Hz,1H),0.67(t,J=5.4Hz,1H).
实施例27化合物27的合成
LC-MS-27(ES,m/z):[M+1]=736
1H NMR(400MHz,Deuterium Oxide)δ8.33(s,1H),7.52–7.10(m,6H),6.98(q,J=4.8,3.9Hz,4H),4.57–4.26(m,4H),4.21(dd,J=9.8,4.8Hz,1H),3.71(tt,J=13.0,5.6Hz,3H),3.63–3.31(m,3H),3.25(td,J=12.2,8.6Hz,1H),3.17–2.90(m,3H),2.91–2.58(m,3H),2.39–1.98(m,3H),1.94–1.15(m,12H),0.96–0.44(m,6H).
实施例28化合物28的合成
LC-MS-28(ES,m/z):[M+1]=722
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,2H),7.41–7.18(m,6H),7.14–6.91(m,4H),4.58–4.22(m,5H),3.95–3.35(m,7H),3.16–2.78(m,7H),2.61(s,3H),2.33–2.01(m,3H),1.94–1.25(m,12H),0.84(dd,J=18.5,5.4Hz,6H).
实施例29化合物29的合成
LC-MS-29(ES,m/z):[M+1]=734
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.32(d,J=7.5Hz,3H),7.23(dt,J=7.7,4.0Hz,3H),7.04(d,J=7.1Hz,4H),4.51(s,1H),4.42(dd,J=22.2,16.8Hz,1H),4.31–4.20(m,3H),4.09–3.97(m,2H),3.94(d,J=10.0Hz,2H),3.57(s,1H),3.49(dd,J=9.9,5.5Hz,1H),3.33(dd,J=28.5,14.0Hz,1H),3.06(d,J=7.0Hz,1H),3.01(s,3H),2.95–2.80(m,3H),1.88(d,J=9.0Hz,2H),1.83–1.72(m,1H),1.72–1.60(m,4H),1.48(s,3H),1.34(s,3H),0.83(dd,J=19.5,5.7Hz,6H).
实施例30化合物30的合成
LC-MS-30-0(ES,m/z):[M+1]=749
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.68–6.76(m,10H),5.47(d,J=11.3Hz,1H),4.61–4.18(m,2H),3.78–3.24(m,6H),3.21–2.76(m,3H),2.70–2.33(m,5H),2.11(dd,J=14.2,7.6Hz,2H),1.95–1.15(m,14H),1.15–0.39(m,6H).
LC-MS-30-100(ES,m/z):[M+1]=749
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.57–6.76(m,10H),5.51(d,J=11.1Hz,1H),4.35(d,J=6.8Hz,1H),3.75–3.12(m,6H),3.06–2.67(m,3H),2.46(d,J=17.8Hz,5H),2.12(dd,J=13.7,7.4Hz,2H),2.00–1.18(m,12H),0.85(dd,J=17.1,5.1Hz,6H).
实施例31化合物31的合成
LC-MS-31(ES,m/z):[M+1]=709
1H NMR(400MHz,Deuterium Oxide)δ8.34(s,2H),7.76–6.68(m,10H),5.15–4.80(m,2H),4.56–3.67(m,6H),3.61(d,J=16.4Hz,4H),3.30–2.97(m,4H),3.11–2.70(m,4H),2.19–1.79(m,2H),1.76–1.06(m,11H),0.95–0.39(m,6H).
实施例32化合物32的合成
按照实施例8的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-32(ES,m/z):[M+1]=782
1H NMR(400MHz,Deuterium Oxide)δ8.51(s,1H),8.36(s,1H),7.93(s,1H),7.57(s,1H),7.35(d,J=7.2Hz,2H),7.31–7.26(m,4H),7.22(d,J=7.7Hz,2H),7.13(d,J=7.4Hz,1H),6.89(d,J=6.8Hz,1H),5.57–5.49(m,1H),4.49–4.41(m,1H),4.33(s,2H),4.24–4.16(m,1H),3.94(s,1H),3.69–3.50(m,1H),3.49(s,3H),3.24(dd,J=13.7,5.2Hz,1H),3.07(s,1H),3.00–2.78(m,2H),2.53(d,J=8.6Hz,3H),2.43(d,J=2.8Hz,3H),1.87(s,2H),1.68–1.58(m,2H),1.57(s,6H),1.52(s,1H),1.35(s,3H),0.90–0.78(m,2H),0.83(s,5H).
实施例33化合物33的合成
按照实施例8的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-33(ES,m/z):[M+1]=793
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.59–7.10(m,9H),6.89(d,J=6.7Hz,1H),5.54(dd,J=11.4,4.5Hz,1H),4.56–4.25(m,2H),4.25–4.03(m,1H),3.96–3.78(m,3H),3.72–3.42(m,5H),3.34–3.05(m,2H),3.05–2.73(m,4H),2.49(d,J=39.1Hz,3H),1.87(s,4H),1.57(d,J=31.1Hz,9H),1.34(dd,J= 24.6,11.5Hz,4H),0.85(dt,J=13.0,7.0Hz,6H).
实施例34化合物34的合成
LC-MS-34(ES,m/z):[M+1]=712
1H NMR(400MHz,Deuterium Oxide)δ8.26(s,1H),7.28–7.18(m,3H),7.15(td,J=4.4,1.9Hz,3H),7.01–6.90(m,4H),4.67(s,1H),4.47–4.31(m,3H),4.31–4.18(m,2H),3.81(s,1H),3.51(dt,J=15.1,5.8Hz,1H),3.35(ddd,J=28.0,13.3,7.3Hz,2H),3.02–2.87(m,4H),2.80(dddd,J=23.1,13.9,9.1,4.7Hz,4H),2.03–1.77(m,4H),1.56(ddt,J=20.7,8.8,4.7Hz,4H),1.44–1.20(m,5H),0.74(ddd,J=15.8,5.2,2.4Hz,6H).
实施例35化合物35的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-35(ES,m/z):[M+1]=675
1H NMR(400MHz,Deuterium Oxide)δ8.29(s,2H),7.18(dtd,J=29.2,8.0,7.1,2.7Hz,6H),7.08–6.88(m,4H),4.49–4.11(m,4H),3.62–3.23(m,5H),3.16–2.71(m,8H),1.88–1.14(m,14H),0.78–0.53(m,6H).
实施例36化合物36的合成
按照实施例8的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-36(ES,m/z):[M+1]=700
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.43–7.17(m,8H),7.13(d,J=7.4Hz,1H),6.91–6.85(m,1H),5.56–5.49(m,1H),4.45(dd,J=9.0,6.2Hz,1H),4.29(d,J=8.4Hz,2H),4.17(d,J=15.9Hz,1H), 3.94–3.84(m,1H),3.67(dd,J=25.3,12.6Hz,1H),3.61–3.45(m,2H),3.35(t,J=11.9Hz,1H),3.28(s,1H),3.20(s,5H),3.18–3.06(m,1H),3.01–2.72(m,3H),2.54(s,2H),2.43(s,1H),1.63(s,1H),1.61–1.49(m,4H),1.34(t,J=7.9Hz,1H),0.85(ddd,J=15.5,9.9,5.4Hz,6H).
实施例37化合物37的合成
按照实施例8的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-37(ES,m/z):[M+1]=652
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.54–6.66(m,10H),5.52(dd,J=11.4,5.7Hz,1H),4.64–4.13(m,2H),3.91–3.30(m,10H),3.35–2.73(m,4H),2.48(d,J=40.5Hz,3H),1.95–1.22(m,9H),0.84(dt,J=15.4,7.6Hz,6H).
实施例38化合物38的合成
LC-MS-38(ES,m/z):[M+1]=651
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,1H),7.57–6.68(m,10H),5.52(dd,J=11.0,4.5Hz,1H),4.70–4.10(m,2H),4.13–3.32(m,6H),3.27–2.73(m,8H),2.73–2.30(m,3H),1.90–1.41(m,9H),1.44–1.01(m,3H),1.01–0.42(m,6H).
实施例39化合物39的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-39(ES,m/z):[M+1]=652
1H NMR(400MHz,Deuterium Oxide)δ7.68–6.57(m,10H),4.50–3.83(m,4H),3.77–3.21(m,10H),3.16–2.57(m,6H),1.76–1.03(m,9H),0.98–0.23(m,6H).
实施例40化合物40的合成
LC-MS-40(ES,m/z):[M+1]=651
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,1H),7.53–7.15(m,6H),7.08–6.79(m,4H),4.58–4.15(m,5H),3.96–3.34(m,6H),3.34–2.77(m,10H),1.77-21.22(m,9H),0.80(dd,J=19.9,5.3Hz,6H).
实施例41化合物41的合成
LC-MS-41(ES,m/z):[M+1]=723
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.32(q,J=7.1Hz,3H),7.26–7.20(m,3H),7.06(t,J=4.7Hz,4H),4.54–4.46(m,2H),4.40(d,J=17.4Hz,2H),4.28(d,J=6.8Hz,1H),4.01(s,2H),3.67–3.54(m,4H),3.48(dt,J=15.2,6.8Hz,1H),3.28–3.11(m,3H),2.95(dqd,J=44.1,15.2,14.4,6.9Hz,6H),2.67(t,J=13.1Hz,1H),1.87–1.59(m,6H),1.48(t,J=7.5Hz,3H),1.26(dt,J=13.0,6.8Hz,3H),0.83(dq,J=18.4,3.4Hz,6H).
实施例42化合物42的合成
LC-MS-42(ES,m/z):[M+1]=666
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,1H),7.32(q,J=7.0Hz,3H),7.23(q,J=3.8Hz,3H),7.05(t,J=5.2Hz,4H),4.53–4.45(m,2H),4.40(d,J=17.5Hz,1H),4.28(t,J=6.9Hz,1H),4.21–4.09(m,1H),3.84(d,J=16.9Hz,1H),3.57(t,J=8.5Hz,5H),3.45(dq,J=15.4,5.4,5.0Hz,1H),3.23(d,J=13.5Hz,1H),3.03(dd,J=13.0,6.4Hz,1H),2.97(d,J=6.6Hz,2H),2.91–2.79(m,1H),2.86(s,1H),1.93(d,J=12.6Hz,1H),1.86(d,J=15.1Hz,1H),1.48(s,2H),1.49–1.44(m,2H),1.24(q,J=7.0Hz,4H),0.88–0.77(m,6H).
实施例43化合物43的合成
LC-MS-43(ES,m/z):[M+1]=723
1H NMR(400MHz,Deuterium Oxide)δ8.35(s,2H),7.35(dd,J=12.2,5.2Hz,3H),7.30–6.81(m,7H),5.70–5.42(m,1H),4.46–4.28(m,2H),4.12–3.83(m,2H),3.61(d,J=11.6Hz,3H),3.50(q,J=11.8,9.2Hz,2H),3.30–3.02(m,4H),2.91(h,J=10.1,9.2Hz,3H),2.70–2.50(m,3H),2.43(d,J=4.9Hz,1H),2.00–1.63(m,5H),1.60–1.44(m,3H),1.37–0.98(m,3H),0.95–0.50(m,6H).
实施例44化合物44的合成
LC-MS-44(ES,m/z):[M+1]=706
1H NMR(400MHz,Deuterium Oxide)δ8.28(s,2H),7.28–7.09(m,6H),7.07–6.90(m,4H),4.49–4.10(m,5H),4.04–3.79(m,2H),3.59–3.28(m,2H),3.13(ddt,J=36.4,14.4,7.9Hz,3H),2.99–2.67(m,6H),2.68–2.52(m,2H),2.13–1.94(m,3H),1.86–1.02(m,12H),0.84–0.51(m,6H).
实施例45化合物45的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-45(ES,m/z):[M+1]=708
1H NMR(400MHz,Deuterium Oxide)δ8.29(s,1H),7.29–7.07(m,6H),7.07–6.91(m,4H),4.46–4.25(m,3H),4.25–3.93(m,2H),3.90–3.58(m,2H),3.58–3.29(m,2H),3.13(t,J=13.6Hz,1H),3.02–2.64(m,7H),1.79(dd,J=19.2,5.9Hz,5H),1.64–1.08(m,11H),0.79–0.54(m,6H).
实施例46化合物46的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-46(ES,m/z):[M+1]=709
1H NMR(400MHz,Deuterium Oxide)δ8.34(d,J=2.0Hz,2H),7.33–7.17(m,6H),7.01(dq,J=13.1,5.3,4.5Hz,4H),4.52–4.41(m,2H),4.35(dd,J=17.6,4.9Hz,1H),4.25(dd,J=8.8,5.9Hz,1H),3.61(d,J=3.0Hz,6H),3.50(t,J=6.6Hz,3H),3.38(s,1H),3.01(dt,J=14.3,4.5Hz,1H),2.96–2.76(m,5H),1.68–1.52(m,4H),1.43(q,J=10.1,8.0Hz,3H),1.35–1.25(m,2H),0.84–0.74(m,6H).
实施例47化合物47的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-47(ES,m/z):[M+1]=693
1H NMR(400MHz,Deuterium Oxide)δ8.33(s,2H),7.31–7.14(m,6H),7.00(dd,J=11.1,5.8Hz,4H),4.47(dd,J=13.2,7.5Hz,2H),4.38–4.22(m,2H),3.68–3.51(m,5H),3.38(tdt,J=24.0,18.3,9.2Hz,5H),3.05–2.79(m,6H),2.03(t,J=6.9Hz,3H),1.70–1.53(m,4H),1.43(hept,J=6.6,5.9Hz,3H),1.36–1.22(m,2H),0.79(dd,J=18.2,5.9Hz,6H).
实施例48化合物48的合成
LC-MS-48(ES,m/z):[M+1]=673.43
1H NMR(400MHz,Deuterium Oxide)δ7.28–7.14(m,5H),4.70(s,1H),4.65(s,2H),4.43(dd,J=9.5,5.7Hz,1H),4.28–4.21(m,1H),3.56(s,2H),3.35(dt,J=14.1,7.2Hz,2H),3.13–2.89(m,2H),2.87(s,2H),2.86(d,J=7.6Hz,2H),2.85–2.75(m,2H),1.98(dd,J=13.5,6.8Hz,1H),1.87(d,J=9.5Hz,1H),1.55(dq,J=15.0,7.6Hz,6H),1.45(s,5H),0.77(dd,J=17.0,5.1Hz,7H),0.66–0.59(m,1H),0.33(d,J=7.8Hz,2H).
实施例49化合物49的合成
LC-MS-49(ES,m/z):[M+1]=700
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),7.31(t,J=7.3Hz,2H),7.23(dd,J=17.4,7.3Hz,3H),4.76(d,J=6.2Hz,1H),4.69(s,1H),4.49(dd,J=9.7,5.4Hz,1H),4.30(d,J=8.6Hz,1H),3.74(s,2H),3.56(ddd,J=29.1,13.5,7.1Hz,2H),3.34(ddt,J=16.1,10.9,5.8Hz,1H),3.14(dd,J=14.4,6.6Hz,2H),2.93(dq,J=14.1,6.5Hz,6H),2.22–2.11(m,1H),2.09(s,1H),1.72(s,5H),1.62(t,J=7.7Hz,2H),1.47(s,10H),1.37(s,1H),0.94(s,1H),0.84(dd,J=17.7,5.3Hz,7H).
实施例50化合物50的合成
LC-MS-50(ES,m/z):[M+1]=726
1H NMR(400MHz,Deuterium Oxide)δ8.29(s,2H),7.18–7.12(m,3H),6.98(d,J=5.5Hz,2H),6.91(td,J=8.0,6.9,3.2Hz,4H),4.45–4.34(m,2H),4.31–4.17(m,2H),3.75–3.57(m,3H),3.51(dq,J=13.0,6.3,5.7Hz,2H),3.35(dtt,J=21.5,10.9,6.0Hz,1H),2.97(dt,J=14.0,4.6Hz,1H),2.90(q,J=5.4Hz,2H),2.83(t,J=7.7Hz,2H),2.75(ddd,J=13.5,9.2,3.4Hz,1H),2.15–2.06(m,1H),2.01(dd,J=13.5,7.7Hz,1H),1.75(dt,J=13.3,5.6Hz,1H),1.68–1.59(m,2H),1.56(s,1H),1.53(d,J=7.5Hz,1H),1.40(q,J=9.4,8.3Hz,3H),1.35–1.22(m,2H),0.74(dd,J=18.9,5.1Hz,6H).
实施例51化合物51的合成
按照实施例16的类似步骤制备目标化合物,其中将反应原料化合物替换为具体如下所示:
LC-MS-51(ES,m/z):[M+1]=829
1H NMR(400MHz,Deuterium Oxide)δ8.34(s,2H),7.34–7.22(m,3H),7.21(dt,J=6.3,2.6Hz,3H),7.07–6.97(m,4H),4.52–4.42(m,2H),4.36(d,J=17.5Hz,1H),4.25(dd,J=8.8,5.7Hz,1H),3.74(d,J=13.5Hz,2H),3.63–3.37(m,4H),3.28(ddd,J=17.5,11.7,4.4Hz,2H),3.16(td,J=8.7,8.2,4.1Hz,1H),3.04(ddt,J=20.9,12.1,5.0Hz,2H),2.99–2.77(m,7H),1.71–1.63(m,1H),1.60(ddd,J=14.5,9.7,5.6Hz,3H),1.44(s,3H),1.35(ddd,J=30.9,14.8,7.2Hz,1H),0.79(dd,J=18.9,5.7Hz,6H).
实施例1A化合物1A的合成
1.1化合物1A-1的合成
将4-氨基哌啶-1-羧酸苄酯(100mg,0.427mmol,1.00equiv)和TEA(0.2毫升,2.693mmol,6.31equiv)溶于DCM(15mL),分批次加入氯甲酸甲酯(60.49mg,0.640mmol,1.5equiv)。混合物在室温下搅拌2小时。随后加入饱和氯化铵溶液淬灭反应。DCM(15mL*3)萃取,有机相合并干燥、旋干,得到粗品,通过硅胶柱色谱纯化,用PE/EA(1:1)洗脱,馏分旋干得到4-[(甲氧基羰基)氨基]哌啶-1-羧酸苄酯。
LC-MS-1A-1(ES,m/z):[M+1]=293
1.2化合物1A-2的合成
向搅拌的4-[(甲氧基羰基)氨基]哌啶-1-羧酸苄酯(180mg,0.616mmol,1.00equiv)THF(12mL)溶液中加入Pd/C(18mg,w/t,10%)。将混合物在氢气气氛下搅拌13小时。所得混合物用MeOH(7×50mL)洗涤。滤液减压浓缩得到N-(哌啶-4-基)氨基甲酸甲酯(100mg,粗品)。
LC-MS-1A-2(ES,m/z):[M+1]=159
1.3化合物1A-3的合成
向搅拌的N-(哌啶-4-基)氨基甲酸甲酯(19.51mg,0.123mmol,3.00equiv)的DMF(10mL)溶液中加入DIPEA(1.48mg,0.123mmol,3equiv)、中间体2(31mg,0.041mmol,1.00equiv)和HATU(23.45mg,0.061mmol,1.5equiv)。反应液在室温氮气气氛下进行3小时。加水(12mL)淬灭反应,乙酸乙酯(3x10mL)萃取。有机相合并干燥旋干,得到粗品,通过反相色谱纯化,用CH3CN/H2O(0.1%FA)(6:1)洗脱,馏分旋干得到N-[(5R)-5-[(2R))-2-[(2R)-2-[(2R)-2-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲氧基羰基))氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯。
LC-MS-1A-3(ES,m/z):[M+1]=894
1.4化合物1A的合成
将N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{4-[(甲氧基羰基)氨基]哌啶-1-基}-6-氧代己基]氨基甲酸叔丁酯(350mg,0.391mmol,1equiv)溶于4M HCl(气体)/1,4-二氧六环(5mL),在室温下反应4小时。减压浓缩所得混合物。残留物通过制备型HPLC纯化,馏分旋干得到N-{1-[(2R)-6-氨基-2-[(2R)-2-[(2R)-2-[(2R)-2-氨基-3]-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]己酰基]哌啶-4-基}氨基甲酸甲酯(169.1mg,62.01%,纯度:99.2%)。
LC-MS-1A(ES,m/z):[M+1]=693
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),7.45–6.86(m,10H),4.63–4.47(m,2H),4.27–4.06(m,3H),3.85(dd,J=37.5,14.1Hz,1H),3.55(d,J=3.6Hz,4H),3.32–2.69(m,8H),2.14–1.71(m,2H),1.73–1.13(m,11H),0.82(dq,J=20.0,2.6Hz,6H).
实施例2A化合物2A的合成
2.1化合物2A-1的合成
在0摄氏度及氮气氛围下,向搅拌的茚(1.16g,9.986mmol,1.00equiv)的THF(12.00毫升,148.116mmol,14.83equiv)溶液中滴加双(三甲基硅基)胺基锂(19.97mL,119.348mmol,11.95equiv)。将所得混合物在氮气氛下在0℃搅拌1小时。在0℃下向上述混合物中滴加N,N-双(2-氯乙基)氨基甲酸叔丁酯(2.42g,9.994mmol,1.00equiv)。将所得混合物在0℃下再搅拌1小时。减压浓缩得粗品。粗品通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(9:1)洗脱,馏分旋干得到螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(2.22g,77.90%,纯度:99%)。
LC-MS-2A-1(ES,m/z):[M+1]=286
2.2化合物2A-2的合成
在0摄氏度氮气氛下向搅拌的螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(2.22g,7.779mmol,1.00equiv)的THF(22毫升)溶液中加入硼烷二甲硫醚络合物2M(THF)(19.45mL,38.895mmol,5equiv)。将所得混合物在氮气氛下在0℃搅拌4小时。在0℃下向上述混合物中滴加氢氧化钠(2M)(23.34mL,46.674mmol,6equiv)和双氧水(6.66mL,285.878mmol,36.75equiv)。所得混合物在0℃下再搅拌30分钟。随后用乙酸乙酯(1x150mL)萃取,合并的有机相,经无水硫酸钠干燥。过滤后,减压浓缩滤液。残留物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(1:1)洗脱,馏分旋干得到2-羟基-2,3-二氢螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(959mg,40.63%,纯度:99%)。
LC-MS-2A-2(ES,m/z):[M+1]=304
2.3化合物2A-3的合成
室温条件下分批次向2-羟基-2,3-二氢螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(780mg,2.571mmol,1.00equiv)的二氯甲烷(16mL)溶液中加入戴斯-马丁试剂(2180.81mg,5.142mmol,2equiv)。所得混合物在室温下搅拌12小时。过滤所得混合物,滤饼用二氯甲烷(1x20mL)洗涤。合并的有机层用碳酸氢钠水溶液(1x15mL)和盐水(1x15mL)洗涤,乙酸乙酯萃取,合并有机相经无水硫酸钠干燥。过滤后,减压浓缩滤液。残余物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(4:1)洗脱,馏分旋干得到2-氧代-3H-螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(550mg,70.98%,纯度:99%)。
LC-MS-2A-3(ES,m/z):[M+1]=302
2.4化合物2A-4的合成
在室温下分批次向搅拌的2-氧代-3H-螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(1.72g,5.707mmol,1.00equiv)和钛酸乙酯(4mL)混合物中加入叔丁烷亚磺酰胺(2.08g,17.121mmol,3equiv)。将所得混合物在85℃下搅拌2小时。在室温下用水淬灭反应。过滤所得混合物,滤饼用乙酸乙酯(3x10mL)洗涤。减压浓缩滤液。所得混合物用乙酸乙酯(2x50mL)萃取。合并的有机相(1x40mL),经无水硫酸钠干燥。过滤后,减压浓缩滤液。残余物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(2:1)洗脱,馏分旋干得到(2E)-2-[(2-甲基丙烷-2-亚磺酰基)亚氨基]-3H-螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(450mg,19.49%,纯度:99%)。
LC-MS-2A-4(ES,m/z):[M+1]=405
2.5化合物2A-5的合成
在0℃下及氮气气氛下向搅拌的(2E)-2-[(2-甲基丙烷-2-亚磺酰基)亚氨基]-3H-螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(350mg,0.865mmol)的四氢呋喃(5mL)溶液中分批加入BH3.THF(1.73mL,1.730mmol,2equiv)。将所得混合物在氮气氛下在0℃下搅拌2小时。在室温下用甲醇淬灭反应。将所得混合物减压浓缩得到2-[(2-甲基丙烷-2-亚磺酰基)氨基]-2,3-二氢螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(380mg,粗品)。
LC-MS-2A-5(ES,m/z):[M+1]=407
2.6化合物2A-6的合成
室温下向搅拌的2-[(2-甲基丙烷-2-亚磺酰基)氨基]-2,3-二氢螺[茚-1,4'-哌啶]-1'-羧酸叔丁酯(100mg,0.246mmol)二氯甲烷(1.7mL)溶液中加入TFA(0.3mL)。所得混合物在室温下搅拌1.5小时。真空浓缩所得混合物,得到N-{2,3-二氢螺[茚-1,4'-哌啶]-2-基}-2-甲基丙烷-2-亚磺酰胺(100mg,粗品)。
LC-MS-2A-6(ES,m/z):[M+1]=307
2.7化合物2A-7的合成
室温下分批向N-{2,3-二氢螺[茚-1,4'-哌啶]-2-基}-2-甲基丙烷-2-亚磺酰胺(100.00mg,0.327mmol,1.1equiv)的二甲基甲酰胺(2mL)溶液加入二异丙基乙胺(115.01mg,0.891mmol,3equiv)、中间体2(223.64mg,0.297mmol,1.00equiv)和HATU(135.34mg,0.3156mmol,1.2equiv)。所得混合物在室温下搅拌反应过夜。所得溶液通过反相快速色谱法纯化,馏分旋干得到N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{2-[(2-甲基丙烷-2-亚磺酰基)氨基]-2,3-二氢螺[茚-1,4'-哌啶]-1'-基}-6-氧代己基]氨基甲酸叔丁酯(70mg,22.64%,纯度:99%)。
LC-MS-2A-7(ES,m/z):[M+1]=1042
2.8化合物2A的合成
室温下向搅拌的N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{2-[(2-甲基丙烷-2-亚磺酰基)氨基]-2,3-二氢螺[茚-1,4'-哌啶]-1'-基}-6-氧代己基]氨基甲酸叔丁酯(70mg,0.067mmol,1.00equiv)的二氧六环(2mL)溶液分批加入4M HCl(气体)/1,4-二氧六环(2mL)。所得混合物在室温下搅拌过夜。减压浓缩所得混合物。粗产物(50mg)通过制备HPLC纯化得到(2R)-N-[(2R)-6-氨基-1-{2-氨基-2,3-二氢螺[茚-1,4'-哌啶]-1'-yl}-1-氧代己基-2-yl]-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰胺(24.7mg,41.65%,纯度为83.3%)。
LC-MS-2A(ES,m/z):[M+1]=738
1H NMR-2(400MHz,Deuterium Oxide)δ8.26(s,3H),7.48–6.89(m,14H),4.52(ddt,J=25.9,13.0,7.1Hz,2H),4.14(dq,J=17.7,5.4,4.2Hz,2H),3.99(q,J=8.3,7.1Hz,2H),3.86–3.23(m,3H),3.16–2.65(m,7H),2.25–1.18(m,13H),0.97–0.56(m,6H).
实施例3A化合物3A的合成
3.1化合物3A-1的合成
在0℃下,向溶有(3-溴吡啶-2-基)甲醇(1g,5.318mmol,1.00equiv)的DCM搅拌溶液中分批加入亚硫酰氯(1.27g,10.636mmol,2.0equiv)。将所得混合物在0℃搅拌4小时。混合物用饱和NaHCO3(aq.)中和至pH 7。粗品通过硅胶柱色谱纯化,用PE/EA(5:1)洗脱,馏分旋干得到3-溴-2-(氯甲基)吡啶(700mg,64.4%,纯度:99%)。
LC-MS-3A-1(ES,m/z):[M+1]=205
3.2化合物3A-2的合成
在-30℃和氮气保护下,向溶有1-叔丁基4-甲基哌啶-1,4-二羧酸酯(2.65g,10.897mmol,1.5equiv)的THF(50mL)滴加LDA(10mL,73.747mmol,10.15equiv),30分钟后向上述溶液中滴加3-溴-2-(氯甲基)吡啶(1.5g,7.265mmol,1equiv)的THF溶液,室温搅拌过夜。在室温下,用饱和NH4Cl(水溶液)淬灭反应。乙酸乙酯萃取,合并有机相并旋干,粗品通过硅胶柱色谱纯化,用PE/EA(1:1)洗脱,馏分旋干得到1-叔丁基4-甲基4-[(3-溴吡啶-2-基)甲基]哌啶-1,4-二羧酸酯(3.7g,82.4%,纯度:99%)。
LC-MS-3A-2(ES,m/z):[M+1]=413
3.3化合物3A-3的合成
在70℃下,向溶有1-叔丁基4-甲基4-[(3-溴吡啶-2-基)甲基]哌啶-1,4-二羧酸酯(1.2g,2.903mmol,1.00equiv)的甲醇中加入LiOH(0.37g,8.709mmol,3equiv)。混合物在70℃下搅拌6小时。反应液冷却,随后用HCl(aq.)将混合物的pH调节至6。乙酸乙酯萃取,合并有机相并干燥旋干,粗品经硅胶柱层析纯化,PE/EA(1:1)洗脱,馏分旋干得到4-[(3-溴吡啶-2-基)甲基]-1-(叔丁氧基羰基)哌啶-4-羧酸(630mg,54.34%,纯度:99%)。
LC-MS-3A-3(ES,m/z):[M+1]=399
3.4化合物3A-4的合成
在室温和氮气保护下,向溶有N,O-二甲基羟胺盐酸盐(200mg,2.029mmol,1equiv)和4-[(3-溴吡啶-2-基)甲基]-1-(叔丁氧基羰基)哌啶-4-羧酸(1604.22mg,4.058mmol,2equiv)的DMF搅拌溶液中加入DIPEA(786.87mg,6.087mmol,3equiv)和HATU(1543.30mg,4.058mmol,2equiv)。将混合物在氮气保护和0℃条件下搅拌3小时。反应液加水淬灭,乙酸乙酯萃取,合并有机相并干燥旋干,粗品通过硅胶柱色谱纯化,用PE/EA(1:1)洗脱,馏分旋干得到4-[(3-溴吡啶-2-基)甲基]-4-(甲氧基(甲基)氨基甲酰基)哌啶-1-羧酸叔丁酯(120mg,13.52%,纯度:99%)。
LC-MS-3A-4(ES,m/z):[M+1]=442
3.5化合物3A-5的合成
在-78℃和氮气保护下,向溶有4-[(3-溴吡啶-2-基)甲基]-4-[甲氧基(甲基)氨基甲酰基]哌啶-1-羧酸叔丁酯(1.2g,2.713mmol,1equiv)的THF混合物中加入丁基锂(1.74mL,27.130mmol,10equiv)。将混合物在-78℃、氮气保护下搅拌3小时。在室温下加入饱和NH4Cl(aq.)(2mL)溶液淬灭反应。乙酸乙酯萃取,合并有机相并干燥旋干,粗品通过硅胶柱色谱纯化,用PE/EA(1:1)洗脱,馏分旋干得到5-氧代-7H-螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(590mg,71.93%,纯度:99%)。
LC-MS-3A-5(ES,m/z):[M+1]=303
3.6化合物3A-6的合成
在空气条件下,向5-氧代-7H-螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(25mg,0.083mmol,1equiv)的搅拌液中滴加叔丁烷亚磺酰胺(30.06mg,0.249mmol,3equiv)。将混合物在氮气保护和110℃条件下搅拌4小时。反应液冷却至室温,随后加水淬灭反应。乙酸乙酯萃取,合并有机相并干燥旋干,粗品通过硅胶柱色谱纯化,用PE/EA(1:1)洗脱,馏分旋干得到(5Z)-5-[(2-甲基丙烷-2-亚磺酰基)亚氨基]-7H-螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(10mg,29.82%,纯度:99%)。
LC-MS-3A-6(ES,m/z):[M+1]=413
3.7化合物3A-7的合成
在0℃和氮气保护下,将溶有(5Z)-5-[(2-甲基丙烷-2-亚磺酰基)亚氨基]-7H-螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(20mg,0.049mmol,1equiv)和BH3-THF(0.2mL,2.327mmol,47.19equiv)/THF搅拌3小时。在室温下加入MeOH(2mL)来淬灭反应。反应液通过反相快速色谱法纯化,条件如下:柱,硅胶柱;流动相,MeCN/水溶液,10分钟内梯度10%至100%;检测器,UV 220nm。馏分旋干得到5-[(2-甲基丙烷-2-亚磺酰基)氨基]-5,7-二氢螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(10mg,49.75%,纯度:99%)。
LC-MS-3A-7(ES,m/z):[M+1]=408
3.8化合物3A-8的合成
在室温和空气条件下,将5-[(2-甲基丙烷-2-亚磺酰基)氨基]-5,7-二氢螺[环戊二烯[b]吡啶-6,4'-哌啶]-1'-羧酸叔丁酯(180mg,0.4421mmol,1equiv)和TFA(1mL,13.463mmol,30.48equiv)溶于DCM中搅拌3小时。减压浓缩所得混合物。得N-{5,7-二氢螺[环戊二烯[b]吡啶-6,4'-哌啶]-5-基}-2-甲基丙烷-2-亚磺酰胺(66mg,粗品),无需进一步纯化直接用于下一步。
LC-MS-3A-8(ES,m/z):[M+1]=308
3.9化合物3A-9的合成
在室温和空气条件下,将溶有N-{5,7-二氢螺[环戊二烯[b]吡啶-6,4'-哌啶]-5-基}-2-甲基丙烷-2-亚磺酰胺(66mg,0.107mmol,1equiv)和中间体2(126.70mg,0.086mmol,0.8equiv)的DMF溶液搅拌1分钟。在室温下向上述混合物中加入DIPEA(41.62mg,0.323mmol,1.5equiv)和HATU(163.24mg,0.430mmol,2equiv)。在室温和氮保护下搅拌混合物3小时。反应液通过反相快速色谱法纯化,条件如下:柱,硅胶;流动相,MeCN水溶液,10分钟内梯度10%至50%;检测器,UV 220nm。馏分旋干得N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧基羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{5-[(2-甲基丙烷-2-亚磺酰基)氨基]-5,7-二氢螺[环戊二烯[c]吡啶-6,4'-哌啶]-1'-基}-6-氧代己基]氨基甲酸叔丁酯(30mg,13.39%,纯度:99%)。
LC-MS-3A-9(ES,m/z):[M+1]=1043
3.10化合物3A的合成
向N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧羰基)氨基]-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-{5-[(2-甲基丙烷-2-亚磺酰基)氨基]-5,7-二氢螺[环戊二烯[c]吡啶-6,4'-哌啶]-1'-基}-6-氧代己基]氨基甲酸叔丁酯(110mg,0.105mmol,1equiv)逐滴加入4M的HCl(气体)/1,4-二氧六环(5mL),在室温和氮气保护下搅拌3小时。减压浓缩得粗品。粗产物(100mg)通过制备型HPLC在以下条件下纯化(柱,C18硅胶;流动相,乙腈/水溶液,10分钟内10%至50%梯度;检测器,UV 220nm),馏分旋干得到(2R)-N-[(2R)-6-氨基-1-{5-氨基-5,7-二氢螺[环戊二烯[c]吡啶-6,4'-哌啶]-1'-基}-1-氧代己烷-2-基]-2-[(2R)-2-氨基-3-苯丙酰氨基]-3-苯丙酰氨基]-4-甲基戊酰胺(20.1mg,18.2%,纯度为70.3%)。
LC-MS-3A(ES,m/z):[M+1]=739
1H NMR(400MHz,Deuterium Oxide)δ8.40(s,1H),8.27(s,3H),7.81(dd,J=8.2,4.4Hz,1H),7.41–6.90(m,11H),4.58–4.38(m,2H),4.36–4.16(m,2H),4.10(s,2H),3.98–3.71(m,1H),3.39(d,J=12.4Hz,1H),3.23–2.72(m,9H),1.81–1.20(m,13H),0.79(dt,J=20.4,5.1Hz,6H).
实施例4A化合物4A的合成
4.1化合物4A-1的合成
氮气氛围下,在0℃下向搅拌的6-氯吡啶-2-胺(500mg,3.889mmol,1.00equiv)四氢呋喃(10mL)溶液中加入二(三甲基硅基)氨基钠(1426.37mg,7.778mmol)。向上述混合物中滴加二叔丁基二碳酸酯(933.69mg,4.278mmol,1.1equiv)。将所得混合物在室温下搅拌过夜。在0℃下用水/冰淬灭反应。所得混合物用乙酸乙酯(3×10mL)萃取。合并的有机层用盐水(1x10mL)洗涤,经无水硫酸钠干燥。过滤后,滤液减压浓缩,硅胶柱层析纯化,石油醚/乙酸乙酯(10:1)洗脱,馏分旋干得N-(6-氯吡啶-2-基)氨基甲酸叔丁酯(800mg,89.95%,纯度:99%)。
LC-MS-4A-1(ES,m/z):[M+1]=229
4.2化合物4A-2的合成
在两颈圆底烧瓶中,将四甲基乙二胺(3353.91mg,28.862mmol,2.2equiv)溶解在四氢呋喃(78.43mL)。在-78℃下向上述混合物中逐滴加入正丁基锂(1848.71mg,28.862mmol,2.2equiv)。在-20℃下将混合物再搅拌30分钟。在-78℃下向上述混合物中逐滴加入4-氧代哌啶-1-羧酸苄酯(4590.26mg,19.678mmol,1.5equiv)。将混合物在-78℃下再搅拌1小时。在-50℃下向上述混合物中逐滴加入N-(6-氯吡啶-2-基)氨基甲酸叔丁酯(3000mg,13.119mmol,1.00equiv)。所得混合物在40℃下搅拌过夜。将所得混合物浓缩减压得到残余物,残余物通过硅胶柱色谱纯化,用石油醚/乙酸乙酯(2:1)洗脱,得7'-氯-2'-氧代-1'H-螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-1-羧酸苄酯(3000mg,58.97%,纯度:99%)。
LC-MS-4A-2(ES,m/z):[M+1]=388
4.3化合物4A-3的合成
将7'-氯-2'-氧代-1'H-螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-1-羧酸苄酯(230mg,0.612mmol,1.00equiv)溶解在甲醇(20mL)中,加入Pd/C(12.62mg,w/t,10%),置换氢气3次。将所得混合物在氢气氛围下于室温搅拌过夜。过滤所得混合物,滤饼用甲醇(3x10mL)洗涤。减压浓缩滤液,得到螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-2'(1'H)-酮(110mg,粗品)。
LC-MS-4A-3(ES,m/z):[M+1]=220
4.4化合物4A-4的合成
将螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-2'(1'H)-酮(44mg,0.138mmol,1.00equiv)和中间体2(100mg,0.067mmol,0.5equiv)溶于DMF(2mL)中,分批加入二异丙基乙胺(34mg,0.4mmol,3.00equiv)和HATU(76mg,0.207mmol,1.50equiv)。将混合物在室温和氮气氛围下搅拌过夜。加水(10mL)淬灭反应,用乙酸乙酯(3x10mL)萃取。合并有机相,干燥、真空浓缩。得到((10R,13R,16R,19R)-16-苄基-13-异丁基-2,2-二甲基4,12,15,18-四氧代-10-(2'-氧代-1',2'二氢螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-1-羰基)-20-苯基-3-氧杂-5,11,14,17-四氮杂二十烷-19-基)氨基甲酸叔丁酯(120mg,粗品)。
LC-MS-4A-4(ES,m/z):[M+1]=955
4.5化合物4A的合成
向50mL圆底烧瓶中加入((10R,13R,16R,19R)-16-苄基-13-异丁基-2,2-二甲基4,12,15,18-四氧代-10-(2'-氧代-1',2'二氢螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-1-羰基)-20-苯基-3-氧杂-5,11,14,17-四氮杂二十烷-19-基)氨基甲酸叔丁酯(120mg,0.126mmol,1.00equiv)和4M HCl(气体)的1,4-二氧六环(4mL)溶液。将所得混合物在室温和下搅拌1小时。减压下浓缩所得混合物,通过反向快速色谱纯化,馏分旋干得到(2R)-N-[(2R)-6-氨基-1-氧代-1-{2'-氧代-1'H-螺[哌啶-4,4'-吡啶并[2,3-d][1,3]恶嗪]-1-基}己-2-基]-2-[(2R)-2-[(2R)-2-氨基-3-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰胺(7mg,7.31%,纯度:99.2%)。
LC-MS-4A(ES,m/z):[M+1]=755
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,2H),8.10(dd,J=10.1,5.0Hz,1H),7.58(dd,J=15.2,7.7Hz,1H),7.24(h,J=7.1Hz,6H),7.12(q,J=7.7Hz,5H),4.67(s,1H),4.55(q,J=7.5Hz,1H),4.33(d,J=13.6Hz,1H),4.25–4.16(m,1H),4.07–3.82(m,2H),3.66–3.43(m,1H),3.09(q,J=13.2Hz,1H),3.04–2.82(m,6H),2.15(d,J=27.4Hz,2H),2.05–1.82(m,2H),1.78–1.55(m,4H),1.57–1.23(m,5H),0.84(dt,J=20.5,5.2Hz,6H).
实施例5A化合物5A的合成
LC-MS-5A(ES,m/z):[M+1]=753
1H NMR(300MHz,Deuterium Oxide)δ8.55–8.39(m,1H),8.35(s,2H),7.97–7.74(m,1H),7.56(d,J=5.1Hz,1H),7.37–7.00(m,10H),4.85-4.70(m,2H),4.58–4.46(m,1H),4.33–4.13(m,2H),4.05–3.79(m,2H),3.71–3.54(m,2H),3.50–3.26(m,1H),3.02–2.82(m,6H),1.95–1.17(m,13H),0.83(dd,J=14.9,6.7Hz,6H).
实施例6A化合物6A的合成
LC-MS-6A(ES,m/z):[M+1]=753
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H),8.23–7.98(m,1H),7.77(dd,J=27.3,7.8Hz,1H),7.47–6.96(m,11H),4.85–4.77(m,1H),4.58(t,J=7.5Hz,1H),4.34–4.01(m,3H),3.86(dd,J=53.3,14.0Hz,1H),3.46(q,J=12.7,12.2Hz,1H),3.25–2.68(m,9H),2.10–1.58(m,8H),1.47(d,J=6.9Hz,5H),1.13–0.44(m,6H).
实施例7A化合物7A的合成
LC-MS-7A(ES,m/z):[M+1]=753
1H NMR(400MHz,Deuterium Oxide)δ8.38(s,2H),7.88–7.37(m,2H),7.42–7.00(m,10H),6.90–6.47(m,1H),4.57(t,J=7.4Hz,2H),4.37–3.97(m,3H),3.86(dd,J=44.1,13.8Hz,1H),3.63–3.34(m,3H),3.20–2.66(m,9H),2.28–1.11(m,15H),0.84(dd,J=20.1,5.4Hz,6H).
实施例8A化合物8A的合成
8.1化合物8A-1的合成
将4-氨基哌啶-1-羧酸苄酯(500mg,2.134mmol,1equiv)溶于甲苯(5mL)中,加入双光气(260uL,1.314mmol,0.62equiv),90℃搅拌3h,然后滴加四氢吡喃-4-醇(205uL,2.007mmol,0.94equiv)。将所得混合物在90℃和氮气保护条件下搅拌过夜。反应液冷却至室温,随后倒入冰水中,所得混合物用EtOAc(3x10mL)萃取。合并的有机层用乙酸乙酯(3x10mL)洗涤,经无水Na2SO4干燥。过滤后,减压浓缩滤液。粗产物不经进一步纯化直接用于下一步。
8.2化合物8A-2的合成
将化合物8A-1(433mg,1.195mmol,1equiv)和Pd/C(100mg,w/t,10%)加到甲醇(10mL,246.988mmol,206.73equiv)中,室温氢气气氛搅拌过夜。过滤所得混合物,滤饼用MeOH(3x10mL)洗涤。减压浓缩滤液,滤液旋干得到氧杂环己烷-4-基N-(哌啶-4-基)氨基甲酸酯(448mg,粗品)。
8.3化合物8A-3的合成
室温氮气保护下,将氧杂环己烷-4-基N-(哌啶-4-基)氨基甲酸酯(113mg,0.495mmol,1.5equiv)溶于DMF(10mL)中,加入中间体2(248.79mg,0.330mmol,1equiv)搅拌,再加入DIPEA(85.30mg,0.660mmol,2equiv)和HATU(188.21mg,0.495mmol,1.5equiv),加毕,搅拌过夜。加水淬灭,所得混合物用EtOAc(3×20mL)萃取。合并的有机层用乙醚(3x20mL)洗涤,用无水Na2SO4干燥。过滤后,减压浓缩滤液。残余物通过反相快速色谱法纯化,条件如下:柱,硅胶;流动相,MeCN水溶液,10分钟内梯度10%至50%;检测器,UV 254nm。馏分旋干得到化合物8A-3(104mg,32.69%,纯度:99%)。
8.4化合物8A的合成
室温氮气保护下,将化合物8A-3(104mg,0.108mmol,1equiv)和TFA(4mL)加到DCM(16mL)中,搅拌3h。所得混合物在减压下浓缩,得到残余物。残余物通过反相快速色谱法纯化,条件如下:柱,硅胶;流动相,MeCN水溶液,10分钟内梯度10%至50%;检测器,UV 254nm。馏分旋干得到化合物8A(19.7mg,22.73%,纯度:95.0%)。
LC-MS-8A(ES,m/z):[M+1]=764
1H NMR(400MHz,Deuterium Oxide)δ8.36(s,1H),7.26(h,J=6.6Hz,6H),7.13(t,J=7.1Hz,4H),4.55(dt,J=8.0,4.0Hz,2H),4.30–3.99(m,2H),3.98–3.72(m,4H),3.56(d,J=10.5Hz,3H),3.22(q,J=13.9Hz,1H),2.96(t,J=6.7Hz,3H),2.90(td,J=7.6,2.7Hz,3H),1.85(s,4H),1.74–1.52(m,6H),1.52–1.17(m,7H),0.93–0.75(m,6H).
实施例9A化合物9A的合成
LC-MS-9A(ES,m/z):[M+1]=812.25
1H NMR(300MHz,Deuterium Oxide)δ8.41(s,2H),7.38–7.16(m,10H),4.92(s,1H),4.60(s,2H),4.26(s,2H),4.02(d,J=38.6Hz,2H),3.67(s,1H),3.41–2.90(m,12H),2.28(s,4H),1.93(d,J=21.3Hz,2H),1.71 –1.28(m,11H),0.95–0.83(m,6H).
实施例10A化合物10A的合成
10.1化合物10A-3的合成
向100mL的圆底烧瓶中加入化合物10A-2(1g),室温下在DCM(40mL)中搅拌溶胀30分钟。过滤,DCM洗涤固体,干燥。将固体溶于DMF(40ml)中,随后加入化合物10A-1(2g,8.761mmol,1.00equiv),DCC(5.42g,26.283mmol,3equiv)和HOBT(2.37g,17.522mmol,2equiv),在室温下搅拌3h,最后加入DMAP(0.54g,4.380mmol,0.5equiv),室温搅拌过夜。将所得混合物过滤,MeOH洗涤,收集固体,得到白色固体的化合物10A-3(3g,粗品),所得混合物未进一步纯化,直接投下步。
10.2化合物10A-4的合成
氮气保护,室温下,化合物10A-3(2.9g,5.560mmol,1equiv)在DMF(40mL)和哌啶(10mL)溶液搅拌反应6h。将所得混合物过滤,MeOH洗涤,收集固体并旋干,所得白色粗品(2g)直接投入下一步。
10.3化合物10A-6的合成
氮气保护,室温下向化合物10A-4(2g,6.681mmol,1equiv)的DMF(10mL)溶液中加入化合物10A-5(3.54g,10.021mmol,1.5equiv),室温下加入DIEA(1.30g,10.021mmol,1.5equiv)、HOBT(1.35g,10.021mmol,1.5equiv)和TBTU(3.22g,10.021mmol,1.5equiv),室温搅拌2小时后,将所得混合物过滤,MeOH洗涤,收集固体,减压浓缩得化合物10A-6(2.9g,粗品)。
10.4化合物10A-7的合成
氮气保护,室温下,化合物10A-6(2g,3.151mmol,1equiv)在TFA(10mL,134.631mmol,42.73equiv)和DCM(40mL,629.224mmol,199.71equiv)的混合溶液搅拌反应4h。所得混合物滤液减压浓缩,旋干得到化合物10A-7(1.6g,粗品)。
LC-MS-10A-7(ES,m/z):[M+1]=424
10.5化合物10A-9的合成
氮气保护,室温下向化合物10A-7(206mg,0.485mmol,1equiv)的DMF(10mL)溶液中加入化合物10A-8(229.60mg,0.728mmol,1.5equiv),室温下加入HATU(276.78mg,0.728mmol,1.5equiv)和DIPEA(125.44mg,0.970mmol,2equiv)。搅拌反应4小时后,加水淬灭反应,所得混合物用EA(3x 100mL)萃取,有机层用EA(3x10mL)洗涤,用Na2SO4干燥。过滤,所得液体减压浓缩,所得粗品用反相柱层析纯化,(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得到化合物10A-9(165mg,47.10%)。
LC-MS-10A-9(ES,m/z):[M+1]=721
10.6化合物10A-10的合成
氮气保护,室温下,化合物10A-9(165mg,0.229mmol,1equiv)在哌啶(1mL)和DCM(10mL)溶液搅拌反应3h。所得液体减压浓缩,所得粗品用反相柱层析纯化,条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器,馏分旋干得到化合物10A-10(100mg,87.5%)。
LC-MS-10A-10(ES,m/z):[M+1]=499
10.7化合物10A-13的合成
氮气保护,室温下向化合物10A-11(1g,3.880mmol,1equiv)的DMF(10mL)溶液中加入化合物10A-12(1.93g,4.981mmol,1.28equiv),室温下滴加HATU(2.1g,8.712mmol,2.25equiv)和DIPEA(1.8g,13.927mmol,3.59equiv),搅拌反应过夜。所得混合物加水淬灭,用EA(3x100mL)萃取,合并有机相并干燥旋干,过滤,所得液体减压浓缩,所得粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得到化合物10A-13(1.86g,81.16%,纯度:99%)。
LC-MS-10A-13(ES,m/z):[M+1]=590
10.8化合物10A-14的合成
氮气保护,室温下,化合物10A-13(1.86g,3.149mmol,1equiv)在TFA(6mL,61.209mmol,19.44equiv)/DCM(24mL,377.534mmol,119.90equiv)的混合溶液搅拌反应3h。所得混合液减压浓缩,得化合物10A-14(2.7g,粗品)。
LC-MS-10A-14(ES,m/z):[M+1]=535
10.9化合物10A-15的合成
氮气保护,室温下向化合物10A-10(70mg,0.140mmol,1equiv)的DMF(10mL)溶液中加入化合物10A-14(74.90mg,0.140mmol,1equiv),室温下加入HATU(53.27mg,0.140mmol,1.5equiv)和DIPEA(24.14mg,0.187mmol,1.25equiv),搅拌反应4小时。反应液加水淬灭,EA(3x100mL)萃取,合并有机相并干燥旋干。所得粗品用反相柱层析纯化(条件如下:C18层析柱,流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得到化合物10A-15(118mg,83.1%,纯度:99%)。
LC-MS-10A-15(ES,m/z):[M+1]=1017
10.10化合物10A-16的合成
氮气保护,室温下,化合物10A-15(118mg,0.116mmol,1equiv)在哌啶(1mL)和DCM(10mL)溶液搅拌反应2h。所得液体减压浓缩得化合物10A-16(94mg,粗品),所得粗品直接投入下一步。
LC-MS-10A-16(ES,m/z):[M+1]=916
10.11化合物10A的合成
氮气保护,室温下,化合物10A-16(94mg,0.118mmol,1equiv)在TFA(1mL)/DCM(5mL)的混合溶液搅拌反应2h。所得混合物滤液减压浓缩,所得粗品用反相柱层析纯化(条件如下:C18层析柱, 流动相,溶剂ACN和溶剂H2O(0.1%FA),10%到50%梯度10分钟,UV254纳米检测器),馏分旋干得到化合物10A(0.0233g,28.22%,纯度:99.0%)。
LC-MS-10A(ES,m/z):[M+1]=694
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.30(s,3H),7.30–7.19(m,4H),7.14(dd,J=6.8,4.0Hz,3H),4.61(t,J=6.7Hz,1H),4.53(t,J=7.5Hz,1H),4.37(d,J=13.1Hz,1H),4.22(t,J=7.9Hz,1H),4.00(t,J=13.1Hz,2H),3.91(d,J=5.7Hz,1H),3.64(s,3H),3.21(s,2H),3.13(d,J=13.5Hz,1H),2.94(ddd,J=15.8,9.8,4.5Hz,6H),2.66(s,1H),1.81(q,J=7.3Hz,3H),1.74(d,J=14.4Hz,2H),1.46(d,J=8.1Hz,4H),1.26(dd,J=14.7,7.1Hz,3H),0.85(dt,J=20.3,5.0Hz,6H).
实施例11A化合物11A的合成
LC-MS-11A(ES,m/z):[M+1]=680
1H NMR(400MHz,Deuterium Oxide)δ8.35(s,1H),7.24(ddd,J=11.2,7.7,5.5Hz,6H),7.10(t,J=9.0Hz,4H),4.69(s,2H),4.58(t,J=7.1Hz,1H),4.48(t,J=7.4Hz,1H),4.36(s,1H),4.20(t,J=8.0Hz,1H),4.08(s,1H),4.00(d,J=13.6Hz,1H),3.68(d,J=6.7Hz,1H),3.64(s,1H),3.47–3.39(m,2H),3.14(t,J=13.3Hz,1H),3.06–2.98(m,2H),2.90(s,2H),2.85(dd,J=17.8,6.6Hz,2H),2.65(s,1H),1.75(s,2H),1.51(s,3H),1.43(s,3H),1.24(dd,J=12.7,7.0Hz,3H),0.82(dt,J=20.9,5.0Hz,6H).
实施例12A化合物12A的合成
LC-MS-12A(ES,m/z):[M+1]=637
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.32–7.17(m,6H),7.12(dd,J=7.2,3.8Hz,4H),4.68(s,1H),4.61–4.46(m,1H),3.88(t,J=6.9Hz,2H),3.61(s,2H),3.56(s,4H),3.21(q,J=13.1Hz,3H),2.98–2.88(m,4H),1.93(s,1H),1.84(d,J=13.1Hz,1H),1.43(s,2H),1.30(s,2H),1.23(t,J=7.0Hz,4H),0.85–0.80(d,J=4.9Hz,6H).
实施例1B化合物1B的合成
1.1化合物1B-2的合成
在室温和氮气保护条件下,将中间体2(750mg,0.995mmol,1.00equiv)和DIEA(192.85mg,1.492mmol,1.5equiv)溶于DMF(30mL),分批加入HATU(567.37mg,1.492mmol,1.5equiv)和化合物1B-1(200mg,1.492mmol,1.5equiv),将所得混合物在室温和氮气条件下搅拌过夜。所得粗品用反相柱纯化,条件如下:C18柱,流动相,溶剂ACN和溶剂H2O(0.1%甲酸),10%到50%梯度10分钟,UV200纳米检测器,所得馏分旋干后得到N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧羰基)氨基]-3]-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-(1-亚氨基-1-氧代-1λ6-硫代吗啉-4-基)-6-氧代己基]氨基甲酸叔丁酯(600mg,69.32%,纯度:99%),呈浅黄色固体。
LC-MS-1B-2(ES,m/z):[M+1]=870
1.2化合物1B的合成
向25mL圆底烧瓶中加入N-[(5R)-5-[(2R)-2-[(2R)-2-[(2R)-2-[(叔丁氧羰基)氨基]-3]-苯基丙酰氨基]-3-苯基丙酰氨基]-4-甲基戊酰氨基]-6-(1-亚氨基-1-氧代-1λ6-硫代吗啉-4-基)-6-氧代己基]氨基甲酸叔丁酯(80mg,0.092mmol,1.00equiv)和4M HCl的1,4-二氧六环(8mL)溶液。将所得混合物在室温下搅拌2小时。将所得混合物减压浓缩,所得粗品用反相柱纯化,条件如下:C18柱,流动相,溶剂ACN和溶剂H2O(0.1%甲酸),10%到50%梯度10分钟,检测器为UV200纳米,得到(R)-N-((R)-6-氨基-1-(1-亚氨基-1-氧代-1λ6-硫代吗啉)-1-氧代己-2-基)-2-((R)-2-((R)-2-氨基-3-苯基丙酰氨基)-3-苯基丙酰氨基)-4-甲基戊酰胺(10.2mg,15.90%,纯度:95.9%)。
LC-MS-1B(ES,m/z):[M+1]=670
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,2H)(HCOOH),7.63–7.01(m,10H),4.56(t,J=7.5Hz,1H),4.37–3.87(m,5H),3.85–3.67(m,1H),3.52(t,J=12.4Hz,1H),3.40–3.07(m,4H),3.11–2.81(m,6H),1.64(tt,J=15.1,7.8Hz,4H),1.52–1.17(m,5H),0.85(dd,J=21.2,5.0Hz,6H).
实施例2B化合物2B的合成
按照实施例1B的类似步骤制备目标化合物,不同之处在于将反应原料替换为
LC-MS-2B(ES,m/z):[M+1]=684.20
1H NMR(400MHz,Deuterium Oxide)δ8.30(d,J=6.9Hz,1H),7.51–7.05(m,10H),4.62(dt,J=15.2,7.6Hz, 2H),4.33–4.12(m,3H),4.12–3.90(m,1H),3.87–3.66(m,1H),3.62–3.36(m,4H),3.36–3.04(m,3H),2.98(dq,J=24.6,7.8Hz,4H),2.73(s,3H),1.92–1.60(m,4H),1.57–1.21(m,5H),0.87(dd,J=20.8,5.0Hz,6H).
实施例3B化合物3B的合成
按照实施例1B的类似步骤制备目标化合物,不同之处在于将反应原料替换为
LC-MS-3B(ES,m/z):[M+1]=712.20
1H NMR(400MHz,Deuterium Oxide)δ8.37(s,1H),7.43–7.01(m,10H),4.63–4.50(m,1H),4.43(s,1H),4.33–3.98(m,4H),3.98–3.26(m,6H),3.12–2.70(m,6H),2.18–1.91(m,3H),1.74–1.27(m,9H),0.98–0.72(m,6H).
实施例4B化合物4B的合成
按照实施例1B的类似步骤制备目标化合物,不同之处在于将反应原料替换为
LC-MS-4B(ES,m/z):[M+1]=728.10
1H NMR(300MHz,Deuterium Oxide)δ8.34(s,2H),7.38–7.07(m,10H),4.63–4.04(m,5H),3.96(q,J=6.5Hz,1H),3.86–3.30(m,8H),3.22(s,1H),3.12–2.59(m,6H),1.90–1.09(m,9H),0.89(dd,J=13.9,5.0Hz,6H).
本说明书示例性地示出上述化合物的制备,本领域技术人员能够理解本发明其它未例示的化合物也可以参照上述通用方法和具体实施例制备。
比较例1B
该化合物参照CN108290926A实施例5的方法进行制备。
生物学测试评价
以下结合测试例进一步描述解释本发明,但这些实施例并非意味着限制本发明的范围。
本公开下述CR845如下所示,参照CN 101627049 A实施例2的方法进行制备,
测试例1.体外受体结合实验
1.1实验目的
利用体外同位素标记的方式,检测化合物对μ、Kappa、delta受体亲和力。
1.2实验材料
细胞系:CHO-K1-μ、CHO-K1-Kappa、CHO-K1-delta稳转细胞株(南京金斯瑞生物科技有限公司)
表1-标记配体相关信息及配制
注:PE:PerkinElmer公司;
表2-非标化合物相关信息
注:5-HT:5-hydroxytryptamine。
表3-试剂及耗材信息
注:Tris:三羟甲基氨基甲烷;EDTA:乙二胺四乙酸;PEI:聚醚酰亚胺。
表4-仪器信息
1.3实验方法
1.3.1 Buffer制备
A:(用于制备μ、Kappa、delta受体膜):称取11.7mgEDTA,380.84mg MgCl2,加入50mM Tris-HCl缓冲液总体积为400mL,调整pH=7.4。使其终浓度分别为EDTA 0.1mM、MgCl2 10mM。
B:化合物配制:按设计浓度和所需体积计算理论称样量。以5.0×10-3M为初始配制剂量,用DMSO溶解,然后用DMSO依次稀释为5.0×10-4M~5.0×10-9M,将稀释好的DMSO溶液用Buffer稀释至工作浓度,5.0×10-5M~5.0×10-11M,工作液DMSO终浓度为1%(反应体系DMSO终浓度为0.2%)。供试品配制后置于4℃保存,试验结束后废弃。
1.3.2受体膜的制备
CHO-μ、Kappa、delta等细胞由-80℃冰箱取出后自然解冻,在1000g,4℃下离心10分钟。取沉淀,弃上清液。沉淀加Buffer,匀浆20-30秒,然后50000g,4℃离心15min。小心的弃去上层液,再次加入Buffer,混匀,50000g,4℃离心15min离心。重复三次。-80℃储存。
1.3.3受体竞争结合试验
3.3.1 μ受体亲和试验
第一步:总结合管(TB)加入50μL溶媒(1%DMSO),非特异性结合管(NB)加入50μL DAMGO(终浓度1.0×10-5M),各受试化合物管(CB)加入50μL受试化合物。
第二步:各反应管分别加入缓冲液(匀浆液A)100μL。
第三步:先将制备好的膜用匀浆液A制成10mg/mL膜的混悬液备用。
第四步:各反应管分别加入放射性配体[3H]DAMGO 50μL,终浓度2nM。
第五步:各反应管分别加入50μL膜溶液。
第六步:将各反应管25℃温孵90min,反应完毕,结合的配基通过减压快速过滤,UniFilter GF/C板提前1h使用0.5%PEI溶液饱和,用冰冷的Tris缓冲液充分洗涤,抽滤后放入恒温干燥箱内干燥30min。将滤板取出加入MICROSCINT PS闪烁液,40μL/孔。
第七步:将闪烁杯放入液闪计数仪计数。
3.3.2 Kappa受体竞争结合试验
第一步:总结合管(TB)加入50μL溶媒(1%DMSO),非特异性结合管(NB)加入U69593 50μL(终浓度1.0×10-5M),各受试化合物管(CB)加入50μL受试化合物。
第二步:各反应管分别加入缓冲液(匀浆液A)100μL。
第三步:先将制备好的膜用匀浆液A制成15mg/mL膜的混悬液备用。
第四步:各反应管分别加入放射性配体3H-U69593 50μL,终浓度为2nM。
第五步:各反应管分别加入50μL膜溶液。
第六步:将各反应管25℃温孵90min,反应完毕,结合的配基通过减压快速过滤,UniFilter GF/C板提前1h使用0.5%PEI溶液饱和,用冰冷的Tris缓冲液充分洗涤,抽滤后放入恒温干燥箱内干燥30min。将滤板取出加入MICROSCINT PS闪烁液,40μL/孔。
第七步:将滤板放入液闪计数仪计数。
3.3.3 Delta受体竞争结合试验
第一步:总结合管(TB)加入50μL溶媒(1%DMSO),非特异性结合管(NB)加入DADLE 50μL(终浓度1.0×10-5M),各受试化合物管(CB)加入50μL受试化合物。
第二步:各反应管分别加入缓冲液(匀浆液A)100μL。
第三步:先将制备好的膜用匀浆液A制成10mg/mL膜的混悬液备用。
第四步:各反应管分别加入放射性配体3H-DADLE 50μL,终浓度为4nM。
第五步:各反应管分别加入50μL膜溶液。
第六步:将各反应管25℃温孵90min,反应完毕,结合的配基通过减压快速过滤,UniFilter GF/C板提前1h使用0.5%PEI溶液饱和,用冰冷的Tris缓冲液充分洗涤,抽滤后放入恒温干燥箱内干燥30min。将滤板取出加入MICROSCINT PS闪烁液,40μL/孔。
第七步:将滤板放入液闪计数仪计数。
1.4数据分析
根据化合物样品不同浓度测试点的效应值,利用GraphPad Prism软件拟合化合物样品对受体作用曲线,并计算Ki值。结果如表5所示。
表5-受体结合Ki值

由此可见,本发明化合物对κ阿片样物质受体具有优异的选择性,对κ阿片样物质受体具有很高的亲和力。
测试例2.体外功能试验
2.1实验目的
利用Cisbio HTRF cAMP-Gi试剂盒,通过酶标仪检测κ阿片类受体(Kappa)信号通路的cAMP浓度变化,计算化合物的EC50值,来评价化合物对κ阿片类受体的激动作用。
2.2实验材料
细胞系:CHO-K1-OPRK1稳转细胞株(南京金斯瑞生物科技有限公司)
细胞培养条件:F12、10%FBS、200μg/mL Zeocin、100μg/mL Hygromycin B
试剂及耗材:
F12(meilunbio,MA0229)
FBS(BOVOGEN,SFBS)
Zeocin(invitrogen,R25001)
Hygromycin B(invitrogen,10687010)
PBS(meilunbio,MA0015)
胰酶(Gibco,25200-072)
96细胞板(cisbio,66PL96025)
cAMP-Gi kit(cisbio,62AM9PEB)
CO2培养箱(Thermo,311)
离心机(上海安亭,TGL-16C)
细胞计数仪(Countstar,IC1000)
酶标仪(PerkinElmer,EnVision)
2.3实验方法
(1)配制实验所需的反应缓冲液(1x Stimulation buffer):将Cisbio cAMP-Gi试剂盒中的5x Stimulation buffer与ddH2O按1:4比例稀释,备用。
(2)化合物准备:用DMSO将化合物稀释成5mM的储存液,随后3.16倍稀释成10个梯度,然后用Stimulation buffer将配好的化合物稀释成相应浓度(2.5x),备用。
(3)细胞准备:胰酶消化培养皿上的CHO-K1-OPRK1细胞,用培养基洗脱细胞并收集至5mL离心管。1000rpm离心5分种,弃上清。加入3mL PBS,用移液枪轻轻吹打混匀。1000rpm再次离心5分种,弃上清。用1x Stimulation buffer重悬细胞,使用Countstar细胞计数仪计数,调整细胞密度至6x105个/mL,备用。
(4)细胞加入:将细胞悬液加至实验板中,5μL/孔(即约3000个细胞/孔)。
(5)化合物加入:将用Stimulation buffer稀释好的化合物加入到上述实验板中,4μL/孔。
(6)反应孵育:缓慢震荡后,将实验板放置37℃孵育20分钟。
(7)激动剂Forskolin的加入:加入10x腺苷酸环化酶激动剂(终浓度1μM Forskolin)溶液,1μL/孔。
(8)反应孵育:缓慢震荡后,将实验板放置37℃孵育45分钟。
(9)加检测试剂:用Cisbio cAMP-Gi检测试剂盒中的Lysis&detection buffer分别将cAMP-cryptate及Anti-cAMP-d2按1:20倍稀释,向实验板分别加入上述稀释的cAMP-cryptate及Anti-cAMP-d2,各5μL/孔。震荡后,将实验板室温静置60分钟。
(10)实验读数:在Envision上读板,检测665nm和615nm通道的读数,计算665nm/615nm读数的比值。
2.4.数据分析
根据化合物样品不同浓度测试点的激动作用效应值,利用GraphPad Prism软件拟合化合物样品对κ阿片类受体激动作用曲线,并计算EC50。实验结果如表6所示。
表6-对κ阿片类受体的体外激动作用

由此可见,本发明化合物对κ阿片样物质受体具有较强的激动作用。
测试例3.镇静安全窗实验
3.1小鼠醋酸扭体试验
3.1.1试验目的
通过小鼠醋酸扭体试验,考察化合物单次给药后的镇痛效果,并求算其ED50
3.1.2试验系统
3.1.2.1实验动物信息
种属和品系:ICR小鼠
等级:普通级
数量和性别:雄性,100只(根据具体情况而定)
年龄范围:6-8周龄
体重范围:23-32g
供应单位:斯贝福(北京)生物科技有限公司
动物使用许可证:SYXK(苏)2019-053
剩余动物处理:剩余动物则移交实验系统部处理。
3.1.2.2仪器和试剂
表7-主要仪器和试剂
3.1.3试验方法
小鼠醋酸扭体试验是经典的内脏痛试验模型,小鼠腹腔注射0.6%醋酸水溶液会刺激腹膜引起持久的疼痛反应,进而导致小鼠出现扭体反应,镇痛药物可以抑制小鼠的扭体反应。小鼠尾静脉注射给予药物后先适应15min,然后腹腔注射0.6%醋酸溶液(0.1mL/10g),设置溶媒对照组(0.9%氯化钠注射液),观 察记录注射完醋酸15min内小鼠扭体次数,计算受试化合物扭体抑制率,以初步评价单次给药的镇痛作用。
扭体抑制率%=(溶媒组次数-给药组次数)*100%/溶媒组次数。
3.1.4数据处理
实验数据均数±标准差(Mean±SD)表示,采用GraphPad Prism 8统计软件进行单因素方差分析,两两比较采用Dunnett t检验,非线性拟合的方法计算ED50,以P<0.05为差异有统计学意义。
3.2小鼠自主活动试验
3.2.1试验目的
测定化合物单次给药后对小鼠自主活动的影响,并求算其ED50
3.2.2试验系统
3.2.2.1实验动物信息
种属和品系:ICR小鼠
等级:普通级
数量和性别:雄性,200只(根据具体情况而定)
年龄范围:6-8周龄
体重范围:23-35g
供应单位:斯贝福(北京)生物科技有限公司
动物使用许可证:SYXK(苏)2019-053
剩余动物处理:剩余动物则移交实验系统部处理。
3.2.2.2仪器和试剂
表8-主要仪器和试剂
3.2.3、试验方法
小鼠自主活动试验是经典的用于评价化合物对中枢抑制情况的试验模型。小鼠尾静脉注射给予相应浓度的供试品溶液(现用现配),空白组给予溶媒(0.9%氯化钠注射液),给药结束后立即将小鼠置于自主活动箱(规格为29cm×29cm×30cm的黑色聚乙烯箱)进行录像,录像时间为30min,录像结束进行视频分析,评价小鼠用药后自主活动情况。
3.2.4数据处理
实验数据均数±标准差(Mean±SD)表示,采用GraphPad Prism 8统计软件进行单因素方差分析,两两比较采用Dunnett t检验,非线性拟合的方法计算ED50,以P<0.05为差异有统计学意义。
3.3安全窗
镇静是外周Kappa受体激动剂最显著的副作用,将镇静副作用ED50(自主活动试验)/药效ED50(醋酸扭体试验)便可得出其镇静安全窗,安全窗越大预示着安全性更高,相同剂量下临床出现镇静副作用的可能性越小。实验结果如表9所示。
表9-安全窗

由此可见,本发明的化合物具有很大的安全窗,即,具有较大的安全给药剂量范围,或者在相同剂量下出现副作用的可能性更小。
测试例4.小鼠PK和透脑
4.1试验目的
考察本公开化合物在小鼠体内的药代动力学特征和血脑屏障通透性。
4.2试验设备
表10-设备信息
4.3试验方法和数据处理
将健康雄性ICR小鼠随机分组,每组6只动物,每个受试化合物分别3组动物,第一组动物用于给药 后5分钟采血取脑,第二、三组动物用于后续时间点交叉采血;受试化合物分别静脉给予(1mg/kg)相应组别小鼠,于不同时间点小鼠颌下静脉采血,LC-MS/MS法测得不同时刻血浆和脑组织中药物含量,运用EXCEL软件求得脑血比B/P,运用DAS3.0软件计算其药动学参数。实验结果参见表11。
表11-药动参数

**:低于定量下限,表示脑组织中未检出待测物。
由此可见,本发明的化合物具有优异的药物代谢动力学性质,具体地,与CR845相比,本发明的化合物脑血比B/P与之相当或更低,可选择性作用于外周Kappa受体,而且本发明的化合物具有显著改善的药动学特征和明显更长的半衰期。
测试例5.小鼠单次给药毒性试验
5.1试验目的
通过研究本发明化合物小鼠单次静脉给药后毒性反应,补充安全性数据。
5.2试验系统
种属和品系:ICR小鼠
等级:SPF级
性别:雄性
体重范围:24-28g
供应单位:斯贝福(北京)生物技术有限公司
动物生产许可证:SCXK(京)2019-0010
动物使用许可证:SYXK(苏)2019-0053
剩余动物处理:剩余动物移交试验系统部处理。
5.3仪器试剂
表12-主要仪器和试剂
5.4试验方法
取ICR小鼠,随机分组,每组10只,按10mL/kg尾静脉给药,观察记录动物状态及死亡情况,根据AOT425软件推荐剂量依次给药,直至确定LD50值。
5.5数据处理
采用AOT425软件计算LD50。结果参见表13。
表13-急性毒性
由此可见,本发明的化合物具有较低的单次给药毒性,因而具有改善的安全性。
测试例6化合物对hERG钾离子通道作用的研究
6.1试验目的
本实验通过运用手动膜片钳技术检测化合物对hERG通道的抑制作用。
6.2试验系统
非心脏类药物有可能通过抑制hERG(IKr)通道引起心肌动作电位时程的延长,增加威胁生命的尖端扭转性(TdP)室性心律失常发生的可能性。本实验采用无内源性IKr电流的HEK293细胞系为宿主细胞,该细胞系被广泛应用于hERG的检测。
将稳定表达hERG通道的HEK293细胞培养于35mm培养皿中,在37℃/5%CO2培养箱中放置至少24小时后用于实验。hERG细胞系常规培养,传代在含有10%胎牛血清和250μg/ml G418的DMEM中。
6.3液体配制
全细胞膜片钳实验所用细胞外液的成分为(mM):NaCl 145;MgCl2 1;KCl 4;Glucose 10;HEPES 10;CaCl2 2,用NaOH将pH值调至7.4,用sucrose将渗透压值调至300mOsm。
细胞内液成分为(mM):KCl 140;MgCl2 1;EGTA 5;HEPES 10and Na2ATP 4,用KOH将pH值调至7.2,用sucrose将渗透压值调至290mOsm。
表14-主要试剂浓度
6.4试验方法
电生理记录:每次实验取出一个培养皿,用细胞外液清洗两次,放置于倒置显微镜载物台上。全细胞膜片钳实验在室温下进行,所用硼硅玻璃微电极尖端电阻为3~5MΩ。
电压刺激方案和电流记录:全细胞记录模式后,将膜电位钳制在-80mV,每隔30s给予细胞+50mV去极化电压刺激,持续2s后复极化至-50mV,持续3s,即可引出hERG尾电流。去极化电压刺激前,先给予细胞50ms,-50mV复极化电压,该电压下记录的电流作为计算hERG尾电流的基线。只有达到记录标准的细胞才会被应用于待测化合物的检测。加入化合物前,hERG尾电流在细胞外液中至少稳定记录3分钟。灌流给药后当hERG尾电流幅值变化小于<5%时,被认为药物作用达到稳态。如果电流在6分钟内未达到稳态,则亦结束该浓度化合物检测。
6.5数据处理
原始数据使用Clampex 10.2记录,数据采集和分析使用pCLAMP 10.1软件程序。选取加入化合物前电流处于稳态的4~5个sweep,计算峰值平均值,作为对照电流幅值。选取加入化合物后电流处于稳态的4~5个sweep,计算峰值平均值,作为电流被抑制后的剩余幅值。待测化合物对hERG电流的抑制率依据以下方程进行计算:
%抑制率={1-(电流剩余幅值)/(对照电流幅值)}×100
依据上述计算方法得到待测化合物在10μM浓度下对hERG电流的抑制率。结果参见表15。
表15-心脏毒性
由此可见,本发明的化合物具有较低的心脏毒性,因而具有改善的安全性。
以上实施例仅示例性地示出本发明的某些代表性化合物的活性数据,本发明提供的其它化合物通过同样的方法进行测试也具有类似的效果。

Claims (24)

  1. 一种式IA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中,
    R1A为H或-COOH,优选为H;
    R2A为-NRaAC(=O)ORbA或-NRaAS(=O)2ORbA,优选为-NRaAC(=O)ORbA,其中
    RaA为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或被氨基、C1-6烷基氨基取代的C1-6烷基,RbA选自C1-6烷基、C6-14芳基、5-14元杂芳基、C3-8环烷基、3-8元杂环基,优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RbA基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReA和RfA各自独立地为-(CH2)n1A-和-(CH2)n1A’-,n1A和n1A’各自独立地选自0、1、2和3,优选为2,且n1A和n1A’不同时为0,WA选自-NH-C(=O)-、-NH-S(=O)2-、-NR5A-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R5A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-,n3A选自1、2和3;
    或者R1A和R2A连同其连接的碳原子形成任选取代的9-10元双环部分;优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构:
    当Q1A-Q4A中的任意一个为N时,其余为C,或Q1A-Q4A均为C;
    W1A和W2A各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR6A-,-NR6A-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,或不存在,其中,R6A选自H、C1-6烷基、脒基、HOOC-(CH2)n3A-;优选W1A和W2A不能同时不存在,
    W3A为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2A-,
    n2A选自0、1、2和3,
    更优选地,所述双环部分连同其所连接的哌啶环形成选自以下的结构:

    更优选为选自 再更优选选自
    R3A选自H或-(CH2)mANRcARdA
    RcA和RdA各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基;
    R4A选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基;
    mA和nA各自独立地为0、1、2、3、4或5。
  2. 如权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其为式IIA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中R1A、R2A、RcA和RdA如权利要求1中所定义;
    优选为式IIIA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中RbA、RaA、RcA和RdA如权利要求1中所定义;
    更优选为式IVA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中RbA和RaA如权利要求1中所定义;
    更优选为式VA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中RbA如权利要求1中所定义。
  3. 如权利要求1或2所述的化合物、其立体异构体或其药学上可接受的盐,其中RbA选自C1-6烷基或3-8元杂环基;优选选自C1-6烷基或更优选C1-6烷基或进一步优选为WA选自-O-或-S(=O)2-,其中ReA和RfA如权利要求1所定义;以及RaA、RcA和RdA如权利要求1中所定义。
  4. 如权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其为式VIA所示的化合物、其立体异构体或其药学上可接受的盐:
    其中,RaA为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或C1-6氨基烷基;RbA如权利要求1所定义。
  5. 如权利要求1所述的化合物、其立体异构体或其药学上可接受的盐,其选自以下化合物、其立体异构体或其药学上可接受的盐:



  6. 一种制备如权利要求1-5中任一项所述的化合物、其立体异构体或其药学上可接受的盐的方法,其选自以下方法:
    方法一:
    方法一包括以下步骤:
    方法二:
    方法二包括以下步骤:
    其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如权利要求1-5中任一项所定义,且RxA为氨基保护基,
    所述氨基保护基优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔 丁基亚磺酰基或乙氧羰基。
  7. 一种如下通式所示的化合物、其立体异构体或其盐,
    其中,R1A’为R1A或其中NH2受氨基保护基保护的R1A,R2A’为R2A或其中NH2受氨基保护基保护的R2A,R3A’为R3A或其中NH2受氨基保护基保护的R3A,R1A、R2A、R3A、R4A和nA如权利要求1-5中任一项所定义,且RxA为氨基保护基,
    所述氨基保护基优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基或乙氧羰基。
  8. 一种式IB所示的化合物、其立体异构体或其药学上可接受的盐:
    其中,
    R1B选自H、C1-6烷基、C1-6烷基羰基、C1-6烷氧基羰基、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
    R2B和R3B各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基;
    R4B选自卤素、NO2、C1-6烷基、C1-6卤代烷基、氰基、NH2C(=O)-、C1-6烷氧基;
    mB和nB各自独立地为0、1、2、3、4或5。
  9. 如权利要求8所述的化合物、其立体异构体或其药学上可接受的盐,其为式IIB所示的化合物、其立体异构体或其药学上可接受的盐:
    优选为式IIIB所示的化合物、其立体异构体或其药学上可接受的盐:
    优选为式IVB所示的化合物、其立体异构体或其药学上可接受的盐:
  10. 如权利要求8-9中任一项所述的化合物、其立体异构体或其药学上可接受的盐,其中R1B选自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基、C1-6烷基羰基,优选为C1-6烷基或C1-6烷基羰基,更优选为甲基或甲基羰基。
  11. 如权利要求8所述的化合物、其立体异构体或其药学上可接受的盐,其选自以下化合物、其立体异构体或其药学上可接受的盐:

  12. 一种制备如权利要求8-11中任一项所述的化合物、其立体异构体或其药学上可接受的盐的方法,包括以下步骤:
    其中,R1B、R4B、mB和nB如权利要求8-11中任一项所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、或乙氧羰基。
  13. 一种式iB-1的化合物、其立体异构体或其盐,
    其中,R1B、R4B、mB和nB如权利要求8-11中任一项所定义,且RxB和RyB为氨基保护基,优选为各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、或乙氧羰基。
  14. 一种式IC所示的化合物、其立体异构体或其药学上可接受的盐:
    其中,
    环A为C3-8环烷基、C6-14芳基或5-14元杂芳基,优选为苯基;
    Y选自CH或N;
    G选自-S-、-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、优选为-O-、-CR4CR5C-、-NR6C-、-S(=O)2-、-S(=O)(=NR6C’)-、
    R1C选自H或-(CH2)tNRaCRbC
    R2C选自H、氨基、羟基、C1-6烷基、C1-6烷基氨基、C1-6氨基烷基,其中的烷基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
    R3C在Y为CH时,选自H、羟基、C1-6烷基、3-8元杂环基、C1-6烷氧基,且在Y为N时,选自H、C1-6烷基、C3-8环烷基、C3-8环烷基-(CH2)m-、3-8元杂环基、3-8元杂环基-(CH2)mC-、-(CH2)mCNR10R11,其中的烷基、环烷基、杂环基、烷氧基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基、C1-6烷基氨基的基团取代;
    R4C和R5C各自独立地选自H、C1-6烷基、C1-6烷基-O-、羟基、-C(O)OR7、-NR8R9、-NRcCC(O)NR8R9、C1-6烷基氨基、3-8元杂环基-(CH2)mC-、卤素、氰基、-NRcCS(=O)2NR8R9、-NRcCC(O)ORdC、-NRcCS(=O)2ORdC、-NRcCC(O)R7’、-NH(CH2)mCNR8R9,其中所述的烷基、杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
    或者CR4CR5C形成3-8元杂环或9-10元双环部分,所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构:
    当Q1C-Q4C中的任意一个为N时,其余为C,或Q1C-Q4C均为C;
    W1C和W2C各自独立地为-C(=O)-NH-,-NH-C(=O)-,-S(=O)2-NH-,-NH-S(=O)2-,-S-,-O-,-NR12-,-NR12-CH2-,被一个或多个选自-NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-;优选W1C和W2C不能同时不存在,
    W3C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在;优选为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,
    W4C和W5C为被一个或多个选自NH2、-OH、卤素、硝基、氰基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团任选取代的-(CH2)n2C-,或不存在,
    n2C选自0、1、2和3,
    更优选地,所述3-8元杂环或9-10元双环部分连同其所连接的哌啶环形成选自以下的结构:

    更优选为选自
    RaC和RbC各自独立地选自H、C1-6烷基、脒基、C1-6烷氧基羰基;
    RcC为H或被一个或多个选自氨基、C1-6烷基氨基、C1-6烷氧基、卤素、羟基、硝基、氰基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,优选为H或被氨基、C1-6烷基氨基、或C1-6烷氧基取代的C1-6烷基,更优选为H或被氨基、C1-6烷基氨基取代的C1-6烷基,
    RdC选自C1-6烷基、C6-14芳基、5-14元杂芳基、C3-8环烷基、3-8元杂环基,优选为选自C1-6烷基、3-8元杂环基,更优选为选自C1-6烷基、更优选为选自C1-6烷基、上述RdC基团任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代,ReC和RfC各自独立地为-(CH2)n1C-和-(CH2)n1C’-,n1C和n1C’各自独立地选自0、1、2和3,优选为2,且n1C和n1C’不同时为0;WC选自-NH-C(=O)-、-NH-S(=O)2-、-NR12-、-O-、-S-、-S(=O)2-,优选为选自-O-、-S(=O)2-,R12选自H、C1-6烷基、脒基、HOOC-(CH2)n3C-,n3C选自1、2和3;
    R6C和R6C’独立地选自H、C1-6烷基、C1-6烷基羰基、C1-6烷基-S(=O)2-、C1-6烷氧基羰基、C6-14芳基、C6-14芳基羰基、C6-14芳氧基羰基、C3-8环烷基、C3-8环烷基羰基、C3-8环烷氧基羰基、5-14元杂芳基、5-14元杂芳基羰基、5-14元杂芳氧基羰基、3-8元杂环基、3-8元杂环基羰基、3-8元杂环氧基羰基,上述取代基各自任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
    R7和R7’各自独立地选自H、C1-6烷基、C3-8环烷基、3-8元杂环基、C6-14芳基和5-14元杂芳基,其中所述的烷基、环烷基、杂环基、芳基和杂芳基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;
    R8和R9各自独立地为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基,
    R10和R11各自独立地为H或C1-6烷基,或者R10和R11连同其连接的氮原子形成3-8元杂环基,其中的烷基和杂环基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、 NH2C(=O)-、C1-6烷氧基的基团取代;
    p和t各自独立地选自0、1、2、3、4或5;
    mC在每次出现时独立地选自1、2、3、4;
    R0选自H、卤素、NO2、氰基、NH2C(=O)-、C1-6烷氧基、任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基。
  15. 如权利要求14所述的化合物、其立体异构体或其药学上可接受的盐,其为式IIC-1或IIC-2所示的化合物、其立体异构体或其药学上可接受的盐:
    优选地,在IIC-1中,R2C为C1-6氨基烷基或氨基,R3C为H或C1-6烷基;更优选地,R2C为氨基,R3C为H;
    优选地,在IIC-2中,R2C为C1-6氨基烷基或氨基,R3C为H或C1-6烷基,或者R2C为H或C1-6烷基,R3C为C1-6氨基烷基或3-8元含氮杂环基;
    更优选地,式IIC-2为式IIIC或式IVC:
  16. 如权利要求14或15所述的化合物、其立体异构体或其药学上可接受的盐,其中满足以下一项或者多项:
    (1)R1C为-(CH2)tNRaCRbC,优选为-(CH2)3NH2
    (2)环A为苯基;
    (3)p为0。
  17. 如权利要求14-16中任一项所述的化合物、其立体异构体或其药学上可接受的盐,其中G选自以 下之一:
    (1)G为-S(=O)(=NR6C’)-;
    (2)G为-CR4CR5C-,R4C为H,R5C为-NRcCC(O)ORdC
    (3)G为-CR4CR5C-,R4C为-NR8R9,R5C为-C(O)OR7,R7选自H、C1-6烷基、C3-8环烷基、3-8元杂环基、C6-14芳基和5-14元杂芳基,其中所述的烷基、环烷基、杂环基、芳基和杂芳基任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代;且R7优选为H或任选被一个或多个选自卤素、羟基、氨基、硝基、氰基、C1-6烷基、C1-6卤代烷基、NH2C(=O)-、C1-6烷氧基的基团取代的C1-6烷基。
  18. 如权利要求14-17中任一项所述的化合物、其立体异构体或其药学上可接受的盐,其为以下通式所示的化合物、其立体异构体或其药学上可接受的盐:
    更优选为更优选为
  19. 如权利要求14所述的化合物、其立体异构体或其药学上可接受的盐,其选自以下化合物、其立体异构体或其药学上可接受的盐:













  20. 一种制备如权利要求14-19中任一项所述的化合物、其立体异构体或其药学上可接受的盐的方法,其选自以下方法:
    方法一:
    方法一包括以下步骤:
    方法二:
    方法二包括以下步骤:
    优选地,式iiC-2化合物由选自以下的方法制备:
    方法三:
    方法三包括以下步骤:式iiC-4-a所示的化合物与式iiC-5-a所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
    方法四:
    方法四包括以下步骤:式iiC-4-b所示的化合物与式iiC-5-b所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
    方法五:
    方法五包括以下步骤:式iiC-4-c所示的化合物与式iiC-5-c所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
    方法六:
    方法六包括以下步骤:式iiC-4-d所示的化合物与式iiC-5-d所示的化合物经缩合反应、水解反应和任选的氨基保护基脱除反应、氨基保护反应得到式iiC-2所示的化合物,
    优选地,所述式iC-2为
    优选地,所述iiC-2选自:
    其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’和R1C”为R1C或其中NH2受氨基保护基保护的R1C,R2C’和R2C”为R2C或其中NH2受氨基保护基保护的R2C,R3C’和R3C”为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,Rw为羧基保护基,环A、Y、R0、R1C、R2C、R3C、G和p如权利要求14-19中任一项所定义,Rs、Rt和Ru各自独立地选自H和氨基保护基;
    优选地,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基;所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
  21. 一种如下通式所示的化合物、其立体异构体或其盐,
    优选地,式iiC-2-X选自:
    其中,R0’为R0或其中NH2受氨基保护基保护的R0,R1C’为R1C或其中NH2受氨基保护基保护的R1C,R2C’为R2C或其中NH2受氨基保护基保护的R2C,R3C’为R3C或其中NH2或环亚氨基受氨基保护基保护的R3C,G’为G或其中NH2和/或环亚氨基受氨基保护基保护且/或羧基受羧基保护基保护的G,环A、Y、R0、R1C、R2C、R3C、G和p如权利要求14-19中任一项所定义,Rs、Rt各自独立地选自H和氨基保护基,Rv选自H和羧基保护基;
    优选地,所述氨基保护基各自独立地选自叔丁氧羰基、9-芴甲氧羰基、烯丙氧羰基、三氯乙氧羰基、三甲基硅乙氧羰基、苄氧羰基、对甲基苯磺酰基、对硝基苯磺酰基、叔丁基、三氟乙酰基、甲氧羰基、叔丁基亚磺酰基、1-苯基乙基或乙氧羰基;所述羧基保护基各自独立地选自C1-6烷基、烯丙基、苄基、2,4-二甲氧基苄基、对甲氧基苄基、甲氧基乙氧基甲基、五氟代苯基、4-对甲基苄氧基苄基。
  22. 一种药物组合物,其包括如权利要求1-5、8-11、14-19中任一项所述的化合物、其立体异构体或其药学上可接受的盐、和药学可接受的载体或赋形剂、以及任选的其它治疗剂。
  23. 如权利要求1-5、8-11、14-19中任一项所述的化合物、其立体异构体或其药学上可接受的盐或如权利要求22所述的药物组合物在制备药物中的用途,特别地所述药物用于激动κ阿片样物质受体。
  24. 如权利要求1-5、8-11、14-19中任一项所述的化合物、其立体异构体或其药学上可接受的盐或如权利要求22所述的药物组合物在制备药物中的用途,特别地所述药物用于预防和/或治疗由κ阿片样物质受体介导的相关疾病;优选地所述疾病症选自:疼痛、炎症、瘙痒、水肿、低钠血症、低钾血症、肠梗阻、咳嗽和青光眼,优选疼痛;优选地,所述疼痛选自:神经性疼痛、躯干痛、内脏痛、皮肤痛、关节炎疼痛、肾结石疼痛、子宫痉挛、痛经、子宫内膜异位症、消化不良、外科手术后疼痛、医疗处理后疼痛、眼部疼痛、耳炎疼痛、爆发性癌症疼痛和GI紊乱相关的疼痛。
PCT/CN2023/083063 2022-03-23 2023-03-22 多酰胺类化合物、其制备方法及其医药用途 WO2023179659A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210291141 2022-03-23
CN202210291100.9 2022-03-23
CN202210291141.8 2022-03-23
CN202210291100 2022-03-23
CN202210291169 2022-03-23
CN202210291169.1 2022-03-23

Publications (1)

Publication Number Publication Date
WO2023179659A1 true WO2023179659A1 (zh) 2023-09-28

Family

ID=88100054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083063 WO2023179659A1 (zh) 2022-03-23 2023-03-22 多酰胺类化合物、其制备方法及其医药用途

Country Status (2)

Country Link
TW (1) TW202337460A (zh)
WO (1) WO2023179659A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184794A2 (en) * 2012-06-05 2013-12-12 Cara Therapeutics, Inc. Peripheral kappa receptor agonists for reducing pain and inflammation
CN107098876A (zh) * 2016-02-23 2017-08-29 江苏恒瑞医药股份有限公司 苯基丙酰胺类衍生物、其制备方法及其在医药上的应用
CN107098871A (zh) * 2016-02-23 2017-08-29 江苏恒瑞医药股份有限公司 苯基丙酰胺类衍生物、其制备方法及其在医药上的应用
WO2018059331A1 (zh) * 2016-09-27 2018-04-05 四川科伦博泰生物医药股份有限公司 多酰胺化合物及其用途
WO2021185265A1 (zh) * 2020-03-18 2021-09-23 四川海思科制药有限公司 口服药物组合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013184794A2 (en) * 2012-06-05 2013-12-12 Cara Therapeutics, Inc. Peripheral kappa receptor agonists for reducing pain and inflammation
CN107098876A (zh) * 2016-02-23 2017-08-29 江苏恒瑞医药股份有限公司 苯基丙酰胺类衍生物、其制备方法及其在医药上的应用
CN107098871A (zh) * 2016-02-23 2017-08-29 江苏恒瑞医药股份有限公司 苯基丙酰胺类衍生物、其制备方法及其在医药上的应用
WO2018059331A1 (zh) * 2016-09-27 2018-04-05 四川科伦博泰生物医药股份有限公司 多酰胺化合物及其用途
WO2021185265A1 (zh) * 2020-03-18 2021-09-23 四川海思科制药有限公司 口服药物组合物

Also Published As

Publication number Publication date
TW202337460A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
CN110167934B (zh) 作为αV整联蛋白抑制剂的含有环丁烷和含有氮杂环丁烷的单环和螺环化合物
CN111356680B (zh) Nlrp3炎性体的选择性抑制剂
WO2021219072A1 (zh) 作为kras抑制剂的杂环化合物的制备及其应用方法
CN109661396B (zh) 作为rock抑制剂的螺稠合环状脲
WO2019158019A1 (zh) 嘧啶并环化合物及其制备方法和应用
BR112019012211A2 (pt) agonistas de receptor de glp-1 e usos dos mesmos
EP3766882B1 (en) Phthalazine isoxazole alkoxy derivatives, preparation method thereof, pharmaceutical composition and use thereof
CN111954670A (zh) 作为nlrp3炎性小体调节剂的磺酰脲衍生物
AU2016311376A1 (en) Bicyclic-fused heteroaryl or aryl compounds as IRAK4 modulators
CN112566916B (zh) 作为pad4抑制剂的经取代的噻吩并吡咯
TW201446768A (zh) S1p及/或atx調節劑
TW201602100A (zh) 選擇性經取代之喹啉化合物
US20230331720A1 (en) Medium- or macro-cyclic benzyl-substituted heterocycle derivatives and their uses as orexin-2 receptor agonists
CN116583502A (zh) 二环-杂环衍生物及其作为食欲素-2受体激动剂的用途
JP2023532623A (ja) ハンチントン病を処置するためのhttモジュレータ
CN112789087A (zh) Pad酶的苯并咪唑抑制剂
WO2022194269A1 (zh) 新型egfr降解剂
WO2023186069A1 (zh) 一类白介素-1受体相关激酶4的双功能嵌合体杂环化合物及其制备方法、药用组合物和用途
WO2019179515A1 (zh) 受体抑制剂、包含其的药物组合物及其用途
WO2023179659A1 (zh) 多酰胺类化合物、其制备方法及其医药用途
CN112313220A (zh) Pd-l1拮抗剂化合物
CN116113698A (zh) Trpml调节剂
AU2019424628A1 (en) 1,2,3,4-tetrahydroquinoxaline derivative, preparation method therefor and application thereof
US9889121B2 (en) Heterocyclylalkyne derivatives and their use as modulators of mGluR5 receptors
WO2023030319A1 (zh) 阿片受体激动剂及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773906

Country of ref document: EP

Kind code of ref document: A1