WO2023179612A9 - 光纤传感器和检测设备 - Google Patents
光纤传感器和检测设备 Download PDFInfo
- Publication number
- WO2023179612A9 WO2023179612A9 PCT/CN2023/082802 CN2023082802W WO2023179612A9 WO 2023179612 A9 WO2023179612 A9 WO 2023179612A9 CN 2023082802 W CN2023082802 W CN 2023082802W WO 2023179612 A9 WO2023179612 A9 WO 2023179612A9
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- beam shaper
- face
- optical
- diaphragm
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 124
- 238000001514 detection method Methods 0.000 title claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 32
- 239000000835 fiber Substances 0.000 claims abstract description 16
- 230000005540 biological transmission Effects 0.000 claims abstract description 14
- 239000012788 optical film Substances 0.000 claims description 32
- 238000002310 reflectometry Methods 0.000 claims description 15
- 230000004304 visual acuity Effects 0.000 abstract 1
- 230000008878 coupling Effects 0.000 description 14
- 238000010168 coupling process Methods 0.000 description 14
- 238000005859 coupling reaction Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 8
- 238000001228 spectrum Methods 0.000 description 8
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000007493 shaping process Methods 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000030808 detection of mechanical stimulus involved in sensory perception of sound Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35383—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques
- G01D5/35387—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using multiple sensor devices using multiplexing techniques using wavelength division multiplexing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/26—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
- G01D5/32—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
- G01D5/34—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
- G01D5/353—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
- G01D5/35306—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
- G01D5/35309—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
- G01D5/35312—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Fabry Perot
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H9/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
Definitions
- This application relates to the field of optical fiber detection, and specifically to an optical fiber sensor and detection equipment.
- Wavelength division multiplexing (WDM) system.
- WDM Wavelength division multiplexing
- optical signals of multiple different wavelengths can be combined together through a combiner and coupled to the same optical fiber for transmission; at the receiving end, through wavelength division
- the optical receiver separates the optical carriers of various wavelengths, and then the optical receiver performs further processing to restore the original signal.
- the WDM system can transmit signals of multiple wavelengths at the same time, and the cost of signal transmission can be significantly reduced by using the WDM system.
- An optical fiber sensor based on an extrinsic Fabry–Pérot cavity (FP) resonant cavity can achieve conversion between optical signals and vibration signals through the FP resonant cavity.
- the FP resonant cavity is a resonant cavity composed of two parallel end faces.
- the resonant cavity can be composed of an optical fiber end face and a diaphragm end face.
- the distance between two parallel end faces is the cavity length.
- the intensity of reflected light in the FP resonant cavity is related to the wavelength of the light and the length of the cavity.
- the vibration will cause the cavity length to change, causing the reflected light intensity to change, thereby realizing the conversion of vibration signals into optical signals.
- Vibration detection can be achieved by demodulating the optical signals.
- the existing optical fiber sensors have a limited free spectral range (FSR) due to their short cavity length.
- the FSR is generally about 12nm.
- the wavelength resolution capability of the FP resonant cavity is low and cannot be used in dense WDM systems. .
- This application provides an optical fiber sensor and detection equipment to improve the wavelength resolution capability of the optical fiber sensor and make it applicable to WDM systems.
- this application provides an optical fiber sensor.
- the optical fiber sensor includes an optical fiber, a pigtail, a beam shaper, a sleeve and a diaphragm. One end of the optical fiber is inserted into the pigtail and is fixedly connected to the pigtail.
- the pigtail is inserted into It is located in the casing and is fixedly connected to the casing; the first end face of the beam shaper is connected to the optical fiber, the second end face of the beam shaper is located at an end away from the optical fiber, and the second end face and the vibration surface of the diaphragm are in the beam shaper
- the optical axis directions are opposite and set at intervals, and a resonant cavity can be formed between the second end face and the vibration surface; the beam transmission area of the second end face of the beam shaper is larger than the beam transmission area of the first end face, and the beam divergence angle of the second end face is 1 ⁇ 5°.
- the optical fiber sensor of the present application is provided with a beam shaper, in which the beam transmission area of the second end face of the beam shaper is larger than the beam transmission area of the first end face, and the beam divergence angle of the beam shaper is limited to the range of 1 to 5°. , which can make the cavity length of the optical fiber sensor reach 500 ⁇ m and above, which can significantly reduce the free spectrum range.
- the FSR can reach below 5nm, especially below 3nm, which can greatly improve the wavelength resolution capability of the FP resonant cavity, thereby increasing the support of the optical fiber sensor.
- the number of channels therefore, this fiber optic sensor can be used in dense WDM systems.
- the light of this application The fiber sensor, while having a longer cavity length, also has high optical coupling efficiency, high interference fringe contrast, and small insertion loss, which can significantly improve the transmission performance of the fiber sensor.
- the beam divergence angle of the beam shaper is 1 to 3°. In this way, the wavelength resolution capability of the FP resonant cavity can be further improved, the number of channels that the optical fiber sensor can support is increased, the optical coupling efficiency and interference fringe contrast can be further improved, and the insertion loss can be reduced.
- a first optical film is provided on an end surface of the beam shaper facing the diaphragm, and the first optical film has a reflectivity of 5% to 80%.
- a second optical film is provided on a surface of the diaphragm facing the beam shaper, and the reflectivity of the second optical film is ⁇ 95%.
- the diameter of the second optical film is D1
- the 4 ⁇ diameter of the light spot illuminated by the beam shaper on the second optical film is D2
- D1 is greater than D2 to increase the intensity of reflected light and reduce scattering.
- the beam shaper is arranged inside the pigtail and connected to the optical fiber. In another optional implementation, the beam shaper is disposed on the end face of the pigtail and connected to the optical fiber.
- the beam shaper includes a beam expanding fiber or optical lens.
- the distance between the second end surface of the beam shaper and the diaphragm is 400-1000 ⁇ m.
- the data in the above-mentioned possible implementation methods of this application such as beam divergence angle, reflectivity, cavity length, etc., when measured, the values within the engineering measurement error range should be understood to be within the range limited by this application. .
- this application provides a detection device.
- the detection device includes a detection module and the optical fiber sensor of the first aspect of this application, and the optical fiber is connected to the detection module.
- Figure 1 is a schematic structural diagram of a WDM system according to an embodiment
- Figure 2 is a schematic structural diagram of an optical fiber sensor according to an embodiment
- Figure 3 is a schematic structural diagram of an optical fiber sensor according to another embodiment
- Figure 4 is a schematic diagram of a diaphragm modulating light intensity according to an embodiment
- Figure 5 shows the coupling efficiency of an optical fiber sensor with different cavity lengths according to an embodiment
- Figure 6 is an interference spectrum obtained when the optical fiber sensor of an embodiment is vibrating
- Figure 7 is a contrast curve diagram of the interference spectrum of an optical fiber sensor under different cavity lengths according to an embodiment.
- FP resonant cavity a passive optical resonant cavity, generally composed of two parallel reflection planes, referred to as FP cavity.
- Fiber FP resonant cavity is a FP cavity composed of optical fiber.
- FSR Free spectral range, the frequency interval between two adjacent peaks, used to represent the wavelength resolution capability of the FP resonant cavity.
- ⁇ 0 is the average wavelength of the broadband incident light
- L is the cavity length of the FP resonant cavity.
- WDM Wavelength division multiplexing. Optical signals of multiple different wavelengths are combined together through a combiner and coupled to the same optical fiber for transmission.
- optical fiber sensors can be used to detect vibration signals.
- the cavity length of the optical fiber sensor is an important indicator that affects the performance of the optical fiber sensor.
- Existing fiber optic sensors have short adapted cavity lengths, generally below 100 ⁇ m. Some can increase the cavity length to 300 ⁇ m by adding collimation devices. If the cavity length continues to be increased, the optical coupling efficiency and interference fringes of the fiber optic sensor will result. The contrast drops sharply and the detection function cannot be realized.
- the free spectral range can be increased and the wavelength resolution capability of the FP resonant cavity can be improved, thereby enabling fiber optic sensors to be used in WDM systems.
- Figure 1 shows a WDM system.
- An optical fiber sensor 10 with a long cavity length is used in the WDM system to achieve one-to-many multi-channel sensing detection.
- the WDM system can include multiple optical fiber sensors 10.
- the light transmitted by the main optical fiber is split by the optical splitter 20 and then connected to different optical fiber sensors 10.
- the multiple optical fiber sensors 10 can respectively receive optical signals of different wavelengths.
- different optical signals return specific optical signals respectively after passing through the corresponding optical fiber sensor 10.
- the receiving end in the WDM system can analyze the returned specific optical signals to obtain the vibration status of each optical fiber sensor 10.
- This WDM system can detect vibrations from different sound sources at the same time, therefore, it can improve detection capabilities while reducing detection costs.
- FIG 2 is a schematic structural diagram of an optical fiber sensor according to an embodiment.
- the optical fiber sensor 10 includes an optical fiber 11, a pigtail 12, a beam shaper 15, a sleeve 13 and a diaphragm 14.
- One end of the optical fiber 11 is inserted into the pigtail 12 and fixedly connected with the pigtail 12 to achieve fixation of the optical fiber 11 .
- the other end of the optical fiber 11 serves as an interface for the light beam and can receive the light beam from the optical transmitter and feed back the coupled light beam to the optical receiver and the like.
- the core diameter of the optical fiber 11 may be 5-20 ⁇ m, and further may be 5-15 ⁇ m.
- the pigtail 12 may be a hollow cylindrical structure, and the hollow part thereof is used for inserting the optical fiber 11 .
- the outer peripheral surface of the pigtail 12 can be connected to the inner peripheral surface of the sleeve 13, and the sleeve 13 is used to fix the pigtail 12.
- one end of the pigtail 12 inserted into the sleeve 13 is located inside the cavity of the sleeve 13 and maintains a certain distance from the end surface of the sleeve 13 away from the optical fiber 11 .
- the casing 13 can be a cylindrical casing, or a casing of other shapes. In order to facilitate installation, this application adopts a cylindrical casing.
- the sleeve 13 can also be used to fix the diaphragm 14.
- the diaphragm 14 It can be provided at one end of the sleeve 13 away from the optical fiber 11.
- the vibration surface 141 of the diaphragm 14 needs to be perpendicular to the axis of the sleeve 13.
- the method of fixing the diaphragm 14 and the sleeve 13 does not matter here. Make specific restrictions, such as bonding, crimping with fasteners, etc.
- the pigtail 12 and the diaphragm 14 are spaced apart along the axial direction of the sleeve 13, and they block the opening of the sleeve 13 on both sides of the sleeve 13, so that the cavity between the pigtail 12 and the diaphragm 14 is
- the body becomes a receiving cavity.
- the beam shaper 15 can be disposed in the receiving cavity. It can be understood that through holes can be provided on the diaphragm 14 so that the air pressure on both sides of the diaphragm 14 can be balanced at different temperatures.
- one end of the beam shaper 15 can be connected to the pigtail 12 , for example, an adhesive 16 can be used to bond the end face of the pigtail 12 .
- the adhesive 16 can be glue, and the refractive index of the glue needs to match the refractive index of the beam shaper to reduce the reflection of the beam at the connection.
- the optical fiber 11 inserted in the pigtail 12 is connected to the first end face 151 of the beam shaper 15.
- the first end face 151 of the beam shaper 15 can be fused to the optical fiber 11, so that the optical signal in the optical fiber 11 is transmitted to the beam shaper.
- the first end surface 151 of the beam shaper 15 for connecting to the optical fiber 11 may be a bevel or a plane, and is not specifically limited here.
- the second end face 152 of the beam shaper 15 is located at the end away from the optical fiber 11 and is a free end, that is, the second end face 152 is not structurally connected to other components.
- the second end surface 152 is a plane and is opposite to and spaced apart from the vibration surface 141 of the diaphragm 14 in the optical axis direction of the beam shaper 15.
- the second end surface 152 can be aligned with the vibration surface 141 of the diaphragm 14.
- 141 is parallel, for example, the second end surface 152 and the vibration surface 141 can both be perpendicular to the optical axis of the beam shaper 15 , thereby forming an FP resonance between the second end surface 152 of the beam shaper 15 and the vibration surface 141 of the diaphragm 14 cavity.
- the beam transmission area of the second end face 152 of the beam shaper 15 is larger than the beam transmission area of the optical fiber, so as to control the beam divergence angle of the second end face 152 in the range of 1 to 5°.
- the second end face of the beam shaper 15 The beam divergence angle of the end surface 152 can be 1 to 3°. As an example, it can be 1°, 1.2°, 1.5°, 1.7°, 2.0°, 2.2°, 2.5°, 2.7°, 3°, 3.2°. , 3.5°, 3.7°, 4°, 4.2°, 4.5°, 4.7°, 4.8° or 5°, or other intermediate values among the values listed above are within the scope limited by this application.
- optical fiber 11, the pigtail 12, the ferrule 13 and the beam shaper 15 can be arranged coaxially.
- FIG. 3 is a schematic structural diagram of an optical fiber sensor according to another embodiment.
- the beam shaper 15 can be assembled inside the pigtail 12, and the beam shaper 15 can be connected to the optical fiber 11 inside the pigtail 12.
- the beam shaper 15 can be fused to the optical fiber 11 .
- the end surface of the beam shaper 15 close to the diaphragm 14 may be coplanar with the end surface of the pigtail 12 .
- the beam shaper 15 may be a beam expanding optical fiber or an optical lens.
- a first optical film can be provided on the end face of the beam shaper 15 facing the diaphragm 14, and the reflectivity of the first optical film can be 5-80%. Further, the first optical film The reflectivity of the film can be 5 to 20%.
- the beam shaper 15 can be used to improve the coupling efficiency of the light beam reflected back to the optical fiber through the diaphragm 14, and the insertion loss of the fiber optic sensor can be reduced by adding a first optical film on the end face of the beam shaper 15.
- the beam shaper 15 is an optical lens, such as a gradient refractive index lens
- a first optical film with a reflectivity of 5 to 80% can be provided on the end surface of the beam shaper 15 facing the diaphragm 14.
- the first optical film The reflectivity of the film can be 20 to 50%.
- the gradient refractive index lens can be cylindrical, with the refractive index at the center being the highest and gradually decreasing as the radius increases. The specific distribution of the refractive index is related to the lens model and can be used to reduce the beam divergence angle.
- the surface of the diaphragm 14 facing the beam shaper 15 is provided with a second optical film.
- the reflectivity of the optical film can be ⁇ 95%.
- the second optical film can be set according to the reflectivity of the first optical film so that the energy reflected from the first optical film back to the optical fiber is close to the energy reflected from the second optical film back to the optical fiber.
- the diameter D1 of the second optical film should be larger than the 4 ⁇ diameter D2 of the light spot illuminated by the beam shaper on the second optical film to reduce light loss.
- the distance between the second end surface 152 of the beam shaper 15 and the vibration surface 141 of the diaphragm 14 can be adjusted in the range of >80 ⁇ m.
- the second end surface of the beam shaper 15 The distance between the end surface and the diaphragm 14 can reach 400-1000 ⁇ m.
- the laser beam passes through the optical fiber 11 and reaches the beam shaping device 15. Part of the light reaching the beam shaper 15 is reflected back to the optical fiber 11 through the second end face 152 of the beam shaper 15 , and the other part is transmitted from the beam shaper 15 to the diaphragm 14 , is reflected by the vibration surface 141 of the diaphragm 14 , and then coupled back to the optical fiber 11 Interference occurs.
- An FP resonant cavity is formed between the second end surface 152 of the beam shaper 15 and the vibration surface 141 of the diaphragm 14 .
- the diameter of the effective reflective surface of the diaphragm 14 can be larger than the 4 ⁇ diameter of the light spot illuminated by the beam shaper 15 on the diaphragm to reduce light loss.
- Figure 4 is a schematic diagram of the light intensity modulated by the diaphragm according to an embodiment.
- the waveform on the left side of Figure 4 is the waveform of the incident beam in the optical fiber
- the waveform on the right side of Figure 4 is the waveform of the coupled light obtained after reflection by the diaphragm.
- the diaphragm vibrates and the diaphragm is displaced, it can modulate the incident light, so the detection of sound waves can be achieved.
- the beam shaper 15 is an expanded beam optical fiber.
- the core diameter of the optical fiber 11 is about 10 ⁇ m
- the core diameter of the expanded beam optical fiber is about 20 ⁇ m
- the beam divergence angle of the expanded beam optical fiber is 2 to 3°.
- the expanded beam optical fiber and the optical fiber are fused and packaged into a pigtail 12 .
- the second end face 152 of the expanded beam optical fiber is pre-coated with a first optical film with a reflectivity of 13%
- the surface of the diaphragm 14 is pre-coated with a metal film with a reflectivity greater than 95% as the second optical film.
- the distance between the second end face 152 of the expanded beam fiber and the vibration surface 141 of the diaphragm 14, that is, the cavity length of the FP resonant cavity can reach 500 ⁇ m.
- the coupling efficiency of the optical fiber sensor of this embodiment of the structure was tested with different cavity lengths.
- the test spectrum is shown in Figure 5.
- the coupling efficiency of the optical fiber sensor of this embodiment of the structure can reach 12 %.
- the coupling efficiency is significantly improved. It can be seen from the above tests that the optical fiber sensor according to the embodiment of the present application is equipped with a beam shaper. After the beam is transmitted from the optical fiber to the beam shaper, the mode spot size becomes larger and the divergence angle becomes smaller, thereby improving the reach of the beam after being reflected by the diaphragm. Fiber coupling efficiency.
- Figure 6 is the interference spectrum obtained when the optical fiber sensor with the above structure vibrates. As shown in Figure 6, when the diaphragm of the optical fiber sensor vibrates and its cavity length changes, the cavity lengths correspond to 499.8 ⁇ m, 500 ⁇ m, The interference spectrum obtained at the position of 500.2 ⁇ m shows that when the diaphragm vibrates, cavity lengths of different sizes can feed back optical signals of different wavelengths. It can be seen that the optical fiber sensor with this structure can realize the vibration sensing function.
- the wavelength resolution of the FP resonant cavity in the embodiment of the present application can be less than 3 nm, which can meet the multi-channel transmission function of the WDM system.
- Figure 7 is a contrast curve chart of the interference spectrum of the optical fiber sensor with the above structure under different cavity lengths. As shown in Figure 7, the contrast of the interference spectrum of the embodiment of the present application can reach 35dB, and the insertion loss can be reduced to 5dB.
- the optical fiber sensor can improve the coupling efficiency of the light beam reflected back to the optical fiber through the diaphragm by setting a beam shaping device with a beam divergence angle of 1 to 5°, so that the cavity length can be flexibly adjusted in the range of >80 ⁇ m. adjustment, specific It can be adjusted within 400 ⁇ 600 ⁇ m to obtain a FP resonant cavity with high wavelength resolution, so that fiber sensors with this FP resonant cavity can be used in WDM systems.
- the light sensor of the present application can reduce insertion loss and improve optical coupling efficiency by coating the surface of the beam shaping device with a first optical film.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optical Couplings Of Light Guides (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
一种光纤传感器(10),包括光纤(11)、尾纤(12)、光束整形器(15)、套管(13)和振膜(14),光纤(11)的一端插设于尾纤(12)内并与尾纤(12)固定连接,尾纤(12)插设于套管(13)内且与套管(13)固定连接;光束整形器(15)的第一端面(151)与光纤(11)连接,光束整形器(15)的第二端面(152)设于远离光纤(11)的一端,且第二端面(152)与振膜(14)的振动面(141)在光束整形器(15)的光轴方向相对且间隔设置,第二端面(152)与振动面(141)之间可形成谐振腔;光束整形器(15)第二端面(152)的光束传输面积大于第一端面(151)的光束传输面积,且第二端面(152)的光束发散角为1~5°。可提高光纤传感器(10)的波长分辨能力,使其能够适用于WDM系统中。还提供一种检测设备。
Description
相关申请的交叉引用
本申请要求在2022年03月24日提交中国专利局、申请号为202210302782.9、申请名称为“光纤传感器和检测设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光纤探测领域,具体涉及一种光纤传感器和检测设备。
波分复用(wavelength division multiplexing,WDM)系统,在发射端,可将多种不同波长的光信号通过合波器汇合在一起,并耦合到同一根光纤中传输;在接收端,经分波器将各种波长的光载波分离,然后由光接收机作进一步处理以恢复原信号。WDM系统可同时传输多种波长的信号,利用WDM系统可显著降低信号传输的成本。基于非本征型法布里-珀罗(fabry–pérot cavity,FP)谐振腔的光纤传感器,其可通过FP谐振腔实现光学信号和振动信号之间的转换。FP谐振腔是由两个平行的端面构成的谐振腔,例如可由光纤端面与振膜端面构成谐振腔,两平行端面(例如光纤端面与振膜端面)之间的距离为腔长。FP谐振腔内的反射光强度与光线波长和腔长相关。当振膜发生振动时,振动将引起腔长的变化,使反射光强度发生变化,从而实现振动信号到光学信号的转换,通过解调光学信号即可实现振动检测。但是现有的光纤传感器由于腔长较短,使自由光谱范围(free spectral range,FSR)受限,FSR一般为12nm左右,FP谐振腔的波长分辨能力较低,无法应用于密集的WDM系统中。
发明内容
本申请提供了一种光纤传感器和检测设备,以提高光纤传感器的波长分辨能力,使其能够适用于WDM系统中。
第一方面,本申请提供一种光纤传感器,该光纤传感器包括光纤、尾纤、光束整形器、套管和振膜,光纤的一端插设于尾纤内并与尾纤固定连接,尾纤插设于套管内且与套管固定连接;光束整形器的第一端面与光纤连接,光束整形器的第二端面设于远离光纤的一端,且第二端面与振膜的振动面在光束整形器的光轴方向相对且间隔设置,第二端面与振动面之间可形成谐振腔;光束整形器第二端面的光束传输面积大于第一端面的光束传输面积,且第二端面的光束发散角为1~5°。
本申请的光纤传感器,通过设置光束整形器,其中,光束整形器第二端面的光束传输面积大于第一端面的光束传输面积,并将光束整形器的光束发散角限定在1~5°范围内,可使光纤传感器的腔长达到500μm及以上,可显著减少自由光谱范围,FSR可达5nm以下,尤其可达3nm以下,可大幅提高FP谐振腔的波长分辨能力,进而可增加光纤传感器能支持的通道数量,因此,该光纤传感器可用于密集的WDM系统中。另外,本申请的光
纤传感器,在具有较长腔长尺寸的同时,还具有较高的光耦合效率以及高的干涉条纹对比度,以及较小的插入损耗,可显著提高光纤传感器的传输性能。
在一种可选的实现方式中,光束整形器的光束发散角为1~3°。这样,可进一步提高FP谐振腔的波长分辨能力,提高光纤传感器能支持的通道数量,同时能够进一步提高光耦合效率以及干涉条纹对比度,降低插入损耗。
在一种可选的实现方式中,光束整形器的面向振膜的端面设有第一光学膜,第一光学膜的反射率为5~80%。通过设置第一光学膜,可调整光束整形器反射率,使其接近于经振膜反射至光纤内的光强,降低插入损耗。
在一种可选的实现方式中,振膜的面向光束整形器的表面设有第二光学膜,第二光学膜的反射率≥95%。通过设置第二光学膜,以提高振膜的反射率,提高反射光强度以及光纤的耦合效率。
在一种可选的实现方式中,第二光学膜的直径为D1,光束整形器照射于第二光学膜的光斑的4σ直径为D2,D1大于D2,以提高反射光强度,减少散射。
在一种可选的实现方式中,光束整形器设于尾纤的内部与光纤连接。在另一种可选的实现方式中,光束整形器设于尾纤的端面并与光纤连接。
在一种可选的实现方式中,光束整形器包括扩束光纤或光学透镜。
在一种可选的实现方式中,光束整形器的第二端面与振膜之间的距离为400~1000μm。
其中,本申请上述各可能实现方式中的数据,例如光束发散角、反射率、腔长长度等数据,在测量时,工程测量误差范围内的数值均应理解为在本申请所限定的范围内。
第二方面,本申请提供一种检测设备,该检测设备包括检测模块和本申请第一方面的光纤传感器,光纤与检测模块连接。
上述第二方面可以达到的技术效果,可以参照上述第一方面中的相应效果描述,这里不再重复赘述。
图1为一种实施例的WDM系统的结构示意图;
图2为一种实施例的一种光纤传感器的结构示意图;
图3为另一种实施例的光纤传感器的结构示意图;
图4为一种实施例的振膜调制光强示意图;
图5为一种实施例的光纤传感器在具有不同腔长下的耦合效率;
图6为一种实施例的光纤传感器在振动时获得的干涉光谱图;
图7为一种实施例的光纤传感器在不同腔长下干涉光谱的对比度曲线图。
附图标记:
10-光纤传感器;11-光纤;12-尾纤;13-套管;14-振膜;141-振动面;15-光束整形器;
151-第一端面;152-第二端面;16-粘结剂;20-分光器。
10-光纤传感器;11-光纤;12-尾纤;13-套管;14-振膜;141-振动面;15-光束整形器;
151-第一端面;152-第二端面;16-粘结剂;20-分光器。
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
为方便理解,先对以下术语做解释说明。
FP谐振腔:一种无源光学谐振腔,一般由两个平行的反射平面组成,简称法珀腔。光纤FP谐振腔是利用光纤组成的FP腔体。
FSR:自由光谱范围,两个相邻峰值的频率间隔,用来表示FP谐振腔的波长分辨能力。FSR=Δλ=λ1-λ2=λ1λ2/(2L)≈(λ0)2/(2L)。其中,λ0为宽带入射光的平均波长,L为FP谐振腔的腔长。
WDM:波分复用,多种不同波长的光信号通过合波器汇合在一起,并耦合到同一根光纤中传输。
在振动检测领域,可利用光纤传感器实现振动信号的检测。其中,光纤传感器的腔长是影响光纤传感器性能的一个重要指标。现有的光纤传感器由于所适配的腔长较短,一般在100μm以下,有的通过添加准直器件可使腔长达到300μm,若继续增加腔长会导致光纤传感器的光耦合效率以及干涉条纹对比度急剧下降,无法实现检测功能。当腔长增加后,可增加自由光谱范围,提高FP谐振腔的波长分辨能力,从而可使光纤传感器应用于WDM系统中。图1为一种WDM系统,具有长腔长的光纤传感器10应用WDM系统中,可实现一对多的多路传感检测。如图1所示,该WDM系统可包括多个光纤传感器10,由主光纤传输的光线经分光器20分光后分别连接不同的光纤传感器10,多个光纤传感器10可分别接收不同波长的光信号,不同的光信号经相应的光纤传感器10后分别返回特定的光信号,WDM系统中的接收端对返回的特定光信号可进行解析可获得每个光纤传感器10的振动情况。该WDM系统可同时检测不同声源的振动,因此,可在提高检测能力的同时,降低检测成本。
为提高WDM系统的检测能力,本申请提供一种光纤传感器。图2为一种实施例的光纤传感器的结构示意图,如图2所示,光纤传感器10包括光纤11、尾纤12、光束整形器15、套管13和振膜14。其中,光纤11的一端插入尾纤12中并与尾纤12固定连接,以实现对光纤11的固定。光纤11的另一端作为光束的接口,可接收来自光发射器的光束,并将耦合光束反馈至光接收器等。光纤11的纤芯直径可为5-20μm,进一步地可选择5-15μm。
继续参照图2,尾纤12可为空心圆柱形结构,其空心部分用于插接光纤11。尾纤12的外周面可与套管13的内周面连接,利用套管13实现对尾纤12的固定。其中,尾纤12的插入套管13的一端位于套管13的腔体内部,并与套管13的远离光纤11的端面保持一定的距离。套管13可为圆柱形套管,还可为其他形状的套管,为方便安装,本申请采用圆柱形套管。套管13除用来固定尾纤12外,还可用于固定振膜14。参照图2,振膜14
可设于套管13的远离光纤11的一端,在固定振膜14时,振膜14的振动面141需与套管13的轴线垂直,振膜14与套管13的固定的方式在此不做具体的限定,例如可粘结、可利用紧固件压接等。其中,尾纤12和振膜14沿套管13的轴线方向间隔设置,且两者分别在套管13的两侧封堵套管13的开口,使尾纤12和振膜14之间的腔体成为一个容纳腔。光束整形器15可设于该容纳腔内。其中,可以理解的是,振膜14上可设置通孔,以使振膜14两侧在不同温度下能够保持气压的平衡。
继续参照图2,光束整形器15的一端可与尾纤12连接,例如可用粘结剂16粘结在尾纤12的端面。其中,粘结剂16可为胶水,胶水的折射率需与光束整形器的折射率匹配,以降低光束在该连接处的反射。
插设于尾纤12内的光纤11与光束整形器15的第一端面151连接,例如光束整形器15的第一端面151可与光纤11熔接,以使光纤11中的光信号传输至光束整形器15中,减少光损。光束整形器15用于和光纤11连接的第一端面151可为斜面或平面,在此不做具体的限定。光束整形器15的第二端面152,位于远离光纤11的一端,为自由端,即第二端面152在结构上不与其他构件相互连接。其中,第二端面152为平面且与振膜14的振动面141在光束整形器15的光轴方向相对且间隔设置,在一种实施例中,第二端面152可与振膜14的振动面141平行,如第二端面152和振动面141均可与光束整形器15的光轴垂直,由此,光束整形器15的第二端面152可与振膜14的振动面141之间形成FP谐振腔。
其中,光束整形器15的第二端面152的光束传输面积大于光纤的光束传输面积,以控制第二端面152的光束发散角在1~5°范围内,进一步地,光束整形器15的第二端面152的光束发散角可为1~3°,作为示例性说明,例如可为1°、1.2°、1.5°、1.7°、2.0°、2.2°、2.5°、2.7°、3°、3.2°、3.5°、3.7°、4°、4.2°、4.5°、4.7°、4.8°或5°,或以上所列数值中的其他中间数值均在本申请限定的范围内。
可以理解的是,光纤11、尾纤12、套管13和光束整形器15可共轴线设置。
其中,需要说明的是,光束整形器15除可通过粘结剂16粘结在尾纤12的端面外,还可封装在尾纤12的内部。图3为另一种实施例的光纤传感器的结构示意图,如图3所示,光束整形器15可装配于尾纤12的内部,光束整形器15可在尾纤12的内部与光纤11连接,例如可光束整形器15可与光纤11熔接。其中,光束整形器15的靠近振膜14一侧的端面可与尾纤12的端面共平面设置。图3所示结构中的其他部件的连接关系可参照对于图2的说明,在此不再重复赘述。
在一种可选的实施例中,光束整形器15可为扩束光纤或光学透镜。
当光束整形器15为扩束光纤时,可在光束整形器15的面向振膜14的端面设置第一光学膜,第一光学膜的反射率可为5~80%,进一步地,第一光学膜的反射率可为5~20%。利用光束整形器15可提高光束经振膜14反射回光纤的耦合效率,通过在光束整形器15的端面增镀第一光学膜的方式可降低光纤传感器的插入损耗。
当光束整形器15为光学透镜,例如为渐变折射率透镜时,可在光束整形器15的面向振膜14的端面设置反射率为5~80%的第一光学膜,进一步地,第一光学膜的反射率可为20~50%。其中,渐变折射率透镜可为圆柱形,其中心的折射率最高,随着半径增大逐渐减小,折射率的具体分布与透镜型号相关,可以用来减小光束发散角。
在一种可选的实施例中,振膜14的面向光束整形器15的表面设有第二光学膜,第二
光学膜的反射率可≥95%。可以理解的是,第二光学膜可根据第一光学膜的反射率进行设置,以使自第一光学膜反射回光纤的能量与自第二光学膜反射回光纤的能量相接近。通过设置第二光学膜,可降低反射光的功率损耗。其中,第二光学膜的直径为D1应大于光束整形器照射于第二光学膜的光斑的4σ直径为D2,以减少光损耗。
本申请实施例的光纤传感器,光束整形器15的第二端面152与振膜14的振动面141之间的距离可在>80μm的范围调节,在一些实施例中,光束整形器15的第二端面与振膜14之间的距离可达到400~1000μm。
下面参照图2,对本申请实施例的光纤传感器的工作原理做简单说明。如图2所示,激光光束经过光纤11,到达光束整形器件15。到达光束整形器15的光线一部分经过光束整形器15的第二端面152反射回光纤11,另一部分从光束整形器15透射到达振膜14,经过振膜14的振动面141反射后耦合回光纤11发生干涉。光束整形器15的第二端面152与振膜14的振动面141之间构成了FP谐振腔。振膜14受到外力发生振动后会导致FP谐振腔的腔长发生变化,使经过振膜14反射回的光线光程发生变化,因此干涉条纹发生变化,通过检测干涉条纹,实现振动检测。其中,振膜14的有效反射面直径可大于光束整形器15照射于振膜的光斑的4σ直径,以减少光损。
图4为一种实施例的振膜调制光强示意图,图4中左侧波形为光纤中的入射光束波形图,图4中右侧波形为经过振膜反射后所得耦合光的光束波形图。如图4所示,当振膜发生振动使振膜产生位移时,其能够对入射光进行调制,因此可实现对声波的检测。
下面将结合具体结构实施例的光线传感器对其性能做进一步详细说明。
一种实施例的光纤传感器的结构参照图2,该实施例中,光束整形器15为扩束光纤。其中,光纤11的纤芯直径约为10μm,扩束光纤的纤芯直径约为20μm,扩束光纤的光束发散角为2~3°,将扩束光纤与光纤熔接,并封装成尾纤12。扩束光纤的第二端面152增镀反射率为13%的第一光学膜,振膜14的表面增镀反射率为大于95%的金属膜作为第二光学膜。该结构的光纤传感器,其扩束光纤的第二端面152与振膜14的振动面141之间的间距,即FP谐振腔的腔长可达500μm。
测试该结构的该实施例的光纤传感器在具有不同腔长下的耦合效率,测试谱图如图5所示,当腔长L为500μm时,该实施例结构的光纤传感器的耦合效率可达12%。相对于传统不设置光束整形器的光纤传感器的耦合效率(在腔长为500μm时耦合效率仅为0.67%)而言,耦合效率有明显提升。由上述测试可知,本申请实施例的光纤传感器,通过设置光束整形器,光束自光纤传输至光束整形器后,模斑尺寸变大,发散角变小,进而可提高光束经过振膜反射后到达光纤的耦合效率。
图6为上述结构的光纤传感器在振动时获得的干涉光谱图,如图6所示,当光纤传感器的振膜发生振动使其腔长发生变化时,在其腔长分别对应499.8μm、500μm、500.2μm的位置下获得的干涉光谱可知,当振膜发生振动,不同尺寸的腔长可反馈不同波长的光信号,由此可知,该结构的光纤传感器可实现振动传感功能。同时,参照图6,本申请实施例的FP谐振腔的波长分辨率为可达3nm以下,可满足WDM系统的多路传输功能。
图7为上述结构的光纤传感器在不同腔长下干涉光谱的对比度曲线图,如图7所示,本申请实施例的干涉光谱的对比度可达35dB,插入损耗可降低至5dB。
综上,本申请实施例的光纤传感器,通过设置光束发散角为1~5°的光束整形器件,可提高光束经振膜反射回光纤的耦合效率,使腔长可以在>80μm的范围内灵活调节,具体
可在400~600μm内调节,以获得具有高波长分辨率的FP谐振腔,使具有该FP谐振腔的光纤传感器能够应用于WDM系统中。另外,本申请的光线传感器,通过对光束整形器件的表面增镀第一光学膜,可降低插入损耗,提高光耦合效率。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (10)
- 一种光纤传感器,其特征在于,包括光纤、尾纤、光束整形器、套管和振膜,所述光纤的一端插设于所述尾纤内并与所述尾纤固定连接,所述尾纤插设于所述套管内且与所述套管固定连接;所述光束整形器的第一端面与所述光纤连接,所述光束整形器的第二端面设于远离所述光纤的一端,且所述第二端面与所述振膜的振动面在所述光束整形器的光轴方向相对且间隔设置;所述光束整形器的第二端面的光束传输面积大于所述光纤的光束传输面积,且所述光束整形器的第二端面的光束发散角为1~5°。
- 根据权利要求1所述的光纤传感器,其特征在于,所述光束整形器的光束发散角为1~3°。
- 根据权利要求1或2所述的光纤传感器,其特征在于,所述光束整形器的面向所述振膜的端面设有第一光学膜,所述第一光学膜的反射率为5~80%。
- 根据权利要求1-3任一项所述的光纤传感器,其特征在于,所述振膜的面向所述光束整形器的表面设有第二光学膜,所述第二光学膜的反射率≥95%。
- 根据权利要求4所述的光纤传感器,其特征在于,所述第二光学膜的直径为D1,所述光束整形器照射于所述第二光学膜的光斑的4σ直径为D2,所述D1大于所述D2。
- 根据权利要求1-5任一项所述的光纤传感器,其特征在于,所述光束整形器设于所述尾纤的内部与所述光纤连接。
- 根据权利要求1-5任一项所述的光纤传感器,其特征在于,所述光束整形器设于所述尾纤的端面并与所述光纤连接。
- 根据权利要求1-7任一项所述的光纤传感器,其特征在于,所述光束整形器包括扩束光纤或光学透镜。
- 根据权利要求1-8任一项所述的光纤传感器,其特征在于,所述光束整形器的第二端面与所述振膜之间的距离为400~1000μm。
- 一种检测设备,其特征在于,包括检测模块和如权利要求1-9任一项所述的光纤传感器,所述光纤与所述检测模块连接。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210302782.9 | 2022-03-24 | ||
CN202210302782.9A CN116839639A (zh) | 2022-03-24 | 2022-03-24 | 光纤传感器和检测设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023179612A1 WO2023179612A1 (zh) | 2023-09-28 |
WO2023179612A9 true WO2023179612A9 (zh) | 2023-11-09 |
Family
ID=88100041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/082802 WO2023179612A1 (zh) | 2022-03-24 | 2023-03-21 | 光纤传感器和检测设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN116839639A (zh) |
WO (1) | WO2023179612A1 (zh) |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5280173A (en) * | 1992-01-31 | 1994-01-18 | Brown University Research Foundation | Electric and electromagnetic field sensing system including an optical transducer |
CN1490598A (zh) * | 2002-10-14 | 2004-04-21 | 上海乐通光通信有限公司 | 光纤传感器 |
US8559770B2 (en) * | 2005-03-02 | 2013-10-15 | Fiso Technologies Inc. | Fabry-perot optical sensor and method of manufacturing the same |
EP1869737B1 (en) * | 2005-03-16 | 2021-05-12 | Davidson Instruments, Inc. | High intensity fabry-perot sensor |
CN103154682B (zh) * | 2010-03-15 | 2015-01-07 | 里兰斯坦福初级大学理事会 | 光纤兼容声学传感器 |
CN103528665A (zh) * | 2013-09-29 | 2014-01-22 | 中国电子科技集团公司第二十七研究所 | 一种新型法布里-帕罗干涉型mems声波传感器 |
CN104596435B (zh) * | 2014-12-04 | 2017-09-19 | 中国科学院上海微系统与信息技术研究所 | 一种基于mems工艺的腔长可调光纤f‑p应变计及成型方法 |
CN105242067B (zh) * | 2015-10-22 | 2018-02-13 | 哈尔滨工业大学 | 一种基于光纤布拉格光栅的膜片式高精细度法布里‑珀罗光纤加速度传感器 |
CN105241541B (zh) * | 2015-10-22 | 2018-02-13 | 哈尔滨工业大学 | 一种基于光纤布拉格光栅的膜片式高精细度法布里‑珀罗光纤声压传感器 |
CN109374109B (zh) * | 2018-09-01 | 2020-09-25 | 哈尔滨工程大学 | 一种共光路结构的微型光纤非本征型迈克尔逊声压传感器 |
CN214407857U (zh) * | 2020-11-27 | 2021-10-15 | 广州民航职业技术学院 | 光纤压力传感器及压力检测设备 |
-
2022
- 2022-03-24 CN CN202210302782.9A patent/CN116839639A/zh active Pending
-
2023
- 2023-03-21 WO PCT/CN2023/082802 patent/WO2023179612A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
CN116839639A (zh) | 2023-10-03 |
WO2023179612A1 (zh) | 2023-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2871702B2 (ja) | 集積ファイバ光学送受信装置 | |
US4310905A (en) | Acoustical modulator for fiber optic transmission | |
US6055080A (en) | Optical microphone | |
US4810052A (en) | Fiber optic bidirectional data bus tap | |
CN102597832B (zh) | 扩束接口设备及其制造方法 | |
US7792395B2 (en) | Fiber optic acceleration and displacement sensors | |
CN110596829B (zh) | 一种具有otdr功能的光模块 | |
CN112698451B (zh) | 一种光模块 | |
CN112235050B (zh) | 单光纤双向收发装置及光纤通信系统 | |
EP2518549A1 (en) | Spatial multiplexer for coupling single-mode fibers to a multi-core fiber | |
CN210775927U (zh) | 一种光模块 | |
CN112558238A (zh) | 一种光模块 | |
WO2023179612A9 (zh) | 光纤传感器和检测设备 | |
CN210803798U (zh) | 应用于otdr测距收发同波长bosa光器件 | |
CN103644961A (zh) | 声压测量传感器及多纵模光纤激光器声压测量系统 | |
JP7188841B2 (ja) | シリコンレンズを有するマルチチャネルモードコンバータ | |
CN112698450B (zh) | 一种光模块 | |
CN211123390U (zh) | 一种硅光波分复用光引擎 | |
CN110553713A (zh) | 光纤超声波传感器 | |
CN110462491A (zh) | 一种低串扰单芯双向光组件 | |
CN113551874A (zh) | 光整合器件及光时域反射仪 | |
US20130022313A1 (en) | Optical Devices and Methods of Making and Using the Same | |
JP5502271B2 (ja) | 双方向光モジュールおよび光パルス試験器 | |
CN214067434U (zh) | 一种分光探测的光衰减器 | |
CN112198592B (zh) | 一种光学系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23773859 Country of ref document: EP Kind code of ref document: A1 |