WO2023179488A1 - 覆盖空洞的检测方法和相关设备 - Google Patents

覆盖空洞的检测方法和相关设备 Download PDF

Info

Publication number
WO2023179488A1
WO2023179488A1 PCT/CN2023/082198 CN2023082198W WO2023179488A1 WO 2023179488 A1 WO2023179488 A1 WO 2023179488A1 CN 2023082198 W CN2023082198 W CN 2023082198W WO 2023179488 A1 WO2023179488 A1 WO 2023179488A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
roaming
terminals
coverage
threshold
Prior art date
Application number
PCT/CN2023/082198
Other languages
English (en)
French (fr)
Inventor
陶亮
包德伟
李长路
赵文禄
何聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023179488A1 publication Critical patent/WO2023179488A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present application relates to the field of communication technology, and in particular to detection methods and related equipment for coverage holes.
  • Real-life network scenarios are complex and changeable. For example, interior decoration, functional changes, personnel movements, etc. may cause the current network scenario to be different from the network scenario when the network was built.
  • the network planning, deployment and configuration during network construction may not necessarily meet the needs of the current network scenario, and coverage holes are prone to occur, such as obstruction between the access point (AP) and the terminal, and Problems such as lack of AP coverage at a certain location force terminals to associate to distant APs, resulting in weak association signals for terminals in coverage holes and poor user experience. How to detect coverage holes is a problem that needs to be solved.
  • This application provides coverage hole detection methods and related equipment, which can detect coverage holes in wireless local area networks (WLAN).
  • WLAN wireless local area networks
  • this application provides a detection method for covering holes.
  • This method can be applied to electronic devices, which can be WLAN controllers, analyzers, APs, etc.
  • the electronic device determines that a coverage hole exists between the first AP and the second AP based on the roaming behavior of the terminal between the first AP and the second AP.
  • the roaming behavior of the terminal between the first AP and the second AP includes the roaming behavior of multiple terminals between the first AP and the second AP.
  • this solution can implement the roaming behavior of multiple terminals between two APs based on the roaming behavior between the two APs. Detection of coverage holes.
  • the roaming behavior includes roaming switching duration.
  • the electronic device obtains the roaming switching durations of the multiple terminals. When the roaming switching durations of the multiple terminals meet the conditions, the electronic device determines that there is a coverage hole between the first AP and the second AP.
  • the roaming handover duration of each terminal in the plurality of terminals indicates: the duration that elapses between the terminal leaving the first AP and the terminal being associated with the second AP, or the time that the terminal leaves the second AP until the terminal is associated with the first AP. The duration of AP elapsed.
  • the roaming switching duration of any terminal among the plurality of terminals includes: the roaming switching duration of any terminal roaming from the first AP to the second AP, and/or the roaming switching duration of any terminal roaming from the second AP to the first AP. roaming switching duration.
  • the roaming switching durations of the multiple terminals can be obtained.
  • the roaming switching durations of the multiple terminals meet the first condition, This indicates that the roaming experience of the terminal between the first AP and the second AP is poor, and thus it is determined that there is a coverage hole between the first AP and the second AP.
  • the first condition includes: the number of terminals whose roaming switching duration reaches the duration threshold reaches the quantity threshold, and/or the proportion of the number of terminals whose roaming switching duration reaches the duration threshold reaches the proportion threshold.
  • the terminal is in the first
  • the roaming experience between the first AP and the second AP is poor, so it is determined that there is a coverage hole between the first AP and the second AP.
  • the terminal leaving the first AP includes: the terminal is disassociated from the first AP, or the signal strength of the terminal associated with the first AP is less than a signal strength threshold.
  • the roaming handover duration refers to the duration that elapses between the terminal being associated with one AP and the terminal being associated with another AP.
  • the roaming handover duration refers to the length of time that elapses after the signal strength of the terminal associated with one of the APs is less than the signal strength threshold until the terminal associates with another AP.
  • the terminal leaving the second AP includes: the terminal is disassociated from the second AP, or the signal strength of the terminal associated with the second AP is less than a signal strength threshold.
  • the roaming behavior includes signal strength before roaming.
  • the electronic device obtains the pre-roaming signal strengths of the multiple terminals. When the pre-roaming signal strengths of the multiple terminals meet the second condition, the electronic device determines that a coverage hole exists between the first AP and the second AP.
  • the pre-roaming signal strength of each terminal in the plurality of terminals includes: N signal strengths before associating with the second AP when the terminal roams from the first AP to the second AP, and/or, the terminal roams from the second AP N signal strengths before associating with the first AP during the process of reaching the first AP, where N is an integer greater than or equal to 1.
  • the pre-roaming signal strengths of the multiple terminals can be obtained.
  • the pre-roaming signal strengths of the multiple terminals meet the second condition When , it means that the roaming experience of the terminal between the first AP and the second AP is poor, thus it is determined that there is a coverage hole between the first AP and the second AP.
  • the second condition includes: the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the quantity threshold, and/or the proportion of the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the proportion threshold.
  • the electronic device determines that there is a coverage hole between the third AP and the fourth AP based on the roaming behavior of the terminal between the third AP and the fourth AP, and displays the coverage on the user graphical interface Empty location.
  • the coverage hole is located at the intersection point of the connection between the first AP and the second AP and the connection between the third AP and the fourth AP.
  • the connections between APs include straight lines, curves, etc., which are not specifically limited in this application.
  • intersection point can be determined as the location of the coverage hole. Displaying the location of the coverage hole helps operation and maintenance personnel quickly adjust deployment, enhance signal coverage in the area, and improve user experience.
  • this application provides a detection method for covering holes.
  • This method can be applied to electronic devices, which can be WLAN controllers, analyzers, APs, etc.
  • the electronic device determines whether there is a coverage hole in the AP based on the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals.
  • a resident terminal of an AP is a terminal whose association time with the AP is greater than the duration threshold.
  • a weak coverage terminal is a terminal whose signal strength associated with the AP is less than the signal strength threshold.
  • an AP may be associated with multiple terminals. Some terminals may be continuously associated with the AP (for example, the terminal is associated with the AP for longer than the duration threshold, that is, it is a resident terminal), and some terminals may be associated with the AP only briefly. For example, for an AP in a manager's office, the manager's terminal will continuously associate with the AP in the office, while the terminals of people passing by outside the office will only associate with the AP briefly.
  • the signal quality of terminals that are continuously associated with the AP can better reflect the coverage quality of the AP. When a coverage hole exists in an AP, it may result in poor signal quality for some resident terminals associated with the AP. Therefore, this solution can detect coverage holes based on resident terminals and weak coverage terminals in resident terminals, and will make the detection of coverage holes more accurate.
  • the electronic device determines that a coverage hole exists in the AP. Or, when the ratio of the number of weak coverage terminals to the number of resident terminals reaches the proportion threshold, the electronic device determines that a coverage hole exists in the AP. Or, when the number of weak coverage terminals reaches the quantity threshold and the number of weak coverage terminals When the ratio of the AP to the number of resident terminals reaches the proportion threshold, the electronic device determines that the AP has a coverage hole.
  • the electronic device sets the weight of each resident terminal according to the association duration of each resident terminal with the AP, and adjusts the number of resident terminals according to the weight of each resident terminal.
  • this solution adjusts the weight of the resident terminal based on the association duration between the resident terminal and the AP, and then adjusts the number of resident terminals. Adjusting the number of resident terminals will also cause the number of weak coverage terminals to be adjusted, so that the weak coverage The number of terminals can better match the association time between resident terminals and APs, further improving the accuracy of coverage hole detection.
  • the present application provides a detection device covering a cavity.
  • the device has the function of realizing the behavior in the method embodiment of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes an acquisition unit and a processing unit.
  • the obtaining unit is used to obtain the roaming behavior of the terminal between the first AP and the second AP.
  • a processing unit configured to determine that a coverage hole exists between the first AP and the second AP based on the roaming behavior of the terminal between the first AP and the second AP.
  • the roaming behavior of the terminal between the first AP and the second AP includes the roaming behavior of multiple terminals between the first AP and the second AP.
  • the roaming behavior includes roaming switching duration.
  • the obtaining unit is specifically configured to obtain roaming switching durations of the plurality of terminals.
  • the roaming switching duration of each terminal in the plurality of terminals indicates: the duration that elapses between the terminal leaving the first AP and the terminal being associated with the second AP, and/or the duration of the terminal leaving the second AP and the The length of time it takes for the terminal to associate with the first AP.
  • the processing unit is specifically configured to determine that a coverage hole exists between the first AP and the second AP when the roaming switching durations of the plurality of terminals meet the first condition.
  • the first condition includes: the number of terminals whose roaming switching duration reaches the duration threshold reaches the quantity threshold; and/or the proportion of the number of terminals whose roaming switching duration reaches the duration threshold reaches the proportion threshold.
  • the terminal leaving the first AP includes: the terminal is disassociated from the first AP; or the signal strength of the terminal associated with the first AP is less than a signal strength threshold.
  • the roaming behavior includes signal strength before roaming.
  • the obtaining unit is specifically configured to: obtain the signal strengths of the plurality of terminals before roaming.
  • the processing unit is specifically configured to determine that a coverage hole exists between the first AP and the second AP when the signal strengths of the multiple terminals before roaming meet the second condition.
  • the pre-roaming signal strength of each terminal in the plurality of terminals includes: N signal strengths before associating with the second AP when the terminal roams from the first AP to the second AP, and/or, the terminal roams from the second AP N signal strengths before associating with the first AP during the process of reaching the first AP, where N is an integer greater than or equal to 1.
  • the second condition includes: the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the quantity threshold, and/or the proportion of the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the proportion threshold.
  • the processing unit is further configured to: determine that there is a coverage hole between the third AP and the fourth AP based on the roaming behavior of the terminal between the third AP and the fourth AP. ; and display the location of the coverage hole on the user graphical interface.
  • the location of the coverage hole is an intersection point between the connection line between the first AP and the second AP and the connection line between the third AP and the fourth AP.
  • the present application provides a detection device covering a cavity.
  • the device has the function of realizing the behavior in the method example of the second aspect above.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device includes an acquisition unit and a processing unit.
  • the obtaining unit is configured to obtain the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals.
  • Processing unit for AP-based resident terminal The number of terminals and the number of weak coverage terminals among the resident terminals determine whether there is a coverage hole in the AP.
  • the resident terminal of the AP is a terminal whose association duration with the AP is greater than a duration threshold.
  • the weak coverage terminal is a terminal whose signal strength associated with the AP is less than a first signal strength threshold.
  • the processing unit is specifically configured to: determine that a coverage hole exists in the AP when the number of weak coverage terminals reaches a quantity threshold; and/or when the number of weak coverage terminals is equal to the number of weak coverage terminals. When the ratio of the number of resident terminals reaches the ratio threshold, it is determined that the AP has a coverage hole.
  • the processing unit is further configured to: set the weight of each resident terminal according to the association duration of each resident terminal with the AP; and set the weight of each resident terminal according to the weight of each resident terminal. Adjust the number of resident terminals.
  • this application provides an electronic device, including: a processor and a memory.
  • a memory is coupled to the processor and stores a program executed by the processor, wherein the program, when executed by the processor, enables the electronic device to perform either the first aspect or the second aspect. method in the embodiment.
  • the present application provides a computer-readable storage medium. Instructions are stored on the computer-readable storage medium. When the instructions are executed by a processor, any one of the first aspect or the second aspect is implemented. Methods in Possible Embodiments.
  • the present application provides a computer program product, including a computer program that, when executed by a processor, implements the method in any possible embodiment of the first aspect or the second aspect.
  • Figure 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Figure 3 is a schematic diagram of another application scenario provided by the embodiment of the present application.
  • Figure 4 is a schematic flowchart of a coverage hole detection method provided by an embodiment of the present application.
  • Figure 5 is a schematic flow chart of a specific example of the coverage hole detection method shown in Figure 4.
  • Figure 6 is a schematic flowchart of a method for detecting coverage holes provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of a roaming jumping phenomenon provided by an embodiment of the present application.
  • Figure 8 is a schematic flowchart of an application for detecting coverage holes provided by an embodiment of the present application.
  • Figure 9 is a schematic flowchart of a recommended blind filling strategy provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram showing the coverage holes and blind filling recommended locations of a building provided by the embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a detection device covering a cavity provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of a detection device covering a cavity provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • terminals in coverage holes have weak associated signals and poor user experience, it is necessary to identify these coverage holes. Operation and maintenance personnel can perform targeted blind filling based on the identified coverage holes to enhance signal coverage in the coverage hole area (for example, add new APs at the location of the coverage holes, or increase the transmit power of APs near the coverage holes, etc. ), thereby improving user experience.
  • the coverage hole can be an area with no signal coverage at all, or an area with weak signal coverage. The terminal cannot associate with the AP in the coverage hole or the signal quality of the associated AP is poor.
  • this application provides detection methods and related equipment for covering voids.
  • Coverage hole detection methods can be performed by a variety of electronic devices, such as WLAN controllers, analyzers, or APs.
  • the WLAN controller is, for example, an Access Controller (AC).
  • the analyzer is, for example, a personal computer, a virtual machine, a server, a cloud device, etc.
  • the WLAN controller obtains the terminal data associated with each AP (for example, the signal strength of the terminal, the roaming behavior of the terminal, the association duration of the terminal, etc.), and detects each AP based on the terminal data associated with each AP. Whether there are coverage holes between APs or APs.
  • the analyzer can obtain the terminal data associated with each AP by itself or obtain the terminal data associated with each AP through the WLAN controller, and detect whether each AP or between APs exists based on the terminal data associated with each AP. Cover the void.
  • the AP can obtain data about terminals associated with itself and other APs, and detect whether there are coverage holes between APs or between APs based on the terminal data associated with each AP.
  • the signal quality of the terminal associated with the AP can reflect the coverage quality of the AP to a certain extent. However, some terminals continuously associate with the AP (for example, the duration of the terminal's association with the AP is greater than the duration threshold, that is, the terminal is resident), and some terminals may only associate with the AP briefly. For example, in a manager's office, the manager's terminal will continuously associate with the AP in the office, while the terminals of people passing by outside the office will only associate with the AP briefly. The signal quality of terminals that are continuously associated with the AP can better reflect the coverage quality of the AP. When a coverage hole exists in an AP, it may result in poor signal quality for some resident terminals associated with the AP.
  • a weak coverage terminal is a terminal whose signal strength associated with the AP is less than the signal strength threshold.
  • the electronic device analyzes the number and/or proportion of weak coverage terminals among its associated resident terminals, and determines whether the AP has a coverage hole based on the number and/or proportion of weak coverage terminals among the resident terminals.
  • the electronic device can analyze the number and/or proportion of weak coverage terminals among the resident terminals associated with each AP, and thereby determine whether there is a coverage hole for each AP in the wireless network.
  • the terminal will pass through the coverage hole when roaming between the two APs. Therefore, the roaming behavior of multiple terminals between APs can reflect whether there are coverage holes between APs. Therefore, this application detects whether there is a coverage hole between the two APs based on the roaming behavior of multiple terminals between the two APs.
  • Roaming behavior is, for example, roaming switching duration or signal strength before roaming.
  • the roaming handover duration indicates the duration that elapses between the terminal leaving the first AP and being associated with the second AP. After the terminal leaves the first AP, when the terminal detects that the signal strength of the second AP reaches a certain level, the terminal will associate with the second AP.
  • the signal strength before roaming can be the statistical value of the last N (N>1) signal strengths before the terminal leaves the first AP, for example, the last signal strength, or the average of the last multiple signal strengths, etc.
  • this application can also determine the location of the coverage hole and display the location of the coverage hole to clearly inform the operation and maintenance personnel where the coverage hole exists.
  • This allows operation and maintenance personnel to quickly locate coverage holes and promptly adjust AP deployment to enhance network coverage.
  • the electronic device displays the identification of an AP with a coverage hole or the deployment location of the AP to inform the operation and maintenance personnel that the AP has a coverage hole.
  • the operation and maintenance personnel can increase the transmit power of the AP or add a new AP in the area where the AP is located. Enhance network coverage in the area.
  • the electronic device can connect the connection between the first AP and the second AP to the third AP.
  • the intersection with the fourth AP is determined as the location of the coverage hole, and the location is displayed. Operation and maintenance personnel can increase the transmit power of the relevant AP or add a new AP at this location to enhance network coverage in the area.
  • FIGS 1 to 3 are schematic diagrams of application scenarios provided by embodiments of the present application.
  • Figure 1 to Figure 3 The application scenario shown is an office area, and each sub-area of the office area is deployed with one or more APs, such as AP1 to AP6.
  • electronic devices can determine APs or roaming paths with coverage holes in the wireless network in the office area.
  • AP1 has a coverage hole
  • AP2 and AP6 have a coverage hole
  • Operation and maintenance personnel can adjust AP deployment based on the detection results to enhance the signal coverage of the wireless network. For example, increase AP1's transmit power to enhance AP1's coverage.
  • add a new AP between AP2 and AP6 to enhance the signal coverage between AP2 and AP6.
  • the electronic device can also determine the location of the coverage hole, for example, determine the intersection of the connection between AP2 and AP6 and the connection between AP3 and AP5 (the position of the five-pointed star in Figure 3) To cover the location of the hole.
  • the electronic device can display the location on a graphical interface. Operation and maintenance personnel can add an AP at the location based on the display of the electronic device to enhance signal coverage at the location.
  • the coverage hole detection method 400 may be executed by an electronic device (such as a WLAN controller, an analyzer, or an AP) to detect coverage holes of the AP.
  • an electronic device such as a WLAN controller, an analyzer, or an AP
  • the following description takes the example that this method is executed by the AP.
  • the coverage hole detection method 400 includes but is not limited to the following steps or operations:
  • a resident terminal of an AP is a terminal whose association time with the AP is greater than the duration threshold.
  • a weak coverage terminal is a terminal whose signal strength associated with the AP is less than the first signal strength threshold.
  • the AP can collect association data of terminals associated with the AP within a preset time period, and determine the AP's resident terminals and weak coverage terminals among the resident terminals based on the association data of each terminal.
  • the association data of the terminal includes the time when the terminal associates with the AP (hereinafter referred to as the association time) and the time when the terminal disassociates from the AP (hereinafter referred to as the disassociation time).
  • the AP calculates the duration of one association of the terminal based on the terminal's primary association time and the disassociation time corresponding to the association time.
  • a terminal may associate with the AP multiple times and de-associate multiple times accordingly. For example, within a day, the terminal first associates with an AP in the office area, stays within the coverage of the AP for a period of time, and then goes to other areas. This causes the terminal to associate with the AP, and then the terminal may return to the office area. area, causing the terminal to associate with the AP again. In this way, the terminal may associate with the AP multiple times and de-associate multiple times accordingly.
  • the terminal's association data includes multiple association times and corresponding de-association times. The AP can calculate multiple association durations based on this.
  • the AP determines whether the terminal is a resident terminal of the AP based on the duration threshold. When the terminal's association duration is greater than the duration threshold, the AP determines that the terminal is a resident terminal. When the terminal has only one association duration, the AP can directly compare the association duration with the duration threshold to determine whether the terminal is a resident terminal of the AP. When the terminal has multiple association durations, the AP can first calculate the statistical values of the multiple association durations, and then compare the statistical values with the duration threshold. When the statistical value is greater than the duration threshold, the AP determines that the terminal is the resident terminal of the AP. .
  • the statistical value of the association duration is, for example, the maximum value, quantile, etc. of multiple association durations.
  • the duration threshold may be a preset value, for example, 30 minutes.
  • the duration threshold can also be dynamically determined in other ways, for example, by determining the duration threshold based on the distribution of associated durations of multiple terminals.
  • the duration threshold is the average of each association duration of multiple terminals.
  • the duration threshold is determined to be ⁇ -3 ⁇ based on the 3sigma (3 ⁇ ) criterion, where ⁇ is the expectation of the association duration of multiple terminals, and ⁇ is the variance of the association duration of the multiple terminals.
  • the multiple terminals may be terminals that associate with the AP during a preset time period, or may also be terminals that access the WLAN system to which the AP belongs during a preset time period.
  • the AP can set multiple duration thresholds, for example, a first duration threshold and a second duration threshold. Then, The AP compares the association duration of the terminal with the AP during the preset time period with multiple duration thresholds to determine the resident terminal of the AP. For example, when the first statistical value of the terminal's association duration is greater than the first duration threshold, and the second statistical value of the terminal's association duration is greater than the second duration threshold, the AP determines that the terminal is the resident terminal of the AP.
  • the first statistical value is, for example, the average, median, maximum value, and quantile of the correlation duration
  • the second statistical value is, for example, the sum of the correlation duration.
  • the method for determining the first duration threshold is similar to the method for determining the above-mentioned duration threshold.
  • the second duration threshold can be a preset value, or can be determined based on the above-mentioned method for determining the duration threshold.
  • the second duration threshold can be multiple The average of the sum of association durations for each terminal in the terminal.
  • the AP can obtain the association time of the terminal's association with the AP through various methods. For example, when a terminal initiates a request to associate with an AP, the AP will determine whether the terminal is accessible based on the terminal's authentication result and the AP's resources (for example, the number of available Internet Protocol (IP) addresses). When accessible, the AP will send a confirmation message to the terminal, and the AP can use the time when the confirmation message is sent as the terminal's association time. It can be understood that the AP can also use other times as the association time of the terminal. For example, the AP can use the time when the AP receives the first data frame of the terminal after sending the above acknowledgment message as the association time of the terminal. If the terminal associates with the AP multiple times within a preset time period, the AP can obtain multiple association moments accordingly.
  • IP Internet Protocol
  • the AP can obtain the disassociation time of the terminal to associate with the AP through various methods. For example, when leaving the AP's coverage area, the terminal may send a disassociation frame to the AP, and the AP may use the time when the disassociation frame is received as the disassociation time. If the terminal de-associates with the AP multiple times within a preset time period, the AP can obtain multiple de-association moments accordingly. For another example, the AP may also use the time when the last data frame sent by the terminal is received as the de-association time.
  • the AP can receive the last data from the terminal before the terminal associates with the AP for the N+1th time.
  • the time of the frame is used as the Nth de-association time of the AP.
  • the AP can determine the resident terminal of the AP based on the association duration of each terminal associated with the AP within a preset time period.
  • the preset time period can be flexibly adjusted, for example, 24 hours before the coverage hole is detected, 1 month before the coverage hole is detected, etc.
  • the AP can also determine weak coverage terminals among the resident terminals.
  • a weak coverage terminal is a terminal whose signal strength associated with the AP is less than the first signal strength threshold.
  • the associated data of the terminal may also include the signal strength of the terminal, for example, the uplink signal strength and/or the downlink signal strength.
  • the terminal can continuously detect the downlink signal strength of the AP, and the AP can also continuously detect the uplink signal strength of the terminal.
  • the terminal can periodically send downlink signal strength to the AP, for example, the downlink received signal strength indication (RSSI) value.
  • the AP can also periodically detect the uplink signal strength of the terminal, for example, the uplink RSSI value. That is to say, during each time period when the terminal associates with the AP, the AP can obtain multiple downlink signal strengths and multiple uplink signal strengths.
  • RSSI downlink received signal strength indication
  • the AP may determine whether each terminal is a weak coverage terminal based on the signal strength of each terminal among the resident terminals and the first signal strength threshold. For example, the AP calculates a signal strength statistical value of the terminal based on multiple signal strengths of the terminal within a preset time period, and compares the signal strength statistical value with a first signal strength threshold. When the signal strength statistical value is less than the first signal strength threshold, the AP determines that the resident terminal is a weak coverage terminal.
  • the signal strength statistical value is, for example, an uplink signal strength statistical value, such as mean, median, quantile, etc.
  • the signal strength statistical value is, for example, a downlink signal strength statistical value, such as mean, median, quantile, etc.
  • the signal strength statistical value is, for example, a weighted average of the uplink signal strength statistical value and the downlink signal strength.
  • the AP calculates a signal strength statistical value for each association period of the terminal. When the terminal associates with the AP multiple times, the AP calculates multiple signal strength statistical values for the terminal. When the number of statistical values smaller than the first signal strength threshold among the plurality of signal strength statistical values exceeds the first quantity threshold, the AP determines that the terminal is a weak coverage terminal. Or, when the proportion of the signal strength statistical value smaller than the first signal strength threshold exceeds the first proportion threshold, the AP determines that the terminal is a weak coverage terminal. Or, when both of the above conditions are met, the AP determines that the terminal is a weak coverage terminal.
  • first signal strength threshold Both the first quantity threshold and the first proportion threshold may be preset values, or may be obtained based on a method similar to the duration threshold.
  • the AP calculates a signal strength statistical value for each association period of the terminal.
  • the AP determines a weak coverage terminal.
  • the terminal associates with the AP N times and M signal strength statistical values among the N signal strength statistical values are all less than the first signal strength threshold the AP determines M weak coverage terminals.
  • the AP adjusts the one resident terminal to N resident terminals. That is, the AP corresponds to the one resident terminal as N resident terminals, and determines M resident terminals among the N resident terminals as M weak coverage terminals.
  • the AP counts the signal strength statistics of each resident terminal according to the specified time granularity, for example, half an hour. For example, the preset period is 24 hours and the duration granularity is half an hour. This AP divides the preset period into 48 statistical periods. If a resident terminal is associated with the AP in a certain statistical period, the AP calculates the calculation for the terminal. A signal strength statistical value. If the signal strength statistical value is less than the first signal strength threshold, the AP determines a weak coverage terminal.
  • the specified time granularity for example, half an hour.
  • the preset period is 24 hours and the duration granularity is half an hour. This AP divides the preset period into 48 statistical periods. If a resident terminal is associated with the AP in a certain statistical period, the AP calculates the calculation for the terminal. A signal strength statistical value. If the signal strength statistical value is less than the first signal strength threshold, the AP determines a weak coverage terminal.
  • the AP counts the signal strength statistics of the resident terminal in the five statistical periods. If If the statistical value of signal strength in a certain statistical period is less than the first signal strength threshold, the AP determines a weak coverage terminal. For example, if the statistical value of signal strength in three of the five statistical periods is less than the first signal strength threshold, then The AP determines three weak coverage terminals.
  • the AP adjusts the number of resident terminals corresponding to the resident terminal according to the association duration of the resident terminal with the AP, for example, adjusts the number of resident terminals from 1 to 5 (corresponding to 5 statistical periods) .
  • the AP determines the number of weak coverage terminals for each resident terminal based on the statistical period, and accumulates the number of weak coverage terminals for each resident terminal to obtain the number of weak coverage terminals for the AP within the preset period. The number of weakly covered terminals.
  • the AP sets the weight of each resident terminal according to the length of time each resident terminal is associated with the AP, adjusts the number of each resident terminal according to the weight of each resident terminal, and then adds up the number of each resident terminal. to obtain the number of resident terminals of the AP.
  • the signal coverage quality of terminals with long association time can better reflect the coverage quality of the AP.
  • the AP sets the weight of each resident terminal based on the association time of each resident terminal, and then adjusts the number of resident terminals, making the detection of coverage holes more accurate. precise.
  • the AP can determine the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals within a preset period.
  • duration thresholds and the first signal strength threshold may be related to actual network usage scenarios and are dynamic thresholds.
  • different duration thresholds and first signal strength thresholds may be preset for different network usage scenarios.
  • the association duration of the terminal with the AP is greater than the duration threshold, it means that the terminal is a resident terminal of the AP.
  • the signal quality of the resident terminal can better reflect the coverage quality of the AP. Therefore, this application determines whether there is a coverage hole in the AP based on the number of weak coverage terminals among the resident terminals. In this way, coverage hole detection for the AP is achieved, and the coverage hole detection is made more accurate.
  • determining whether there is a coverage hole in the AP based on the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals includes: when the number of weak coverage terminals reaches a second quantity threshold, determining There is a coverage hole in the AP; or when the ratio of the number of weak coverage terminals to the number of resident terminals reaches the second proportion threshold, the AP is determined A coverage hole exists; or when the number of weak coverage terminals reaches a second quantity threshold, and the ratio of the number of weak coverage terminals to the number of resident terminals reaches a second ratio threshold, it is determined that a coverage hole exists in the AP.
  • the second quantity threshold and the second proportion threshold are determined based on the number of resident terminals of the AP. That is, the second quantity threshold and the second ratio threshold are dynamically adjusted based on the number of resident terminals of the AP. For example, the size of the second quantity threshold is dynamically adjusted based on the number of resident terminals of the AP, and the size of the second proportion threshold is dynamically adjusted based on the number of resident terminals of the AP.
  • the number of resident terminals of different APs may be quite different. Therefore, different coverage hole judgment conditions can be set according to the number of resident terminals of APs. For example, if the number of resident terminals is small, when the proportion of weak coverage terminals exceeds a large proportion threshold, it is determined that a coverage hole exists in the AP; if the number of resident terminals is large, when the number of weak coverage terminals exceeds a specified value When, it is determined that the AP has a coverage hole; if the number of resident terminals is between the above two, and when the proportion of weakly covered terminals exceeds a small proportion threshold, it is determined that the AP has a coverage hole.
  • the second proportion threshold includes proportion threshold a and proportion threshold b, and determines whether there is a coverage hole in the AP based on the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals, including: when the resident terminals When the number is less than the third quantity threshold, and the ratio of the number of weak coverage terminals to the number of resident terminals is greater than or equal to the ratio threshold a, it is determined that a coverage hole exists in the AP; when the number of resident terminals is greater than or equal to the third quantity threshold and less than or equal to the fourth quantity threshold, and the ratio of the number of weak coverage terminals to the number of resident terminals is greater than or equal to the ratio threshold b, it is determined that a coverage hole exists in the AP; when the number of resident terminals is greater than the fourth quantity threshold, and the ratio of the number of weak coverage terminals to the number of resident terminals is greater than or equal to the ratio threshold b; When the number of terminals reaches the fifth quantity threshold, it is determined
  • N represents the number of resident terminals
  • the third quantity threshold is 3
  • the fourth quantity threshold is 10
  • P(a) represents the proportion threshold a
  • P(b) represents the proportion threshold b
  • R represents the fifth quantity threshold.
  • the purpose of the above evaluation criteria is: when the number of resident terminals is small, the AP will be considered to have a coverage hole only if these resident terminals are weak coverage terminals; when the number of resident terminals is normal, weak coverage terminals The judgment is based on the proportion of the number of resident terminals, that is, the normal proportion threshold is used; when the number of resident terminals is large, if some of the resident terminals are weak coverage terminals, their proportion may also be very small. , so the number of weak coverage terminals is used for evaluation, that is, the fifth quantitative threshold is used for evaluation.
  • N, P(a), P(b) and R in the above formula can be dynamically adjusted.
  • whether there is a coverage hole in the AP is detected based on the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals. Since the duration of the resident terminal's association with the AP exceeds the duration threshold, the signal quality of the resident terminal can better reflect the coverage quality of the AP. Therefore, the embodiments of the present application improve the accuracy of detecting AP coverage holes.
  • FIG. 5 is a schematic flowchart of a specific example of the coverage hole detection method shown in FIG. 4 .
  • the coverage hole detection method may be executed by an electronic device (such as a WLAN controller, an analyzer or an AP) to detect coverage holes of the AP.
  • the coverage hole detection method includes but is not limited to the following steps or operations:
  • the electronic device before performing step 501, the electronic device first collects the information of each terminal in all terminals associated with the AP. associated data of the terminal, and then determines whether the terminal is a resident terminal of the AP based on the associated data of each terminal.
  • the associated data is noise data and needs to be eliminated. The associated data of non-resident terminals will no longer be considered in subsequent steps.
  • step 502 is performed.
  • the terminals served by each AP are relatively fixed.
  • the electronic device can store relevant information of the resident terminal, for example, store the Media Access Control (MAC) address of the resident terminal in the data table.
  • the electronic device can determine whether a certain terminal is a resident terminal by querying the data table. For example, the MAC address of the terminal is compared with the MAC address of the resident terminal in the data table. If the same MAC address as the terminal's MAC address exists in the data table, the terminal is a resident terminal.
  • MAC Media Access Control
  • the retained associated data are all associated data of the resident terminal of the AP.
  • the AP can also update the associated data of the resident terminal. For example, the AP eliminates the suspected pre-roaming signal strength from the associated data of the resident terminal. After associating with this AP, the terminal may move to roam to other APs. Before accessing other APs, the terminal is on the roaming path and may still be associated with the AP. At this time, the signal strength of the terminal is weak.
  • this application can eliminate the suspected pre-roaming signal strength from the terminal's associated data, so that the updated associated data can better reflect the coverage quality of the AP. For example, the AP deletes the last few (for example, 3) signal strengths of each resident terminal after each association with the AP. Subsequent steps will use the updated resident terminal's associated data.
  • the signal strength of the AP can also be counted first, and it can be determined whether the signal strength of the AP is less than the signal strength threshold. If the signal strength of the AP is not less than the signal strength threshold, it is judged that the overall coverage quality of the AP is good, and step 507 can be performed to determine that there is no coverage hole in the AP. Otherwise, continue to step 504.
  • the signal strength of the AP is the statistical value of the signal strength of the resident terminal of the AP, for example, it is the average value of the downlink signal strength detected by the resident terminal.
  • step 401 Please refer to the above-mentioned step 401 for this step, which will not be described again here.
  • the AP can determine whether there is a coverage hole in the AP based on the number or proportion of weak coverage terminals among the resident terminals.
  • the ratio refers to the ratio of the number of weak coverage terminals among the resident terminals of the AP to the number of resident terminals associated with the AP.
  • step 506 is performed to determine that a coverage hole exists in the AP. Otherwise, step 507 is executed to determine that there is no coverage hole in the AP.
  • Step 507 is no longer performed.
  • steps 502 and 503 are optional steps.
  • the coverage hole detection method 600 may be executed by an electronic device (such as a WLAN controller, an analyzer or an AP) to detect coverage holes between APs.
  • the coverage hole detection method 600 includes but is not limited to the following steps or operations:
  • the roaming behavior of the terminal between the first AP and the second AP includes the roaming behavior of multiple terminals between the first AP and the second AP.
  • Each AP in the wireless network can collect association data of terminals associated with the AP.
  • the association data of the terminal includes, for example, the identification of the terminal (for example, the MAC address of the terminal), the identification of the associated AP (for example, the name of the AP), the signal strength of the terminal, the association time of the terminal, the de-association time of the terminal, etc.
  • the identification of the terminal for example, the MAC address of the terminal
  • the identification of the associated AP for example, the name of the AP
  • the signal strength of the terminal for example, the association time of the terminal, the de-association time of the terminal, etc.
  • the electronic device may be the first AP, the second AP, or other devices. If the electronic device is the first AP, other APs in the wireless network can send the collected association data of the terminal associated with it to the first AP. If the electronic device is the second AP, other APs in the wireless network can send the collected association data of the terminal associated with it to the second AP. If the electronic device is another device, each AP can send the collected association data of the terminal associated with it to the other device. Therefore, the electronic device can obtain association data associated with terminals of each AP in the wireless network.
  • the electronic device may determine the roaming behavior of the terminal between the first AP and the second AP based on the association data of the terminal associated with each AP, and determine the roaming behavior of the terminal between the first AP and the second AP based on the roaming behavior of the first AP and the second AP. Whether there is a coverage hole between the second APs.
  • the electronic device can use any two APs in the wireless network as the first AP and the second AP, thereby determining multiple first AP and second AP pairs, and then determine each first AP and second AP pair. Whether there are coverage holes between them.
  • the electronic device may regard as the first terminal a terminal that has not associated with other APs in the wireless network before associating with the second AP after leaving the first AP within a preset time period. Roaming terminal between AP and the second AP.
  • the electronic device may also use a terminal that has not associated with other APs in the wireless network before associating with the first AP after leaving the second AP within a preset time period as the link between the first AP and the second AP. roaming terminal. Accordingly, the electronic device acquires multiple terminals roaming between the first AP and the second AP.
  • the preset period may be a specified period, such as 24 hours, 1 month, etc. before the coverage hole is detected.
  • the electronic device can obtain the association data of multiple terminals associated with the first AP and the association data of the multiple terminals associated with the second AP, and associate the multiple terminals based on the The association data of the first AP and the multiple terminals are associated with the association data of the second AP to determine the roaming behavior of the multiple terminals between the first AP and the second AP. Furthermore, the electronic device determines whether there is a coverage hole between the first AP and the second AP based on the roaming behavior of the plurality of terminals between the first AP and the second AP.
  • the roaming behavior of terminals between APs can reflect the signal coverage quality between APs. Therefore, this solution can realize the two APs based on the roaming behavior of multiple terminals between two APs. Detection of coverage holes between APs.
  • determining that there is a coverage hole between the first AP and the second AP based on the roaming behavior of the terminal between the first AP and the second AP includes: obtaining the roaming switching duration of multiple terminals, and when When the roaming switching durations of multiple terminals meet the first condition, it is determined that a coverage hole exists between the first AP and the second AP.
  • the roaming switching duration of each terminal in the plurality of terminals indicates: the duration that elapses between the terminal leaving the first AP and the time the terminal associates with the second AP, or the elapsed time that elapses between the terminal leaving the second AP and the terminal associating with the first AP. duration.
  • the terminal leaving an AP includes the terminal disassociating with the AP, or the signal strength of the terminal being associated with the AP is less than the second signal strength threshold.
  • some terminals will first send a de-association request to the associated terminal during roaming.
  • the AP is disassociated from the AP.
  • After being disassociated from the AP it tries to associate with a new AP.
  • the terminal disassociates from the associated AP, which means that the terminal leaves the AP.
  • some terminals do not send a disassociation request to the associated AP during roaming. However, as the terminal roams, the signal strength associated with the AP becomes weaker and weaker.
  • the terminal when the signal strength associated with the AP is less than the second signal strength threshold, it is determined that the terminal has left the AP.
  • the signal associated with the AP from the terminal may fluctuate, and the fluctuating signal strength may be less than the second signal strength threshold, but the fluctuation may not be caused by roaming. Further, in order to improve the detection accuracy of coverage holes, when the terminal is associated with a signal strength of the AP and the signal strength after the signal strength is less than the second signal strength threshold, the terminal is judged to have left the AP.
  • a roaming process is when the terminal switches from one AP in the wireless network to associate with another AP in the wireless network.
  • the corresponding roaming switching time is equal to the association time of the terminal associated with the other AP minus the time the terminal leaves the AP. .
  • the other AP mentioned above can be called the new AP associated with the terminal, and the one AP mentioned above can be called the old AP associated with the terminal. That is, the duration of a roaming switch for a terminal is the time when the terminal associates with the new AP minus the time when the terminal leaves the old AP.
  • the time when the terminal leaves the old AP may be the time when the terminal is disassociated from the old AP or the time when the signal strength of the terminal associated with the old AP is less than the second signal strength threshold.
  • the association data of a terminal obtained by each AP includes the association time of the terminal, the disassociation time of the terminal, multiple signal strengths associated with the terminal and the AP and the time corresponding to each signal strength.
  • the electronic device may extract the disassociation time of the terminal from the association data of the terminal of the old AP, and use the disassociation time as the time when the terminal leaves the old AP.
  • the electronic device may extract the signal strength that is less than the second signal strength threshold from the associated data of the terminal of the old AP, and use the corresponding time of the signal strength as the time when the terminal leaves the old AP.
  • the electronic device may extract the association time of the terminal from the association data of the terminal of the new AP.
  • the electronic device calculates the difference between the time when the terminal associates with the new AP and the time when the terminal leaves the old AP, as the roaming time of the terminal between the old AP and the new AP.
  • the electronic device determines the roaming of the plurality of terminals between the first AP and the second AP based on the association data of the plurality of terminals associated with the first AP and the association data of the plurality of terminals associated with the second AP.
  • Switch duration One terminal may correspond to multiple roaming switching durations. For example, if a terminal roams from the first AP to the second AP multiple times within a preset time period, each roaming process of the terminal corresponds to a roaming switching duration.
  • the roaming switching duration of any terminal among the plurality of terminals includes: the roaming switching duration of any terminal roaming from the first AP to the second AP, and/or the roaming switching duration of any terminal roaming from the second AP to the first AP. AP roaming switching time.
  • the roaming switching durations of the multiple terminals can be obtained.
  • the roaming switching durations of the multiple terminals meet the first condition, This indicates that the roaming experience of the terminal between the first AP and the second AP is poor, and thus it is determined that there is a coverage hole between the first AP and the second AP.
  • the first condition includes: the number of terminals whose roaming switching duration reaches the third duration threshold reaches the sixth quantity threshold, and/or the proportion of the number of terminals whose roaming switching duration reaches the third duration threshold reaches the third quantity threshold.
  • Three ratio thresholds that is, when the number of terminals whose roaming switching duration between the first AP and the second AP reaches the third duration threshold reaches the sixth threshold, it is determined that a coverage hole exists between the first AP and the second AP.
  • the proportion of the number of terminals whose roaming switching duration between the first AP and the second AP reaches the third duration threshold reaches the third proportion threshold, it is determined that a coverage hole exists between the first AP and the second AP.
  • the ratio is the number of terminals whose roaming switching duration reaches the third duration threshold and the number of terminals roaming between the first AP and the second AP. Or, when the roaming switching duration between the first AP and the second AP reaches the third duration threshold, the number of terminals reaches the sixth quantity threshold, and the roaming switching duration between the first AP and the second AP When the proportion of the number of terminals reaching the third duration threshold reaches the third ratio threshold, it is determined that a coverage hole exists between the first AP and the second AP.
  • a terminal may roam between the first AP and the second AP multiple times, and each roaming corresponds to a roaming switching duration. Therefore, one terminal may correspond to multiple roaming switching durations.
  • each roaming can be used as a sample. For example, Terminal 1 and Terminal 2 roamed between the first AP and the second AP 1,000 times in total. Among them, Terminal 1's roaming switching duration reached the third duration threshold 200 times, and Terminal 2's roaming switching duration reached the third duration threshold.
  • the number of duration thresholds is 300 times.
  • the second signal strength threshold, the third duration threshold, the sixth quantity threshold and the third proportion threshold may be preset values, and the preset values may be related to actual network usage scenarios, for example, set for different scenarios. different values. These preset values may also be dynamic thresholds that are automatically adjusted based on detected data in the wireless network.
  • the third duration threshold may be determined based on the distribution of all roaming handover duration data in the wireless network.
  • the third duration threshold is the mean, median, etc. of all roaming handover durations in the wireless network.
  • the third duration threshold is determined through the 3sigma criterion.
  • the expected ⁇ and variance ⁇ of the roaming handover duration data distribution are determined, and the third duration threshold is set to ⁇ -3 ⁇ . .
  • the sixth quantity threshold and the third ratio threshold can be dynamically determined based on the collected data in the wireless network.
  • the total number of roaming occurrences between the first AP and the second AP may also be determined. If a coverage hole occurs between the first AP and the second AP The total number of roaming times is not greater than the fourth quantity threshold, indicating that there are few data samples, and it is no longer necessary to continue to determine whether there is a coverage hole between the first AP and the second AP.
  • the roaming switching duration that meets the quantity requirement or proportion requirement reaches the switching duration threshold, it means that the roaming experience of the terminal between the first AP and the second AP is poor, and the first AP and the second AP are determined. There are coverage holes in between.
  • the above uses roaming behavior as the roaming switching duration as an example to introduce the method for electronic devices to determine the existence of coverage holes between APs based on roaming behavior.
  • Roaming behavior can also be the signal strength before roaming.
  • the electronic device obtains the pre-roaming signal strengths of multiple terminals that roam between the first AP and the second AP.
  • the pre-roaming signal strengths of the multiple terminals meet the second condition, determine the first AP and the second AP.
  • the second condition includes: the number of terminals whose signal strength is less than the signal strength threshold before roaming reaches the quantity threshold, and/or the proportion of the number of terminals whose signal strength is less than the signal strength threshold before roaming reaches the proportion threshold.
  • the pre-roaming signal strength of each terminal includes: N signal strengths before the terminal associates with the second AP during roaming from the first AP to the second AP, and/or, the signal strength of the terminal roaming from the second AP to the first AP.
  • N signal strengths before the first AP is associated during the process, N is an integer greater than or equal to 1.
  • a terminal can roam between the first AP and the second AP multiple times, and the electronic device can obtain the signal strength of each terminal before each roaming, for example, obtain the last N signal strengths of each terminal before each roaming, N is an integer greater than or equal to 1.
  • the electronic device can count the number of roaming terminals based on the number of roaming times. For example, if the electronic device detects that multiple terminals have roamed between the first AP and the second AP a total of K times within a preset time period, then the number of roaming terminals is set to K.
  • the electronic device compares the pre-roaming signal strength and the signal strength threshold corresponding to each roaming, and counts the number of times when the pre-roaming signal strength is less than the signal strength threshold.
  • the electronic device compares the number with the number threshold. If the number is greater than or equal to the number threshold, the electronic device determines that the pre-roaming signal strengths of the multiple terminals meet the above second condition, and determines that there is a connection between the first AP and the second AP. Cover the void.
  • the ratio of the number of electronic devices to the number of roaming terminals is compared with a ratio threshold. If the ratio is greater than or equal to the ratio threshold, the electronic device determines that the pre-roaming signal strengths of the multiple terminals meet the above second requirement. Condition, it is determined that there is a coverage hole between the first AP and the second AP.
  • the electronic device determines that the pre-roaming signal strengths of the multiple terminals meet the above second condition, and determines that there is a connection between the first AP and the second AP. Cover the void. For example, assuming that the pre-roaming signal strength corresponding to L roams among the above K roams is less than the signal strength threshold, L is greater than or equal to the quantity threshold, and/or L/K is greater than the ratio threshold, the electronic device determines the first AP and the second AP There are coverage holes in between.
  • the electronic device can directly compare the signal strength and the signal strength threshold corresponding to each roaming before the roaming.
  • the electronic device can calculate the statistical value of N signal strengths before roaming corresponding to each roaming, and then compare the statistical value with the signal strength threshold.
  • the statistical value is, for example, mean, median, etc.
  • the electronic device can obtain the signal strength of the terminal associated with each AP detected by each AP.
  • the electronic device obtains the last N signal strengths of the terminal when the terminal associated with the first AP before the terminal associated with the second AP.
  • the electronic device obtains the last N signal strengths of the terminal before the terminal associates with the first AP and associates with the second AP.
  • the above signal strength threshold may be a preset value, for example, -65 decibels.
  • the above signal strength may also be determined dynamically, for example, based on the distribution of signal strengths before roaming among all APs in the WLAN system where the first AP and the second AP are located.
  • the signal strength threshold is The quantile of the pre-roaming signal strength between all APs may be determined based on the above 3sigma principle.
  • the quantity threshold and the proportion threshold can be preset or dynamically determined. For example, after determining the signal strength threshold based on the signal strength before roaming among all APs in the WLAN system, statistics of roaming in the WLAN system can be calculated. The number and ratio of terminals whose previous signal strength is greater than the signal strength threshold are determined, and the above-mentioned quantity threshold and ratio threshold are determined based on the counted number and ratio.
  • the roaming behavior may also include the roaming switching duration and the signal strength before roaming.
  • the electronic device determines that a coverage hole exists between the first AP and the second AP.
  • the electronic device can determine whether there is a coverage hole between other APs in the wireless network, for example, determine whether there is a coverage hole between the third AP and the fourth AP based on the roaming behavior of the terminal between the third AP and the fourth AP. There are coverage holes in between. After determining the AP pair with a coverage hole on the roaming path in the wireless network, the electronic device can also determine the location of the coverage hole and display the location of the coverage hole. The location of the coverage hole is the intersection point between the line connecting the first AP and the second AP and the line connecting the third AP and the fourth AP.
  • the first AP, the second AP, the third AP, and the fourth AP are all at corresponding positions on the map.
  • the intersection point can be determined as the location of the coverage hole.
  • connections between APs include straight lines, curves, etc., which are not specifically limited in this application.
  • the connection between any two APs can be a straight line.
  • the connection between APs may curve along the corridor, and the junction of the two connections may be at the intersection of the two corridors.
  • the intersection point of the connection is between the first AP and the second AP, and between the third AP and the fourth AP, and is not an intersection point on the extension line of their connection.
  • the electronic device determines the location of the coverage hole based on the intersection between the AP pairs with coverage holes, and displays the location of the coverage hole, so that operation and maintenance personnel can quickly know the location of the coverage hole and adjust deployment. Enhance signal coverage in the area and improve user experience.
  • the terminal may have roaming jumps during roaming.
  • the roaming jump phenomenon refers to the phenomenon that the terminal does not roam in time and cannot realize hop-by-hop roaming.
  • FIG. 7 is a schematic diagram of a roaming hopping phenomenon provided by an embodiment of the present application.
  • the terminal initially associates with AP1.
  • the terminal should associate with AP1 and then associate with AP2. That is, theoretically, the terminal should roam on the roaming path AP1 ⁇ AP2.
  • the terminal does not associate with AP1 in time and does not associate with AP2.
  • the terminal has already associated with AP3.
  • the terminal actually roams on the roaming path AP1 ⁇ AP3, skipping AP2 in the middle.
  • the cause of roaming hopping may be that some terminals have large scanning intervals, causing these terminals to fail to scan AP2 on the roaming path in time. Therefore, the above method may detect that there is a coverage hole between AP1 and AP3, but in fact there is no coverage hole between AP1 and AP3 because there is another AP2 between AP1 and AP3. That is, the roaming paths of AP1 and AP3 have alternative roaming paths: AP1-AP2 and AP2-AP3, and there are no coverage holes in the alternative roaming paths. When roaming hopping occurs, false detection of coverage holes may occur.
  • the process of detecting whether there is a coverage hole between the first AP and the second AP it may also be first determined whether there is an alternative roaming path in the roaming path between the first AP and the second AP. If there is an alternative roaming path in the roaming path between the first AP and the second AP, it is no longer necessary to continue to determine whether there is a coverage hole between the first AP and the second AP.
  • the criteria for determining whether there is an alternative roaming path include the following conditions:
  • the roaming path between one of the two APs and the other AP meets the roaming standard, and the roaming path between the other of the two APs and the other AP meets the roaming standard.
  • the roaming standard includes that the total number of roaming times is greater than a sixth quantity threshold and the roaming compliance rate is greater than a fourth proportion threshold.
  • the roaming compliance rate can be expressed by the ratio of the number of roaming times in which the signal strength of the terminal before roaming is greater than the second signal strength threshold to the total number of roaming times. It can also be expressed by the ratio of the number of roaming times in which the roaming duration is less than the duration threshold to the total number of roaming times. express.
  • the total number of roaming times on the roaming path can also be represented by the number of terminals associated with the roaming path.
  • the terminal associated with the roaming path is also the terminal that roams on the roaming path.
  • the number of associated terminals on a roaming path is positively correlated with the total number of roams on the roaming path.
  • the number of associated terminals on the roaming path is equal to the total number of roams on the roaming path.
  • the roaming paths AP1 ⁇ AP2 and AP2 ⁇ AP3 exist.
  • the total number of roaming times on the roaming path AP1 ⁇ AP2 is greater than the total number of roaming times on the roaming path AP1 ⁇ AP3, or the number of terminals associated with the roaming path AP1 ⁇ AP2 is greater than the number of terminals associated with the roaming path AP1 ⁇ AP3.
  • the total number of roaming times on the roaming path AP2 ⁇ AP3 is greater than the total number of roaming times on the roaming path AP1 ⁇ AP3, or the number of terminals associated with the roaming path AP2 ⁇ AP3 is greater than the number of terminals associated with the roaming path AP1 ⁇ AP3.
  • the roaming path AP1 ⁇ AP3 may have an alternative roaming path. That is, it is considered that the roaming path AP1 ⁇ AP2 and the roaming path AP2 ⁇ AP3 may be alternative roaming paths of the roaming path AP1 ⁇ AP3.
  • the roaming path AP1 ⁇ AP2 and the roaming path AP2 ⁇ AP3 both meet the roaming criteria, then the roaming path AP1 ⁇ AP2 and the roaming path AP2 ⁇ AP3 are determined to be the alternative roaming paths of the roaming path AP1 ⁇ AP3.
  • Figure 8 is a schematic application process diagram of coverage hole detection provided by an embodiment of the present application. The process includes but is not limited to the following steps:
  • the analyzer receives terminal association data.
  • the AP can detect the association data of the terminal.
  • the AP sends the associated data of the terminal it detects to the AC.
  • the analyzer sends the terminal association data it receives to the analyzer. In this way, the analyzer can obtain the associated data of the terminals of the entire network.
  • the analyzer performs coverage hole detection.
  • the analyzer executes the coverage hole detection method shown in Figure 4 to determine APs with coverage holes in the current network.
  • the analyzer executes the coverage hole detection method shown in Figure 6 to determine the roaming path in which the coverage hole exists. In this way, the analyzer can determine which AP pairs in the current network have coverage holes.
  • the analyzer presents coverage holes and network deployment improvement measures.
  • the analyzer can also analyze the reasons for the existence of the coverage holes to determine the location of the coverage holes. After identifying the location of coverage holes, the analyzer can also display the location of coverage holes and network deployment improvements.
  • Network deployment improvement measures include blind filling strategies, that is, recommending operation and maintenance personnel where to deploy new APs or enhance the coverage capabilities of the original APs. Operation and maintenance personnel adjust AP deployment in the network based on network deployment improvement measures, which can enhance signal coverage at coverage holes, achieve full network coverage, and improve user experience.
  • Figure 9 is a schematic flowchart of a recommended blinding strategy provided by an embodiment of the present application.
  • the original site disconnection and reconnection of the terminal associated with the AP with the coverage hole is serious, it means that there may be a dead zone around the AP with the coverage hole, which needs to be investigated. Is there a dead zone around the AP that covers the hole?
  • the phenomenon of original site disconnection and reconnection means that the terminal is disconnected from an AP and then re-associated with the AP, that is, the terminal is continuously online and offline on the same AP.
  • the dead area refers to a relatively independent closed space in the physical space, and no AP is installed in the closed space for coverage.
  • In-site expansion refers to adding APs around the AP with coverage holes.
  • the method of adding an AP can be: the AP with the coverage hole remains stationary, and the additional AP is deployed around the AP with the coverage hole according to the actual physical environment.
  • the method of adding AP can be: The AP with the coverage hole and the additional AP are dispersedly deployed around the original location of the AP with the coverage hole.
  • FIG. 10 is a schematic diagram illustrating coverage holes and recommended blind filling locations in an office area according to an embodiment of the present application.
  • the APs in the current network environment include AP-246, AP-247, AP-248, AP-249, AP-250, AP-251, AP-252, AP-253, AP-254, AP -255 and AP-256.
  • the analyzer detected coverage holes on AP-255, coverage holes between AP-255 and AP-248, and coverage holes between AP-255 and AP-256.
  • terminals associated with AP-255 always roam to AP-248 and AP-256.
  • the analyzer recommends blind filling on the roaming path between AP-255 and AP-248 and the roaming path between AP-255 and AP-256.
  • the five-pointed star position in Figure 10 is the recommended position for blind filling.
  • this application detects AP coverage holes based on the resident terminals associated with the AP and the signal quality of the resident terminals, and determines the coverage holes between APs based on the roaming behavior of multiple terminals between APs, which can comprehensively and accurately Detecting coverage holes in WLAN networks. Moreover, this application can also dynamically adjust the comparison threshold in the above detection process according to the network scenario to further improve the accuracy of detection. In addition, this application can also determine the location of the coverage hole and recommend effective blind filling strategies based on the location of the coverage hole, so that operation and maintenance personnel can quickly and effectively adjust AP deployment and enhance the signal coverage of the WLAN network.
  • FIG. 11 is a schematic structural diagram of a cavity-covering detection device 1100 provided by an embodiment of the present application.
  • the device 1100 has the function of implementing the above-mentioned coverage hole detection method shown in FIG. 4 .
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1100 includes an acquisition unit 1101 and a processing unit 1102.
  • the obtaining unit 1101 is configured to obtain the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals.
  • the processing unit 1102 is configured to determine whether a coverage hole exists in the AP based on the number of resident terminals of the AP and the number of weak coverage terminals among the resident terminals.
  • a resident terminal of an AP is a terminal whose association time with the AP is greater than the duration threshold.
  • a weak coverage terminal is a terminal whose signal strength associated with the AP is less than the signal strength threshold.
  • the processing unit 1102 is specifically configured to: determine that a coverage hole exists in the AP when the number of weak coverage terminals reaches a quantity threshold; and/or, when the number of weak coverage terminals and the number of resident terminals are When the ratio reaches the ratio threshold, it is determined that the AP has a coverage hole.
  • the processing unit 1102 is further configured to: set the weight of each resident terminal according to the association duration of each resident terminal with the AP, and adjust the weight according to the weight of each resident terminal. The number of resident terminals.
  • each unit of the cavity-covering detection device 1100 described in FIG. 11 may also correspond to the corresponding description with reference to the embodiment shown in FIG. 4 or FIG. 5 .
  • the beneficial effects brought by the cavity-covering detection device 1100 described in FIG. 11 can be referred to the corresponding description of the embodiment shown in FIG. 4 or FIG. 5 , and the description will not be repeated here.
  • FIG. 12 is a schematic structural diagram of a cavity-covering detection device 1200 provided by an embodiment of the present application.
  • the device 1200 has the function of implementing the above-mentioned coverage hole detection method shown in FIG. 6 .
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the device 1200 includes an acquisition unit 1201 and a processing unit 1202.
  • the obtaining unit 1201 is configured to obtain the roaming behavior of the terminal between the first AP and the second AP.
  • Processing unit 1202 configured to perform according to the first
  • the roaming behavior of the terminal between the AP and the second AP determines that a coverage hole exists between the first AP and the second AP.
  • the roaming behavior of the terminal between the first AP and the second AP includes the roaming behavior of multiple terminals between the first AP and the second AP.
  • the roaming behavior includes roaming switching duration.
  • the obtaining unit 1201 is specifically configured to: obtain roaming switching durations of multiple terminals.
  • the processing unit 1202 is specifically configured to determine that a coverage hole exists between the first AP and the second AP when the roaming switching durations of multiple terminals meet the first condition.
  • the roaming handover duration of each terminal in the plurality of terminals indicates: the duration that elapses from the terminal leaving the first AP until the terminal associates with the second AP, or the duration that elapses from the terminal leaving the second AP until the terminal associates with the first AP.
  • the first condition includes: the number of terminals whose roaming switching duration reaches the duration threshold reaches the quantity threshold; and/or the proportion of the number of terminals whose roaming switching duration reaches the duration threshold reaches the proportion threshold.
  • the terminal leaving the first AP includes: the terminal disassociates from the first AP; or the signal strength of the terminal associated with the first AP is less than a signal strength threshold.
  • the roaming behavior includes signal strength before roaming.
  • the obtaining unit 1201 is specifically configured to obtain the signal strengths of multiple terminals before roaming.
  • the processing unit 1202 is specifically configured to: when the pre-roaming signal strengths of multiple terminals meet the second condition, determine that a coverage hole exists between the first AP and the second AP.
  • the pre-roaming signal strength of each terminal in the plurality of terminals includes: N signal strengths before associating with the second AP when the terminal roams from the first AP to the second AP, and/or, the terminal roams from the second AP N signal strengths before associating with the first AP during the process of reaching the first AP, where N is an integer greater than or equal to 1.
  • the second condition includes: the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the quantity threshold, and/or the proportion of the number of terminals whose signal strength before roaming is less than the signal strength threshold reaches the proportion threshold.
  • the processing unit 1202 is further configured to: determine that there is a coverage hole between the third AP and the fourth AP based on the roaming behavior of the terminal between the third AP and the fourth AP; and in the user graphical interface
  • the location of the covered void is shown above.
  • the location of the coverage hole is the intersection point between the line connecting the first AP and the second AP and the line connecting the third AP and the fourth AP.
  • each unit of the hole coverage detection device 1200 described in FIG. 12 can also correspond to the corresponding description with reference to the embodiment shown in FIG. 6 .
  • the beneficial effects brought by the cavity-covering detection device 1200 described in FIG. 12 can be referred to the corresponding description of the embodiment shown in FIG. 6 , and the description will not be repeated here.
  • Figure 13 is a schematic structural diagram of an electronic device 1310 provided by an embodiment of the present application.
  • the electronic device 1310 includes a processor 1311, a memory 1312 and a communication interface 1313.
  • the above-mentioned processor 1311, memory 1312 and communication interface 1313 They are connected to each other via bus 1314.
  • Memory 1312 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (ROM), Memory (erasable PROM, EPROM), or portable read-only memory (compact disc read-only memory, CD-ROM), the memory 1312 is used for related computer programs and data.
  • Communication interface 1313 is used to receive and send data.
  • the processor 1311 may be one or more central processing units (CPUs). When the processor 1311 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • CPUs central processing units
  • the electronic device can be a WLAN controller, analyzer or AP, etc.
  • the processor 1311 in the electronic device 1310 is used to read the computer program code stored in the memory 1312 and execute the method of any one of the embodiments shown in Figure 4, Figure 5, Figure 6 and Figure 8.
  • An embodiment of the present application also provides a chip, including: a processor, configured to call and run a computer program from a memory, so that the device installed with the above chip executes any of the steps shown in Figure 4, Figure 5, Figure 6 and Figure 8 One embodiment of the method.
  • Embodiments of the present application also provide a computer-readable storage medium. Instructions are stored on the computer-readable storage medium. When the instructions are executed by the processor, the implementation shown in Figure 4, Figure 5, Figure 6 and Figure 8 is achieved. method in any of the embodiments shown.
  • An embodiment of the present application also provides a computer program product, including a computer program.
  • a computer program product including a computer program.
  • the computer program is executed by a processor, the method of any one of the embodiments shown in Figure 4, Figure 5, Figure 6 and Figure 8 is implemented.
  • processors mentioned in the embodiments of this application can be a central processing unit (Central Processing Unit, CPU), or other general-purpose processor, digital signal processor (Digital Signal Processor, DSP), application-specific integrated circuit ( Application Specific Integrated Circuit (ASIC), off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be ROM, PROM, EPROM, electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be RAM, which acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be Implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the above units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or may be Integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described above as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods shown in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • Modules in the device of the embodiment of the present application can be merged, divided, and deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种覆盖空洞的检测方法及相关设备,应用于通信技术领域。如果两个接入点AP间存在覆盖空洞,则终端在该两个AP间漫游时会经过该覆盖空洞。因此,终端在AP间的漫游行为能够反映AP间是否存在覆盖空洞。电子设备根据第一AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间存在覆盖空洞。第一AP和第二AP之间的终端的漫游行为包括多个终端在第一AP和第二AP之间的漫游行为。

Description

覆盖空洞的检测方法和相关设备
本申请要求于2022年03月25日提交中国国家知识产权局、申请号为202210299848.3、发明名称为“覆盖空洞的检测方法和相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及覆盖空洞的检测方法和相关设备。
背景技术
现实网络场景是复杂多变的,例如室内装修、功能变化、人员流动等均可能会导致当前网络场景与建网时的网络场景不同。发生此类情况时,建网时的网规部署及配置不一定能满足当前网络场景的需求,容易出现覆盖空洞问题,例如接入点(access point,AP)与终端之间存在遮挡、终端所处位置没有AP覆盖而迫使终端关联到远处的AP等问题,从而导致覆盖空洞内的终端关联信号弱,用户体验差。如何检测覆盖空洞是需要解决的问题。
发明内容
本申请提供覆盖空洞的检测方法和相关设备,能够检测无线局域网(wireless local area network,WLAN)的覆盖空洞。
第一方面,本申请提供一种覆盖空洞的检测方法。该方法可以应用于电子设备,该电子设备可以为WLAN控制器、分析器或AP等。电子设备根据第一AP和第二AP之间的终端的漫游行为确定该第一AP和该第二AP之间存在覆盖空洞。该第一AP和该第二AP之间的终端的漫游行为包括多个终端在该第一AP和该第二AP之间的漫游行为。
如果两个AP间存在覆盖空洞,则终端在该两个AP间漫游时会经过该覆盖空洞。因此,多个终端在AP间的漫游行为能够反映AP间是否存在覆盖空洞,因此,本方案基于两个AP间的多个终端在该两个AP间的漫游行为可以实现该两个AP之间覆盖空洞的检测。
在一种可能的实现方式中,漫游行为包括漫游切换时长。电子设备获取上述多个终端的漫游切换时长,当该多个终端的漫游切换时长满足条件时,电子设备确定该第一AP和该第二AP之间存在覆盖空洞。该多个终端中的每个终端的漫游切换时长指示:该终端离开该第一AP到该终端关联该第二AP所经过的时长,或该终端离开该第二AP到该终端关联该第一AP所经过的时长。其中,多个终端中的任意一个终端的漫游切换时长包括:该任意一个终端从第一AP漫游至第二AP的漫游切换时长,和/或该任意一个终端从第二AP漫游至第一AP的漫游切换时长。
在本实现方式中,有多个终端在第一AP和第二AP之间发生漫游行为时,可以获取这多个终端的漫游切换时长,当多个终端的漫游切换时长满足第一条件时,说明终端在第一AP和第二AP之间的漫游体验较差,从而确定第一AP和第二AP之间是存在覆盖空洞的。
在一种可能的实现方式中,该第一条件包括:漫游切换时长达到时长阈值的终端数量达到数量阈值,和/或漫游切换时长达到时长阈值的终端数量的比例达到比例阈值。
在本实现方式中,如果多个终端中漫游切换时长达到时长阈值的终端数量达到数量阈值,或者多个终端中漫游切换时长达到时长阈值的终端数量的比例达到比例阈值,说明终端在第 一AP和第二AP之间的漫游体验较差,从而确定第一AP和第二AP之间是存在覆盖空洞的。
在一种可能的实现方式中,所述终端离开所述第一AP包括:所述终端与所述第一AP去关联,或者所述终端关联到所述第一AP的信号强度小于信号强度阈值。应理解,漫游切换时长是指终端与其中一个AP去关联到终端关联另外一个AP所经过的时长。或者,漫游切换时长是指终端在关联到其中一个AP的信号强度小于信号强度阈值后到终端关联另外一个AP所经过的时长。
在一种可能的实现方式中,所述终端离开所述第二AP包括:所述终端与所述第二AP去关联,或者所述终端关联到所述第二AP的信号强度小于信号强度阈值。
在一种可能的实现方式中,漫游行为包括漫游前的信号强度。电子设备获取上述多个终端的漫游前的信号强度,当该多个终端的漫游前的信号强度满足第二条件时,电子设备确定该第一AP和该第二AP之间存在覆盖空洞。多个终端中的每个终端的漫游前信号强度包括:终端从第一AP漫游到第二AP的过程中在关联第二AP前的N条信号强度,和/或,终端从第二AP漫游到第一AP的过程中在关联第一AP前的N条信号强度,N为大于等于1的整数。
在本实现方式中,有多个终端在第一AP和第二AP之间发生漫游行为时,可以获取这多个终端的漫游前信号强度,当多个终端的漫游前信号强度满足第二条件时,说明终端在第一AP和第二AP之间的漫游体验较差,从而确定第一AP和第二AP之间是存在覆盖空洞的。
在一种可能的实现方式中,第二条件包括:漫游前信号强度小于信号强度阈值的终端数量达到数量阈值,和/或,漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
在一种可能的实现方式中,电子设备根据第三AP和第四AP之间的终端的漫游行为确定该第三AP和该第四AP之间存在覆盖空洞,并在用户图形界面上显示覆盖空洞的位置。该覆盖空洞的位置为该第一AP和该第二AP的连线与该第三AP和该第四AP的连线的交叉点。需要说明的是,AP之间的连线包括直线、曲线等,本申请对此不做具体限定。
第一AP和第二AP的连线与第三AP和第四AP的连线存在交叉点,表示第一AP和第二AP之间的漫游终端与第三AP和第四AP之间的漫游终端在漫游时会经过同一个区域。因此,当第一AP和第二AP之间存在覆盖空洞,且第三AP和第四AP之间也存在覆盖空洞时,可以确定上述交叉点为覆盖空洞的位置。显示该覆盖空洞的位置有助于运维人员快速的调整部署,增强该区域的信号覆盖,提升用户体验。
第二方面,本申请提供一种覆盖空洞的检测方法。该方法可以应用于电子设备,该电子设备可以为WLAN控制器、分析器或AP等。电子设备基于AP的常驻终端的数量和常驻终端中弱覆盖终端的数量确定该AP是否存在覆盖空洞。AP的常驻终端是与该AP的关联时长大于时长阈值的终端。弱覆盖终端是与该AP关联的信号强度小于信号强度阈值的终端。
WLAN场景中,一个AP可能会关联多个终端,有的终端是持续关联该AP(例如,终端关联AP的时长大于时长阈值,即,常驻终端),有的终端可能只是短暂关联该AP。例如,对于在一个经理办公室中的AP,经理的终端会持续关联该办公室的AP,而从该办公室外路过人员的终端只是短暂关联该AP。持续关联该AP的终端的信号质量更能反映该AP的覆盖质量。当AP存在覆盖空洞时,将可能导致关联该AP的一些常驻终端的信号质量差。因此,本方案基于常驻终端和常驻终端中的弱覆盖终端能够检测覆盖空洞,而且会使得覆盖空洞的检测更准确。
在一种可能的实现方式中,当弱覆盖终端的数量达到数量阈值时,电子设备确定该AP存在覆盖空洞。或者,当弱覆盖终端的数量和常驻终端的数量的比值达到比例阈值时,电子设备确定该AP存在覆盖空洞。或者,当弱覆盖终端的数量达到数量阈值且弱覆盖终端的数 量和常驻终端的数量的比值达到比例阈值时,电子设备确定该AP存在覆盖空洞。
在一种可能的实现方式中,电子设备根据每个常驻终端与该AP的关联时长设置所述每个常驻终端的权重,并根据每个常驻终端的权重调整常驻终端的数量。
终端与AP的关联时长越长,AP的覆盖质量对该终端的影响越大。因此,本方案基于常驻终端与AP的关联时长调整常驻终端的权重,继而调整常驻终端的数量,调整了常驻终端的数量又会促使弱覆盖终端的数量被调整,使得该弱覆盖终端的数量更能匹配常驻终端与AP的关联时长,进一步提高覆盖空洞检测的准确度。
第三方面,本申请提供一种覆盖空洞的检测装置。该装置具有实现上述第一方面的方法实施例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该装置包括获取单元和处理单元。获取单元,用于获取第一AP和第二AP之间的终端的漫游行为。处理单元,用于根据第一AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间存在覆盖空洞。第一AP和第二AP之间的终端的漫游行为包括多个终端在第一AP和第二AP之间的漫游行为。
在一种可能的实现方式中,漫游行为包括漫游切换时长。获取单元具体用于:获取所述多个终端的漫游切换时长。所述多个终端中的每个终端的漫游切换时长指示:所述终端离开第一AP到所述终端关联第二AP所经过的时长,和/或,所述终端离开第二AP到所述终端关联第一AP所经过的时长。处理单元具体用于:当所述多个终端的漫游切换时长满足第一条件时,确定第一AP和第二AP之间存在覆盖空洞。
在一种可能的实现方式中,第一条件包括:漫游切换时长达到时长阈值的终端数量达到数量阈值;和/或漫游切换时长达到时长阈值的终端数量的比例达到比例阈值。
在一种可能的实现方式中,所述终端离开所述第一AP包括:所述终端与所述第一AP去关联;或者所述终端关联到所述第一AP的信号强度小于信号强度阈值。
在一种可能的实现方式中,漫游行为包括漫游前的信号强度。获取单元具体用于:获取所述多个终端的漫游前的信号强度。处理单元具体用于:当所述多个终端的漫游前的信号强度满足第二条件时,确定第一AP和第二AP之间存在覆盖空洞。多个终端中的每个终端的漫游前信号强度包括:终端从第一AP漫游到第二AP的过程中在关联第二AP前的N条信号强度,和/或,终端从第二AP漫游到第一AP的过程中在关联第一AP前的N条信号强度,N为大于等于1的整数。
在一种可能的实现方式中,第二条件包括:漫游前信号强度小于信号强度阈值的终端数量达到数量阈值,和/或,漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
在一种可能的实现方式中,所述处理单元,还用于:根据第三AP和第四AP之间的终端的漫游行为确定所述第三AP和所述第四AP之间存在覆盖空洞;以及在用户图形界面上显示覆盖空洞的位置。所述覆盖空洞的位置为所述第一AP和所述第二AP的连线与所述第三AP和所述第四AP的连线的交叉点。
需要说明的是,第三方面的有益效果可以参照第一方面的描述,此处不再重复描述。
第四方面,本申请提供一种覆盖空洞的检测装置。该装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该装置包括获取单元和处理单元。获取单元,用于获取AP的常驻终端的数量和所述常驻终端中弱覆盖终端的数量。处理单元,用于基于AP的常驻终 端的数量和所述常驻终端中弱覆盖终端的数量确定AP是否存在覆盖空洞。所述AP的常驻终端是与所述AP的关联时长大于时长阈值的终端。所述弱覆盖终端是与所述AP关联的信号强度小于第一信号强度阈值的终端。
在一种可能的实现方式中,处理单元具体用于:当所述弱覆盖终端的数量达到数量阈值时,确定所述AP存在覆盖空洞;和/或当所述弱覆盖终端的数量和所述常驻终端的数量的比值达到比例阈值时,确定所述AP存在覆盖空洞。
在一种可能的实现方式中,处理单元还用于:根据每个常驻终端与所述AP的关联时长设置所述每个常驻终端的权重;以及根据所述每个常驻终端的权重调整所述常驻终端的数量。
需要说明的是,第四方面的有益效果可以参照第二方面的描述,此处不再重复描述。
第五方面,本申请提供一种电子设备,包括:处理器和存储器。存储器耦合到所述处理器并存储由所述处理器执行的程序,其中,所述程序在由所述处理器执行时,使得所述电子设备执行第一方面或第二方面中任意一种可能的实施例中的方法。
第六方面,本申请提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令被处理器执行时,实现如第一方面或第二方面中任意一种可能的实施例中的方法。
第七方面,本申请提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时,实现如第一方面或第二方面中任意一种可能的实施例中的方法。
附图说明
图1是本申请实施例提供的一种应用场景的示意图;
图2是本申请实施例提供的另一种应用场景的示意图;
图3是本申请实施例提供的又一种应用场景的示意图;
图4是本申请实施例提供的一种覆盖空洞的检测方法的流程示意图;
图5是图4所示的覆盖空洞的检测方法的一种具体示例的流程示意图;
图6是本申请实施例提供的一种覆盖空洞的检测方法的流程示意图;
图7是本申请实施例提供的一种漫游跳跃现象的示意图;
图8是本申请实施例提供的一种检测覆盖空洞的应用流程示意图;
图9是本申请实施例提供的一种补盲策略的推荐流程示意图;
图10是本申请实施例提供的一建筑物的覆盖空洞及补盲推荐位置的呈现示意图;
图11是本申请实施例提供的一种覆盖空洞的检测装置的结构示意图;
图12是本申请实施例提供的一种覆盖空洞的检测装置的结构示意图;
图13是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
为了便于本领域技术人员理解本申请,下文结合附图对本申请提供的技术方案进行介绍。
由于覆盖空洞内的终端关联信号弱,用户体验差,因此很有必要将这些覆盖空洞确定出来。运维人员可以根据确定出的覆盖空洞进行针对性的补盲以增强覆盖空洞区域处的信号覆盖(例如,在覆盖空洞的位置增加新的AP,或者增大覆盖空洞附近的AP的发射功率等),进而提升用户体验。可以理解的是,覆盖空洞可以是完全没有信号覆盖的区域,也可以是信号覆盖弱的区域,终端在覆盖空洞处无法关联AP或关联AP的信号质量差。
鉴于此,本申请提供覆盖空洞的检测方法及相关设备。覆盖空洞的检测方法可以由多种电子设备执行,例如,WLAN控制器,分析器或AP等。WLAN控制器例如为接入控制器(Access Controller,AC)。分析器例如为个人计算机、虚拟机、服务器、云端设备等。当该方法由WLAN控制器执行时,WLAN控制器获取各AP关联的终端数据(例如,终端的信号强度、终端的漫游行为、终端的关联时长等),并基于各AP关联的终端数据检测各AP或AP之间是否存在覆盖空洞。当该方法由分析器执行时,分析器可以自行获取各AP关联的终端数据或者通过WLAN控制器获取各AP关联的终端数据,并基于各AP关联的终端数据检测各AP或AP之间是否存在覆盖空洞。当该方法由AP执行时,AP可以获取自身和其他AP关联的终端的数据,并基于各AP关联的终端数据检测各AP或AP之间是否存在覆盖空洞。
与AP关联的终端的信号质量可以一定程度上反映该AP的覆盖质量。但是,有的终端是持续关联该AP(例如,终端关联AP的时长大于时长阈值,即,常驻终端),有的终端可能只是短暂关联该AP。例如,在一个经理办公室中,经理的终端会持续关联该办公室的AP,而从该办公室外路过人员的终端只是短暂关联该AP。持续关联该AP的终端的信号质量更能反映该AP的覆盖质量。当AP存在覆盖空洞时,将可能导致关联该AP的一些常驻终端的信号质量差。因此,本申请基于AP的常驻终端和常驻终端中的弱覆盖终端能够检测AP的覆盖空洞,而且会使得覆盖空洞的检测更准确。其中,弱覆盖终端是与AP关联的信号强度小于信号强度阈值的终端。对于一个AP,电子设备分析其关联的常驻终端中弱覆盖终端的数量和/或占比,并基于常驻终端中弱覆盖终端的数量和/或占比确定该AP是否存在覆盖空洞。针对无线网络中的每个AP,电子设备可以分析每个AP关联的常驻终端中弱覆盖终端的数量和/或占比,并以此确定无线网络中的每个AP是否存在覆盖空洞。
另外,如果两个AP间存在覆盖空洞,则终端在该两个AP间漫游时会经过该覆盖空洞。因此,多个终端在AP间的漫游行为能够反映AP间是否存在覆盖空洞。因此,本申请基于两个AP间的多个终端在该两个AP间的漫游行为检测该两个AP之间是否存在覆盖空洞。漫游行为例如为漫游切换时长或漫游前的信号强度。漫游切换时长指示终端离开第一AP至关联到第二AP所经过的时长。在终端离开第一AP后,当该终端检测到第二AP的信号强度达到一定程度时,终端会关联到第二AP。漫游切换时长超过一定的时长,例如达到阈值,说明第一AP和第二AP之间存在信号覆盖弱或者没有信号覆盖的区域,导致终端在离开第一AP后需经历较长的时间才能到达第二AP的信号覆盖范围以至关联到第二AP。漫游前的信号强度可以是终端在离开第一AP前的最后N(N>1)条信号强度的统计值,例如,为最后1条信号强度,或最后多条信号强度的均值等。
进一步地,在检测到AP存在覆盖空洞或两个AP之间存在覆盖空洞后,本申请还可以确定覆盖空洞的位置,并显示覆盖空洞的位置,以明确的告知运维人员哪里存在覆盖空洞,使得运维人员可以快速地定位到覆盖空洞,及时的调整AP的部署以增强网络覆盖。例如,电子设备显示存在覆盖空洞的AP的标识或AP的部署位置,以告知运维人员该AP存在覆盖空洞,运维人员可以增大该AP的发射功率或者在该AP所在区域新增AP以增强该区域的网络覆盖。又例如,当第一AP和第二AP之间存在覆盖空洞,第三AP和第四AP之间也存在覆盖空洞时,电子设备可以将第一AP和第二AP的连线与第三AP和第四AP的连线的交叉处确定为覆盖空洞的位置,并显示该位置,运维人员可以增强相关AP的发射功率或者在该位置处新增AP以增强该区域的网络覆盖。
请参阅图1至图3,图1至图3是本申请实施例提供的应用场景的示意图。图1至图3 所示的应用场景为一办公区域,该办公区域的每个子区域均部署有一个或多个AP,例如AP1至AP6。基于本申请提供的检测覆盖空洞的方法,电子设备可以确定出该办公区域的无线网络中存在覆盖空洞的AP或漫游路径,例如,AP1存在覆盖空洞,AP2和AP6之间存在覆盖空洞,AP3和AP5之间存在覆盖空洞。运维人员可以根据该检测结果调整AP的部署,以增强无线网络的信号覆盖。例如,增加AP1的发射功率以增强AP1的覆盖范围。又例如,在AP2和AP6之间新增AP,以增强AP2和AP6之间的信号覆盖。
进一步地,在确定出存在覆盖空洞的区域后,电子设备还可以确定覆盖空洞的位置,例如,确定AP2和AP6的连线与AP3和AP5的连线交叉处(图3中的五角星位置)为覆盖空洞的位置。电子设备可以在图形界面上显示该位置。运维人员可以根据电子设备的显示,在该位置处新增AP以增强对该位置的信号覆盖。
下面结合具体实施方式对本申请提供的技术方案进行详细的介绍。
请参阅图4,图4是本申请实施例提供的一种覆盖空洞的检测方法的流程示意图。该覆盖空洞的检测方法400可由电子设备(例如WLAN控制器、分析器或AP)执行,用于检测AP的覆盖空洞。下文以该方法由AP执行为例进行说明。该覆盖空洞的检测方法400包括但不限于如下步骤或操作:
401:基于AP的常驻终端的数量和该常驻终端中弱覆盖终端的数量确定该AP是否存在覆盖空洞。AP的常驻终端是与该AP的关联时长大于时长阈值的终端。弱覆盖终端是与该AP关联的信号强度小于第一信号强度阈值的终端。
该AP可以采集预设时间段内关联该AP的终端的关联数据,并根据各终端的关联数据确定该AP的常驻终端和常驻终端中的弱覆盖终端。
终端的关联数据包括终端关联AP的时刻(下文简称为关联时刻)和终端去关联AP的时刻(下文简称为去关联时刻)。AP基于终端的一次关联时刻以及与该关联时刻对应的去关联时刻,计算该终端的一次关联时长。
在预设时段内,一个终端可能会关联该AP多次,并相应地去关联多次。例如,在一天内,终端先关联办公区域的一个AP,在该AP覆盖范围内停留一段时间后,又去向其他区域,这就导致该终端去关联该AP,之后该终端可能又回到该办公区域,导致该终端再次关联该AP,如此,该终端可能会关联该AP多次,并相应地去关联多次。终端的关联数据包括多次关联时刻及对应的去关联时刻。AP可以据此计算多个关联时长。
在获取到终端的关联时长后,AP基于时长阈值判断该终端是否为该AP的常驻终端。当终端的关联时长大于时长阈值时,AP确定该终端为常驻终端。当该终端仅有一个关联时长时,AP可直接比较该关联时长与时长阈值,以确定该终端是否为该AP的常驻终端。当该终端有多个关联时长时,AP可先计算多个关联时长的统计值,再比较该统计值与时长阈值,当该统计值大于时长阈值时,确定该终端为该AP的常驻终端。关联时长的统计值例如为多个关联时长的最大值、分位数等。
时长阈值可以是预设值,例如,30分钟。时长阈值还可以通过其他方式以动态确定,例如,基于多个终端的关联时长的分布确定时长阈值。例如,时长阈值为多个终端的每次关联时长的平均值。又例如,基于3sigma(3σ)准则确定该时长阈值为μ-3σ,其中,μ为多个终端的关联时长的期望,σ为该多个终端的关联时长的方差。该多个终端可以为在预设时间段关联该AP的终端,还可以为在预设时间段接入该AP所属的WLAN系统的终端。
可以理解的是,AP可以设置多个时长阈值,例如,第一时长阈值和第二时长阈值。然后, AP将终端在预设时间段与该AP的关联时长与多个时长阈值比较,以确定该AP的常驻终端。例如,当终端的关联时长的第一统计值大于第一时长阈值,且终端的关联时长的第二统计值大于第二时长阈值时,AP确定该终端为该AP的常驻终端。其中,第一统计值例如为关联时长的平均值、中位数、最大值、分位数,第二统计值例如为关联时长的总和。相应地,第一时长阈值的确定方法类似于上述时长阈值的确定方法,第二时长阈值可以为预设值,也可以基于上述时长阈值的确定方法确定,例如,第二时长阈值可以为多个终端中的每个终端的关联时长总和的平均值。
AP可通过多种方式获取终端关联AP的关联时刻。例如,在终端发起关联AP的请求时,AP会基于终端的认证结果和AP的资源(例如,可用互联网协议(Internet Protocol,IP)地址的数量)确定该终端是否可接入,当确定该终端可接入时,AP会发送确认消息给终端,AP可将发送该确认消息的时刻作为终端的关联时刻。可以理解的是,AP也可以将其他时刻作为终端的关联时刻,例如,AP将在发送上述确认消息后接收到该终端的第一个数据帧的时刻作为终端的关联时刻。若终端在预设时间段内关联该AP多次,则AP可相应地获取到多个关联时刻。
AP可通过多种方式获取终端去关联AP的去关联时刻。例如,在离开AP的覆盖区域时,终端可能会向AP发送去关联帧,AP可将接收到该去关联帧的时刻作为去关联时刻。若终端在预设时间段内去关联该AP多次,这AP可相应地获取到多个去关联时刻。又例如,AP还可以将接收到该终端发送的最后一个数据帧的时刻作为去关联时刻。当该终端在预设时间段内关联该AP多次时,在该终端第N次关联该AP后,AP可将在该终端第N+1次关联该AP前接收到该终端的最后一个数据帧的时刻作为该AP的第N次去关联时刻。
AP可根据预设时间段内关联到该AP的每个终端的关联时长确定出该AP的常驻终端。该预设时间段可灵活调整,例如为检测覆盖空洞前的24小时、检测覆盖空洞前的1个月等。
在确定出常驻终端后,AP还可以确定常驻终端中的弱覆盖终端。弱覆盖终端为与该AP关联的信号强度小于第一信号强度阈值的终端。相应地,终端的关联数据还可以包括终端的信号强度,例如,上行信号强度和/或下行信号强度。在终端关联到AP的时间段内,终端可以持续的检测该AP的下行信号强度,AP也可以持续的检测终端的上行信号强度。终端可以间隔性的给AP发送下行信号强度,例如,下行接收信号强度指示(Received Signal Strength Indication,RSSI)值。AP也可以间隔性的检测终端的上行信号强度,例如,上行RSSI值。也就是说,在终端每次关联到AP的时间段内,AP可以获取多个下行信号强度和多个上行信号强度。
AP可以基于常驻终端中的每个终端的信号强度和第一信号强度阈值确定每个终端是否为弱覆盖终端。例如,AP基于预设时间段内的终端的多个信号强度计算该终端的信号强度统计值,并比较该信号强度统计值和第一信号强度阈值。当该信号强度统计值小于该第一信号强度阈值时,AP确定该常驻终端为弱覆盖终端。该信号强度统计值例如为上行信号强度统计值,例如,均值、中位数、分位数等。该信号强度统计值例如为下行信号强度统计值,例如,均值、中位数、分位数等。该信号强度统计值例如为上行信号强度统计值和下行信号强度的加权平均值。又例如,AP为终端的每次关联时段计算一个信号强度统计值,当终端关联该AP多次时,AP为该终端计算多个信号强度统计值。当该多个信号强度统计值中小于第一信号强度阈值的统计值的数量超过第一数量阈值时,AP确定该终端为弱覆盖终端。或者,当该小于第一信号强度阈值的信号强度统计值的比例超过第一比例阈值时,AP确定该终端为弱覆盖终端。或者,上述两个条件都满足时,AP确定该终端为弱覆盖终端。第一信号强度阈值、 第一数量阈值和第一比例阈值均可以为预设值,也可以是基于与时长阈值相似的方法获取的。
又例如,AP为终端的每次关联时段计算一个信号强度统计值,当该信号强度统计值小于第一信号强度阈值时,AP确定一个弱覆盖终端。当该终端关联该AP N次,且N个信号强度统计值中的M个信号强度统计值均小于第一信号强度阈值时,AP确定M个弱覆盖终端。相应地,AP调整该一个常驻终端为N个常驻终端。即,AP将该一个常驻终端对应为N个常驻终端,并将该N个常驻终端中的M各常驻终端确定为M个弱覆盖终端。
又例如,AP按照指定的时长粒度,例如,半小时,统计每个常驻终端的信号强度统计值。例如,预设时段为24小时,时长粒度为半小时,这AP将预设时段划分为48个统计时段,若一个常驻终端在某个统计时段关联到该AP,则该AP为该终端计算一个信号强度统计值,若该信号强度统计值小于第一信号强度阈值,则AP确定一个弱覆盖终端。例如,一个常驻终端在9:15~10:00和14:30~15:40关联到该AP,则该常驻终端对应于5个统计时段(9:00~9:30、9:30~10:00、14:30~15:00、15:00~15:30和15:30~16:00),AP分别统计该常驻终端在该5个统计时段的信号强度统计值,若某个统计时段的信号强度统计值小于第一信号强度阈值,则AP确定一个弱覆盖终端,例如,该5个统计时段中有3个统计时段的信号强度统计值小于第一信号强度阈值,则AP确定3个弱覆盖终端。相应地,AP根据该常驻终端与该AP的关联时长调整该常驻终端对应的常驻终端的数量,例如,将该常驻终端的数量从1调整为5(对应于5个统计时段)。当该AP有多个常驻终端时,AP基于统计时段为每个常驻终端确定弱覆盖终端的数量,并累加每个常驻终端的弱覆盖终端的数量以获取该AP在预设时段内的弱覆盖终端的数量。相应地,AP根据每个常驻终端与该AP的关联时长设置每个常驻终端的权重,并根据每个常驻终端的权重调整每个常驻终端的数量,再累加每个常驻终端的数量以获取该AP的常驻终端的数量。例如,AP有2个常驻终端,常驻终端1的关联时长对应于5个统计时段,常驻终端2的关联时长对应于6个统计时段,则AP设置常驻终端1的权重为5,设置常驻终端2的权重为6,并获取到该AP的常驻终端数为5+6=11。若常驻终端1的5个统计时段有3个统计时段的信号强度统计值小于第一信号强度阈值,常驻终端2的6个统计时段有2个统计时段的信号强度统计值小于第一信号强度阈值,则AP确定该AP的弱覆盖终端数量为3+2=5。关联时长长的终端的信号覆盖质量更能反映AP的覆盖质量,AP基于每个常驻终端的关联时长设置每个常驻终端的权重,进而调整常驻终端的数量,使得覆盖空洞的检测更准确。
基于上述方法,AP可以确定出预设时段内该AP的常驻终端的数量和常驻终端中的弱覆盖终端的数量。
应理解的是,上述各时长阈值和第一信号强度阈值可以与实际用网场景相关,为动态阈值。例如,可以为不同的用网场景预设不同的时长阈值和第一信号强度阈值。又例如,以上述3σ模型为例,由于不同的用网场景对应的数据分布的期望μ和方差σ是不一样的,从而阈值μ-3σ是不一样的,也即是动态调整的。
在本申请实施例中,对于关联某个AP的任意一个终端,如果该终端与该AP的关联时长大于时长阈值,则说明该终端为该AP的常驻终端。常驻终端的信号质量更能反映该AP的覆盖质量。因此,本申请基于常驻终端中的弱覆盖终端的数量确定该AP是否存在覆盖空洞。如此,实现针对该AP的覆盖空洞检测,且使得覆盖空洞的检测更准确。
在一种可能的实现方式中,基于AP的常驻终端的数量和常驻终端中弱覆盖终端的数量确定AP是否存在覆盖空洞,包括:当弱覆盖终端的数量达到第二数量阈值时,确定AP存在覆盖空洞;或当弱覆盖终端的数量和常驻终端的数量的比值达到第二比例阈值时,确定AP 存在覆盖空洞;或当弱覆盖终端的数量达到第二数量阈值,且弱覆盖终端的数量和常驻终端的数量的比值达到第二比例阈值时,确定AP存在覆盖空洞。
在一种可能的实现方式中,第二数量阈值和第二比例阈值是基于AP的常驻终端的数量确定的。也即,第二数量阈值和第二比例阈值基于AP的常驻终端的数量动态调整。例如,基于AP的常驻终端的数量动态调整第二数量阈值的大小,基于AP的常驻终端的数量动态调整第二比例阈值的大小。
不同的AP的常驻终端的数量可能有较大的差异,因此,可根据AP的常驻终端的数量设置不同的覆盖空洞判断条件。例如,若常驻终端的数量较小时,当弱覆盖终端的比例超过一个大的比例阈值时,确定AP存在覆盖空洞;若常驻终端的数量较大时,当弱覆盖终端的数量超过指定值时,确定AP存在覆盖空洞;若常驻终端的数量介于上述二者之间时,当弱覆盖终端的比例超过一个小的比例阈值时,确定AP存在覆盖空洞。作为一种示例,第二比例阈值包括比例阈值a和比例阈值b,基于AP的常驻终端的数量和常驻终端中弱覆盖终端的数量确定AP是否存在覆盖空洞,包括:当常驻终端的数量小于第三数量阈值,且弱覆盖终端的数量和常驻终端的数量的比值大于或等于比例阈值a时,确定AP存在覆盖空洞;当常驻终端的数量大于或等于第三数量阈值且小于或等于第四数量阈值,以及弱覆盖终端的数量和常驻终端的数量的比值大于或等于比例阈值b时,确定AP存在覆盖空洞;当常驻终端的数量大于第四数量阈值,且弱覆盖终端的数量达到第五数量阈值时,确定AP存在覆盖空洞。例如,评判标准如下公式所示:
上述公式中,N表示常驻终端的数量,第三数量阈值为3,第四数量阈值为10,P(a)表示比例阈值a,P(b)表示比例阈值b,R表示第五数量阈值。
应理解,上述评判标准的目的在于:当常驻终端的数量较少时,这些常驻终端均为弱覆盖终端才会认为该AP存在覆盖空洞;当常驻终端的数量正常时,弱覆盖终端与常驻终端的数量的占比进行评判,也即采用正常的比例阈值来评判;当常驻终端的数量较多时,此时如果部分常驻终端为弱覆盖终端,其占比也有可能很小,所以采用弱覆盖终端数量进行评判,也即采用第五数量阈值来评判。
需要说明的是,上述各数量阈值和各比例阈值可以与实际用网场景相关,为动态阈值。即,上述公式中的N、P(a)、P(b)和R是可以动态调整的。具体可以参照前述对时长阈值和第一信号强度阈值的描述,此处不在赘述。
本实施例中,基于AP的常驻终端的数量以及常驻终端中的弱覆盖终端的数量检测AP是否存在覆盖空洞。由于常驻终端关联AP的时长超过时长阈值,常驻终端的信号质量更能反映AP的覆盖质量。因此,本申请实施例提高了检测AP覆盖空洞的准确度。
请参阅图5,图5是图4所示的覆盖空洞的检测方法的一种具体示例的流程示意图。该覆盖空洞的检测方法可由电子设备(例如WLAN控制器、分析器或AP)执行,用于检测AP的覆盖空洞。该覆盖空洞的检测方法包括但不限于如下步骤或操作:
501、判断终端是否为AP的常驻终端。
作为一种示例,在执行步骤501之前,电子设备先采集关联该AP的所有终端中的每个 终端的关联数据,然后基于每个终端的关联数据判断该终端是否为该AP的常驻终端。具体的判断方法请参考上述步骤401。对于非常驻终端,其关联数据为噪声数据,需要剔除,后续步骤中将不再考虑非常驻终端的关联数据。对于常驻终端,执行步骤502。
作为另一种示例,对于固定用网场景,比如办公室和宿舍,每个AP服务的终端比较固定。对于之前就已经判断出来的常驻终端,电子设备可存储常驻终端的相关信息,例如,将常驻终端的媒体接入控制(Media Access Control,MAC)地址存储在数据表中。如此,电子设备可通过查询该数据表以确定某一终端是否为常驻终端。例如,将终端的MAC地址与该数据表中的常驻终端的MAC地址进行比对。若在数据表中存在与该终端MAC地址相同的MAC地址,则该终端为常驻终端。
应理解,经过步骤501之后,保留的关联数据均为该AP的常驻终端的关联数据。
502、更新常驻终端的关联数据。
可选地,在进行后续步骤之前,AP还可以更新常驻终端的关联数据。例如,AP剔除常驻终端的关联数据中的疑似漫游前的信号强度。在关联该AP后,终端可能会移动以漫游到其他AP。在接入其他AP之前,该终端处于漫游路径上,可能仍然关联到该AP,此时,终端的信号强度较弱。可选地,本申请可以通过剔除终端的关联数据中的疑似漫游前的信号强度,以使得更新后的关联数据更能反映该AP的覆盖质量。例如,AP删除每个常驻终端每次关联AP后的最后几条(例如,3条)信号强度。后续步骤将使用更新后的常驻终端的关联数据。
503、判断AP的信号强度是否小于信号强度阈值。
可选地,在基于常驻终端中的弱覆盖终端的数量或比例判断AP是否存在覆盖空洞前,还可以先统计AP的信号强度,并判断AP的信号强度是否小于信号强度阈值。若AP的信号强度不小于信号强度阈值,则判断AP的整体覆盖质量较好,可以执行步骤507,确定该AP不存在覆盖空洞。否则,继续执行步骤504。AP的信号强度为AP的常驻终端的信号强度的统计值,例如,为常驻终端检测到的下行信号强度的均值。
504、确定常驻终端中的弱覆盖终端。
该步骤请参看上述步骤401,此处不再赘述。
505、基于常驻终端中的弱覆盖终端的数量或比例,判断AP是否存在覆盖空洞。
在确定出常驻终端以及常驻终端中的弱覆盖终端后,AP可基于常驻终端中的弱覆盖终端的数量或比例,判断AP是否存在覆盖空洞。其中,该比例是指该AP的常驻终端中的弱覆盖终端的数量与该AP关联的常驻终端的数量的比值。
具体地,如果该AP的常驻终端中的弱覆盖终端的数量大于数量阈值,或该AP的常驻终端中的弱覆盖终端的比例大于比例阈值,或该AP的常驻终端中的弱覆盖终端的数量大于数量阈值且该AP的常驻终端中的弱覆盖终端的比例大于比例阈值,则执行步骤506,确定该AP存在覆盖空洞。否则,则执行步骤507,确定该AP不存在覆盖空洞。
506、确定该AP为存在覆盖空洞的AP。
不再执行步骤507。
507、确定该AP为不存在覆盖空洞的AP。
需要说明的是,上述步骤502和步骤503是可选的步骤。
进一步需要说明的是,图5描述的一系列的步骤或操作,还可以对应参照图4所示实施例的相应描述。
请参阅图6,图6是本申请实施例提供的一种覆盖空洞的检测方法的流程示意图。该覆盖空洞的检测方法600可由电子设备(例如WLAN控制器、分析器或AP)执行,用于检测AP之间的覆盖空洞。该覆盖空洞的检测方法600包括但不限于如下步骤或操作:
601:根据第一AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间存在覆盖空洞。第一AP和第二AP之间的终端的漫游行为包括多个终端在第一AP和第二AP之间的漫游行为。
无线网络中的各AP可以采集关联该AP的终端的关联数据。终端的关联数据例如包括终端的标识(例如,终端的MAC地址)、关联的AP的标识(例如,AP的名称)、终端的信号强度、终端的关联时刻和终端的去关联时刻等。具体的关联数据的获取方式,请参考上述步骤401,此处不再赘述。
应理解,该电子设备可以为该第一AP,或第二AP,或其他设备。如果该电子设备为该第一AP,无线网络中的其他AP可以将采集到的关联其的终端的关联数据发送给第一AP。如果该电子设备为该第二AP,无线网络中的其他AP可以将采集到的关联其的终端的关联数据发送给第二AP。如果该电子设备为其他设备,各AP可以将采集到的关联其的终端的关联数据发送给该其他设备。因此,电子设备可以获取到关联该无线网络中各AP的终端的关联数据。电子设备可以基于关联各AP的终端的的关联数据确定第一AP和第二AP之间的终端的漫游行为,并基于第一AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间是否存在覆盖空洞。
示例性,电子设备可以将无线网络中的任两个AP作为第一AP和第二AP,以此确定多个第一AP和第二AP对,然后确定每个第一AP和第二AP对之间是否存在覆盖空洞。针对每个第一AP和第二AP对,电子设备可以将预设时间段内离开该第一AP后,在关联该第二AP之前没有关联该无线网络中的其他AP的终端作为该第一AP和该第二AP之间的漫游终端。相应地,电子设备还可以将预设时间段内离开该第二AP后,在关联该第一AP之前没有关联该无线网络中的其他AP的终端作为该第一AP和该第二AP之间的漫游终端。据此,电子设备获取在第一AP和第二AP之间漫游的多个终端。该预设时段可以是指定的时段,例如检测覆盖空洞前的24小时,1个月等。
针对任一第一AP和第二AP对,电子设备可以获取到多个终端关联该第一AP的关联数据和这多个终端关联该第二AP的关联数据,并基于这多个终端关联该第一AP的关联数据和这多个终端关联该第二AP的关联数据,确定这多个终端在第一AP和第二AP之间的漫游行为。进而,电子设备基于这多个终端在第一AP和第二AP之间的漫游行为,确定第一AP和第二AP之间是否存在覆盖空洞。
在本申请实施例中,终端在AP间的漫游行为能够反映AP间的信号覆盖质量,因此,本方案基于两个AP间的多个终端在该两个AP间的漫游行为可以实现该两个AP之间覆盖空洞的检测。
在一种可能的实现方式中,根据第一AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间存在覆盖空洞,包括:获取多个终端的漫游切换时长,当多个终端的漫游切换时长满足第一条件时,确定第一AP和第二AP之间存在覆盖空洞。其中,多个终端中的每个终端的漫游切换时长指示:终端离开第一AP到该终端关联第二AP所经过的时长,或该终端离开第二AP到该终端关联第一AP所经过的时长。
终端离开一个AP包括该终端与该AP去关联,或者,该终端关联到该AP的信号强度小于第二信号强度阈值。现实场景中,有的终端在漫游过程中,会先发送去关联请求到已关联 的AP以与该AP去关联,在与该AP去关联后,再尝试去关联新的AP,此时,终端与该已关联AP去关联即为该终端离开该AP。现实场景中,有的终端在漫游过程中,不发送去关联请求到已关联的AP,但是,随着该终端的漫游,其关联到该AP的信号强度越来越弱,因此,当该终端关联到该AP的信号强度小于第二信号强度阈值时,即判断该终端离开该AP。终端关联到AP的信号可能存在波动,波动中的信号强度可能会小于第二信号强度阈值,但该波动可能不是漫游导致的。进一步地,为提升覆盖空洞的检测准确度,当该终端关联到AP的一个信号强度且该信号强度之后的信号强度均小于第二信号强度阈值时,判断该终端离开该AP。
一次漫游过程为终端从无线网络中的一个AP切换为关联该无线网络中的另一个AP,其对应的漫游切换时长等于终端关联该另一个AP的关联时间减去该终端离开该一个AP的时间。上述另一个AP可以称之为该终端关联的新AP,上述一个AP可以称之为该终端关联的老AP。即,一个终端的一次漫游切换时长为该终端关联到新AP的关联时刻减去该终端离开老AP的时刻。该终端离开老AP的时刻可以为该终端与老AP去关联的时刻或该终端关联到老AP的信号强度小于第二信号强度阈值的时刻。每个AP获取到的一个终端的关联数据包括该终端的关联时刻,该终端的去关联时刻,以及该终端与该AP关联的多个信号强度及每个信号强度对应的时刻。具体的终端的关联时刻、去关联时刻以及信号强度的获取方式请参考步骤401,此处不再赘述。电子设备可以从老AP的终端的关联数据中提取该终端的去关联时刻,将该去关联时刻作为该终端离开该老AP的时刻。或者,电子设备可以从老AP的终端的关联数据中提取小于第二信号强度阈值的信号强度,并将该信号强度的对应时刻作为该终端离开该老AP的时刻。电子设备可以从新AP的该终端的关联数据中提取该终端的关联时刻。电子设备计算该终端关联该新AP的关联时刻与该终端离开老AP的时刻的差值,作为该终端在老AP与新AP之间的漫游时长。
示例性地,电子设备基于多个终端关联该第一AP的关联数据和这多个终端关联该第二AP的关联数据,确定这多个终端在第一AP和第二AP之间漫游的漫游切换时长。一个终端可能对应多个漫游切换时长。例如,一个终端在预设时间段内多次从第一AP漫游到第二AP,则该终端的每次漫游过程对应一个漫游切换时长。又例如,一个终端在预设时间段内多次从第一AP漫游到第二AP,又多次从第二AP漫游到第一AP,则该终端的每次漫游过程对应一个漫游切换时长。即,多个终端中的任意一个终端的漫游切换时长包括:该任意一个终端从第一AP漫游至第二AP的漫游切换时长,和/或,该任意一个终端从第二AP漫游至第一AP的漫游切换时长。
在本实现方式中,有多个终端在第一AP和第二AP之间发生漫游行为时,可以获取这多个终端的漫游切换时长,当多个终端的漫游切换时长满足第一条件时,说明终端在第一AP和第二AP之间的漫游体验较差,从而确定第一AP和第二AP之间存在覆盖空洞。
在一种可能的实现方式中,该第一条件包括:漫游切换时长达到第三时长阈值的终端数量达到第六数量阈值,和/或漫游切换时长达到第三时长阈值的终端数量的比例达到第三比例阈值。即,当第一AP和第二AP之间的漫游切换时长达到第三时长阈值的终端数量达到第六数量阈值时,确定第一AP和第二AP之间存在覆盖空洞。或者,当第一AP和第二AP之间的漫游切换时长达到第三时长阈值的终端数量的比例达到第三比例阈值时,确定第一AP和第二AP之间存在覆盖空洞。该比例为漫游切换时长达到第三时长阈值的终端数量与该第一AP和第二AP之间的漫游的终端的数量。或者,当第一AP和第二AP之间的漫游切换时长达到第三时长阈值的终端数量达到第六数量阈值,且第一AP和第二AP之间的漫游切换时长 达到第三时长阈值的终端数量的比例达到第三比例阈值时,确定第一AP和第二AP之间存在覆盖空洞。
可以理解的是,一个终端可能在第一AP和第二AP之间漫游多次,每次漫游都对应一个漫游切换时长。因此,一个终端可能对应多个漫游切换时长,在做上述终端数量的统计时,每次漫游均可以作为一个样本。例如,终端1和终端2在第一AP和第二AP间共漫游了1000次,其中,终端1的漫游切换时长达到第三时长阈值的次数为200次,终端2的漫游切换时长达到第三时长阈值的次数为300次,则在进行上述统计时,确定第一AP和第二AP之间的漫游的终端数量为1000,第一AP和第二AP之间漫游切换时长达到第三时长阈值的终端数量为500。
其中,第二信号强度阈值、第三时长阈值、第六数量阈值和第三比例阈值可以是预设的值,预设的值可以是与实际用网场景相关的,例如,为不同的场景设置不同的值。这些预设的值还可以是根据该无线网络中的检测的数据自动调整的动态阈值。例如,第三时长阈值可以是基于该无线网络中的所有漫游切换时长数据的分布确定的。例如,第三时长阈值为该无线网络中的所有漫游切换时长的均值、中位数等。又例如,通过3sigma准则确定第三时长阈值,以3σ模型为例,基于历史的漫游切换时长数据,确定该漫游切换时长数据分布的期望μ和方差σ,将第三时长阈值设置为μ-3σ。同理,可以基于该无线网络中的采集的数据动态的确定第六数量阈值和第三比例阈值。
可选地,在检测第一AP和第二AP之间是否存在覆盖空洞时,还可以确定第一AP和第二AP之间发生的总漫游次数,如果第一AP和第二AP之间发生的总漫游次数不大于第四数量阈值,说明数据样本较少,则不再继续判断第一AP和第二AP之间是否存在覆盖空洞。
在本实现方式中,如果满足数量要求或比例要求的漫游切换时长达到切换时长阈值,则说明终端在第一AP和第二AP之间的漫游体验较差,从而确定第一AP和第二AP之间是存在覆盖空洞的。
以上以漫游行为为漫游切换时长为例介绍电子设备基于漫游行为确定AP间存在覆盖空洞的方法。漫游行为还可以是漫游前的信号强度。此时,电子设备获取在第一AP和第二AP间发生漫游的多个终端的漫游前信号强度,当该多个终端的漫游前信号强度满足第二条件时,确定第一AP和第二AP之间存在覆盖空洞。该第二条件包括:漫游前信号强度小于信号强度阈值的终端数量达到数量阈值,和/或,漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
每个终端的漫游前信号强度包括:终端从第一AP漫游到第二AP的过程中在关联第二AP前的N条信号强度,和/或,终端从第二AP漫游到第一AP的过程中在关联第一AP前的N条信号强度,N为大于等于1的整数。
一个终端可以在第一AP和第二AP间漫游多次,电子设备可以获取每个终端的每次漫游前的信号强度,例如,获取每个终端的每次漫游前的最后N条信号强度,N为大于等于1的整数。电子设备可以基于漫游次数统计漫游终端的数量。例如,电子设备在预设时间段内检测到多个终端在第一AP和第二AP间共发生了K次漫游,则设置漫游终端的数量为K。电子设备比较每次漫游对应的漫游前信号强度和信号强度阈值,统计漫游前信号强度小于信号强度阈值的数量。然后,电子设备比较该数量和数量阈值,若该数量大于等于该数量阈值,则电子设备判断该多个终端的漫游前信号强度满足上述第二条件,确定第一AP和第二AP之间存在覆盖空洞。或者,电子设备该数量和漫游终端的数量的比值,比较该比值与比例阈值,若该比值大于等于该比例阈值,则电子设备判断该多个终端的漫游前信号强度满足上述第二 条件,确定第一AP和第二AP之间存在覆盖空洞。或者,当该数量大于等于该数量阈值,且该比值大于等于该比例阈值时,电子设备判断该多个终端的漫游前信号强度满足上述第二条件,确定第一AP和第二AP之间存在覆盖空洞。例如,假设上述K次漫游中的L次漫游对应的漫游前信号强度小于信号强度阈值,L大于等于数量阈值,和/或L/K大于比例阈值时,电子设备确定第一AP和第二AP之间存在覆盖空洞。
当N=1时,电子设备可以直接比较每次漫游对应的漫游前的1条信号强度和信号强度阈值。当N>1时,电子设备可以计算每次漫游对应的漫游前的N条信号强度的统计值,然后比较该统计值与信号强度阈值。该统计值例如为均值、中位数等。
电子设备可以获取每个AP检测的关联各AP的终端的信号强度。当终端从第一AP漫游至第二AP时,电子设备获取终端关联第二AP之前的终端关联到第一AP时终端的最后N条信号强度。当终端从第二AP漫游至第一AP时,电子设备获取终端关联第一AP之前的终端关联到第二AP时终端的最后N条信号强度。上述信号强度阈值可以是预设的值,例如,-65分贝。上述信号强度也可以是动态确定的,例如,基于第一AP和第二AP所在的WLAN系统中的所有AP间的漫游前的信号强度的分布确定,例如,该信号强度阈值为WLAN系统中的所有AP间的漫游前的信号强度的分位数,或基于上述3sigma原则确定。该数量阈值和比例阈值可以是预设的,也可以是动态确定的,例如,基于上述WLAN系统中的所有AP间的漫游前的信号强度确定了信号强度阈值后,可以统计该WLAN系统中漫游前的信号强度大于该信号强度阈值的终端的数量和比值,并基于该统计出的数量和比值确定上述数量阈值和比例阈值。
漫游行为还可以包括漫游切换时长和漫游前的信号强度,此时,当多个终端在第一AP和第二AP间的漫游切换时长满足第一条件,且该多个终端在第一AP和第二AP间的漫游前信号强度满足第二条件时,电子设备确定第一AP和第二AP间存在覆盖空洞。
根据上述方法,电子设备可以确定该无线网络中其他AP间是否存在覆盖空洞,例如,根据第三AP和第四AP之间的终端的漫游行为确定所述第三AP和所述第四AP之间存在覆盖空洞。在确定出无线网络中漫游路径上存在覆盖空洞的AP对之后,电子设备还可以确定覆盖空洞的位置,并显示覆盖空洞的位置。覆盖空洞的位置为第一AP和第二AP的连线与第三AP和第四AP的连线的交叉点。
举例来说,基于用网场景的地图,第一AP、第二AP、第三AP和第四AP均在地图上的对应位置。当第一AP的坐标与第二AP的坐标之间的连线和第三AP的坐标与第四AP的坐标之间的连线存在交叉点,且第一AP和第二AP之间存在覆盖空洞,第三AP和第四AP之间也存在覆盖空洞时,可以确定上述交叉点为覆盖空洞的位置。
需要说明的是,AP之间的连线包括直线、曲线等,本申请对此不做具体限定。例如,空旷的室内,任意2个AP之间的连线可以是直线。又例如,建筑内有各种走廊,AP间的连线可以是随着走廊弯曲的,2个连线的交界处可能在2个走廊的交叉点。另外,连线的交叉点是位于第一AP和第二AP之间的,且位于第三AP和第四AP之间的,不为它们连线的延长线上的交叉点。
在本实现方式中,电子设备根据存在覆盖空洞的AP对间的交叉点确定覆盖空洞的位置,并显示该覆盖空洞的位置,使得运维人员可以快速的知晓覆盖空洞的位置,并调整部署,增强该区域的信号覆盖,提升用户体验。
终端在漫游过程中可能存在漫游跳跃现象。其中,漫游跳跃现象是指:终端漫游不及时,无法实现逐跳漫游的现象。举例来说,请参阅图7,图7是本申请实施例提供的一种漫游跳跃现象的示意图。如图7所示,终端一开始关联的是AP1,随着该终端远离AP1靠近AP2的过程中,理论上该终端应当去关联AP1之后与AP2关联。也即,理论上该终端应当在漫游路径AP1→AP2上漫游。然而,实际上该终端没有及时去关联AP1且没有与AP2关联,等到该终端去关联AP1时,该终端已经与AP3关联。也即,实际上该终端是在漫游路径AP1→AP3上漫游,中间跳过了AP2。造成漫游跳跃的原因可能是有些终端的扫描间隔大,导致这些终端未及时扫描到漫游路径上的AP2等。因此,上述方法可能检测出AP1和AP3之间存在覆盖空洞,但实际上AP1和AP3之间不存在覆盖空洞,因为AP1和AP3之间还有一个AP2。即,AP1和AP3的漫游路径存在替代漫游路径:AP1-AP2和AP2-AP3,该替代漫游路径不存在覆盖空洞。当发生漫游跳跃现象时,可能会出现覆盖漏洞的误检测。
可选地,在检测第一AP和第二AP之间是否存在覆盖空洞的过程中,还可以先判断第一AP和第二AP之间的漫游路径是否存在替代漫游路径。如果第一AP和第二AP之间的漫游路径存在替代漫游路径,则可以不再继续判断第一AP和第二AP之间是否存在覆盖空洞。
具体地,对于两个AP之间的漫游路径,其是否存在替代漫游路径的判定准则包括以下条件:
(1)存在其他AP,使得该两个AP中的其中一个AP与该其他AP之间的漫游路径上的总漫游次数大于该两个AP之间的漫游路径上的总漫游次数,且该两个AP中的另外一个AP与该其他AP之间的漫游路径上的总漫游次数大于该两个AP之间的漫游路径上的总漫游次数;
(2)该两个AP中的其中一个AP与该其他AP之间的漫游路径满足漫游标准,且该两个AP中的另外一个AP与该其他AP之间的漫游路径满足漫游标准。其中,漫游标准包括总漫游次数大于第六数量阈值且漫游达标率大于第四比例阈值。此处,漫游达标率可以使用漫游前终端的信号强度大于第二信号强度阈值的漫游次数与总漫游次数的占比表示,还可以使用漫游时长小于时长阈值的漫游次数与总漫游次数的占比表示。
其中,漫游路径上的总漫游次数也可以通过该漫游路径上关联的终端数量来表示。漫游路径上关联的终端也即以该漫游路径进行漫游的终端。一般而言,漫游路径上关联的终端数量与漫游路径上的总漫游次数呈正相关。作为一种特例,漫游路径上关联的终端数量与漫游路径上的总漫游次数相等。
应理解,上述两个条件同时符合时,才认为该两个AP之间的漫游路径存在替代漫游路径。
举例来说,以图7为例,若要判断漫游路径AP1→AP3是否存在覆盖空洞,可以先判断漫游路径AP1→AP3是否存在替代漫游路径。具体如下:
(1)针对漫游路径AP1→AP3:
若存在AP2,使得存在漫游路径AP1→AP2和AP2→AP3。漫游路径AP1→AP2上的总漫游次数大于漫游路径AP1→AP3上的总漫游次数,或者漫游路径AP1→AP2上关联的终端数量大于漫游路径AP1→AP3上关联的终端数量。并且,漫游路径AP2→AP3上的总漫游次数大于漫游路径AP1→AP3上的总漫游次数,或者漫游路径AP2→AP3上关联的终端数量大于漫游路径AP1→AP3上关联的终端数量。如此,则认为该漫游路径AP1→AP3可能存在替代漫游路径。也即,认为漫游路径AP1→AP2和漫游路径AP2→AP3可能为漫游路径AP1→AP3的替代漫游路径。
(2)针对漫游路径AP1→AP2和漫游路径AP2→AP3:
若漫游路径AP1→AP2和漫游路径AP2→AP3均满足漫游标准,则确定漫游路径AP1→AP2和漫游路径AP2→AP3为漫游路径AP1→AP3的替代漫游路径。
应理解,若存在AP2同时符合上述两个条件,则不再继续判断漫游路径AP1→AP3是否存在覆盖空洞。否则,继续基于图6所示方法判断漫游路径AP1→AP3是否存在覆盖空洞。
在检测两个AP之间是否存在覆盖空洞之前,先判断这两个AP之间的漫游路径是否存在替代漫游路径,以确定终端在这两个AP之间漫游不存在漫游跳跃现象,从而减少覆盖漏洞的误检测的发生,有利于提高覆盖空洞检测的准确度。
请参阅图8,图8是本申请实施例提供的一种基于覆盖空洞的检测的应用流程示意图,该流程包括但不限于如下步骤:
801:分析器接收终端关联数据。
其中,对于每个终端(Station,STA),其在关联一个AP之后,该AP可以检测该终端的关联数据。网络中存在一个或多个AP,对于每个AP,其都将其检测到的终端的关联数据发送给AC。网络中可以存在一个或多个AC,对于每个AC,其都将其接收到的终端关联数据发送给分析器。如此,分析器可以获取到整个网络的终端的关联数据。
802:分析器进行覆盖空洞检测。
分析器基于接收到的终端的关联数据,执行图4所示的覆盖空洞检测方法,以确定出当前网络中存在覆盖空洞的AP。
分析器基于接收到的终端的关联数据,执行图6所示的覆盖空洞的检测方法,以确定存在覆盖空洞的漫游路径。如此,分析器可以确定出当前网络中哪些AP对之间存在的覆盖空洞。
803:分析器呈现覆盖空洞及网络部署改进措施。
在确定出存在覆盖空洞的AP和漫游路径后,分析器还可以分析存在覆盖空洞的原因,以确定覆盖空洞的位置。在确定出覆盖空洞的位置后,分析器还可以显示覆盖空洞的位置和网络部署改进措施。网络部署改进措施包括补盲策略,即,推荐运维人员在什么位置新部署AP或增强原AP的覆盖能力。运维人员基于该网络部署改进措施调整该网络中的AP部署,可以增强覆盖空洞位置处的信号覆盖,实现网络全覆盖,提升用户体验。
请参阅图9,图9是本申请实施例提供的一种补盲策略的推荐流程示意图。如图9所示,针对某一存在覆盖空洞的AP,若该存在覆盖空洞的AP关联的终端原址掉线重连现象较严重,则说明该存在覆盖空洞的AP周围可能存在死角区域,需要排查该存在覆盖空洞的AP周围是否有死角区域。原址掉线重连现象是指:终端从某一AP去关联之后又重新关联该AP,即终端在同一个AP不断的上下线。死角区域是指:在物理空间中是较为独立的封闭空间,且该封闭空间内没有安装AP进行覆盖。如果该存在覆盖空洞的AP周围有死角区域,则在该死角区域增设AP。进一步地,针对某一存在覆盖空洞的AP,若与该存在覆盖空洞的AP关联过的终端始终固定漫游到该另一个AP,且终端从该AP漫游至该另一个AP的漫游体验差,则说明该AP存在的覆盖空洞是朝着该另一个AP延伸的,需要在这两个AP之间增设AP。再进一步地,针对某一存在覆盖空洞的AP,若与该存在覆盖空洞的AP关联的终端,几乎不发生漫游行为,或者发生漫游行为的体验都很好(也即不会在漫游体验差的漫游路径上发生漫游),则说明该存在覆盖空洞的AP的覆盖区域较为封闭,需要进行原址扩容。原址扩容是指:在该存在覆盖空洞的AP周围增设AP。增设AP方式可以为:该存在覆盖空洞的AP不动,增设的AP根据实际物理环境在该存在覆盖空洞的AP周围部署。或者,增设AP方式可以为: 该存在覆盖空洞的AP和增设的AP分散部署于该存在覆盖空洞的AP原来的位置的周围。
举例来说,请参阅图10,图10是本申请实施例提供的一办公区的覆盖空洞及补盲推荐位置的呈现示意图。如图10所示,当前网络环境中的AP包括AP-246、AP-247、AP-248、AP-249、AP-250、AP-251、AP-252、AP-253、AP-254、AP-255和AP-256。分析器检测出AP-255存在覆盖空洞,AP-255与AP-248之间存在覆盖空洞以及AP-255与AP-256之间存在覆盖空洞。此外,与AP-255关联过的终端总是漫游至AP-248和AP-256。如此,基于前述覆盖空洞的检测结果,分析器推荐在AP-255与AP-248之间的漫游路径以及在AP-255与AP-256之间的漫游路径上进行补盲。例如,图10中的五角星位置为补盲推荐位置。
综上所述,本申请基于与AP关联的常驻终端和常驻终端的信号质量检测AP的覆盖空洞,并基于AP间的多个终端的漫游行为确定AP间的覆盖空洞,能够全面准确的检测WLAN网络中的覆盖空洞。而且,本申请还可以根据网络场景动态调整上述检测过程中的比较阈值,进一步提升检测的准确性。另外,本申请还可以确定覆盖空洞的位置,并基于覆盖空洞的位置推荐有效的补盲策略,使得运维人员可以快速有效地调整AP部署,增强WLAN网络的信号覆盖。
需要说明的是,图8描述的一系列的步骤或操作,还可以对应参照图1至图7所示实施例的相应描述。
请参阅图11,图11为本申请实施例提供的一种覆盖空洞的检测装置1100的结构示意图。该装置1100具有实现上述图4所示的覆盖空洞检测方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该装置1100包括获取单元1101和处理单元1102。获取单元1101,用于获取AP的常驻终端的数量和常驻终端中弱覆盖终端的数量。处理单元1102,用于基于AP的常驻终端的数量和常驻终端中弱覆盖终端的数量确定AP是否存在覆盖空洞。AP的常驻终端是与该AP的关联时长大于时长阈值的终端。弱覆盖终端是与该AP关联的信号强度小于信号强度阈值的终端。
在一种可能的实现方式中,处理单元1102具体用于:当弱覆盖终端的数量达到数量阈值时,确定AP存在覆盖空洞;和/或,当弱覆盖终端的数量和常驻终端的数量的比值达到比例阈值时,确定AP存在覆盖空洞。
在一种可能的实现方式中,处理单元1102还用于:根据每个常驻终端与AP的关联时长设置所述每个常驻终端的权重,并根据所述每个常驻终端的权重调整所述常驻终端的数量。
需要说明的是,图11所描述的覆盖空洞的检测装置1100的各个单元的实现还可以对应参照图4或图5所示的实施例的相应描述。并且,图11所描述的覆盖空洞的检测装置1100带来的有益效果可以参照图4或图5所示的实施例的相应描述,此处不再重复描述。
请参阅图12,图12为本申请实施例提供的一种覆盖空洞的检测装置1200的结构示意图。该装置1200具有实现上述图6所示的覆盖空洞检测方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
在一种可能的实现方式中,该装置1200包括获取单元1201和处理单元1202。获取单元1201,用于获取第一AP和第二AP之间的终端的漫游行为。处理单元1202,用于根据第一 AP和第二AP之间的终端的漫游行为确定第一AP和第二AP之间存在覆盖空洞。第一AP和第二AP之间的终端的漫游行为包括多个终端在第一AP和第二AP之间的漫游行为。
在一种可能的实现方式中,漫游行为包括漫游切换时长。获取单元1201具体用于:获取多个终端的漫游切换时长。处理单元1202具体用于:当多个终端的漫游切换时长满足第一条件时,确定第一AP和第二AP之间存在覆盖空洞。多个终端中的每个终端的漫游切换时长指示:终端离开第一AP到该终端关联第二AP所经过的时长,或该终端离开第二AP到该终端关联第一AP所经过的时长。
在一种可能的实现方式中,第一条件包括:漫游切换时长达到时长阈值的终端数量达到数量阈值;和/或,漫游切换时长达到时长阈值的终端数量的比例达到比例阈值。
在一种可能的实现方式中,终端离开第一AP包括:终端与第一AP去关联;或者终端关联到第一AP的信号强度小于信号强度阈值。
在一种可能的实现方式中,漫游行为包括漫游前的信号强度。获取单元1201具体用于:获取多个终端的漫游前的信号强度。处理单元1202具体用于:当多个终端的漫游前信号强度满足第二条件时,确定第一AP和第二AP之间存在覆盖空洞。多个终端中的每个终端的漫游前信号强度包括:终端从第一AP漫游到第二AP的过程中在关联第二AP前的N条信号强度,和/或,终端从第二AP漫游到第一AP的过程中在关联第一AP前的N条信号强度,N为大于等于1的整数。
在一种可能的实现方式中,第二条件包括:漫游前信号强度小于信号强度阈值的终端数量达到数量阈值,和/或,漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
在一种可能的实现方式中,处理单元1202还用于:根据第三AP和第四AP之间的终端的漫游行为确定第三AP和第四AP之间存在覆盖空洞;以及在用户图形界面上显示覆盖空洞的位置。覆盖空洞的位置为第一AP和第二AP的连线与第三AP和第四AP的连线的交叉点。
需要说明的是,图12所描述的覆盖空洞的检测装置1200的各个单元的实现还可以对应参照图6所示的实施例的相应描述。并且,图12所描述的覆盖空洞的检测装置1200带来的有益效果可以参照图6所示的实施例的相应描述,此处不再重复描述。
请参见图13,图13是本申请实施例提供的一种电子设备1310的结构示意图,该电子设备1310包括处理器1311、存储器1312和通信接口1313,上述处理器1311、存储器1312和通信接口1313通过总线1314相互连接。
存储器1312包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器1312用于相关计算机程序及数据。通信接口1313用于接收和发送数据。
处理器1311可以是一个或多个中央处理器(central processing unit,CPU),在处理器1311是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
该电子设备可以为WLAN控制器、分析器或AP等。该电子设备1310中的处理器1311用于读取上述存储器1312中存储的计算机程序代码,执行图4、图5、图6和图8所示的任意一个实施例的方法。
需要说明的是,图13所描述的电子设备1310的各个操作的实现还可以对应参照图2至图9所示的实施例的相应描述。并且,图13所描述的电子设备1310带来的有益效果可以参 照图4、图5、图6、图8和图9所示的实施例的相应描述,此处不再重复描述。
本申请实施例还提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有上述芯片的设备执行如图4、图5、图6和图8所示的任意一个实施例的方法。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有指令,当所述指令被处理器执行时,实现如图4、图5、图6和图8所示的任意一个实施例的方法。
本申请实施例还提供一种计算机程序产品,包括计算机程序,所述计算机程序被处理器执行时,实现如图4、图5、图6和图8所示的任意一个实施例的方法。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是ROM、PROM、EPROM、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过 其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
上述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所示方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并和删减。
本申请实施例装置中的模块可以根据实际需要进行合并、划分和删减。
以上,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (23)

  1. 一种覆盖空洞的检测方法,其特征在于,包括:
    根据第一接入点AP和第二AP之间的终端的漫游行为确定所述第一AP和所述第二AP之间存在覆盖空洞;
    所述第一AP和所述第二AP之间的终端的漫游行为包括多个终端在所述第一AP和所述第二AP之间的漫游行为。
  2. 根据权利要求1所述的方法,其特征在于,所述漫游行为包括漫游切换时长,所述根据第一接入点AP和第二AP之间的终端的漫游行为确定所述第一AP和所述第二AP之间存在覆盖空洞,包括:
    获取所述多个终端的漫游切换时长,当所述多个终端的漫游切换时长满足第一条件时,确定所述第一AP和所述第二AP之间存在覆盖空洞;
    其中,所述多个终端中的每个终端的漫游切换时长指示:所述终端离开所述第一AP到所述终端关联所述第二AP所经过的时长,和/或,所述终端离开所述第二AP到所述终端关联所述第一AP所经过的时长。
  3. 根据权利要求2所述的方法,其特征在于,所述第一条件包括:
    漫游切换时长达到时长阈值的终端数量达到数量阈值;和/或
    漫游切换时长达到时长阈值的终端数量的比例达到比例阈值。
  4. 根据权利要求2或3所述的方法,其特征在于,所述终端离开所述第一AP包括:
    所述终端与所述第一AP去关联;或者
    所述终端关联到所述第一AP的信号强度小于信号强度阈值。
  5. 根据权利要求1所述的方法,其特征在于,所述漫游行为包括漫游前的信号强度,所述根据第一接入点AP和第二AP之间的终端的漫游行为确定所述第一AP和所述第二AP之间存在覆盖空洞,包括:
    获取所述多个终端的漫游前的信号强度,当所述多个终端的漫游前信号强度满足第二条件时,确定所述第一AP和所述第二AP之间存在覆盖空洞;
    其中,所述多个终端中的每个终端的漫游前信号强度包括:所述终端从所述第一AP漫游到所述第二AP的过程中在关联所述第二AP前的N条信号强度,和/或,所述终端从所述第二AP漫游到所述第一AP的过程中在关联所述第一AP前的N条信号强度,N为大于等于1的整数。
  6. 根据权利要求5所述的方法,其特征在于,所述第二条件包括:
    漫游前信号强度小于信号强度阈值的终端数量达到数量阈值;和/或
    漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    根据第三AP和第四AP之间的终端的漫游行为确定所述第三AP和所述第四AP之间存在覆盖空洞;
    在图形用户界面上显示覆盖空洞的位置,所述覆盖空洞的位置为所述第一AP和所述第二AP的连线与所述第三AP和所述第四AP的连线的交叉点。
  8. 一种覆盖空洞的检测方法,其特征在于,包括:
    基于接入点AP的常驻终端的数量和所述常驻终端中弱覆盖终端的数量确定所述AP是否存在覆盖空洞;
    所述AP的常驻终端是与所述AP的关联时长大于时长阈值的终端;
    所述弱覆盖终端是与所述AP关联的信号强度小于信号强度阈值的终端。
  9. 根据权利要求8所述的方法,其特征在于,所述基于接入点AP的常驻终端的数量和所述常驻终端中弱覆盖终端的数量确定所述AP是否存在覆盖空洞,包括:
    当所述弱覆盖终端的数量达到数量阈值时,确定所述AP存在覆盖空洞;和/或
    当所述弱覆盖终端的数量和所述常驻终端的数量的比值达到比例阈值时,确定所述AP存在覆盖空洞。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    根据每个常驻终端与所述AP的关联时长设置所述每个常驻终端的权重;
    根据所述每个常驻终端的权重调整所述常驻终端的数量。
  11. 一种覆盖空洞的检测装置,其特征在于,包括:
    获取单元,用于获取第一接入点AP和第二AP之间的终端的漫游行为;所述第一AP和所述第二AP之间的终端的漫游行为包括多个终端在所述第一AP和所述第二AP之间的漫游行为;
    处理单元,用于根据所述第一AP和所述第二AP之间的终端的漫游行为确定所述第一AP和所述第二AP之间存在覆盖空洞。
  12. 根据权利要求11所述的装置,其特征在于,所述漫游行为包括漫游切换时长,
    所述获取单元具体用于:获取所述多个终端的漫游切换时长;所述多个终端中的每个终端的漫游切换时长指示:所述终端离开所述第一AP到所述终端关联所述第二AP所经过的时长,和/或,所述终端离开所述第二AP到所述终端关联所述第一AP所经过的时长;
    所述处理单元具体用于:当所述多个终端的漫游切换时长满足第一条件时,确定所述第一AP和所述第二AP之间存在覆盖空洞。
  13. 根据权利要求12所述的装置,其特征在于,所述第一条件包括:
    漫游切换时长达到时长阈值的终端数量达到数量阈值;和/或者
    漫游切换时长达到时长阈值的终端数量的比例达到比例阈值。
  14. 根据权利要求12或13所述的装置,其特征在于,所述终端离开所述第一AP包括:
    所述终端与所述第一AP去关联;或者
    所述终端关联到所述第一AP的信号强度小于信号强度阈值。
  15. 根据权利要求11所述的装置,其特征在于,所述漫游行为包括漫游前的信号强度,
    所述获取单元具体用于:获取所述多个终端的漫游前的信号强度;
    所述处理单元具体用于:当所述多个终端的漫游前信号强度满足第二条件时,确定所述第一AP和所述第二AP之间存在覆盖空洞;
    其中,所述多个终端中的每个终端的漫游前信号强度包括:所述终端从所述第一AP漫游到所述第二AP的过程中在关联所述第二AP前的N条信号强度,和/或,所述终端从所述第二AP漫游到所述第一AP的过程中在关联所述第一AP前的N条信号强度,N为大于等于1的整数。
  16. 根据权利要求15所述的方法,其特征在于,所述第二条件包括:
    漫游前信号强度小于信号强度阈值的终端数量达到数量阈值;和/或
    漫游前信号强度小于信号强度阈值的终端数量的比例达到比例阈值。
  17. 根据权利要求11-15任一项所述的装置,其特征在于,所述处理单元,还用于:
    根据第三AP和第四AP之间的终端的漫游行为确定所述第三AP和所述第四AP之间存在覆盖空洞;
    在用户图形界面上显示覆盖空洞的位置,所述覆盖空洞的位置为所述第一AP和所述第二AP的连线与所述第三AP和所述第四AP的连线的交叉点。
  18. 一种覆盖空洞的检测装置,其特征在于,包括
    获取单元,用于获取接入点AP的常驻终端的数量和所述常驻终端中弱覆盖终端的数量;
    处理单元,用于基于所述AP的常驻终端的数量和所述常驻终端中弱覆盖终端的数量确定所述AP是否存在覆盖空洞;
    其中,所述AP的常驻终端是与所述AP的关联时长大于时长阈值的终端,所述弱覆盖终端是与所述AP关联的信号强度小于信号强度阈值的终端。
  19. 根据权利要求18所述的方法,其特征在于,所述处理单元,具体用于:
    当所述弱覆盖终端的数量达到数量阈值时,确定所述AP存在覆盖空洞;和/或
    当所述弱覆盖终端的数量和所述常驻终端的数量的比值达到比例阈值时,确定所述AP存在覆盖空洞。
  20. 根据权利要求19所述的方法,其特征在于,所述处理单元,还用于:
    根据每个常驻终端与所述AP的关联时长设置所述每个常驻终端的权重;
    根据所述每个常驻终端的权重调整所述常驻终端的数量。
  21. 一种电子设备,其特征在于,包括:
    处理器;
    存储器,耦合到所述处理器并存储由所述处理器执行的程序,其中,所述程序在由所述处理器执行时,使得所述电子设备执行权利要求1-7或8-10中任一项所述的方法。
  22. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有指令,当 所述指令被处理器执行时,实现如权利要求1-7或8-10中任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,包括计算机程序,所述计算机程序被处理器执行时,实现如权利要求1-7或8-10中任一项所述的方法。
PCT/CN2023/082198 2022-03-25 2023-03-17 覆盖空洞的检测方法和相关设备 WO2023179488A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210299848.3 2022-03-25
CN202210299848.3A CN116847371A (zh) 2022-03-25 2022-03-25 覆盖空洞的检测方法和相关设备

Publications (1)

Publication Number Publication Date
WO2023179488A1 true WO2023179488A1 (zh) 2023-09-28

Family

ID=88099904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/082198 WO2023179488A1 (zh) 2022-03-25 2023-03-17 覆盖空洞的检测方法和相关设备

Country Status (2)

Country Link
CN (1) CN116847371A (zh)
WO (1) WO2023179488A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111830A (zh) * 2009-12-28 2011-06-29 上海无线通信研究中心 无线链路失败原因的区分方法
CN104980939A (zh) * 2014-04-09 2015-10-14 华为技术有限公司 基于异系统切换的网络覆盖空洞处理方法和装置
CN107113639A (zh) * 2014-11-17 2017-08-29 三星电子株式会社 用于在无线通信系统中控制接入点操作的方法
WO2021050417A1 (en) * 2019-09-10 2021-03-18 Cisco Technology, Inc. Quality of service (qos) based wireless coverage map

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102111830A (zh) * 2009-12-28 2011-06-29 上海无线通信研究中心 无线链路失败原因的区分方法
CN104980939A (zh) * 2014-04-09 2015-10-14 华为技术有限公司 基于异系统切换的网络覆盖空洞处理方法和装置
CN107113639A (zh) * 2014-11-17 2017-08-29 三星电子株式会社 用于在无线通信系统中控制接入点操作的方法
WO2021050417A1 (en) * 2019-09-10 2021-03-18 Cisco Technology, Inc. Quality of service (qos) based wireless coverage map

Also Published As

Publication number Publication date
CN116847371A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN107820717B (zh) 小区切换的方法和装置
US20240163761A1 (en) Wlan user quality of experience control in a multi-access point environment
EP1590907B1 (en) Improved vertical roaming in wireless networks through improved wireless network cell boundary detection
TW200407044A (en) Load balancing in wireless communication network
US10470119B2 (en) Terminal apparatus, communication control apparatus, communication system, and communication control method
CN113938921B (zh) 一种体验质量QoE测量方法及装置
CN109309937B (zh) 切换接入点的方法、控制器、网络设备和存储介质
WO2014027436A1 (ja) 通信装置、通信方法、通信システム、およびプログラム
KR20070060367A (ko) 무선 랜 단말의 접속 액세스 포인트 선택 장치 및 방법
US9554325B2 (en) System, apparatus, and method for determining signal quality with multiple access points
CN111586777B (zh) 室内环境下的网络切换方法、装置、电子设备及存储介质
US10623994B2 (en) Flash crowd detection and responsive network management
Choi et al. Blend: BLE beacon-aided fast wifi handoff for smartphones
WO2023179488A1 (zh) 覆盖空洞的检测方法和相关设备
US10547420B2 (en) Cooperative scanning of wireless devices
CN109661005B (zh) 本地接入控制器的负载分担调整方法及装置
Kuhnert et al. Performance evaluation of an advanced energy-aware client-based handover solution in heterogeneous LTE and WiFi networks
JP2012105247A (ja) フェムトセル基地局の通信サービス切替処理システム及びその方法
JP6347089B2 (ja) 無線通信端末、および、無線通信システム
US20190150083A1 (en) Estimating signal strength at a target wireless device
US20240137825A1 (en) Device identification method, and terminal device processing method, apparatus, and system
KR100908923B1 (ko) 이동노드의 tcp 성능 개선을 위한 수직적 핸드오프 장치및 운용방법
US11368893B2 (en) Communication device, communication method, and program for handovers
CN109451548B (zh) 基于网关设备在多种网络之间热备通信的方法
CN105933941B (zh) 一种SWAN架构中基于用户QoS的切换判决策略方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773736

Country of ref document: EP

Kind code of ref document: A1