WO2023179377A1 - 水操作冲击式水轮机双调机构 - Google Patents

水操作冲击式水轮机双调机构 Download PDF

Info

Publication number
WO2023179377A1
WO2023179377A1 PCT/CN2023/080742 CN2023080742W WO2023179377A1 WO 2023179377 A1 WO2023179377 A1 WO 2023179377A1 CN 2023080742 W CN2023080742 W CN 2023080742W WO 2023179377 A1 WO2023179377 A1 WO 2023179377A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
water
piston cylinder
folding
piston rod
Prior art date
Application number
PCT/CN2023/080742
Other languages
English (en)
French (fr)
Inventor
熊建军
凡家异
宋敏
曾明富
梁权伟
李邦明
熊欣
吕博儒
Original Assignee
东方电气集团东方电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东方电气集团东方电机有限公司 filed Critical 东方电气集团东方电机有限公司
Publication of WO2023179377A1 publication Critical patent/WO2023179377A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B15/00Controlling
    • F03B15/02Controlling by varying liquid flow
    • F03B15/20Controlling by varying liquid flow specially adapted for turbines with jets of high-velocity liquid impinging on bladed or like rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B1/00Engines of impulse type, i.e. turbines with jets of high-velocity liquid impinging on blades or like rotors, e.g. Pelton wheels; Parts or details peculiar thereto
    • F03B1/04Nozzles; Nozzle-carrying members
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention belongs to the technical field of impact turbines, and particularly relates to a water-operated impact turbine double-adjustable mechanism.
  • the impact turbine is equipped with two sets of adjustment mechanisms for opening and closing the nozzle and opening and closing the deflector to cut off the flow of water entering the runner and adjust the power generation of the unit.
  • the nozzle in the prior art uses high-pressure lubricating oil from the speed control system as the power source to drive the relay in the nozzle to cut off or connect the high-speed water flow provided to the runner.
  • the nozzle relay is installed in the flow channel and requires a special multi-channel sealing design to avoid mutual leakage of the oil and water systems.
  • the sealing structure is damaged, there is a risk of high-pressure oil leaking into the river.
  • Pelton turbines are usually installed in mountain valley areas, which are the birthplaces of rivers. The polluted water flow will pollute the entire basin. With increasingly stringent environmental protection requirements, the adoption of more environmentally friendly structures will become increasingly urgent.
  • the hydraulic operating system needs to be equipped with a high-pressure oil system.
  • the system needs to be equipped with a larger oil and gas operating tank.
  • the tank is equipped with high-pressure compressed gas that takes up a large proportion of space.
  • the oil pressure is controlled within the required pressure range through the energy storage of compressed air.
  • an air pump and oil pump system are required.
  • the entire hydraulic operating system is complex and takes up a lot of space in the factory. Frequent starting and stopping of oil pumps and air pumps will also cause noise.
  • the nozzle relay is used to maintain the nozzle needle at a certain position to ensure that the opening and closing of the nozzle opening is constant.
  • the nozzle relay will generate a reverse water thrust on the spray needle, which requires the use of larger piston cylinder oil pressure to balance the reverse water thrust.
  • the object of the present invention is to provide a water-operated impulse turbine double-adjusting mechanism that can facilitate and accurately control the position of the spray needle.
  • the water-operated impact turbine double-adjustable mechanism includes a nozzle body, a deflector relay is connected to the outside of the nozzle body, and a deflector is connected to the output end of the deflector relay; a piston cylinder is installed inside the nozzle body, and the piston cylinder A piston is installed inside, and a piston rod is connected to the piston. The other end of the piston rod extends out of the piston cylinder. One end of the piston rod extends out of the piston cylinder is connected to a connecting ring. The connecting ring is perpendicular to the piston rod. A spray needle is fixed on the connecting ring. The spray needle protrudes from the nozzle opening of the nozzle body.
  • the piston When the piston cavity is filled with high-pressure liquid, the piston is pushed, so that the piston rod pushes the connecting ring and the nozzle needle to move.
  • the high-pressure water in the flow channel acts on the connecting ring, it can produce a force on the connecting ring in the direction of the nozzle mouth. Then the resultant force of the hydraulic thrust on the piston and the high-pressure water thrust on the connecting ring balances the reverse water thrust on the nozzle needle.
  • the hydraulic thrust required to push the piston is reduced, which can reduce the pressure of the pressure liquid entering the piston chamber.
  • high-pressure water from the water diversion pipe is introduced between the piston cylinder and the nozzle body, and water from the water diversion pipe and then passed through the filter is introduced between the piston and the piston cylinder.
  • the present invention uses water as the pressure liquid in the piston cavity, so even if the pressure liquid leaks, it will not cause water pollution.
  • the operating water source is taken from the pressure water of the water diversion pipe.
  • the operating pressure increases with the increase of the water head of the power station.
  • a smaller piston size can be used to meet the control requirements and has a wide range of adaptability.
  • a flow guide ring is connected to the connecting ring, and the flow guide ring and the connecting ring form a flat pressure chamber.
  • the guide ring can block the water flow, so that the water flow pressure can fully act on the connecting ring, making the operation
  • the pressure applied to the connecting ring can offset part of the reverse water thrust acting on the nozzle needle.
  • a cover plate is connected to the piston cylinder, a guide ring is sleeved in the cover plate, and an annular cavity for accommodating the guide ring (51) is provided between the cover plate and the piston cylinder.
  • the cover plate blocks the opening area of the guide ring, so that when the nozzle moves, the flat pressure chamber always remains relatively closed, and the water flow only enters through the gap between the cover plate and the guide ring.
  • the water pressure in the flat pressure chamber can be maintained to ensure that the connecting ring obtains sufficient thrust. And it does not destroy the continuity of the flow channel and does not cause additional energy loss.
  • the piston rod is provided with a sleeve and an elastic balancing mechanism.
  • One end of the sleeve extends out of the piston cylinder, and the elastic balancing mechanism is located between the piston and the sleeve.
  • the elastic balance mechanism includes a rear spring tray, a balance spring and a front spring tray connected in sequence.
  • the rear spring tray, balance spring and front spring tray are all set on the piston rod, and the rear spring tray is located on the piston. and the balance spring, the front spring tray is located between the balance spring and the bushing.
  • the spring can balance the operating force when switching the nozzle, so that the operating force remains stable during the entire switching process.
  • front spring trays and rear spring trays are provided on both sides of the spring to locate the installation position of the spring.
  • the balance spring includes several disc springs, and spring positioning rings are connected between the several disc springs.
  • the nozzle is installed horizontally, and the spring will be biased to one side due to gravity.
  • a piston rod sand-proof seal and a piston rod waterproof seal are respectively provided between the casing and the piston cylinder.
  • the piston rod is equipped with a sand-proof seal and a waterproof seal. Since the operating power of the piston comes from the high-pressure water flow in the water diversion pipe, part of the energy will be lost after the water flow passes through the filter, so the internal water pressure of the relay is always smaller than the external flow channel. Pressure, only one-way waterproof seal is required here, and the multi-channel two-way sealing structure of the oil-operated relay is no longer needed.
  • a scraper is provided between the piston and the piston cylinder.
  • High-hardness polyurethane scrapers are set on both sides of the piston. When the piston moves, scaled impurities can be removed to avoid wearing of the piston seal.
  • the deflector relay includes a deflection piston cylinder, the deflection piston cylinder is fixed outside the nozzle body, a deflection piston is provided in the deflection piston cylinder, and a deflection piston is connected to the deflection piston.
  • the folding piston rod is covered with a folding spring, and the folding spring is arranged between the folding piston and the folding piston cylinder; the other end of the folding piston cylinder extends out of the folding piston cylinder, and the folding piston rod extends out
  • One end of the deflection piston cylinder is hinged to the connecting rod, and the other end of the connecting rod is hinged to a deflector.
  • the middle part of the deflector is hinged to the nozzle body.
  • the deflector is provided with a deflector for guiding the water flow ejected from the nozzle mouth. Folding plate; water from the water diversion pipe and then through the filter is introduced between the folding piston and the folding piston cylinder.
  • the folding piston pushes the folding piston rod to move.
  • the deflection piston rod pushes the connecting rod to move, the connecting rod pushes the deflector to rotate, and the deflection plate on the deflector is adjusted to a certain angle to guide the water flow from the nozzle to the runner. If the water from the water diversion pipe and then passes through the filter is used as the pressure liquid that is deflected into the piston cavity, even if the pressure liquid leaks, it will not cause water pollution.
  • the operating water source is taken from the pressure water of the water diversion pipe. The operating pressure increases with the increase of the water head of the power station. A smaller piston size can be used to meet the control requirements and has a wide range of adaptability.
  • the water thrust received at the flat pressure chamber of the present invention can offset the reverse water thrust received by part of the nozzle needle. Then the hydraulic thrust required to push the piston when adjusting the position of the nozzle needle is reduced accordingly, which can reduce the pressure entering the piston cavity.
  • the pressure of the pressure liquid facilitates control of the spray needle. Moreover, when the hydraulic pressure is reduced, the risk of pressure liquid leakage is reduced, thereby avoiding contamination of external water bodies caused by hydraulic oil leakage when hydraulic oil is used as the pressure liquid.
  • the present invention uses water as the pressure liquid of the nozzle relay and the deflector relay, so even if the pressure liquid leaks, it will not cause water pollution.
  • the operating water source is taken from the pressure water of the water diversion pipe.
  • the operating pressure increases with the increase of the water head of the power station.
  • a smaller piston size can be used to meet the control requirements and has a wide range of adaptability.
  • Figure 1 is a schematic structural diagram of the present invention
  • Figure 2 is a partial enlarged view of X in Figure 1;
  • Figure 3 is a partial enlarged view of Y in Figure 1;
  • Figure 4 is a partial enlarged view of Z in Figure 1.
  • the water-operated impulse turbine double-adjustable mechanism of this embodiment includes a nozzle body 1.
  • a deflector relay 2 is connected to the outside of the nozzle body 1.
  • the output end of the deflector relay 2 is connected to a deflector relay.
  • One end of the piston cylinder 4 is connected with a connecting ring 5 , which is perpendicular to the piston rod 42 .
  • a spray needle 6 is fixed on the connecting ring 5 , and the spray needle 6 extends from the nozzle opening of the nozzle body 1 .
  • the connecting ring 5 is connected with a flow guide ring 51 , and the flow guide ring 51 and the connecting ring 5 form a flat pressure chamber.
  • the flow guide ring 51 can block the water flow, so that the water flow pressure can fully act on the connecting ring 5 , so that the pressure acting on the connecting ring 5 can offset part of the reverse water thrust acting on the nozzle needle 6 .
  • a cover plate 52 is connected to the piston cylinder 4, and a flow guide ring 51 is sleeved in the cover plate 52.
  • An annular cavity for accommodating the flow guide ring (51) is provided between the cover plate 52 and the piston cylinder 4.
  • the cover plate 52 blocks the opening area of the guide ring 51 , so that when the nozzle moves, the flat pressure chamber always remains relatively closed, and the water flow only enters through the gap between the cover plate 52 and the guide ring 51 .
  • the water pressure in the flat pressure chamber can be maintained, ensuring that the connecting ring 5 obtains sufficient thrust.
  • the piston 41 When the cavity of the piston 41 is filled with high-pressure liquid, the piston 41 is pushed, so that the piston rod 42 pushes the connecting ring 5 and the spray needle 6 to move.
  • the high-pressure water in the flow channel acts on the connecting ring 5, it can produce a force on the connecting ring 5 in the direction of the nozzle mouth.
  • the resultant force of the hydraulic thrust received by the piston 41 and the high-pressure water thrust received by the connecting ring 5 acts on the nozzle needle 6 in balance. reverse water thrust.
  • the hydraulic thrust required to push the piston 41 is reduced, which can reduce the pressure of the pressure liquid entering the chamber of the piston 41 .
  • high-pressure water from the water diversion pipe is introduced between the piston cylinder 4 and the nozzle body 1, and water from the water diversion pipe and then passed through the filter is introduced between the piston 41 and the piston cylinder 4.
  • the present invention adopts Water serves as the pressure liquid in the piston 41 cavity, so even if the pressure liquid leaks, it will not cause water pollution.
  • the operating water source is taken from the pressure water of the water diversion pipe. The operating pressure increases with the increase of the water head of the power station. A smaller piston 41 size can be used to meet the control requirements and has a wide range of adaptability.
  • the piston rod 42 is provided with a sleeve 7 and an elastic balancing mechanism 8.
  • One end of the sleeve 7 extends out of the piston cylinder 4, and the elastic balancing mechanism 8 is located between the piston 41 and the sleeve 7.
  • an elastic balance mechanism 8 is installed inside the nozzle to ensure that the equipment is stably maintained in the closed state.
  • the elastic balance mechanism 8 includes a rear spring tray 81, a balance spring 82 and a front spring tray 83 connected in sequence.
  • the rear spring tray 81, the balance spring 82 and the front spring tray 83 are all sleeved on the piston rod 42.
  • the rear spring tray 81 Located between the piston 41 and the balance spring 82 , the front spring tray 83 is located between the balance spring 82 and the sleeve 7 .
  • the spring can balance the operating force when switching the nozzle, so that the operating force remains stable during the entire switching process.
  • a front spring tray 83 and a rear spring tray 81 are provided on both sides of the spring to locate the installation position of the spring.
  • the balance spring 82 includes a plurality of disc springs, and a spring positioning ring 84 is connected between the plurality of disc springs.
  • the nozzle adopts a horizontally installed working mode, and the spring will be biased to one side due to gravity.
  • the spring positioning ring 84 between the disc springs, jamming during the movement of the spring is avoided.
  • a piston rod sand-proof seal 71 and a piston rod 42 waterproof seal are respectively provided between the sleeve 7 and the piston cylinder 4.
  • the piston rod 42 is provided with a sand-proof seal and a waterproof seal. Since the operating power of piston 41 comes from the high-pressure water flow in the water diversion pipe, part of the energy will be lost after the water flow passes through the filter. Therefore, the internal water pressure of the relay is always less than the external flow channel pressure. Here, only a one-way waterproof seal is required, and oil operation is no longer required. Multi-channel two-way sealing structure of the relay.
  • a scraper 43 is provided between the piston 41 and the piston cylinder 4 .
  • dissolved in the river Various metal ions and microorganisms In order to avoid scaling on the surface of the piston cylinder 4, the sliding surface of the piston cylinder 4 is plated with hard chromium or polished with ceramics. High-hardness polyurethane scrapers 43 are also provided on both sides of the piston 41. When the piston 41 moves, scaled impurities can be removed to avoid wearing of the piston 41 seal. In order to prevent water flow from corroding relay components, each component is made of stainless steel or anti-corrosion coating.
  • the deflector relay 2 includes a deflection piston cylinder 21, which is fixed outside the nozzle body 1.
  • a deflection piston 22 is provided in the deflection piston cylinder 21, and a deflection piston is connected to the deflection piston 22.
  • Rod 23, the other end of the folding piston cylinder 21 extends out of the folding piston cylinder 21, the folding piston rod 23 is covered with a folding spring 24, the folding spring 24 is arranged between the folding piston 22 and the folding piston cylinder 21 in between; one end of the folding piston rod 23 extends out of the folding piston cylinder 21 and is connected to a hinged connecting rod 25.
  • the other end of the connecting rod is hinged with a deflector 3.
  • the middle part of the deflector 3 is hinged to the nozzle body 1.
  • the deflector 3 A deflection plate 31 is provided for guiding the water flow ejected from the nozzle port; water from the water diversion pipe and then through the filter is introduced between the deflection piston 22 and the deflection piston cylinder 21 .
  • the folding piston 22 pushes the folding piston rod 23 to move.
  • the deflection piston rod 23 pushes the connecting rod 25 to move, the connecting rod 25 pushes the deflector 3 to rotate, and the deflection plate 31 on the deflector 3 is adjusted to a certain angle to guide the water flow from the nozzle to the runner.
  • the operating water source is taken from the pressure water of the water diversion pipe. The operating pressure increases with the increase of the water head of the power station. A smaller piston 41 size can be used to meet the control requirements and has a wide range of adaptability.
  • the present invention is not limited to the above-mentioned optional embodiments.
  • anyone can produce various other forms of products under the inspiration of the present invention.
  • any product that falls within the scope of the claims of the present invention can All technical solutions within the scope fall within the protection scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

一种水操作冲击式水轮机双调机构,属于冲击式水轮机技术领域。该水操作冲击式水轮机双调机构,包括喷嘴主体(1),喷嘴主体(1)外部连接有折向器接力器(2),折向器接力器(2)的活塞杆连接有折向器(3);喷嘴主体(1)内安装有活塞缸(4),活塞缸(4)内安装有活塞(41),活塞(41)上连接有活塞杆(42),活塞杆(42)的另一端伸出活塞缸(4),活塞杆(42)伸出活塞缸(4)的一端连接有连接环(5),连接环(5)垂直于活塞杆(42),连接环(5)上固定有喷针(6),喷针(6)从喷嘴主体(1)的喷嘴口伸出。该水操作冲击式水轮机双调机构可方便对喷针位置进行准确控制。

Description

水操作冲击式水轮机双调机构 技术领域
本发明属于冲击式水轮机技术领域,特别涉及水操作冲击式水轮机双调机构。
背景技术
冲击式水轮机设置有用于喷嘴启闭与折向器启闭两套调节机构,以切断进入转轮的水流大小,调节机组发电功率。
现有技术中的喷嘴采用来自调速系统高压润滑油做动力源,驱动喷嘴内接力器动作,以切断或者连通提供给转轮的高速水流。喷嘴接力器设置在流道内,需要采用特殊的多道密封设计,避免油、水系统的相互渗漏。当密封结构损坏后,高压油会有渗漏到河流的风险。冲击式水轮机通常都是设置在高山峡谷地区,是各河流的发源地,污染的水流将对整个流域产生污染。随着越来越严格的环保需求,采用更加环保的结构将越来越迫切。
油压操作系统需要配套高压油系统,系统需要设置较大的油气操作罐,在罐中设置有占用较大空间比例的高压压缩气体,通过压缩空气的储能将油压控制在需求的压力范围内。由于系统压力油的消耗和高压油的泄漏,为保证油压在设计范围允许范围内,需配套空气泵与油泵系统。整个油压操作系统复杂,占用厂房空间大。油泵与气泵频繁启停也会产生噪音。
通过喷嘴接力器将喷针维持在确定位置,保证喷嘴口的开合大小一定。水流经过喷针时,会对喷针产生一个反向水推力,从而需要使用较大的活塞缸油压以平衡反向水推力。
发明内容
为了解决现有技术存在的上述问题,本发明的目的在于提供一种可方便对喷针位置进行准确控制的水操作冲击式水轮机双调机构。
本发明所采用的技术方案为:
水操作冲击式水轮机双调机构,包括喷嘴主体,喷嘴主体外部连接有折向器接力器,折向器接力器的输出端连接有折向器;所述喷嘴主体内安装有活塞缸,活塞缸内安装有活塞,活塞上连接有活塞杆,活塞杆的另一端伸出活塞缸,活塞杆伸出活塞缸的一端连接有连接环,连接环垂直于活塞杆,连接环上固定有喷针,喷针从喷嘴主体的喷嘴口伸出。
活塞腔内充入高压液体时,活塞被推动,从而活塞杆推动连接环和喷针移动。流道内的高压水作用于连接环时,可对连接环产生朝向喷嘴口方向的力,则活塞受到的液压推力和连接环受到的高压水推力的合力平衡作用于喷针上的反向水推力。相应地,为将喷针维持的确定位置以控制喷嘴口的开合大小时,所需的推动活塞的液压推力减小,即可降低进入活塞腔的压力液体的压力。所需液压压力减小时,更方便对其压力进行控制,进而方便对喷嘴口开合大小的控制。并且,液压压力减小时,压力液体泄漏的风险降低,避免采用液压油作为压力液体时液压油泄漏对外部水体造成污染。
作为本发明的优选方案,所述活塞缸与喷嘴主体之间引入来自引水管道的高压水,活塞与活塞缸之间引入来自引水管道再经过过滤器的水。本发明采用水作为活塞腔的压力液体,则即使压力液体泄漏也不会造成水体污染。操作水源取自引水管道压力水,操作压力随着电站水头升高而升高,可以使用较小的活塞尺寸满足控制要求,适应范围广泛。
作为本发明的优选方案,所述连接环上连接有导流环,导流环与连接环围成平压腔。导流环能阻挡水流,从而水流压力能充分作用于连接环上,使得作 用于连接环上的压力能抵消部分作用于喷针上的反向水推力。
作为本发明的优选方案,所述活塞缸上连接有盖板,导流环套设于盖板内,盖板与活塞缸之间设置有用于容纳导流环(51)的环形腔。盖板对遮挡导流环的开口区域,从而喷嘴移动时,平压腔始终保持相对封闭状态,水流仅从盖板与导流环之间的间隙进入。平压腔内的水压能得到保持,保证连接环获得足够的推力。并且不破坏流道的连续性,不引起额外的能量损失。
作为本发明的优选方案,所述活塞杆上套设有套管和弹性平衡机构,套管的一端伸出活塞缸内,弹性平衡机构位于活塞与套管之间。当电站排水时,管道压力波动较大,为了保证可靠的关闭性能,喷嘴内部设置了弹性平衡机构,可以确保设备稳定的保持在关闭状态。
作为本发明的优选方案,所述弹性平衡机构包括依次连接的后弹簧托盘、平衡弹簧和前弹簧托盘,后弹簧托盘、平衡弹簧和前弹簧托盘均套设于活塞杆上,后弹簧托盘位于活塞与平衡弹簧之间,前弹簧托盘位于平衡弹簧与套管之间。弹簧可以平衡开关喷嘴时的操作力,使整个开关过程中,操作力保持稳定。为了提高弹簧的运动灵活性,弹簧两侧设置了前弹簧托盘和后弹簧托盘,以定位弹簧的安装位置。
作为本发明的优选方案,所述平衡弹簧包括若干碟簧,若干碟簧之间连接有弹簧定位环。喷嘴采用水平安装的工作方式,弹簧受重力作用会偏向一侧,而通过在碟簧之间设置弹簧定位环,避免了弹簧运动过程中出现卡阻。
作为本发明的优选方案,所述套管与活塞缸之间分别设置有活塞杆防沙密封件和活塞杆防水密封件。为了防止河流含沙水流进入喷嘴接力器内部,活塞杆上设置有防沙密封,防水密封。由于活塞操作动力来自引水管道的高压水流,水流经过过滤器后会损失部分能量,因此接力器内部水压力始终小于外部流道 压力,此处仅需设置单向防水密封,不再需要油操作接力器的多道双向密封结构。
作为本发明的优选方案,所述活塞与活塞缸之间设置有刮泥板。活塞上两侧设置高硬度的聚氨酯刮泥板,活塞运动时可以将结垢杂质清除掉,避免磨损活塞密封。
作为本发明的优选方案,所述折向器接力器包括折向活塞缸,折向活塞缸固定于喷嘴主体外,折向活塞缸内设置有折向活塞,折向活塞上连接有折向活塞杆,折向活塞杆上套设有折向弹簧,折向弹簧设置于折向活塞与折向活塞缸之间;折向活塞缸的另一端伸出折向活塞缸,折向活塞杆伸出折向活塞缸的一端铰接连接杆,连杆的另一端铰接有折向器,折向器的中部铰接于喷嘴主体上,折向器上设置有用于对从喷嘴口喷出的水流进行导向的折向板;所述折向活塞与折向活塞缸之间引入来自引水管道再经过过滤器的水。
将高压液体通入折向活塞腔,则折向活塞推动折向活塞杆移动。折向活塞杆推动连接杆移动,则连接杆推动折向器转动,折向器上的折向板调节到确定角度,以将喷嘴喷出的水流导向转轮。采用来自引水管道再经过过滤器的水作为折向活塞腔的压力液体,则即使压力液体泄漏也不会造成水体污染。操作水源取自引水管道压力水,操作压力随着电站水头升高而升高,可以使用较小的活塞尺寸满足控制要求,适应范围广泛。
本发明的有益效果为:
1.本发明的平压腔处受到的水推力能抵消部分喷针受到的反向水推力,则调节喷针位置时所需的推动活塞的液压推力相应减小,即可降低进入活塞腔的压力液体的压力,方便控制喷针。并且,液压压力减小时,压力液体泄漏的风险降低,避免采用液压油作为压力液体时液压油泄漏对外部水体造成污染。
2.本发明采用水作为喷嘴接力器和折向器接力器的压力液体,则即使压力液体泄漏也不会造成水体污染。操作水源取自引水管道压力水,操作压力随着电站水头升高而升高,可以使用较小的活塞尺寸满足控制要求,适应范围广泛。
附图说明
图1是本发明的结构示意图;
图2是图1中X处的局部放大图;
图3是图1中Y处的局部放大图;
图4是图1中Z处的局部放大图。
图中:1-喷嘴主体;2-折向器接力器;3-折向器;4-活塞缸;5-连接环;6-喷针;7-套管;8-弹性平衡机构;21-折向活塞缸;22-折向活塞;23-折向活塞杆;24-折向弹簧;25-连接杆;31-折向板;41-活塞;42-活塞杆;43-刮泥板;51-导流环;52-盖板;71-活塞杆防沙密封件;72-活塞杆防水密封件;81-后弹簧托盘;82-平衡弹簧;83-前弹簧托盘;84-弹簧定位环。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如图1所示,本实施例的水操作冲击式水轮机双调机构,包括喷嘴主体1,喷嘴主体1外部连接有折向器接力器2,折向器接力器2的输出端连接有折向器3;所述喷嘴主体1内安装有活塞缸4,活塞缸4内安装有活塞41,活塞41上连接有活塞杆42,活塞杆42的另一端伸出活塞缸4,活塞杆42伸出活塞缸4的一端连接有连接环5,连接环5垂直于活塞杆42,连接环5上固定有喷针6,喷针6从喷嘴主体1的喷嘴口伸出。
其中,所述连接环5上连接有导流环51,导流环51与连接环5围成平压腔。导流环51能阻挡水流,从而水流压力能充分作用于连接环5上,使得作用于连接环5上的压力能抵消部分作用于喷针6上的反向水推力。所述活塞缸4上连接有盖板52,导流环51套设于盖板52内,盖板52与活塞缸4之间设置有用于容纳导流环(51)的环形腔。盖板52对遮挡导流环51的开口区域,从而喷嘴移动时,平压腔始终保持相对封闭状态,水流仅从盖板52与导流环51之间的间隙进入。平压腔内的水压能得到保持,保证连接环5获得足够的推力。
活塞41腔内充入高压液体时,活塞41被推动,从而活塞杆42推动连接环5和喷针6移动。流道内的高压水作用于连接环5时,可对连接环5产生朝向喷嘴口方向的力,则活塞41受到的液压推力和连接环5受到的高压水推力的合力平衡作用于喷针6上的反向水推力。相应地,为将喷针6维持的确定位置以控制喷嘴口的开合大小时,所需的推动活塞41的液压推力减小,即可降低进入活塞41腔的压力液体的压力。所需液压压力减小时,更方便对其压力进行控制,进而方便对喷嘴口开合大小的控制。并且,液压压力减小时,压力液体泄漏的风险降低,避免采用液压油作为压力液体时液压油泄漏对外部水体造成污染。
需要说明的是,所述活塞缸4与喷嘴主体1之间引入来自引水管道的高压水,活塞41与活塞缸4之间引入来自引水管道再经过过滤器的水。本发明采用 水作为活塞41腔的压力液体,则即使压力液体泄漏也不会造成水体污染。操作水源取自引水管道压力水,操作压力随着电站水头升高而升高,可以使用较小的活塞41尺寸满足控制要求,适应范围广泛。
更进一步,所述活塞杆42上套设有套管7和弹性平衡机构8,套管7的一端伸出活塞缸4内,弹性平衡机构8位于活塞41与套管7之间。当电站排水时,管道压力波动较大,为了保证可靠的关闭性能,喷嘴内部设置了弹性平衡机构8,可以确保设备稳定的保持在关闭状态。
所述弹性平衡机构8包括依次连接的后弹簧托盘81、平衡弹簧82和前弹簧托盘83,后弹簧托盘81、平衡弹簧82和前弹簧托盘83均套设于活塞杆42上,后弹簧托盘81位于活塞41与平衡弹簧82之间,前弹簧托盘83位于平衡弹簧82与套管7之间。弹簧可以平衡开关喷嘴时的操作力,使整个开关过程中,操作力保持稳定。为了提高弹簧的运动灵活性,弹簧两侧设置了前弹簧托盘83和后弹簧托盘81,以定位弹簧的安装位置。
如图3所示,所述平衡弹簧82包括若干碟簧,若干碟簧之间连接有弹簧定位环84。喷嘴采用水平安装的工作方式,弹簧受重力作用会偏向一侧,而通过在碟簧之间设置弹簧定位环84,避免了弹簧运动过程中出现卡阻。
如图2所示,所述套管7与活塞缸4之间分别设置有活塞杆防沙密封件71和活塞杆42防水密封件。为了防止河流含沙水流进入喷嘴接力器内部,活塞杆42上设置有防沙密封,防水密封。由于活塞41操作动力来自引水管道的高压水流,水流经过过滤器后会损失部分能量,因此接力器内部水压力始终小于外部流道压力,此处仅需设置单向防水密封,不再需要油操作接力器的多道双向密封结构。
如图4所示,所述活塞41与活塞缸4之间设置有刮泥板43。河流中溶解了 各种金属离子与微生物,为了避免活塞缸4表面结垢,活塞缸4滑动表面进行了镀硬铬或者镀陶瓷抛光处理。活塞41上两侧也同时设置了高硬度的聚氨酯刮泥板43,活塞41运动时可以将结垢杂质清除掉,避免磨损活塞41密封。为了防止水流腐蚀接力器部件,各部件采用了不锈钢或者采用了抗腐蚀镀层。
所述折向器接力器2包括折向活塞缸21,折向活塞缸21固定于喷嘴主体1外,折向活塞缸21内设置有折向活塞22,折向活塞22上连接有折向活塞杆23,折向活塞缸21的另一端伸出折向活塞缸21,折向活塞杆23上套设有折向弹簧24,折向弹簧24设置于折向活塞22与折向活塞缸21之间;折向活塞杆23伸出折向活塞缸21的一端铰接连接杆25,连杆的另一端铰接有折向器3,折向器3的中部铰接于喷嘴主体1上,折向器3上设置有用于对从喷嘴口喷出的水流进行导向的折向板31;所述折向活塞22与折向活塞缸21之间引入来自引水管道再经过过滤器的水。
将高压液体通入折向活塞22腔,则折向活塞22推动折向活塞杆23移动。折向活塞杆23推动连接杆25移动,则连接杆25推动折向器3转动,折向器3上的折向板31调节到确定角度,以将喷嘴喷出的水流导向转轮。采用来自引水管道再经过过滤器的水作为折向活塞22腔的压力液体,则即使压力液体泄漏也不会造成水体污染。操作水源取自引水管道压力水,操作压力随着电站水头升高而升高,可以使用较小的活塞41尺寸满足控制要求,适应范围广泛。
本发明不局限于上述可选实施方式,任何人在本发明的启示下都可得出其他各种形式的产品,但不论在其形状或结构上作任何变化,凡是落入本发明权利要求界定范围内的技术方案,均落在本发明的保护范围之内。

Claims (10)

  1. 水操作冲击式水轮机双调机构,包括喷嘴主体(1),喷嘴主体(1)外部连接有折向器接力器(2),折向器接力器(2)的活塞杆连接有折向器(3);其特征在于:所述喷嘴主体(1)内安装有活塞缸(4),活塞缸(4)内安装有活塞(41),活塞(41)上连接有活塞杆(42),活塞杆(42)的另一端伸出活塞缸(4),活塞杆(42)伸出活塞缸(4)的一端连接有连接环(5),连接环(5)垂直于活塞杆(42),连接环(5)上固定有喷针(6),喷针(6)从喷嘴主体(1)的喷嘴口伸出。
  2. 根据权利要求1所述的水操作冲击式水轮机双调机构,其特征在于:所述活塞缸(4)与喷嘴主体(1)之间引入来自引水管道的高压水,活塞(41)与活塞缸(4)之间引入来自引水管道再经过过滤器的水。
  3. 根据权利要求1所述的水操作冲击式水轮机双调机构,其特征在于:所述连接环(5)上连接有导流环(51),导流环(51)与连接环(5)围成平压腔。
  4. 根据权利要求3所述的水操作冲击式水轮机双调机构,其特征在于:所述活塞缸(4)上连接有盖板(52),导流环(51)套设于盖板(52)内,盖板(52)与活塞缸(4)之间设置有用于容纳导流环(51)的环形腔。
  5. 根据权利要求1所述的水操作冲击式水轮机双调机构,其特征在于:所述活塞杆(42)上套设有套管(7)和弹性平衡机构(8),套管(7)的一端伸出活塞缸(4)内,弹性平衡机构(8)位于活塞(41)与套管(7)之间。
  6. 根据权利要求5所述的水操作冲击式水轮机双调机构,其特征在于:所述弹性平衡机构(8)包括依次连接的后弹簧托盘(81)、平衡弹簧(82)和前弹簧托盘(83),后弹簧托盘(81)、平衡弹簧(82)和前弹簧托盘(83)均套设于活塞杆(42)上,后弹簧托盘(81)位于活塞(41)与平衡弹簧(82) 之间,前弹簧托盘(83)位于平衡弹簧(82)与套管(7)之间。
  7. 根据权利要求6所述的水操作冲击式水轮机双调机构,其特征在于:所述平衡弹簧(82)包括若干碟簧,若干碟簧之间连接有弹簧定位环(84)。
  8. 根据权利要求5所述的水操作冲击式水轮机双调机构,其特征在于:所述套管(7)与活塞缸(4)之间分别设置有活塞杆防沙密封件(71)和活塞杆防水密封件(72)。
  9. 根据权利要求1所述的水操作冲击式水轮机双调机构,其特征在于:所述活塞(41)与活塞缸(4)之间设置有刮泥板(43)。
  10. 根据权利要求1~9任意一项所述的水操作冲击式水轮机双调机构,其特征在于:所述折向器接力器(2)包括折向活塞缸(21),折向活塞缸(21)固定于喷嘴主体(1)外,折向活塞缸(21)内设置有折向活塞(22),折向活塞(22)上连接有折向活塞杆(23),折向活塞杆(23)上套设有折向弹簧(24),折向弹簧(24)设置于折向活塞(22)与折向活塞缸(21)之间;折向活塞缸(21)的另一端伸出折向活塞缸(21),折向活塞杆(23)伸出折向活塞缸(21)的一端铰接有连接杆(25),连杆的另一端与折向器(3)铰接,折向器(3)的中部铰接于喷嘴主体(1)上,折向器(3)上设置有用于对从喷嘴口喷出的水流进行导向的折向板(31);所述折向活塞(22)与折向活塞缸(21)之间引入来自引水管道再经过过滤器的水。
PCT/CN2023/080742 2022-03-21 2023-03-10 水操作冲击式水轮机双调机构 WO2023179377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210274733.9A CN114458523B (zh) 2022-03-21 2022-03-21 水操作冲击式水轮机双调机构
CN202210274733.9 2022-03-21

Publications (1)

Publication Number Publication Date
WO2023179377A1 true WO2023179377A1 (zh) 2023-09-28

Family

ID=81417530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080742 WO2023179377A1 (zh) 2022-03-21 2023-03-10 水操作冲击式水轮机双调机构

Country Status (2)

Country Link
CN (1) CN114458523B (zh)
WO (1) WO2023179377A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114458523B (zh) * 2022-03-21 2023-04-21 东方电气集团东方电机有限公司 水操作冲击式水轮机双调机构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118788A1 (ru) * 1983-06-10 1984-10-15 Производственное Объединение Турбостроения "Ленинградский Металлический Завод" Сопло ковшовой гидротурбины
JPH07243539A (ja) * 1994-03-02 1995-09-19 Hitachi Ltd ニードルバルブ
RU2079701C1 (ru) * 1993-11-09 1997-05-20 Акционерное общество открытого типа Ленинградский металлический завод Сопло ковшовой гидротурбины
CN2718248Y (zh) * 2003-12-22 2005-08-17 哈尔滨多能电力高技术有限公司 新型多喷嘴水斗水轮机
CN202228248U (zh) * 2011-09-29 2012-05-23 重庆立崧电机设备有限公司 冲击式水轮机无弹簧水压自平衡喷嘴
CN204283709U (zh) * 2014-12-05 2015-04-22 峨眉山市驰骋机械制造有限公司 水平位移双腔操控无簧式水轮机喷嘴
CN108119296A (zh) * 2016-11-29 2018-06-05 沈阳格泰水电设备有限公司 一种冲击式水轮机调速系统
CN114458523A (zh) * 2022-03-21 2022-05-10 东方电气集团东方电机有限公司 水操作冲击式水轮机双调机构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB842940A (en) * 1956-10-10 1960-07-27 Voith Gmbh J M Improvements in or relating to regulating nozzles for impulse turbines or needle valves
JPH05321813A (ja) * 1992-05-19 1993-12-07 Fuji Electric Co Ltd ペルトン水車ニードルの土砂混入防止装置
CN2326743Y (zh) * 1998-04-02 1999-06-30 吴铁民 内拆式水力自闭喷嘴
CN102418645B (zh) * 2011-12-23 2013-06-19 重庆水轮机厂有限责任公司 用于冲击式水轮机水力的单腔自控式喷嘴组件

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1118788A1 (ru) * 1983-06-10 1984-10-15 Производственное Объединение Турбостроения "Ленинградский Металлический Завод" Сопло ковшовой гидротурбины
RU2079701C1 (ru) * 1993-11-09 1997-05-20 Акционерное общество открытого типа Ленинградский металлический завод Сопло ковшовой гидротурбины
JPH07243539A (ja) * 1994-03-02 1995-09-19 Hitachi Ltd ニードルバルブ
CN2718248Y (zh) * 2003-12-22 2005-08-17 哈尔滨多能电力高技术有限公司 新型多喷嘴水斗水轮机
CN202228248U (zh) * 2011-09-29 2012-05-23 重庆立崧电机设备有限公司 冲击式水轮机无弹簧水压自平衡喷嘴
CN204283709U (zh) * 2014-12-05 2015-04-22 峨眉山市驰骋机械制造有限公司 水平位移双腔操控无簧式水轮机喷嘴
CN108119296A (zh) * 2016-11-29 2018-06-05 沈阳格泰水电设备有限公司 一种冲击式水轮机调速系统
CN114458523A (zh) * 2022-03-21 2022-05-10 东方电气集团东方电机有限公司 水操作冲击式水轮机双调机构

Also Published As

Publication number Publication date
CN114458523B (zh) 2023-04-21
CN114458523A (zh) 2022-05-10

Similar Documents

Publication Publication Date Title
WO2023179377A1 (zh) 水操作冲击式水轮机双调机构
CN101224444B (zh) 附壁式射流喷头
CN105234019A (zh) 自适应水上水下空化射流喷嘴
CN201297397Y (zh) 一种水压驱动阀
CN201475391U (zh) 带有组合阀座的平板闸阀
KR101865037B1 (ko) 자력에 의한 충격압 해소가 가능한 릴리프 밸브
WO2012122809A1 (zh) 一种磁浮式智能阀
CN209429080U (zh) 闸室内生态放水管结构
CN113639095B (zh) 一种可预防水锤效应的阀门
CN207237139U (zh) 局部应用型快开雨淋阀
CN201827393U (zh) 水电专用双密封液控蝶阀
CN211778998U (zh) 液控针形阀
CN203599131U (zh) 用于抽油机减速箱油道的增压式清洁器
CN217762304U (zh) 一种自力式活塞阀
CN217712797U (zh) 水轮机水操作接力器系统
CN208024945U (zh) 一种水锤消减阀及水锤消减管路
CN202646759U (zh) 高水头全通径泵站球阀
CN111520485A (zh) 一种新型调节型气动蝶阀
CN218522746U (zh) 一种水轮发电机组顶盖取水装置
CN215214825U (zh) 双重密封锥形阀
CN204312749U (zh) 防磨损阀芯位移平稳型球阀
CN219092929U (zh) 一种用于气、水改造的清洗工具
CN203742877U (zh) 冲击式水轮机喷嘴
CN2760347Y (zh) 水轮机进水液动双密封球阀
CN216241046U (zh) 一种球阀密封操作水源管路结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773626

Country of ref document: EP

Kind code of ref document: A1