WO2023179144A1 - 脉宽调制方法、脉宽调制装置以及逆变系统 - Google Patents

脉宽调制方法、脉宽调制装置以及逆变系统 Download PDF

Info

Publication number
WO2023179144A1
WO2023179144A1 PCT/CN2022/142589 CN2022142589W WO2023179144A1 WO 2023179144 A1 WO2023179144 A1 WO 2023179144A1 CN 2022142589 W CN2022142589 W CN 2022142589W WO 2023179144 A1 WO2023179144 A1 WO 2023179144A1
Authority
WO
WIPO (PCT)
Prior art keywords
interval
wave
reference wave
pulse width
width modulation
Prior art date
Application number
PCT/CN2022/142589
Other languages
English (en)
French (fr)
Inventor
张宸珲
张宏韬
陈熙
王雷
Original Assignee
深圳市正浩创新科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市正浩创新科技股份有限公司 filed Critical 深圳市正浩创新科技股份有限公司
Publication of WO2023179144A1 publication Critical patent/WO2023179144A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • H02M7/5395Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency by pulse-width modulation

Definitions

  • the present application belongs to the field of converter control technology, and particularly relates to pulse width modulation methods, pulse width modulation devices and inverter systems.
  • high-energy conversion is achieved by increasing the converter voltage or converter current.
  • increasing the bus current is used to increase The energy conversion power solution is easier to implement because the voltage value of the voltage source does not need to be too high, and is widely used in many fields.
  • N+ can be generated by using PS-PWM (Phase-shifted PWM, phase conversion pulse width modulation) technology.
  • PS-PWM Phase-shifted PWM, phase conversion pulse width modulation
  • the three-phase electrical output waveform generated by traditional PS-PWM is not ideal.
  • the quality of its output waveform is limited by the overlap of the voltages of adjacent phases in multiple interleavings. There is a problem that the output waveform quality cannot achieve the expected effect.
  • Various embodiments of the present application provide a pulse width modulation method, a pulse width modulation device and an inverter system.
  • the first aspect of the embodiment of the present application provides a pulse width modulation method applied to a four-leg interleaved inverter.
  • the pulse width modulation method includes:
  • At least one group of carriers is generated according to the application type of the four-leg interleaved inverter.
  • Each group of carriers includes four carriers with different phases, and each carrier corresponds to one bridge arm.
  • the carrier is a triangular wave, and the four carriers are The phase angle of the carrier is evenly distributed within the interval (0, 360°);
  • a preset square wave is used to modify the initial reference wave in the first interval and the third interval to obtain a modified reference wave; wherein the initial reference wave is a sine wave, and the frequency of the preset square wave is equal to
  • the switching frequencies of the switching tubes in the four-leg interleaved inverter are the same;
  • Each carrier wave is compared with the modified reference wave, and corresponding four modulation signals are generated according to the comparison results and sent to the four-leg interleaved inverter.
  • the second aspect of the embodiment of the present application provides a pulse width modulation device applied to a four-leg interleaved inverter.
  • the pulse width modulation device includes:
  • a carrier generation module configured to generate at least one group of carriers according to the application type of the four-leg interleaved inverter.
  • Each group of carriers includes four carriers with different phases, wherein the phase angles of the four carriers are evenly distributed to Within the interval (0, 360°);
  • An amplitude dividing module configured to divide the peak-to-peak intervals of the carrier into a first interval, a second interval, a third interval and a fourth interval in order from large to small;
  • the amplitude correction module is configured to use a preset square wave to correct the initial reference wave in the first interval and the third interval to obtain a modified reference wave; wherein the initial reference wave is a sine wave, so The frequency of the preset square wave is the same as the switching frequency of the switching tubes in the four-leg interleaved inverter;
  • the modulation output module is configured to compare each of the carrier waves with the modified reference wave, and generate corresponding four-way modulation signals based on the comparison results and send them to the four-leg interleaved inverter.
  • the third aspect of the embodiment of the present application provides an inverter system, the inverter system includes:
  • control device configured to execute the pulse width modulation method as described in any one of the above to control the four-leg interleaved inverter.
  • Figure 1 is a schematic flowchart of a pulse width modulation method provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a four-leg interleaved inverter according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of an initial reference wave provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the initial reference wave and the modified reference wave provided by an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of the reference wave correction step in the pulse width modulation method provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the modified reference wave in the first interval provided by an embodiment of the present application.
  • Figure 7 is a schematic diagram of the modified reference wave in the third interval provided by an embodiment of the present application.
  • Figure 8 is a schematic diagram of improved wave sending and traditional wave sending provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a pulse width modulation device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another pulse width modulation device provided by an embodiment of the present application.
  • Figures 11, 12, and 13 are logic schematic diagrams of a pulse width modulation device provided by an embodiment of the present application.
  • Figure 14 is a waveform diagram of the phase voltage and line voltage output by the inverter system using the traditional method.
  • Figure 15 is a waveform diagram of the phase voltage and line voltage output by the inverter system provided by an embodiment of the present application.
  • high-energy conversion can be achieved by increasing the converter voltage or converter current.
  • the solution of increasing the energy conversion power by increasing the bus current is easier to implement because the voltage value of the voltage source does not need to be too high, and is widely used in many fields.
  • N+1 levels of phase voltage can be generated by using PS-PWM technology. And it can generate 2N+1 levels of line voltage.
  • the three-phase electrical output waveform generated by traditional PS-PWM is not ideal.
  • the quality of its output waveform is limited by the overlap of the voltages of adjacent phases in multiple interleavings. There is a problem that the output waveform quality cannot achieve the expected effect.
  • embodiments of the present application provide a pulse width modulation method, which is applied to a four-leg interleaved inverter. Specifically, as shown in Figure 1, the pulse width modulation method includes steps S10 to S40.
  • step S10 at least one group of carriers is generated according to the application type of the four-leg interleaved inverter.
  • Each group of carriers includes four carriers with different phases, and each carrier corresponds to one bridge arm.
  • a1, a2, a3, and a4 are the signal nodes connected to the output inductor in each arm of the four-arm interleaved inverter.
  • Each bridge arm is composed of It consists of two switch tubes connected in series, Vdc is the DC power supply, and Grid represents the power grid.
  • Vdc is the DC power supply
  • Grid represents the power grid.
  • a schematic diagram of three four-leg interleaved inverters connected to the power grid is shown.
  • Each four-leg interleaved inverter includes a circuit structure as shown in Figure 2. In this embodiment, the number of carriers depends on the number of bridge arms of the interleaved inverter.
  • each group of carriers has four carriers with different phases, and each carrier drives one bridge. arm. If the four-leg interleaved inverter is applied to three-phase power, three sets of carriers are required, each set of carriers corresponding to one phase of the three-phase power.
  • the four-leg interleaved inverter may also be called a four-leg inverter or a three-phase four-leg inverter.
  • the phase angles of the four carriers are evenly distributed to the interval (0, 360°).
  • the carrier can be a triangular wave.
  • Each carrier corresponds to a bridge arm.
  • the phase angles of the four carriers are evenly distributed to the interval (0, 360°).
  • step S20 the peak-to-peak intervals of the carrier are divided into first intervals, second intervals, third intervals and fourth intervals in descending order.
  • the peak-to-peak interval of the carrier is the interval between its peak and its trough.
  • the peak-to-peak interval is divided into N intervals.
  • the number of divided intervals is the same as the number of bridge arms of the staggered inverter. If the staggered The inverter is a four-leg bridge, so the peak-to-peak value of the carrier is divided into four intervals.
  • the peak-to-peak intervals of the carrier are divided into the first interval (Region1), the second interval (Region2), the third interval (Region3) and the fourth interval (Region4) in order from large to small.
  • Va, Vb, and Vc are three-phase reference waves, and their phase angles are 0°, 120°, and 240° respectively.
  • the peak-to-peak interval of the carrier when the peak-to-peak interval of the carrier is (-1, 1), the peak-to-peak interval of the carrier is divided into four intervals on average.
  • the absolute value of the amplitude range of each interval is 0.5.
  • the amplitude range of the first interval is (1, 0.5)
  • the amplitude range of the second interval is (0.5, 0)
  • the amplitude range of the third interval is (-0.5, 0)
  • the amplitude range of the fourth interval is (-0.5, 0).
  • the value range is (-1, -0.5).
  • the reference wave in the interval can be further corrected according to the pattern of the carrier in each interval to obtain the corrected reference wave, and then the corrected reference wave and The carriers are compared to obtain the corresponding modulated signal.
  • the four-phase interleaved inverter is driven according to the modulation signal to generate an inversion signal, thereby avoiding the problem of unsatisfactory output waveforms of the four-phase interleaved inverter in the PS-PWM drive mode.
  • step S30 a preset square wave is used to modify the initial reference wave in the first interval and the third interval to obtain a modified reference wave.
  • the initial reference wave is a sine wave
  • the frequency of the preset square wave is the same as the switching frequency of the switching tube in the four-leg interleaved inverter.
  • a square wave with a frequency equal to the switching frequency of the switching tube will be added to the original initial reference wave to form a new modified reference wave.
  • the waveform 110 in Figure 4 is the initial reference wave
  • the waveform 120 in Figure 4 is the modified reference wave.
  • the staggered inverter is a four-phase staggered arm
  • there are four phase-shifted square waves (for example, 0°, 90°, 180°, 270°) loaded on the original four initial reference waves.
  • each square wave corresponds to one carrier.
  • step S40 each carrier wave is compared with the modified reference wave, and corresponding four-channel modulation signals are generated according to the comparison results and sent to the four-leg interleaved inverter.
  • the corrected first interval and the modified reference wave in the third interval are compared with the carrier wave, and a corresponding response is generated based on the comparison result.
  • the four-way modulated signals are sent to the four-leg interleaved inverter. For example, if the voltage of the corrected reference wave is greater than the voltage of the carrier wave, a high-level modulation signal is generated. If the voltage of the corrected reference wave is less than the voltage of the carrier wave, a low-level modulation signal is generated. The pulse width modulation signal generated at this time The waveform can avoid overlapping problems and greatly improve the quality of the output waveform. It should be noted that comparing the reference wave with the carrier wave and then outputting the modulated wave is currently a common method for generating modulated waves, and there are no excessive restrictions here.
  • a preset square wave is used to correct the initial reference wave in the first interval and the third interval to obtain a modified reference wave, which specifically includes steps S31 and S32 .
  • step S31 if the initial reference wave is located in the third interval, the preset square wave with a fixed duty cycle and the initial reference wave are superimposed to obtain a modified reference wave.
  • the amplitude interval of the initial reference wave at the current time point is determined.
  • a modified reference wave is formed by superimposing the square wave with a fixed duty cycle and the initial reference wave. See Figure 6 for details.
  • the amplitude range of the third interval is (-0.5A, 0).
  • A is the amplitude of the carrier wave.
  • the modified reference wave has the waveform in Figure 6. 122, the detailed diagram of waveform 122 is shown in Figure 7.
  • the setting rule for the fixed duty cycle of the preset square wave may be to set the duty cycle of the preset square wave to 2/N, where N is the number of bridge arms of the staggered inverter.
  • N the number of bridge arms of the staggered inverter.
  • the initial reference wave is located in the third interval, the preset square wave with a duty cycle of 0.5 and the initial reference wave are After superposition processing, the modified reference wave of the third interval is obtained.
  • step S32 if the initial reference wave is located in the first interval, the duty cycle is The preset square wave and the initial reference wave are superimposed to obtain the modified reference wave.
  • represents the absolute value of the initial reference wave at the current time point.
  • the amplitude interval of the initial reference wave at the current time point is determined.
  • the duty cycle of the preset square wave changes with the absolute value of the initial reference wave at each time point. Variety.
  • the duty cycle of the preset square wave is proportional to the absolute value of the initial reference wave at each time point.
  • the duty cycle of the preset square wave at this time is The preset square wave and the initial reference wave are superimposed to obtain the modified reference wave in the first interval. Then the carrier wave in the first interval is compared with the corresponding modified reference wave. Based on the comparison result, the corresponding modulation signal is generated and sent to the four-arm interleaving inverter.
  • the amplitude range of the first interval is (0.5A, A).
  • its waveform schematic diagram is shown as waveform 121 in Figure 6 .
  • the initial reference wave when the initial reference wave is in the second interval or the fourth interval, the initial reference wave is used as a modified reference wave to compare with the carrier wave in this interval.
  • the four-arm interleaved inverter corresponds to The triangular carrier phase is (0°, 90°, 180°, 270°).
  • each phase corresponds to the carrier wave of four staggered bridge arms.
  • Va is the 0° phase-shifted reference wave.
  • Vb is a 120° phase-shifted reference wave.
  • Vc is a 240° phase-shifted reference wave.
  • the reference wave is compared with the corresponding carrier wave to generate a PWM modulated wave.
  • step S20 sequentially dividing the peak-to-peak interval of the carrier into a first interval, a second interval, a third interval and a fourth interval includes: dividing the peak-to-peak interval of the carrier into a third interval in equal proportions. The first interval, the second interval, the third interval and the fourth interval.
  • the first interval is [0.5A, A]
  • the second interval is [0, 0.5A]
  • the third interval is [-0.5A, 0]
  • the fourth interval is [-A, -0.5 A]
  • A is the amplitude of the carrier wave.
  • the peak-to-peak interval of the carrier is divided into a first interval, a second interval, a third interval and a fourth interval in equal proportions.
  • the first interval is [0.5, 1]
  • the second interval is [0, 0.5]
  • the third interval is [-0.5, 0]
  • the fourth interval is [-1, -0.5].
  • the corrected reference wave can be Compare with the carrier wave to obtain the corresponding pulse width modulation signal to drive the four-leg interleaved inverter, thereby improving the quality of the output waveform of the four-leg interleaved inverter and solving the problem of output waveforms in the traditional PS-PWM driving method. Overlapping issues.
  • generating at least one group of carriers according to the application type of the four-leg interleaved inverter includes: if the application type of the four-leg interleaved inverter is a three-phase electrical system, generating three groups of carriers, wherein, Each group of carrier waves corresponds to an initial reference wave, and the phase angles of the three initial reference waves are (0°, 120°, 240°) respectively.
  • the application type of the four-leg interleaved inverter is first determined.
  • the application type is a three-phase electrical system
  • three sets of carriers are generated.
  • each group of carriers corresponds to an initial reference wave, that is, three groups of carriers correspond to three initial reference waves.
  • the phase angles of the three initial reference waves are (0°, 120°, 240°), and each group of carriers corresponds to it respectively.
  • the four modulation signals are compared with the corrected reference wave to generate four modulation signals.
  • the four modulation signals correspond to the four bridge arms of the four-arm interleaved inverter. They are used to control the corresponding bridge arms to turn on or off, thereby controlling the four-arm interleaving.
  • the inverter outputs the corresponding inverter signal.
  • the overlapping waveforms of the inverter signals can be further eliminated and the quality of the output waveform of the four-leg interleaved inverter can be improved.
  • the three groups of carriers respectively correspond to three groups of four-arm devices in the four-arm interleaved inverter, and each group of four-arm devices includes four parallel bridge arms. Among them, the four carriers in each group of carriers respectively correspond to four parallel bridge arms.
  • the phase angle of the initial reference wave corresponding to the first group of carriers is 0°
  • the phase angle of the initial reference wave corresponding to the second group of carriers is 120°.
  • the phase angle of the initial reference wave corresponding to the third group of carriers is 240°, and then the initial reference waves in the first and third intervals of the corresponding initial reference wave in each group of carriers are corrected using preset square waves to obtain the corrected reference
  • the wave is finally compared with the corresponding carrier wave to generate a modulated signal and sent to the four-leg interleaved inverter to drive the four-leg interleaved inverter to output an inverter signal.
  • the pulse width modulation method further includes: when the initial reference wave is within the second interval or the fourth interval, using the initial reference wave as the modified reference wave.
  • the peak-to-peak intervals of the carrier are divided into a first interval, a second interval, a third interval and a fourth interval in order from large to small.
  • the duty cycle is The preset square wave and the initial reference wave are superimposed to obtain the corrected reference wave of the first interval; when the reference wave enters the second interval, the initial reference wave of the second interval is not modified and is directly used as the correction of the second interval.
  • Base wave when the initial base wave enters the third interval, the preset square wave with a fixed duty cycle is superimposed on the initial base wave. For example, the duty cycle is fixed at 0.5 to obtain the modified base wave of the third interval; when When the initial base wave is in the fourth interval, the initial base wave in the fourth interval is not modified and is directly used as the modified base wave in the fourth interval.
  • each carrier wave is compared with the corrected reference wave of each interval, and corresponding four modulation signals are generated based on the comparison results and sent to the four bridge arms.
  • the interleaved inverter drives the four-arm interleaved inverter to output the inverter signal.
  • the pulse width modulation method further includes: limiting the amplitude of the modified reference wave within a preset amplitude range.
  • the amplitude of the corrected reference wave outside the preset range is calculated according to the maximum preset amplitude. For example, as shown in Figure 6, when the preset amplitude range is (-1, +1) and the amplitude of the corrected reference wave is 1.2, it is calculated according to the maximum value of the preset amplitude of 1. When the corrected reference wave When the amplitude of the wave is -1.2, it is calculated based on the maximum value of the preset amplitude -1.
  • the initial reference wave is used as the modified reference wave. Specifically, when the initial reference wave is less than -0.5, or when one of the initial reference waves is greater than -1 and less than -0.5 is satisfied, 1 is output through the "OR" module. When neither is satisfied, 0 is output, and then the signal is selected. The module limits the maximum value and minimum value of the output signal to between (-1, +1), which is the modified reference wave of the second interval or the fourth interval.
  • waveform 110 is an initial reference wave
  • waveform 120 is a modified reference wave.
  • Figure 8 is a schematic diagram of the waveforms when the carrier wave and the reference wave enter from the fourth interval (area 4 in Figure 8) to the third interval (area 3 in Figure 8), as well as the comparison process between the reference wave and the carrier wave
  • the waveform diagram of the resulting pulse width modulated signal As shown in Figure 8, by superimposing a square wave on the initial reference wave, the modified reference wave in the third interval is approximately a square wave. Within the third interval, the carrier wave and the modified reference wave are compared and processed to generate a pulse width modulation The signal has a phase shift relative to the pulse width modulation signal in the traditional PS-PWM driving method. Through this phase-shifting method of correcting the reference wave, the output waveform of each interleaved converter leg will change, and its The phase output voltage wave and line voltage wave generated after addition and merging eliminate the original unideal overlapping part.
  • 801 is the carrier wave and 802 is the reference wave.
  • the carrier wave 801 and the reference wave 802 are compared and a pulse width modulation signal 803 is output.
  • 804 is the initial reference wave
  • 805 is the modified reference wave after superposing square waves
  • the carrier wave 801, the initial reference wave 804 and the modified reference wave 805 are compared and a pulse width modulation signal 806 is output.
  • the pulse width modulation signal 806 output after the improved wave generation has a phase shift compared with the pulse width modulation signal 803 output by the traditional wave generation.
  • the embodiment of the present application also provides a pulse width modulation device, which is applied to a four-arm interleaved inverter.
  • the pulse width modulation device includes: a carrier generation module 10, an amplitude division module 20, and an amplitude correction module. module 30 and modulation output module 40.
  • the carrier generation module 10 is configured to generate at least one group of carriers according to the application type of the four-leg interleaved inverter.
  • Each group of carriers includes four carriers with different phases, wherein the phase angles of the four carriers are evenly distributed to the interval (0, within 360°).
  • the amplitude dividing module 20 is configured to divide the peak-to-peak intervals of the carrier into a first interval, a second interval, a third interval and a fourth interval in order from large to small.
  • the amplitude correction module 30 is configured to use a preset square wave to correct the initial reference wave in the first interval and the third interval to obtain a modified reference wave; wherein the initial reference wave is a sine wave, and the frequency of the preset square wave is equal to
  • the switching frequencies of the switching tubes in the four-leg interleaved inverter are the same.
  • the amplitude correction module 30 when the initial reference wave is within the second interval or the fourth interval, the amplitude correction module 30 does not correct it, and at this time the initial reference wave serves as the modified reference wave.
  • the modulation output module 40 is configured to compare each carrier wave with the modified reference wave, and generate corresponding four modulation signals based on the comparison results to send to the four-leg interleaved inverter.
  • the pulse width modulation device further includes: a saturation module 50 .
  • the saturation module 50 is configured to limit the amplitude of the modified reference wave within a preset amplitude range.
  • the saturation module 50 will adjust the amplitude of the corrected reference wave outside the preset range according to the maximum preset value.
  • the amplitude of the modified reference wave By limiting the amplitude of the modified reference wave within the preset amplitude range, you can avoid the preset square wave having a larger amplitude.
  • the resulting corrected reference wave exceeds the threshold range, making the output waveform more accurate and improving the quality of the inverter output waveform.
  • the reference wave correction logic of phase A of three-phase electricity is used as an example.
  • the square wave generation module 10 generates four preset square waves and sends them to the signal selection module 31.
  • the duty cycle adjustment unit Duty is used to adjust the duty cycle of the preset square wave, and its duty cycle changes with the initial reference The change in the absolute value of the wave at each point in time.
  • the duty cycle of the preset square wave is proportional to the absolute value of the initial reference wave at each time point.
  • the duty cycle of the preset square wave at this time is Va is the value of the initial reference wave at the current time point.
  • the signal selection module 31 determines the interval of the initial reference wave. If the initial reference wave is located in the first interval (Va>0.5), the signal selection module 31 selects to send the four preset square waves generated by the square wave generation module 10 to the amplitude correction Module 30. Specifically, when Va>0.5, the four preset square waves are selected and output. On the contrary, when Va ⁇ 0.5, the signal "0" is selected.
  • the amplitude correction module 30 superimposes the preset square wave and the initial reference wave to obtain the corrected reference wave (Va,m1, Va,m2, Va,m3, Va,m4) in the first interval, and then the saturation module 50 The amplitude of the corrected reference wave is limited to the preset amplitude range.
  • the square wave generation module 10 generates four preset square waves and sends them to the signal selection module 31.
  • the amplitude correction module 30 needs to first determine the amplitude range of the initial reference wave.
  • the four fixed duty cycle square waves generated by the square wave generation module 10 and the initial reference wave are superposed through the amplitude correction module 30 to form a modified reference wave. See Figure 6 for details.
  • the amplitude range of the third interval is (-0.5A, 0).
  • A is the amplitude of the carrier wave.
  • the modified reference wave has the waveform in Figure 6. 122, the detailed diagram of waveform 122 is shown in Figure 7.
  • a preset square wave with an absolute value of 0.5 in the duty cycle is superimposed on the initial reference wave, and then after passing through the signal selection module 31, when -0.5 When ⁇ Va ⁇ 0, the preset square wave with the absolute value of the duty cycle of 0.5 is selected and output, otherwise, the signal "0" is selected.
  • the saturation module 50 limits the maximum value and minimum value of the output signal between (-1, +1) to obtain the modified reference wave of the third interval. Refer to Figure 6.
  • the amplitude correction module 30 may be an adder.
  • each module in the pulse width modulation device is configured to perform corresponding steps in the above pulse width modulation device method, and the specific implementation process will not be described in detail here.
  • the signal selection module 31 selects 0 Connected to the amplitude correction module 30, the amplitude correction module 30 adds the initial reference wave Va to "0", that is, the initial reference wave Va is not corrected. At this time, the initial reference wave Va is output as a modified reference wave.
  • Embodiments of the present application also provide an inverter system.
  • the inverter system includes: a four-arm interleaved inverter; and a control device configured to perform any one of the above pulse width modulation methods to invert the four-bridge arm. Arm staggered inverter for control.
  • the output waveform of the four-leg interleaved inverter can be effectively improved.
  • Figure 14 shows the waveforms of the phase voltage Vpha and the line voltage Vline output by the inverter system using the traditional method. It can be clearly seen from Figure 14 that the line voltages output by the inverter system using the traditional method overlap.
  • Figure 15 is the waveform of the phase voltage Vpha and line voltage Vline output by the inverter system using the pulse width modulation method provided by the embodiment of the present application. It can be clearly seen from Figure 15 that using the pulse width provided by the embodiment of the present application The line voltages output by the inverter system using the modulation method do not overlap, and the output waveform quality is higher than that of the traditional method .
  • the methods and devices/systems disclosed in this application can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be combined or can be integrated into another device, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • Units described as separate components may or may not be physically separate, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • Integrated units may be stored in a computer-readable storage medium if they are implemented in the form of software functional units and sold or used as independent products. Based on this understanding, the essence of the technical solution of the present application, or the part that contributes to the existing technology, or the part of the technical solution, can be embodied in the form of a computer software product, and the computer software product is stored in a storage In the medium, the computer software product includes a number of instructions, which are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media may include but are not limited to: U disk, mobile hard disk, ROMRAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种脉宽调制方法,该脉宽调制方法应用于四桥臂交错逆变器,首先根据四桥臂交错逆变器的应用类型生成至少一组载波,将载波的峰峰值区间依序划分为第一区间、第二区间、第三区间以及第四区间,采用预设方波对第一区间和第三区间内的初始基准波进行修正,得到修正基准波,然后将每路载波与修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器。

Description

脉宽调制方法、脉宽调制装置以及逆变系统
相关申请的交叉引用
本申请要求于2022年03月21日提交中国专利局、申请号为202210278408.X、发明名称为“脉宽调制方法、脉宽调制装置以及逆变系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于变换器控制技术领域,尤其涉及脉宽调制方法、脉宽调制装置以及逆变系统。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然地构成示例性技术。
随着科技的发展和社会生产的需求,民用设备和小型工业设备对于高能转换的需求越来越高,例如,通过增加转换器电压或者转换器电流实现高能转换,其中,采用增加总线电流来增加能量转换功率的方案因其电压源的电压值不需要过高,因此较容易实现,在很多领域运用十分广泛。
在三相系统中,对于一个拥有N相桥臂交错(N interleaved converter legs)的电压源转换器来说,通过运用PS-PWM(Phase-shifted PWM,相位转换脉宽调制)技术可以产生N+1个电平的相电压(phase voltage),并且可以产生2N+1个电平的线电压(line voltage)。
然而,传统的PS-PWM产生的三相电输出波形并不理想,其输出波形的质量受限于多项交错中相邻相的电压的重合,存在输出波形质量无法达到预期效果的问题。
发明内容
本申请各种实施例提供一种脉宽调制方法、脉宽调制装置以及逆变系统。
本申请实施例的第一方面提供了一种脉宽调制方法,应用于四桥臂交错逆变器,所述脉宽调制方法包括:
根据所述四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,每一载波对应一个桥臂,其中,所述载波为三角波,四路所述载波的相位角度平均分配至区间(0,360°)内;
将所述载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间;
采用预设方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波;其中,所述初始基准波为正弦波,所述预设方波的频率与所述四桥臂交错逆变器中的开关管的开关频率相同;
将每路所述载波与所述修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至所述四桥臂交错逆变器。
本申请实施例的第二方面提供了一种脉宽调制装置,应用于四桥臂交错逆变器,所述脉宽调制装置包括:
载波生成模块,被配置为根据所述四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,其中,四路所述载波的相位角度平均分配至区间(0,360°)内;
幅值划分模块,被配置为将所述载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间;
幅值修正模块,被配置为采用预设方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波;其中,所述初始基准波为正弦波,所述预设方波的频率与所述四桥臂交错逆变器中的开关管的开关频率相同;
调制输出模块,被配置为将每路所述载波与所述修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至所述四桥臂交错逆变器。
本申请实施例的第三方面提供了一种逆变系统,所述逆变系统包括:
四桥臂交错逆变器;以及
控制装置,所述控制装置被配置为执行如上述任一项所述的脉宽调制方法以对所述四桥臂交错逆变器进行控制。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或示例性技术中的技术方案,下面将对实施例或示例性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本申请的一个实施例提供的脉宽调制方法的流程示意图。
图2为本申请的一个实施例提供的四桥臂交错逆变器的结构示意图。
图3为本申请的一个实施例提供的初始基准波的示意图。
图4为本申请的一个实施例提供的初始基准波与修正基准波的示意图。
图5为本申请的一个实施例提供的脉宽调制方法中的基准波修正步骤的流程示意图。
图6为本申请的一个实施例提供的修正基准波在第一区间的示意图。
图7为本申请的一个实施例提供的修正基准波在第三区间的示意图。
图8为本申请的一个实施例提供的改进发波与传统发波的示意图。
图9为本申请的一个实施例提供的一种脉宽调制装置的结构示意图。
图10为本申请的一个实施例提供的另一脉宽调制装置的结构示意图。
图11、图12、图13为本申请的一个实施例提供的脉宽调制装置的逻辑示意图。
图14为使用传统方法的逆变系统输出的相电压和线电压的波形图。
图15是本申请的一个实施例提供的逆变系统输出的相电压和线电压的波形图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分的实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。例如包含一系列步骤或单元的过程、方法或系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。此外,术语“第一”、“第二”和“第三”等是用于区别不同对象,而非用于描述特定顺序。
随着科技的发展和社会生产的需求,民用设备和小型工业设备对于高能转换的需求越来越高,例如,通过增加转换器电压或者转换器电流实现高能转换。其中,采用增加总线电流来增加能量转换功率的方案因其电压源的电压值不需要过高,因此较容易实现,在很多领域运用十分广泛。
在三相系统中,对于一个拥有N相桥臂交错(N interleaved converter legs)的电压源转换器来说,通过运用PS-PWM技术可以产生N+1个电平的相电压(phase voltage),并且可以产生2N+1个电平的线电压(line voltage)。
然而,传统的PS-PWM产生的三相电输出波形并不理想,其输出波形的质量受限于多项交错中相邻相的电压的重合,存在输出波形质量无法达到预期效果的问题。
为了解决上述技术问题,本申请实施例提供一种脉宽调制方法,该脉宽调制方法应用于四桥臂交错逆变器。具体的,参见图1所示,脉宽调制方法包括步骤S10至步骤S40。
在步骤S10中,根据四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,每一载波对应一个桥臂。
结合图2中的四桥臂交错逆变器所示,a1、a2、a3、a4分别为四桥臂交错逆变器中每一桥臂中与输出电感连接的信号节点,每一桥臂由两个串联的开关管组成,Vdc为直流电源,Grid表示电网。在图2中,示出了3路四桥臂交错逆变器连接至电网的示意图,每一路四桥臂交错逆变器均包括如图2所示的电路结构。在本实施例中,载波的数量取决于交错逆变器的桥臂数量,对于四相桥臂交错逆变器,则每一组载波有四路相位不同的载波,每一路载波对应驱动一个桥臂。若该四桥臂交错逆变器应用于三相电,则需要三组载波,每一组载波对应三相电中的一个相位。在一些实施例中,该四桥臂交错逆变器也可以称为四桥臂逆变器或三相四桥臂逆变器。
具体的,四路载波的相位角度平均分配至区间(0,360°)内,载波可以为三角波,每一载波对应一个桥臂,四路载波的相位角度平均分配至区间(0,360°)内。
例如,三角载波的相位角度计算方法为:(0°,(360°/N)*1,(360°/N)*2,…,(360°/N)*(N-1)),N为交错逆变器的桥臂数。若为四桥臂交错逆变器,则N=4,四路三角载波的相位角度分别为0°,90°,180°,270°。
在步骤S20中,将载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间。
在本实施例中,载波的峰峰值区间为其波峰与波谷之间的区间,该峰峰值区间划分为N个区间,划分区间的个数与交错逆变器的桥臂个数相同,若交错逆变器为四桥臂,则将载波的峰峰值分成四个区间。参见图3所示,将载波的峰峰值区间按照从大到小的顺序依序划分为第一区间(Region1)、第二区间(Region2)、第三区间(Region3)以及第四区间(Region4),Va、Vb、Vc为三相基准波,其相位角度分别为0°,120°,240°。
在一个具体应用实施例中,当载波的峰峰值区间为(-1,1)时,将载波的峰峰值区间平均划分为四个区间,此时,每一个区间的幅值范围的绝对值为0.5。例如,第一区间的幅值范围为(1,0.5),第二区间的幅值范围为(0.5,0),第三区间的幅值范围为(-0.5,0),第四区间的幅值范围为(-1,-0.5)。通过将载波的峰峰值区间按照从大到小的顺序依序划分为四个区间,可以根据每一区间中载波的规律进行进一步修正所在区间的基准波得到修正 基准波,然后将修正基准波与载波进行比较,得到对应的调制信号。根据该调制信号驱动四相交错逆变器产生逆变信号,从而避免PS-PWM驱动模式下四相交错逆变器的输出波形不理想的问题。
在步骤S30中,采用预设方波对第一区间和第三区间内的初始基准波进行修正,得到修正基准波。
在本实施例中,初始基准波为正弦波,预设方波的频率与四桥臂交错逆变器中的开关管的开关频率相同。在修正过程中,当初始基准波位于第一区间以及第三区间,则频率等同于开关管的开关频率的方波会被加在原有的初始基准波上,形成新的修正基准波。具体可参见图4所示,其中,图4中的波形110为初始基准波,图4中的波形120为修正基准波。
在具体应用中,若交错逆变器为四相交错臂,则分别有四路相位推移的方形波(例如0°,90°,180°,270°)加载在原有的四路初始基准波上,每路方形波对应一路载波。
在步骤S40中,将每路载波与修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器。
在本实施例中,第一区间和第三区间内的初始基准波进行修正处理后,将修正后的第一区间和第三区间内的修正基准波与载波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器。例如,若修正基准波的电压大于载波的电压,则生成高电平的调制信号,若修正基准波的电压小于载波的电压,则生成低电平的调制信号,此时生成的脉宽调制信号的波形可以避免重合问题,大大提升了输出波形的质量。需要说明的是,将基准波与载波进行比较后输出调制波是目前生成调制波的常用手段,此处不做过多限制。
在一个实施例中,参考图5所示,在步骤S30中,采用预设方波对第一区间和第三区间内的初始基准波进行修正,得到修正基准波,具体包括步骤S31和S32。
在步骤S31中,若初始基准波位于第三区间内,则将占空比固定的预设方波与初始基准波叠加处理,得到修正基准波。
具体的,判断初始基准波当前时间点所处于的幅值区间,当初始基准波位于第三区间时,则由固定占空比的方波与初始基准波叠加形成修正基准波。具体参见图6所示,第三区间的幅值范围为(-0.5A,0),A为载波的幅值,通过叠加固定占空比的方波,其修正基准波如图6中的波形122所示,波形122的细节示意图参见图7所示。
具体的,预设方波的固定占空比的设置规则可以为,将预设方波的占空比设置为2/N,其中,N为交错逆变器的桥臂数。当N=4时,则预设方波的固定占空比的绝对值大小为0.5,当初始基准波位于第三区间内,则将占空比大小为0.5的预设方波与初始基准波叠加处理,得到第三区间的修正基准波。通过修正第三区间的基准波,可以避免第三区间内的载波与对 应的修正基准波进行比较后生成的调制信号在驱动四相交错逆变器时,产生的输出波形出现重合的问题,提升了输出波形的质量。
在一个实施例中,在步骤S32中,若初始基准波位于第一区间内,则将占空比为
Figure PCTCN2022142589-appb-000001
的预设方波与初始基准波叠加处理,得到修正基准波。其中,|Va|表示初始基准波在当前时间点的绝对值。
在本实施例中,判断初始基准波在当前时间点所处的幅值区间,当初始基准波位于第一区间时,预设方波的占空比随初始基准波在各时间点的绝对值变化。例如,预设方波的占空比与初始基准波在各时间点的绝对值成正比关系,具体的,此时预设方波的占空比为
Figure PCTCN2022142589-appb-000002
该预设方波与初始基准波叠加处理后得到第一区间的修正基准波,然后第一区间的载波与对应的修正基准波进行比较,基于比较结果生成对应的调制信号发送至四桥臂交错逆变器。
具体的,第一区间的幅值范围为(0.5A,A),叠加预设方波后,其波形示意图参见图6中的波形121所示。
在一个实施例中,当初始基准波在第二区间或者第四区间内时,将初始基准波作为修正基准波与此区间内的载波进行比较,此时,四桥臂交错逆变器对应的三角载波相位为(0°,90°,180°,270°)。结合图3所示,对于ABC三相电,每一相对应着四个交错桥臂的载波,对于三相电的A相位,Va为0°移相的基准波,对于三相电的B相位,Vb为120°移相的基准波,对于三相电的C相位,Vc为240°移相的基准波,由此基准波和对应的载波相比较产生PWM调制波。
在一个实施例中,在步骤S20中,将载波的峰峰值区间依序划分为第一区间、第二区间、第三区间以及第四区间,包括:将载波的峰峰值区间等比例划分为第一区间、第二区间、第三区间以及第四区间。
在本实施例中,第一区间为[0.5A,A],第二区间为[0,0.5A],第三区间为[-0.5A,0],第四区间为[-A,-0.5A],A为载波的幅值。通过将载波幅值区间由上至下划分为四个等位区间,可以选择性将存在相位重合的区域进行基准波修正,通过基准波修正调制的方式达到与载波移相相同的效果。
在一个具体应用实施例中,当载波的幅值A为1时,将载波的峰峰值区间等比例划分为第一区间、第二区间、第三区间以及第四区间。具体的,第一区间为[0.5,1],第二区间为[0,0.5],第三区间为[-0.5,0],第四区间为[-1,-0.5],通过将载波的峰峰值区间等比例划 分,可以精确的对等比例划分的第一区间、第三区间采用预设方波对该区间的基准波进行修正,得到修正后的基准波,然后将修正后的基准波与载波进行比较,得到对应的脉宽调制信号以驱动四桥臂交错逆变器,从而提升四桥臂交错逆变器输出波形的质量,解决了传统的PS-PWM驱动方式存在的输出波形出现重合的问题。
在一个实施例中,根据四桥臂交错逆变器的应用类型生成至少一组载波,包括:若四桥臂交错逆变器的应用类型为三相电系统,则生成三组载波,其中,每组载波对应一个初始基准波,三个初始基准波的相位角度分别为(0°,120°,240°)。
具体的,在本实施例中,首先判断四桥臂交错逆变器的应用类型,当其应用类型为三相电系统,则生成三组载波。其中,每组载波对应一个初始基准波,即,三组载波对应三个初始基准波,三个初始基准波的相位角度分别为(0°,120°,240°),每组载波分别与其对应的修正基准波进行比较生成四个调制信号,四个调制信号对应四桥臂交错逆变器的四个桥臂,分别用于控制对应的桥臂导通或者关断,从而控制四桥臂交错逆变器输出对应的逆变信号。本实施例通过对初始基准波进行修正,可以进一步消除逆变信号的重合波形,提升四桥臂交错逆变器输出波形的质量。
在一个具体应用实施例中,三组载波分别对应四桥臂交错逆变器中的三组四桥臂装置,每组四桥臂装置包括四个并联的桥臂。其中,每组载波中的四路载波分别对应四个并联的桥臂,第一组载波对应的初始基准波的相位角度为0°,第二组载波对应的初始基准波的相位角度为120°,第三组载波对应的初始基准波的相位角度为240°,然后将每组载波中对应的初始基准波的第一区间、第三区间的初始基准波采用预设方波进行修正得到修正基准波,最后由对应的载波与其进行比较生成调制信号发送至四桥臂交错逆变器,以驱动四桥臂交错逆变器输出逆变信号。
在一个实施例中,脉宽调制方法还包括:当初始基准波在第二区间或者第四区间内时,将初始基准波作为修正基准波。
在本实施例中,结合图6所示,将载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间。当初始基准波在第一区间时,将占空比为
Figure PCTCN2022142589-appb-000003
的预设方波与初始基准波叠加处理,得到第一区间的修正基准波;当基准波进入第二区间时,则第二区间的初始基准波不做修正处理,直接作为第二区间的修正基准波;当初始基准波进入第三区间时,则将占空比固定的预设方波与初始基准波叠加处理,例如,占空比固定为0.5,得到第三区间的修正基准波;当初始基准波在第四区间时,则将第四区间的初始基准波不做修正处理,直接作为第四区间的修正基准波。
可以理解的是,当四个区间的修正基准波都求解出来后,然后将每路载波与每个区间的修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器,以驱动四桥臂交错逆变器输出逆变信号,通过修正第一区间和第三区间内的初始基准波,可以消除逆变信号中出现的波形重合问题。
在一个实施例中,脉宽调制方法还包括:将修正基准波的幅值限制在预设幅值范围内。
具体的,当初始基准波被修正后,修正基准波的幅值在预设幅值范围外时,则将在预设范围外的修正基准波的幅值按照最大的预设幅值来计算。例如,结合图6所示,当预设幅值范围为(-1,+1)时,修正基准波的幅值为1.2时,则按照预设幅值的最大值1来计算,当修正基准波的幅值为-1.2时,则按照预设幅值的最大值-1来计算。通过将修正基准波的幅值限制在预设幅值范围内,可以避免预设方波的幅值较大导致的修正基准波超过阈值范围,使得输出波形更加准确,提高了逆变器输出波形的质量。
在一个实施例中,结合图8所示,若初始基准波位于第二区间或者第四区间时,将初始基准波作为修正基准波。具体的,当初始基准波小于-0.5,或者初始基准波大于-1小于-0.5满足其中一个时,则通过“或”模块,输出1,当都不满足时,则输出0,然后通过信号选择模块,将输出的信号的最大值与最小值被限制在(-1,+1)之间,第二区间或者第四区间的修正基准波。
在一个实施例中,参考图4所示,波形110为初始基准波,波形120则为修正基准波。通过将每路载波与修正处理后的修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器,使得四桥臂交错逆变器的输出波形更加准确,提高了输出波形的质量,解决了传统的驱动方式中输出波形存在重合部分的问题。
在一个实施例中,图8为载波和基准波从第四区间(图8中的4区)进入至第三区间(图8中的3区)时的波形示意图,以及基准波和载波比较处理后产生的脉宽调制信号的波形示意图。结合图8所示,通过在初始基准波上叠加方波,第三区间内的修正基准波近似为方波,在第三区间范围内,载波和修正基准波进行比较处理后生成的脉宽调制信号相对传统PS-PWM驱动方式下的脉宽调制信号发生了相位移动,通过这种修正基准波的移相方式,每一交错桥臂(interleaved converter leg)的输出波形都会发生改变,并改变其相加合并后产生的相位输出电压波及线电压波,消除原有不理想的重合部分。
具体地,在图8中,传统发波方式中,801为载波,802为基准波,载波801和基准波802进行比较后输出脉宽调制信号803。改进发波方式中,804为初始基准波,805为叠加方波后修正基准波,载波801、初始基准波804和修正基准波805进行比较后输出脉宽调制信号806。由图8可以清楚的看出,改进发波后输出的脉宽调制信号806相较于传统发波输出 的脉宽调制信号803发生了相位移动。
本申请实施例还提供了一种脉宽调制装置,应用于四桥臂交错逆变器,参考图9所示,脉宽调制装置包括:载波生成模块10、幅值划分模块20、幅值修正模块30以及调制输出模块40。
载波生成模块10被配置为根据四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,其中,四路载波的相位角度平均分配至区间(0,360°)内。
幅值划分模块20被配置为将载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间。
幅值修正模块30被配置为采用预设方波对第一区间和第三区间内的初始基准波进行修正,得到修正基准波;其中,初始基准波为正弦波,预设方波的频率与四桥臂交错逆变器中的开关管的开关频率相同。
在一个实施例中,当初始基准波在第二区间或者第四区间内时,幅值修正模块30不对其进行修正,此时初始基准波作为修正基准波。
调制输出模块40被配置为将每路载波与修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至四桥臂交错逆变器。
在一个实施例中,参考图10所示,脉宽调制装置还包括:饱和模块50。
具体的,饱和模块50被配置为将修正基准波的幅值进行限制在预设幅值范围内。
在本实施例中,当初始基准波被修正后,修正基准波的幅值在预设幅值范围外时,则饱和模块50将在预设范围外的修正基准波的幅值按照最大的预设幅值来计算,从而将修正基准波的幅值进行限制在预设幅值范围内。例如,结合图6所示,当预设幅值范围为(-1,+1)时,修正基准波的幅值为1.2时,则按照预设幅值的最大值1来计算,当修正基准波的幅值为-1.2时,则按照预设幅值的最大值-1来计算,通过将修正基准波的幅值限制在预设幅值范围内,可以避免预设方波的幅值较大导致的修正基准波超过阈值范围,使得输出波形更加准确,提高了逆变器输出波形的质量。
在一个具体应用实施例中,以三相电的A相位的基准波修正逻辑举例说明。参考图11所示,方波生成模块10生成四路预设方波发送至信号选择模块31,占空比调节单元Duty用于调节预设方波的占空比,其占空比随初始基准波在各时间点的绝对值变化。例如,预设方波的占空比与初始基准波在各时间点的绝对值成正比关系,具体的,此时预设方波的占空比为
Figure PCTCN2022142589-appb-000004
Va为初始基准波在当前时间点的值。
信号选择模块31判断初始基准波的区间,若初始基准波位于第一区间时(Va>0.5), 信号选择模块31选择将方波生成模块10生成的四路预设方波发送至幅值修正模块30。具体的,当Va>0.5时,则四路预设方波被选择并输出,反之,当Va<0.5时,则信号“0”被选择。幅值修正模块30将该预设方波与初始基准波叠加处理后得到第一区间的修正基准波(Va,m1、Va,m2、Va,m3、Va,m4),然后由饱和模块50将修正基准波的幅值限制在预设幅值范围内。
在一个实施例中,参见图12所示,方波生成模块10生成四路预设方波发送至信号选择模块31,幅值修正模块30需要先判断初始基准波所处于的幅值区间,当初始基准波Va位于第三区间时,则由方波生成模块10生成的四路固定占空比的方波与初始基准波通过幅值修正模块30叠加形成修正基准波。具体参见图6所示,第三区间的幅值范围为(-0.5A,0),A为载波的幅值,通过叠加固定占空比的方波,其修正基准波如图6中的波形122所示,波形122的细节示意图参见图7所示。
在一个具体应用中,若初始基准波位于第三区间时,则将占空比的绝对值大小为0.5的预设方波与初始基准波叠加处理,然后在经过信号选择模块31,当-0.5<Va<0时,则占空比的绝对值大小为0.5的预设方波被选择并输出,反之,则信号“0”被选择。饱和模块50将输出的信号的最大值与最小值被限制在(-1,+1)之间,得到第三区间的修正基准波参考图6所示,通过修正第三区间的基准波,可以解决传统的PS-PWM产生的三相电输出波形不理想的问题。
在一个实施例中,幅值修正模块30可以为加法器。
本实施例中,脉宽调制装置中各模块被配置为对应执行与上述脉宽调制装置方法中的各个步骤,其具体实施过程在此不做详述。
在一个实施例中,参见图13所示,当初始基准波Va在第二区间(0<Va<0.5)或者第四区间(-1<Va<-0.5)内时,信号选择模块31选择0接入幅值修正模块30,幅值修正模块30将初始基准波Va与“0”相加,即不对初始基准波Va进行修正,此时初始基准波Va作为修正基准波输出。
本申请实施例还提供了一种逆变系统,逆变系统包括:四桥臂交错逆变器;以及控制装置,控制装置被配置为执行如上述任一项的脉宽调制方法以对四桥臂交错逆变器进行控制。
通过本申请提供的上述实施例,四桥臂交错逆变器的输出波形可以得到有效的改善。参见图14,图14为采用传统方法的逆变系统输出的相电压Vpha和线电压Vline的波形。从图14中可以清楚的看到,传统方法的逆变系统输出的线电压存在重叠。图15为采用本申请实施例提供的脉宽调制方法的逆变系统输出的相电压Vpha和线电压Vline的波形,从图15中可以非常清楚的看出,使用本申请实施例提供的脉宽调制方法的逆变系统输出的线电压不存 在重合,输出的波形质量高于传统方法
在本申请提供的上述实施例中,仅阐述了对三相电中的A相位的基准波进行调整,但是B相位及C相位(vb和vc)的改动原理与A相位一样。通过本申请实施例提供的脉宽调制方法,四桥臂交错逆变器的输出波形的质量大大提高,因此可以在使用相同磁性器件(电感)下使得总谐波百分比大大降低(对于一个四相交错的三相电源,其线电压(V AB)可以达到9电平,输出已经十分近似正弦波)。本申请实施例提供的脉宽调制方法、脉宽调制装置以及逆变系统应用在对功率密度以及轻磁性器件需求高的领域,如航空航天领域或电动汽车领域。
应该理解到,本申请所揭露的方法和装置/系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上,或者说对现有技术做出贡献的部分,或者该技术方案的部分,可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,该计算机软件产品包括若干指令,该指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。前述的存储介质可以包括但不限于:U盘、移动硬盘、ROMRAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种脉宽调制方法,应用于四桥臂交错逆变器,所述脉宽调制方法包括:
    根据所述四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,每一载波对应一个桥臂,其中,所述载波为三角波,四路所述载波的相位角度平均分配至区间(0,360°)内;
    将所述载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间;
    采用预设方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波;其中,所述初始基准波为正弦波,所述预设方波的频率与所述四桥臂交错逆变器中的开关管的开关频率相同;
    将每路所述载波与所述修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至所述四桥臂交错逆变器。
  2. 如权利要求1所述的脉宽调制方法,其中,所述采用预设频率的方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波,包括:
    若所述初始基准波位于所述第三区间内,则将占空比固定的预设方波与所述初始基准波叠加处理,得到所述修正基准波。
  3. 如权利要求1所述的脉宽调制方法,其中,所述采用预设频率的方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波,包括:
    若所述初始基准波位于所述第一区间内,则将占空比为
    Figure PCTCN2022142589-appb-100001
    的预设方波与所述初始基准波叠加处理,得到所述修正基准波,其中,|Va|表示所述初始基准波在当前时间点的绝对值。
  4. 如权利要求1-3任一项所述的脉宽调制方法,其中,所述将所述载波的峰峰值区间依序划分为第一区间、第二区间、第三区间以及第四区间,包括:
    将所述载波的峰峰值区间等比例划分为第一区间、第二区间、第三区间以及第四区间,其中,所述第一区间为[0.5A,A],所述第二区间为[0,0.5A],所述第三区间为[-0.5A,0],所述第四区间为[-A,-0.5A],A为所述载波的幅值。
  5. 如权利要求1-3任一项所述的脉宽调制方法,其中,所述根据所述四桥臂交错逆变器的应用类型生成至少一组载波,包括:
    若所述应用类型为三相电系统,则生成三组载波;
    其中,每组所述载波对应一个所述初始基准波,三个所述初始基准波的相位角度分别为(0°,120°,240°)。
  6. 如权利要求1-3任一项所述的脉宽调制方法,其中,所述脉宽调制方法还包括:
    当初始基准波在所述第二区间或者所述第四区间内时,将所述初始基准波作为所述修正基准波。
  7. 如权利要求1所述的脉宽调制方法,其中,所述脉宽调制方法还包括:
    将所述修正基准波的幅值限制在预设幅值范围内。
  8. 一种脉宽调制装置,应用于四桥臂交错逆变器,所述脉宽调制装置包括:
    载波生成模块,被配置为根据所述四桥臂交错逆变器的应用类型生成至少一组载波,每组载波包括四路相位不同的载波,其中,四路所述载波的相位角度平均分配至区间(0,360°)内;
    幅值划分模块,被配置为将所述载波的峰峰值区间按照从大到小的顺序依序划分为第一区间、第二区间、第三区间以及第四区间;
    幅值修正模块,被配置为采用预设方波对所述第一区间和所述第三区间内的初始基准波进行修正,得到修正基准波;其中,所述初始基准波为正弦波,所述预设方波的频率与所述四桥臂交错逆变器中的开关管的开关频率相同;
    调制输出模块,被配置为将每路所述载波与所述修正基准波进行比较,并根据比较结果生成对应的四路调制信号发送至所述四桥臂交错逆变器。
  9. 如权利要求8所述的脉宽调制装置,其中,还包括:
    饱和模块,被配置为将所述修正基准波的幅值进行限制在预设幅值范围内。
  10. 一种逆变系统,包括:
    四桥臂交错逆变器;以及
    控制装置,所述控制装置被配置为执行如权利要求1-7任一项所述的脉宽调制方法以对所述四桥臂交错逆变器进行控制。
PCT/CN2022/142589 2022-03-21 2022-12-28 脉宽调制方法、脉宽调制装置以及逆变系统 WO2023179144A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210278408.X 2022-03-21
CN202210278408.XA CN114665736B (zh) 2022-03-21 2022-03-21 脉宽调制方法、脉宽调制装置以及逆变系统

Publications (1)

Publication Number Publication Date
WO2023179144A1 true WO2023179144A1 (zh) 2023-09-28

Family

ID=82031611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142589 WO2023179144A1 (zh) 2022-03-21 2022-12-28 脉宽调制方法、脉宽调制装置以及逆变系统

Country Status (2)

Country Link
CN (1) CN114665736B (zh)
WO (1) WO2023179144A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665736B (zh) * 2022-03-21 2022-11-22 深圳市正浩创新科技股份有限公司 脉宽调制方法、脉宽调制装置以及逆变系统
CN117691888B (zh) * 2024-02-04 2024-04-26 长沙丹芬瑞电气技术有限公司 一种不连续脉冲宽度调制方法、装置、介质以及逆变器
CN117937964B (zh) * 2024-03-22 2024-05-28 华中科技大学 一种减小输出滤波电感的三相四桥臂逆变器载波调制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196547A (zh) * 2017-06-22 2017-09-22 南京航空航天大学 一种三相双buck并网逆变器的对称全周期调制方法
CN107872166A (zh) * 2017-10-25 2018-04-03 中国矿业大学 一种分立电感式并联交错逆变器的模型预测控制策略
CN109660141A (zh) * 2018-12-27 2019-04-19 杭州禾迈电力电子技术有限公司 一种五电平逆变拓扑电路及五电平逆变器
WO2020248078A1 (en) * 2019-06-14 2020-12-17 The Governors Of The University Of Alberta Multi-level voltage source parallel inverters and coupled inductors
CN114665736A (zh) * 2022-03-21 2022-06-24 深圳市正浩创新科技股份有限公司 脉宽调制方法、脉宽调制装置以及逆变系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05176553A (ja) * 1991-12-26 1993-07-13 Hitachi Ltd 無停電電源装置のインバータ制御方法及び無停電電源装置
JP2000152652A (ja) * 1998-11-10 2000-05-30 Matsushita Electric Ind Co Ltd 系統連系インバータ制御装置
CN101282093B (zh) * 2007-04-04 2011-09-14 三垦力达电气(江阴)有限公司 用于串联式多电平逆变器的pwm控制方法
CN103178783B (zh) * 2011-12-21 2017-02-08 北京普源精电科技有限公司 求和调制信号发生器
CN106711999A (zh) * 2016-12-12 2017-05-24 哈尔滨理工大学 基于调制波重构的mmc‑statcom故障处理装置
CN107508483A (zh) * 2017-08-19 2017-12-22 泽伦电气科技有限公司 一种降低开关损耗的三电平变流器非连续脉宽调制方法
CN107528570A (zh) * 2017-10-17 2017-12-29 国网江苏省电力公司南通供电公司 一种变频载波的数字pwm调制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196547A (zh) * 2017-06-22 2017-09-22 南京航空航天大学 一种三相双buck并网逆变器的对称全周期调制方法
CN107872166A (zh) * 2017-10-25 2018-04-03 中国矿业大学 一种分立电感式并联交错逆变器的模型预测控制策略
CN109660141A (zh) * 2018-12-27 2019-04-19 杭州禾迈电力电子技术有限公司 一种五电平逆变拓扑电路及五电平逆变器
WO2020248078A1 (en) * 2019-06-14 2020-12-17 The Governors Of The University Of Alberta Multi-level voltage source parallel inverters and coupled inductors
CN114665736A (zh) * 2022-03-21 2022-06-24 深圳市正浩创新科技股份有限公司 脉宽调制方法、脉宽调制装置以及逆变系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TAKONGMO MARIUS; ZHANG CHENHUI; SALMON JOHN: "Multi-level Voltage Source Converters using Coupled Inductors and Parallel Connected Inverter Legs", 2022 IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 20 March 2022 (2022-03-20), pages 524 - 530, XP034125265, DOI: 10.1109/APEC43599.2022.9773376 *
ZHANG CHENHUI; TAKONGMO MARIUS; SALMON JOHN: "High-Quality PWM Scheme for High-Speed Electric Drives", IEEE TRANSACTIONS ON POWER ELECTRONICS, vol. 37, no. 2, 30 August 2021 (2021-08-30), USA , pages 1228 - 1233, XP011883647, ISSN: 0885-8993, DOI: 10.1109/TPEL.2021.3108667 *

Also Published As

Publication number Publication date
CN114665736B (zh) 2022-11-22
CN114665736A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023179144A1 (zh) 脉宽调制方法、脉宽调制装置以及逆变系统
Guo et al. ESI: A novel three-phase inverter with leakage current attenuation for transformerless PV systems
US20200328697A1 (en) Control method and apparatus for single-phase five-level converter
Taleb et al. Cascaded H-bridge asymmetrical seven-level inverter using THIPWM for high power induction motor
CN108448581A (zh) 一种并联电流源逆变器并网电流特定谐波控制的方法
CN108322074B (zh) 一种基于十二边形空间电压矢量的级联二电平逆变器svpwm调制方法
CN114583989B (zh) 三电平逆变器调制方式切换方法、装置、设备和存储介质
Montazeri et al. Multidimensional pulsewidth modulation for cascaded split-source inverter
CN110350815B (zh) 一种用于对称奇数相两电平逆变器的锯齿载波pwm调制方法
WO2024060457A1 (zh) 准z源简化型三电平逆变器的共模电压抑制方法及系统
CN104300542B (zh) 一种消除电网背景谐波对并网电流影响的方法及装置
CN107404248B (zh) 一种svpwm调制的交错并联控制方法
CN116247723A (zh) 一种并联变流器集群的抑制零序环流pwm调制方法及系统
CN115224968A (zh) 两电平逆变器的优化同步载波调制方法、系统及相关组件
Halim et al. FPGA-based pulse-width modulation control for single-phase multilevel inverter
Bifaretti et al. A modulation technique for high power AC/DC multilevel converters for power system integration
CN110492771B (zh) 中点电荷最小的三电平逆变器优化脉冲方法
CN107154640A (zh) 一种适用于带储能的混合级联光伏系统的协同调制方法
CN113489406A (zh) 一种应用于九相开端绕组电机的svpwm谐波抑制方法
KR101721238B1 (ko) 불연속 전압 변조 방식 기반의 계통 연계형 전력 변환 장치 및 방법
Aihsan et al. Harmonic Analysis of Three-Phase Asymmetrical Multilevel Inverter with Reduced Number of Switches
KR102570150B1 (ko) 공통모드 전압 변동에 의한 누설전류를 최소화하는 3상 3-레벨 컨버터의 pwm 제어 방법 및 그 전력 변환 장치
Yu et al. An improved drive signal exchange strategy for cascaded H-bridge topology
CN117937969B (zh) 一种三相逆变器滞环电流控制方法、装置和设备
JPH09149658A (ja) 直列多重型インバータ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933191

Country of ref document: EP

Kind code of ref document: A1