WO2023179142A1 - 驱动电路以及压电执行器 - Google Patents

驱动电路以及压电执行器 Download PDF

Info

Publication number
WO2023179142A1
WO2023179142A1 PCT/CN2022/142440 CN2022142440W WO2023179142A1 WO 2023179142 A1 WO2023179142 A1 WO 2023179142A1 CN 2022142440 W CN2022142440 W CN 2022142440W WO 2023179142 A1 WO2023179142 A1 WO 2023179142A1
Authority
WO
WIPO (PCT)
Prior art keywords
buck
circuit
signal
switch tube
switching tube
Prior art date
Application number
PCT/CN2022/142440
Other languages
English (en)
French (fr)
Inventor
叶锐
韩静
Original Assignee
深圳锐盟半导体有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳锐盟半导体有限公司 filed Critical 深圳锐盟半导体有限公司
Publication of WO2023179142A1 publication Critical patent/WO2023179142A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • This application belongs to the field of electronic circuit technology, and particularly relates to drive circuits and piezoelectric actuators.
  • piezoelectric actuators that use piezoelectric ceramics as actuation components to achieve tactile feedback have the advantages of fast response speed, wide driving frequency band, high vibration intensity, delicate and real vibration experience, low acoustic noise, low power consumption, and small size. , can be widely used in low-power, space-constrained devices to achieve high-quality tactile feedback.
  • existing piezoelectric actuators face problems such as high driving voltage (100-200VPP) and difficulty in controlling the driving waveform and response speed.
  • switching amplifiers are a promising alternative, achieving relative efficiency, small size, and low weight.
  • the switching power supply combines passive components with active semiconductor switches to frequently and effectively transfer energy between the power supply and the load, and is most suitable for realizing miniaturized circuits.
  • Existing bidirectional buck-boost circuits can only boost when working in the forward direction, which means that the output can only be greater than the input. When achieving an output lower than the input voltage, additional compensation operations are required.
  • the purpose of this application is to provide a drive circuit and a piezoelectric actuator, aiming to solve the problem that the drive circuit of the traditional piezoelectric actuator can only boost the voltage.
  • a first aspect of the embodiment of the present application provides a driving circuit, including: a buck-boost circuit, the buck-boost circuit is configured to operate in a corresponding voltage regulation mode according to a voltage regulation control signal to convert the input voltage to Convert it into a unipolar folded signal and output it; the voltage regulation mode includes a forward boost mode, a reverse boost mode, a forward buck mode and a reverse buck mode; a full-bridge inverter circuit, and the The buck-boost circuit is connected, and the full-bridge inverter circuit is configured to flip the polarity of part of the folded signal according to the polarity flip signal, so as to unfold the folded signal into a target driving signal and output it; the control circuit, Connected to the step-up and step-down circuit and the full-bridge inverter circuit, the control circuit is configured to generate the voltage regulation control signal and the polarity reversal signal according to a reference signal, the reference signal is consistent with the target corresponding to the driving signal.
  • the voltage-boosting and bucking circuit includes a first switching tube, a second switching tube, a third switching tube, a fourth switching tube and a first inductor; the first conductive end of the first switching tube is connected to The input positive electrode of the buck-boost circuit, the second conductive end of the first switch tube is connected to the first conductive end of the second switch tube, and the second conductive end of the second switch tube is connected to the The input cathode of the buck-boost circuit; the input positive pole and the input negative pole are used to receive the input voltage; the first conductive end of the third switch tube is connected to the output positive pole of the buck-boost circuit, so The second conductive end of the third switch tube is connected to the first conductive end of the fourth switch tube, and the second conductive end of the fourth switch tube is connected to the output negative electrode of the buck-boost circuit; The control terminals of the first switching tube, the second switching tube, the third switching tube and the fourth switching tube are all connected to the control circuit
  • the buck-boost circuit further includes a first capacitor, and the first capacitor is connected between the output positive electrode and the output negative electrode.
  • the first switch tube remains on, so The second switch tube remains off, and the third switch tube and the fourth switch tube are complementary to each other.
  • the first switching tube and the second The switch tubes are complementary to each other, the third switch tube remains on, and the fourth switch tube remains off.
  • the full-bridge inverter circuit includes a fifth switching tube, a sixth switching tube, a seventh switching tube and an eighth switching tube; the first conducting end of the fifth switching tube is connected to the inverter The output positive electrode of the buck circuit, the second conductive end of the fifth switch tube is connected to the first conductive end of the sixth switch tube and connected to the first load end, the second conductive end of the sixth switch tube is The pass end is connected to the output negative pole of the buck-boost circuit; the first conduction end of the seventh switch tube is connected to the output positive pole of the buck-boost circuit, and the second conduction end of the seventh switch tube is connected to the output cathode of the buck-boost circuit.
  • the first conductive terminal of the eighth switch tube is connected to the second load terminal, and the second conductive terminal of the eighth switch tube is connected to the output negative electrode of the buck-boost circuit; the fifth switch tube, the second conductive terminal The control terminals of the sixth switching tube, the seventh switching tube and the eighth switching tube are all connected to the control circuit for receiving the polarity reversal signal; the first load terminal and the The second load terminal is used to output the target driving signal.
  • the control circuit includes a sampling unit and a control unit connected to each other; the sampling unit is connected to the buck-boost circuit and is used to collect the folding signal and collect the flow through the buck-boost circuit The sampling current is output to the control unit; the control unit is connected to the buck-boost circuit and the full-bridge inverter circuit, and is configured to generate the voltage regulation control signal and the voltage regulation control signal according to the reference signal. the polarity reversal signal, and perform feedback control on the voltage regulation control signal and the polarity reversal signal according to the folding signal and the sampling current; the voltage regulation control signal and the polarity reversal signal are used to Control the corresponding switch tube to be turned on or off respectively.
  • the buck-boost circuit includes a second inductor, a third inductor, a ninth switching tube, a tenth switching tube, a second capacitor and a third capacitor; the second inductor, the second capacitor and the third inductor are connected in series between the input positive electrode of the buck-boost circuit and the output positive electrode of the buck-boost circuit; the first conductive end of the ninth switch tube is connected to the second inductor The first end, the second conductive end of the ninth switch tube is connected to the input negative electrode of the buck-boost circuit; the first conductive end of the tenth switch tube is connected to the second end of the second inductor, The second conducting end of the tenth switching tube is connected to the output negative electrode of the buck-boost circuit; the third capacitor is connected between the output positive electrode and the output negative electrode; the output negative electrode and the input Negative connection.
  • the voltage-boosting and bucking circuit includes a fourth inductor, a fifth inductor, an eleventh switching tube, a twelfth switching tube, a fourth capacitor and a fifth capacitor;
  • the fourth inductor is connected to the between the first conductive end of the eleventh switch tube and the input positive electrode of the buck-boost circuit, and the second conductive end of the eleventh switch tube is connected to the input negative electrode of the buck-boost circuit;
  • the first conductive terminal of the twelfth switch tube is connected to the output positive electrode of the buck-boost circuit, and the second conductive terminal of the twelfth switch tube is connected to the first conductive terminal of the eleventh switch tube,
  • the fifth inductor is connected between the second conductive end of the twelfth switching tube and the output negative electrode of the buck-boost circuit;
  • the fourth capacitor is connected between the input negative electrode and the output negative electrode.
  • the fifth capacitor is connected between the output positive electrode and the output negative electrode
  • the second aspect of the embodiment of the present application provides a piezoelectric actuator, including an actuating unit and a driving circuit as described above, the full-bridge inverter circuit is connected to the actuating unit, and the actuating unit is a capacitor.
  • sexual actuator including an actuating unit and a driving circuit as described above, the full-bridge inverter circuit is connected to the actuating unit, and the actuating unit is a capacitor.
  • the beneficial effects of the embodiments of the present application are: the above-mentioned buck-boost circuit has multiple voltage modulation modes, and can output unipolarity according to the voltage regulation control signal without adding additional compensation circuits.
  • the folding signal finally outputs the target driving signal through the full-bridge inverter circuit.
  • Figure 1 is a schematic diagram of a driving circuit provided by the first embodiment of the present application.
  • Figure 2 is a structural diagram of a driving circuit provided by the first embodiment of the present application.
  • FIG. 3 is a schematic diagram of the control circuit provided by the first embodiment of the present application.
  • Figure 4 is a signal waveform diagram according to the embodiment of the present application.
  • Figure 5 is a structural diagram of a driving circuit provided by the second embodiment of the present application.
  • Figure 6 is a structural diagram of a driving circuit provided by the third embodiment of the present application.
  • Figure 7 is a circuit structure diagram of a piezoelectric actuator provided by the fourth embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • FIG 1 shows the schematic diagram of the driving circuit provided by the first embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • a driving circuit includes: a buck-boost circuit 100, a full-bridge inverter circuit 200 and a control circuit 300.
  • the buck-boost circuit 100 is configured to operate in a corresponding voltage regulation mode according to the voltage regulation control signal, so as to convert the input voltage UI into a unipolar folding signal UC and output it.
  • the voltage regulation modes include forward boost mode, reverse boost mode, forward buck mode and reverse buck mode.
  • the full-bridge inverter circuit 200 is connected to the buck-boost circuit 100 and is configured to flip the polarity of the partially folded signal UC according to the polarity flip signal, so as to unfold the folded signal UC into a target driving signal UO and output it.
  • the control circuit 300 is connected to the buck-boost circuit 100 and the full-bridge inverter circuit 200, and is configured to generate a voltage regulation control signal and a polarity reversal signal according to a reference signal, the reference signal corresponding to the target drive signal UO.
  • the above-mentioned buck-boost circuit 100 has a variety of voltage modulation modes, and can boost or step-down the input voltage UI according to the voltage regulation control signal without adding an additional compensation circuit to output a unipolar folding signal. UC, and finally outputs the target driving signal UO through the full-bridge inverter circuit 200.
  • the buck-boost circuit 100 when the buck-boost circuit 100 operates in the forward boost mode, the buck-boost circuit 100 can output a folding signal UC with a voltage value greater than the input voltage UI and a positive voltage change slope.
  • the buck-boost circuit 100 When the buck-boost circuit 100 operates in the reverse boost mode, the buck-boost circuit 100 can output a folding signal UC with a voltage value greater than the input voltage UI and a negative voltage change slope.
  • the buck-boost circuit 100 When the buck-boost circuit 100 operates in the forward buck mode, the buck-boost circuit 100 can output a folding signal UC with a voltage value smaller than the input voltage UI and a positive voltage change slope.
  • the buck-boost circuit 100 When the buck-boost circuit 100 operates in the reverse buck mode, the buck-boost circuit 100 can output a folding signal UC with a voltage value less than the input voltage UI and
  • the waveform of the target drive signal UO in this embodiment is a triangular wave, but it may also be a square wave, a sine wave, etc. This embodiment does not limit the waveform of the target drive signal UO.
  • the buck-boost circuit 100 of the present embodiment works in the reverse boost mode or the reverse buck mode, the direction of the current in the circuit is reversed, and it can also realize the recovery of electric energy and improve the efficiency of the circuit. Electrical energy usage efficiency.
  • the voltage-boost circuit 100 may be a four-switch Buck-Boost circuit.
  • the voltage-boost circuit 100 includes a first switching tube Q1 and a second switching tube. Q2, the third switching tube Q3, the fourth switching tube Q4 and the first inductor L1.
  • the first conductive terminal of the first switching tube Q1 is connected to the input positive electrode Vi+ of the buck-boost circuit 100, and the second conductive terminal of the first switching tube Q1 is connected to the first conducting terminal of the second switching tube Q2.
  • the second conductive end of Q2 is connected to the input negative electrode Vi- of the buck-boost circuit 100.
  • the input positive electrode Vi+ and the input negative electrode Vi- are used to receive the input voltage UI.
  • the input positive electrode Vi+ is used to connect the positive electrode of the driving power supply 40.
  • the negative electrode Vi- is used to connect the negative electrode of the driving power supply 40, and the driving power supply 40 is used to provide the input voltage UI.
  • the first conducting terminal of the third switching tube Q3 is connected to the output positive electrode Vc+ of the buck-boost circuit 100, and the second conducting terminal of the third switching tube Q3 is connected to the first conducting terminal of the fourth switching tube Q4.
  • the fourth switching tube The second conductive terminal of Q4 is connected to the output negative electrode Vc- of the buck-boost circuit 100; the control terminals of the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 are all connected to the control circuit 300 Connect to receive the voltage regulation control signal.
  • the first inductor L1 is connected between the second conductive end of the first switching transistor Q1 and the second conductive end of the third switching transistor Q3. In this embodiment, the input negative electrode Vi- and the output negative electrode Vc- are connected.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3 and the fourth switching tube Q4 are all NMOS tubes.
  • the drain of the NMOS tube corresponds to the first conduction terminal
  • the source of the NMOS tube corresponds to the third conduction terminal.
  • the second conductive terminal, the gate of the NMOS tube corresponds to the control terminal.
  • the modulation control signal controls the first switching transistor Q1 and the second switching transistor Q2 to conduct complementary conduction, and the third switching transistor Q3
  • the voltage modulation of the folding signal UC is realized by respectively configuring the duty cycle of the modulation control signal transmitted to the first switching tube Q1 and the second switching tube Q2, and changing the voltage of the folding signal UC.
  • the modulation control signal controls the first switch Q1 to turn on, the second switch Q2 to turn off, the third switch Q3 and the fourth switch
  • the tube Q4 is complementary to conduction, and by respectively configuring the duty cycle of the modulation control signal transmitted to the third switching tube Q3 and the fourth switching tube Q4, the voltage modulation of the folding signal UC is achieved, and the voltage in the first inductor L1 is changed. direction of current flow.
  • the first inductor L1 in this embodiment is subjected to smaller voltage stress, and an inductor with lower withstand voltage can be used to save costs and reduce chip area.
  • the buck-boost circuit 100 further includes a first capacitor C1.
  • the first capacitor C1 is connected between the output positive electrode Vc+ and the output negative electrode Vc- to maintain the stability of the folding signal.
  • the buck-boost circuit 100 of this embodiment operates in the reverse boost mode or the reverse buck mode, the direction of the current in the circuit is reversed, and the electric energy on the first capacitor C1 can be recovered to the driver. Power 40.
  • the full-bridge inverter circuit 200 includes a fifth switch Q5, a sixth switch Q6, a seventh switch Q7, and an eighth switch Q8.
  • the first conductive end of the fifth switch Q5 is connected to the output positive electrode Vc+
  • the second conductive end of the fifth switch Q5 is connected to the first conductive end of the sixth switch Q6 and is connected to the first load terminal Out1
  • the sixth conductive end of the fifth switch Q5 is connected to the first load terminal Out1.
  • the second conductive end of the switch Q6 is connected to the output negative electrode Vc-.
  • the first conductive terminal of the seventh switch tube Q7 is connected to the output positive electrode Vc+
  • the second conductive terminal of the seventh switch tube Q7 is connected to the first conductive terminal of the eighth switch tube Q8 and is connected to the second load terminal Out2.
  • the second conducting end of the switch Q8 is connected to the output negative electrode Vc-.
  • the control terminals of the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7 and the eighth switching tube Q8 are all connected to the control circuit 300 for receiving the polarity reversal signal; the first load terminal Out1 and the second The load terminal Out2 is used to output the target driving signal UO.
  • the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7 and the eighth switching tube Q8 are all NPN transistors.
  • the collector of the NPN transistor corresponds to the first conductive terminal, and the emitter of the NPN transistor corresponds to the third conductive terminal.
  • the second conducting terminal, the base of the NPN transistor corresponds to the control terminal.
  • the folding signal UC is a unipolar signal
  • the polarity reversal signal controls the fifth switching tube Q5 and the eighth switching tube Q8 to turn on
  • the sixth switching tube Q6 and the seventh switching tube Q7 are turned off, the voltage polarity between the first load terminal Out1 and the second load terminal Out2 is positive
  • the polarity reversal signal controls the fifth switching tube Q5 and the eighth switching tube Q5
  • the switch Q8 is turned off and the sixth switch Q6 and the seventh switch Q7 are turned on, the voltage polarity between the first load terminal Out1 and the second load terminal Out2 is reversed, and the voltage polarity at this time is negative.
  • the polarity of the partial folding signal UC is flipped, so that the unipolar folding signal UC can be turned on and off by controlling the on and off of the fifth switching tube Q5, the sixth switching tube Q6, the seventh switching tube Q7 and the eighth switching tube Q8.
  • Signal UC is converted into a high-swing target drive signal UO.
  • the control circuit 300 includes a sampling unit 310 and a control unit 320 that are connected to each other.
  • the sampling unit 310 is connected to the buck-boost circuit 100 and is used to collect the folding signal UC and the inductor current IL on the first inductor L1, and output them to the control unit 320.
  • the control unit 320 may be a PI controller (Proportional Integral Controller (proportional integral controller) is configured to generate a voltage regulation control signal and a polarity flip signal based on the reference signal, and perform feedback control on the voltage regulation control signal and polarity flip signal based on the folding signal UC and the inductor current IL.
  • the voltage regulation control signal and the polarity reversal signal are used to control the corresponding switching tube to be turned on or off respectively.
  • the reference signal includes parameters such as the waveform, frequency, and voltage amplitude of the target driving signal UO.
  • the control unit 320 can output the corresponding voltage regulation control signal and polarity reversal signal according to the reference signal, so as to output the voltage at the first load terminal Out1 and The second load terminal Out2 generates the target driving signal UO.
  • the control unit 320 can also obtain the theoretical inductor current value and the theoretical voltage amplitude according to the reference signal, and compare the theoretical inductor current value and the theoretical voltage amplitude with the collected inductor current IL and folding signal UC respectively, and then adjust the voltage.
  • the control signal and the polarity reversal signal perform feedback control and are used to change the working mode of the buck-boost circuit 100 when the magnitude relationship between the voltage value of the folding signal UC and the voltage value of the input voltage UI changes, and are also used to reduce the voltage of the buck-boost circuit 100.
  • the error of the output target driving signal UO is small and the anti-interference ability is improved.
  • FIG. 5 shows the structural diagram of the driving circuit provided by the second embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • the buck-boost circuit 100 of this embodiment may be a bidirectional Cuk circuit.
  • the buck-boost circuit 100 includes a second inductor L2, a third inductor L3, a ninth switching transistor Q9, and a tenth switching transistor.
  • the second conducting end of the switch Q10 Connect the first terminal of the second inductor L2, the second conducting terminal of the ninth switching tube Q9 is connected to the input negative electrode Vi-; the first conducting terminal of the tenth switching tube Q10 is connected to the second terminal of the second inductor L2, and the tenth switching tube Q10 is connected to the first conducting terminal of the second inductor L2.
  • the second conducting end of the switch Q10 is connected to the output negative electrode Vo-; the third capacitor C3 is connected between the output positive electrode Vo+ and the output negative electrode Vo-; the output negative electrode Vo- is connected to the input negative electrode Vi-.
  • the ninth switching tube Q9 and the tenth switching tube Q10 are both NMOS tubes.
  • the drain of the NMOS tube corresponds to the first conduction terminal
  • the source of the NMOS tube corresponds to the second conduction terminal
  • the gate of the NMOS tube corresponds to the control end.
  • the control circuit 300 can output a corresponding voltage regulation control signal to control the buck-boost circuit 100 of this embodiment to generate and output the folding signal UO.
  • this embodiment uses fewer transistors, but more inductors and capacitors, which are difficult to control.
  • FIG. 6 shows a structural diagram of a driving circuit provided by the third embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • the buck-boost circuit 100 of this embodiment can be a bidirectional Sepic-Zeta circuit.
  • the buck-boost circuit 100 includes a fourth inductor L4, a fifth inductor L5, an eleventh switch Q11, The twelfth switch Q12, the fourth capacitor C4 and the fifth capacitor C5; the fourth inductor L4 is connected between the first conductive end of the eleventh switch Q11 and the input positive electrode Vi+.
  • the second conducting terminal is connected to the input negative electrode Vi-; the first conducting terminal of the twelfth switching tube Q12 is connected to the output positive electrode Vo+, and the second conducting terminal of the twelfth switching tube Q12 is connected to the first conducting terminal of the eleventh switching tube Q11.
  • the fifth inductor L5 is connected between the second conduction end of the twelfth switch Q12 and the output negative electrode Vo-; the fourth capacitor C4 is connected between the input negative electrode Vi- and the output negative electrode Vo-, the fifth capacitor C5 is connected between the output positive terminal Vo+ and the output negative terminal Vo-.
  • the eleventh switching tube Q11 and the twelfth switching tube Q12 are both NMOS tubes.
  • the drain of the NMOS tube corresponds to the first conduction terminal
  • the source of the NMOS tube corresponds to the second conduction terminal
  • the gate of the NMOS tube corresponds to the second conduction terminal.
  • the control circuit 300 can output a corresponding voltage regulation control signal to control the buck-boost circuit 100 of this embodiment to generate and output the folding signal UO.
  • this embodiment uses fewer transistors, but more inductors and capacitors, which are difficult to control.
  • FIG. 7 shows the circuit structure diagram of the piezoelectric actuator provided by the fourth embodiment of the present application. For convenience of explanation, only the parts related to this embodiment are shown. The details are as follows:
  • a piezoelectric actuator includes an actuating unit 50 and a drive circuit as in any of the above embodiments.
  • the circuit structure diagram shown in Figure 7 adopts the first embodiment, a full-bridge inverter
  • the variable circuit 200 is connected to the actuating unit 50 .
  • the actuating unit 50 is a capacitive actuator.
  • the capacitive actuator may be a piezoelectric ceramic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请涉及驱动电路以及压电执行器。驱动电路,包括:升降压电路,升降压电路被配置为根据调压控制信号工作在对应的调压模式,以用于将输入电压转换成单极性的折叠信号并输出;全桥逆变电路,全桥逆变电路被配置为根据极性翻转信号翻转部分折叠信号的极性,以用于将折叠信号展开成目标驱动信号并输出;控制电路,控制电路被配置为根据参考信号生成调压控制信号和极性翻转信号,参考信号与目标驱动信号相对应。本申请的升降压电路具有多种电压调制模式,在无需增加额外的补偿电路的情况下就可以根据调压控制信号输出单极性的折叠信号,最终通过全桥逆变电路输出目标驱动信号。

Description

驱动电路以及压电执行器
本申请要求于2022年03月21日提交国家知识产权局、申请号为202220621092.5、名称为“驱动电路以及压电执行器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于电子电路技术领域,尤其涉及驱动电路以及压电执行器。
背景技术
如今触觉反馈的应用越来越多,如智能手表和运动手环等可穿戴设备上的触觉效果对用户来说非常重要,选择高质量的触觉引擎对提升用户满意度必不可少。但通常用于小型可穿戴设备的主要执行器线性马达和转子马达受限于体积大小,如果要高性能就需要大尺寸,但是小型设备空间有限,导致最终产生的触觉效果较差。而利用压电陶瓷作为致动元器件实现触觉反馈的压电执行器,具有响应速度快,驱动频带宽,振动强度大,振动体验感觉细腻真实,声学噪声小,功耗低,体积小等优点,可广泛应用于低功耗、空间受限的设备,实现高质量的触觉反馈。而现有的压电执行器面临着的驱动电压高(100~200VPP)、驱动波形和反应速度的控制难度大等问题。
对于驱动压电执行器,开关放大器是一种很有前途的替代方案,它实现相对高效、小尺寸和低重量。开关电源将无源元件与有源半导体开关结合起来,在电源和负载之间频繁有效地传递能量,最适合实现小型化电路。现有的双向降压-升压电路在正向工作时只能升压,意味着输出只能大于输入,当实现低于输入电压的输出时,需要进行额外的补偿操作。
技术问题
本申请的目的在于提供驱动电路以及压电执行器,旨在解决传统的压电执行器的驱动电路存在的只能升压的问题。
技术解决方案
本申请实施例的第一方面提供了一种驱动电路,包括:升降压电路,所述升降压电路被配置为根据调压控制信号工作在对应的调压模式,以用于将输入电压转换成单极性的折叠信号并输出;所述调压模式包括正向升压模式、反向升压模式、正向降压模式和反向降压模式;全桥逆变电路,与所述升降压电路连接,所述全桥逆变电路被配置为根据极性翻转信号翻转部分所述折叠信号的极性,以用于将所述折叠信号展开成目标驱动信号并输出;控制电路,与所述升降压电路和所述全桥逆变电路连接,所述控制电路被配置为根据参考信号生成所述调压控制信号和所述极性翻转信号,所述参考信号与所述目标驱动信号相对应。
其中一实施例中,所述升降压电路包括第一开关管、第二开关管、第三开关管、第四开关管和第一电感;所述第一开关管的第一导通端连接所述升降压电路的输入正极,所述第一开关管的第二导通端连接所述第二开关管的第一导通端,所述第二开关管的第二导通端连接所述升降压电路的输入负极;所述输入正极和所述输入负极用于接收所述输入电压;所述第三开关管的第一导通端连接所述升降压电路的输出正极,所述第三开关管的第二导通端连接所述第四开关管的第一导通端,所述第四开关管的第二导通端连接所述升降压电路的输出负极;所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管的控制端均与所述控制电路连接,以用于接收所述调压控制信号;所述第一电感连接在所述第一开关管的第二导通端与所述第三开关管的第二导通端之间;所述输入负极与所述输出负极连接。
其中一实施例中,所述升降压电路还包括第一电容,所述第一电容连接在所述输出正极和所述输出负极之间。
其中一实施例中,在所述升降压电路根据所述调压控制信号工作在所述正向升压模式和所述反向降压模式时,所述第一开关管保持导通,所述第二开关管保持关断,所述第三开关管和所述第四开关管互补导通。
其中一实施例中,在所述升降压电路根据所述调压控制信号工作在所述正向降压模式和所述反向升压模式时,所述第一开关管和所述第二开关管互补导通,所述第三开关管保持导通,所述第四开关管保持关断。
其中一实施例中,所述全桥逆变电路包括第五开关管、第六开关管、第七开关管和第八开关管;所述第五开关管的第一导通端连接所述升降压电路的输出正极,所述第五开关管的第二导通端连接所述第六开关管的第一导通端并与第一负载端连接,所述第六开关管的第二导通端连接所述升降压电路的输出负极;所述第七开关管的第一导通端连接所述升降压电路的输出正极,所述第七开关管的第二导通端连接所述第八开关管的第一导通端并与第二负载端连接,所述第八开关管的第二导通端连接所述升降压电路的输出负极;所述第五开关管、所述第六开关管、所述第七开关管和所述第八开关管的控制端均与所述控制电路连接,以用于接收所述极性翻转信号;所述第一负载端和所述第二负载端用于输出所述目标驱动信号。
其中一实施例中,所述控制电路包括相互连接的采样单元和控制单元;所述采样单元与所述升降压电路连接,用于采集所述折叠信号以及采集流经所述升降压电路的采样电流,并输出至所述控制单元;所述控制单元与所述升降压电路和所述全桥逆变电路连接,被配置为根据所述参考信号生成所述调压控制信号和所述极性翻转信号,并根据所述折叠信号、所述采样电流对所述调压控制信号和所述极性翻转信号进行反馈控制;所述调压控制信号和所述极性翻转信号用于分别控制对应的开关管导通或关断。
其中一实施例中,所述升降压电路包括第二电感、第三电感、第九开关管、第十开关管、第二电容和第三电容;所述第二电感、所述第二电容和所述第三电感依次串联在所述升降压电路的输入正极和所述升降压电路的输出正极之间;所述第九开关管的第一导通端连接所述第二电感的第一端,所述第九开关管的第二导通端连接所述升降压电路的输入负极;所述第十开关管的第一导通端连接所述第二电感的第二端,所述第十开关管的第二导通端连接所述升降压电路的输出负极;所述第三电容连接在所述输出正极和所述输出负极之间;所述输出负极与所述输入负极连接。
其中一实施例中,所述升降压电路包括第四电感、第五电感、第十一开关管、第十二开关管、第四电容和第五电容;所述第四电感连接在所述第十一开关管的第一导通端与所述升降压电路的输入正极之间,所述第十一开关管的第二导通端连接所述升降压电路的输入负极;所述第十二开关管的第一导通端连接所述升降压电路的输出正极,所述第十二开关管的第二导通端连接所述第十一开关管的第一导通端,所述第五电感连接在所述第十二开关管的第二导通端与所述升降压电路的输出负极之间;所述第四电容连接在所述输入负极和所述输出负极之间,所述第五电容连接在所述输出正极和所述输出负极之间。
本申请实施例的第二方面提供了一种压电执行器,包括致动单元和如上述的驱动电路,所述全桥逆变电路与所述致动单元连接,所述致动单元为电容性致动器。
有益效果
本申请实施例与现有技术相比存在的有益效果是:上述的升降压电路具有多种电压调制模式,在无需增加额外的补偿电路的情况下就可以根据调压控制信号输出单极性的折叠信号,最终通过全桥逆变电路输出目标驱动信号。
附图说明
图1为本申请第一实施例提供的驱动电路的原理图;
图2为本申请第一实施例提供的驱动电路的结构图;
图3为本申请第一实施例提供的控制电路的原理图;
图4为本申请实施例的信号波形图;
图5为本申请第二实施例提供的驱动电路的结构图;
图6为本申请第三实施例提供的驱动电路的结构图;
图7为本申请第四实施例提供的压电执行器的电路结构图;
上述附图说明:100、升降压电路;200、全桥逆变电路;300、控制电路;310、采样单元;320、控制单元;40、驱动电源;50、致动单元。
本发明的实施方式
为了使本申请所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
图1示出了本申请第一实施例提供的驱动电路原理图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
一种驱动电路,包括:升降压电路100、全桥逆变电路200和控制电路300。升降压电路100被配置为根据调压控制信号工作在对应的调压模式,以用于将输入电压UI转换成单极性的折叠信号UC并输出。调压模式包括正向升压模式、反向升压模式、正向降压模式和反向降压模式。全桥逆变电路200与升降压电路100连接,被配置为根据极性翻转信号翻转部分折叠信号UC的极性,以用于将折叠信号UC展开成目标驱动信号UO并输出。控制电路300与升降压电路100和全桥逆变电路200连接,被配置为根据参考信号生成调压控制信号和极性翻转信号,参考信号与目标驱动信号UO相对应。
上述的升降压电路100具有多种电压调制模式,在无需增加额外的补偿电路的情况下就可以根据调压控制信号对输入电压UI进行升压或降压,以输出单极性的折叠信号UC,最终通过全桥逆变电路200输出目标驱动信号UO。
如图2、图4所示,当升降压电路100工作在正向升压模式时,升降压电路100可以输出电压值大于输入电压UI且电压变化斜率为正的折叠信号UC。当升降压电路100工作在反向升压模式时,升降压电路100可以输出电压值大于输入电压UI且电压变化斜率为负的折叠信号UC。当升降压电路100工作在正向降压模式时,升降压电路100可以输出电压值小于输入电压UI且电压变化斜率为正的折叠信号UC。当升降压电路100工作在反向降压模式时,升降压电路100可以输出电压值小于输入电压UI且电压变化斜率为负的折叠信号UC。
如图4所示,本实施例的目标驱动信号UO的波形为三角波,但也可以是方波、正弦波等,本实施例不对目标驱动信号UO的波形进行限制。
与传统的驱动电路相比,当本实施的升降压电路100工作在反向升压模式或反向降压模式时,电路中的电流方向发生反向,还可以实现对电能的回收,提高电能的使用效率。
如图1、图2、图3、图4所示,本实施例中,升降压电路100可以是四开关Buck-Boost电路,升降压电路100包括第一开关管Q1、第二开关管Q2、第三开关管Q3、第四开关管Q4和第一电感L1。
第一开关管Q1的第一导通端连接升降压电路100的输入正极Vi+,第一开关管Q1的第二导通端连接第二开关管Q2的第一导通端,第二开关管Q2的第二导通端连接升降压电路100的输入负极Vi-,输入正极Vi+和输入负极Vi-用于接收输入电压UI,具体地,输入正极Vi+用于连接驱动电源40的正极,输入负极Vi-用于连接驱动电源40的负极,驱动电源40用于提供输入电压UI。第三开关管Q3的第一导通端连接升降压电路100的输出正极Vc+,第三开关管Q3的第二导通端连接第四开关管Q4的第一导通端,第四开关管Q4的第二导通端连接升降压电路100的输出负极Vc-;第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的控制端均与控制电路300连接,以用于接收调压控制信号。第一电感L1连接在第一开关管Q1的第二导通端与第三开关管Q3的第二导通端之间。本实施例中,输入负极Vi-和输出负极Vc-连接。
具体地,第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4均为NMOS管,NMOS管的漏极对应第一导通端,NMOS管的源极对应第二导通端,NMOS管的栅极对应控制端。
需要说明的是,当升降压电路100工作在正向升压模式以及反向降压模式时,调制控制信号控制第一开关管Q1和第二开关管Q2互补导通、第三开关管Q3导通、第四开关管Q4关断,通过分别配置传输至第一开关管Q1和第二开关管Q2的调制控制信号的占空比的大小,实现对折叠信号UC的电压调制,以及改变第一电感L1中的电流方向。
当升降压电路100工作在正向降压模式以及反向升压模式时,调制控制信号控制第一开关管Q1导通、第二开关管Q2关断、第三开关管Q3和第四开关管Q4互补导通,通过分别配置传输至第三开关管Q3和第四开关管Q4的调制控制信号的占空比的大小,实现对折叠信号UC的电压调制,以及改变第一电感L1中的电流方向。
与现有的双向降压-升压电路相比,本实施例的第一电感L1所承受的电压应力更小,可以采用耐压较低的电感器,达到节约成本以及降低芯片面积的效果。
本实施例中,升降压电路100还包括第一电容C1,第一电容C1连接在输出正极Vc+和输出负极Vc-之间,用于保持折叠信号的稳定。
需要说明的是,当本实施的升降压电路100工作在反向升压模式或反向降压模式时,电路中的电流方向发生反向,可以将第一电容C1上的电能回收至驱动电源40。
如图2、图3所示,本实施例中,全桥逆变电路200包括第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8。第五开关管Q5的第一导通端连接输出正极Vc+,第五开关管Q5的第二导通端连接第六开关管Q6的第一导通端并与第一负载端Out1连接,第六开关管Q6的第二导通端连接输出负极Vc-。第七开关管Q7的第一导通端连接输出正极Vc+,第七开关管Q7的第二导通端连接第八开关管Q8的第一导通端并与第二负载端Out2连接,第八开关管Q8的第二导通端连接输出负极Vc-。第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8的控制端均与控制电路300连接,以用于接收极性翻转信号;第一负载端Out1和第二负载端Out2用于输出目标驱动信号UO。
具体地,第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8均为NPN三极管,NPN三极管的集电极对应第一导通端,NPN三极管的发射极对应第二导通端,NPN三极管的基极对应控制端。
如图2、图3、图4所示,需要说明的是,由于折叠信号UC为单极性的信号,可以设当极性翻转信号控制第五开关管Q5和第八开关管Q8导通、第六开关管Q6和第七开关管Q7关断时,第一负载端Out1和第二负载端Out2之间的电压极性为正,则当极性翻转信号控制第五开关管Q5和第八开关管Q8关断、第六开关管Q6和第七开关管Q7导通时,第一负载端Out1和第二负载端Out2之间的电压极性发生翻转,此时的电压极性为负,即将部分折叠信号UC的极性进行翻转,从而可以通过控制第五开关管Q5、第六开关管Q6、第七开关管Q7和第八开关管Q8的导通与关断将单极性的折叠信号UC转换为高摆幅的目标驱动信号UO。
如图2、图3所示,本实施例中,控制电路300包括相互连接的采样单元310和控制单元320。采样单元310与升降压电路100连接,用于采集折叠信号UC以及采集第一电感L1上的电感电流IL,并输出至控制单元320。控制单元320可以是PI控制器(Proportional Integral Controller;比例积分控制器),被配置为根据参考信号生成调压控制信号和极性翻转信号,并根据折叠信号UC、电感电流IL对调压控制信号和极性翻转信号进行反馈控制。调压控制信号和极性翻转信号用于分别控制对应的开关管导通或关断。
具体地,参考信号包括了目标驱动信号UO的波形、频率和电压幅值等参数,控制单元320可以根据参考信号输出对应的调压控制信号和极性翻转信号,以在第一负载端Out1和第二负载端Out2生成目标驱动信号UO。同时,控制单元320还可以根据参考信号得到理论电感电流值和理论电压幅值,并将理论电感电流值和理论电压幅值分别与采集到的电感电流IL和折叠信号UC进行对比后对调压控制信号和极性翻转信号进行反馈控制,用于当折叠信号UC的电压值与输入电压UI的电压值之间的大小关系变化时,改变升降压电路100的工作模式,同时也用于减小输出的目标驱动信号UO的误差,提高抗干扰能力。
图5示出了本申请第二实施例提供的驱动电路的结构图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
与第一实施例不同的是,本实施例的升降压电路100可以是双向Cuk电路,升降压电路100包括第二电感L2、第三电感L3、第九开关管Q9、第十开关管Q10、第二电容C2和第三电容C3;第二电感L2、第二电容C2和第三电感L3依次串联在输入正极Vi+和输出正极Vo+之间;第九开关管Q9的第一导通端连接第二电感L2的第一端,第九开关管Q9的第二导通端连接输入负极Vi-;第十开关管Q10的第一导通端连接第二电感L2的第二端,第十开关管Q10的第二导通端连接输出负极Vo-;第三电容C3连接在输出正极Vo+和输出负极Vo-之间;输出负极Vo-与输入负极Vi-连接。
具体地,第九开关管Q9和第十开关管Q10均为NMOS管,NMOS管的漏极对应第一导通端,NMOS管的源极对应第二导通端,NMOS管的栅极对应控制端。
控制电路300可以输出对应的调压控制信号以控制本实施例的升降压电路100生成并输出折叠信号UO。
与第一实施例相比,本实施例所使用的晶体管更少,但电感和电容较多,难以控制。
图6示出了本申请第三实施例提供的驱动电路的结构图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
与上述任一实施例不同的是,本实施例的升降压电路100可以是双向Sepic-Zeta电路,升降压电路100包括第四电感L4、第五电感L5、第十一开关管Q11、第十二开关管Q12、第四电容C4和第五电容C5;第四电感L4连接在第十一开关管Q11的第一导通端与输入正极Vi+之间,第十一开关管Q11的第二导通端连接输入负极Vi-;第十二开关管Q12的第一导通端连接输出正极Vo+,第十二开关管Q12的第二导通端连接第十一开关管Q11的第一导通端,第五电感L5连接在第十二开关管Q12的第二导通端与输出负极Vo-之间;第四电容C4连接在输入负极Vi-和输出负极Vo-之间,第五电容C5连接在输出正极Vo+和输出负极Vo-之间。
具体地,第十一开关管Q11和第十二开关管Q12均为NMOS管,NMOS管的漏极对应第一导通端,NMOS管的源极对应第二导通端,NMOS管的栅极对应控制端。
控制电路300可以输出对应的调压控制信号以控制本实施例的升降压电路100生成并输出折叠信号UO。
与第一实施例相比,本实施例所使用的晶体管更少,但电感和电容较多,难以控制。
图7示出了本申请第四实施例提供的压电执行器的电路结构图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
如图1-7所示,一种压电执行器,包括致动单元50和如上述任一实施例的驱动电路,图7所示的电路结构图中采用了第一实施例,全桥逆变电路200与致动单元50连接。
本实施例中,致动单元50为电容性致动器,具体地,电容性致动器可以是压电陶瓷。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种驱动电路,其特征在于,包括:
    升降压电路,所述升降压电路被配置为根据调压控制信号工作在对应的调压模式,以用于将输入电压转换成单极性的折叠信号并输出;所述调压模式包括正向升压模式、反向升压模式、正向降压模式和反向降压模式;
    全桥逆变电路,与所述升降压电路连接,所述全桥逆变电路被配置为根据极性翻转信号翻转部分所述折叠信号的极性,以用于将所述折叠信号展开成目标驱动信号并输出;
    控制电路,与所述升降压电路和所述全桥逆变电路连接,所述控制电路被配置为根据参考信号生成所述调压控制信号和所述极性翻转信号,所述参考信号与所述目标驱动信号相对应。
  2. 如权利要求1所述的驱动电路,其特征在于,所述升降压电路包括第一开关管、第二开关管、第三开关管、第四开关管和第一电感;
    所述第一开关管的第一导通端连接所述升降压电路的输入正极,所述第一开关管的第二导通端连接所述第二开关管的第一导通端,所述第二开关管的第二导通端连接所述升降压电路的输入负极;所述输入正极和所述输入负极用于接收所述输入电压;
    所述第三开关管的第一导通端连接所述升降压电路的输出正极,所述第三开关管的第二导通端连接所述第四开关管的第一导通端,所述第四开关管的第二导通端连接所述升降压电路的输出负极;所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管的控制端均与所述控制电路连接,以用于接收所述调压控制信号;
    所述第一电感连接在所述第一开关管的第二导通端与所述第三开关管的第二导通端之间;
    所述输入负极与所述输出负极连接。
  3. 如权利要求2所述的驱动电路,其特征在于,所述升降压电路还包括第一电容,所述第一电容连接在所述输出正极和所述输出负极之间。
  4. 如权利要求2或3所述的驱动电路,其特征在于,在所述升降压电路根据所述调压控制信号工作在所述正向升压模式和所述反向降压模式时,所述第一开关管保持导通,所述第二开关管保持关断,所述第三开关管和所述第四开关管互补导通。
  5. 如权利要求2或3所述的驱动电路,其特征在于,在所述升降压电路根据所述调压控制信号工作在所述正向降压模式和所述反向升压模式时,所述第一开关管和所述第二开关管互补导通,所述第三开关管保持导通,所述第四开关管保持关断。
  6. 如权利要求1至3任一项所述的驱动电路,其特征在于,所述全桥逆变电路包括第五开关管、第六开关管、第七开关管和第八开关管;
    所述第五开关管的第一导通端连接所述升降压电路的输出正极,所述第五开关管的第二导通端连接所述第六开关管的第一导通端并与第一负载端连接,所述第六开关管的第二导通端连接所述升降压电路的输出负极;
    所述第七开关管的第一导通端连接所述升降压电路的输出正极,所述第七开关管的第二导通端连接所述第八开关管的第一导通端并与第二负载端连接,所述第八开关管的第二导通端连接所述升降压电路的输出负极;所述第五开关管、所述第六开关管、所述第七开关管和所述第八开关管的控制端均与所述控制电路连接,以用于接收所述极性翻转信号;所述第一负载端和所述第二负载端用于输出所述目标驱动信号。
  7. 如权利要求1至3任一项所述的驱动电路,其特征在于,所述控制电路包括相互连接的采样单元和控制单元;
    所述采样单元与所述升降压电路连接,用于采集所述折叠信号以及采集流经所述升降压电路的采样电流,并输出至所述控制单元;
    所述控制单元与所述升降压电路和所述全桥逆变电路连接,被配置为根据所述参考信号生成所述调压控制信号和所述极性翻转信号,并根据所述折叠信号、所述采样电流对所述调压控制信号和所述极性翻转信号进行反馈控制;
    所述调压控制信号和所述极性翻转信号用于分别控制对应的开关管导通或关断。
  8. 如权利要求1所述的驱动电路,其特征在于,所述升降压电路包括第二电感、第三电感、第九开关管、第十开关管、第二电容和第三电容;
    所述第二电感、所述第二电容和所述第三电感依次串联在所述升降压电路的输入正极和所述升降压电路的输出正极之间;
    所述第九开关管的第一导通端连接所述第二电感的第一端,所述第九开关管的第二导通端连接所述升降压电路的输入负极;
    所述第十开关管的第一导通端连接所述第二电感的第二端,所述第十开关管的第二导通端连接所述升降压电路的输出负极;
    所述第三电容连接在所述输出正极和所述输出负极之间;所述输出负极与所述输入负极连接。
  9. 如权利要求1所述的驱动电路,其特征在于,所述升降压电路包括第四电感、第五电感、第十一开关管、第十二开关管、第四电容和第五电容;
    所述第四电感连接在所述第十一开关管的第一导通端与所述升降压电路的输入正极之间,所述第十一开关管的第二导通端连接所述升降压电路的输入负极;
    所述第十二开关管的第一导通端连接所述升降压电路的输出正极,所述第十二开关管的第二导通端连接所述第十一开关管的第一导通端,所述第五电感连接在所述第十二开关管的第二导通端与所述升降压电路的输出负极之间;
    所述第四电容连接在所述输入负极和所述输出负极之间,所述第五电容连接在所述输出正极和所述输出负极之间。
  10. 一种压电执行器,其特征在于,包括致动单元和如权利要求1-9任一项所述的驱动电路,所述全桥逆变电路与所述致动单元连接,所述致动单元为电容性致动器。
PCT/CN2022/142440 2022-03-21 2022-12-27 驱动电路以及压电执行器 WO2023179142A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202220621092.5 2022-03-21
CN202220621092.5U CN217183179U (zh) 2022-03-21 2022-03-21 驱动电路以及压电执行器

Publications (1)

Publication Number Publication Date
WO2023179142A1 true WO2023179142A1 (zh) 2023-09-28

Family

ID=82743546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142440 WO2023179142A1 (zh) 2022-03-21 2022-12-27 驱动电路以及压电执行器

Country Status (2)

Country Link
CN (1) CN217183179U (zh)
WO (1) WO2023179142A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217183179U (zh) * 2022-03-21 2022-08-12 深圳锐盟半导体有限公司 驱动电路以及压电执行器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228420A (ja) * 2007-03-12 2008-09-25 Kawasaki Heavy Ind Ltd 充放電制御装置及び充放電制御方法
CN101552554A (zh) * 2009-05-11 2009-10-07 南京航空航天大学 一种级联型升降压变换器控制电路及其控制方法
JP2010051111A (ja) * 2008-08-22 2010-03-04 Denso Corp モータ駆動装置
CN202005034U (zh) * 2011-03-21 2011-10-05 苏州市职业大学 光伏led照明用可升降压的双向变换电路
CN105896646A (zh) * 2016-04-07 2016-08-24 东莞市太业电子股份有限公司 智能升降压充放电电路及其充放电方法
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法
CN212588281U (zh) * 2020-06-16 2021-02-23 广州金升阳科技有限公司 一种电机驱动系统
CN112803941A (zh) * 2021-01-07 2021-05-14 深圳锐盟半导体有限公司 触控检测电路和耳机
CN113328638A (zh) * 2021-06-03 2021-08-31 浙江大学 一种宽电压宽频率输出的等离子体电源及其控制方法
CN217183179U (zh) * 2022-03-21 2022-08-12 深圳锐盟半导体有限公司 驱动电路以及压电执行器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008228420A (ja) * 2007-03-12 2008-09-25 Kawasaki Heavy Ind Ltd 充放電制御装置及び充放電制御方法
JP2010051111A (ja) * 2008-08-22 2010-03-04 Denso Corp モータ駆動装置
CN101552554A (zh) * 2009-05-11 2009-10-07 南京航空航天大学 一种级联型升降压变换器控制电路及其控制方法
CN202005034U (zh) * 2011-03-21 2011-10-05 苏州市职业大学 光伏led照明用可升降压的双向变换电路
CN105896646A (zh) * 2016-04-07 2016-08-24 东莞市太业电子股份有限公司 智能升降压充放电电路及其充放电方法
CN111064359A (zh) * 2019-12-23 2020-04-24 南京航空航天大学 宽范围双向变换电路及控制方法
CN212588281U (zh) * 2020-06-16 2021-02-23 广州金升阳科技有限公司 一种电机驱动系统
CN112803941A (zh) * 2021-01-07 2021-05-14 深圳锐盟半导体有限公司 触控检测电路和耳机
CN113328638A (zh) * 2021-06-03 2021-08-31 浙江大学 一种宽电压宽频率输出的等离子体电源及其控制方法
CN217183179U (zh) * 2022-03-21 2022-08-12 深圳锐盟半导体有限公司 驱动电路以及压电执行器

Also Published As

Publication number Publication date
CN217183179U (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
JP4534223B2 (ja) Dc−dcコンバータ
TWI233009B (en) Three-phase power factor correction converter with soft-switching
Zhu et al. Implementing of developed voltage lift technique on SEPIC, Cuk and double-output DC-DC converters
CN107659128B (zh) Dc/dc开关变换器功率输出晶体管集成驱动电路
WO2023179142A1 (zh) 驱动电路以及压电执行器
US20230134427A1 (en) Switched Capacitor Converter and Control Method
WO2008036391A1 (en) Multiple output multiple topology voltage converter
CN112290796A (zh) 一种混合架构单电感多输出升降压型dc-dc电源管理电路
CN101060291B (zh) 无变压器的超声波电机驱动器
CN113783428B (zh) 一种混合模式升压变换器
CN208386440U (zh) 一种lc谐振超声波电机调频调相驱动控制电路
KR20200033026A (ko) 스위치드 커패시터 변환기
TWI715328B (zh) 升壓轉換器
CN115833560B (zh) 一种SenseFET型全波电感电流传感器
Eguchi et al. Design of an inductor-less step-up ac/dc converter for 0.3 V@ 1 MHz vibration energy harvesting
Hua et al. A 1.2-A dual-output SC DC–DC regulator with continuous gate-drive modulation achieving≤ 0.01-mV/mA cross regulation
Eguchi et al. Design of an LED Sink Driver Using a Switched-Inductor and Switched-Capacitor Buck-Boost Converter with High Voltage Gains
CN213342022U (zh) 一种电源电路及电源模块
TW202015323A (zh) 具降壓及升壓功能之直流-直流轉換器
WO2022002096A1 (zh) 一种谐振开关电容电路、电子设备
CN201562223U (zh) 服务器系统
CN112366937B (zh) 一种升降压Cuk双谐振开关电容变换器
CN112054679B (zh) 一种正负电压变换的直流电源及其控制方法
CN210724554U (zh) 一种嵌位型升压功率变换电路结构
CN100477470C (zh) 单级双向升压直流变换器型高频环节逆变器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933190

Country of ref document: EP

Kind code of ref document: A1