WO2023178905A1 - 一种无封底双壁钢围堰结构及其施工方法 - Google Patents

一种无封底双壁钢围堰结构及其施工方法 Download PDF

Info

Publication number
WO2023178905A1
WO2023178905A1 PCT/CN2022/110259 CN2022110259W WO2023178905A1 WO 2023178905 A1 WO2023178905 A1 WO 2023178905A1 CN 2022110259 W CN2022110259 W CN 2022110259W WO 2023178905 A1 WO2023178905 A1 WO 2023178905A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
steel cofferdam
walled steel
blade foot
cofferdam
Prior art date
Application number
PCT/CN2022/110259
Other languages
English (en)
French (fr)
Inventor
宋冰
罗鹏
雷栋
周俭
张敏
朱晓亮
何思元
李熙雄
Original Assignee
中交路桥建设有限公司
中交路桥华东工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交路桥建设有限公司, 中交路桥华东工程有限公司 filed Critical 中交路桥建设有限公司
Publication of WO2023178905A1 publication Critical patent/WO2023178905A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D19/00Keeping dry foundation sites or other areas in the ground
    • E02D19/02Restraining of open water
    • E02D19/04Restraining of open water by coffer-dams, e.g. made of sheet piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/74Means for anchoring structural elements or bulkheads
    • E02D5/80Ground anchors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2300/00Materials
    • E02D2300/0026Metals
    • E02D2300/0029Steel; Iron
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/20Miscellaneous comprising details of connection between elements
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/30Miscellaneous comprising anchoring details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • This application relates to the field of construction technology, such as an unsealed double-walled steel cofferdam structure and its construction method.
  • Double-walled steel cofferdams have the advantages of high structural rigidity, convenient construction, few process conversions, and good water-stopping effects. Therefore, double-walled steel cofferdams are commonly used as water-stopping structures in deep water foundations of bridges.
  • This application provides a construction method for a double-wall steel cofferdam structure without bottom seal, including:
  • the cofferdam body is raised, a working platform is installed symmetrically along the overall structure at the inner supporting outer wall position of the cofferdam body, and an anchoring system is installed on the double-walled steel cofferdam to perform maintenance on the double-walled steel cofferdam.
  • Anchor during the anchoring operation, the working platform tensions the anchoring system; wherein the working platform is a personnel operation platform.
  • This application also provides an unsealed double-walled steel cofferdam structure, including:
  • the edge groove is formed on the river bed by grooving the river bed
  • Double-walled steel cofferdam the double-walled steel cofferdam is a closed-loop structure, the bottom of the double-walled steel cofferdam is formed with a blade foot, the blade foot is arranged to be located in the blade foot groove, the blade foot Concrete is poured into the groove and the blade foot;
  • a working platform is installed symmetrically along the overall structure at the inner supporting outer wall position of the cofferdam body, and an anchoring system is installed on the double-walled steel cofferdam to anchor the double-walled steel cofferdam, wherein the operation
  • the platform is a personnel operation platform.
  • Figure 1 is a schematic elevation view of the double-walled steel cofferdam structure without bottom cover provided by the embodiment of the present application after completion of construction;
  • Figure 2 is a schematic diagram of the blade foot provided in the embodiment of the present application located in the blade foot groove;
  • Figure 3 is an enlarged schematic view of the anchoring end in Figure 1;
  • Figure 4 is an enlarged schematic diagram of the tension end in Figure 1;
  • Figure 5 is an enlarged schematic view of the connection part in Figure 1;
  • Figure 6 is an enlarged schematic diagram of the anchor box in Figure 1;
  • Figure 7 is a top view of the double-walled steel cofferdam structure without bottom seal provided by the embodiment of the present application after completion of construction.
  • Double-wall steel cofferdam 21. Blade feet;
  • Anchor system 31. Anchor end; 32. Pre-embedded tie rod; 321. Pipa buckle; 322. Pipa buckle connecting pin; 33. Anchor pull box; 34. Prestressed tie rod; 341. Tension rod locking nut; 342. Tension nut; 35. Connection part; 351. Weir body connecting plate; 352. Connection part main body; 3521. Stiffening ring; 36. Jack;
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection; it can be a mechanical connection or a detachable connection.
  • It is an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, or it can be an internal connection between two components.
  • the meanings of the above terms in this application can be understood according to the actual situation.
  • Double-walled steel cofferdams are commonly used as water-stopping structures for deep-water foundations of bridges. Its main advantages are high structural rigidity, convenient construction, few process changes, and good water-stopping effects. After the cofferdam is lowered into place, the bottom sealing method is used to prevent water in the enclosure while ensuring Anti-floating effect. However, in the bare rock area where the bedrock is complete, the edge of the double-walled steel cofferdam is difficult to take root. Blind pouring of back-sealing concrete cannot maximize the effect of concrete and consumes a lot of material.
  • this embodiment provides a construction method for a double-walled steel cofferdam structure without bottom seal, which is suitable for bare rock areas and includes:
  • the blade foot 21 is formed at the bottom of the double-walled steel cofferdam 2, and the double-walled steel cofferdam 2 is lowered into place using a lowering system so that the blade foot 21 is located in the blade foot groove 1, and pouring into the blade foot groove 1 and the blade foot 21 Concrete, the lowering system will be evacuated after the concrete degree in blade foot groove 1 and blade foot 21 reaches the design requirements;
  • the operation platform 53 is a personnel operation platform.
  • the anchoring system 3 may be disposed on the double-walled steel cofferdam 2 at a location that can balance horizontal forces.
  • the force required for tensioning depends on the overall buoyancy of the unsealed double-walled steel cofferdam structure, the angle at which the anchoring system 3 is set, and the double-walled steel cofferdam. 2. It is determined by its own weight, the gravity and holding force of the concrete anchored by the edge and the overall safety factor of the reserved structure. This is a classic mechanical problem well known to those in the field and will not be introduced in detail here.
  • the construction method of the bottomless double-walled steel cofferdam structure provided in this embodiment is to pour concrete into the blade foot groove 1 and the blade foot 21 so that the blade foot 21 of the double-walled steel cofferdam takes root on the river bed and cooperates with the anchoring system. 3. Anchor the double-walled steel cofferdam 2 to ensure the stability of the double-walled steel cofferdam 2.
  • the bottom-less double-walled steel cofferdam structure includes a double-walled steel cofferdam body.
  • the two opposite double-walled steel cofferdam bodies are connected with a purlin and an inner support 4.
  • the purlin and the inner support are connected to each other.
  • Node 4 is set as a tensile structure.
  • the inner support 4 may be composed of multiple columns connected through flange connection plates 41 .
  • a support plate 42 is also provided between the inner support 4 and the double-wall steel cofferdam 2.
  • the support plate 42 is located on the cofferdam. The underside of the purlin.
  • the entire cofferdam structure relies on the concrete holding force at blade foot 21, the tensile force of the anchoring system 3 and the self-weight of the cofferdam to assume the overall anti-floating effect of the cofferdam. Since the bedrock on the river bed surface is intact, there is little possibility of a large amount of water gushing after water pumping in the later period. After the construction is completed, if water leakage is later discovered in the concrete in the blade foot groove 1 or in the joint cracks in the bedrock bedrock, cement slurry and other effective water-stopping materials will be injected to plug the leakage.
  • detection equipment includes sonar and underwater cameras.
  • the unsealed double-walled cofferdam structure can be designed, using sonar and underwater cameras, combined with the geological survey at the bridge location to determine the integrity of the bedrock, and combining sonar and underwater cameras.
  • punching a groove on the river bed to form the blade foot groove 1 and cleaning the blade foot groove 1 may include: forming the groove using methods such as impact drilling or underwater blasting to form the blade foot groove 1 .
  • the installation position of the blade foot 21 can be grooved at the construction site according to terrain data.
  • the cofferdam body before the cofferdam body is connected to a higher height, it also includes:
  • Drilling is performed at a predetermined position to form a pre-embedded hole for the anchoring end 31 of the anchoring system 3; in one embodiment, a geological drill can be used to drill the anchoring end 31 at a predetermined position, and the pre-embedded hole is set to Install the embedded tie rod 32 of the anchor end 31.
  • the depth of the embedded hole can be determined by the buoyancy of the double-walled steel cofferdam 2 and the integrity of the bedrock.
  • a pull-out test should be performed before construction.
  • the anchoring system 3 includes a pre-embedded tie rod 32 and an anchor box 33 .
  • the pre-embedded tie rod 32 is embedded in the pre-embedded hole, and the anchor end 31 is fixed on the upper end of the pre-embedded tie rod 32; optionally, the upper end of the pre-embedded tie rod 32 is provided with a pipa buckle 321, and the anchor end 31 is provided with a pipa buckle connecting pin.
  • the shaft 322 and the pipa buckle 321 are hung on the pipa buckle connecting pin 322.
  • the anchor box 33 is arranged on the upper end side of the double-walled steel cofferdam 2.
  • a prestressed tie rod 34 is connected between the anchor end 31 and the anchor box 33. The two ends of the prestressed tie rod 34 are connected to the anchor end 31 and the anchor box 33 respectively.
  • the hinged, prestressed tie rod 34 is a rigid tie rod. After the tensioning of the prestressed tie rods 34 is completed, a prestressed tie rod protection device is installed to ensure the water corrosiveness of the prestressed tie rods 34 and avoid the adverse effects on the prestressed tie rods 34 caused by the collision of river drifts.
  • a connecting portion 35 is provided on the upper side of the double-walled steel cofferdam 2, and the anchor box 33 is provided on the connecting portion 35.
  • the anchor box 33 is provided with a jack 36, and the prestressed tie rod 34 is connected to the jack 36.
  • the prestressed tie rod 34 is connected to the jack 36 via a tension nut 342 .
  • the prestressed tension rod 34 is locked on the anchor box 33 through the tension rod locking nut 341.
  • the connection part 35 includes a weir connection plate 351 and a connection main body 352.
  • the weir connection plate 351 is vertically disposed at one end of the connection main body 352.
  • the weir connection plate 351 and the connection main body 352 Stiffening plates are provided between them.
  • the weir body connecting plate 351 is connected to the upper end side of the double-walled steel cofferdam 2 , and the anchor box 33 is provided on the connecting part main body 352 of the connecting part 35 .
  • the main body 352 of the connecting part is provided with a stiffening ring 3521, and the anchor box 33 is connected to the stiffening ring 3521 through a pin.
  • tensioning the anchoring system 3 may include: tensioning the prestressed tension rods 34 uniformly and symmetrically at the anchor box 33 in stages.
  • the anchor box 33 can be a tensioning end, and the prestressed tie rods 34 are evenly and symmetrically tensioned at the tensioning end.
  • anti-corrosion treatment can be performed on the prestressed tie rods 34; in the unsealed double-walled steel cofferdam structure, the prestressed tie rods 34 are the main components of anti-floating measures, so the prestressed tie rods 34 need to be treated immediately after the construction is completed. The tie rod 34 is protected, and external anti-corrosion treatment and protection are done. If there are many floating objects in the river, protective measures should be strengthened.
  • the prestressing force of the prestressed tie rod 34 can be applied according to the magnitude of the buoyancy force, as long as it meets the anti-floating requirements.
  • the construction method of the bottom-less double-walled steel cofferdam structure provided by this embodiment has the advantages of simple structural design, clear stress, good economy, fast construction speed and high safety.
  • the deep-water foundation of the bridge's low-pile cap located in the bare rock area is constructed using unsealed double-walled steel cofferdams according to the plan design, and is constructed using piles first and then weirs. Relying on the integrity of the base rock layer, Concrete is poured into the edge groove 1 so that the edge 21 of the double-wall steel cofferdam 2 and the bedrock form a complete mechanical model.
  • a concrete cushion 52 is laid on the surface of the river bed, and a platform 51 is provided on the concrete cushion 52.
  • a working platform 53 is also provided outside the upper end of the double-walled steel cofferdam 2.
  • the construction method of the double-walled steel cofferdam structure without bottom seal proposed in this application first punches a groove on the river bed to form a blade foot groove, cleans the blade foot groove, and then installs the blade foot at the bottom of the double-walled steel cofferdam.
  • the lowering system is used to lower the unsealed double-walled steel cofferdam into position so that the blade foot is located in the blade foot groove. Concrete is poured into the blade foot groove and the blade foot, and the blade foot groove is to be After the strength of the concrete in the blade foot reaches the design requirements, the lowering system will be evacuated.
  • measures such as water replenishment in the weir and water replenishment in the compartments can be used to connect the cofferdam body and install anchors.
  • the system anchors the double-walled steel cofferdam. By pouring concrete into the blade foot grooves and blade feet, the blade feet of the double-walled steel cofferdam take root on the river bed, and the double-walled steel cofferdam is anchored with the anchoring system to ensure the stability of the double-walled steel cofferdam.
  • the embodiment of the present application also provides a bottom-less double-walled steel cofferdam structure for implementing the above construction method of the bottom-less double-walled steel cofferdam structure.
  • the uncapped double-walled steel cofferdam structure includes:
  • the blade foot groove 1 is formed on the river bed by grooving the river bed;
  • Double-walled steel cofferdam 2 Each of the double-walled steel cofferdams has a closed-loop structure and can be circular, rectangular or special-shaped.
  • the bottom of each of the double-walled steel cofferdams 2 is formed with a blade foot 21.
  • the blade The foot 1 is arranged to be located in the blade foot groove 1, and concrete is poured into the blade foot groove 1 and the blade foot 21;
  • a working platform 53 is installed symmetrically along the overall structure at the outer wall position of the inner support 4 of the cofferdam body, and an anchoring system 3 is installed on the double-walled steel cofferdam 2 to perform maintenance on the double-walled steel cofferdam 2.
  • an anchoring system can be installed for tensioning.

Abstract

一种无封底双壁钢围堰结构及其施工方法,钢围堰结构包括:在河床上冲槽以形成刃脚槽(1),并对所述刃脚槽(1)进行清理;在双壁钢围堰(2)的底部安装刃脚(21),采用下放系统将所述双壁钢围堰(2)下放就位并使得所述刃脚(21)位于所述刃脚槽(1)内,向刃脚槽(1)及刃脚(21)内灌注混凝土,待刃脚槽(1)及刃脚(21)内的混凝土强度达到设计要求后将下放系统撤离;将围堰堰体接高,在围堰堰体的内支撑(4)外壁位置沿整体结构对称安装作业平台(53),并在双壁钢围堰(2)上安装锚固系统(3)对双壁钢围堰(2)进行锚固,锚固时在作业平台上对锚固系统(3)进行张拉。

Description

一种无封底双壁钢围堰结构及其施工方法
本申请要求在2022年03月22日提交中国专利局、申请号为202210286620.0的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及建筑施工技术领域,例如一种无封底双壁钢围堰结构及其施工方法。
背景技术
双壁钢围堰具有结构刚度大、施工方便、工序转换少和止水效果良好的优点,因此桥梁深水基础常用双壁钢围堰作为止水结构。
但是,相关技术中,在裸岩区河床基岩完整区进行双壁钢围堰施工时,双壁钢围堰的刃脚难以生根,导致急流深水裸岩区双壁钢围堰稳定性不良。若盲目灌注封底混凝土,不能最大限度发挥混凝土作用,且材料消耗较大。
发明内容
本申请提供一种无封底双壁钢围堰结构的施工方法,包括:
在河床上冲槽以形成刃脚槽,并对所述刃脚槽进行清理;
在双壁钢围堰底部安装刃脚,采用下放系统将所述双壁钢围堰下放就位并使得所述刃脚位于所述刃脚槽内,向所述刃脚槽及所述刃脚内灌注混凝土,待所述刃脚槽及所述刃脚内的混凝土强度达到设计要求后将所述下放系统撤离;
将围堰堰体接高,在所述围堰堰体的内支撑外壁位置沿整体结构对称安装作业平台,并在所述双壁钢围堰上安装锚固系统对所述双壁钢围堰进行锚固,锚固作业时所述作业平台对所述锚固系统进行张拉;其中,作业平台为人员操作平台。
本申请还提供一种无封底双壁钢围堰结构,包括:
刃脚槽,通过对河床冲槽形成于所述河床上;
双壁钢围堰,所述双壁钢围堰为闭环结构,所述双壁钢围堰的底部形成有刃脚,所述刃脚被设置为位于所述刃脚槽内,所述刃脚槽及所述刃脚内灌注有 混凝土;
其中,在所述围堰堰体的内支撑外壁位置沿整体结构对称安装有作业平台,在所述双壁钢围堰上安装有锚固系统对所述双壁钢围堰进行锚固,其中,作业平台为人员操作平台。
附图说明
下面将对本申请实施例描述中所需要使用的附图作介绍,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据本申请实施例的内容和这些附图获得其他的附图。
图1是本申请实施例提供的无封底双壁钢围堰结构施工完成后的立面示意图;
图2是本申请实施例提供的刃脚位于刃脚槽内的示意图;
图3是图1中的锚固端的放大示意图;
图4是图1中的张拉端的放大示意图;
图5是图1中的连接部的放大示意图;
图6是图1中的锚拉箱的放大示意图;
图7是本申请实施例提供的无封底双壁钢围堰结构施工完成后的俯视图。
图中:
1、刃脚槽;
2、双壁钢围堰;21、刃脚;
3、锚固系统;31、锚固端;32、预埋拉杆;321、琵琶扣;322、琵琶扣连接销轴;33、锚拉箱;34、预应力拉杆;341、张拉杆锁定螺母;342、张拉螺母;35、连接部;351、堰体连接板;352、连接部主体;3521、加劲圈;36、千斤顶;
4、内支撑;41、法兰连接盘;42、支撑板;
51、承台;52、混凝土垫层;53、作业平台。
具体实施方式
下面结合附图并通过具体实施方式来说明本申请。可以理解的是,此处所描述的实施例仅仅用于解释本申请。另外还需要说明的是,为了便于描述,附 图中仅示出了与本申请相关的部分而非全部。
在本申请的描述中,需要说明的是,术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。此外,术语“第一”、“第二”、仅用于描述目的,而不能理解为指示或暗示相对重要性。其中,术语“第一位置”和“第二位置”为两个不同的位置。
在本申请的描述中,需要说明的是,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以根据实际情况理解上述术语在本申请中的含义。
桥梁深水基础常用双壁钢围堰作为止水结构,其主要优点在于结构刚度大、施工较为方便,工序转换少,止水效果良好,围堰下放就位后采用封底方式进行围内水同时有抗浮作用。但针对裸岩区基岩完整区双壁钢围堰刃脚难以生根,盲目灌注封底混凝土,不能最大限度发挥混凝土作用,且材料消耗较大。
参见图1-图7,本实施例提供一种无封底双壁钢围堰结构的施工方法,其适用于裸岩区,其包括:
在河床上冲槽以形成刃脚槽1,并对刃脚槽1进行清理;
在双壁钢围堰2底部加工形成刃脚21,采用下放系统将双壁钢围堰2下放就位并使得刃脚21位于刃脚槽1内,向刃脚槽1及刃脚21内灌注混凝土,待刃脚槽1及刃脚21内的混凝土度达到设计要求后将下放系统撤离;
接高围堰堰体,在围堰堰体的内支撑4位置安装作业平台53,并在双壁钢围堰2上安装锚固系统3对双壁钢围堰2进行锚固,锚固作业时作业平台53,对锚固系统3进行张拉(有预应力)。其中,作业平台53为人员操作平台。
在一实施例中,锚固系统3可以设置在双壁钢围堰2上可平衡水平力的位置。
在一实施例中,作业平台53对锚固系统3进行张拉时,张拉所需力的大小根据无封底双壁钢围堰结构的整体浮力、锚固系统3设置的角度、双壁钢围堰2本身的重量、刃脚锚固混凝土的重力及握裹力和预留结构整体安全系数决定,此为本领域人员熟知的经典力学问题,在此不做详细介绍。
本实施例提供的无封底双壁钢围堰结构的施工方法,通过在刃脚槽1及刃脚21内灌注混凝土,使得双壁钢围堰的刃脚21在河床上生根,并配合锚固系 统3对双壁钢围堰2进行锚固,保证双壁钢围堰2的稳定性。
参见图2,在一实施例中,待刃脚槽1内的混凝土达到设计要求后将下放系统撤离后,可以继续朝向刃脚槽1灌注混凝土直至混凝土的高度没过刃脚踏面。
参见图2,本实施例中,锚固系统3安装完成后,在刃脚槽1的槽口处继续灌注混凝土可以起到止水作用。
本实施例中,无封底双壁钢围堰结构包括双壁钢围堰堰体,相对设置的两个双壁钢围堰堰体之间连接有围檩与内支撑4,围檩与内支撑4的节点处被设置为可抗拉结构。在施工完成后,若刃脚槽1内的混凝土发生渗水现象,则需要注入水泥浆液等有效止水材料进行堵漏及刃脚加固处理。
在一实施例中,内支撑4可以由多个柱体通过法兰连接盘41连接而成。
为了保证内支撑4与双壁钢围堰2连接的稳定性,本实施例中,内支撑4与双壁钢围堰2之间还设置有支撑板42,可选地,支撑板42位于围檩的下侧。
无封底双壁钢围堰结构施工完成后,整个围堰结构依靠刃脚21处的混凝土握裹力、锚固系统3的拉力及围堰自重承担围堰整体抗浮作用。由于河床面基岩完整,故后期抽水后,出现大量涌水的可能性小。施工完成后,若后期发现刃脚槽1内的混凝土或者河床基岩节理裂隙处发生渗漏水现象,则注入水泥浆液等有效止水材料进行堵漏。
在一实施例中,在在河床上冲槽以形成刃脚槽1,并对刃脚槽1进行清理前,还包括:采用探测设备判断基岩的完整性,得出裸岩区河床底面情况。
可选地,探测设备包括声呐和水下摄像机器。在一实施例中,施工前,可以对无封底双壁围堰结构进行方案设计,采用声呐和水下摄像机器,结合桥位处地勘情况判断基岩的完整性,结合声呐和水下摄像机器形成裸岩区河床面地形情况。
在一实施例中,在河床上冲槽以形成刃脚槽1,并对刃脚槽1进行清理,可以包括:采用冲击钻或者水下爆破等方法进行成槽,以形成刃脚槽1。可选地,在施工现场可以根据地形数据,对刃脚21的安装位置进行冲槽。
参见图3,可选地,在将围堰堰体接高之前,还包括:
在预定位置进行钻孔,以形成锚固系统3的锚固端31的预埋孔;在一实施例中,可以采用地质钻在预定位置进行锚固端31的成孔钻进,预埋孔被设置为安装锚固端31的预埋拉杆32。预埋孔的深度可以通过双壁钢围堰2的浮力和基岩完整程度确定。
在一实施例中,在施工前,为了验证锚固端31的力学性能,应做拉拔试验。
本实施例中,锚固系统3包括预埋拉杆32和锚拉箱33。
预埋拉杆32埋设于预埋孔内,锚固端31固设于预埋拉杆32的上端;可选地,预埋拉杆32的上端设置有琵琶扣321,锚固端31上设置有琵琶扣连接销轴322,琵琶扣321挂设于琵琶扣连接销轴322上。锚拉箱33设置于双壁钢围堰2的上端侧面,锚固端31和锚拉箱33之间连接有预应力拉杆34,预应力拉杆34的两端分别与锚固端31和锚拉箱33铰接,预应力拉杆34为刚性拉杆。对预应力拉杆34张拉完成后设置预应力拉杆保护装置,以保证预应力拉杆34的水腐蚀性,并避免河道漂流物冲撞对预应力拉杆34产生的不利影响。
参见图4和图6,在一实施例中,双壁钢围堰2的上端侧面设置有连接部35,锚拉箱33设于连接部35上。锚拉箱33上设置有千斤顶36,预应力拉杆34连接至千斤顶36上。预应力拉杆34通过张拉螺母342连接至千斤顶36上。预应力拉杆34通过张拉杆锁定螺母341锁紧于锚拉箱33上。
参见图5,在一实施例中,连接部35包括堰体连接板351和连接部主体352,堰体连接板351垂直设置于连接部主体352的一端,堰体连接板351和连接部主体352之间设置有加劲板。堰体连接板351连接于双壁钢围堰2的上端侧部,锚拉箱33设于连接部35的连接部主体352上。在一实施例中,连接部主体352上设置有加劲圈3521,锚拉箱33通过销轴连接于加劲圈3521上。
在一实施例中,对锚固系统3进行张拉,可以包括:在锚拉箱33处分级均匀对称张拉预应力拉杆34。锚拉箱33处可以为张拉端,在张拉端分级均匀对称张拉预应力拉杆34。
在一实施例中,可以对预应力拉杆34进行防腐蚀处理;在无封底双壁钢围堰结构中,预应力拉杆34是抗浮措施的主要构件,故在施工完成后需要立即对预应力拉杆34进行防护,做好外部防腐蚀处理与防护。若河流漂浮物较多,则应加强防护措施。可选地,预应力拉杆34的预应力可以根据浮力的大小来施加,满足抗浮要求即可。
本实施例提供的无封底双壁钢围堰结构的施工方法,具有结构设计简单、受力明确、经济性好、施工速度快和安全性高等优点。
本实施例中,位于裸岩区的桥梁低桩承台深水基础,根据方案设计采用无封底双壁钢围堰止水施工,且采用先桩后堰方式施工,依托于基底岩层完整性,通过在刃脚槽1内灌注混凝土从而使得双壁钢围堰2的刃脚21与基岩形成完整的力学模型。
在一实施例中,在双壁钢围堰2围设形成的空间内,在河床表面铺设有混凝土垫层52,在混凝土垫层52上设置有承台51。在双壁钢围堰2上端的外侧 还设置有作业平台53。
本申请提出的无封底双壁钢围堰结构的施工方法,先在河床上冲槽形成刃脚槽,并对刃脚槽进行清理,随后在双壁钢围堰的底部安装刃脚,在施工无封底双壁钢围堰结构时,采用下放系统将无封底双壁钢围堰的下放就位并使得刃脚位于刃脚槽内,向刃脚槽和刃脚内灌注混凝土,待刃脚槽及刃脚内的混凝土强度达到设计要求后将下放系统撤离,为确保接高施工时围堰浮力平衡,可通过堰内补水与隔舱补水等措施处理,将围堰堰体接高,安装锚固系统对双壁钢围堰进行锚固。通过在刃脚槽和刃脚内灌注混凝土,使得双壁钢围堰的刃脚在河床上生根,并配合锚固系统对双壁钢围堰进行锚固,保证双壁钢围堰的稳定性。
本申请实施例还提供一种无封底双壁钢围堰结构,用于实施上述无封底双壁钢围堰结构的施工方法。该无封底双壁钢围堰结构,包括:
刃脚槽1,通过对河床冲槽形成于所述河床上;
双壁钢围堰2,每个所述双壁钢围堰为闭环结构,可以是圆形、矩形或异形,每个所述双壁钢围堰2的底部形成有刃脚21,所述刃脚1被设置为位于所述刃脚槽1内,所述刃脚槽1及所述刃脚21内灌注有混凝土;
其中,在所述围堰堰体的内支撑4外壁位置沿整体结构对称安装有作业平台53,在所述双壁钢围堰2上安装有锚固系统3对所述双壁钢围堰2进行锚固,其中,作业平台53为人员操作平台。
可选的,在枯水期水深不深的情况下双壁钢围堰着床后,安装锚固系统进行张拉。

Claims (11)

  1. 一种无封底双壁钢围堰结构的施工方法,包括:
    在河床上冲槽以形成刃脚槽(1),并对所述刃脚槽(1)进行清理;
    在双壁钢围堰(2)底部安装刃脚(21),采用下放系统将所述双壁钢围堰(2)下放就位并使得所述刃脚(21)位于所述刃脚槽(1)内,向所述刃脚槽(1)及所述刃脚(21)内灌注混凝土,待所述刃脚槽(1)及所述刃脚(21)内的混凝土强度达到设计要求后将所述下放系统撤离;
    将围堰堰体接高,在所述围堰堰体的内支撑(4)位置安装作业平台(53),并在所述双壁钢围堰(2)上安装锚固系统(3)对所述双壁钢围堰(2)进行锚固,锚固作业时所述作业平台(53)对所述锚固系统(3)进行张拉;其中,作业平台(53)为人员操作平台。
  2. 根据权利要求1所述的无封底双壁钢围堰结构的施工方法,在河床上冲槽以形成刃脚槽(1),并对所述刃脚槽(1)进行清理之前,还包括:
    采用探测设备判断基岩的完整性,得出裸岩区河床底面情况。
  3. 根据权利要求2所述的无封底双壁钢围堰结构的施工方法,其中,所述探测设备包括声呐和水下摄像机器。
  4. 根据权利要求1所述的无封底双壁钢围堰结构的施工方法,其中,所述在河床上冲槽以形成刃脚槽(1),包括:采用冲击钻或者水下爆破进行成槽,以形成所述刃脚槽(1)。
  5. 根据权利要求1所述的无封底双壁钢围堰结构的施工方法,在将围堰堰体接高之前,还包括:
    在预定位置进行钻孔,以形成所述锚固系统(3)的锚固端(31)的预埋孔。
  6. 根据权利要求5所述的无封底双壁钢围堰结构的施工方法,其中,所述锚固系统(3)包括:
    预埋拉杆(32),埋设于所述预埋孔内,所述锚固端(31)固设于所述预埋拉杆(32)的上端;
    锚拉箱(33),设置于所述双壁钢围堰(2)的上端侧面,所述锚固端(31)和所述锚拉箱(33)之间连接有预应力拉杆(34),所述预应力拉杆(34)的两端分别与所述锚固端(31)和所述锚拉箱(33)铰接,所述预应力拉杆(34)为刚性拉杆,对预应力拉杆(34)张拉完成后设置预应力拉杆保护装置。
  7. 根据权利要求6所述的无封底双壁钢围堰结构的施工方法,其中,所述对所述锚固系统(3)进行张拉包括:在所述锚拉箱(33)处分级均匀对称张拉所述预应力拉杆(34)。
  8. 根据权利要求6所述的无封底双壁钢围堰结构的施工方法,还包括:对所述预应力拉杆(34)进行防腐蚀处理。
  9. 根据权利要求1-8任一项所述的无封底双壁钢围堰结构的施工方法,其中,所述无封底双壁钢围堰结构包括双壁钢围堰堰体,相对设置的两个所述双壁钢围堰堰体之间连接有围檩与所述内支撑(4),所述围檩与所述内支撑(4)的节点处被设置为可抗拉结构。
  10. 根据权利要求1-8任一项所述的无封底双壁钢围堰结构的施工方法,还包括:在施工完成后,若所述刃脚槽(1)内的混凝土发生渗水现象,则注入水泥浆液有效止水材料进行堵漏及刃脚加固处理。
  11. 一种无封底双壁钢围堰结构,包括:
    刃脚槽(1),通过对河床冲槽形成于所述河床上;
    至少两个双壁钢围堰(2),每个所述双壁钢围堰为闭环结构,每个所述双壁钢围堰(2)的底部形成有刃脚(21),所述刃脚(1)被设置为位于所述刃脚槽(1)内,所述刃脚槽(1)及所述刃脚(21)内灌注有混凝土;
    其中,相对设置的两个双壁钢围堰堰体之间连接有内支撑(4),在所述围堰堰体的内支撑(4)外壁位置沿整体结构对称安装有作业平台(53),在所述双壁钢围堰(2)上安装有锚固系统(3)对所述双壁钢围堰(2)进行锚固,其中,作业平台(53)为人员操作平台。
PCT/CN2022/110259 2022-03-22 2022-08-04 一种无封底双壁钢围堰结构及其施工方法 WO2023178905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210286620.0A CN114541439B (zh) 2022-03-22 2022-03-22 一种无封底双壁钢围堰结构的施工方法
CN202210286620.0 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023178905A1 true WO2023178905A1 (zh) 2023-09-28

Family

ID=81666417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110259 WO2023178905A1 (zh) 2022-03-22 2022-08-04 一种无封底双壁钢围堰结构及其施工方法

Country Status (2)

Country Link
CN (1) CN114541439B (zh)
WO (1) WO2023178905A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114541439B (zh) * 2022-03-22 2023-09-26 中交路桥建设有限公司 一种无封底双壁钢围堰结构的施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256587A (ja) * 1998-03-09 1999-09-21 Kajima Corp 橋脚補強用の締切工法
CN207160037U (zh) * 2017-08-08 2018-03-30 李薇 一种水利施工围堰用加强结构
CN111335350A (zh) * 2020-04-29 2020-06-26 南京市光翔新能源科技有限公司 一种对夹式预应力斜拉基础
CN213476933U (zh) * 2020-10-14 2021-06-18 安徽省交通建设股份有限公司 生态钢板桩筑岛围堰结构
CN113550340A (zh) * 2021-07-23 2021-10-26 广州市市政工程机械施工有限公司 一种深水入岩条件下无封底双壁钢围堰深水基础施工方法
CN114541439A (zh) * 2022-03-22 2022-05-27 中交路桥建设有限公司 一种无封底双壁钢围堰结构的施工方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105970983B (zh) * 2016-06-13 2018-10-16 中交第二航务工程局有限公司 一种无底钢套箱现浇混凝土导流围堰及其施工方法
CN108506169A (zh) * 2018-05-16 2018-09-07 中国电建集团华东勘测设计研究院有限公司 一种风电机组预应力拉线式塔架增高方法和结构
CN111119213A (zh) * 2019-12-18 2020-05-08 中建三局基础设施建设投资有限公司 一种开口刃脚双壁钢围堰及其施工方法
CN113585302A (zh) * 2021-07-22 2021-11-02 中交第二航务工程局有限公司 用于深水裸岩地质无封底混凝土双壁钢围堰的施工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11256587A (ja) * 1998-03-09 1999-09-21 Kajima Corp 橋脚補強用の締切工法
CN207160037U (zh) * 2017-08-08 2018-03-30 李薇 一种水利施工围堰用加强结构
CN111335350A (zh) * 2020-04-29 2020-06-26 南京市光翔新能源科技有限公司 一种对夹式预应力斜拉基础
CN213476933U (zh) * 2020-10-14 2021-06-18 安徽省交通建设股份有限公司 生态钢板桩筑岛围堰结构
CN113550340A (zh) * 2021-07-23 2021-10-26 广州市市政工程机械施工有限公司 一种深水入岩条件下无封底双壁钢围堰深水基础施工方法
CN114541439A (zh) * 2022-03-22 2022-05-27 中交路桥建设有限公司 一种无封底双壁钢围堰结构的施工方法

Also Published As

Publication number Publication date
CN114541439A (zh) 2022-05-27
CN114541439B (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
CN102953362B (zh) 一种设置在深水急流无覆盖层陡峭裸岩上的钻孔桩平台
CN102979069A (zh) 一种在深水急流无覆盖层陡峭裸岩上的钻孔桩平台施工方法
CN102953341A (zh) 一种设置于深水急流无覆盖层陡峭裸岩上的高位栈桥结构
CN110924307A (zh) 一种裸岩地质的栈桥施工方法
WO2023178905A1 (zh) 一种无封底双壁钢围堰结构及其施工方法
CN110644363A (zh) 一种高速铁路跨江斜拉桥水中主塔施工方法
CN110344335A (zh) 一种桥梁施工过程中钢栈桥、初始平台和围堰施工的方法
CN114000524A (zh) 一种深厚淤泥地质临近构造物的钢板桩围堰结构及施工方法
CN207092107U (zh) 一种利用地下连续墙的抗沉陷结构
CN213296396U (zh) 一种海域潮汐区钢板桩围堰
CN201459749U (zh) 一种深水钢管桩施工平台稳定结构
CN216194845U (zh) 卵石覆盖层钢板桩围堰系统
CN110565672A (zh) 一种裸岩低桩承台基础施工方法
CN206448285U (zh) 岩层地质条件下无封底混凝土组合式围堰
JPH06146305A (ja) 水中基礎およびその据付方法
CN111980039B (zh) 一种海域潮汐区钢板桩围堰的施工方法及结构
CN100381647C (zh) 带有限位装置的沉管隧道模袋混凝土基础施工工艺
CN203049560U (zh) 一种设置在深水急流无覆盖层陡峭裸岩上的钻孔桩平台
CN216973455U (zh) 一种无封底双壁钢围堰结构
CN108532624B (zh) 一种化学品罐筏板基础加固结构
CN206902721U (zh) 一种基坑支护体系
JPH09316894A (ja) 橋脚基礎構造およびその構築方法
RU2816995C1 (ru) Способ строительства гидротехнических сооружений на скальных грунтах
CN216515676U (zh) 一种深厚淤泥地质临近构造物的钢板桩围堰结构
CN115030200B (zh) 一种近岸侧水中桥梁基础施工一体式围堰结构及施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932957

Country of ref document: EP

Kind code of ref document: A1