WO2023178742A1 - 像素驱动方法及其装置、显示面板 - Google Patents
像素驱动方法及其装置、显示面板 Download PDFInfo
- Publication number
- WO2023178742A1 WO2023178742A1 PCT/CN2022/086373 CN2022086373W WO2023178742A1 WO 2023178742 A1 WO2023178742 A1 WO 2023178742A1 CN 2022086373 W CN2022086373 W CN 2022086373W WO 2023178742 A1 WO2023178742 A1 WO 2023178742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- gray scale
- target
- grayscale
- initial
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 230000008569 process Effects 0.000 claims description 11
- 239000004973 liquid crystal related substance Substances 0.000 description 79
- 239000000758 substrate Substances 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3607—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/36—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
- G09G3/3611—Control of matrices with row and column drivers
- G09G3/3696—Generation of voltages supplied to electrode drivers
Definitions
- the present application relates to the field of display technology, and in particular to pixel driving methods and devices, and display panels.
- LCD Liquid Crystal Display
- LCD Liquid Crystal Display
- LCD drives the liquid crystal to deflect at a corresponding angle by controlling the voltage applied to both ends of the liquid crystal molecules in the sub-pixels, so that a corresponding amount of light is transmitted to produce a picture.
- the LCD has a long response time when displaying dynamic images, so that the liquid crystal molecules cannot deflect to a sufficient angle within one frame, causing the sub-pixels to fail to achieve the expected display brightness, which is shown as The phenomenon of screen tailing reduces the LCD screen display quality.
- Embodiments of the present application provide pixel driving methods, devices, and display panels to solve the technical problem of tailing in dynamic images caused by the slow deflection speed of liquid crystal molecules in existing LCDs.
- Embodiments of the present application provide a pixel driving method, including:
- the over-driving voltage value table includes one-to-one correspondence between a plurality of initial gray scale values and a plurality of target gray scale values, each of the initial gray scale values and each of the target gray scale values.
- the plurality of target grayscale values include a first target grayscale value, a plurality of second target grayscale values and a third target grayscale value, each of the second target grayscale values Greater than the first target gray scale value and smaller than the third target gray scale value, the first target gray scale value corresponds to each initial gray scale value that is not equal to the first target gray scale value.
- the overdrive voltage values are the same, and the third target grayscale value is the same as the overdrive voltage value corresponding to each initial grayscale value that is not equal to the third target grayscale value;
- the sub-pixel is driven to emit light to display the picture of the frame to be displayed.
- the present application provides a pixel driving method and its device, a display panel and a storage medium.
- the pixel driving method includes: configuring an over-driving voltage value table.
- the over-driving voltage value table includes multiple initial grayscale values and multiple Target gray scale value, each of the initial gray scale value and each of the target gray scale value has a corresponding overdrive voltage value, and the plurality of target gray scale values include a first target gray scale value, a plurality of second target gray scale values.
- each of the second target gray scale value is greater than the first target gray scale value and smaller than the third target gray scale value, the first target gray scale value
- the overdrive voltage value corresponding to each initial gray scale value that is not equal to the first target gray scale value is the same, and the third target gray scale value is the same as the overdrive voltage value that is not equal to the third target gray scale value.
- the over-driving voltage value corresponding to each of the initial gray-scale values is the same; obtain the gray-scale value of the frame to be displayed of the sub-pixel, and put the same over-driving voltage value in the table as the gray scale of the frame to be displayed.
- the over-driving voltage value corresponding to the target grayscale value is set as the value of the driving voltage; according to the driving voltage, the sub-pixel is driven to emit light to display the picture of the frame to be displayed.
- this application can achieve the fastest results by unifying the multiple overdrive voltage values corresponding to the smaller first target grayscale value and unifying the multiple overdrive voltage values corresponding to the larger third target grayscale value.
- the liquid crystal molecules are driven to deflect to corresponding angles, which further improves the phenomenon of picture tailing and improves the picture display quality of the display panel.
- FIG. 1 is a flow chart of a pixel driving method provided by an embodiment of the present application.
- FIG. 2 is a schematic cross-sectional view of a display panel provided by an embodiment of the present application.
- FIG. 3 is another flowchart of a pixel driving method provided by an embodiment of the present application.
- FIG. 4 is a schematic structural diagram of a pixel driving device provided by an embodiment of the present application.
- FIG. 5 is a schematic structural diagram of a controller and a memory in a display panel provided by an embodiment of the present application.
- an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
- the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
- the execution subject of the pixel driving method provided by the embodiment of the present application can be the pixel driving device provided by the embodiment of the present application, or an electronic device integrated with the pixel driving device.
- the pixel driving device can be implemented in hardware or software. .
- Embodiments of the present application provide pixel driving methods and devices, display panels and storage media. Each will be explained in detail below.
- the embodiment of the present application provides a pixel driving method. Each step of the pixel driving method of the embodiment of the present application is described in detail below.
- the pixel driving method includes but is not limited to the following steps.
- the overdrive voltage value table includes multiple initial grayscale values and multiple target grayscale values in one-to-one correspondence. Each of the initial grayscale values and each of the target grayscale values The level value has a corresponding overdrive voltage value.
- the plurality of target gray level values include a first target gray level value, a plurality of second target gray level values and a third target gray level value. Each of the second target gray level values The level value is greater than the first target gray level value and less than the third target gray level value, and the first target gray level value is different from each initial gray level value that is not equal to the first target gray level value.
- the corresponding overdrive voltage values are the same, and the third target grayscale value is the same as the overdrive voltage value corresponding to each initial grayscale value that is not equal to the third target grayscale value.
- the pixel driving method in this application can be applied to a display panel.
- the display panel can be a liquid crystal display panel.
- the liquid crystal display panel can include an array substrate layer 10 and a color filter substrate layer 20 arranged oppositely.
- the liquid crystal layer 30 is between the array substrate layer 10 and the color filter substrate layer 20 and the backlight layer 40 is located on the side of the array substrate layer 10 away from the color filter substrate layer 20 .
- the array substrate layer 10 includes a plurality of pixel driving units 101 and a plurality of sub-pixel electrodes 102 arranged in an array and corresponding one-to-one.
- Each sub-pixel electrode 102 is electrically connected to the corresponding pixel driving unit 101 to be loaded with the corresponding Pixel voltage
- the color filter substrate layer 20 includes a color filter layer 201 and a common electrode layer 202 located on the side of the color filter layer 201 close to the array substrate layer 10 and provided throughout the layer.
- the common electrode layer 202 is loaded with a common voltage
- the liquid crystal layer 30 includes A plurality of liquid crystal units 301 correspond to a plurality of sub-pixel electrodes 102 in a one-to-one manner.
- the plurality of liquid crystal molecules in each liquid crystal unit 301 correspond to the pixel voltage of the corresponding sub-pixel electrode 102 and the common voltage of the common electrode layer 202 . It is deflected at a corresponding angle under the action, so that the light emitted by the backlight layer 40 can pass through the liquid crystal layer 30 with a corresponding amount of light, and combined with the function of the color filter layer 201 to achieve picture display.
- each pixel driving unit 101, the corresponding sub-pixel electrode 102 and the corresponding liquid crystal unit 301 can be composed into a sub-pixel, where, since multiple sub-pixels have the same common voltage, each sub-pixel can be in the corresponding pixel.
- each pixel voltage value can have a corresponding data voltage value.
- the corresponding data voltage value can be determined according to the grayscale value that each sub-pixel needs to present. As shown in Figure 2, the corresponding data voltage value can be determined.
- the corresponding pixel driving unit 101 transmits a data voltage whose value is the corresponding data voltage value, so that the pixel driving unit 101 loads a pixel voltage whose value is the corresponding pixel voltage value to the corresponding sub-pixel electrode 102, thereby driving the corresponding liquid crystal unit.
- Multiple liquid crystal molecules in 301 are deflected. Among them, the pixel voltage value and the data voltage value corresponding to the gray scale value of the sub-pixel can be equal. It should be noted that, limited by the deflection speed of the liquid crystal molecules, it takes a long time for the liquid crystal molecules to deflect from the position of the current frame to the position of the frame to be displayed. That is, the liquid crystal molecules cannot deflect by a sufficient angle within one frame, causing the corresponding The sub-pixels cannot achieve the expected display brightness, resulting in screen tailing, which reduces the display quality of the display panel.
- each initial grayscale value in the overdrive voltage value table in this embodiment can be understood as the grayscale value that the subpixel needs to present in the current frame
- each target grayscale value can be understood as the subpixel's desired grayscale value.
- each initial grayscale value and each target grayscale value have a corresponding overdrive voltage value.
- the overdrive voltage value here can be understood as acting directly or indirectly on On the sub-pixel electrode 102 corresponding to the sub-pixel, multiple liquid crystal molecules in the corresponding liquid crystal unit 301 are deflected, so that the corresponding sub-pixel switches from the gray scale value required to be displayed in the current frame to the gray scale value required to be displayed in the frame to be displayed.
- Grayscale value Grayscale value
- the driving voltage is the "data voltage” mentioned above as an example.
- the multiple over-driving voltage values in the over-driving voltage value table can be combined with OD (Over Driver, over-driving). ) technology, that is, the overdrive voltage value corresponding to one of the target grayscale values of the subpixel in this embodiment can be different from the grayscale value that the subpixel needs to present in the frame to be displayed, which is equal to the target grayscale value.
- the corresponding data voltage value needs to be set in combination with the initial gray scale value to improve the problem of slow deflection of liquid crystal molecules.
- the specific numerical values of the first target gray scale value and the third target gray scale value are not limited, as long as there are multiple third target gray scale values between the first target gray scale value and the third target gray scale value.
- Two target gray scale values, and based on the smaller first target gray scale value, multiple overdrive voltage values that correspond one to one to multiple initial gray scale values (except those that are not equal to the first target gray scale value) is the same value, and based on the larger third target grayscale value, multiple overdrive voltage values that correspond one-to-one to multiple initial grayscale values (except those that are not equal to the third target grayscale value) Set to another identical value.
- the "grayscale value of the frame to be displayed” in this step is the “grayscale value required to be displayed in the frame” mentioned above.
- the grayscale value that the current frame of the subpixel needs to present is any initial grayscale value, if the grayscale of the frame to be displayed of the subpixel If the value is the first target grayscale value, it corresponds to an equal overdrive voltage value. If the grayscale value of the frame to be displayed of the sub-pixel is the third target grayscale value, it corresponds to another equal overdrive voltage value.
- the driving voltage can be understood as the "pixel voltage” or "data voltage” mentioned above.
- S3 Drive the sub-pixel to emit light according to the driving voltage to display the picture of the frame to be displayed.
- an over-driving voltage value table may be set first, and then at least based on the relationship between the gray-scale value of the frame to be displayed of the sub-pixel and multiple target gray-scale values in the over-driving voltage value table, the The corresponding overdrive voltage value is set as the driving voltage, so that the corresponding sub-pixel electrode 102 is loaded with the corresponding pixel voltage.
- multiple liquid crystal molecules in the corresponding liquid crystal unit 301 are driven to deflect at corresponding angles to achieve corresponding Amount of light transmission.
- the first target gray scale value is the minimum value, for the sub-pixel required to be presented by the current frame
- the gray-scale value is any initial gray-scale value (excluding those that are not equal to the first target gray-scale value) and is switched to the first target gray-scale value, which can be understood as the gray-scale value of the sub-pixel is decreasing. direction, and this embodiment sets an equal overdrive voltage value as the drive voltage value.
- the overdrive voltage value corresponding to the first target grayscale value here can be understood as the grayscale value that is most helpful to the sub-pixel.
- the over-driving voltage value is set to the value of the driving voltage, where the over-driving voltage value corresponding to the third target gray-scale value can be understood as the value of the driving voltage that most helps the gray-scale value of the sub-pixel move in an increasing direction. .
- the first target grayscale value is the minimum value of the grayscale value of the sub-pixel
- the overdrive voltage value corresponding to the first target grayscale value is the same as the grayscale value of the subpixel.
- the level value is the same as the first target gray level value
- the corresponding data voltage value is the same
- the third target gray level value is the maximum value of the gray level value of the sub-pixel
- the third target gray level is the maximum value of the gray level value of the sub-pixel
- the overdrive voltage value corresponding to the overdrive voltage value is the same as the data voltage value corresponding to when the grayscale value of the sub-pixel is the same as the third target grayscale value.
- the first target grayscale value is the minimum value of the grayscale value of the sub-pixel
- the third target grayscale value is the maximum value of the grayscale value of the sub-pixel
- the first target grayscale value as 0 and the third target grayscale value as 255 as an example, as shown in Table 1, where "X" represents the initial grayscale value and "Y" represents the target grayscale. value, it can be seen from observation that when Y is equal to 0, the multiple overdrive voltage values V (51,0) , V (204,0) , and V (255,0) corresponding to X is equal to 51, 204 or 255 are all equal, and it can It is equal to the corresponding data voltage value V' 0 when the gray scale value is 0.
- the multiple overdrive voltage values corresponding to the first target grayscale value that are equal to the minimum value of the grayscale value are unified into the minimum value of the data voltage value, that is, the minimum value of the data voltage value is used directly Or indirectly driving the liquid crystal molecules to deflect can drive the liquid crystal molecules to deflect to the minimum angle as quickly as possible.
- multiple passes corresponding to the third target grayscale value that are equal to the maximum value of the grayscale value are unified.
- the driving voltage value is the maximum value of the data voltage value, that is, the maximum value of the data voltage value is used to directly or indirectly drive the deflection of the liquid crystal molecules, which can drive the liquid crystal molecules to deflect to the maximum angle as quickly as possible, which can further improve the phenomenon of screen tailing. Improve the picture display quality of the display panel.
- step S2 may include but is not limited to the following steps.
- S201 Obtain the relationship between the grayscale value of the frame to be displayed and a plurality of target grayscale values.
- the third target gray scale value is the same as the overdrive voltage value corresponding to each initial gray scale value.
- the value and determination method of the driving voltage in step S2 should first consider the relationship between the grayscale value of the frame to be displayed and multiple target grayscale values. Specifically, it can be judged whether the grayscale value of the frame to be displayed is equal to any The second target grayscale value.
- S202 is executed to set the overdrive voltage value corresponding to the first target grayscale value as the value of the driving voltage.
- the corresponding driving voltage value is the overdrive voltage value corresponding to the first target gray scale value, and further, it can be the minimum value of the data voltage value.
- the grayscale value of the frame to be displayed When the grayscale value of the frame to be displayed is the same as the third target grayscale value, perform S203 to set the overdrive voltage value corresponding to the third target grayscale value as the value of the driving voltage. .
- the third target gray scale value is the same as the overdrive voltage value corresponding to each initial gray scale value, when it is determined that the gray scale value of the frame to be displayed is the same as the third target gray scale value, regardless of the initial gray scale
- the size of the value and the corresponding driving voltage value are both the over-driving voltage value corresponding to the third target grayscale value, and further, can be the maximum value of the data voltage value.
- each initial grayscale value and each target grayscale value have a corresponding overdrive voltage value.
- the grayscale of the frame to be displayed that is the same as the second target grayscale value is further defined.
- the value of the driving voltage corresponding to the value is not only related to the relationship between the grayscale value of the frame to be displayed and multiple target grayscale values, but also the relationship between the grayscale value of the current displayed frame and multiple initial grayscale values.
- any second target grayscale value is not equal to the minimum or maximum value of multiple target grayscale values, that is, there are target grayscale values that are greater than or less than the second target grayscale value, resulting in the current display frame
- the relationship between the value and multiple initial gray-scale values, thereby determining the direction in which the gray-scale value of the current display frame switches to the gray-scale value of the frame to be displayed can improve the accuracy of improving the phenomenon of screen tailing, and further improve the screen quality of the display panel Display quality.
- the plurality of initial gray scale values include a first initial gray scale value that is smaller than the second target gray scale value, and the first initial gray scale value corresponds to the second target gray scale value.
- the overdrive voltage value is greater than the corresponding data voltage value when the grayscale value of the sub-pixel is the same as the second target grayscale value.
- the first initial gray scale value is smaller than the second target gray scale value.
- the overdrive voltage value corresponding to the first initial gray scale value and the second target gray scale value can be It is understood that: the grayscale value that the subpixel needs to present in the current frame is equal to the first initial grayscale value.
- the grayscale value that needs to be presented when switching to the frame to be displayed is equal to the second target grayscale value.
- the required effect on the subpixel corresponds to The value of the data voltage of the sub-pixel electrode 102.
- the first initial grayscale value is less than the second target grayscale value, that is, the grayscale value that the current frame of the sub-pixel needs to present is less than the grayscale value that needs to be presented in the frame to be displayed, that is, The gray scale value of the sub-pixel changes in an increasing direction, and in this embodiment, the over-driving voltage value corresponding to the first initial gray scale value and the second target gray scale value is set to be greater than the gray scale value of the sub-pixel and the same as the first gray scale value.
- the data voltage value corresponding to the second target grayscale value can increase the data voltage value, so that the force acting on the liquid crystal molecules is further increased, and it is more helpful for the liquid crystal molecules to deflect from a smaller deflection angle to a larger deflection angle.
- the deflection angle changes to drive the liquid crystal molecules to deflect to the corresponding angle faster, further improving the phenomenon of picture tailing and improving the picture display quality of the display panel.
- the initial gray scale value "X” is equal to the overdrive voltage value corresponding to the first initial gray scale value 0.
- V (0,51) can be greater than the corresponding data voltage value V' 51 when the gray scale value is equal to 51, that is, the speed of the liquid crystal molecules deflecting to the angle corresponding to the gray scale value equal to 51 can be increased; for example, when the target gray scale value is When "Y" is equal to the second target grayscale value 204, the overdrive voltage value V (0,204) corresponding to the initial grayscale value "X" is equal to the first initial grayscale value 0 can be greater than the corresponding data when the grayscale value is equal to 204.
- the over-driving voltage value V (51,204) can be greater than the data voltage value V' 204
- the over-driving voltage value V (51,204) can be greater than the data voltage value V' 204 , that is, the deflection of the liquid crystal molecules can be increased to The speed of the angle corresponding to the grayscale value equal to 204.
- the plurality of initial gray scale values include a third initial gray scale value and a fourth initial gray scale value that are both smaller than the second target gray scale value, and the third initial gray scale value is smaller than the second target gray scale value.
- the fourth initial gray scale value ; wherein the overdrive voltage value corresponding to the third initial gray scale value and the second target gray scale value is greater than the fourth initial gray scale value and the second target gray scale value.
- the overdrive voltage value corresponding to the target grayscale value are both smaller than the second target gray scale value.
- the grayscale value that the sub-pixel needs to present in the current frame is equal to the deflection difficulty of the liquid crystal molecules corresponding to the third initial grayscale value.
- the deflection difficulty of the liquid crystal molecules corresponding to the fourth initial gray level value is greater than the gray level value that the sub-pixel needs to present in the current frame.
- the third initial gray scale value is used.
- the over-driving voltage value corresponding to the third initial gray-scale value and the second target gray-scale value is set to be greater than the over-driving voltage value corresponding to the fourth initial gray-scale value and the second target gray-scale value, so that the third initial gray-scale value
- the value of the data voltage acting on the liquid crystal molecules corresponding to the step value further increases, so that the force acting on the liquid crystal molecules further increases, which further helps the liquid crystal molecules change from a smaller deflection angle to a larger deflection angle.
- the overdrive voltage value corresponding to the target gray scale value on the premise that the deflection speed of the liquid crystal molecules is increased, can achieve the same time for the liquid crystal molecules to deflect to the deflection angle corresponding to the second target gray scale value, and can even realize the liquid crystal molecules being deflected from The time required for any initial grayscale value to deflect to any target grayscale value is the same.
- the initial gray scale value "X” is equal to the overdrive voltage value corresponding to the first initial gray scale value 0.
- V (0,204) can be greater than the initial gray scale value "X” and is equal to the overdrive voltage value V (51,204) corresponding to the first initial gray scale value 51, that is, the deflection of the liquid crystal molecules from the gray scale value equal to 0 to the gray scale value can be increased. is equal to the speed of the angle corresponding to 204.
- the speed of the liquid crystal molecules can be deflected from the gray scale value equal to 0 to the angle corresponding to the gray scale value equal to 204, which is equal to the speed of the liquid crystal molecules deflected from the gray scale value equal to 51 to the angle corresponding to the gray scale value.
- the order value is equal to the speed of the angle corresponding to 204.
- the plurality of initial gray scale values include a second initial gray scale value that is greater than the second target gray scale value, and the second initial gray scale value corresponds to the second target gray scale value.
- the overdrive voltage value is less than the corresponding data voltage value when the grayscale value of the sub-pixel is the same as the second target grayscale value.
- the second initial gray scale value is greater than the second target gray scale value.
- the overdrive voltage value corresponding to the second initial gray scale value and the second target gray scale value can be It is understood that: the grayscale value that the subpixel needs to present in the current frame is equal to the second initial grayscale value.
- the grayscale value that needs to be presented when switching to the frame to be displayed is equal to the second target grayscale value.
- the required effect on the subpixel corresponds to The value of the data voltage of the sub-pixel electrode 102.
- the second initial grayscale value is greater than the second target grayscale value, that is, the grayscale value that the current frame of the sub-pixel needs to present is greater than the grayscale value that needs to be presented in the frame to be displayed, that is, The gray scale value of the sub-pixel changes in a decreasing direction
- the over-driving voltage value corresponding to the second initial gray scale value and the second target gray scale value is set to be less than the gray scale value of the sub-pixel and the same as
- the data voltage value corresponding to the second target grayscale value can reduce the value of the data voltage, so that the force acting on the liquid crystal molecules is further reduced, and it is more helpful for the liquid crystal molecules to move from a larger deflection angle to The smaller deflection angle changes can drive the liquid crystal molecules to deflect to the corresponding angle faster, further improving the phenomenon of picture tailing and improving the picture display quality of the display panel.
- the initial gray scale value "X” is equal to the overdrive voltage value corresponding to the first initial gray scale value 204.
- V (204,51) can be less than the corresponding data voltage value V' 51 when the gray scale value is equal to 51.
- the overdrive voltage value V (255,51) can be less than the data voltage value V' 51 , that is, the liquid crystal molecules can be increased
- the corresponding overdrive voltage value V (255,204) can be smaller than the corresponding data voltage value V' 204 when the gray scale value is equal to 204, that is, the speed at which the liquid crystal molecules deflect to the angle corresponding to the gray scale value equal to 204 can be increased.
- the plurality of initial gray scale values include a fifth initial gray scale value and a sixth initial gray scale value that are both larger than the second target gray scale value, and the fifth initial gray scale value is larger than the second target gray scale value.
- the sixth initial gray scale value ; wherein the overdrive voltage value corresponding to the fifth initial gray scale value and the second target gray scale value is greater than the sixth initial gray scale value and the second target gray scale value.
- the overdrive voltage value corresponding to the target grayscale value are both greater than the second target gray scale value.
- the grayscale value that the sub-pixel needs to present in the current frame is equal to the deflection difficulty of the liquid crystal molecules corresponding to the fifth initial grayscale value.
- the deflection difficulty of the liquid crystal molecules corresponding to the grayscale value that is greater than the grayscale value that the sub-pixel needs to present in the current frame is equal to the sixth initial grayscale value.
- the third The over-driving voltage value corresponding to the fifth initial gray-scale value and the second target gray-scale value is set to be greater than the over-driving voltage value corresponding to the sixth initial gray-scale value and the second target gray-scale value, so that the fifth initial gray-scale value
- the value of the data voltage acting on the liquid crystal molecules corresponding to the step value is further reduced, so that the force acting on the liquid crystal molecules is further reduced, which is more conducive to the change of the liquid crystal molecules from a larger deflection angle to a smaller deflection angle.
- the overdrive voltage value corresponding to the target gray scale value on the premise that the deflection speed of the liquid crystal molecules is increased, can achieve the same time for the liquid crystal molecules to deflect to the deflection angle corresponding to the second target gray scale value, and can even realize the liquid crystal molecules being deflected from The time required for any initial grayscale value to deflect to any target grayscale value is the same.
- the initial gray scale value "X” is equal to the overdrive voltage value corresponding to the first initial gray scale value 255.
- V (255,51) can be greater than the initial gray scale value "X” and is equal to the overdrive voltage value V (204,51) corresponding to the first initial gray scale value 204, that is, the deflection of the liquid crystal molecules from the gray scale value equal to 255 to The speed at the angle corresponding to the gray scale value equal to 51, further, can cause the liquid crystal molecules to deflect from the gray scale value equal to 255 to the angle corresponding to the gray scale value equal to 51, which is equal to the speed at which the liquid crystal molecules deflect from the gray scale value equal to 204 The speed of deflection to the angle corresponding to the gray scale value equal to 51.
- a pixel driving device is provided in an embodiment.
- FIG. 4 is a schematic structural diagram of a pixel driving device according to an embodiment of the present application.
- the specific description of the pixel driving device in this embodiment is as follows.
- the pixel driving device 50 may include but is not limited to the following modules.
- the configuration module 501 is used to configure an overdrive voltage value table.
- the overdrive voltage value table includes a plurality of initial grayscale values and a plurality of target grayscale values in one-to-one correspondence. Each of the initial grayscale values and each The target gray scale value has a corresponding overdrive voltage value, and the plurality of target gray scale values include a first target gray scale value, a plurality of second target gray scale values and a third target gray scale value, each of which The second target gray level value is greater than the first target gray level value and less than the third target gray level value, and the first target gray level value is different from each of the first target gray level values.
- the overdrive voltage value corresponding to the initial grayscale value is the same, and the overdrive voltage value corresponding to the third target grayscale value and each initial grayscale value that is not equal to the third target grayscale value same.
- the pixel driving device 50 in this application can be applied to a display panel, as shown in Figure 2.
- the display panel can be a liquid crystal display panel.
- the specific structure of the display panel please refer to the relevant description above.
- each initial gray scale value, each target gray scale value, each initial gray scale value and each target gray scale value in the overdrive voltage value table in this embodiment can have a corresponding overdrive voltage value.
- the configuration module 501 can be electrically connected to the display panel, and the overdrive voltage value table can be, but is not limited to, stored in the configuration module 501 or the display panel.
- the driving voltage is the "data voltage” mentioned above as an example.
- the multiple over-driving voltage values in the over-driving voltage value table can be combined with OD (Over Driver, over-driving). ) technology, that is, the overdrive voltage value corresponding to one of the target grayscale values of the subpixel in this embodiment can be different from the grayscale value that the subpixel needs to present in the frame to be displayed, which is equal to the target grayscale value.
- the corresponding data voltage value needs to be set in combination with the initial gray scale value to improve the problem of slow deflection of liquid crystal molecules.
- the specific numerical values of the first target gray scale value and the third target gray scale value are not limited, as long as there are multiple third target gray scale values between the first target gray scale value and the third target gray scale value.
- Two target gray scale values, and based on the smaller first target gray scale value, multiple overdrive voltage values that correspond one to one to multiple initial gray scale values (except those that are not equal to the first target gray scale value) is the same value, and based on the larger third target grayscale value, multiple overdrive voltage values that correspond one-to-one to multiple initial grayscale values (except those that are not equal to the third target grayscale value) Set to another identical value.
- the processing module 502 is configured to obtain the grayscale value of the sub-pixel of the frame to be displayed, and convert the overdrive voltage value table to the corresponding target grayscale value that is the same as the grayscale value of the frame to be displayed.
- the overdrive voltage value is set to the drive voltage value.
- the processing module 502 may be electrically connected to the display panel, and the grayscale values of the sub-pixels of the frame to be displayed may be, but are not limited to, stored in the processing module 502 or the display panel.
- the "grayscale value of the frame to be displayed" obtained by the processing module 502 is the above-mentioned "grayscale value required to be displayed in the frame.”
- no matter the grayscale value that the current frame of the subpixel needs to present is any initial grayscale value, if the grayscale of the frame to be displayed of the subpixel If the value is the first target grayscale value, it corresponds to an equal overdrive voltage value. If the grayscale value of the frame to be displayed of the sub-pixel is the third target grayscale value, it corresponds to another equal overdrive voltage value.
- the driving voltage can be understood as the "pixel voltage” or "data voltage” mentioned above.
- the driving module 503 is configured to drive the sub-pixels to emit light according to the driving voltage to display the picture of the frame to be displayed.
- an overdrive voltage value table may be set first, and then the processing module 502 may determine the relationship between at least the grayscale value of the frame to be displayed of the sub-pixel and the multiple target grayscale values in the overdrive voltage value table. , determine and set the corresponding overdrive voltage value as the driving voltage, the driving module 503 then controls the corresponding sub-pixel electrode 102 to be loaded as the corresponding pixel voltage, and combined with the above discussion, drives multiple liquid crystal molecules in the corresponding liquid crystal unit 301 Deflect the corresponding angle to achieve the corresponding amount of light transmission.
- the first target gray scale value is the minimum value, for the sub-pixel required to be presented by the current frame
- the gray-scale value is any initial gray-scale value (excluding those that are not equal to the first target gray-scale value) and is switched to the first target gray-scale value, which can be understood as the gray-scale value of the sub-pixel is decreasing. direction, and this embodiment sets an equal overdrive voltage value as the drive voltage value.
- the overdrive voltage value corresponding to the first target grayscale value here can be understood as the grayscale value that is most helpful to the sub-pixel.
- the over-driving voltage value is set to the value of the driving voltage, where the over-driving voltage value corresponding to the third target gray-scale value can be understood as the value of the driving voltage that most helps the gray-scale value of the sub-pixel move in an increasing direction. .
- the present application also provides a display panel, which includes a controller configured to execute a number of instructions stored in a memory to implement the pixel driving method as described above.
- the display panel further includes a memory and a memory.
- FIG. 5 is a schematic structural diagram of a controller and a memory in the display panel according to an embodiment of the present application.
- the memory 601 can be used to store software programs and modules, and it can mainly include a program storage area and a data storage area.
- the controller 602 executes various functional applications and data processing by running software programs and modules stored in the memory 601 .
- the controller 602 performs overall monitoring by running or executing software programs and modules stored in the memory 601 and calling data stored in the memory 601 to perform various functions and process data.
- the controller 602 configures an overdrive voltage value table.
- the overdrive voltage value table includes multiple initial gray scale values and multiple target gray scale values in one-to-one correspondence.
- Each of the initial gray scale values The scale value and each target gray scale value have a corresponding overdrive voltage value
- the plurality of target gray scale values include a first target gray scale value, a plurality of second target gray scale values and a third target gray scale value.
- each second target gray scale value is greater than the first target gray scale value and smaller than the third target gray scale value
- the first target gray scale value is not equal to the first target gray scale value.
- the over-driving voltage value corresponding to each of the initial gray-scale values is the same, and the third target gray-scale value corresponds to all the initial gray-scale values that are not equal to the third target gray-scale value.
- the above overdrive voltage values are the same.
- the controller 602 obtains the grayscale value of the frame to be displayed of the sub-pixel, and sets the target grayscale value in the overdrive voltage value table that is the same as the grayscale value of the frame to be displayed.
- the overdrive voltage value corresponding to the value is set as the value of the drive voltage.
- the controller 602 obtains the relationship between the grayscale value of the frame to be displayed and multiple target grayscale values; when the grayscale value of the frame to be displayed is the same as the first target grayscale value, When the grayscale value of the frame to be displayed is the same as the third target grayscale value, the controller 602 sets the overdrive voltage value corresponding to the first target grayscale value to the value of the driving voltage; when the grayscale value of the frame to be displayed is the same as the third target grayscale value. When the grayscale value is the same as the second grayscale value, the controller 602 sets the overdrive voltage value corresponding to the third target grayscale value to the value of the driving voltage; when the grayscale value of the frame to be displayed is the same as the second grayscale value.
- the controller 602 obtains the grayscale value of the current display frame of the sub-pixel, and sets the initial grayscale value in the overdrive voltage value table that is the same as the grayscale value of the current display frame.
- the over-driving voltage value corresponding to both the value and the second target gray-scale value that is the same as the gray-scale value of the frame to be displayed is set as the value of the driving voltage.
- the sub-pixel is driven to emit light according to the driving voltage to display a picture of a frame to be displayed.
- the present application provides a storage medium in which a number of instructions are stored, and the instructions are used for execution by a controller to implement any of the pixel driving methods described above. It should be noted that those of ordinary skill in the art can understand that all or part of the steps in the various methods of the above embodiments can be completed by instructing relevant hardware through a program, and the program can be stored in a computer-readable storage medium, such as Stored in the memory of the electronic device and executed by at least one processor in the electronic device, the execution process may include a process such as the embodiment of the charging reminder method.
- the storage medium can include: read-only memory (ROM, Read Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
- the present application provides a pixel driving method and its device, a display panel and a storage medium.
- the pixel driving method includes: configuring an over-driving voltage value table.
- the over-driving voltage value table includes multiple initial grayscale values and multiple Target gray scale value, each of the initial gray scale value and each of the target gray scale value has a corresponding overdrive voltage value, and the plurality of target gray scale values include a first target gray scale value, a plurality of second target gray scale values.
- each of the second target gray scale value is greater than the first target gray scale value and smaller than the third target gray scale value, the first target gray scale value
- the overdrive voltage value corresponding to each initial gray scale value that is not equal to the first target gray scale value is the same, and the third target gray scale value is the same as the overdrive voltage value that is not equal to the third target gray scale value.
- the over-driving voltage value corresponding to each of the initial gray-scale values is the same; obtain the gray-scale value of the frame to be displayed of the sub-pixel, and put the same over-driving voltage value in the table as the gray scale of the frame to be displayed.
- the over-driving voltage value corresponding to the target grayscale value is set as the value of the driving voltage; according to the driving voltage, the sub-pixel is driven to emit light to display the picture of the frame to be displayed.
- this application can achieve the fastest results by unifying the multiple overdrive voltage values corresponding to the smaller first target grayscale value and unifying the multiple overdrive voltage values corresponding to the larger third target grayscale value.
- the liquid crystal molecules are driven to deflect to corresponding angles, which further improves the phenomenon of picture tailing and improves the picture display quality of the display panel.
- Each of its functional modules can be integrated in a processing chip, or each module can exist physically alone, or it can be two or more. Two or more modules are integrated into one module.
- the above integrated modules can be implemented in the form of hardware or software function modules.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
- Liquid Crystal (AREA)
Abstract
一种像素驱动方法及其装置、显示面板,方法包括:配置过驱动电压值表,过驱动电压值表包括依次增大的第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,第一目标灰阶值、第三目标灰阶值分别和多个初始灰阶值对应有各自相同的多个过驱动电压值;确定对应于子像素的待显示帧的灰阶值的过驱动电压值以驱动子像素发光。
Description
本申请涉及显示技术领域,尤其涉及像素驱动方法及其装置、显示面板。
LCD(Liquid Crystal Display,液晶显示器)具有功耗低、重量轻、画质高、成本低等优点,广泛应用于电视、数字相机、投影仪等电子产品。
其中,LCD通过控制加载于子像素中液晶分子两端的电压,驱动液晶偏转相应的角度,以透过相应量的光线用于产生画面。然而,受限于液晶分子的偏转速度,造成LCD在进行动态画面显示时的响应时间较长,以至于在一帧内液晶分子无法偏转足够的角度导致子像素无法达到预期的显示亮度,呈现为画面拖尾的现象,降低了LCD的画面显示质量。
因此,现有的LCD存在由于液晶分子的偏转速度较慢导致的动态画面中拖尾的现象,急需改进。
本申请实施例提供像素驱动方法及其装置、显示面板,以解决现有的LCD由于液晶分子的偏转速度较慢导致的动态画面中拖尾的技术问题。
本申请实施例提供像素驱动方法,包括:
配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的 每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同;
获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;
根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
本申请提供了像素驱动方法及其装置、显示面板及存储介质,像素驱动方法包括:配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同;获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。其中,本申请通过统一化较小的第一目标灰阶值对应的多个过驱动电压值,以及统一化较大的第三目标灰阶值对应的多个过驱动电压值,可以分别最快地驱动液晶分子偏转至两者相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
下面通过附图来对本申请进行进一步说明。需要说明的是,下面描述中的附图仅仅是用于解释说明本申请的一些实施例,对于本领域技术人员来讲,在 不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的像素驱动方法的一流程图。
图2为本申请实施例提供的显示面板的截面示意图。
图3为本申请实施例提供的像素驱动方法的另一流程图。
图4为本申请实施例提供的像素驱动装置的结构示意图。
图5为本申请实施例提供的显示面板中的控制器和存储器的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或模块的过程、方法、系统、产品或设备没有限定于已列出的步骤或模块,而是可选地还可以包括没有列出的步骤或模块,或可选地还可以包括对于这些过程、方法、产品或设备固有的其它步骤或模块。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本申请实施例提供的像素驱动方法的执行主体,可以为本申请实施例提供的像素驱动装置,或者集成了所述像素驱动装置的电子设备,所述像素驱动装置可以采用硬件或者软件的方式实现。
本申请实施例提供了像素驱动方法及其装置、显示面板及存储介质。以下 将分别进行详细说明。
本申请实施例提供像素驱动方法,下面对本申请实施例的像素驱动方法的各个步骤进行详细说明。
在一实施例中,如图1所示,所述像素驱动方法包括但不限于如下步骤。
S1,配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同。
其中,本申请中的像素驱动方法可以应用于显示面板,如图2所示,所述显示面板可以液晶显示面板,液晶显示面板可以包括相对设置的阵列基板层10和彩膜基板层20、设于阵列基板层10和彩膜基板层20之间的液晶层30以及位于阵列基板层10远离彩膜基板层20一侧的背光层40。具体的,阵列基板层10包括阵列排布且一一对应的多个像素驱动单元101和多个子像素电极102,每一子像素电极102电性连接至对应的像素驱动单元101以被加载对应的像素电压,彩膜基板层20包括彩膜层201以及位于彩膜层201靠近阵列基板层10的一侧且整层设置的公共电极层202,公共电极层202加载有公共电压,液晶层30包括与多个子像素电极102一一对应的多个液晶单元301,每一液晶单元301中的多个液晶分子在对应的子像素电极102所具有的像素电压以及公共电极层202所具有的公共电压的作用下偏转相应的角度,使得背光层40发出的光线可以以相应的光量穿过液晶层30,并且结合彩膜层201的作用以实现画面显示。
具体的,每一像素驱动单元101、对应的子像素电极102和对应的液晶单 元301可以组成为一子像素,其中,由于多个子像素具有相同的公共电压,每一子像素可以在对应的像素电压的控制下以实现不同的透光率从而呈现为不同的灰阶值,即每一子像素的每一灰阶值具有对应的像素电压值。具体的,每一像素电压值可以具有对应的数据电压值,在进行画面显示时,可以根据每一子像素所需呈现的灰阶值确定对应的数据电压值,如图2所示,可以向对应的像素驱动单元101传输值为对应的数据电压值的数据电压,以使像素驱动单元101向对应的子像素电极102加载为值为对应的像素电压值的像素电压,从而驱动对应的液晶单元301中的多个液晶分子偏转。其中,子像素的灰阶值所对应的像素电压值和数据电压值可以相等。需要注意的是,受限于液晶分子的偏转速度,导致液晶分子由当前帧的位置偏转至待显示帧的位置所需时间较长,即在一帧内液晶分子无法偏转足够的角度造成对应的子像素无法达到预期的显示亮度,呈现为画面拖尾的现象,降低了显示面板的画面显示质量。
具体的,本实施例中的过驱动电压值表中的每一初始灰阶值可以理解为子像素在当前帧所需呈现的灰阶值,每一目标灰阶值可以理解为子像素在待显示帧所需呈现的灰阶值,本实施例中每一初始灰阶值和每一目标灰阶值具有对应的过驱动电压值,此处的过驱动电压值可以理解为直接或者间接作用于子像素对应的子像素电极102上,使得对应的液晶单元301中的多个液晶分子偏转,以实现对应的子像素由“当前帧所需呈现的灰阶值切换至待显示帧所需呈现的灰阶值”的电压的值。
可以理解的,此处以驱动电压为上文提及的“数据电压”为例进行说明,本实施例中的过驱动电压值表中的多个过驱动电压值可以结合OD(Over Driver,过驱动)技术的原理进行设置,即本实施例中的子像素在其中一目标灰阶值对应的过驱动电压值,可以不同于子像素在待显示帧所需呈现的灰阶值等于目标灰阶值时对应的数据电压值,而是需要结合初始灰阶值设置对应的过驱动电压值,以改善液晶分子偏转较慢的问题。基于此,本实施例中对第一目标灰阶值和第三目标灰阶值的具体数值不做限定,只需满足第一目标灰阶值和第 三目标灰阶值之间存在多个第二目标灰阶值,且基于数值较小的第一目标灰阶值,与多个初始灰阶值(除去不等于所述第一目标灰阶值的)一一对应的多个过驱动电压值为一相同的值,且基于数值较大的第三目标灰阶值,与多个初始灰阶值(除去不等于所述第三目标灰阶值的)一一对应的多个过驱动电压值设置为另一相同的值。
S2,获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值。
其中,本步骤中的“待显示帧的灰阶值”即上文提及的“显示帧所需呈现的灰阶值”。具体的,结合上文论述,如图2所示,在本实施例中,无论子像素的当前帧所需呈现的灰阶值为任一初始灰阶值,若子像素的待显示帧的灰阶值为第一目标灰阶值,则对应一相等的过驱动电压值,若子像素的待显示帧的灰阶值为第三目标灰阶值,则对应另一相等的过驱动电压值。其中,驱动电压可以理解为上文提及的“像素电压”或者“数据电压”。
S3,根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
具体的,本实施例中可以先设置过驱动电压值表,再至少根据子像素的待显示帧的灰阶值和过驱动电压值表中的多个目标灰阶值之间的关系,确定并将对应的过驱动电压值设置为驱动电压,以使得对应的子像素电极102加载为对应的像素电压,结合上文论述,驱动对应的液晶单元301中的多个液晶分子偏转相应的角度实现对应量的透光。
可以理解的,至少基于第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值而言,第一目标灰阶值为最小值,对于子像素由当前帧所需呈现的灰阶值为任一初始灰阶值(除去不等于所述第一目标灰阶值的)切换至第一目标灰阶值而言,即可以理解为子像素的灰阶值朝着减小的方向移动,而本实施例均将相等的一过驱动电压值设置为驱动电压的值,此处对应于第一目标灰阶值的过驱动电压值可以理解为最有助于子像素的灰阶值朝着减小的方向移动的驱 动电压的值;同理,第三目标灰阶值为最大值,对于子像素由当前帧所需呈现的灰阶值为任一初始灰阶值(除去不等于所述第三目标灰阶值的)切换至第三目标灰阶值而言,即可以理解为子像素的灰阶值朝着增加的方向移动,而本实施例均将相等的另一过驱动电压值设置为驱动电压的值,此处对应于第三目标灰阶值的过驱动电压值可以理解为最有助于子像素的灰阶值朝着增加的方向移动的驱动电压的值。因此,本实施例中通过统一化较小的第一目标灰阶值对应的多个过驱动电压值,以及统一化较大的第三目标灰阶值对应的多个过驱动电压值,可以最快地分别驱动液晶分子偏转至两者相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
在一实施例中,所述第一目标灰阶值为所述子像素的灰阶值的最小值,所述第一目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第一目标灰阶值时对应的所述数据电压值相同;所述第三目标灰阶值为所述子像素的灰阶值的最大值,所述第三目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第三目标灰阶值时对应的所述数据电压值相同。
可以理解的,基于“所述第一目标灰阶值为所述子像素的灰阶值的最小值”以及“所述第三目标灰阶值为所述子像素的灰阶值的最大值”可知,子像素的灰阶值为第一目标灰阶值时对应的数据电压值可以理解为数据电压值的最小值,即可以对应液晶分子偏转的最小角度,同理,子像素的灰阶值为第三目标灰阶值时对应的数据电压值可以理解为数据电压值的最大值,即可以对应液晶分子偏转的最大角度。具体的,此处以第一目标灰阶值为0、第三目标灰阶值为255为例进行说明,如表1所示,其中“X”表示初始灰阶值,“Y”表示目标灰阶值,观察可知,Y等于0时,X等于51、204或者255所对应的多个过驱动电压值V
(51,0)、V
(204,0)、V
(255,0)均相等,可以等于灰阶值为0时对应的数据电压值V’
0,同样地,Y等于255时,X等于0、51或者204所对应的多个过驱动电压值V
(0,255)、V
(51,255)、V
(204,255)均相等,可以等于灰阶值为255时对应的数据电压值V’
255。需要注意的是,当初始灰阶值“X”相同于目标灰阶值“Y” 时,表示液晶分子的偏转角度无需变化,此时维持数据电压值为灰阶值等于初始灰阶值或者目标灰阶值所对应的数据电压值即可。
表1
因此,本实施例中的通过统一化相等于灰阶值的最小值的第一目标灰阶值对应的多个过驱动电压值为数据电压值的最小值,即采用数据电压值的最小值直接或者间接驱动液晶分子偏转,可以最快地驱动液晶分子偏转至最小角度,同理,本实施例中的通过统一化相等于灰阶值的最大值的第三目标灰阶值对应的多个过驱动电压值为数据电压值的最大值,即采用数据电压值的最大值直接或者间接驱动液晶分子偏转,可以最快地驱动液晶分子偏转至最大角度,均可以进一步改善画面拖尾的现象,以提高显示面板的画面显示质量。
在一实施例中,如图3所示,步骤S2可以包括但不限于如下步骤。
S201,获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系。
具体的,结合上文论述,由于第一目标灰阶值与每一初始灰阶值对应的过驱动电压值相同,第三目标灰阶值与每一初始灰阶值对应的过驱动电压值相同,即步骤S2中驱动电压的值和确定方式首先应该考虑待显示帧的灰阶值与多个目标灰阶值之间的关系,具体为可以判断待显示帧的灰阶值是否相等于任一第二目标灰阶值。
当所述待显示帧的灰阶值相同于所述第一目标灰阶值时,执行S202,将 所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值。具体的,结合上文论述,由于第一目标灰阶值与每一初始灰阶值对应的过驱动电压值相同,则在判断为待显示帧的灰阶值相同于第一目标灰阶值时,无论初始灰阶值的大小,对应的驱动电压的值均为第一目标灰阶值对应的过驱动电压值,进一步的,可以为数据电压值的最小值。
当所述待显示帧的灰阶值相同于所述第三目标灰阶值时,执行S203,将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值。同理,由于第三目标灰阶值与每一初始灰阶值对应的过驱动电压值相同,则在判断为待显示帧的灰阶值相同于第三目标灰阶值时,无论初始灰阶值的大小,对应的驱动电压的值均为第三目标灰阶值对应的过驱动电压值,进一步的,可以为数据电压值的最大值。
当所述待显示帧的灰阶值相同于所述第二目标灰阶值时,执行S204,获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中相同于所述当前显示帧的灰阶值的所述初始灰阶值、且相同于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。具体的,结合上文论述,每一初始灰阶值和每一目标灰阶值具有对应的过驱动电压值,本实施例中进一步限定相同于第二目标灰阶值的待显示帧的灰阶值对应的驱动电压的值,不仅和待显示帧的灰阶值与多个目标灰阶值的关系,还和当前显示帧的灰阶值与多个初始灰阶值的关系两者均相关。
可以理解的,由于任一第二目标灰阶值不等于多个目标灰阶值的最小值或者最大值,即还存在大于或者小于第二目标灰阶值的目标灰阶值,导致当前显示帧的灰阶值向待显示帧的灰阶值切换时存在两种方向;因此,本实施例中基于待显示帧的灰阶值相同于第二目标灰阶值,考虑到当前显示帧的灰阶值与多个初始灰阶值的关系,从而确定当前显示帧的灰阶值向待显示帧的灰阶值切换的方向,可以提高改善画面拖尾的现象的精确性,进一步提高显示面板的画面显示质量。
在一实施例中,多个所述初始灰阶值包括小于所述第二目标灰阶值的第一初始灰阶值,所述第一初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。其中,在多个初始灰阶值中,第一初始灰阶值小于第二目标灰阶值,结合上文论述,第一初始灰阶值和第二目标灰阶值对应的过驱动电压值可以理解为:子像素在当前帧所需呈现的灰阶值等于第一初始灰阶值切换至待显示帧所需呈现的灰阶值等于第二目标灰阶值,所需的作用于子像素对应的子像素电极102的数据电压的值。
可以理解的,本实施例中考虑到第一初始灰阶值小于第二目标灰阶值,即子像素的当前帧所需呈现的灰阶值小于待显示帧所需呈现的灰阶值,即子像素的灰阶值向增加的方向变化,而本实施例中将第一初始灰阶值和第二目标灰阶值对应的过驱动电压值,设置为大于子像素的灰阶值相同于第二目标灰阶值时对应的数据电压值,可以使得数据电压的值有所增大,以使得作用于液晶分子的作用力进一步增加,更有助于液晶分子由较小的偏转角度向较大的偏转角度变化,以更快地驱动液晶分子偏转至相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
具体的,如表1所示,例如在目标灰阶值“Y”等于第二目标灰阶值51时,初始灰阶值“X”等于第一初始灰阶值0所对应的过驱动电压值V
(0,51)可以大于灰阶值等于51时对应的数据电压值V’
51,即可以提高液晶分子偏转至与灰阶值等于51所对应的角度的速度;又例如在目标灰阶值“Y”等于第二目标灰阶值204时,初始灰阶值“X”等于第一初始灰阶值0所对应的过驱动电压值V
(0,204)可以大于灰阶值等于204时对应的数据电压值V’
204,同理,过驱动电压值V
(51,204)可以大于数据电压值V’
204,过驱动电压值V
(51,204)可以大于数据电压值V’
204,即可以提高液晶分子偏转至与灰阶值等于204所对应的角度的速度。
在一实施例中,多个所述初始灰阶值包括均小于所述第二目标灰阶值的第 三初始灰阶值和第四初始灰阶值,所述第三初始灰阶值小于所述第四初始灰阶值;其中,所述第三初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第四初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。其中,在多个初始灰阶值中,第三初始灰阶值和第四初始灰阶值均小于第二目标灰阶值,结合上文论述,基于待显示帧所需呈现的灰阶值对应同一第二目标灰阶值,由于第三初始灰阶值小于第四初始灰阶值,子像素在当前帧所需呈现的灰阶值等于第三初始灰阶值对应的液晶分子的偏转难度,大于子像素在当前帧所需呈现的灰阶值等于第四初始灰阶值对应的液晶分子的偏转难度。
可以理解的,本实施例中考虑到基于同一第二目标灰阶值,第三初始灰阶值对应的液晶分子的偏转难度,大于第四初始灰阶值对应的液晶分子的偏转难度,将第三初始灰阶值和第二目标灰阶值对应的过驱动电压值,设置为大于第四初始灰阶值和第二目标灰阶值对应的所述过驱动电压值,以使得第三初始灰阶值所对应的作用于液晶分子的数据电压的值进一步增大,以使得作用于液晶分子的作用力进一步增加,更有助于液晶分子由更小的偏转角度向较大的偏转角度变化,以更快地驱动液晶分子偏转至相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。进一步的,对于任一相同的第二目标灰阶值而言,通过合理地设置第三初始灰阶值和第二目标灰阶值对应的过驱动电压值、第四初始灰阶值和第二目标灰阶值对应的过驱动电压值,在基于液晶分子的偏转速度提高的前提下,可以实现液晶分子偏转至对应于第二目标灰阶值的偏转角度的时间相同,甚至可以实现液晶分子由任一初始灰阶值偏转至任一目标灰阶值的时间相同。
具体的,如表1所示,例如在目标灰阶值“Y”等于第二目标灰阶值204时,初始灰阶值“X”等于第一初始灰阶值0所对应的过驱动电压值V
(0,204)可以大于初始灰阶值“X”等于第一初始灰阶值51所对应的过驱动电压值V
(51,204),即可以提高液晶分子由灰阶值等于0偏转至与灰阶值等于204所对应的角度的速度,进一步的,可以使得液晶分子由灰阶值等于0偏转至与灰阶值等于204 所对应的角度的速度,等于液晶分子由灰阶值等于51偏转至与灰阶值等于204所对应的角度的速。
在一实施例中,多个所述初始灰阶值包括大于所述第二目标灰阶值的第二初始灰阶值,所述第二初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,小于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。其中,在多个初始灰阶值中,第二初始灰阶值大于第二目标灰阶值,结合上文论述,第二初始灰阶值和第二目标灰阶值对应的过驱动电压值可以理解为:子像素在当前帧所需呈现的灰阶值等于第二初始灰阶值切换至待显示帧所需呈现的灰阶值等于第二目标灰阶值,所需的作用于子像素对应的子像素电极102的数据电压的值。
可以理解的,本实施例中考虑到第二初始灰阶值大于第二目标灰阶值,即子像素的当前帧所需呈现的灰阶值大于待显示帧所需呈现的灰阶值,即子像素的灰阶值向减小的方向变化,而本实施例中将第二初始灰阶值和第二目标灰阶值对应的过驱动电压值,设置为小于子像素的灰阶值相同于第二目标灰阶值时对应的数据电压值,可以使得数据电压的值有所减小,以使得作用于液晶分子的作用力进一步减小,更有助于液晶分子由较大的偏转角度向较小的偏转角度变化,以更快地驱动液晶分子偏转至相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
具体的,如表1所示,例如在目标灰阶值“Y”等于第二目标灰阶值51时,初始灰阶值“X”等于第一初始灰阶值204所对应的过驱动电压值V
(204,51)可以小于灰阶值等于51时对应的数据电压值V’
51,同理,过驱动电压值V
(255,51)可以小于数据电压值V’
51,即可以提高液晶分子偏转至与灰阶值等于51所对应的角度的速度;又例如在目标灰阶值“Y”等于第二目标灰阶值204时,初始灰阶值“X”等于第一初始灰阶值255所对应的过驱动电压值V
(255,204)可以小于灰阶值等于204时对应的数据电压值V’
204,即可以提高液晶分子偏转至与灰阶值等于204所对应的角度的速度。
在一实施例中,多个所述初始灰阶值包括均大于所述第二目标灰阶值的第五初始灰阶值和第六初始灰阶值,所述第五初始灰阶值大于所述第六初始灰阶值;其中,所述第五初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第六初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。其中,在多个初始灰阶值中,第五初始灰阶值和第六初始灰阶值均大于第二目标灰阶值,结合上文论述,基于待显示帧所需呈现的灰阶值对应同一第二目标灰阶值,由于第五初始灰阶值大于第六初始灰阶值,子像素在当前帧所需呈现的灰阶值等于第五初始灰阶值对应的液晶分子的偏转难度,大于子像素在当前帧所需呈现的灰阶值等于第六初始灰阶值对应的液晶分子的偏转难度。
可以理解的,本实施例中考虑到基于同一第二目标灰阶值,第五初始灰阶值对应的液晶分子的偏转难度,大于第六初始灰阶值对应的液晶分子的偏转难度,将第五初始灰阶值和第二目标灰阶值对应的过驱动电压值,设置为大于第六初始灰阶值和第二目标灰阶值对应的所述过驱动电压值,以使得第五初始灰阶值所对应的作用于液晶分子的数据电压的值进一步减小,以使得作用于液晶分子的作用力进一步减小,更有助于液晶分子由更大的偏转角度向较小的偏转角度变化,以更快地驱动液晶分子偏转至相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。进一步的,对于任一相同的第二目标灰阶值而言,通过合理地设置第五初始灰阶值和第二目标灰阶值对应的过驱动电压值、第六初始灰阶值和第二目标灰阶值对应的过驱动电压值,在基于液晶分子的偏转速度提高的前提下,可以实现液晶分子偏转至对应于第二目标灰阶值的偏转角度的时间相同,甚至可以实现液晶分子由任一初始灰阶值偏转至任一目标灰阶值的时间相同。
具体的,如表1所示,例如在目标灰阶值“Y”等于第二目标灰阶值51时,初始灰阶值“X”等于第一初始灰阶值255所对应的过驱动电压值V
(255,51)可以大于初始灰阶值“X”等于第一初始灰阶值204所对应的过驱动电压值V
(204,51),即可以提高液晶分子由灰阶值等于255偏转至与灰阶值等于51所对 应的角度的速度,进一步的,可以使得液晶分子由灰阶值等于255偏转至与灰阶值等于51所对应的角度的速度,等于液晶分子由灰阶值等于204偏转至与灰阶值等于51所对应的角度的速度。
为了更好地实施以上方法,在一实施例中提供了像素驱动装置。
请参考图4,图4为本申请实施例提供的像素驱动装置的结构示意图,本实施例的像素驱动装置的具体描述如下。
在一实施例中,所述像素驱动装置50可以包括但不限于以下模块。
配置模块501,用于配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同。
其中,本申请中的像素驱动装置50可以应用于显示面板,如图2所示,所述显示面板可以液晶显示面板,显示面板的具体结构可以参考上文的相关描述。
具体的,本实施例中的过驱动电压值表中的每一初始灰阶值、每一目标灰阶值、每一初始灰阶值和每一目标灰阶值具有对应的过驱动电压值可以参考上文的相关描述。其中,配置模块501可以电性连接至显示面板,过驱动电压值表可以但不限于存储于配置模块501或者显示面板内。
可以理解的,此处以驱动电压为上文提及的“数据电压”为例进行说明,本实施例中的过驱动电压值表中的多个过驱动电压值可以结合OD(Over Driver,过驱动)技术的原理进行设置,即本实施例中的子像素在其中一目标灰阶值对应的过驱动电压值,可以不同于子像素在待显示帧所需呈现的灰阶值等 于目标灰阶值时对应的数据电压值,而是需要结合初始灰阶值设置对应的过驱动电压值,以改善液晶分子偏转较慢的问题。基于此,本实施例中对第一目标灰阶值和第三目标灰阶值的具体数值不做限定,只需满足第一目标灰阶值和第三目标灰阶值之间存在多个第二目标灰阶值,且基于数值较小的第一目标灰阶值,与多个初始灰阶值(除去不等于所述第一目标灰阶值的)一一对应的多个过驱动电压值为一相同的值,且基于数值较大的第三目标灰阶值,与多个初始灰阶值(除去不等于所述第三目标灰阶值的)一一对应的多个过驱动电压值设置为另一相同的值。
处理模块502,用于获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值。
其中,处理模块502可以电性连接至显示面板,子像素的待显示帧的灰阶值可以但不限于存储于处理模块502或者显示面板内。其中,处理模块502获取的“待显示帧的灰阶值”即上文提及的“显示帧所需呈现的灰阶值”。具体的,结合上文论述,如图2所示,在本实施例中,无论子像素的当前帧所需呈现的灰阶值为任一初始灰阶值,若子像素的待显示帧的灰阶值为第一目标灰阶值,则对应一相等的过驱动电压值,若子像素的待显示帧的灰阶值为第三目标灰阶值,则对应另一相等的过驱动电压值。其中,驱动电压可以理解为上文提及的“像素电压”或者“数据电压”。
驱动模块503,用于根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
具体的,本实施例中可以先设置过驱动电压值表,处理模块502再至少根据子像素的待显示帧的灰阶值和过驱动电压值表中的多个目标灰阶值之间的关系,确定并将对应的过驱动电压值设置为驱动电压,驱动模块503再控制对应的子像素电极102加载为对应的像素电压,结合上文论述,驱动对应的液晶单元301中的多个液晶分子偏转相应的角度实现对应量的透光。
可以理解的,至少基于第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值而言,第一目标灰阶值为最小值,对于子像素由当前帧所需呈现的灰阶值为任一初始灰阶值(除去不等于所述第一目标灰阶值的)切换至第一目标灰阶值而言,即可以理解为子像素的灰阶值朝着减小的方向移动,而本实施例均将相等的一过驱动电压值设置为驱动电压的值,此处对应于第一目标灰阶值的过驱动电压值可以理解为最有助于子像素的灰阶值朝着减小的方向移动的驱动电压的值;同理,第三目标灰阶值为最大值,对于子像素由当前帧所需呈现的灰阶值为任一初始灰阶值(除去不等于所述第三目标灰阶值的)切换至第三目标灰阶值而言,即可以理解为子像素的灰阶值朝着增加的方向移动,而本实施例均将相等的另一过驱动电压值设置为驱动电压的值,此处对应于第三目标灰阶值的过驱动电压值可以理解为最有助于子像素的灰阶值朝着增加的方向移动的驱动电压的值。因此,本实施例中通过统一化较小的第一目标灰阶值对应的多个过驱动电压值,以及统一化较大的第三目标灰阶值对应的多个过驱动电压值,可以最快地驱动液晶分子偏转至相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
本申请还提供了显示面板,所述显示面板包括控制器,所述控制器用于执行存储于存储器的若干指令,以实现如上文所述的像素驱动方法。
在一实施例中,所述显示面板还包括存储器和存储器,请参考图5,图5为本申请实施例提供所述显示面板中的控制器和存储器的结构示意图。
所述存储器601可用于存储软件程序以及模块,其主要可以包括存储程序区和存储数据区。所述控制器602通过运行存储在所述存储器601的软件程序以及模块,从而执行各种功能应用以及数据处理。所述控制器602通过运行或执行存储在所述存储器601内的软件程序和模块,以及调用存储在所述存储器601内的数据,执行各种功能和处理数据,从而进行整体监控。
在一些实施例中,所述控制器602配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第 一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同。
在一些实施例中,所述控制器602获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值。
具体的,所述控制器602获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系;当所述待显示帧的灰阶值相同于所述第一目标灰阶值时,控制器602将所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值相同于所述第三目标灰阶值时,控制器602将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值相同于所述第二目标灰阶值时,控制器602获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中相同于所述当前显示帧的灰阶值的所述初始灰阶值、且相同于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。
在一些实施例中,根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
在一实施例中,本申请提供存储介质,所述存储介质中存储若干指令,所述指令用于供控制器执行以实现如上文任一所述的像素驱动方法。需要说明的是,本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于计算机可读存储介质中,如存储在电子设备的存储器中,并被该电子设备内的至少一个处理器执行,在执行过程中可以包括如充电提醒方法的实施例的流程。其中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取记忆体(RAM, Random Access Memory)、磁盘或光盘等。
本申请提供了像素驱动方法及其装置、显示面板及存储介质,像素驱动方法包括:配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值与不等于所述第一目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同,所述第三目标灰阶值与不等于所述第三目标灰阶值的每一所述初始灰阶值对应的所述过驱动电压值相同;获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。其中,本申请通过统一化较小的第一目标灰阶值对应的多个过驱动电压值,以及统一化较大的第三目标灰阶值对应的多个过驱动电压值,可以分别最快地驱动液晶分子偏转至两者相应的角度,进一步改善了画面拖尾的现象,提高了显示面板的画面显示质量。
以上对本申请实施例提供的像素驱动方法及其装置、显示面板及存储介质进行了详细介绍,其各功能模块可以集成在一个处理芯片中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;以及,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。
Claims (20)
- 一种像素驱动方法,其中,包括:配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值和不同于所述第一目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同,所述第三目标灰阶值和不同于所述第三目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同;获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面;其中,所述子像素的每一灰阶值具有对应的数据电压值;所述第一目标灰阶值为所述子像素的灰阶值的最小值,所述第一目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第一目标灰阶值时对应的所述数据电压值相同,所述第三目标灰阶值为所述子像素的灰阶值的最大值,所述第三目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第三目标灰阶值时对应的所述数据电压值相同;多个所述初始灰阶值包括小于所述第二目标灰阶值的第一初始灰阶值,所述第一初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
- 根据权利要求1所述的像素驱动方法,其中,所述将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电 压值设置为驱动电压的值的步骤,包括:获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系;当所述待显示帧的灰阶值等于所述第一目标灰阶值时,将所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第三目标灰阶值时,将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第二目标灰阶值时,获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中等于所述当前显示帧的灰阶值的所述初始灰阶值、且等于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。
- 根据权利要求1所述的像素驱动方法,其中,多个所述初始灰阶值包括均小于所述第二目标灰阶值的第三初始灰阶值和第四初始灰阶值,所述第三初始灰阶值小于所述第四初始灰阶值;其中,所述第三初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第四初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。
- 根据权利要求1所述的像素驱动方法,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,多个所述初始灰阶值包括大于所述第二目标灰阶值的第二初始灰阶值,所述第二初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,小于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
- 根据权利要求1所述的像素驱动方法,其中,多个所述初始灰阶值包括均大于所述第二目标灰阶值的第五初始灰阶值和第六初始灰阶值,所述第五初始灰阶值大于所述第六初始灰阶值;其中,所述第五初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第六初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。
- 一种像素驱动方法,其中,包括:配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值和不同于所述第一目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同,所述第三目标灰阶值和不同于所述第三目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同;获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
- 根据权利要求6所述的像素驱动方法,其中,所述将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值的步骤,包括:获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系;当所述待显示帧的灰阶值等于所述第一目标灰阶值时,将所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第三目标灰阶值时,将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第二目标灰阶值时,获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中等于所述当前显示帧的灰阶值的所述初始灰阶值、且等于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。
- 根据权利要求6所述的像素驱动方法,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,所述第一目标灰阶值为所述子像素的灰阶值的最小值,所述第一目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第一目标灰阶值时对应的所述数据电压值相同;所述第三目标灰阶值为所述子像素的灰阶值的最大值,所述第三目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第三目标灰阶值时对应的所述数据电压值相同。
- 根据权利要求6所述的像素驱动方法,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,多个所述初始灰阶值包括小于所述第二目标灰阶值的第一初始灰阶值,所述第一初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
- 根据权利要求6所述的像素驱动方法,其中,多个所述初始灰阶值包括均小于所述第二目标灰阶值的第三初始灰阶值和第四初始灰阶值,所述第三初始灰阶值小于所述第四初始灰阶值;其中,所述第三初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第四初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。
- 根据权利要求6所述的像素驱动方法,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,多个所述初始灰阶值包括大于所述第二目标灰阶值的第二初始灰阶值,所述第二初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,小于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
- 根据权利要求6所述的像素驱动方法,其中,多个所述初始灰阶值包括均大于所述第二目标灰阶值的第五初始灰阶值和第六初始灰阶值,所述第五初始灰阶值大于所述第六初始灰阶值;其中,所述第五初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第六初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。
- 一种像素驱动装置,其中,包括:配置模块,用于配置过驱动电压值表,所述过驱动电压值表包括一一对应的多个初始灰阶值和多个目标灰阶值,每一所述初始灰阶值和每一所述目标灰阶值具有对应的过驱动电压值,多个所述目标灰阶值包括第一目标灰阶值、多个第二目标灰阶值和第三目标灰阶值,每一所述第二目标灰阶值大于所述第一目标灰阶值且小于所述第三目标灰阶值,所述第一目标灰阶值和不同于所述第一目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同,所述第三目标灰阶值和不同于所述第三目标灰阶值的多个所述初始灰阶值一一对应的多个所述过驱动电压值相同;处理模块,用于获取子像素的待显示帧的灰阶值,并将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值;驱动模块,用于根据所述驱动电压,驱动所述子像素发光以显示待显示帧的画面。
- 根据权利要求13所述的像素驱动装置,其中,所述处理模块用于:获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系;当所述待显示帧的灰阶值等于所述第一目标灰阶值时,将所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第三目标灰阶值时,将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第二目标灰阶值时,获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中等于所述当前显示帧的灰阶值的所述初始灰阶值、且等于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。
- 一种显示面板,所述显示面板包括控制器和存储器,其中,所述控制器用于执行存储于所述存储器的若干指令,以实现如权利要求6所述的方法。
- 根据权利要求15所述的显示面板,其中,所述将所述过驱动电压值表中相同于所述待显示帧的灰阶值的所述目标灰阶值所对应的所述过驱动电压值设置为驱动电压的值的步骤,包括:获取所述待显示帧的灰阶值与多个所述目标灰阶值之间的关系;当所述待显示帧的灰阶值等于所述第一目标灰阶值时,将所述第一目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第三目标灰阶值时,将所述第三目标灰阶值对应的所述过驱动电压值设置为所述驱动电压的值;当所述待显示帧的灰阶值等于所述第二目标灰阶值时,获取所述子像素的当前显示帧的灰阶值,并将所述过驱动电压值表中等于所述当前显示帧的灰阶值的所述初始灰阶值、且等于所述待显示帧的灰阶值的所述第二目标灰阶值两者所对应的所述过驱动电压值设置为所述驱动电压的值。
- 根据权利要求15所述的显示面板,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,所述第一目标灰阶值为所述子像素的灰阶值的最小值,所述第一目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第一目标灰阶值时对应的所述数据电压值相同;所述第三目标灰阶值为所述子像素的灰阶值的最大值,所述第三目标灰阶值对应的所述过驱动电压值与所述子像素的灰阶值相同于所述第三目标灰阶值时对应的所述数据电压值相同。
- 根据权利要求15所述的显示面板,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,多个所述初始灰阶值包括小于所述第二目标灰阶值的第一初始灰阶值,所述第一初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
- 根据权利要求15所述的显示面板,其中,多个所述初始灰阶值包括均 小于所述第二目标灰阶值的第三初始灰阶值和第四初始灰阶值,所述第三初始灰阶值小于所述第四初始灰阶值;其中,所述第三初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,大于所述第四初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值。
- 根据权利要求15所述的显示面板,其中,所述子像素的每一灰阶值具有对应的数据电压值;其中,多个所述初始灰阶值包括大于所述第二目标灰阶值的第二初始灰阶值,所述第二初始灰阶值和所述第二目标灰阶值对应的所述过驱动电压值,小于所述子像素的灰阶值相同于所述第二目标灰阶值时对应的所述数据电压值。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210288558.9A CN114596826A (zh) | 2022-03-22 | 2022-03-22 | 像素驱动方法及其装置、显示面板及存储介质 |
CN202210288558.9 | 2022-03-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023178742A1 true WO2023178742A1 (zh) | 2023-09-28 |
Family
ID=81810066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/086373 WO2023178742A1 (zh) | 2022-03-22 | 2022-04-12 | 像素驱动方法及其装置、显示面板 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114596826A (zh) |
WO (1) | WO2023178742A1 (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200839703A (en) * | 2007-03-27 | 2008-10-01 | R2D Technology Inc | System and method for adjusting overdrive voltages of an LCD |
US20090122052A1 (en) * | 2007-11-08 | 2009-05-14 | Ming-Sung Huang | Overdrive apparatus for advancing the response time of a liquid crystal display |
JP2009237352A (ja) * | 2008-03-27 | 2009-10-15 | Sony Corp | 液晶表示装置 |
CN103065574A (zh) * | 2011-10-21 | 2013-04-24 | 联咏科技股份有限公司 | 显示驱动装置 |
US20160180761A1 (en) * | 2013-06-28 | 2016-06-23 | Sakai Display Products Corporation | Display Apparatus and Control Method of Display Apparatus |
CN109147687A (zh) * | 2018-08-06 | 2019-01-04 | 深圳市华星光电技术有限公司 | 显示驱动方法及显示装置 |
CN109637476A (zh) * | 2019-01-08 | 2019-04-16 | 京东方科技集团股份有限公司 | 显示面板的显示方法、显示面板、显示装置 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007531044A (ja) * | 2004-04-01 | 2007-11-01 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | マトリックス表示器のピクセルのオーバードライブ |
TWI353572B (en) * | 2006-06-19 | 2011-12-01 | Hannstar Display Corp | The liquid crystal display and the over driving me |
JP2011090079A (ja) * | 2009-10-21 | 2011-05-06 | Sony Corp | 表示装置、表示方法およびコンピュータプログラム |
CN105280144A (zh) * | 2014-06-12 | 2016-01-27 | 宏祐图像科技(上海)有限公司 | 一种降低偏色效应的过驱动技术 |
-
2022
- 2022-03-22 CN CN202210288558.9A patent/CN114596826A/zh active Pending
- 2022-04-12 WO PCT/CN2022/086373 patent/WO2023178742A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200839703A (en) * | 2007-03-27 | 2008-10-01 | R2D Technology Inc | System and method for adjusting overdrive voltages of an LCD |
US20090122052A1 (en) * | 2007-11-08 | 2009-05-14 | Ming-Sung Huang | Overdrive apparatus for advancing the response time of a liquid crystal display |
JP2009237352A (ja) * | 2008-03-27 | 2009-10-15 | Sony Corp | 液晶表示装置 |
CN103065574A (zh) * | 2011-10-21 | 2013-04-24 | 联咏科技股份有限公司 | 显示驱动装置 |
US20160180761A1 (en) * | 2013-06-28 | 2016-06-23 | Sakai Display Products Corporation | Display Apparatus and Control Method of Display Apparatus |
CN109147687A (zh) * | 2018-08-06 | 2019-01-04 | 深圳市华星光电技术有限公司 | 显示驱动方法及显示装置 |
CN109637476A (zh) * | 2019-01-08 | 2019-04-16 | 京东方科技集团股份有限公司 | 显示面板的显示方法、显示面板、显示装置 |
Also Published As
Publication number | Publication date |
---|---|
CN114596826A (zh) | 2022-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019242118A1 (zh) | 显示装置和驱动方法 | |
TWI510091B (zh) | 液晶顯示器之驅動方法與驅動裝置 | |
TWI450007B (zh) | 畫素結構 | |
CN107481689B (zh) | 图像处理装置及其处理方法 | |
US8610704B2 (en) | Display device and control method of the same | |
US8339425B2 (en) | Method of driving pixels and display apparatus for performing the method | |
US9772534B2 (en) | Liquid crystal display | |
WO2013056536A1 (en) | Liquid crystal display with color washout improvement and method of driving same | |
CN113393790A (zh) | 显示面板的驱动方法、装置及显示装置 | |
CN111025795B (zh) | 一种液晶显示装置 | |
WO2018232808A1 (zh) | 液晶面板及其驱动显示方法 | |
WO2020107652A1 (zh) | 显示面板驱动方法 | |
JP4916244B2 (ja) | 液晶表示装置 | |
CN110706665B (zh) | 液晶面板的驱动方法 | |
WO2023178742A1 (zh) | 像素驱动方法及其装置、显示面板 | |
US20100002156A1 (en) | Active device array substrate and liquid crystal display panel and driving method thereof | |
JP2008276116A (ja) | 液晶表示装置及び液晶表示装置の駆動方法 | |
US7872623B2 (en) | Method of eliminating disclination of liquid crystal molecules | |
KR101071262B1 (ko) | 액정 표시 장치 | |
KR20020017318A (ko) | 휘도 편차 보상 기능을 갖는 액정 표시 장치 | |
CN111862831B (zh) | 显示模组及显示装置 | |
CN111381406A (zh) | 一种像素单元、像素阵列及其液晶面板 | |
CN113393789A (zh) | 显示面板的驱动方法、装置及显示装置 | |
CN105676549B (zh) | 显示面板及其制备方法以及显示装置 | |
KR20080068973A (ko) | 표시 장치의 구동 장치와 이를 포함하는 표시 장치 및 표시장치의 구동 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22932802 Country of ref document: EP Kind code of ref document: A1 |