WO2023178707A1 - 光伏集群虚拟惯量的分配方法和装置 - Google Patents

光伏集群虚拟惯量的分配方法和装置 Download PDF

Info

Publication number
WO2023178707A1
WO2023178707A1 PCT/CN2022/083271 CN2022083271W WO2023178707A1 WO 2023178707 A1 WO2023178707 A1 WO 2023178707A1 CN 2022083271 W CN2022083271 W CN 2022083271W WO 2023178707 A1 WO2023178707 A1 WO 2023178707A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual inertia
photovoltaic
function
control unit
indicator
Prior art date
Application number
PCT/CN2022/083271
Other languages
English (en)
French (fr)
Inventor
范辉
梁纪峰
罗蓬
李铁成
曾四鸣
臧谦
王蕾报
Original Assignee
国网河北省电力有限公司电力科学研究院
国网河北省电力有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网河北省电力有限公司电力科学研究院, 国网河北省电力有限公司, 国家电网有限公司 filed Critical 国网河北省电力有限公司电力科学研究院
Priority to US17/782,999 priority Critical patent/US20240186794A1/en
Publication of WO2023178707A1 publication Critical patent/WO2023178707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • H02J3/241The oscillation concerning frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiments of the present disclosure generally relate to the field of photovoltaic power generation, and more specifically, to methods and devices for allocating virtual inertia of photovoltaic clusters.
  • VSG Virtual Synchronous Generator
  • a photovoltaic cluster virtual inertia allocation method which can convert objective functions of different dimensions and different satisfactions into objective functions of the same dimension and the same satisfaction, overcoming the problems encountered during the operation of the power system. It solves the difficult problem of converting between various performances, so that multiple goals in inertia distribution can be taken into consideration. It can also suppress the frequency change rate to a certain extent and return to a stable state quickly.
  • the method is simple and practical.
  • a method for allocating virtual inertia of a photovoltaic cluster including:
  • the function equations are determined in the following ways: construct an objective function, determine the membership function corresponding to each VSG control unit based on the objective function, and establish a system small signal model. Use the root locus analysis method to conduct stability analysis of the parameters in the membership function, determine the optimal parameters, and obtain the function equation;
  • the distribution ratio of the virtual inertia to be provided in each VSG control unit is determined according to the function value corresponding to each indicator.
  • obtaining the values of indicators that affect the virtual inertia provided by each VSG control unit in the photovoltaic cluster of the photovoltaic grid-connected system includes:
  • using a predetermined function equation to determine the function value corresponding to each indicator includes:
  • x is the index
  • u(x) is the function value
  • p 10 , q 10 , C 10 , p 11 , q 11 , C 11 are determined parameters
  • a, b, c, d are the energy storage state of charge. The area is divided into boundaries, where section ab is the energy storage discharge state, section bc is the normal state of energy storage, and section cd is the energy storage charging state.
  • determining the allocation ratio of the virtual inertia that needs to be provided in each VSG control unit according to the function value corresponding to each indicator includes:
  • the virtual inertia allocated to each VSG control unit is determined based on the ratio of the sum of the function values corresponding to each indicator in each photovoltaic unit.
  • it also includes:
  • a threshold value for the frequency change rate is preset, and in response to the frequency change rate exceeding the threshold value, virtual inertia control is initiated.
  • determining the virtual inertia that needs to be provided based on the frequency change rate of the photovoltaic grid-connected system includes:
  • H 0 is the normal inertia value
  • M is the threshold value of the frequency change rate
  • k 1 and k 2 are control parameters
  • df/dt is the frequency change value.
  • the remaining energy storage capacity of the supercapacitor ranges from 10% to 90%.
  • a device for distributing virtual inertia of a photovoltaic cluster including:
  • the virtual inertia determination module is used to determine the virtual inertia that needs to be provided based on the frequency change rate monitored by the photovoltaic grid-connected system at the grid-connected point;
  • An indicator value determination module is used to obtain the value of the indicator that affects the virtual inertia provided by each VSG control unit in the photovoltaic cluster of the photovoltaic grid-connected system;
  • the indicator function value determination module is used to determine the function value corresponding to each indicator using a predetermined function equation.
  • the function equation is determined in the following manner: constructing an objective function, and determining the membership corresponding to each VSG control unit according to the objective function. Function, establish a small signal model of the system, use root locus analysis method to conduct stability analysis of the parameters in the membership function, determine the optimal parameters, and obtain the function equation;
  • the virtual inertia distribution module is used to determine the distribution ratio of the virtual inertia to be provided in each VSG control unit according to the function value corresponding to each indicator.
  • an electronic device including a memory and a processor.
  • a computer program is stored on the memory.
  • the processor executes the program, the method as described above is implemented.
  • a computer-readable storage medium is provided, a computer program is stored thereon, and when the program is executed by a processor, the method as described above is implemented.
  • the problem of difficult conversion between multiple performances during power system operation is overcome, multiple objectives in inertia allocation are taken into consideration, and frequency changes can be suppressed to a certain extent.
  • the method is simple and practical and returns to a stable state quickly.
  • Figure 1 shows a flow chart of a photovoltaic cluster virtual inertia allocation method according to Embodiment 1 of the present disclosure
  • Figure 2 shows a schematic structural diagram of a photovoltaic cluster virtual inertia distribution device according to Embodiment 2 of the present disclosure
  • Figure 3 shows a schematic structural diagram of a photovoltaic cluster virtual inertia distribution device according to Embodiment 3 of the present disclosure.
  • FIG. 1 it is a flow chart of a method for allocating virtual inertia of a photovoltaic cluster according to Embodiment 1 of the present disclosure.
  • the method for allocating virtual inertia of the photovoltaic cluster in this embodiment may include the following steps:
  • S101 Determine the virtual inertia that needs to be provided based on the frequency change rate monitored by the photovoltaic grid-connected system at the grid-connected point.
  • VSG control units In photovoltaic grid-connected systems controlled by multiple VSG control units, a single VSG control unit is no longer enough to maintain the safety and stability of a large-scale photovoltaic grid-connected system. Multiple VSG control units are required to coordinate and cooperate to ensure overall stable operation. In the photovoltaic grid-connected system, because the frequency of the output charge of the photovoltaic power supply and energy storage equipment is unstable and changes in real time, it will cause instability in the photovoltaic grid-connected system.
  • the disclosed embodiment uses VSG control units to coordinate and cooperate to ensure overall stable operation. That is, different VSG control units are assigned corresponding virtual inertia to stabilize the photovoltaic grid-connected system.
  • the virtual inertia to be provided needs to be determined based on the overall frequency change rate of the photovoltaic grid-connected system.
  • the virtual inertia can achieve an effect similar to that of a synchronous generator.
  • how to determine the virtual inertia that needs to be provided please refer to the methods involved in subsequent embodiments of this disclosure, and will not be described in detail in this embodiment.
  • S102 Obtain the values of indicators that affect the virtual inertia provided by each VSG control unit in the photovoltaic cluster of the photovoltaic grid-connected system.
  • the photovoltaic grid-connected system usually includes multiple VSG control units, and the virtual inertia that needs to be allocated to each VSG control unit is usually different, therefore, it is necessary to determine the virtual inertia that needs to be allocated to each VSG control unit. inertia. Specifically, the values corresponding to the indicators in each unit that affect the virtual inertia that needs to be provided can be obtained. In this embodiment, by obtaining the values corresponding to the indicators that affect the required virtual inertia in each unit in the target photovoltaic cluster, the remaining energy storage capacity and commutation capacity of the supercapacitor in each photovoltaic unit in the target photovoltaic cluster can be obtained.
  • the rated power of the device and the adjustable power of energy storage charge and discharge The rated power of the device and the adjustable power of energy storage charge and discharge.
  • the indicators that affect the virtual inertia required by each unit mainly include the remaining energy storage capacity of the supercapacitor, the rated power of the converter and the adjustable power of energy storage charge and discharge. Therefore, this embodiment allocates corresponding virtual inertia to different VSG control units based on the impact of each indicator on the virtual inertia.
  • the following objective function is used to determine the relationship between the remaining energy storage capacity of the supercapacitor, the rated power of the converter and the adjustable power of energy storage charging and discharging on the virtual inertia that needs to be allocated by the VSG control unit.
  • F is the virtual inertia value that needs to be allocated
  • SOC is the remaining energy storage capacity of the supercapacitor
  • ⁇ P N is the rated power of the converter
  • ⁇ P t is the adjustable power of energy storage charge and discharge
  • df/dt is the frequency change value .
  • the function value corresponding to each indicator is determined using a predetermined function equation, where the function equation is:
  • x is the index
  • u(x) is the function value
  • p 10 , q 10 , C 10 , p 11 , q 11 , C 11 are determined parameters
  • a, b, c, d are the energy storage state of charge.
  • the area is divided into boundaries, where section ab is the energy storage discharge state, section bc is the normal state of energy storage, and section cd is the energy storage charging state.
  • the values of a, b, c, and d need to be selected according to the specific situation.
  • the functional equation is determined in the following ways: constructing an objective function, determining the membership function corresponding to each VSG control unit based on the objective function, establishing a system small signal model, and using root locus analysis to stabilize the parameters in the membership function. Analyze, determine the optimal parameters, and obtain the function equation.
  • p 10 , q 10 , C 10 , p 11 , q 11 , and C 11 in this embodiment can be analyzed through a small signal model of the photovoltaic grid-connected system, and the modeling object is a six-terminal AC system, and the Parameters are used for root locus analysis.
  • the six-terminal AC system can be divided into three modules: generator set, frequency modulation unit and VSG control unit.
  • the VSG control unit includes three independent VSG control units. Establish small signal models for the above three modules respectively.
  • root locus analysis is carried out to find out the impact of each function parameter (p 10 , q 10 , C 10 , p 11 , q 11 , C 11, etc.) on the stability of the system, and comprehensively consider the function vertices, concavity and convexity, etc. , determine parameter values.
  • the above functional equation can be a membership function of the virtual inertia corresponding to each indicator, and the value range of the membership function is [0,1].
  • the function values corresponding to each indicator can be determined by substituting into the function equation.
  • S104 Determine the distribution proportion of the virtual inertia to be provided in each unit according to the proportion of the function value corresponding to each indicator, and then determine the distribution amount of the virtual inertia to be provided in each unit in the target photovoltaic cluster.
  • the distribution ratio of the virtual inertia to be provided in each VSG control unit can be determined according to the proportion of the function value corresponding to each indicator, and then the virtual inertia to be provided can be determined. The amount of inertia distributed among each VSG control unit in the target photovoltaic cluster.
  • the virtual inertia allocated to each VSG control unit can be determined according to the ratio of the sum of the function values corresponding to each indicator in each VSG control unit.
  • the target photovoltaic cluster includes three VSG control units A, B, and C.
  • the function values corresponding to the indicators in each VSG control unit are A1, A2, A3, B1, B2, B3, C1, C2, and C3.
  • the total virtual The inertia is Q, then the virtual inertia assigned to unit A is (A1+A2+A3)/(A1+A2+A3+B1+B2+B3+C1+C2+C3)*Q.
  • unit B and unit The virtual inertia of C is also determined by referring to the above method.
  • the disclosed photovoltaic cluster virtual inertia allocation method overcomes the problem of difficult conversion between multiple performances during power system operation, allows multiple objectives in inertia allocation to be taken into consideration, and can also suppress the frequency change rate to a certain extent. And it returns to a stable state quickly, and the method is simple and practical.
  • a threshold value of the frequency change rate of the system can also be preset, and in response to the frequency change rate exceeding the threshold value, virtual inertia control is started.
  • the following function can be used for virtual inertia control:
  • H 0 is the normal inertia value
  • M is the threshold value of the frequency change rate
  • k 1 and k 2 are control parameters.
  • the remaining energy storage capacity of the supercapacitor ranges from 10% to 90%.
  • FIG. 2 it is a schematic structural diagram of a photovoltaic cluster virtual inertia distribution device according to Embodiment 2 of the present disclosure.
  • the photovoltaic cluster virtual inertia distribution device in this embodiment includes:
  • the virtual inertia determination module 201 is used to determine the virtual inertia that needs to be provided based on the frequency change rate monitored by the photovoltaic grid-connected system at the grid-connected point.
  • the index value determination module 202 is used to obtain the value of the index that affects the virtual inertia provided by each VSG control unit in the photovoltaic cluster of the photovoltaic grid-connected system.
  • the indicator function value determination module 203 is used to determine the function value corresponding to each indicator using a predetermined function equation.
  • the function equation is determined in the following manner: constructing an objective function, and determining the corresponding function value of each VSG control unit according to the objective function.
  • Membership function establish a small signal model of the system, use root locus analysis method to conduct stability analysis of the parameters in the membership function, determine the optimal parameters, and obtain the function equation.
  • the virtual inertia distribution module 204 is used to determine the distribution ratio of the virtual inertia to be provided in each VSG control unit according to the function value corresponding to each indicator.
  • the photovoltaic unit is a photovoltaic power generation device well known in the art.
  • the VSG control unit may be one or more controllers or chips that have a communication interface and can implement a communication protocol; the controller or chip executes program-related codes to implement corresponding functions.
  • the virtual inertia determination module 201, index value determination module 202, index function value determination module 203, and virtual inertia allocation module 204 can respectively be one or more controllers or processors with communication interfaces that can implement communication protocols; if necessary It may also include memory and related interfaces, system transmission buses, etc.; the processor or chip executes program-related codes to implement corresponding functions.
  • an alternative solution is that the virtual inertia determination module 201, the indicator value determination module 202, the indicator function value determination module 203, and the virtual inertia allocation module 204 share an integrated chip or share a processor, controller, memory and other devices.
  • the shared processor or controller, or integrated chip executes program-related codes to implement corresponding functions.
  • device 300 includes a central processing unit (CPU) 301 that may be configured to operate in accordance with computer program instructions stored in read only memory (ROM) 302 or loaded from storage unit 308 into random access memory (RAM) 303 of the computer. Program instructions to perform various appropriate actions and processes. In the RAM 303, various programs and data required for the operation of the device 300 can also be stored.
  • CPU 301, ROM 302 and RAM 303 are connected to each other through bus 304.
  • An input/output (I/O) interface 305 is also connected to bus 304.
  • I/O interface 305 Multiple components in the device 300 are connected to the I/O interface 305, including: input unit 306, such as a keyboard, mouse, etc.; output unit 307, such as various types of displays, speakers, etc.; storage unit 308, such as a magnetic disk, optical disk, etc. ; and communication unit 309, such as a network card, modem, wireless communication transceiver, etc.
  • the communication unit 309 allows the device 300 to exchange information/data with other devices through computer networks such as the Internet and/or various telecommunications networks.
  • a central processing unit (CPU) 301 performs the various methods and processes described above, which are tangibly embodied in a machine-readable medium, such as storage unit 308.
  • part or all of the computer program may be loaded and/or installed onto device 300 via ROM 302 and/or communication unit 309.
  • the CPU 301 may be configured to perform the above method in any other suitable manner (e.g., by means of firmware).
  • FPGAs Field Programmable Gate Arrays
  • ASICs Application Specific Integrated Circuits
  • ASSPs Application Specific Standard Products
  • SOCs Systems on Chips
  • CPLD Load programmable logic device
  • Program code for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, special-purpose computer, or other programmable data processing device, such that the program codes, when executed by the processor or controller, cause the functions specified in the flowcharts and/or block diagrams/ The operation is implemented.
  • the program code may execute entirely on the machine, partially on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • Machine-readable media may include, but are not limited to, electronic, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, laptop disks, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM portable compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本公开提供了一种光伏集群虚拟惯量的分配方法和装置,所述方法包括:根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量;获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值;利用预先确定的函数方程确定各指标对应的函数值;根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。以此方式,能够克服电力系统运行时的多种性能之间转换较为困难的问题,使惯量分配的多个目标得到了兼顾,还可在一定程度上抑制频率变化率且较快恢复到稳定状态,方法简单实用。

Description

光伏集群虚拟惯量的分配方法和装置 技术领域
本公开的实施例一般涉及光伏发电领域,并且更具体地,涉及光伏集群虚拟惯量的分配方法和装置。
背景技术
数据显示,截至2020年底,全国可再生能源发电装机达到9.34亿千瓦,同比增长约17.5%。其中,风电装机2.81亿千瓦、光伏发电装机2.53亿千瓦,因此大规模发展光伏发电已经成为不可阻挡的趋势。
光伏发电主要依靠电力电子器件将吸收的能量送入电网,然而在发生负荷突变时,电力电子器件不具备像传统发电机中的惯量控制,因而会导致频率大幅迅速变化,严重时会影响电力系统稳定性。为此有学者提出了虚拟发电机(Virtual Synchronous Generator,VSG)控制,目的是为了在负荷突变时模拟传统发电机的惯量特性,为系统提供虚拟惯量,保证频率能够较快恢复到稳定状态。
现有的VSG控制研究领域中,大多针对虚拟发电机控制本身的特性和惯量分配进行研究。但是随着光伏市场的逐步扩大,光伏发电规模越来越大,单个VSG控制单元已不足以维持大规模光伏并网系统的安全稳定,因此需要多个VSG控制单元协调配合才能保证整体稳定运行。在多VSG控制单元控制的光伏并网系统中,如何分配各单元提供的虚拟惯量成为了亟需解决的问题。
发明内容
根据本公开的实施例,提供了一种光伏集群虚拟惯量的分配方法,能够将 不同量纲、不同满意度的目标函数转化成同一量纲、同一满足度的目标函数,克服了电力系统运行时的多种性能之间转换较为困难的问题,使惯量分配中多个目标得到了兼顾,还能在一定程度上抑制频率变化率且较快恢复到稳定状态,方法简单实用。
在本公开的第一方面,提供一种光伏集群虚拟惯量的分配方法,包括:
根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量;
获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值;
利用预先确定的函数方程确定各指标对应的函数值,所述函数方程是通过以下方式确定的:构造目标函数,并根据目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程;
根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。
在一些实施例中,所述获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值,包括:
获取所述光伏并网系统的光伏集群中的各VSG控制单元对应的光伏单元的超级电容的剩余储能容量、换流器额定功率和储能充放电可调功率。
在一些实施例中,所述利用预先确定的函数方程确定各指标对应的函数值,包括:
利用以下函数方程确定各指标对应的函数值:
Figure PCTCN2022083271-appb-000001
其中,x为指标,u(x)为函数值,p 10、q 10、C 10、p 11、q 11、C 11为确定的参数,a,b,c,d为储能荷电状态工作区域划分界限,其中ab段为储能放电状态,bc段为储能正常状态,cd段为储能充电状态。
在一些实施例中,所述根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例,包括:
根据各光伏单元中各指标对应的函数值求和后的比值确定分配至各VSG控制单元中的虚拟惯量。
在一些实施例中,还包括:
预先设定频率变化率的阈值,响应于频率变化率超出所述阈值,则启动虚拟惯量控制。
在一些实施例中,所述根据光伏并网系统发生的频率变化率确定所需提供的虚拟惯量,包括:
采用以下函数确定所需提供的虚拟惯量:
Figure PCTCN2022083271-appb-000002
其中,H 0为正常惯量值,M为频率变化率的阈值,k 1和k 2为控制参数,df/dt为频率变化值。
在一些实施例中,所述超级电容的剩余储能容量的取值范围为10%到90%。
在本公开的第二方面,提供一种光伏集群虚拟惯量的分配装置,包括:
虚拟惯量确定模块,用于根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量;
指标数值确定模块,用于获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值;
指标函数值确定模块,用于利用预先确定的函数方程确定各指标对应的函数值,所述函数方程是通过以下方式确定的:构造目标函数,并根据目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程;
虚拟惯量分配模块,用于根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。
在本公开的第三方面,提供了一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,所述处理器执行所述程序时实现如以上所述的方法。
在本公开的第四方面,提供了一种计算机可读存储介质,其上存储有计算机程序,所述程序被处理器执行时实现如以上所述的方法。
通过本公开的光伏集群虚拟惯量的分配方法,克服了电力系统运行时的多种性能之间转换较为困难的问题,使惯量分配中多个目标得到了兼顾,还能在一定程度上抑制频率变化率且较快恢复到稳定状态,方法简单实用。
发明内容部分中所描述的内容并非旨在限定本公开的实施例的关键或重要特征,亦非用于限制本公开的范围。本公开的其它特征将通过以下的描述变得容易理解。
附图说明
结合附图并参考以下详细说明,本公开各实施例的上述和其他特征、优 点及方面将变得更加明显。在附图中,相同或相似的附图标记表示相同或相似的元素,其中:
图1示出了本公开实施例一的光伏集群虚拟惯量的分配方法的流程图;
图2示出了本公开实施例二的光伏集群虚拟惯量的分配装置的结构示意图;
图3示出了本公开实施例三的光伏集群虚拟惯量的分配设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的全部其他实施例,都属于本公开保护的范围。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
下面结合具体的实施例对本公开的技术方案进行说明。如图1所示,为本公开实施例一的光伏集群虚拟惯量的分配方法的流程图。从图1中可以看出,本实施例的光伏集群虚拟惯量的分配方法,可以包括以下步骤:
S101:根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量。
在多VSG控制单元控制的光伏并网系统中,单个VSG控制单元已经不足以维持大规模光伏并网系统的安全稳定,需要多个VSG控制单元协调配合才能保证整体稳定运行。光伏并网系统中,由于光伏电源和储能设备输出电荷的频率不稳定,是在实时变化的,因此会引起光伏并网系统的不稳定。本公开实施例采用VSG控制单元协调配合以保证整体稳定运行。即为不同的VSG控制单元分配对应的虚拟惯量,以使得光伏并网系统的稳定。
首先,需要根据光伏并网系统发生的整体的频率变化率确定所需提供的虚拟惯量,虚拟惯量通过结合逆变器与对应的控制算法,可以达到类似同步发电机的效果。关于如何确定所需提供的虚拟惯量可以参见本公开中后续实施例中所涉及的方法,本实施例不再详细展开说明。
S102:获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值。
在本实施例中,由于光伏并网系统通常包括多个VSG控制单元,并且每个VSG控制单元需要分配的虚拟惯量通常情况下也不相同,因此,需要确定每个VSG控制单元需要分配的虚拟惯量。具体地,可以获取各单元中影响所需提供的虚拟惯量的指标对应的数值。在本实施例中,所述获取目标光伏集群中各单元中影响所需提供的虚拟惯量的指标对应的数值,可以获取目标光伏集群中各光伏单元中的超级电容的剩余储能容量、换流器额定功率和储能充放电可调功率。由于在实现本公开技术方案的过程中,申请人发现,影响各单元所需提供的虚拟惯量的指标主要有超级电容的剩余储能容量、换流器额定功率和储能充放电可调功率,因此,本实施例根据各指标对虚拟惯量的影响为不同的VSG控制单元分配对应的虚拟惯量。
作为本公开实施例的一个可选实施例方式,采用以下目标函数来确定超级 电容的剩余储能容量、换流器额定功率和储能充放电可调功率对VSG控制单元需要分配的虚拟惯量的影响:
Figure PCTCN2022083271-appb-000003
其中,F为需要分配的虚拟惯量值,SOC为超级电容的剩余储能容量,△P N为换流器额定功率,△P t为储能充放电可调功率,df/dt为频率变化值。
并且,利用预先确定的函数方程确定各指标对应的函数值,其中函数方程为:
Figure PCTCN2022083271-appb-000004
其中,x为指标,u(x)为函数值,p 10、q 10、C 10、p 11、q 11、C 11为确定的参数,a,b,c,d为储能荷电状态工作区域划分界限,其中ab段为储能放电状态,bc段为储能正常状态,cd段为储能充电状态。a,b,c,d的值需要根据具体情况进行选取。
所述函数方程是通过以下方式确定的:构造目标函数,并根据目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程。
具体地,本实施例中的p 10、q 10、C 10、p 11、q 11、C 11可以通过对光伏并网系统进行小信号模型的分析,建模对象选取六端交流系统,并对参数做根轨迹分析,具体地,可以将六端交流系统分为三个模块:发电机组、调频机组以及VSG控制单元,其中所述VSG控制单元包括三个独立的VSG控制单元。分别对上述三 个模块建立小信号模型。在上述基础上进行根轨迹分析,求得各函数参数(p 10,q 10,C 10,p 11,q 11,C 11等)对系统稳定性的影响,并综合考虑函数顶点、凹凸性等,确定参数值。
作为本公开的一个可选实施例,上述函数方程可以为各指标对应的虚拟惯量的隶属函数,并且隶属函数的取值范围为[0,1]。
S103:利用预先确定的函数方程确定各指标对应的函数值。
在本实施例中,在确定上述参数值后,可以代入函数方程确定各指标对应的函数值。
S104:根据各指标对应的函数值的比例确定所需提供的虚拟惯量在各单元中的分配比例,进而确定所需提供的虚拟惯量在目标光伏集群中各单元中的分配量。
在本实施例中,当确定各指标对应的函数值后,可以根据各指标对应的函数值的比例确定所需提供的虚拟惯量在各VSG控制单元中的分配比例,进而确定所需提供的虚拟惯量在目标光伏集群中各VSG控制单元中的分配量。
具体地,可以根据各VSG控制单元中各指标对应的函数值的和的比值确定分配至各VSG控制单元中的虚拟惯量。例如,目标光伏集群包括3个VSG控制单元A、B、C,各VSG控制单元中指标对应的函数值分别为A1、A2、A3,B1、B2、B3、C1、C2、C3,总的虚拟惯量为Q,则分配给单元A的虚拟惯量为(A1+A2+A3)/(A1+A2+A3+B1+B2+B3+C1+C2+C3)*Q,对于分配给单元B和单元C的虚拟惯量也参照上述方法确定。
本公开的光伏集群虚拟惯量的分配方法,克服了电力系统运行时的多种性能之间转换较为困难的问题,使惯量分配中多个目标得到了兼顾,还能在一定程度上抑制频率变化率且较快恢复到稳定状态,方法简单实用。
作为本公开的一个可选实施例,在上述实施例中,还可以预先设定系统的频率变化率的阈值,响应于频率变化率超出所述阈值,则启动虚拟惯量控制。具体地,可以采用以下函数进行虚拟惯量控制:
Figure PCTCN2022083271-appb-000005
其中,H 0为正常惯量值,M为频率变化率的阈值,k 1和k 2为控制参数。
作为本公开的一个可选实施例,在上述实施例中,所述超级电容的剩余储能容量的取值范围为10%到90%。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应所述知悉,本公开并不受所描述的动作顺序的限制,因为依据本公开,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应所述知悉,说明书中所描述的实施例均属于可选实施例,所涉及的动作和模块并不一定是本公开所必须的。
以上是关于方法实施例的介绍,以下通过装置实施例,对本公开所述方案进行进一步说明。
如图2所示,为本公开实施例二的光伏集群虚拟惯量的分配装置的结构示意图。本实施例的光伏集群虚拟惯量的分配装置,包括:
虚拟惯量确定模块201,用于根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量。
指标数值确定模块202,用于获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值。
指标函数值确定模块203,用于利用预先确定的函数方程确定各指标对应的函数值,所述函数方程是通过以下方式确定的:构造目标函数,并根据 目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程。
虚拟惯量分配模块204,用于根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。
在本申请的实施例中,所述光伏单元为本领域公知的光伏发电装置。所述VSG控制单元可以是具有通信接口能够实现通信协议的一个或多个控制器或者芯片;所述控制器或者芯片执行程序相关的代码实现相应的功能。所述虚拟惯量确定模块201、指标数值确定模块202、指标函数值确定模块203、虚拟惯量分配模块204分别可以是具有通信接口能够实现通信协议的一个或多个控制器或者处理器;如有需要还可以包括存储器及相关的接口、系统传输总线等;所述处理器或者芯片执行程序相关的代码实现相应的功能。或者,可替换的方案为,所述虚拟惯量确定模块201、指标数值确定模块202、指标函数值确定模块203、虚拟惯量分配模块204共享一个集成芯片或者共享处理器或控制器、存储器等设备。所述共享的处理器或控制器,或者集成芯片执行程序相关的代码实现相应的功能。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,所述描述的模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图3示出了可以用来实施本公开的实施例的电子设备300的示意性框图。如图所示,设备300包括中央处理单元(CPU)301,其可以根据存储在只读存储器(ROM)302中的计算机程序指令或者从存储单元308加载到随机访问存储器(RAM)303中的计算机程序指令,来执行各种适当的动作和处理。 在RAM 303中,还可以存储设备300操作所需的各种程序和数据。CPU 301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。
设备300中的多个部件连接至I/O接口305,包括:输入单元306,例如键盘、鼠标等;输出单元307,例如各种类型的显示器、扬声器等;存储单元308,例如磁盘、光盘等;以及通信单元309,例如网卡、调制解调器、无线通信收发机等。通信单元309允许设备300通过诸如因特网的计算机网络和/或各种电信网络与其他设备交换信息/数据。
中央处理单元(CPU)301执行上文所描述的各个方法和处理,其被有形地包含于机器可读介质,例如存储单元308。在一些实施例中,计算机程序的部分或者全部可以经由ROM 302和/或通信单元309而被载入和/或安装到设备300上。当计算机程序加载到RAM 703并由CPU 301执行时,可以执行上文描述的方法的一个或多个步骤。备选地,在其他实施例中,CPU 301可以通过其他任何适当的方式(例如,借助于固件)而被配置为执行上述方法。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)等等。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分 地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
此外,虽然采用特定次序描绘了各操作,但是这应当理解为要求这样操作以所示出的特定次序或以顺序次序执行,或者要求所有图示的操作应被执行以取得期望的结果。在一定环境下,多任务和并行处理可能是有利的。同样地,虽然在上面论述中包含了若干具体实现细节,但是这些不应当被解释为对本公开的范围的限制。在单独的实施例的上下文中描述的某些特征还可以组合地实现在单个实现中。相反地,在单个实现的上下文中描述的各种特征也可以单独地或以任何合适的子组合的方式实现在多个实现中。
尽管已经采用特定于结构特征和/或方法逻辑动作的语言描述了本主题,但是应当理解所附权利要求书中所限定的主题未必局限于上面描述的特定特征或动作。相反,上面所描述的特定特征和动作仅仅是实现权利要求书的示例形式。

Claims (10)

  1. 一种光伏集群虚拟惯量的分配方法,其特征在于,包括:
    根据光伏并网系统在并网点处监测的频率变化率确定所需提供的虚拟惯量;
    获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值;
    利用预先确定的函数方程确定各指标对应的函数值,所述函数方程是通过以下方式确定的:构造目标函数,并根据目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程;
    根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。
  2. 根据权利要求1所述的光伏集群虚拟惯量的分配方法,其特征在于,所述获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值,包括:
    获取所述光伏并网系统的光伏集群中的各VSG控制单元对应的光伏单元的超级电容的剩余储能容量、换流器额定功率和储能充放电可调功率。
  3. 根据权利要求2所述的光伏集群虚拟惯量的分配方法,其特征在于,所述利用预先确定的函数方程确定各指标对应的函数值,包括:
    利用以下函数方程确定各指标对应的函数值:
    Figure PCTCN2022083271-appb-100001
    其中,x为指标,u(x)为函数值,p 10、q 10、C 10、p 11、q 11、C 11为确定的参数,a,b,c,d为储能荷电状态工作区域划分界限,其中ab段为储能放电状态,bc段为储能正常状态,cd段为储能充电状态。
  4. 根据权利要求3所述的光伏集群虚拟惯量的分配方法,其特征在于,所述根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例,包括:
    根据各光伏单元中各指标对应的函数值求和后的比值确定分配至各VSG控制单元中的虚拟惯量。
  5. 根据权利要求4所述的光伏集群虚拟惯量的分配方法,其特征在于,还包括:
    预先设定频率变化率的阈值,响应于频率变化率超出所述阈值,则启动虚拟惯量控制。
  6. 根据权利要求5所述的光伏集群虚拟惯量的分配方法,其特征在于,所述根据光伏并网系统发生的频率变化率确定所需提供的虚拟惯量,包括:
    采用以下函数确定所需提供的虚拟惯量:
    Figure PCTCN2022083271-appb-100002
    其中,H 0为正常惯量值,M为频率变化率的阈值,k 1和k 2为控制参数,df/dt为频率变化值。
  7. 根据权利要求6所述的光伏集群虚拟惯量的分配方法,其特征在于,所述超级电容的剩余储能容量的取值范围为10%到90%。
  8. 一种光伏集群虚拟惯量的分配装置,其特征在于,包括:
    虚拟惯量确定模块,用于根据光伏并网系统在并网点处监测的频率变化 率确定所需提供的虚拟惯量;
    指标数值确定模块,用于获取所述光伏并网系统的光伏集群中影响各VSG控制单元提供虚拟惯量的指标的数值;
    指标函数值确定模块,用于利用预先确定的函数方程确定各指标对应的函数值,所述函数方程是通过以下方式确定的:构造目标函数,并根据目标函数确定每个VSG控制单元对应的隶属函数,建立系统小信号模型,利用根轨迹分析法对隶属函数中的参数进行稳定性分析,确定最优参数,得到函数方程;
    虚拟惯量分配模块,用于根据各指标对应的函数值确定所需提供的虚拟惯量在各VSG控制单元中的分配比例。
  9. 一种电子设备,包括存储器和处理器,所述存储器上存储有计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1~7中任一项所述的方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述程序被处理器执行时实现如权利要求1~7中任一项所述的方法。
PCT/CN2022/083271 2022-03-23 2022-03-28 光伏集群虚拟惯量的分配方法和装置 WO2023178707A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/782,999 US20240186794A1 (en) 2022-03-23 2022-03-28 Method and apparatus for allocating virtual inertia in photovoltaic cluster

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210291076.9 2022-03-23
CN202210291076.9A CN114977269A (zh) 2022-03-23 2022-03-23 光伏集群虚拟惯量的分配方法和装置

Publications (1)

Publication Number Publication Date
WO2023178707A1 true WO2023178707A1 (zh) 2023-09-28

Family

ID=82976000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/083271 WO2023178707A1 (zh) 2022-03-23 2022-03-28 光伏集群虚拟惯量的分配方法和装置

Country Status (3)

Country Link
US (1) US20240186794A1 (zh)
CN (1) CN114977269A (zh)
WO (1) WO2023178707A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200212823A1 (en) * 2019-01-02 2020-07-02 General Electric Company Virtual synchronous generator system and method with virtual inertia control
CN111799844A (zh) * 2020-08-07 2020-10-20 华北电力大学(保定) 一种虚拟同步发电机控制方法、装置及终端设备
CN113131522A (zh) * 2021-04-07 2021-07-16 国家电网有限公司 双馈风力发电机的虚拟惯量控制及稳定性分析方法
CN113131521A (zh) * 2021-04-07 2021-07-16 国家电网有限公司 虚拟同步机多机并联稳定控制及其惯量匹配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200212823A1 (en) * 2019-01-02 2020-07-02 General Electric Company Virtual synchronous generator system and method with virtual inertia control
CN111799844A (zh) * 2020-08-07 2020-10-20 华北电力大学(保定) 一种虚拟同步发电机控制方法、装置及终端设备
CN113131522A (zh) * 2021-04-07 2021-07-16 国家电网有限公司 双馈风力发电机的虚拟惯量控制及稳定性分析方法
CN113131521A (zh) * 2021-04-07 2021-07-16 国家电网有限公司 虚拟同步机多机并联稳定控制及其惯量匹配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MENG JIANHUI, ZHAO PENGHUI; WANG YI; ZHANG YUN: "Collaborative Control Strategy of Multiple VSG Units Based on TOPSIS Algorithm", DIANLI ZIDONGHUA SHEBEI / ELECTRIC POWER AUTOMATION EQUIPMENT, DIANLI ZIDONGHUA SHEBEI, JP, vol. 40, no. 9, 3 September 2020 (2020-09-03), JP , pages 72 - 82, XP093094340, ISSN: 1006-6047, DOI: 10.16081/j.epae.202009017 *

Also Published As

Publication number Publication date
US20240186794A1 (en) 2024-06-06
CN114977269A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
CN112860695B (zh) 监控数据查询方法、装置、设备、存储介质及程序产品
Aksanli et al. Distributed battery control for peak power shaving in datacenters
CN110266031A (zh) 发电侧储能并网充放电量控制方法、装置、服务器及存储介质
WO2021203738A1 (zh) 考虑需求侧资源分层分散控制的配电系统可靠性计算方法
JPWO2014208565A1 (ja) 充電電力制御方法、充電電力制御システムおよびプログラム
JP7240862B2 (ja) 周波数制御装置および周波数制御方法
WO2024060413A1 (zh) 虚拟电厂可调容量构建方法、装置、电子设备、存储介质、程序、及程序产品
CN115454650A (zh) 微电网边缘计算终端的资源配置方法、装置、终端及介质
WO2023178707A1 (zh) 光伏集群虚拟惯量的分配方法和装置
CN114709878A (zh) 应用于光储直柔建筑的光储协同配置方法、设备及介质
CN111030592B (zh) 光伏组串丢失告警方法和装置
CN110851284A (zh) 一种调度员潮流服务化方法、装置和设备
Duan et al. High performance computing (hpc) for advanced power system studies
CN108563588B (zh) 基于fpga的有源配电网实时仿真器多速率接口设计方法
CN111126772A (zh) 一种模拟电力现货市场平衡的方法及系统
Apostolopoulou et al. Effects of solar and wind generation integration on feeder hosting capacity
WO2023123641A1 (zh) 一种电流源响应的方法、装置及计算机可读存储介质
Gao et al. Probabilistic Feasible Region Equivalent Model for Reliability Evaluation in Interconnected Power System
US20230092978A1 (en) Resource Tapping Method, Resource Tapping Apparatus and Electronic Device
CN117498467B (zh) 一种基于多层级虚拟电厂的能量协调控制分配方法及系统
WO2021084659A1 (ja) 制御装置、制御方法及びプログラム
CN117196180B (zh) 含高比例分布式光伏的配电线路光伏汇集点选址方法
CN108489544A (zh) 高速混床的运行性能测评方法、装置、设备及存储介质
CN116093985A (zh) 一种基于能量平衡法的储能系统配置方法及装置
WO2023090448A1 (ja) 制御装置、電力変換システム、電力供給装置、プログラム及び制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17782999

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932768

Country of ref document: EP

Kind code of ref document: A1