WO2023178617A1 - 一种车胎的检测方法和电子装置 - Google Patents

一种车胎的检测方法和电子装置 Download PDF

Info

Publication number
WO2023178617A1
WO2023178617A1 PCT/CN2022/082839 CN2022082839W WO2023178617A1 WO 2023178617 A1 WO2023178617 A1 WO 2023178617A1 CN 2022082839 W CN2022082839 W CN 2022082839W WO 2023178617 A1 WO2023178617 A1 WO 2023178617A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
tire
electronic device
interface
vehicle
Prior art date
Application number
PCT/CN2022/082839
Other languages
English (en)
French (fr)
Inventor
李帅
宋宪玺
夏沛
周锦
李平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202280005430.5A priority Critical patent/CN117730243A/zh
Priority to PCT/CN2022/082839 priority patent/WO2023178617A1/zh
Publication of WO2023178617A1 publication Critical patent/WO2023178617A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • G01M17/02Tyres

Definitions

  • the present application relates to the technical field of electronic devices, and in particular, to a tire detection method and an electronic device.
  • Vehicle safety inspection is crucial, especially vehicle tire inspection.
  • vehicle tire testing usually determines the safety of the tires by detecting the tire pressure.
  • the tire pressure of a vehicle is abnormal, users will drive the vehicle to a car repair shop for maintenance.
  • the tire pressure is normal, there may still be safety hazards, such as cracked tires, worn tires, nails in the tires, etc. Therefore, existing tire testing cannot completely eliminate tire safety hazards.
  • Embodiments of the present application provide a vehicle tire detection method and an electronic device to eliminate potential safety hazards of vehicle tires as much as possible.
  • embodiments of the present application provide a method for detecting vehicle tires.
  • the method can be applied to electronic devices.
  • the method may include: while the vehicle is driving, collecting a first image under preset conditions.
  • the first image is An image of a tire when it is rotated to its first position.
  • a second image is collected, and the second image is a segment of the tire when the tire rotates to the second position.
  • a first interface is displayed, and the first interface includes a first image and a second image.
  • the first image and the second image are spliced to obtain a first target image.
  • a second interface is displayed, and the second interface includes the first target image.
  • the vehicle collects the first image and the second image while the vehicle is driving and meets the preset conditions for triggering image collection, and performs the processing on the first image and the second image under the user's operation. Splicing, obtaining the spliced image, and then displaying the spliced image, so that the user can visually observe the condition of the tire, thereby determining the health status of the tire, and then the user can test the tire anytime and anywhere, without the need for the user to frequently drive the car to the maintenance site Shop for inspection.
  • the embodiment of the present application can perform operations such as image collection, splicing, and analysis when the tire pressure is normal, and can detect tires in multiple modes to eliminate tire safety hazards as much as possible.
  • the preset condition includes at least one of the following: user operation, first preset time, vehicle passing through a risky road section, and notification.
  • the preset condition includes a notification
  • the first image is collected under the preset condition.
  • the notification may be received while the vehicle is driving, and the notification includes schedule information.
  • first prompt information is generated.
  • the first prompt information is used to indicate that there is a long-distance trip after the second preset time, and to determine whether to perform tire testing.
  • the third interface is displayed, and the first prompt information is displayed on the third interface.
  • a second operation on the third interface is received, and the second operation is for determining to perform a detection operation on the tire.
  • a first image is acquired.
  • the vehicle when the vehicle is driving, after receiving the notification, the vehicle can generate prompt information based on the schedule information carried in the notification to prompt the user whether to perform tire testing.
  • the electronic device triggers the operation of collecting images according to the user's instructions. In this way, the electronic device can trigger the image collection operation based on the user's schedule information, which is more realistic and more practical.
  • the preset condition includes a notification
  • collecting the first image under the preset condition may specifically include: receiving the first instruction information sent by the terminal, and the terminal is used to receive the notification containing the schedule information, and collect the first image according to the preset condition.
  • the schedule information generates second prompt information, and the first instruction information is generated according to the second prompt information.
  • the second prompt information is used to indicate that there is a long-distance trip after the second preset time, and to determine whether to perform tire testing; the first instruction information It is an instruction given by the user in response to the second prompt information.
  • the first instruction information an event to be processed is generated, and the event to be processed is to detect the tire while the vehicle is driving again.
  • the user's terminal when the vehicle is stationary, can receive the notification and generate prompt information based on the schedule information carried in the notification. The user can determine whether to perform tire testing on the terminal based on the prompt information. After the user makes corresponding instructions on the terminal in response to the prompt information, the terminal sends the user's instructions to the electronic device. According to the user's instructions, the electronic device triggers the operation of collecting images while the vehicle is driving again, which is more practical and practical. higher.
  • the preset condition includes a user operation
  • collecting the first image under the preset condition may specifically include: receiving a third operation from the user. In response to the third operation, a first image is acquired.
  • the electronic device is triggered to collect images through the user's operation, so that the action of the electronic device to collect images is triggered according to the user's needs, and the flexibility is higher.
  • the preset condition includes a first preset time
  • the first image is collected under the preset condition.
  • it may be: while the vehicle is traveling at a preset speed, at the first preset time Acquire the first image.
  • the operation of collecting images is triggered at a preset time and a preset speed.
  • the operation of collecting images can be triggered at a specified time, effectively reducing user operations and facilitating subsequent automatic tire detection.
  • the preset condition includes a first preset time
  • the first image is collected under the preset condition.
  • the preset condition may be: when the vehicle speed does not reach the first threshold within the first preset time. , when the vehicle travels for the first time within the third preset time, the first image is collected, and the third preset time and the first preset time are two adjacent periods.
  • the preset conditions include the vehicle passing through a risky road section and collecting the first image under the preset conditions.
  • the first image may be collected, and the first information is used to characterize the environment and/or the vehicle's information. . Based on the first information, it is determined that the vehicle has traveled through a risky road section, which refers to a road section that affects the health of the tires. After it is determined that the vehicle has traveled through the risky road section, the first image is collected.
  • the electronic device is triggered to collect images, and the road section traveled by the vehicle can be combined to determine whether to test the vehicle's tires. There is no need to perform tire testing from time to time, which can effectively save energy. Consumption.
  • the risky road section includes at least one of the following: construction road section, dirty road section, rural road section, bumpy road section, and emergency parking zone.
  • construction road section dirty road section
  • rural road section dirty road section
  • bumpy road section bumpy road section
  • emergency parking zone emergency parking zone
  • the risky road sections in this application may also include other road sections, such as accident sections, etc., which are not specifically limited in this application.
  • the first interface further includes: a first display area for displaying images, a second display area for editing images, and a first control for calling the image splicing function.
  • Receiving the user's first operation on the first interface may specifically include: receiving the user's operation of moving the first image in the first display area to the second display area; receiving the user's operation of moving the second image in the first display area to operate the second display area; receive the user's zoom operation on the first image and the second image in the second display area; receive the user's operation on the first control.
  • two or more images are collected under preset conditions while the vehicle is driving, and the two or more images are spliced to obtain the target image, and the target image will be displayed.
  • the user can intuitively Observe target images to determine tire health.
  • the tire detection method provided by the embodiment of the present application can be used to detect the tire, and potential safety hazards of the tire can be eliminated as much as possible.
  • splicing the first image and the second image to obtain the first target image specifically: in response to the first operation, matching the first image and the second image .
  • the first area of the first image is cropped to obtain a third image. Splice the second image and the third image to obtain the first target image.
  • the method may further include: determining the health status of the tire based on the first target image and the pre-stored initial image of the tire.
  • the third interface is displayed, and the third interface includes the health status of the tires.
  • the electronic device can compare the first target image with the stored initial image to obtain a comparison result.
  • Electronic devices can determine the health of the tires based on the comparison. In this way, the electronic device can automatically analyze the health status of the tire without user analysis, which is more accurate and user-friendly.
  • the method may further include: obtaining an updated image of the tire after the tire is repaired. Use the updated image to update the initial image of the tire. In this way, the image of the tire can be updated in real time in the electronic device, effectively avoiding repeated confirmation of tire repair traces during the tire inspection process, avoiding repeated operations, and improving the accuracy of tire inspection.
  • the second interface further includes a second control, and the second control is used to share images; after displaying the second interface, the method may further include: receiving a third operation of the user on the second control. In response to the third operation, the first target image is shared with other devices, and the other devices are used to analyze the first target image, obtain the health status of the tire, and feed back the health status of the tire. Receive tire health feedback from other devices.
  • the fourth interface is displayed, and the fourth interface includes the health status of the tire.
  • the method may also include: generating third prompt information according to the health status of the tire, and the third prompt information is used to provide the user with a tire maintenance solution.
  • the health status of the tire includes at least one of the following: foreign matter on the tread of the tire, cracks on the tread of the tire, tread wear of the tire, holes in the tread of the tire, damage to the tire's tread, etc. Tread bulge.
  • inventions of the present application provide an electronic device.
  • the electronic device includes: a first collection unit configured to collect a first image under preset conditions while the vehicle is driving. The first image is when the tire rotates to An image of the tire in the first position.
  • the second acquisition unit is configured to acquire a second image after the first acquisition unit acquires the first image.
  • the second image is a segment of the tire when the tire rotates to the second position.
  • the first display unit is used to display a first interface, and the first interface includes a first image and a second image.
  • the first receiving unit is used to receive the user's first operation on the first interface.
  • a splicing unit configured to splice the first image and the second image in response to the first operation to obtain the first target image.
  • the second display unit is used to display a second interface, and the second interface includes the first target image.
  • the vehicle collects the first image and the second image while the vehicle is driving and meets the preset conditions for triggering image collection, and performs the processing on the first image and the second image under the user's operation. Splicing, obtaining the spliced image, and then displaying the spliced image, so that the user can visually observe the condition of the tire, thereby determining the health status of the tire, and then the user can test the tire anytime and anywhere, without the need for the user to frequently drive the car to the maintenance site Shop for inspection.
  • the embodiment of the present application can perform operations such as image collection, splicing, and analysis when the tire pressure is normal, and can detect tires in multiple modes to eliminate tire safety hazards as much as possible.
  • the preset condition includes at least one of the following: user operation, first preset time, vehicle passing through a risky road section, and notification.
  • the preset condition includes a notification
  • the first collection unit is further configured to: receive a notification during the driving of the vehicle, and the notification includes schedule information; generate the first prompt information according to the schedule information; A prompt message is used to indicate that there is a long-distance trip after the second preset time, and determine whether to perform tire testing; display a third interface, and display the first prompt message on the third interface; receive a second operation on the third interface, and The second operation is used to determine the detection operation of the tire; in response to the second operation, the first image is collected.
  • the vehicle when the vehicle is driving, after receiving the notification, the vehicle can generate prompt information based on the schedule information carried in the notification to prompt the user whether to perform tire testing.
  • the electronic device triggers the operation of collecting images according to the user's instructions. In this way, the electronic device can trigger the image collection operation based on the user's schedule information, which is more realistic and more practical.
  • the preset condition includes a notification
  • the first collection unit is further configured to: receive the first instruction information sent by the terminal, and the terminal is configured to receive the notification containing schedule information, and generate a second prompt based on the schedule information.
  • Information, the first indication information generated according to the second prompt information, the second prompt information is used to indicate that there is a long-distance trip after the second preset time, and to determine whether to perform tire testing; the first indication information is the user's response to the second prompt Instructions given by the information; according to the first instruction information, an event to be processed is generated, and the event to be processed is to detect the tires when the vehicle is driving again.
  • the user's terminal when the vehicle is stationary, can receive the notification and generate prompt information based on the schedule information carried in the notification. The user can determine whether to perform tire testing on the terminal based on the prompt information. After the user makes corresponding instructions on the terminal in response to the prompt information, the terminal sends the user's instructions to the electronic device. According to the user's instructions, the electronic device triggers the operation of collecting images while the vehicle is driving again, which is more practical and practical. higher.
  • the preset condition includes a user operation
  • the first collection unit is further configured to: receive a third operation from the user; and collect the first image in response to the third operation.
  • the electronic device is triggered to collect images through the user's operation, so that the action of the electronic device to collect images is triggered according to the user's needs, and the flexibility is higher.
  • the preset condition includes a first preset time
  • the first collection unit is further configured to collect the first image at the first preset time while the vehicle is traveling at a preset speed.
  • the operation of collecting images is triggered at a preset time and a preset speed.
  • the operation of collecting images can be triggered at a specified time, effectively reducing user operations and facilitating subsequent automatic tire detection.
  • the preset condition includes a first preset time
  • the first collection unit is also configured to: when the vehicle speed does not reach the first threshold within the first preset time, when the third preset time When the vehicle travels for the first time within the time period, the first image is collected, and the third preset time and the first preset time are two adjacent periods.
  • the preset condition includes the vehicle passing through a risky road section
  • the first collection unit is also used to: collect first information, the first information is used to characterize the environment and/or vehicle information; according to the first information, It is determined that the vehicle has driven through the risky road section, which refers to the road section that affects the health of the tires; after it is determined that the vehicle has driven through the risky road section, the first image is collected.
  • the electronic device is triggered to collect images, and the road section traveled by the vehicle can be combined to determine whether to test the vehicle's tires. There is no need to perform tire testing from time to time, which can effectively save energy. Consumption.
  • the risky road section includes at least one of the following: construction road section, dirty road section, rural road section, bumpy road section, and emergency parking zone.
  • construction road section dirty road section
  • rural road section dirty road section
  • bumpy road section bumpy road section
  • emergency parking zone emergency parking zone
  • the risky road sections in this application may also include other road sections, such as accident sections, etc., which are not specifically limited in this application.
  • the first interface further includes: a first display area for displaying images, a second display area for editing images, and a first control for calling the image splicing function.
  • the first receiving unit is also configured to: receive the user's operation of moving the first image in the first display area to the second display area; receive the user's operation of moving the second image in the first display area to the second display area; Receive the user's zoom operation on the first image and the second image in the second display area; receive the user's operation on the first control.
  • two or more images are collected under preset conditions while the vehicle is driving, and the two or more images are spliced to obtain the target image, and the target image will be displayed.
  • the user can intuitively Observe target images to determine tire health.
  • the tire detection method provided by the embodiment of the present application can be used to detect the tire, and potential safety hazards of the tire can be eliminated as much as possible.
  • the splicing unit is also used to: in response to the first operation, match the first image and the second image; when the characteristics of the first area of the first image match the second area of the second image When the characteristics of are consistent, crop the first area of the first image to obtain the third image; splice the second image and the third image to obtain the first target image.
  • the electronic device may further include: a determination unit configured to determine the health status of the tire based on the first target image and the pre-stored initial image of the tire.
  • the third display unit is used to display a third interface, which includes the health status of the tire.
  • the electronic device can compare the first target image with the stored initial image to obtain a comparison result.
  • Electronic devices can determine the health of the tires based on the comparison. In this way, the electronic device can automatically analyze the health status of the tire without user analysis, which is more accurate and user-friendly.
  • the electronic device may further include: an acquisition unit, configured to acquire an updated image of the tire after the tire is repaired.
  • the update unit is used to update the initial image of the tire using the update image. In this way, the image of the tire can be updated in real time in the electronic device, effectively avoiding repeated confirmation of tire repair traces during the tire inspection process, avoiding repeated operations, and improving the accuracy of tire inspection.
  • the second interface further includes a second control, and the second control is used to share images; after displaying the second interface, the electronic device further includes: a second receiving unit, used to receive the user's response to the second control.
  • the third operation The sharing unit is configured to share the first target image to other devices in response to the third operation.
  • the other devices are used to analyze the first target image, obtain the health status of the tire, and feed back the health status of the tire.
  • the third receiving unit is used to receive the health status of the tire fed back by other devices.
  • the fourth display unit is used to display a fourth interface, which includes the health status of the tire.
  • the electronic device further includes: a generating unit, configured to generate third prompt information according to the health status of the tire, and the third prompt information is used to provide the user with a tire maintenance solution.
  • a generating unit configured to generate third prompt information according to the health status of the tire, and the third prompt information is used to provide the user with a tire maintenance solution.
  • the health status of the tire includes at least one of the following: foreign matter on the tread of the tire, cracks on the tread of the tire, tread wear of the tire, holes in the tread of the tire, damage to the tire's tread, etc. Tread bulge.
  • embodiments of the present application provide a vehicle, which may include the electronic device described in the second aspect.
  • inventions of the present application provide a vehicle.
  • the vehicle may include: a processor and a memory.
  • the memory is coupled to the processor.
  • the memory is used to store computer program code.
  • the computer program code includes a computer program. Instructions, when the processor reads the computer instructions from the memory, so that the electronic device executes the method described in the first aspect.
  • inventions of the present application provide a computer program product.
  • the computer program product includes computer instructions. When the computer instructions are run on a computer, they cause the computer to execute the method described in the first aspect.
  • embodiments of the present application provide a computer-readable storage medium, which is characterized in that it includes computer instructions.
  • the computer-readable storage medium includes computer instructions.
  • the computer instructions When the computer instructions are run on a computer, the computer instructions cause the The computer executes the method as described in the first aspect.
  • the embodiment of the present application can perform operations such as image collection, splicing, and analysis when the tire pressure is normal, and can detect tires in multiple modes to eliminate tire safety hazards as much as possible.
  • Figure 1 is a schematic diagram of the composition of an electronic device provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a vehicle provided by an embodiment of the present application.
  • Figure 3A is a schematic interface diagram of a vehicle tire detection method provided by the application embodiment applied to an electronic device in the first application scenario;
  • FIG. 3B is another schematic interface diagram of a vehicle tire detection method provided by the application embodiment applied to an electronic device in the first application scenario;
  • Figure 3C is another schematic interface diagram of a vehicle tire detection method provided by the application embodiment applied to an electronic device in the first application scenario;
  • Figure 4A is a schematic interface diagram of a tire detection method provided by the application embodiment applied to a terminal in the second application scenario;
  • Figure 4B is another schematic interface diagram of a terminal in the second application scenario when a tire detection method provided by the application embodiment is applied;
  • Figure 4C is a schematic interface diagram of a tire detection method provided by the application embodiment applied to an electronic device in the second application scenario;
  • Figure 4D is another schematic interface diagram of a vehicle tire detection method provided by the application embodiment applied to an electronic device in the second application scenario;
  • Figure 5 is a schematic flow chart of a vehicle tire detection method provided by an embodiment of the present application.
  • Figure 6 is a schematic flow chart of yet another tire detection method provided by an embodiment of the present application.
  • Figure 7 is a schematic flow chart of yet another tire detection method provided by an embodiment of the present application.
  • Figure 8A is a schematic interface diagram of a tire detection method provided by the application embodiment applied to the first electronic device in the third application scenario;
  • Figure 8B is another schematic interface diagram of an electronic device in the third application scenario when a tire detection method provided by the application embodiment is applied;
  • FIG. 9 is a schematic diagram of the composition of another electronic device provided by an embodiment of the present application.
  • FIG. 1 shows a schematic structural diagram of an electronic device 100 .
  • the electronic device 100 may include a processor 110, a memory 120, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, a wireless communication module 150, and a sensor module 160 , buttons 170, camera 180, display 190.
  • the sensor module 160 may include a gyroscope sensor 160A, a distance sensor 160B, an air pressure sensor 160C, a touch sensor 160D, an ambient light sensor 160E, a temperature sensor 160F, etc.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the electronic device 100 .
  • the electronic device 100 may include more or fewer components than shown in the figures, or some components may be combined, some components may be separated, or some components may be arranged differently.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units.
  • the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (GPU), and an image signal processor. (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor
  • NPU neural-network processing unit
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller can generate operation control signals based on the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • the processor 110 may also be provided with a memory for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have been recently used or recycled by processor 110 . If the processor 110 needs to use the instructions or data again, it can be called directly from the memory. Repeated access is avoided and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, a mobile industry processor interface (MIPI), a general-purpose input/output (GPIO) interface, and/or a USB interface, etc. .
  • I2C integrated circuit
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • USB interface etc.
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can couple the touch sensor 160D, charger, flash, camera 180, etc. respectively through different I2C bus interfaces.
  • the processor 110 can be coupled to the touch sensor 160D through an I2C interface, so that the processor 110 and the touch sensor 160D communicate through the I2C bus interface to implement the touch function of the electronic device 100 .
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 190 and the camera 180 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 and the camera 180 communicate through a CSI interface to implement the shooting function of the electronic device 100 .
  • the processor 110 and the display screen 190 communicate through the DSI interface to implement the display function of the electronic device 100 .
  • the GPIO interface can be configured through software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 180, the display screen 190, the wireless communication module 150, the sensor module 160, etc.
  • the GPIO interface can also be configured as an I2C interface, MIPI interface, etc.
  • the USB interface 130 is an interface that complies with the USB standard specification, and may be a Mini USB interface, a Micro USB interface, a USB Type C interface, etc.
  • the USB interface 130 can be used to connect a charger to charge the electronic device 100, and can also be used to transmit data between the electronic device 100 and peripheral devices. It can also be used to connect headphones to play audio through them.
  • the interface can also be used to connect other electronic devices, such as augmented reality (AR) devices.
  • AR augmented reality
  • the interface connection relationships between the modules illustrated in the embodiments of the present application are only schematic illustrations and do not constitute a structural limitation of the electronic device 100 .
  • the electronic device 100 may also adopt different interface connection methods in the above embodiments, or a combination of multiple interface connection methods.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger can be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the electronic device 100 . While the charging management module 140 charges the battery 142, it can also provide power to the electronic device through the power management module 141.
  • the power management module 141 is used to connect the battery 142, the charging management module 140 and the processor 110.
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the memory 120, the display screen 190, the camera 180, the wireless communication module 150, and the like.
  • the power management module 141 can also be used to monitor battery capacity, battery cycle times, battery health status (leakage, impedance) and other parameters.
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the electronic device 100 can be implemented through the antenna 1, the wireless communication module 150, the modem processor and the baseband processor.
  • Antenna 1 is used to transmit and receive electromagnetic wave signals.
  • Each antenna in electronic device 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization. For example: Antenna 1 can be reused as a diversity antenna for a wireless LAN. In other embodiments, antennas may be used in conjunction with tuning switches.
  • the wireless communication module 150 can provide applications on the electronic device 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) network), Bluetooth (blue tooth, BT), and global navigation. Satellite system (global navigation satellite system, GNSS), frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 150 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 150 receives electromagnetic waves via the antenna 1 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 150 can also receive the signal to be sent from the processor 110, frequency modulate it, amplify it, and convert it into electromagnetic waves through the antenna 1 for radiation.
  • the antenna 1 of the electronic device 100 and the wireless communication module 150 are coupled, so that the electronic device 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), quasi-zenith satellite system (quasi) -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the electronic device 100 implements display functions through a GPU, a display screen 190, an application processor, and the like.
  • the GPU is an image processing microprocessor and is connected to the display screen 190 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • the display screen 190 is used to display images, videos, etc.
  • Display 190 includes a display panel.
  • the display panel can use a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode).
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • FLED flexible light-emitting diode
  • Miniled MicroLed, Micro-oLed, quantum dot light emitting diode (QLED), etc.
  • the electronic device 100 may include 1 or N display screens 190, where N is a positive integer greater than 1.
  • the electronic device 100 can implement the shooting function through an ISP, a camera 180, a video codec, a GPU, a display screen 190, an application processor, and the like.
  • the ISP is used to process the data fed back by the camera 180 .
  • the shutter is opened, the light is transmitted to the camera sensor through the lens, the optical signal is converted into an electrical signal, and the camera sensor passes the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise and brightness.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 180.
  • Camera 180 is used to capture still images or video.
  • the object passes through the lens to produce an optical image that is projected onto the photosensitive element.
  • the photosensitive element can be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then passes the electrical signal to the ISP to convert it into a digital image signal.
  • ISP outputs digital image signals to DSP for processing.
  • the electronic device 100 may include 1 or N cameras 180, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the electronic device 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the frequency point energy.
  • Video codecs are used to compress or decompress digital video.
  • Electronic device 100 may support one or more video codecs. In this way, the electronic device 100 can play or record videos in multiple encoding formats, such as moving picture experts group (MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • MPEG moving picture experts group
  • MPEG2 MPEG2, MPEG3, MPEG4, etc.
  • NPU is a neural network (NN) computing processor.
  • NN neural network
  • the NPU can realize intelligent cognitive applications of the electronic device 100, such as image recognition, face recognition, speech recognition, text understanding, etc.
  • Memory 120 may be used to store computer executable program code, which includes instructions.
  • the memory 120 may include a program storage area and a data storage area.
  • the stored program area can store an operating system, at least one application program required for a function (such as a sound playback function, an image playback function, etc.).
  • the storage data area may store data created during use of the electronic device 100 (such as audio data, phone book, etc.).
  • the memory 120 may include high-speed random access memory, and may also include non-volatile memory, such as at least one disk storage device, flash memory device, universal flash storage (UFS), etc.
  • the processor 110 executes various functional applications and data processing of the electronic device 100 by executing instructions stored in the memory 120 and/or instructions stored in the memory provided in the processor.
  • the gyro sensor 160A may be used to determine the motion posture of the electronic device 100 .
  • the angular velocity of electronic device 100 about three axes ie, x, y, and z axes
  • the gyro sensor 160A can be used for image stabilization. For example, when the shutter is pressed, the gyro sensor 160A detects the angle at which the electronic device 100 shakes, calculates the distance that the lens module needs to compensate based on the angle, and allows the lens to offset the shake of the electronic device 100 through reverse movement to achieve anti-shake.
  • Gyro sensor 160A can also be used in navigation scenarios.
  • Air pressure sensor 160C is used to measure air pressure. In some embodiments, the electronic device 100 calculates the altitude through the air pressure value measured by the air pressure sensor 160C to assist positioning and navigation.
  • the electronic device 100 can measure distance through infrared or laser. In some embodiments, when shooting a scene, the electronic device 100 can use the distance sensor 160B to measure distance to achieve fast focusing.
  • the ambient light sensor 160E is used to sense ambient light brightness.
  • the electronic device 100 can adaptively adjust the brightness of the display screen 190 according to the perceived ambient light brightness.
  • the ambient light sensor 160E can also be used to automatically adjust the white balance when taking pictures.
  • Temperature sensor 160F is used to detect temperature.
  • the electronic device 100 utilizes the temperature detected by the temperature sensor 160F to execute the temperature processing strategy. For example, when the temperature reported by the temperature sensor 160F exceeds a threshold, the electronic device 100 reduces the performance of a processor located near the temperature sensor 160F to reduce power consumption and implement thermal protection. In other embodiments, when the temperature is lower than another threshold, the electronic device 100 heats the battery 142 to prevent the low temperature from causing the electronic device 100 to shut down abnormally. In some other embodiments, when the temperature is lower than another threshold, the electronic device 100 performs boosting on the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 160D is also called a "touch device”.
  • the touch sensor 160D can be disposed on the display screen 190, and the touch sensor 160D and the display screen 190 form a touch screen, which is also called a "touch screen”.
  • the touch sensor 160D is used to detect a touch operation on or near the touch sensor 160D.
  • the touch sensor can pass the detected touch operation to the application processor to determine the touch event type.
  • Visual output related to the touch operation may be provided through the display screen 190 .
  • the touch sensor 160D may also be disposed on the surface of the electronic device 100 in a position different from that of the display screen 190 .
  • the buttons 170 include a power button, a volume button, etc.
  • the key 170 may be a mechanical key. It can also be a touch button.
  • the electronic device 100 may receive key inputs and generate key signal inputs related to user settings and function control of the electronic device 100 .
  • the electronic device 100 may also include other functional units, which are not limited in the embodiments of the present application.
  • the above-mentioned electronic devices may include different product forms in the automotive field, such as in-vehicle chips, in-vehicle devices (such as in-vehicle computers, in-vehicle computers, head-up displays (HUD), etc.), complete vehicles, and servers (virtual or physical).
  • in-vehicle chips such as in-vehicle chips, in-vehicle devices (such as in-vehicle computers, in-vehicle computers, head-up displays (HUD), etc.), complete vehicles, and servers (virtual or physical).
  • the electronic device is an entire vehicle (or vehicle) as an example for explanation.
  • Figure 2 shows a schematic structural diagram of the vehicle.
  • the camera 180 shown in FIG. 1 is disposed on the first surface of the fender 101 of the vehicle 1 , and the first surface should be understood as the surface adjacent to the crown of the tire 102 .
  • the camera 180 can be slidably disposed on the first surface.
  • the sliding direction of the camera 180 may be the direction of the axis of the tire 102 .
  • the number of cameras 180 may be multiple. For example, a camera is provided on the fender corresponding to each tire, and the number of cameras provided on each fender may be multiple.
  • the shooting area of the camera 180 may be area A shown in FIG. 2 . That is to say, every time the camera collects images, the camera can collect the image of the crown of the tire covered by area A.
  • the camera 180 can capture images at preset time intervals. Therefore, when the tire rotates, the camera can capture multiple images of the tire, and how many images can be spliced into an image of the tire for one week.
  • one achievable principle is: Assume that the vehicle's driving speed V and the tire's crown circumference L are known, and the time T it takes for the tire to rotate once can be calculated. The camera's shooting area S on the tire is known, and the camera's shooting time interval t can be adjusted. In this way, the camera's shooting time interval t is adjusted. When the product of the shooting time interval t and the driving speed V is less than or equal to the shooting area S, within time T, multiple images taken by the camera can be spliced into an image of one week of the tire.
  • the embodiments of the present application are not limited to the above methods, and will not be listed one by one here.
  • vehicle tire testing usually determines the safety of the tires by detecting tire pressure. For example, when the detected tire pressure is 225 kPa and is 10 kPa lower than the standard tire pressure (235 kPa), it is determined that the detected tire pressure is normal, that is, the tire is safe. However, when the tire pressure is normal, the tire may be cracked, worn, or have nails in it, etc., which still poses safety risks.
  • embodiments of the present application provide a method for detecting vehicle tires.
  • the method is applied to an electronic device.
  • the method includes: while the vehicle is driving, the electronic device collects a first image under preset conditions. Let the condition be the condition used to trigger the collection of the first image, for example, the vehicle speed reaches a threshold, the vehicle is driving on a designated road section, etc.
  • the first image may be a section of the tire when the tire rotates to the first position.
  • the electronic device collects a second image, which may be a segment of the tire when the tire rotates to the second position.
  • the electronic device displays the first image and the second image on the first interface.
  • the electronic device receives a user's first operation on the first interface. In response to the first operation, the electronic device splices the first image and the second image to obtain a first target image.
  • the electronic device displays the first target image on the second interface.
  • the first image and the second image are collected while the vehicle is driving and the preset conditions for triggering image collection are met, and the first image and the second image are processed under the user's operation.
  • the images are spliced to obtain the spliced image, and then the spliced image is displayed, so that the user can visually observe the condition of the tire to determine the health status of the tire, and then the user can test the tire anytime and anywhere without the need for the user to frequently drive the car. Go to a car dealership for an inspection.
  • the embodiment of the present application can perform operations such as image collection, splicing, and analysis when the tire pressure is normal, and can detect tires in multiple modes to eliminate tire safety hazards as much as possible.
  • the above-mentioned preset conditions may include at least one of the following: user operation, first preset time, vehicle passing through a risky road section, and notification.
  • the contents of the preset conditions are different. The following is a detailed description of different scenarios:
  • Scenario 1 The electronic device triggers image acquisition after receiving the notification.
  • the vehicle receives a first notification, and the first notification includes schedule information.
  • the schedule information may include time, location, events, etc.
  • the electronic device analyzes that the user may have plans to drive a long distance. In this way, the electronic device generates the first prompt information, which is used to determine whether to perform tire testing on the user who plans to travel far at a specified time.
  • the electronic device displays the first prompt information on interface one (such as the above-mentioned third interface).
  • the electronic device receives the user's operation one on the interface one (such as the above-mentioned second operation), and the operation one may be an operation for determining to detect the tire. In response to operation one, the electronic device captures an image.
  • FIG. 3A is a schematic interface diagram of a tire detection method provided by an embodiment of the application applied to a first electronic device in a first application scenario.
  • the interface 11 of the vehicle displays the receipt of the first notification.
  • the content displayed in the first notification is: Xiao Wang will go to location A to attend the day after tomorrow (that is, January 8, 2022). Meeting.
  • the vehicle analyzed that Xiao Wang (user A) was about to have a long trip plan on January 8, 2022.
  • the electronic device generates prompt information according to the first notification. That is, the interface of the vehicle jumps from the interface 11 shown in FIG. 3A to the second interface 12 shown in FIG. 3B.
  • the interface 212 it is displayed that "there are plans for a long trip on January 8, 2022, whether to perform tire testing.”
  • User A can decide whether to drive to location A based on his own needs. If user A needs to drive to location A, user A can click the first control for determination on interface two.
  • the electronic device receives user A's operation on the first control. In response to this operation, the vehicle can jump to interface three 13 shown in Figure 3C.
  • the interface three 13 can include a prompt message "The vehicle is performing tire testing". At this time, the electronic device collects images and performs tire testing. detection.
  • the vehicle receives a second notification, and the second notification includes schedule information.
  • the schedule information may include time, location, events, etc.
  • the electronic device analyzes that the user may have plans to drive a long distance. In this way, the electronic device generates second prompt information, which is used to determine whether to perform a tire test on the user who plans to travel far at a specified time.
  • the electronic device sends the second prompt information to the terminal, which may include a mobile phone, a tablet computer, a notebook computer, etc. Users can determine whether to perform tire testing on the terminal and generate a determination result.
  • the terminal may feed back the determination result to the electronic device.
  • the electronic device If the determination result is tire detection, the electronic device generates an event to be processed based on the determination result.
  • the event to be processed may refer to detecting the tire while the vehicle is driving again. That is to say, during the next driving of the vehicle, the electronic device detects the tires.
  • FIG. 4A is a schematic interface diagram of a tire detection method provided by an embodiment of the application applied to a first electronic device in a second application scenario.
  • the terminal 2 receives the second notification.
  • the content of the second notification may be: Xiao Wang will go to location A to attend a meeting the day after tomorrow (that is, January 8, 2022).
  • the terminal 2 displays the interface 21 shown in FIG. 4A.
  • terminal 2 analyzes that Xiao Wang (user A) is about to have a long trip plan on January 8, 2022.
  • the terminal 2 generates the second prompt information according to the second notification.
  • the second prompt information may be "I have a long-distance travel plan on January 8, 2022, whether to perform tire testing.”
  • the interface of the terminal 2 jumps from the interface 21 shown in FIG. 4A to the interface 22 shown in FIG. 4B.
  • the interface 22 displays "I have a long-distance travel plan on January 8, 2022, whether to perform tire testing", as well as a second control 221 for confirmation and a third control 222 for denial. Users can decide whether to drive to location A based on their own needs. If the user needs to drive to location A, the user can click the second control 221 for determination on the interface 22 .
  • the terminal receives the user's operation on the second control 221. In response to this operation, the terminal 2 shown in FIG.
  • the 4B feeds back the result of "determination to perform tire detection” to the electronic device 1 shown in FIG. 4C .
  • the electronic device 1 generates an event to be processed based on the result, and the event to be processed may be "carry out tire detection during the next driving of the vehicle.”
  • the vehicle is stationary or not started.
  • User A starts the vehicle, and while the vehicle is driving, the electronic device 1 detects the tires.
  • the interface of the electronic device 1 jumps to the interface 14 shown in FIG. 4D , and a prompt message "The vehicle is undergoing tire testing" is displayed on the interface 14 .
  • Scenario 2 After the vehicle passes through a dangerous road section, the electronic device triggers image collection.
  • the risky road section may include at least one of the following: construction road sections, dirty road sections, rural road sections, bumpy road sections, and emergency parking zones. Of course, the risky road section may also include other road sections, such as accident sections. The embodiments of this application are not specifically limited. The following is a detailed description of risk sections such as "construction sections, dirty roads, rural sections, bumpy roads, emergency stops":
  • the first type is construction sections and rural sections.
  • the electronic device obtains a map of the location of the vehicle.
  • the electronic device obtains information on construction sections and rural sections on the map.
  • the electronic device triggers the acquisition of images.
  • the second type is bumpy roads.
  • the electronic device obtains the vibration frequency of the vehicle.
  • the electronic device analyzes changes in vibration frequency during the first period of time.
  • the vibration frequency of the vehicle is greater than the first threshold, the electronic device determines that the vehicle is on a bumpy road section.
  • the vibration frequency of the vehicle decreases from the first threshold to the second threshold, the electronic device determines that the vehicle exits the bumpy road section.
  • the electronic device triggers image acquisition.
  • the third type is dirty road sections and emergency parking zones.
  • the electronic device detects road surface information.
  • the electronic device determines that the road section where the vehicle is traveling is a dirty road section or an emergency parking zone based on the detected road surface information.
  • the electronic device triggers image acquisition.
  • the information on the road surface may include the humidity of the road surface, the temperature of the road surface, objects on the road surface, road signs, etc.
  • the electronic device determines that the road section where the vehicle is traveling is an emergency stop zone.
  • Scenario three image acquisition is triggered in response to user operation of the electronic device.
  • the electronic device receives the user's operation. In response to this operation, the electronic device triggers the acquisition of images. For example, the user clicks a button on the steering wheel of the vehicle, and the electronic device receives the user's operation on the button on the steering wheel. In response to this operation, the electronic device triggers acquisition of images.
  • Scenario 4 The electronic device triggers image acquisition at the first preset time.
  • the electronic device when the vehicle is traveling at a preset speed within a first preset time, the electronic device triggers image acquisition. For example, when the vehicle travels at 30 kilometers/hour during the period from 9:00 to 9:30 on Mondays of every week, the electronic device triggers the acquisition of images.
  • the electronic device when the speed of the vehicle does not reach the preset speed within the first preset time, the electronic device does not trigger image acquisition. However, when the speed of the vehicle still does not reach the preset speed within the second preset time, the electronic device triggers image acquisition.
  • the first preset time and the second preset time are two adjacent periods of time. For example, during the period from 9:00 to 9:30 on Monday of the first week, and the speed of the vehicle does not reach 30 kilometers/hour, the electronic device does not trigger the acquisition of images. When the vehicle's speed still does not reach 30 km/h between 9:00 and 9:30 on Monday of the second week, the electronic device triggers the acquisition of images.
  • a tire detection method provided by an embodiment of the present application will be introduced in detail below.
  • FIG. 5 is a partial flowchart of a vehicle tire detection method provided by an embodiment of the present application. As shown in Figure 5, taking the execution subject of the method as an electronic device as an example, the method may include:
  • the electronic device collects the first image under preset conditions.
  • the first image may be a section of the tire when the tire rotates to the first position.
  • the first position may refer to any position where the tire rotates, and is not specifically limited in the embodiments of this application.
  • the preset conditions may include at least one of the following: user operation, first preset time, vehicle passing through a risky road section, and notification. Each preset condition is described in detail below, as follows:
  • the preset condition may include notification.
  • S201 includes: S2011, S2012, S2013, S2014 and S2015.
  • S2011, S2012, S2013, S2014 and S2015 can be implemented specifically as:
  • Schedule information can be included in the notification.
  • the schedule information may include time, place, people, events, etc.
  • the schedule information can be "Xiao Wang will go to location A to attend a meeting the day after tomorrow (that is, January 8, 2022).”
  • the schedule information can also be "Xiao Li will go to Hangzhou to participate in technical training tomorrow (that is, January 7, 2022).”
  • the electronic device According to the schedule information, the electronic device generates first prompt information.
  • the first prompt information is used to indicate that there is a long-distance trip after the second preset time, and to determine whether to perform tire testing.
  • the second preset time may be the time difference between the current time and the time indicated in the schedule information. That is to say, the content of the first indication information may be "there is a long-distance trip after the second preset time, determine whether to perform tire testing.” For example, if the time indicated in the schedule information is January 8, 2022. The current time is January 6, 2022. The time difference between the current time and the indicated time is 48 hours. In this way, the second preset time can be 48 hours.
  • the first instruction message is: "If you have a long journey in 48 hours, determine whether to perform tire testing.”
  • the electronic device displays a third interface, and the first prompt information is displayed on the third interface.
  • the electronic device receives the second operation on the third interface.
  • the second operation may be used to determine to perform a detection operation on the tire.
  • the first indication information is displayed on the third interface.
  • the third interface may also include a first control, and the first control is used to determine to perform tire testing.
  • the electronic device receives the user's second operation on the first control on the third interface. For example, the user clicks the first control on the third interface. At this time, the electronic device receives the user's click operation on the first control.
  • the electronic device collects the first image.
  • the vehicle when the vehicle is driving, after receiving the notification, the vehicle can generate prompt information based on the schedule information carried in the notification to prompt the user whether to perform tire testing.
  • the electronic device triggers the operation of collecting images according to the user's instructions. In this way, the electronic device can trigger the image collection operation based on the user's schedule information, which is more realistic and more practical.
  • the preset condition may include notification.
  • S201 includes: S2016 and S2017.
  • S2016 and S2017 can be implemented specifically as:
  • the electronic device receives the first instruction information sent by the terminal.
  • the terminal may be configured to receive a notification containing schedule information, generate second prompt information based on the schedule information, and generate first instruction information based on the second prompt information.
  • schedule information please refer to the relevant content in the above embodiments, and will not be described again here.
  • the second prompt information is used to indicate that there is a long-distance trip after the second preset time and to determine whether to perform tire testing.
  • the second prompt information can be interpreted in the same way as the above-mentioned first prompt information, which will not be described again here.
  • the first instruction information is an instruction made by the user in response to the second prompt information.
  • the first indication information may be used to instruct the electronic device to trigger image acquisition.
  • the terminal can receive notifications containing schedule information.
  • the terminal generates the second prompt information according to the schedule information and displays it.
  • the terminal also displays controls for making determinations.
  • the terminal receives the user's operation on the control, generates first indication information in response to the operation, and feeds back the first indication information to the electronic device.
  • the schedule information can be "Xiao Wang will go to location A to attend a meeting the day after tomorrow (that is, January 8, 2022)."
  • the terminal analyzes that the user (Xiao Wang) is about to have a long distance trip.
  • the terminal can generate the following prompt information: "There is a long-distance trip in 48 hours, determine whether to perform tire testing.” At the same time, a control for "OK” and a control for "No" appear on the terminal. When the user clicks the "OK” control, the terminal receives the user's operation, and in response to the operation, can generate the following instruction information: "Perform tire testing when the vehicle is driving again.”
  • the electronic device generates an event to be processed according to the first instruction information.
  • the event to be processed may be to detect the tires when the vehicle is running again. In other words, the vehicle is at rest at the current moment. After the vehicle is started again, the tires are tested while the vehicle is driving. In this way, after the vehicle is started, the operation of collecting images is triggered while driving again.
  • the user's terminal when the vehicle is stationary, can receive the notification and generate prompt information based on the schedule information carried in the notification. The user can determine whether to perform tire testing on the terminal based on the prompt information. After the user makes corresponding instructions on the terminal in response to the prompt information, the terminal sends the user's instructions to the electronic device. According to the user's instructions, the electronic device triggers the operation of collecting images while the vehicle is driving again, which is more practical and practical. higher.
  • the preset condition may include user operations.
  • S201 includes: S2018 and S2019.
  • S2018 and S2019 can be implemented specifically as follows:
  • the electronic device receives the user's third operation.
  • the third operation may include a gesture operation, a click operation, a sliding operation, a pressing operation, and so on.
  • the electronic device collects the first image.
  • the electronic device is triggered to collect images through the user's operation, so that the action of the electronic device to collect images is triggered according to the user's needs, and the flexibility is higher.
  • the preset condition may include the first preset time.
  • S201 includes: S2020.
  • S2020 can be implemented specifically as:
  • the electronic device collects the first image at the first preset time.
  • the preset speed may be determined according to the configuration of the acquisition device used to acquire images. For example, the higher the configuration of the collection device, the greater the preset speed; the lower the configuration of the collection device, the smaller the preset speed. For example, if the configuration of the collection device is low configuration, the preset speed can be 0-30 km/h; if the configuration of the collection device is high configuration, the preset speed can be 40-60 km/h.
  • the first preset time may refer to a periodic time point.
  • the first preset time may be 9:00 on Monday of every week.
  • the first preset time may also refer to a periodic time period.
  • the first preset time may be 9:00-9:30 on Monday of each week.
  • the first preset time may also refer to a period of time.
  • the first preset time may be 9:00-9:30.
  • the electronic device collects the first image.
  • the vehicle travels at a speed of 30 km/h, and the electronic device collects the first image.
  • the vehicle is traveling at a speed of 30 kilometers/hour, and the electronic device collects the first image.
  • the operation of collecting images is triggered at a preset time and a preset speed.
  • the operation of collecting images can be triggered at a specified time, effectively reducing user operations and facilitating subsequent automatic tire detection.
  • the preset condition may include the first preset time.
  • S201 includes: S2021.
  • S2021 can be implemented specifically as:
  • the first threshold may be a preset value, such as 30 km/h, 60 km/h.
  • the first preset time and the third preset time may be described in the same manner as the above preset time, and will not be described again here.
  • the first preset time may be 9:00-9:30 on Monday of the first week
  • the third preset time may be 9:00-9:30 on Monday of the second week.
  • the preset condition may include the vehicle passing through a risky road section, as shown in Figure 7.
  • the tire detection method provided by the embodiment of the present application also includes:
  • the electronic device collects the first information.
  • This first information may be used to characterize the environment and/or the vehicle.
  • the environment can include weather, road conditions, temperature, etc.
  • Road conditions can include construction roads, dirt roads, gravel roads, dirty roads, etc.
  • the vehicle information may include the vehicle's vibration frequency, the vehicle's tire pressure, the vehicle's tire cleanliness, etc.
  • the electronic device determines that the vehicle has traveled through the risky road section.
  • the risk road section may refer to the road section that affects the health of the tires.
  • the risky road section may include at least one of the following: construction road section, dirty road section, rural road section, bumpy road section, and emergency parking zone.
  • construction road section dirty road section
  • rural road section rural road section
  • bumpy road section bumpy road section
  • emergency parking zone emergency parking zone.
  • the embodiments of the present application are not limited to the above list.
  • Risky road sections may also include other road sections, such as accident road sections, etc., which will not be listed one by one here.
  • construction road sections dirty road sections, rural road sections, bumpy road sections, emergency parking zones, etc. are taken as examples for detailed description.
  • relevant content descriptions in the above embodiments please refer to the relevant content descriptions in the above embodiments, and will not be described again here.
  • S201 includes: S2022.
  • S2022 can be implemented specifically as:
  • the electronic device collects the first image.
  • the electronic device is triggered to collect images, and the road section traveled by the vehicle can be combined to determine whether to test the vehicle's tires. There is no need to perform tire testing from time to time, which can effectively save energy. Consumption.
  • the electronic device After collecting the first image, the electronic device collects the second image.
  • the second image may be a section of the tire when the tire rotates to the second position.
  • the introduction of the second image may be as described above for the first image, which will not be described again here.
  • the electronic device displays a first interface, where the first interface includes a first image and a second image.
  • the electronic device receives the user's first operation on the first interface.
  • the electronic device receives the user's operation on the first interface.
  • the first interface may further include: a first display area for displaying images, a second display area for editing images, and a first control for calling the image splicing function.
  • S206 may specifically include: the electronic device receives a user's operation of moving the first image in the first display area to the second display area.
  • the electronic device receives a user's operation of moving the second image in the first display area to the second display area.
  • FIG. 8A is a schematic interface diagram of a first electronic device when a tire detection method provided by an embodiment of the application is applied in a third application scenario.
  • the first image is displayed in the first area 151
  • the second image is displayed in the second area 152.
  • the first area 151 and the second area 152 are the above-mentioned first display areas.
  • the user drags the first image to move the first image to the third area 153
  • the third area 153 is the above-mentioned second display area.
  • the user drags the second image to move the second image to the third area 153 .
  • the user can zoom and adjust the first image and the second image respectively by using different gestures.
  • the electronic device 1 receives the above-mentioned operation from the user.
  • the electronic device splices the first image and the second image to obtain the first target image.
  • the user clicks on the "splice" control 154 shown in Figure 8A.
  • the electronic device 1 receives the above operation from the user, and then obtains the first target image and displays the first target image in the third display area 153 shown in FIG. 8B.
  • S207 may include S2071, S2072 and S2073.
  • S2071, S2072 and S2073 can be implemented specifically as:
  • the electronic device matches the first image and the second image.
  • the electronic device compares features on the first image and the second image.
  • the electronic device determines that the characteristics of the first area of the first image are consistent with the characteristics of the second area of the second image.
  • the electronic device crops the first area of the first image to obtain a third image.
  • the electronic device can also crop the second area of the second image. That is, the electronic device crops a portion of the same feature in one of the two images.
  • the electronic device splices the second image and the third image to obtain the first target image.
  • the electronic device displays a second interface, and the second interface includes the first target image.
  • the first target image is displayed on the second interface, and the user can visually check the first target image to determine whether there are cracks, holes, bulges, nails, etc. on the first target image.
  • the embodiment of the present application is not limited to collecting two images, the first image and the second image, but may also collect multiple images.
  • two images are taken as an example for explanation.
  • two or more images are collected under preset conditions while the vehicle is driving, and the two or more images are spliced to obtain the target image, and the target image will be displayed.
  • the user can intuitively Observe target images to determine tire health.
  • the tire detection method provided by the embodiment of the present application can be used to detect the tire, and potential safety hazards of the tire can be eliminated as much as possible.
  • the electronic device can also directly display the health status of the tire, which may include the following solutions:
  • the electronic device can analyze the target image to determine the health of the tire. details as follows:
  • the tire detection method provided by the embodiment of the present application may further include:
  • the electronic device determines the health status of the tire based on the first target image and the pre-stored initial image of the tire.
  • the health status of the tire may include at least one of the following: foreign matter on the tread of the tire, cracks on the tread of the tire, tread wear of the tire, holes in the tread of the tire, or bulges on the tread of the tire.
  • the electronic device can compare the features of the first target image with the features of the initial image of the tire one by one, and obtain that there are features similar to "nail caps" on the first target image. Therefore, the electronic device can determine whether there are nails in the tires.
  • the electronic device may compare the texture depth of the first target image with the texture depth of the initial image of the tire. When the difference between the texture depth of the first target image and the texture depth of the initial image is greater than the threshold, the electronic device may determine that the tire is severely worn.
  • the electronic device displays a third interface, which includes the health status of the tire.
  • the electronic device can compare the first target image with the stored initial image to obtain a comparison result.
  • Electronic devices can determine the health of the tires based on the comparison. In this way, the electronic device can automatically analyze the health status of the tire without user analysis, which is more accurate and user-friendly.
  • the tire detection method provided by the embodiment of the present application also includes:
  • the electronic device obtains an updated image of the tire.
  • This updated image can be understood as the image after the tire has been repaired.
  • the electronic device uses the updated image to update the initial image of the tire.
  • the image of the tire can be updated in real time in the electronic device, effectively avoiding repeated confirmation of tire repair traces during the tire inspection process, avoiding repeated operations, and improving the accuracy of tire inspection.
  • the electronic device can also share the target image with other devices, and the other devices can analyze the health status of the tires, as follows:
  • the second interface may also include a second control for sharing images; after executing S208 and displaying the second interface, the tire detection method provided by the embodiment of the present application may further include:
  • the electronic device receives the user's third operation on the second control.
  • the third operation may include a click operation, a pressing operation, etc.
  • the electronic device shares the first target image with other devices, and accordingly, the other devices receive the first target image shared by the electronic device.
  • users of other devices may be professional tire repair personnel.
  • the user can analyze the health status of the tire based on the target image.
  • other devices can determine the health status of the tire based on the first target image and pre-stored tire model, brand, image and other information.
  • the electronic device displays a fourth interface, which includes the health status of the tire.
  • the tire detection method provided by the embodiment of the present application may also include:
  • the electronic device generates third prompt information based on the health status of the tire.
  • the third prompt information is used to provide the user with a tire maintenance solution.
  • the health status of the tire is nails in the tire.
  • the electronic device generates the following prompt message: "Diagnosis: There is a nail in the tire; Maintenance plan one: It is recommended to choose a repair shop A that is 1 kilometer away from the current location, and the total duration is estimated to be 10 minutes; Maintenance plan two: It is recommended to choose a repair shop 2 kilometers away from the company Repair shop B, the total duration is estimated to be 10 minutes.”
  • Embodiments of the present application also provide a device for implementing any of the above methods.
  • a device is provided that includes a unit (or means) for implementing each step performed by an electronic device in any of the above methods.
  • another device is also provided, including units (or means) used to implement each step performed by the vehicle in any of the above methods.
  • the device 900 may include:
  • the first acquisition unit 901 is used to collect a first image under preset conditions while the vehicle is driving.
  • the first image is a segment of the tire when the tire rotates to the first position;
  • the second acquisition unit 902 is configured to acquire a second image after the first acquisition unit acquires the first image.
  • the second image is a segment of the tire when the tire rotates to the second position;
  • the first display unit 903 is used to display a first interface, where the first interface includes a first image and a second image;
  • the first receiving unit 904 is used to receive the user's first operation on the first interface
  • the splicing unit 905 is configured to splice the first image and the second image in response to the first operation to obtain the first target image;
  • the second display unit 906 is used to display a second interface, where the second interface includes the first target image.
  • the preset condition includes at least one of the following: user operation, first preset time, vehicle passing through a risky road section, and notification.
  • the preset condition includes notification
  • the first collection unit 901 is also used to:
  • the first prompt information is used to indicate that there is a long-distance trip after the second preset time and determine whether to perform tire testing;
  • the third interface is displayed, and the first prompt information is displayed on the third interface
  • the preset condition includes notification
  • the first collection unit 901 is also used to:
  • the terminal is used to receive the notification containing the schedule information, and generate the second prompt information according to the schedule information, the first indication information generated according to the second prompt information, and the second prompt information is used to represent the second prompt information. 2.
  • the first instruction information is the instruction given by the user in response to the second prompt information;
  • an event to be processed is generated, and the event to be processed is to detect the tire while the vehicle is driving again.
  • the preset conditions include user operations
  • the first collection unit 901 is also used to:
  • the preset condition includes the first preset time
  • the first acquisition unit 901 is also used to:
  • the first image is collected at a first preset time.
  • the preset condition includes the first preset time
  • the first acquisition unit 901 is also used to:
  • the first image is collected when the vehicle travels for the first time within the third preset time.
  • the third preset time and the first preset time are two adjacent cycles.
  • the preset condition includes the vehicle passing through the risky road section, and the first collection unit 901 is also used to:
  • the first information is used to characterize the environment and/or the vehicle;
  • a risky road section which refers to a road section that affects the health of the tires
  • the first image is collected.
  • the risky road section includes at least one of the following: construction road section, dirty road section, rural road section, bumpy road section, and emergency parking zone.
  • the first interface also includes: a first display area for displaying images, a second display area for editing images, and a first control for calling the image splicing function;
  • the first receiving unit 904 is also used for:
  • the splicing unit 905 is also used to:
  • electronic device 900 further includes:
  • the determination unit 907 is used to determine the health status of the tire based on the first target image and the pre-stored initial image of the tire;
  • the third display unit 908 is used to display a third interface, which includes the health status of the tire.
  • electronic device 900 further includes:
  • the acquisition unit 909 is used to obtain an updated image of the tire after the tire is repaired
  • the update unit 910 is used to update the initial image of the tire using the update image.
  • the second interface further includes a second control, and the second control is used to share images; after displaying the second interface, the electronic device 900 further includes:
  • the second receiving unit 911 is used to receive the user's third operation on the second control
  • the sharing unit 912 is configured to share the first target image to other devices in response to the third operation, and the other devices are used to analyze the first target image, obtain the health status of the tire, and feed back the health status of the tire;
  • the third receiving unit 913 is used to receive the health status of the tire fed back by other devices.
  • the fourth display unit 914 is used to display a fourth interface, which includes the health status of the tire.
  • electronic device 900 further includes:
  • the generating unit 915 is configured to generate third prompt information according to the health status of the tire, and the third prompt information is used to provide the user with a tire maintenance solution.
  • the health status of the tire includes at least one of the following: foreign matter on the tread of the tire, cracks on the tread of the tire, tread wear of the tire, holes in the tread of the tire, damage to the tire's tread, etc. Tread bulge.
  • each unit in the above device is only a division of logical functions. In actual implementation, it can be fully or partially integrated into a physical entity, or it can also be physically separated.
  • the unit in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods.
  • the processor is, for example, a general-purpose processor, such as a central processing unit (Central Processing Unit, CPU) or a microprocessor
  • the memory is a memory within the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
  • the hardware circuit is an application-specific integrated circuit (ASIC), which realizes the functions of some or all of the above units through the design of the logical relationships of the components in the circuit; for another example, in another implementation, the hardware circuit is It can be realized by programmable logic device (PLD), taking Field Programmable Gate Array (FPGA) as an example, which can include a large number of logic gate circuits, and the logic gate circuits are configured through configuration files. connection relationships, thereby realizing the functions of some or all of the above units. All units of the above device may be fully realized by the processor calling software, or may be fully realized by hardware circuits, or part of the units may be realized by the processor calling software, and the remaining part may be realized by hardware circuits.
  • PLD programmable logic device
  • FPGA Field Programmable Gate
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with the ability to read and run instructions, such as a central processing unit (CPU), a microprocessor, Graphics processor GPU (can be understood as a microprocessor), or digital signal processor DSP, etc.; in another implementation, the processor can implement certain functions through the logical relationship of the hardware circuit.
  • the logical relationship of the hardware circuit is Fixed or reconfigurable, such as a hardware circuit implemented by a processor as an application-specific integrated circuit (ASIC) or a programmable logic device (PLD), such as an FPGA.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as neural network processing unit NPU tensor processing unit (Tensor Processing Unit, TPU), deep learning processing unit (Deep learning Processing Unit, DPU )wait.
  • NPU tensor processing unit Tensor Processing Unit, TPU
  • DPU deep learning processing unit
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
  • processors or processing circuits
  • each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a system-on-a-chip (SOC).
  • SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
  • An embodiment of the present application provides a vehicle, including: a processor and a memory.
  • the memory is coupled to the processor.
  • the memory is used to store computer program codes.
  • the computer program codes include computer instructions.
  • a vehicle provided by an embodiment of the present application includes the electronic device shown in FIG. 9 .
  • a computer program product provided by an embodiment of the present application when the computer program product is run on a computer, causes the computer to execute the tire detection method shown in Figures 5 to 7.
  • An embodiment of the present application provides a computer-readable storage medium that includes computer instructions.
  • the network device When the computer instructions are run on a terminal, the network device causes the network device to execute the tire detection method shown in Figures 5 to 7.
  • a chip system provided by an embodiment of the present application includes one or more processors. When the one or more processors execute instructions, the one or more processors execute the tire detection methods shown in Figures 5 to 7.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of this application, unless otherwise specified, "plurality” means two or more.
  • the above-mentioned communication equipment includes hardware structures and/or software modules corresponding to each function.
  • Persons skilled in the art should easily realize that, in conjunction with the units and algorithm steps of each example described in the embodiments disclosed herein, the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving the hardware depends on the specific application and design constraints of the technical solution. Professionals and technicians may use different methods to implement the described functions for each specific application, but such implementations should not be considered beyond the scope of the embodiments of the present application.
  • Embodiments of the present application can divide the above-mentioned communication equipment into functional modules according to the above-mentioned method examples.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic and is only a logical function division. In actual implementation, there may be other division methods.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种车胎的检测方法,包括车辆在行驶的过程中且在满足触发采集图像的预设条件下,采集第一图像和第二图像,在用户的操作下,对第一图像和第二图像进行拼接,得到拼接后的图像,再将拼接后的图像进行显示,使得用户可以直观地观察车胎情况,从而确定车胎的健康状况,进而用户可以随时随地对车胎进行检测,无需用户经常将车开到养车店进行检查。还提供了一种电子装置。

Description

一种车胎的检测方法和电子装置 技术领域
本申请涉及电子装置技术领域,尤其涉及一种车胎的检测方法和电子装置。
背景技术
目前,车辆是人们工作和生活中必不可缺少的交通工具。车辆的安全检测至关重要,尤其是,车辆的车胎检测。目前,车辆的车胎检测通常是通过检测胎压,来确定车胎的安全性。当车辆的胎压出现异常时,用户会将车开到养车店进行检修。但是,在车胎的胎压正常的情况下,依然会存在安全隐患的可能,例如,车胎裂了、车胎磨损、车胎扎钉子等。因此,现有的车胎检测不能完全排除车胎的安全隐患。
发明内容
本申请实施例提供一种车胎的检测方法和电子装置,尽可能的排除车胎的安全隐患。
为达到上述目的,本申请实施例采用如下技术方案。
第一方面,本申请实施例提供一种车胎的检测方法,该方法可以应用于电子装置,该方法可以包括:在车辆行驶的过程中,在预设条件下采集第一图像,第一图像为车胎转动至第一位置时车胎的一段图像。在采集第一图像之后,采集第二图像,第二图像为车胎转动至第二位置时车胎的一段图像。显示第一界面,第一界面包括第一图像和第二图像。接收用户对第一界面的第一操作。响应于第一操作,拼接第一图像和第二图像,得到第一目标图像。显示第二界面,第二界面包括第一目标图像。
在本申请实施例中,车辆在行驶的过程中且在满足触发采集图像的预设条件下,采集第一图像和第二图像,并在用户的操作下,对第一图像和第二图像进行拼接,得到拼接后的图像,再将拼接后的图像进行显示,使得用户可以直观观察车胎情况,从而确定车胎的健康状况,进而用户可以随时随地对车胎进行检测,无需用户经常将车开到养车店进行检查。另外,本申请实施例可以在车胎胎压正常的情况下进行图像采集、拼接、分析等操作,可以在多模式下检测车胎,尽可能的排除车胎的安全隐患。
在一些具体可实现方式中,预设条件包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。
在一种具体可实现方式中,预设条件包括通知,在预设条件下采集第一图像,具体可以为:在车辆行驶的过程中,接收通知,通知中包括日程信息。根据日程信息,生成第一提示信息,第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检测。显示第三界面,第三界面上显示第一提示信息。接收对第三界面的第二操作,第二操作为用于确定对车胎进行检测操作。响应于第二操作,采集第一图像。
本申请实施例,在车辆行驶过程中,车辆接收到通知之后,可以根据通知中携带的日程信息,生成提示信息,以提示用户是否进行车胎检测。在用户针对提示信息做出相应指示之后,电子装置根据用户的指示触发采集图像的操作。这样,电子装置可 以根据用户的日程信息,来触发采集图像的操作,更贴合实际,实用性更高。
在一种具体可实现方式中,预设条件包括通知,在预设条件下采集第一图像,具体可以为:接收终端发送的第一指示信息,终端用于接收包含日程信息的通知,并根据日程信息生成第二提示信息,根据第二提示信息生成的第一指示信息,第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测;第一指示信息为用户针对第二提示信息做出的指示。根据第一指示信息,生成待处理事件,待处理事件为在车辆再次行驶过程中对车胎进行检测。
本申请实施例,在车辆静止时,用户的终端可以接收到通知,并根据通知中携带的日程信息生成提示信息。用户可以针对提示信息在终端上确定是否进行车胎检测。用户在终端上针对提示信息做出相应指示之后,终端将用户的指示发送给电子装置,电子装置根据用户的指示,在车辆再次行驶的过程中触发采集图像的操作,更贴合实际,实用性更高。
在一种具体可实现方式中,预设条件包括用户操作,在预设条件下采集第一图像,具体可以为:接收用户的第三操作。响应于第三操作,采集第一图像。
本申请实施例,通过用户的操作来触发电子装置采集图像,使得电子装置采集图像的动作是根据用户的需求触发的,灵活性更高。
在一种具体可实现方式中,预设条件包括第一预设时间,在预设条件下采集第一图像,具体可以为:在车辆以预设速度的行驶过程中,在第一预设时间采集第一图像。
本申请实施例,以预设时间和预设速度,触发采集图像的操作,可以在指定时间触发采集图像的操作,有效减少用户操作,便于后续实现自动检测车胎。
在一种具体可实现方式中,预设条件包括第一预设时间,在预设条件下采集第一图像,具体可以为:在第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内车辆第一次行驶时,采集第一图像,第三预设时间与第一预设时间为两个相邻周期。
本申请实施例,在以预设时间和预设速度来触发采集图像的操作的情况下,即使在第一个周期内未能触发采集图像的操作,在第二个周期内即使车速未达到预设速度,依然触发采集图像的操作,有效确保及时启动车胎检测功能。
在一种具体可实现方式中,预设条件包括车辆经过风险路段,在预设条件下采集第一图像,具体可以为:采集第一信息,第一信息用于表征环境和/或车辆的信息。根据第一信息,确定车辆行驶过风险路段,风险路段指影响车胎健康状况的路段。在确定车辆行驶过风险路段之后,采集第一图像。
本申请实施例中,在车辆行驶过风险路段之后,触发电子装置采集图像的操作,可以结合车辆走过的路段,来确定是否对车辆的车胎进行检测,无需时常进行车胎检测,可以有效节省能耗。
在一种具体可实现方式中,风险路段包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。当然,本申请中风险路段还可以包括其他路段,例如事故路段等,本申请不做具体限定。
在一种具体可实现方式中,第一界面还包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件。接收用户对第一界面的 第一操作,具体可以为:接收用户将第一显示区内的第一图像移动至第二显示区的操作;接收用户将第一显示区内的第二图像移动至第二显示区的操作;接收用户在第二显示区内对第一图像和第二图像的缩放操作;接收用户对第一控件的操作。
这样,本申请实施例通过在车辆行驶过程中,在预设条件下采集两个或多个图像,并对两个或多个图像进行拼接得到目标图像,并将显示目标图像,用户可以通过直观观察目标图像来确定车胎的健康状况。这样,当车胎的胎压正常时,可以采用本申请实施例提供的车胎检测方法对车胎进行检测,可以尽可能的排除车胎的安全隐患。
在一种具体可实现方式中,响应于第一操作,拼接第一图像和第二图像,得到第一目标图像,具体可以为:响应于第一操作,将第一图像和第二图像进行匹配。当第一图像的第一区的特征与第二图像的第二区的特征一致时,裁剪第一图像的第一区,得到第三图像。拼接第二图像和第三图像,得到第一目标图像。
在一些具体可实现方式中,在显示第二界面之后,还可以包括:根据第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况。显示第三界面,第三界面上包括车胎的健康状况。
本申请实施例,电子装置可以将第一目标图与存储的初始图像进行比对得到比对结果。电子装置可以根据比对结果确定车胎的健康状况。这样,电子装置实现自动分析车胎的健康状况,无需用户分析,准确度更高、更便于用户使用。
在一些具体可实现方式中,所述方法还可以包括:在车胎进行补胎之后,获取车胎的更新图像。采用更新图像,更新车胎的初始图像。这样,电子装置中可以实时更新车胎的图像,有效避免车胎检测过程中反复确认车胎的修补痕迹,避免重复操作,提高车胎检测的准确性。
在一些具体可实现方式中,第二界面还包括第二控件,第二控件用于分享图像;在显示第二界面之后,方法还可以包括:接收用户对第二控件的第三操作。响应于第三操作,将第一目标图像分享给其他设备,其他设备用于分析第一目标图像,得到车胎的健康状况,并反馈车胎的健康状况。接收其他设备反馈的车胎的健康状况。显示第四界面,第四界面上包括车胎的健康状况。
在一些具体可实现方式中,方法还可以包括:根据车胎的健康状况,生成第三提示信息,第三提示信息用于为用户提供车胎维修方案。
在一种具体可实现方式中,车胎的健康状况包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
第二方面,本申请实施例提供一种电子装置,该电子装置包括:第一采集单元,用于在车辆行驶的过程中,在预设条件下采集第一图像,第一图像为车胎转动至第一位置时车胎的一段图像。第二采集单元,用于在第一采集单元采集第一图像之后,采集第二图像,第二图像为车胎转动至第二位置时车胎的一段图像。第一显示单元,用于显示第一界面,第一界面包括第一图像和第二图像。第一接收单元,用于接收用户对第一界面的第一操作。拼接单元,用于响应于第一操作,拼接第一图像和第二图像,得到第一目标图像。第二显示单元,用于显示第二界面,第二界面包括第一目标图像。
在本申请实施例中,车辆在行驶的过程中且在满足触发采集图像的预设条件下,采集第一图像和第二图像,并在用户的操作下,对第一图像和第二图像进行拼接,得 到拼接后的图像,再将拼接后的图像进行显示,使得用户可以直观观察车胎情况,从而确定车胎的健康状况,进而用户可以随时随地对车胎进行检测,无需用户经常将车开到养车店进行检查。另外,本申请实施例可以在车胎胎压正常的情况下进行图像采集、拼接、分析等操作,可以在多模式下检测车胎,尽可能的排除车胎的安全隐患。
在一些具体可实现方式中,预设条件包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。
在一种具体可实现方式中,预设条件包括通知,第一采集单元还用于:在车辆行驶的过程中,接收通知,通知中包括日程信息;根据日程信息,生成第一提示信息,第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检测;显示第三界面,第三界面上显示第一提示信息;接收对第三界面的第二操作,第二操作为用于确定对车胎进行检测操作;响应于第二操作,采集第一图像。
本申请实施例,在车辆行驶过程中,车辆接收到通知之后,可以根据通知中携带的日程信息,生成提示信息,以提示用户是否进行车胎检测。在用户针对提示信息做出相应指示之后,电子装置根据用户的指示触发采集图像的操作。这样,电子装置可以根据用户的日程信息,来触发采集图像的操作,更贴合实际,实用性更高。
在一种具体可实现方式中,预设条件包括通知,第一采集单元还用于:接收终端发送的第一指示信息,终端用于接收包含日程信息的通知,并根据日程信息生成第二提示信息,根据第二提示信息生成的第一指示信息,第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测;第一指示信息为用户针对第二提示信息做出的指示;根据第一指示信息,生成待处理事件,待处理事件为在车辆再次行驶过程中对车胎进行检测。
本申请实施例,在车辆静止时,用户的终端可以接收到通知,并根据通知中携带的日程信息生成提示信息。用户可以针对提示信息在终端上确定是否进行车胎检测。用户在终端上针对提示信息做出相应指示之后,终端将用户的指示发送给电子装置,电子装置根据用户的指示,在车辆再次行驶的过程中触发采集图像的操作,更贴合实际,实用性更高。
在一种具体可实现方式中,预设条件包括用户操作,第一采集单元还用于:接收用户的第三操作;响应于第三操作,采集第一图像。
本申请实施例,通过用户的操作来触发电子装置采集图像,使得电子装置采集图像的动作是根据用户的需求触发的,灵活性更高。
在一种具体可实现方式中,预设条件包括第一预设时间,第一采集单元还用于:在车辆以预设速度的行驶过程中,在第一预设时间采集第一图像。
本申请实施例,以预设时间和预设速度,触发采集图像的操作,可以在指定时间触发采集图像的操作,有效减少用户操作,便于后续实现自动检测车胎。
在一种具体可实现方式中,预设条件包括第一预设时间,第一采集单元还用于:在第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内车辆第一次行驶时,采集第一图像,第三预设时间与第一预设时间为两个相邻周期。
本申请实施例,在以预设时间和预设速度来触发采集图像的操作的情况下,即使在第一个周期内未能触发采集图像的操作,在第二个周期内即使车速未达到预设速度, 依然触发采集图像的操作,有效确保及时启动车胎检测功能。
在一种具体可实现方式中,预设条件包括车辆经过风险路段,第一采集单元还用于:采集第一信息,第一信息用于表征环境和/或车辆的信息;根据第一信息,确定车辆行驶过风险路段,风险路段指影响车胎健康状况的路段;在确定车辆行驶过风险路段之后,采集第一图像。
本申请实施例中,在车辆行驶过风险路段之后,触发电子装置采集图像的操作,可以结合车辆走过的路段,来确定是否对车辆的车胎进行检测,无需时常进行车胎检测,可以有效节省能耗。
在一种具体可实现方式中,风险路段包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。当然,本申请中风险路段还可以包括其他路段,例如事故路段等,本申请不做具体限定。
在一种具体可实现方式中,第一界面还包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件。第一接收单元还用于:接收用户将第一显示区内的第一图像移动至第二显示区的操作;接收用户将第一显示区内的第二图像移动至第二显示区的操作;接收用户在第二显示区内对第一图像和第二图像的缩放操作;接收用户对第一控件的操作。
这样,本申请实施例通过在车辆行驶过程中,在预设条件下采集两个或多个图像,并对两个或多个图像进行拼接得到目标图像,并将显示目标图像,用户可以通过直观观察目标图像来确定车胎的健康状况。这样,当车胎的胎压正常时,可以采用本申请实施例提供的车胎检测方法对车胎进行检测,可以尽可能的排除车胎的安全隐患。
在一种具体可实现方式中,拼接单元还用于:响应于第一操作,将第一图像和第二图像进行匹配;当第一图像的第一区的特征与第二图像的第二区的特征一致时,裁剪第一图像的第一区,得到第三图像;拼接第二图像和第三图像,得到第一目标图像。
在一些具体可实现方式中,该电子装置还可以包括:确定单元,用于根据第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况。第三显示单元,用于显示第三界面,第三界面上包括车胎的健康状况。
本申请实施例,电子装置可以将第一目标图与存储的初始图像进行比对得到比对结果。电子装置可以根据比对结果确定车胎的健康状况。这样,电子装置实现自动分析车胎的健康状况,无需用户分析,准确度更高、更便于用户使用。
在一些具体可实现方式中,该电子装置还可以包括:获取单元,用于在车胎进行补胎之后,获取车胎的更新图像。更新单元,用于采用更新图像,更新车胎的初始图像。这样,电子装置中可以实时更新车胎的图像,有效避免车胎检测过程中反复确认车胎的修补痕迹,避免重复操作,提高车胎检测的准确性。
在一些具体可实现方式中,第二界面还包括第二控件,第二控件用于分享图像;在显示第二界面之后,电子装置还包括:第二接收单元,用于接收用户对第二控件的第三操作。分享单元,用于响应于第三操作,将第一目标图像分享给其他设备,其他设备用于分析第一目标图像,得到车胎的健康状况,并反馈车胎的健康状况。第三接收单元,用于接收其他设备反馈的车胎的健康状况。第四显示单元,用于显示第四界面,第四界面上包括车胎的健康状况。
在一些具体可实现方式中,电子装置还包括:生成单元,用于根据车胎的健康状况,生成第三提示信息,第三提示信息用于为用户提供车胎维修方案。
在一种具体可实现方式中,车胎的健康状况包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
第三方面,本申请实施例提供一种车辆,该车辆可以包括第二方面中所述的电子装置。
第四方面,本申请实施例提供一种车辆,该车辆可以包括:处理器和存储器,所述存储器与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器从所述存储器中读取所述计算机指令,以使得所述电子设备执行第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如第一方面所述的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,其特征在于,包括计算机指令,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如第一方面所述的方法。
其中,上述第二方面至第六方面中各个实施例的具体实施方式及对应的技术效果可以参见上述第一方面的具体实施方式及技术效果。
在本申请中,车辆在行驶的过程中且在满足触发采集图像的预设条件下,采集第一图像和第二图像,并在用户的操作下,对第一图像和第二图像进行拼接,得到拼接后的图像,再将拼接后的图像进行显示,使得用户可以直观观察车胎情况,从而确定车胎的健康状况,进而用户可以随时随地对车胎进行检测,无需用户经常将车开到养车店进行检查。另外,本申请实施例可以在车胎胎压正常的情况下进行图像采集、拼接、分析等操作,可以在多模式下检测车胎,尽可能的排除车胎的安全隐患。
附图说明
图1为本申请实施例提供的一种电子装置的组成示意图;
图2为本申请实施例提供的一种车辆的结构示意图;
图3A为申请实施例提供的一种车胎的检测方法应用在第一应用场景中一种电子装置的一种界面示意图;
图3B为申请实施例提供的一种车胎的检测方法应用在第一应用场景中一种电子装置的另一种界面示意图;
图3C为申请实施例提供的一种车胎的检测方法应用在第一应用场景中一种电子装置的又一种界面示意图;
图4A为申请实施例提供的一种车胎的检测方法应用在第二应用场景中一种终端的一种界面示意图;
图4B为申请实施例提供的一种车胎的检测方法应用在第二应用场景中一种终端的另一种界面示意图;
图4C为申请实施例提供的一种车胎的检测方法应用在第二应用场景中一种电子装置的一种界面示意图;
图4D为申请实施例提供的一种车胎的检测方法应用在第二应用场景中一种电子装置的另一种界面示意图;
图5为本申请实施例提供的一种车胎的检测方法的流程示意图;
图6为本申请实施例提供的又一种车胎的检测方法的流程示意图;
图7为本申请实施例提供的又一种车胎的检测方法的流程示意图;
图8A为申请实施例提供的一种车胎的检测方法应用在第三应用场景中第一电子装置的一种界面示意图;
图8B为申请实施例提供的一种车胎的检测方法应用在第三应用场景中一种电子装置的另一种界面示意图;
图9为本申请实施例提供的又一种电子装置的组成示意图。
具体实施方式
图1示出了电子装置100的结构示意图。
电子装置100可以包括处理器110,存储器120,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,无线通信模块150,传感器模块160,按键170,摄像头180,显示屏190。其中,传感器模块160可以包括陀螺仪传感器160A,距离传感器160B,气压传感器160C,触摸传感器160D,环境光传感器160E,温度传感器160F等。
可以理解的是,本申请实施例示意的结构并不构成对电子装置100的具体限定。在本申请另一些实施例中,电子装置100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器
(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,和/或USB接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多 组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器160D,充电器,闪光灯,摄像头180等。例如:处理器110可以通过I2C接口耦合触摸传感器160D,使处理器110与触摸传感器160D通过I2C总线接口通信,实现电子装置100的触摸功能。
MIPI接口可以被用于连接处理器110与显示屏190,摄像头180等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头180通过CSI接口通信,实现电子装置100的拍摄功能。处理器110和显示屏190通过DSI接口通信,实现电子装置100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头180,显示屏190,无线通信模块150,传感器模块160等。GPIO接口还可以被配置为I2C接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为电子装置100充电,也可以用于电子装置100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子装置,例如增强现实(augmented reality,AR)设备等。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对电子装置100的结构限定。在本申请另一些实施例中,电子装置100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过电子装置100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子装置供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,存储器120,显示屏190,摄像头180,和无线通信模块150等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
电子装置100的无线通信功能可以通过天线1,无线通信模块150,调制解调处理器以及基带处理器等实现。
天线1用于发射和接收电磁波信号。电子装置100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
无线通信模块150可以提供应用在电子装置100上的包括无线局域网(wireless  local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(blue tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块150可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块150经由天线1接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块150还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线1转为电磁波辐射出去。
在一些实施例中,电子装置100的天线1和无线通信模块150耦合,使得电子装置100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
电子装置100通过GPU,显示屏190,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏190和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏190用于显示图像,视频等。显示屏190包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,电子装置100可以包括1个或N个显示屏190,N为大于1的正整数。
电子装置100可以通过ISP,摄像头180,视频编解码器,GPU,显示屏190以及应用处理器等实现拍摄功能。
ISP用于处理摄像头180反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头180中。
摄像头180用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信 号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB(RGB代表红、绿、蓝三个颜色),YUV(“Y”表示明亮度(Luminance或Luma),也就是灰阶值,“U”和“V”表示的则是色度(Chrominance或Chroma))等格式的图像信号。在一些实施例中,电子装置100可以包括1个或N个摄像头180,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当电子装置100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。电子装置100可以支持一种或多种视频编解码器。这样,电子装置100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现电子装置100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
存储器120可以用于存储计算机可执行程序代码,所述可执行程序代码包括指令。存储器120可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储电子装置100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,存储器120可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在存储器120的指令,和/或存储在设置于处理器中的存储器的指令,执行电子装置100的各种功能应用以及数据处理。
陀螺仪传感器160A可以用于确定电子装置100的运动姿态。在一些实施例中,可以通过陀螺仪传感器160A确定电子装置100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器160A可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器160A检测电子装置100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消电子装置100的抖动,实现防抖。陀螺仪传感器160A还可以用于导航场景。
气压传感器160C用于测量气压。在一些实施例中,电子装置100通过气压传感器160C测得的气压值计算海拔高度,辅助定位和导航。
距离传感器160B,用于测量距离。电子装置100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,电子装置100可以利用距离传感器160B测距以实现快速对焦。
环境光传感器160E用于感知环境光亮度。电子装置100可以根据感知的环境光亮度自适应调节显示屏190亮度。环境光传感器160E也可用于拍照时自动调节白平衡。
温度传感器160F用于检测温度。在一些实施例中,电子装置100利用温度传感器160F检测的温度,执行温度处理策略。例如,当温度传感器160F上报的温度超过阈值,电子装置100执行降低位于温度传感器160F附近的处理器的性能,以便降低功耗 实施热保护。在另一些实施例中,当温度低于另一阈值时,电子装置100对电池142加热,以避免低温导致电子装置100异常关机。在其他一些实施例中,当温度低于又一阈值时,电子装置100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器160D,也称“触控器件”。触摸传感器160D可以设置于显示屏190,由触摸传感器160D与显示屏190组成触摸屏,也称“触控屏”。触摸传感器160D用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏190提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器160D也可以设置于电子装置100的表面,与显示屏190所处的位置不同。
按键170包括开机键,音量键等。按键170可以是机械按键。也可以是触摸式按键。电子装置100可以接收按键输入,产生与电子装置100的用户设置以及功能控制有关的键信号输入。
当然,电子装置100还可以包括其他功能单元,本申请实施例对此不进行限定。
上述电子装置可以包括车领域的不同产品形态,例如:车载芯片、车载装置(如:车机、车载电脑、抬头显示(head up display,HUD)等)、整车、服务器(虚拟或实体)。
在本申请实施例中,以电子装置是整车(或称车辆)为例进行说明。图2示出了车辆的结构示意图。如图2所示,图1所示的摄像头180设置在车辆1的翼子板101的第一面上,该第一面应该理解为车胎102的胎冠相邻的面。该摄像头180可以滑动设置在第一面上。该摄像头180的滑动方向可以为轮胎102的轴的方向。摄像头180的数量可以为多个。示例性的,每个轮胎对应的翼子板上均设有摄像头,每个翼子板上设置的摄像头的数量可以为多个。
如图2所示,摄像头180的拍摄区域可以为图2所示的A区。也就是说,在摄像头每次进行图像采集时,摄像头可以采集A区所覆盖的车胎的胎冠的图像。摄像头180可以按照预设时间间隔拍摄图像。因此,当车胎转动时,摄像头可以拍摄到车胎的多个图像,而多少图像可以拼接成车胎一周的图像。
具体的,一种可实现原理为:假设:已知车辆的行驶速度V、车胎的胎冠的周长L,可以计算车胎旋转一周所用的时间T。而摄像头在车胎上的拍摄区域S是可知的,摄像头的拍摄时间间隔t是可以调整的。这样,调整摄像头的拍摄时间间隔t,当拍摄时间间隔t与行驶速度V的乘积小于等于拍摄区域S时,在时间T内,摄像头拍摄的多个图像即可拼接成车胎一周的图像。当然,本申请实施例并不局限于上述方式,在此不再一一列举。
下面以图1所示架构为例,对本申请实施例提供的车胎的检测方法进行描述。下述实施例中的各单元可以具备图1所示部件,不予赘述。此外,本申请的各实施例之间涉及的动作,术语等均可以相互参考,不予限制。
目前,司机在开车之前不太会特别关注轮胎状况,可能直到开车在路上才意识到车胎没气,导致车辆倾斜歪掉、爆胎等事故发生。因此,车辆的车胎检测至关重要。目前,车辆的车胎检测通常是通过检测胎压来确定车胎的安全性。示例性的,当检测 车胎的胎压为225千帕,且比标准胎压(235千帕)低10千帕时,确定检测的胎压是正常的,即车胎是安全的。但是,在车胎的胎压正常的情况下,车胎可能存在车胎裂了、车胎磨损、车胎扎钉子等,依然存在安全隐患。
为了解决上述技术问题,本申请实施例提供一种车胎的检测方法,该方法应用于电子装置,该方法包括:在车辆行驶的过程中,电子装置在预设条件下采集第一图像,该预设条件为用于触发采集第一图像的条件,例如,车速达到阈值、车辆行驶在指定路段上等。该第一图像可以为车胎转动至第一位置时车胎的一段图像。在采集第一图像之后,电子装置采集第二图像,该第二图像可以为车胎转动至第二位置时车胎的一段图像。电子装置将第一图像和第二图像显示在第一界面上。电子装置接收用户对第一界面的第一操作。响应于第一操作,电子装置拼接第一图像和第二图像,得到第一目标图像。电子装置将第一目标图像显示在第二界面上。
可见,在本申请实施例中,车辆在行驶的过程中且在满足触发采集图像的预设条件下,采集第一图像和第二图像,并在用户的操作下,对第一图像和第二图像进行拼接,得到拼接后的图像,再将拼接后的图像进行显示,使得用户可以直观观察车胎情况,从而确定车胎的健康状况,进而用户可以随时随地对车胎进行检测,无需用户经常将车开到养车店进行检查。另外,本申请实施例可以在车胎胎压正常的情况下进行图像采集、拼接、分析等操作,可以在多模式下检测车胎,尽可能的排除车胎的安全隐患。
在一些具体可实现方式中,上述预设条件可以包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。针对不同的场景,预设条件的内容不同。以下针对不同的场景,进行详细说明:
场景一,电子装置在接收到通知之后触发采集图像。
以下针对车辆处于静止状态和行驶状态分别进行说明:
第一,在车辆行驶的过程中,车辆接收到第一通知,该第一通知中包括日程信息。该日程信息可以包括时间、地点、事件等。电子装置根据日程信息,分析出用户可能有开车远行的计划。这样,电子装置生成第一提示信息,该第一提示信息为用于向用户确定在指定时间有远行计划是否进行车胎检测。电子装置将该第一提示信息显示在界面一(如上述第三界面)上。电子装置接收用户对界面一的操作一(如上述第二操作),该操作一可以为用于确定对车胎进行检测的操作。响应于该操作一,电子装置采集图像。
例如,图3A为申请实施例提供的一种车胎的检测方法应用在第一应用场景中第一电子装置的一种界面示意图。如图3A所示,在车辆行驶的过程中,车辆的界面一11上显示接收第一通知,该第一通知显示的内容为:小王后天(即2022年1月8日)去A地点参加会议。车辆根据该第一通知,分析出小王(用户A)即将在2022年1月8日有远行计划。电子装置根据第一通知,生成提示信息。即,车辆的界面由图3A所示的界面11跳转至图3B所示的界面二12。在该界面二12上显示“在2022年1月8日有远行计划,是否进行车胎检测”。用户A可以根据自身需求,确定是否开车去A地点。如果用户A需要开车去A地点,则用户A可以点击界面二上的用于确定的第一控件。电子装置接收到用户A对第一控件的操作。响应于该操作,车辆可以跳转至 图3C所示的界面三13,该界面三13上可以包括“车辆正在进行车胎检测……”的提示信息,此时,电子装置采集图像,并进行车胎检测。
第二,在车辆处于静止时,或者说,在车辆不行驶的过程中,车辆接收到第二通知,该第二通知中包括日程信息。该日程信息可以包括时间、地点、事件等。电子装置根据日程信息,分析出用户可能有开车远行的计划。这样,电子装置生成第二提示信息,该第二提示信息为用于向用户确定在指定时间有远行计划是否进行车胎检测。电子装置将第二提示信息发送给终端,该终端可以包括手机、平板电脑、笔记本电脑等。用户可以在终端上确定是否进行车胎检测,并生成确定结果。终端可以将确定结果反馈给电子装置。若确定结果为车胎检测,则电子装置根据确定结果生成待处理事件,该待处理事件可以指再次车辆行驶过程中对车胎进行检测。也就是说,在车辆下次行驶的过程中,电子装置对车胎进行检测。
例如,图4A为申请实施例提供的一种车胎的检测方法应用在第二应用场景中第一电子装置的一种界面示意图。如图4A所示,在车辆不行驶时,终端2接收第二通知,该第二通知的内容可以为:小王后天(即2022年1月8日)去A地点参加会议。此时,终端2显示图4A所示的界面21。终端2根据该第二通知,分析出小王(用户A)即将在2022年1月8日有远行计划。终端2根据第二通知,生成第二提示信息。该第二提示信息可以为“在2022年1月8日有远行计划,是否进行车胎检测”。此时,终端2的界面由图4A所示的界面21跳转至图4B所示的界面22。该界面22上显示“在2022年1月8日有远行计划,是否进行车胎检测”,及用于确定的第二控件221、用于否定的第三控件222。用户可以根据自身需求,确定是否开车去A地点。如果用户需要开车去A地点,则用户可以点击界面22上的用于确定的第二控件221。终端接收到用户对第二控件221的操作。响应于该操作,图4B所示的终端2将“确定进行车胎检测”的结果反馈给如图4C所示的电子装置1。电子装置1根据该结果生成待处理事件,该待处理事件可以为“车辆下次行驶的过程中进行车胎检测”。此时,车辆处于静止或未启动状态。用户A启动车辆,在车辆行驶的过程中,电子装置1对车胎进行检测。此时,电子装置1的界面跳转至图4D所示的界面14,在该界面14上显示“车辆正在进行车胎检测……”的提示信息。
场景二,在车辆经过风险路段之后,电子装置触发采集图像。
该风险路段可以包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。当然,风险路段还可以包括其他路段,例如,事故路段等。本申请实施例不做具体限定。以下针对“施工路段、脏污路段、乡村路段、颠簸路段、紧急停车”等风险路段进行详细说明:
第一种,施工路段、乡村路段。
在一种具体可实现方式中,电子装置获取车辆所在位置的地图。电子装置在该地图上获取施工路段和乡村路段的信息。当车辆的移动轨迹与施工路段或乡村路段重合时,电子装置触发采集图像。
第二种,颠簸路段。
在一种具体可实现方式中,电子装置获取车辆的振动频率。在第一段时间内,电子装置分析第一段时间内振动频率的变化情况。当车辆的振动频率大于第一阈值时, 电子装置确定车辆处于颠簸路段。当车辆的振动频率由第一阈值降低至第二阈值时,电子装置确定车辆驶出颠簸路段。此时,电子装置触发采集图像。
第三种,脏污路段、紧急停车带。
在一种具体可实现方式中,电子装置检测路面的信息。电子装置根据检测到的路面的信息,确定车辆行驶的路段为脏污路段或紧急停车带。此时,电子装置触发采集图像。其中,该路面的信息可以包括路面的湿度、路面的温度、路面上的物件、路标,等等。例如,当电子装置检测到路标为紧急停车标识时,电子装置确定车辆行驶的路段为紧急停车带。
场景三,响应于用户操作电子装置触发采集图像。
在一种具体可实现方式中,电子装置接收用户的操作。响应该操作,电子装置触发采集图像。示例性的,用户点击车辆的方向盘上的按键,电子装置接收用户对方向盘上按键的操作。响应于该操作,电子装置触发采集图像。
场景四,在第一预设时间上电子装置触发采集图像。
在一种具体可实现方式中,当在第一预设时间内,且车辆以预设速度行驶时,电子装置触发采集图像。例如,当在每周的周一的9点至9:30这段时间内,且车辆以30公里/小时行驶时,电子装置触发采集图像。
在另一种具体可实现方式中,当在第一预设时间内车辆的速度未达到预设速度时,电子装置不触发采集图像。但是,当在第二预设时间内,车辆的速度仍然未达到预设速度时,电子装置触发采集图像。其中,第一预设时间与第二预设时间为周期相邻的两段时间。例如,在第一周的周一的9点至9:30这段时间内,且车辆的速度未达到30公里/小,电子装置不触发采集图像。当在第二周的周一的9点至9:30这段时间内,车辆的速度仍然未达到30公里/小时时,电子装置触发采集图像。
以下对本申请实施例提供的一种车胎的检测方法进行详细介绍。
图5为本申请实施例提供的一种车胎的检测方法的一部分流程示意图。如图5所示,以该方法的执行主体是电子装置为例进行说明的,该方法可以包括:
S201、在车辆行驶的过程中,在预设条件下电子装置采集第一图像。
该第一图像可以为车胎转动至第一位置时车胎的一段图像。其中,第一位置可以指车胎转动的任一位置,本申请实施例不做具体限定。
其中,预设条件可以包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。以下分别对各个预设条件进行详细说明,具体如下:
在一种具体可实现方式中,预设条件可以包括通知,如图6所示,S201包括:S2011、S2012、S2013、S2014和S2015。S2011、S2012、S2013、S2014和S2015具体可实现为:
S2011、在车辆行驶的过程中,电子装置接收通知。
该通知中可以包括日程信息。该日程信息可以包括时间、地点、人物、事项等。例如,日程信息可以为“小王后天(即2022年1月8日)去A地点参加会议”。日程信息还可以为“小李明天(即2022年1月7日)去杭州参加技术培训”。
S2012、根据日程信息,电子装置生成第一提示信息。
该第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检 测。其中,第二预设时间可以为当前时间与日程信息中指示时间的时差。也就是说,第一指示信息的内容可以为“在第二预设时间之后有远途行程,确定是否进行车胎检测”。例如,若日程信息中指示时间为2022年1月8日。而当前时间为2022年1月6日。当前时间与指示时间是时差为48小时。这样,第二预设时间可以为48小时。第一指示信息为:“在48小时之后有远途行程,确定是否进行车胎检测”。
S2013、电子装置显示第三界面,第三界面上显示第一提示信息。
S2014、电子装置接收对第三界面的第二操作。
该第二操作可以为用于确定对车胎进行检测操作。示例性的,如图3B所示,在第三界面上显示第一指示信息,该第三界面上还可以包括第一控件,该第一控件用于确定进行车胎检测。电子装置接收用户对第三界面上的第一控件的第二操作。示例性的,用户点击第三界面上的第一控件。此时,电子装置接收用户对第一控件的点击操作。
S2015、响应于第二操作,电子装置采集第一图像。
本申请实施例,在车辆行驶过程中,车辆接收到通知之后,可以根据通知中携带的日程信息,生成提示信息,以提示用户是否进行车胎检测。在用户针对提示信息做出相应指示之后,电子装置根据用户的指示触发采集图像的操作。这样,电子装置可以根据用户的日程信息,来触发采集图像的操作,更贴合实际,实用性更高。
在另一种具体可实现方式中,预设条件可以包括通知,如图6所示,S201包括:S2016和S2017。S2016和S2017具体可实现为:
S2016、电子装置接收终端发送的第一指示信息。
该终端可以用于接收包含日程信息的通知,并根据日程信息生成第二提示信息,根据第二提示信息生成的第一指示信息。该日程信息的解释说明可以参见上述实施例中的相关内容,在此不再赘述。
该第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测。该第二提示信息可以同上述第一提示信息的相关解释,在此不再赘述。
该第一指示信息为用户针对第二提示信息做出的指示。该第一指示信息可以用于指示电子装置触发采集图像。
也就是说,终端可以接收包含日程信息的通知。终端根据日程信息生成第二提示信息,并进行显示。终端上还显示用于进行确定的控件。终端接收用户对该控件的操作,并响应于该操作终端生成第一指示信息,并将该第一指示信息反馈给电子装置。例如,日程信息可以为“小王后天(即2022年1月8日)去A地点参加会议”。终端根据日程信息,分析出用户(小王)即将有远途行程。终端可以生成如下提示信息:“在48小时之后有远途行程,确定是否进行车胎检测”。同时,终端上显示用于“确定”的控件和用于“否”的控件。当用户点击“确定”的控件时,终端接收用户的操作,并响应于该操作,可以生成如下指示信息:“车辆再次行驶过程中进行车胎检测”。
S2017、电子装置根据第一指示信息,生成待处理事件。
该待处理事件可以为在车辆再次行驶过程中对车胎进行检测。也就是说,当前时刻车辆处于静止状态。当车辆再次被启动之后,在车辆行驶过程中对车胎进行检测。这样,在车辆被启动之后,再次行驶的过程中触发采集图像的操作。
本申请实施例,在车辆静止时,用户的终端可以接收到通知,并根据通知中携带的日程信息生成提示信息。用户可以针对提示信息在终端上确定是否进行车胎检测。用户在终端上针对提示信息做出相应指示之后,终端将用户的指示发送给电子装置,电子装置根据用户的指示,在车辆再次行驶的过程中触发采集图像的操作,更贴合实际,实用性更高。
在另一种具体可实现方式中,预设条件可以包括用户操作,如图6所示,S201包括:S2018和S2019。S2018和S2019具体可实现为:
S2018、电子装置接收用户的第三操作。
该第三操作可以包括手势操作、点击操作、滑动操作、按压操作,等等。例如,用户点击车辆的方向盘上的按键,用户触控车辆的中控屏上的控件,用户在车内的手势操作。
S2019、响应于第三操作,电子装置采集第一图像。
本申请实施例,通过用户的操作来触发电子装置采集图像,使得电子装置采集图像的动作是根据用户的需求触发的,灵活性更高。
在另一种具体可实现方式中,预设条件可以包括第一预设时间,如图6所示,S201包括:S2020。S2020具体可实现为:
S2020、在车辆以预设速度的行驶过程中,电子装置在第一预设时间采集第一图像。
其中,预设速度可以是根据用于采集图像的采集装置的配置确定的。示例性的,采集装置的配置越高,预设速度越大;采集装置的配置越低,预设速度越小。例如,采集装置的配置为低配,预设速度可以为0-30公里/小时;采集装置的配置为高配,预设速度可以为40-60公里/小时。
其中,第一预设时间可以指周期性的时间点,例如,第一预设时间可以为每个星期的星期一的9:00。第一预设时间也可以指周期性的时间段,例如,第一预设时间可以为每个星期的星期一的9:00-9:30。第一预设时间还可以指一段时间,例如,第一预设时间可以为9:00-9:30。
示例性的,在每个星期的星期一的9:00,车辆以30公里/小时的速度行驶的过程中,电子装置采集第一图像。或者,在每个星期的星期一的9:00-9:30时间段内,车辆以30公里/小时的速度行驶,电子装置采集第一图像。再或者,在当前日期的9:00-9:30,车辆以30公里/小时的速度行驶,电子装置采集第一图像。
本申请实施例,以预设时间和预设速度,触发采集图像的操作,可以在指定时间触发采集图像的操作,有效减少用户操作,便于后续实现自动检测车胎。
在另一种具体可实现方式中,预设条件可以包括第一预设时间,如图6所示,S201包括:S2021。S2021具体可实现为:
S2021、在第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内车辆第一次行驶时,电子装置采集第一图像,第三预设时间与第一预设时间为两个相邻周期。
其中,第一阈值可以为预设的数值,例如:30公里/小时、60公里/小时。
其中,第一预设时间和第三预设时间可以同上述预设时间的相关描述,在此不再赘述。示例性的,第一预设时间可以为第一星期的星期一的9:00-9:30,第三预设时间 可以为第二星期的星期一的9:00-9:30。
也就是说,假设,在第一星期的星期一的9:00-9:30内,车辆的车速未达到30公里/小时的情况下,在第二星期的星期一的9:00-9:30内,即使车辆的车速未达到30公里/小时,电子装置依然采集第一图像。
本申请实施例,在以预设时间和预设速度来触发采集图像的操作的情况下,即使在第一个周期内未能触发采集图像的操作,在第二个周期内即使车速未达到预设速度,依然触发采集图像的操作,有效确保及时启动车胎检测功能。
在另一种具体可实现方式中,预设条件可以包括车辆经过风险路段,如图7所示,本申请实施例提供的车胎检测方法还包括:
S202、电子装置采集第一信息。
该第一信息可以用于表征环境和/或车辆的信息。其中,环境可以包括天气、路况、温度等。路况可以包括施工路况、泥土路、石子路、脏污路,等等。车辆的信息可以包括车辆的振动频率、车辆的车胎压力、车辆的车胎干净度等。
S203、根据第一信息,电子装置确定车辆行驶过风险路段。
该风险路段可以指影响车胎健康状况的路段。示例性的,风险路段可以包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。当然,本申请实施例中并不局限于上述列举,风险路段还可以包括其他路段,例如,事故路段等,在此不再一一列举。
在本申请实施例中,以施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带等为例进行详细说明,具体可以详见上述实施例中相关内容描述,在此不再赘述。
其中,S201包括:S2022。S2022具体可实现为:
S2022、在确定车辆行驶过风险路段之后,电子装置采集第一图像。
本申请实施例中,在车辆行驶过风险路段之后,触发电子装置采集图像的操作,可以结合车辆走过的路段,来确定是否对车辆的车胎进行检测,无需时常进行车胎检测,可以有效节省能耗。
S204、在采集第一图像之后,电子装置采集第二图像。
该第二图像可以为车胎转动至第二位置时车胎的一段图像。其中,第二图像的介绍可以如上述第一图像的相关描述,在此不再赘述。
S205、电子装置显示第一界面,第一界面包括第一图像和第二图像。
S206、电子装置接收用户对第一界面的第一操作。
具体的,当用户对第一界面操作时,电子装置接收用户对第一界面的操作。
在一种具体可实现方式中,第一界面还可以包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件。
S206具体可以为:电子装置接收用户将第一显示区内的第一图像移动至第二显示区的操作。电子装置接收用户将第一显示区内的第二图像移动至第二显示区的操作。电子装置接收用户在第二显示区内对第一图像和第二图像的缩放操作。电子装置接收用户对第一控件的操作。
示例性的,图8A为申请实施例提供的一种车胎的检测方法应用在第三应用场景中第一电子装置的一种界面示意图。如图8A所示,在图8A所示的界面上,第一图像显 示在第一区151,第二图像显示在第二区152,第一区151和第二区152为上述第一显示区。用户拖拽第一图像将第一图像移动至第三区153,第三区153为上述第二显示区。用户拖拽第二图像将第二图像移动至第三区153。在第三区153内,用户可以通过采用不同的手势分别对第一图像和第二图像进行缩放调整,例如,对第一图像采用第一手势进行调整,以将第一图像进行放大;对第二图像采用第二手势进行调整,以将第二图像进行缩小。这样,第一图像和第二图像对齐排列。用户点击图8A所示的“拼接”控件154(如上述第一控件)。电子装置1接收用户的上述操作。
S207、响应于第一操作,电子装置拼接第一图像和第二图像,得到第一目标图像。
沿用上述示例,用户点击图8A所示的“拼接”控件154。电子装置1接收用户的上述操作,之后,电子装置1得到第一目标图像,并将第一目标图像显示在图8B所示的第三显示区153中。
在一种具体可实现方式中,S207可以包括S2071、S2072和S2073。S2071、S2072和S2073具体可实现为:
S2071、响应于第一操作,电子装置将第一图像和第二图像进行匹配。
示例性的,电子装置将第一图像和第二图像上的特征进行比对。电子装置确定第一图像的第一区的特征与第二图像的第二区的特征比对一致。
S2072、当第一图像的第一区的特征与第二图像的第二区的特征一致时,电子装置裁剪第一图像的第一区,得到第三图像。
当然,电子装置也可以裁剪第二图像的第二区。也就是说,电子装置裁剪两个图像中一个图像上相同特征的部分。
S2073、电子装置拼接第二图像和第三图像,得到第一目标图像。
S208、电子装置显示第二界面,第二界面包括第一目标图像。
在第二界面上显示第一目标图像,用户可以直观检查第一目标图像,确定第一目标图像上是否存在裂纹、扎洞、鼓包、扎钉子等状况。
这里需要说明的是,本申请实施例并不局限于采集第一图像和第二图像这两个图像,还可以采集多个图像,本申请实施例中以两个图像为例进行说明的。
这样,本申请实施例通过在车辆行驶过程中,在预设条件下采集两个或多个图像,并对两个或多个图像进行拼接得到目标图像,并将显示目标图像,用户可以通过直观观察目标图像来确定车胎的健康状况。这样,当车胎的胎压正常时,可以采用本申请实施例提供的车胎检测方法对车胎进行检测,可以尽可能的排除车胎的安全隐患。
当然,用户可能通过直观观察目标图像无法确定车胎的健康状况,在此情况下,电子装置还可以直接显示车胎的健康状况,具体可以包括如下方案:
方案一,电子装置可以分析目标图像,从而确定车胎的健康状况。具体如下:
在一些实施例中,在执行S208、电子装置显示第二界面之后,本申请实施例提供的车胎检测方法还可以包括:
S209、电子装置根据第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况。
其中,车胎的健康状况可以包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
示例性的,电子装置可以将第一目标图像的特征与车胎的初始图像的特征进行逐一比对,并得到第一目标图像上存在类似于“钉子帽”的特征。故,电子装置可以确定车胎上扎钉子。
示例性的,电子装置可以将第一目标图像的纹理深度与车胎的初始图像的纹理深度进行比对。当第一目标图像的纹理深度与初始图像的纹理深度的差值大于阈值时,电子装置可以确定车胎的磨损严重。
S210、电子装置显示第三界面,第三界面上包括车胎的健康状况。
本申请实施例,电子装置可以将第一目标图与存储的初始图像进行比对得到比对结果。电子装置可以根据比对结果确定车胎的健康状况。这样,电子装置实现自动分析车胎的健康状况,无需用户分析,准确度更高、更便于用户使用。
在一些场景中,车胎需要修补,为了防止在车胎检测时反复确认车胎的修补痕迹,电子装置可以将车胎的修补后的图像更新车胎的初始图像,具体的,本申请实施例提供的车胎检测方法还包括:
S211、在车胎进行补胎之后,电子装置获取车胎的更新图像。
该更新图像可以理解为车胎进行修补之后的图像。
S212、电子装置采用更新图像,更新车胎的初始图像。
也就是说,在将车胎进行修补之后,获取车胎的更新图像,并将车胎的更新图像替换车胎的初始图像。
这样,电子装置中可以实时更新车胎的图像,有效避免车胎检测过程中反复确认车胎的修补痕迹,避免重复操作,提高车胎检测的准确性。
方案二,电子装置也可以将目标图像分享给其他设备,由其他设备对车胎的健康状况进行分析,具体如下:
在一些实施例中,第二界面还可以包括第二控件,该第二控件用于分享图像;在执行S208、显示第二界面之后,本申请实施例提供的车胎检测方法还可以包括:
S213、电子装置接收用户对第二控件的第三操作。
该第三操作可以包括点击操作、按压操作等。
S214、响应于第三操作,电子装置将第一目标图像分享给其他设备,相应的,其他设备接收电子装置分享的第一目标图像。
S215、其他设备分析第一目标图像,得到车胎的健康状况。
在一种具体可实现方式中,其他设备的用户可以是专业的车胎维修人员。该用户可以根据目标图像即可分析出车胎的健康状况。
在另一种具体可实现方式中,其他设备可以根据第一目标图像,及预先存储的车胎的型号、品牌、图像等信息,确定车胎的健康状况。
S216、其他设备将车胎的健康状况反馈给电子装置,相应的,电子装置接收其他设备反馈的车胎的健康状况。
S217、电子装置显示第四界面,第四界面上包括车胎的健康状况。
在一些实施例中,本申请实施例提供的车胎检测方法还可以包括:
S218、电子装置根据车胎的健康状况,生成第三提示信息,第三提示信息用于为用户提供车胎维修方案。
示例性的,车胎的健康状况为车胎扎钉子。此时,电子装置生成如下提示信息:“诊断:车胎扎钉子;维修方案一:建议选择距离当前位置1公里的A维修店,总时长预计10分钟;维修方案二:建议选择距离公司2公里的B维修店,总时长预计10分钟”。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请实施例还提供用于实现以上任一种方法的装置,例如,提供一种装置包括用以实现以上任一种方法中电子装置所执行的各步骤的单元(或手段)。再如,还提供另一种装置,包括用以实现以上任一种方法中车辆所执行的各步骤的单元(或手段)。
例如,请参考图9,其为本申请实施例提供的一种电子装置的示意图,该装置900可以包括:
第一采集单元901,用于在车辆行驶的过程中,在预设条件下采集第一图像,第一图像为车胎转动至第一位置时车胎的一段图像;
第二采集单元902,用于在第一采集单元采集第一图像之后,采集第二图像,第二图像为车胎转动至第二位置时车胎的一段图像;
第一显示单元903,用于显示第一界面,第一界面包括第一图像和第二图像;
第一接收单元904,用于接收用户对第一界面的第一操作;
拼接单元905,用于响应于第一操作,拼接第一图像和第二图像,得到第一目标图像;
第二显示单元906,用于显示第二界面,第二界面包括第一目标图像。
在一些实施例中,预设条件包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。
在一种具体可实现方式中,预设条件包括通知,第一采集单元901还用于:
在车辆行驶的过程中,接收通知,通知中包括日程信息;
根据日程信息,生成第一提示信息,第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检测;
显示第三界面,第三界面上显示第一提示信息;
接收对第三界面的第二操作,第二操作为用于确定对车胎进行检测操作;
响应于第二操作,采集第一图像。
在一种具体可实现方式中,预设条件包括通知,第一采集单元901还用于:
接收终端发送的第一指示信息,终端用于接收包含日程信息的通知,并根据日程信息生成第二提示信息,根据第二提示信息生成的第一指示信息,第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测;第一指示信息为用户针对第二提示信息做出的指示;
根据第一指示信息,生成待处理事件,待处理事件为在车辆再次行驶过程中对车胎进行检测。
在一种具体可实现方式中,预设条件包括用户操作,第一采集单元901还用于:
接收用户的第三操作;
响应于第三操作,采集第一图像。
在一种具体可实现方式中,预设条件包括第一预设时间,第一采集单元901还用于:
在车辆以预设速度的行驶过程中,在第一预设时间采集第一图像。
在一种具体可实现方式中,预设条件包括第一预设时间,第一采集单元901还用于:
在第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内车辆第一次行驶时,采集第一图像,第三预设时间与第一预设时间为两个相邻周期。
在一种具体可实现方式中,预设条件包括车辆经过风险路段,第一采集单元901还用于:
采集第一信息,第一信息用于表征环境和/或车辆的信息;
根据第一信息,确定车辆行驶过风险路段,风险路段指影响车胎健康状况的路段;
在确定车辆行驶过风险路段之后,采集第一图像。
在一种具体可实现方式中,风险路段包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。
在一种具体可实现方式中,第一界面还包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件;
第一接收单元904还用于:
接收用户将第一显示区内的第一图像移动至第二显示区的操作;
接收用户将第一显示区内的第二图像移动至第二显示区的操作;
接收用户在第二显示区内对第一图像和第二图像的缩放操作;
接收用户对第一控件的操作。
在一种具体可实现方式中,拼接单元905还用于:
响应于第一操作,将第一图像和第二图像进行匹配;
当第一图像的第一区的特征与第二图像的第二区的特征一致时,裁剪第一图像的第一区,得到第三图像;
拼接第二图像和第三图像,得到第一目标图像。
在一些实施例中,电子装置900还包括:
确定单元907,用于根据第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况;
第三显示单元908,用于显示第三界面,第三界面上包括车胎的健康状况。
在一些实施例中,电子装置900还包括:
获取单元909,用于在车胎进行补胎之后,获取车胎的更新图像;
更新单元910,用于采用更新图像,更新车胎的初始图像。
在一些实施例中,第二界面还包括第二控件,第二控件用于分享图像;在显示第二界面之后,电子装置900还包括:
第二接收单元911,用于接收用户对第二控件的第三操作;
分享单元912,用于响应于第三操作,将第一目标图像分享给其他设备,其他设备用于分析第一目标图像,得到车胎的健康状况,并反馈车胎的健康状况;
第三接收单元913,用于接收其他设备反馈的车胎的健康状况;
第四显示单元914,用于显示第四界面,第四界面上包括车胎的健康状况。
在一些实施例中,电子装置900还包括:
生成单元915,用于根据车胎的健康状况,生成第三提示信息,第三提示信息用于为用户提供车胎维修方案。
在一种具体可实现方式中,车胎的健康状况包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
应理解以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如中央处理单元(Central Processing Unit,CPU)或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为专用集成电路(application-specific integrated circuit,ASIC),通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过可编程逻辑器件(programmable logic device,PLD)实现,以现场可编程门阵列(Field Programmable Gate Array,FPGA)为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元CPU、微处理器、图形处理器GPU(可以理解为一种微处理器)、或数字信号处理器DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路ASIC或可编程逻辑器件PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元NPU张量处理单元(Tensor Processing Unit,TPU)、深度学习处理单元(Deep learning Processing Unit,DPU)等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人 工智能处理器,CPU和GPU等。
可选的,该可能的设计中,上述图1~图8B所示方法实施例中涉及电子装置的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。该可能的设计中所述的电子装置用于执行图1~图8B所示车胎的检测方法中电子装置的功能,因此可以达到与上述车胎的检测方法相同的效果。
本申请实施例提供的一种车辆,包括:处理器和存储器,存储器与处理器耦合,存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当处理器从存储器中读取计算机指令,以使得电子装置执行图5~图7所示车胎的检测方法。
本申请实施例提供的一种车辆,包括图9所示的电子装置。
本申请实施例提供的一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行图5~图7所示车胎的检测方法。
本申请实施例提供的一种计算机可读存储介质,包括计算机指令,当计算机指令在终端上运行时,使得网络设备执行图5~图7所示车胎的检测方法。
本申请实施例提供的一种芯片系统,包括一个或多个处理器,当一个或多个处理器执行指令时,一个或多个处理器执行图5~图7所示车胎的检测方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
可以理解的是,上述通信设备等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述通信设备等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一 个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。

Claims (35)

  1. 一种车胎的检测方法,其特征在于,所述方法包括:
    在车辆行驶的过程中,在预设条件下采集第一图像,所述第一图像为车胎转动至第一位置时所述车胎的一段图像;
    在采集所述第一图像之后,采集第二图像,所述第二图像为车胎转动至第二位置时所述车胎的一段图像;
    显示第一界面,所述第一界面包括所述第一图像和所述第二图像;
    接收用户对所述第一界面的第一操作;
    响应于所述第一操作,拼接所述第一图像和所述第二图像,得到第一目标图像;
    显示第二界面,所述第二界面包括所述第一目标图像。
  2. 根据权利要求1所述的方法,其特征在于,所述预设条件包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。
  3. 根据权利要求2所述的方法,其特征在于,所述预设条件包括通知,所述在预设条件下采集第一图像,包括:
    在车辆行驶的过程中,接收通知,所述通知中包括日程信息;
    根据所述日程信息,生成第一提示信息,所述第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检测;
    显示第三界面,所述第三界面上显示所述第一提示信息;
    接收对所述第三界面的第二操作,所述第二操作为用于确定对车胎进行检测操作;
    响应于所述第二操作,采集所述第一图像。
  4. 根据权利要求2所述的方法,其特征在于,所述预设条件包括通知,所述在预设条件下采集第一图像,包括:
    接收终端发送的第一指示信息,所述终端用于接收包含日程信息的通知,并根据所述日程信息生成第二提示信息,根据所述第二提示信息生成的第一指示信息,所述第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测;所述第一指示信息为用户针对所述第二提示信息做出的指示;
    根据所述第一指示信息,生成待处理事件,所述待处理事件为在车辆再次行驶过程中对车胎进行检测。
  5. 根据权利要求2所述的方法,其特征在于,所述预设条件包括用户操作,所述在预设条件下采集第一图像,包括:
    接收用户的第三操作;
    响应于所述第三操作,采集所述第一图像。
  6. 根据权利要求2所述的方法,其特征在于,所述预设条件包括第一预设时间,所述在预设条件下采集第一图像,包括:
    在车辆以预设速度的行驶过程中,在第一预设时间采集所述第一图像。
  7. 根据权利要求2所述的方法,其特征在于,所述预设条件包括第一预设时间,所述在预设条件下采集第一图像,包括:
    在所述第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内所述车辆第一次行驶时,采集所述第一图像,所述第三预设时间与所述第一预设时间为 两个相邻周期。
  8. 根据权利要求2所述的方法,其特征在于,所述预设条件包括车辆经过风险路段,所述在预设条件下采集第一图像,包括:
    采集第一信息,所述第一信息用于表征环境和/或车辆的信息;
    根据所述第一信息,确定车辆行驶过风险路段,所述风险路段指影响车胎健康状况的路段;
    在确定所述车辆行驶过风险路段之后,采集所述第一图像。
  9. 根据权利要求8所述的方法,其特征在于,所述风险路段包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述第一界面还包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件;
    所述接收用户对所述第一界面的第一操作,包括:
    接收用户将所述第一显示区内的所述第一图像移动至所述第二显示区的操作;
    接收用户将所述第一显示区内的所述第二图像移动至所述第二显示区的操作;
    接收用户在所述第二显示区内对所述第一图像和所述第二图像的缩放操作;
    接收用户对所述第一控件的操作。
  11. 根据权利要求1-10中任一项所述的方法,其特征在于,所述响应于所述第一操作,拼接所述第一图像和所述第二图像,得到第一目标图像,包括:
    响应于所述第一操作,将所述第一图像和所述第二图像进行匹配;
    当所述第一图像的第一区的特征与所述第二图像的第二区的特征一致时,裁剪所述第一图像的第一区,得到第三图像;
    拼接所述第二图像和所述第三图像,得到所述第一目标图像。
  12. 根据权利要求1-11中任一项所述的方法,其特征在于,在显示第二界面之后,还包括:
    根据所述第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况;
    显示第三界面,所述第三界面上包括所述车胎的健康状况。
  13. 根据权利要求12所述的方法,其特征在于,还包括:
    在车胎进行补胎之后,获取车胎的更新图像;
    采用所述更新图像,更新所述车胎的初始图像。
  14. 根据权利要求1-13中任一项所述的方法,其特征在于,所述第二界面还包括第二控件,所述第二控件用于分享图像;在显示第二界面之后,所述方法还包括:
    接收用户对所述第二控件的第三操作;
    响应于所述第三操作,将所述第一目标图像分享给其他设备,所述其他设备用于分析所述第一目标图像,得到车胎的健康状况,并反馈所述车胎的健康状况;
    接收所述其他设备反馈的所述车胎的健康状况;
    显示第四界面,所述第四界面上包括所述车胎的健康状况。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    根据所述车胎的健康状况,生成第三提示信息,所述第三提示信息用于为用户提 供车胎维修方案。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述车胎的健康状况包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
  17. 一种电子装置,其特征在于,所述电子装置包括:
    第一采集单元,用于在车辆行驶的过程中,在预设条件下采集第一图像,所述第一图像为车胎转动至第一位置时所述车胎的一段图像;
    第二采集单元,用于在所述第一采集单元采集所述第一图像之后,采集第二图像,所述第二图像为车胎转动至第二位置时所述车胎的一段图像;
    第一显示单元,用于显示第一界面,所述第一界面包括所述第一图像和所述第二图像;
    第一接收单元,用于接收用户对所述第一界面的第一操作;
    拼接单元,用于响应于所述第一操作,拼接所述第一图像和所述第二图像,得到第一目标图像;
    第二显示单元,用于显示第二界面,所述第二界面包括所述第一目标图像。
  18. 根据权利要求17所述的电子装置,其特征在于,所述预设条件包括以下至少一项:用户操作、第一预设时间、车辆经过风险路段、通知。
  19. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括通知,所述第一采集单元还用于:
    在车辆行驶的过程中,接收通知,所述通知中包括日程信息;
    根据所述日程信息,生成第一提示信息,所述第一提示信息用于表征在第二预设时间之后有远途行程,确定是否进行车胎检测;
    显示第三界面,所述第三界面上显示所述第一提示信息;
    接收对所述第三界面的第二操作,所述第二操作为用于确定对车胎进行检测操作;
    响应于所述第二操作,采集所述第一图像。
  20. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括通知,所述第一采集单元还用于:
    接收终端发送的第一指示信息,所述终端用于接收包含日程信息的通知,并根据所述日程信息生成第二提示信息,根据所述第二提示信息生成的第一指示信息,所述第二提示信息用于表征在第二预设时间之后有远途行程,并确定是否进行车胎检测;所述第一指示信息为用户针对所述第二提示信息做出的指示;
    根据所述第一指示信息,生成待处理事件,所述待处理事件为在车辆再次行驶过程中对车胎进行检测。
  21. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括用户操作,所述第一采集单元还用于:
    接收用户的第三操作;
    响应于所述第三操作,采集所述第一图像。
  22. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括第一预设时间,所述第一采集单元还用于:
    在车辆以预设速度的行驶过程中,在第一预设时间采集所述第一图像。
  23. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括第一预设时间,所述第一采集单元还用于:
    在所述第一预设时间内车辆的车速未达到第一阈值情况下,当第三预设时间内所述车辆第一次行驶时,采集所述第一图像,所述第三预设时间与所述第一预设时间为两个相邻周期。
  24. 根据权利要求18所述的电子装置,其特征在于,所述预设条件包括车辆经过风险路段,所述第一采集单元还用于:
    采集第一信息,所述第一信息用于表征环境和/或车辆的信息;
    根据所述第一信息,确定车辆行驶过风险路段,所述风险路段指影响车胎健康状况的路段;
    在确定所述车辆行驶过风险路段之后,采集所述第一图像。
  25. 根据权利要求24所述的电子装置,其特征在于,所述风险路段包括以下至少一种:施工路段、脏污路段、乡村路段、颠簸路段、紧急停车带。
  26. 根据权利要求17-25中任一项所述的电子装置,其特征在于,所述第一界面还包括:用于显示图像的第一显示区,用于编辑图像的第二显示区,用于调用图像拼接功能的第一控件;
    所述第一接收单元还用于:
    接收用户将所述第一显示区内的所述第一图像移动至所述第二显示区的操作;
    接收用户将所述第一显示区内的所述第二图像移动至所述第二显示区的操作;
    接收用户在所述第二显示区内对所述第一图像和所述第二图像的缩放操作;
    接收用户对所述第一控件的操作。
  27. 根据权利要求17-26中任一项所述的电子装置,其特征在于,所述拼接单元还用于:
    响应于所述第一操作,将所述第一图像和所述第二图像进行匹配;
    当所述第一图像的第一区的特征与所述第二图像的第二区的特征一致时,裁剪所述第一图像的第一区,得到第三图像;
    拼接所述第二图像和所述第三图像,得到所述第一目标图像。
  28. 根据权利要求17-27中任一项所述的电子装置,其特征在于,还包括:
    确定单元,用于根据所述第一目标图像,及预先存储的车胎的初始图像,确定车胎的健康状况;
    第三显示单元,用于显示第三界面,所述第三界面上包括所述车胎的健康状况。
  29. 根据权利要求28所述的电子装置,其特征在于,还包括:
    获取单元,用于在车胎进行补胎之后,获取车胎的更新图像;
    更新单元,用于采用所述更新图像,更新所述车胎的初始图像。
  30. 根据权利要求17-29中任一项所述的电子装置,其特征在于,所述第二界面还包括第二控件,所述第二控件用于分享图像;在显示第二界面之后,所述电子装置还包括:
    第二接收单元,用于接收用户对所述第二控件的第三操作;
    分享单元,用于响应于所述第三操作,将所述第一目标图像分享给其他设备,所述其他设备用于分析所述第一目标图像,得到车胎的健康状况,并反馈所述车胎的健康状况;
    第三接收单元,用于接收所述其他设备反馈的所述车胎的健康状况;
    第四显示单元,用于显示第四界面,所述第四界面上包括所述车胎的健康状况。
  31. 根据权利要求30所述的电子装置,其特征在于,所述电子装置还包括:
    生成单元,用于根据所述车胎的健康状况,生成第三提示信息,所述第三提示信息用于为用户提供车胎维修方案。
  32. 根据权利要求28-30中任一项所述的电子装置,其特征在于,所述车胎的健康状况包括以下至少一项:车胎的胎面上有异物、车胎的胎面存在裂纹、车胎的胎面磨损、车胎的胎面被扎洞、车胎的胎面鼓包。
  33. 一种车辆,其特征在于,包括:处理器和存储器,所述存储器与所述处理器耦合,所述存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器从所述存储器中读取所述计算机指令,以使得所述电子设备执行如权利要求1-16中任一项所述的方法。
  34. 一种计算机程序产品,所述计算机程序产品包括计算机指令,当所述计算机指令在计算机上运行时,使得计算机执行如权利要求1-16中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,包括计算机指令,所述计算机可读存储介质包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1-16中任一项所述的方法。
PCT/CN2022/082839 2022-03-24 2022-03-24 一种车胎的检测方法和电子装置 WO2023178617A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280005430.5A CN117730243A (zh) 2022-03-24 2022-03-24 一种车胎的检测方法和电子装置
PCT/CN2022/082839 WO2023178617A1 (zh) 2022-03-24 2022-03-24 一种车胎的检测方法和电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/082839 WO2023178617A1 (zh) 2022-03-24 2022-03-24 一种车胎的检测方法和电子装置

Publications (1)

Publication Number Publication Date
WO2023178617A1 true WO2023178617A1 (zh) 2023-09-28

Family

ID=88099479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/082839 WO2023178617A1 (zh) 2022-03-24 2022-03-24 一种车胎的检测方法和电子装置

Country Status (2)

Country Link
CN (1) CN117730243A (zh)
WO (1) WO2023178617A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539037A (zh) * 2016-06-24 2018-01-05 福特全球技术公司 轮胎监视器
CN211927727U (zh) * 2019-10-18 2020-11-13 广州市埃恩斯丹工业装备有限公司 轮胎图像采集装置
EP3819623A1 (de) * 2019-11-07 2021-05-12 Continental Reifen Deutschland GmbH Verfahren zum konfigurieren eines bildaufnahmesystems einer reifenprüfeinrichtung
CN113267137A (zh) * 2021-05-28 2021-08-17 北京易航远智科技有限公司 一种轮胎形变的实时测量方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539037A (zh) * 2016-06-24 2018-01-05 福特全球技术公司 轮胎监视器
CN211927727U (zh) * 2019-10-18 2020-11-13 广州市埃恩斯丹工业装备有限公司 轮胎图像采集装置
EP3819623A1 (de) * 2019-11-07 2021-05-12 Continental Reifen Deutschland GmbH Verfahren zum konfigurieren eines bildaufnahmesystems einer reifenprüfeinrichtung
CN113267137A (zh) * 2021-05-28 2021-08-17 北京易航远智科技有限公司 一种轮胎形变的实时测量方法和装置

Also Published As

Publication number Publication date
CN117730243A (zh) 2024-03-19

Similar Documents

Publication Publication Date Title
JP6967160B2 (ja) 画像処理方法および関連デバイス
WO2020244622A1 (zh) 一种通知的提示方法、终端及系统
WO2020103763A1 (zh) 根据眼球焦点控制显示屏的方法和头戴电子设备
WO2020238741A1 (zh) 图像处理方法、相关设备及计算机存储介质
US11759143B2 (en) Skin detection method and electronic device
CN108961681B (zh) 疲劳驾驶提醒方法、装置及存储介质
US10404922B2 (en) Image capturing apparatus with flicker compensation and method of operating the same
CN107627969B (zh) 更换车身颜色的方法、装置及计算机存储介质
US20120200761A1 (en) Method for capturing picture in a portable terminal
EP4102352A1 (en) Identity verification method and apparatus, and electronic devices
CN112584058A (zh) 图像采集系统、方法及装置
CN109712588B (zh) 灰阶调整方法及装置、显示装置
WO2023178617A1 (zh) 一种车胎的检测方法和电子装置
WO2022001249A1 (zh) 借车方法、还车方法、车载终端及车辆借还系统
US11933599B2 (en) Electronic device and method for controlling same
US20240005830A1 (en) Always-on-display method and electronic device
CN112672076A (zh) 一种图像的显示方法和电子设备
CN114338958A (zh) 一种图像处理的方法及相关设备
US20200117924A1 (en) Electronic apparatus and control method thereof
WO2021164387A1 (zh) 目标物体的预警方法、装置和电子设备
CN115113715A (zh) 显示系统、显示装置以及显示装置的控制方法
CN111815943B (zh) 车辆停车次数的检测方法、装置、设备及存储介质
CN110312106B (zh) 图像的显示方法、装置、计算机设备和存储介质
CN115700841A (zh) 检测方法及电子设备
CN113505674A (zh) 人脸图像处理方法及装置、电子设备和存储介质

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280005430.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932682

Country of ref document: EP

Kind code of ref document: A1