WO2023177142A1 - Fire detection device and fire detection system comprising semiconductor chip - Google Patents

Fire detection device and fire detection system comprising semiconductor chip Download PDF

Info

Publication number
WO2023177142A1
WO2023177142A1 PCT/KR2023/003135 KR2023003135W WO2023177142A1 WO 2023177142 A1 WO2023177142 A1 WO 2023177142A1 KR 2023003135 W KR2023003135 W KR 2023003135W WO 2023177142 A1 WO2023177142 A1 WO 2023177142A1
Authority
WO
WIPO (PCT)
Prior art keywords
fire
fire detection
semiconductor chip
information
communication
Prior art date
Application number
PCT/KR2023/003135
Other languages
French (fr)
Korean (ko)
Inventor
조영진
Original Assignee
주식회사 로제타텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 로제타텍 filed Critical 주식회사 로제타텍
Publication of WO2023177142A1 publication Critical patent/WO2023177142A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/26Government or public services
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems

Definitions

  • the present invention relates to a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency.
  • fire alarm devices typically are composed of a signal processing semiconductor that controls the signal from a sensor that detects heat, smoke, flame, etc. generated by a fire, and a communication semiconductor that notifies officials or residents in the building of the occurrence of a fire, so the manufacturing cost is low. As this increases, the manufacturing efficiency of the fire detection device decreases, and power consumption increases to operate a plurality of semiconductors separately.
  • the purpose of the present invention is to provide a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency.
  • a fire detection device includes a sensor that detects whether a fire has occurred and generates fire information, and a semiconductor chip that receives the fire information, and the semiconductor chip performs RF communication (radio frequency communication).
  • a communication unit a sensing unit that receives the fire information from the sensor, a memory in which an algorithm is stored, a control unit that generates a signal based on the fire information and the algorithm, and a control unit that receives power from the outside, the communication unit, the sensing unit , and a power supply unit that supplies the power to the control unit.
  • the semiconductor chip When receiving the fire information, the semiconductor chip transmits a signal after a first time period, and the signal includes a confirmation response to the fire information and a control signal for controlling the sensor, and the confirmation response and the control signal include It can be transmitted as a whole.
  • the control signal may initialize the state of the sensor and the semiconductor chip.
  • the power supply unit operates in a power saving mode consuming first power and a normal mode consuming a second power higher than the first power, and the communication unit may transmit an activation signal to change the power saving mode to the normal mode.
  • the power supply may operate in the power saving mode and operate in the normal mode when the magnitude of the received activation signal is greater than a predetermined value.
  • the current of the first power may be 1uA (microampere) to 5uA, and the current of the second power may be 20mA (milliampere) to 50mA.
  • the RF communication can use frequencies in the 400MHz to 900MHz band.
  • the communication unit receives big data from an external server, the algorithm includes an algorithm that determines the validity of the fire information, and the control unit determines the validity of the fire information based on the big data, the algorithm, and the fire information. can be judged based on different criteria depending on the situation.
  • the control unit may determine whether the fire information is invalid data such as water vapor, cigarette smoke, and/or exhaust gas based on the fire information, the algorithm, and the big data.
  • the communication unit may receive digital twin information that virtually represents the building from the outside, and the control unit may calculate fire analysis data based on the digital twin information and the fire information.
  • the semiconductor chip may be composed of an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • It may further include a temperature compensated crystal oscillator electrically connected to the semiconductor chip.
  • the RF communication may use a low-power wide-area network (LPWAN).
  • LPWAN low-power wide-area network
  • the fire detection system detects the occurrence of a fire using different address values, generates fire information, performs RF communication (radio frequency communication) with each other, and includes a plurality of fire detection devices including semiconductor chips.
  • a repeater that performs the RF communication with each of the plurality of sensors, receives the fire information from the plurality of sensors, and includes the semiconductor chip, performs the RF communication with the repeater and includes the semiconductor chip
  • a receiver that performs RF communication with the receiver and a server that includes the semiconductor chip, wherein the semiconductor chip receives the fire information from a communication unit that performs RF communication (radio frequency communication) and the sensor.
  • a sensing unit a memory in which the algorithm is stored, a control unit that generates a signal based on the fire information and the algorithm, and a power supply that receives power from the outside and supplies the power to the communication unit, the sensing unit, and the control unit. May include wealth.
  • a semiconductor chip having the same configuration may be installed in each of the plurality of fire detection devices, repeaters, receivers, and first servers. Algorithms can be stored in the memory of a semiconductor chip. That is, rather than separate, different semiconductor chips being mounted on a plurality of fire detection devices, repeaters, receivers, and first servers, semiconductor chips of the same configuration may be mounted.
  • a semiconductor chip may be composed of an application-specific integrated circuit (ASIC).
  • ASIC application-specific integrated circuit
  • the custom integrated circuit can be designed to be optimized for fire detection and signal processing. Therefore, product manufacturing costs are reduced, and a fire detection system with reduced power consumption can be provided due to optimized design.
  • FIG. 1 is a diagram illustrating a semiconductor chip according to an embodiment of the present invention.
  • Figure 2 shows a fire detection system according to an embodiment of the present invention.
  • Figure 3 is a block diagram showing a fire detection device according to an embodiment of the present invention.
  • Figure 4 is a diagram showing a fire signal and how the signal operates according to an embodiment of the present invention.
  • Figure 5 shows the operation of the first server according to an embodiment of the present invention.
  • Figure 6 shows the operation of the first server according to an embodiment of the present invention.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
  • FIG. 1 is a diagram illustrating a semiconductor chip according to an embodiment of the present invention.
  • a semiconductor chip may be composed of an application-specific integrated circuit (ASIC).
  • the semiconductor chip AC may have a surface parallel to a surface defined by the first direction DR1 and the second direction DR2.
  • the thickness direction of the semiconductor chip AC may be indicated by the third direction DR3.
  • the upper and lower surfaces of the semiconductor chip AC may be separated by the third direction DR3.
  • the third direction DR3 may intersect the first direction DR1 and the second direction DR2.
  • the first direction DR1, the second direction DR2, and the third direction DR3 may be orthogonal to each other.
  • the surface defined by the first direction DR1 and the second direction DR2 is defined as a plane, and “viewed on a plane” may be defined as viewed in the third direction DR3.
  • the semiconductor chip AC may have a first length L1 in the first direction DR1.
  • the first length L1 may be 5 mm (millimeter) to 10 mm.
  • the first length L1 may be 7 mm.
  • the semiconductor chip AC may have a second length L2 in the second direction DR2.
  • the second length (L2) may be 5 mm to 10 mm.
  • the second length L2 may be 7 mm.
  • the semiconductor chip AC may have a first thickness W1 in the third direction DR3.
  • the first thickness W1 may be 1 mm to 5 mm.
  • the first thickness W1 may be 3 mm.
  • a semiconductor chip may include a communication unit (RF), a sensing unit (SP), a memory (MM), a control unit (CC), and a power supply unit (PS).
  • RF communication unit
  • SP sensing unit
  • MM memory
  • CC control unit
  • PS power supply unit
  • the communication unit may include a communication function using RF communication (Radio Frequency communication).
  • the RF communication method may be a communication method that exchanges information by radiating radio frequencies. As a broadband communication method using frequencies, stability can be high due to low climate and environmental influences.
  • the RF communication method can link voice or other additional functions and can have a high transmission speed.
  • the RF communication method can use frequencies in the 400MHz to 900MHz band.
  • communication methods such as Ethernet, Wifi, LoRA, M2M, 3G, 4G, LTE, LTE-M, Bluetooth, or WiFi Direct may be used.
  • the RF communication method may include communication using a low-power wide-area network (LPWAN).
  • LPWAN low-power wide-area network
  • a semiconductor chip (AC) can operate at low power by means of a communication unit (RF) that can operate at low power, and a device equipped with the semiconductor chip (AC) can have improved operation time.
  • the RF communication method may include a Listen Before Transmission (LBT) communication method.
  • LBT Listen Before Transmission
  • LBT Listen Before Transmission
  • the sensing unit (SP) can receive fire information from an external sensor.
  • MM may include volatile memory or non-volatile memory.
  • Volatile memory may include DRAM, SRAM, flash memory, or FeRAM.
  • Non-volatile memory may include SSD or HDD.
  • the fire information received from the sensing unit (SP) may be stored in the memory (MM).
  • An algorithm (AL) may be stored in the memory (MM).
  • the algorithm AL may include an algorithm for determining the validity of the fire information and an algorithm for operating the mode of the power supply unit (PS).
  • PS power supply unit
  • the memory (MM) may further include algorithms necessary for implementing core functions of the semiconductor chip (AC).
  • the control unit (CC) may generate a signal based on the fire information and algorithm (AL).
  • the power supply unit (PS) can receive power from the outside and supply the power to the communication unit (RF), the sensing unit (SP), and the control unit (CC).
  • Figure 2 shows a fire detection system according to an embodiment of the present invention.
  • the fire detection system 10 may include a plurality of fire detection devices 100, a repeater 200, a receiver 300, and a first server 400.
  • Each of the plurality of fire detection devices 100 can detect whether a fire has occurred.
  • FIG. 2 illustrates five fire detection devices 100 by way of example, but is not limited thereto.
  • Each of the plurality of fire detection devices 100 can detect whether a fire has occurred.
  • Each of the plurality of fire detection devices 100 may include a semiconductor chip (AC-1), a sensor (SS), an amplifier (AMP), a battery cell (TT), and an antenna (ATN-S).
  • Each of the plurality of semiconductor chips (AC-1, AC-2, AC-3, and AC-4) in FIG. 2 may have the same configuration as the semiconductor chip (AC) of FIG. 1.
  • the sensor SS may detect at least one of smoke, temperature, humidity, and gas.
  • the sensor SS may generate fire information by detecting at least one of smoke, temperature, humidity, and gas.
  • the fire information may include values measured by the sensor SS.
  • one sensor SS is shown as an example, but the present invention is not limited thereto.
  • each of the plurality of sensing units SM includes a plurality of sensors, and each of the plurality of sensors can detect at least one of smoke, temperature, humidity, and gas.
  • the sensor (SS) may be electrically connected to the semiconductor chip (AC-1).
  • the sensing unit (SP) of the semiconductor chip (AC-1) may receive fire information from the sensor (SS).
  • Information about the sensor SS may be stored in the memory MM of the semiconductor chip AC-1.
  • the control unit (CC) of the semiconductor chip (AC-1) can automatically determine a modulation method for the signal generated by the sensor (SS) mounted on the fire detection device 100 based on the above information. Through this automatic modulation method, fire information can be easily generated regardless of what type of sensor (SS) is mounted on the fire detection device 100.
  • the control unit (CC) of the semiconductor chip (AC-1) may generate the first fire detection signal (SG-1) based on fire information.
  • the antenna (ATN-S) can be electrically connected to the semiconductor chip (AC-1).
  • the communication unit (RF) of the semiconductor chip (AC-1) may transmit the first fire detection signal (SG-1) to the antenna (ATN-S).
  • the first fire detection signal (SG-1) may include a first signal (SG-1a) and a second signal (SG-1b).
  • the antenna (ATN-S) may transmit the first signal (SG-1a) to the repeater 200.
  • the antenna ATN-S may transmit the first signal SG-1a to at least one of the plurality of adjacent fire detection devices 100.
  • the semiconductor chip (AC-1) detects other nearby fires.
  • the device 100 can be controlled to transmit the first fire detection signal (SG-1).
  • the fire detection device 100 can stably transmit signals to the repeater 200.
  • the antenna ATN-S may receive the first fire detection signal SG-1 from another adjacent fire detection device 100 and provide the first fire detection signal SG-1 to the communication unit RF of the semiconductor chip AC-1.
  • the amplification unit may amplify the first signal (SG-1a) and convert it into the second signal (SG-1b).
  • the antenna ATN-S may receive the first signal SG-1a from another fire detection device 100.
  • the transmission rate and/or accuracy of the received first signal (SG-1a) may be reduced due to transmission distance and noise during the process of being transmitted from another adjacent fire detection device 100.
  • the amplification unit (AMP) may amplify the first signal (SG-1a) of reduced quality and convert it into the second signal (SG-1b).
  • the second signal (SG-1b) may have improved transmission rate and/or accuracy.
  • the antenna (ATN-S) may transmit the second signal (SG-1b) to the repeater 200.
  • the antenna ATN-S may transmit the second signal SG-1b to at least one of the plurality of adjacent fire detection devices 100.
  • the second signal (SG-1b) can increase the accuracy, transmission rate, and transmission distance of signals transmitted between the plurality of fire detection devices 100 and the repeater 200.
  • the second signal (SG-1b) may be transmitted to another adjacent fire detection device 100 and amplified again in the amplifier (AMP) of the other adjacent fire detection device 100.
  • each of the plurality of fire detection devices 100 can stably transmit data to adjacent fire detection devices 100 and the repeater 200 using an amplifier (AMP). Accordingly, a plurality of fire detection devices 100 with improved reliability can be provided.
  • AMP amplifier
  • the battery unit (TT) can supply power to the semiconductor chip (AC-1), sensor (SS), amplifier (AMP), and antenna (ATN-S).
  • the battery unit (TT) may be electrically connected to the power supply unit (PS) of the semiconductor chip (AC-1).
  • the fire detection device 100 may use an RF communication method.
  • the RF communication method may consume less power.
  • the power usage of the fire detection device 100 can be minimized, and the fire detection device 100 can be operated with low power. Accordingly, the battery unit (TT) can stably supply power to the sensor (SS), semiconductor chip (AC-1), amplifier (AMP), and antenna (ATN-S) for a long time.
  • SS sensor
  • AC-1 semiconductor chip
  • AMP amplifier
  • ATN-S antenna
  • the power supply unit (PS) of the semiconductor chip (AC-1) can operate in power saving mode and normal mode.
  • the power saving mode may be referred to as standby mode.
  • the normal mode may be referred to as active mode.
  • the semiconductor chip (AC-1) and the fire detection device 100 may stand by in the power saving mode that minimizes power consumption in situations where a fire is not detected.
  • the power saving mode may consume first power.
  • the first current of the first power may be 1uA (microampere) to 5uA.
  • the first current may be 3uA.
  • the semiconductor chip (AC-1) and the fire detection device 100 may be activated in a normal mode state.
  • the semiconductor chip AC-1 and the fire detection device 100 which were on standby in power saving mode, may be activated in normal mode.
  • the normal mode may consume second power.
  • the second power may be higher than the first power.
  • the second current of the second power may be 20mA (milliampere) to 50mA.
  • the control unit (CC) of the semiconductor chip (AC-1) may generate an activation signal for changing from the power saving mode to the normal mode and a signal including the fire information received by the sensor unit (SP). there is.
  • the communication unit (RF) of the semiconductor chip (AC-1) may transmit the signal to the antenna (ATN-S).
  • the signal may be included in the first fire detection signal (SG-1).
  • the semiconductor chip (AC-1) and the fire detection device 100 can standby again in power saving mode.
  • the fire detection device 100 may standby in power saving mode. When the fire detection device 100 receives the activation signal from another adjacent fire detection device 100, it may change to the normal mode.
  • the control unit (CC) of the semiconductor chip (AC-1) continues to operate in the power saving mode, and when the magnitude of the activation signal is greater than a predetermined value, the power supply unit (PS) can operate in the normal mode.
  • the control unit (CC) of the semiconductor chip (AC-1) may compare the activation signal with a reference value when the magnitude of the activation signal is greater than a predetermined value. If the activation signal does not match the reference value, the control unit (CC) may determine the activation signal to be another signal and operate in the power saving mode again. The control unit (CC) may operate the power supply unit (PS) in the normal mode if the activation signal matches the reference value.
  • PS power supply unit
  • the power supply unit (PS) of the semiconductor chip (AC-1) may operate in the power saving mode and then in the normal mode when the received activation signal is an appropriate value.
  • the plurality of fire detection devices 100 operate in a power saving mode that does not consume power and a normal mode that operates in a fire situation to minimize power use of each of the plurality of fire detection devices 100. can do. Accordingly, each of the plurality of fire detection devices 100 can be driven at low power.
  • the plurality of fire detection devices 100, repeater 200, and receiver 300 are equipped with semiconductor chips (AC-1, AC-2, AC-3, AC-4) having the same configuration. ) can be implemented.
  • An algorithm for driving the device in normal mode or power saving mode may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, and AC-4).
  • the power supply unit (PS) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can drive the device in normal mode or power saving mode based on the above algorithm. That is, rather than different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, and receiver 300, semiconductor chips of the same configuration (AC-1, AC-2, AC-3, AC -4) can be implemented.
  • ASICs application-specific integrated circuits
  • the application-specific integrated circuit may be designed to be optimized for power control for low-power operation. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
  • the semiconductor chip AC-1 of each of the plurality of fire detection devices 100 can determine whether the activation signal is an appropriate signal. When the activation signal is not suitable, the plurality of fire detection devices 100 may maintain the power saving mode, and when the activation signal is suitable, they may operate in the normal mode. The plurality of fire detection devices 100 can prevent unnecessary power consumption. Each of the plurality of fire detection devices 100 is capable of low-power operation. Accordingly, it is possible to provide a fire detection device 100 including a semiconductor chip (AC-1) with improved reliability.
  • the repeater 200 can communicate with a plurality of fire detection devices 100.
  • the repeater 200 can communicate with 40 fire detection devices 100.
  • the repeater 200 can convert the first fire detection signal (SG-1) into the second fire detection signal (SG-2).
  • the repeater 200 may transmit the second fire detection signal (SG-2) to the receiver 300.
  • the repeater 200 may include a semiconductor chip (AC-2) and an antenna (ATN-G).
  • the antenna (ATN-G) may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-2).
  • the semiconductor chip AC-2 may have the same configuration as the semiconductor chip AC-1 of the fire detection device 100.
  • the antenna (ATN-G) can communicate with a plurality of fire detection devices 100 and the receiver 300.
  • the antenna ATN-G may receive the first fire detection signal SG-1 from each of the plurality of fire detection devices 100.
  • the antenna (ATN-G) and the antenna (ATN-S) of each of the plurality of fire detection devices 100 may communicate wirelessly through RF communication.
  • the antenna (ATN-G) can transmit the second fire detection signal (SG-2) to the receiver 300.
  • the antenna (ATN-G) and the antenna (ATN-R) of the receiver 300 can communicate wirelessly through RF communication.
  • the control unit (CC) of the semiconductor chip (AC-2) can convert the first fire detection signal (SG-1) into the second fire detection signal (SG-2).
  • the communication unit (RF) may provide the second fire detection signal (SGa) to the antenna (ATN-G).
  • the receiver 300 may receive the second fire detection signal (SG-2) from the repeater 200.
  • the receiver 300 can communicate with a plurality of repeaters 200.
  • receiver 300 may communicate with 24 repeaters 200. That is, the receiver 300 can communicate with 960 fire detection devices 100.
  • the receiver 300 can convert the second fire detection signal (SG-2) into the third fire detection signal (SG-3).
  • the receiver 300 may transmit the third fire detection signal (SG-3) to the first server 400.
  • the receiver 300 may include a display unit (DA-R), a semiconductor chip (AC-3), and an antenna (ATN-R).
  • the antenna (ATN-R) may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-3).
  • the semiconductor chip AC-3 may have the same configuration as the semiconductor chip AC-1 of the fire detection device 100 and the semiconductor chip AC-2 of the repeater 300.
  • the antenna (ATN-R) can communicate with the repeater 200 and the first server 400.
  • the antenna (ATN-R) can receive the second fire detection signal (SG-2) from the repeater 200.
  • the antenna (ATN-R) and the antenna (ATN-G) of the repeater 200 can communicate wirelessly through RF communication.
  • the antenna (ATN-R) may transmit the third fire detection signal (SG-3) to the first server 400.
  • the antenna (ATN-R) and the first server 400 can communicate wirelessly through RF communication.
  • the display unit DA-R may provide image information corresponding to the status of the plurality of fire detection devices 100 and/or the status of the repeater 200.
  • the display unit DA-R may include a liquid crystal display panel or an organic light emitting display panel.
  • the display unit (DA-R) can receive input from the outside provided by the user.
  • the display unit DA-R may further include a touch unit.
  • the user may receive information about the location where each of the plurality of fire detection devices 100 is placed and the type of value detected by each of the plurality of fire detection devices 100 through the display unit DA-R. Information and/or information about whether each of the plurality of fire detection devices 100 is operating normally can be obtained and controlled.
  • the control unit (CC) of the semiconductor chip (AC-E) may be electrically connected to the display unit (DA-R).
  • the control unit (CC) can control the receiver 300 based on input from the display unit (DA-R).
  • the control unit (CC) of the semiconductor chip (AC-3) can convert the second fire detection signal (SG-2) into the third fire detection signal (SG-3).
  • the communication unit (RF) can provide the third fire detection signal (SG-3) to the antenna (ATN-R).
  • the receiver 300 can control a plurality of fire detection devices 100 deployed in various locations through the repeater 200.
  • the first server 400 may determine the fire situation based on the third fire detection signal (SG-3) received from the receiver 300.
  • the first server 400 may include a semiconductor chip (AC-4).
  • the semiconductor chip (AC-4) is a semiconductor chip (AC-1) of the fire detection device 100, a semiconductor chip (AC-2) of the repeater 200, and a semiconductor chip (AC-3) of the receiver 300.
  • the chips may have the same configuration.
  • the control unit (CC) of the semiconductor chip (AC-4) can determine the validity of the third fire detection signal (SG-3). This will be described later.
  • the communication unit (RF) of the semiconductor chip (AC-4) can receive big data from an external second server (BS).
  • the big data may be stored in the memory of the second server (BS).
  • BS second server
  • the big data according to an embodiment of the present invention may be stored in a separate memory of the first server 400.
  • the big data may include surrounding environmental data to determine whether a fire has occurred.
  • the surrounding environment data includes data corresponding to the probability of fire occurrence by date, data corresponding to the probability of fire occurrence by time, data corresponding to the probability of fire occurrence by space, data corresponding to the probability of fire occurrence by temperature, and humidity. It may include at least one of data corresponding to the probability of fire occurrence by each weather, data corresponding to the probability of fire occurrence by weather, data corresponding to the probability of fire occurrence by industry, and data corresponding to the probability of fire occurrence by user.
  • the data corresponding to the fire occurrence probability by date may include the fire occurrence probability by day of the week and the fire occurrence probability by month.
  • the data corresponding to the fire occurrence probability by time may include the fire occurrence probability divided into dawn, morning, afternoon, evening, or late night.
  • Data corresponding to the probability of fire occurrence by space may include the probability of fire occurrence divided into urban areas, mountainous regions, beaches, or rural areas.
  • Data corresponding to the probability of fire occurrence by temperature may include the probability of fire occurrence divided into spring, summer, fall, or winter.
  • the data corresponding to the probability of fire occurrence by humidity may include the probability of fire occurrence by specific humidity level.
  • the data corresponding to the probability of fire occurrence by weather may include the probability of fire occurrence divided into clear days, cloudy days, or rainy days.
  • Data corresponding to the probability of fire occurrence by industry may include the probability of fire occurrence divided into homes, restaurants, factories, or offices.
  • the fire occurrence probability for each user may include the fire occurrence probability classified by age, occupation, or gender.
  • the big data may be updated periodically.
  • the first server 400 determines that the third fire detection signal (SG-3) is a valid signal, it can transmit a warning message and location information to a plurality of parties 20.
  • the plurality of stakeholders 20 may include, for example, a fire department, officials at a place where a fire occurs, the Ministry of Public Safety and Security (or a public institution related to public safety), etc.
  • a plurality of parties 20 may receive a fire warning message in the form of a text message, video message, or voice message through a landline phone, smartphone, or other mobile terminal.
  • Figure 3 is a block diagram showing a fire detection device according to an embodiment of the present invention.
  • the fire detection device 100 includes a semiconductor chip (AC), a balun (BL), an antenna (ATN), a storage unit (ROM), a first sensor (SS1), a second sensor (SS2), and a speaker. (SPK), an oscillator (OSC), a light emitting unit (LED), and a power source (PW).
  • AC semiconductor chip
  • BL balun
  • ATN antenna
  • ROM storage unit
  • SS1 first sensor
  • SS2 a second sensor
  • SPK oscillator
  • LED light emitting unit
  • PW power source
  • the semiconductor chip (AC) may include a communication unit (RF), a control unit (CC), a sensor unit (SP), a memory (MM), and a power supply unit (PS).
  • RF communication unit
  • CC control unit
  • SP sensor unit
  • MM memory
  • PS power supply unit
  • the antenna (ATN) may be electrically connected to the communication unit (RF) via the balun (BL).
  • Balun (BL) can convert signals between balanced and unbalanced circuits.
  • the first sensor SS1 may include a sensor that detects heat and/or smoke.
  • the second sensor SS2 may be a different sensor from the first sensor SS1.
  • the second sensor SS2 may include an acceleration sensor and/or a tilt sensor.
  • this is an example, and the measurement objects of each of the first sensor (SS1) and the second sensor (SS2) according to an embodiment of the present invention are not limited thereto.
  • each of the first sensor SS1 and the second sensor SS2 may include a sensor for configuring the Internet of Things (IoT).
  • IoT Internet of Things
  • the first sensor SS1 and the second sensor SS2 may be electrically connected to the sensor unit SP of the semiconductor chip AC.
  • the sensor unit (SP) may receive information sensed by each of the first sensor (SS1) and the second sensor (SS2).
  • the storage unit may include volatile memory or non-volatile memory.
  • Volatile memory may include DRAM, SRAM, flash memory, or FeRAM.
  • Non-volatile memory may include SSD or HDD.
  • the storage unit (ROM) may be electrically connected to the memory (MM).
  • the speaker (SPK) can emit an alarm sound.
  • the speaker (SPK) may receive a signal about the status of the fire detection device 100 from the control unit (CC) and inform the outside.
  • the light emitting unit (LED) can display light to the outside.
  • the light emitting unit (LED) may receive a signal about the status of the fire detection device 100 from the control unit (CC) and notify the outside.
  • the oscillator unit may be electrically connected to the control unit (CC).
  • the oscillator may include a temperature compensated crystal oscillator (TCXO).
  • TCXO temperature compensated crystal oscillator
  • a temperature compensated crystal oscillator can stably provide the frequency characteristics of the crystal oscillator by adding a temperature sensor to determine the temperature characteristics of the frequency that has the greatest impact on frequency stability.
  • the fire detection device 100 may be installed in a space where a fire may occur. Unlike the present invention, if a fire occurs, the temperature may increase and frequency stability may be reduced due to the temperature characteristics of the frequency. However, according to the present invention, the fire detection device 100 may include a temperature compensated crystal oscillator. Temperature compensated crystal oscillators can control frequency stability by taking temperature into account. Therefore, a fire detection device 100 with improved reliability can be provided.
  • Figure 4 is a diagram showing a fire signal and how the signal operates according to an embodiment of the present invention.
  • the memory MM of the semiconductor chip AC-2 may include an acknowledgment processing algorithm for signals.
  • the control unit (CC) of the semiconductor chip (AC-2) may generate a signal (SGa) based on the first fire detection signal (SG-1) received from the fire detection device 100.
  • the communication unit (RF) of the semiconductor chip (AC-2) can transmit the signal (SGa) through the antenna (ATN-G).
  • Each of the plurality of fire detection devices 100 may transmit a first fire detection signal (SG-1) to the repeater 200.
  • the repeater 200 transmits the first fire detection signal (SG-1) based on the fire information included in the first fire alarm signal (SG-1).
  • the fire detection device 100 can be determined.
  • the fire information may include the address value of the fire detection device 100.
  • the repeater 200 may transmit the signal (SGa) to the fire detection device 100 that transmitted the first fire detection signal (SG-1) after the first time (TM1) has elapsed.
  • the signal (SGa) may include an acknowledgment (ACK) and a control signal (INF).
  • the acknowledgment (ACK) and control signal (INF) may be transmitted to the plurality of fire detection devices 100 in one piece. That is, the acknowledgment (ACK) and control signal (INF) can be transmitted as one signal.
  • an acknowledgment (ACK) and a control signal (INF) can be provided and transmitted in the same data frame.
  • the signal (SGa) is a communication means that can improve the efficiency of signal transmission by transmitting signals with various information, including an acknowledgment (ACK) and a control signal (INF). Additionally, the signal SGa can stably perform signal processing and signal management by excluding cases where one of the acknowledgment (ACK) and control signal (INF) is not delivered. Accordingly, a fire detection system 10 with improved reliability can be provided.
  • the acknowledgment (ACK) may be a signal confirming to the plurality of fire detection devices (SM) that the first fire detection signal (SG-1) has been normally received.
  • the control signal INF may be a signal that controls each of the plurality of fire detection devices 100.
  • the control signal INF may be information that initializes the states of the sensor SS and the semiconductor chip AC-1.
  • each of the plurality of fire detection devices 100 may stop transmitting the first fire detection signal SG-1 to the repeater 200.
  • the control signal (INF) according to an embodiment of the present invention is not limited thereto.
  • the control signal INF according to an embodiment of the present invention may include a signal including various pieces of information.
  • one control signal (INF) is shown as an example in FIG. 4, the number of control signals (INF) according to an embodiment of the present invention is not limited thereto.
  • a plurality of control signals (INF) according to an embodiment of the present invention may be provided.
  • the size (SZ-1) of the first fire detection signal (SG-1) may be greater than the size (SZ-2) of the signal (SGa).
  • the traffic density when the signal SGa is transmitted may be lower than the traffic density when the first fire detection signal SG-1 is transmitted.
  • the first time (TM1) may be a short inter-frame space (SIFS).
  • the first time (TM1) may be the shortest waiting delay time. Accordingly, the signal SGa may have the highest priority when transmitted to the plurality of fire detection devices 100.
  • the first time (TM1) may be the combined time of the processing time of the received first fire detection signal (SG-1) and the time required to transmit the response.
  • the first time (TM1) may be the minimum necessary time for transmitting a response as soon as the first fire detection signal (SG-1) is received.
  • the plurality of fire detection devices 100 and the repeater 200 can quickly communicate with each other. In a fire situation, the fire detection system 10 can lead to a rapid response. Accordingly, a fire detection system 10 with improved reliability can be provided.
  • the repeater 200 when the repeater 200 receives the first fire detection signal (SG-1) from the plurality of fire detection devices 100 and transmits a confirmation response and then separately transmits a control signal, the repeater 200 ) and the plurality of signals transmitted between the fire detection devices 100 may increase, thereby increasing traffic density. Accordingly, the plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 may be lost, and the plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 may be lost. Interference may occur between them, and data loss may occur when a plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 are transmitted.
  • the repeater 200 when the repeater 200 receives the first fire detection signal (SG-1) from the plurality of fire detection devices 100, the repeater 200 sends an acknowledgment (ACK) and a control signal ( A signal (SGa) including INF) can be transmitted. Because the acknowledgment (ACK) and control signal (INF) are transmitted integrally in one data frame, traffic density can be reduced. The amount of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 can be reduced. The amount of traffic between the repeater 200 and the plurality of fire detection devices 100 may be reduced.
  • each of the plurality of fire detection devices 100 may retransmit the first fire detection signal SG-1 to the repeater 200 after a second time.
  • the second time may be 1 minute.
  • the second time may be defined in various ways depending on the communication state between the repeater 200 and the plurality of fire detection devices 100.
  • semiconductor chips AC-1 and AC-2 having the same configuration may be mounted on the plurality of fire detection devices 100 and the repeater 200.
  • the algorithm for signal processing may be stored in the memory MM of the semiconductor chips AC-1 and AC-2.
  • the control unit (CC) of the semiconductor chip (AC-1, AC-2) can easily process signals based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100 and the repeater 200, semiconductor chips (AC-1, AC-2) of the same configuration may be mounted.
  • Semiconductor chips (AC-1, AC-2) may be composed of application-specific integrated circuits (ASICs).
  • ASICs application-specific integrated circuits
  • the custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
  • Figure 5 shows the operation of the first server according to an embodiment of the present invention.
  • the memory (MM) of the semiconductor chip (AC-4) may include an algorithm that processes information linked to the digital twin.
  • the communication unit (RF) of the semiconductor chip (AC-4) can receive digital twin information (BIM) from the outside.
  • the control unit (CC) of the semiconductor chip (AC-4) can calculate fire analysis data (DATA) based on digital twin information (BIM) and fire information (FI).
  • the first server 400 may include a digital twin calculation unit 410, a big data reception unit 420, a communication unit 430, and a semiconductor chip (AC-4).
  • the digital twin calculation unit 410 can virtually implement buildings and places.
  • the building and location may be a building in which a plurality of fire detection devices 100 and a video capture unit (CT) are arranged.
  • the digital twin calculation unit 410 can provide digital twin information (BIM).
  • the digital twin calculation unit 410 can provide digital twin information (BIM) in the format of a digital twin.
  • the big data receiving unit 420 may receive big data (BD) from the second server (BS).
  • Big data (BD) can include information about buildings and places.
  • big data (BD) can include information about movie theaters, information about traditional market buildings, information about museums, information about army headquarters, information about air force headquarters, information about warehouses, information about shooting ranges, information about military It may include information about barracks, information about thermal power plants, etc.
  • Big data may further include surrounding environmental data to determine the probable cause (FC) of the fire.
  • the surrounding environment data includes data corresponding to the probability of fire occurrence by date, data corresponding to the probability of fire occurrence by time, data corresponding to the probability of fire occurrence by location, data corresponding to the probability of fire occurrence by temperature, and humidity. It may include at least one of data corresponding to the probability of fire occurrence by each weather, data corresponding to the probability of fire occurrence by weather, data corresponding to the probability of fire occurrence by industry, and data corresponding to the probability of fire occurrence by user.
  • the data corresponding to the fire occurrence probability by date may include the fire occurrence probability by day of the week and the fire occurrence probability by month.
  • the data corresponding to the fire occurrence probability by time may include the fire occurrence probability divided into dawn, morning, afternoon, evening, or late night.
  • Data corresponding to the probability of fire occurrence by space may include the probability of fire occurrence divided into urban areas, mountainous regions, beaches, or rural areas.
  • Data corresponding to the probability of fire occurrence by temperature may include the probability of fire occurrence divided into spring, summer, fall, or winter.
  • Data corresponding to the probability of fire occurrence by humidity may include a fire index by specific humidity level.
  • Data corresponding to the probability of fire occurrence by weather may include the probability of fire occurrence divided into clear days, cloudy days, or rainy days.
  • Data corresponding to the probability of fire occurrence by industry may include the probability of fire occurrence divided into homes, restaurants, factories, or offices.
  • the fire occurrence probability for each user may include the fire occurrence probability classified by age, occupation
  • the control unit (CC) of the semiconductor chip (AC-4) includes digital twin information (BIM) implemented by the digital twin calculation unit 410, big data (BD) received by the big data receiving unit 420, and video capture unit (CT). ) can generate fire analysis data (DATA) based on the measured image (IM) and fire information (FI).
  • BIM digital twin information
  • BD big data
  • CT video capture unit
  • DATA fire analysis data
  • the communication unit (RF) of the semiconductor chip (AC-4) may provide fire analysis data (DATA) to the communication unit 430.
  • the communication unit 430 may provide fire analysis data (DATA) to a plurality of stakeholders 20.
  • Fire analysis data can be linked with digital twin information (BIM) to provide specific fire situations to multiple stakeholders (20).
  • BIM digital twin information
  • the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400 are equipped with semiconductor chips (AC-1, AC-2, AC-) having the same configuration. 3, AC-4) can be installed.
  • An algorithm for processing digital twin information (BIM) may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4).
  • the control unit (CC) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can easily interpret and process digital twin information (BIM) based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400, the semiconductor chip (AC-1) has the same configuration.
  • AC-2, AC-3, AC-4) can be mounted.
  • Semiconductor chips (AC-1, AC-2, AC-3, AC-4) may be composed of application-specific integrated circuits (ASICs).
  • ASICs application-specific integrated circuits
  • the custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
  • Figure 6 shows the operation of the first server according to an embodiment of the present invention.
  • the communication unit 430 of the first server 400 may receive fire information (FI) from the fire detection device 100.
  • the communication unit 430 may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-4).
  • the communication unit 430 may transmit fire information (FI) to the communication unit (RF) of the semiconductor chip (AC-4).
  • the memory (MM) of the semiconductor chip (AC-4) may include an algorithm that determines the validity of fire information (FI). Invalid fire information (FI) may be referred to as a non-fire report.
  • the non-fire term means that the fire detection device 10 operates by considering the fire to be a fire even though it is not a fire.
  • the control unit (CC) of the semiconductor chip (AC-4) includes digital twin information (BIM) implemented by the digital twin calculation unit 410, big data (BD) received by the big data receiving unit 420, and video capture unit (CT). ) Based on the image (IM) and fire information (FI) measured by The validity of information (FI) can be judged by different criteria.
  • BIM digital twin information
  • BD big data
  • CT video capture unit
  • the control unit (CC) of the semiconductor chip (AC-4) determines whether the fire information (FI) is valid, such as water vapor, cigarette smoke, and/or exhaust gas, based on the fire information (FI), the algorithm, and big data (BD). It can be determined whether the data is not valid or not.
  • FI fire information
  • BD big data
  • the first server 400 determines that the third fire detection signal (SG-3) is an invalid signal, the first server 400 prevents the alarms of the plurality of fire detection devices 100 from sounding.
  • a control signal may be transmitted to a plurality of fire detection devices 100.
  • big data may include fire-related data according to the situation
  • the control unit (CC) of the semiconductor chip (AC-4) may include the big data (BD) and a plurality of fire detection devices ( 100)
  • the effectiveness of fire detection signals (SG-1, SG-2, SG-3) can be judged based on the fire information (FI) detected by each. Therefore, it is possible to provide a fire detection system 10 that can determine the lowest non-fire alarm for each situation and has improved reliability of non-fire alarm determination.
  • the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400 include semiconductor chips (AC-1, AC-2, AC-3, AC-4) can be installed.
  • An algorithm for determining non-fire information may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4).
  • the control unit (CC) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can easily determine a non-fire report based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400, the semiconductor chip (AC-1) has the same configuration. , AC-2, AC-3, AC-4) can be mounted.
  • Semiconductor chips (AC-1, AC-2, AC-3, AC-4) may be composed of application-specific integrated circuits (ASICs).
  • ASICs application-specific integrated circuits
  • the custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, product manufacturing costs are reduced, and a fire detection system 10 with reduced power consumption can be provided due to an optimized design.
  • a fire detection device for detecting the occurrence of a fire is an essential component for preventing and responding to fire.
  • the present invention can provide a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency. Therefore, the present invention regarding fire detection devices and fire detection systems has high industrial applicability.

Landscapes

  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Emergency Management (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Development Economics (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fire Alarms (AREA)

Abstract

A fire detection device according to one embodiment of the present invention comprises: a sensor that detects whether a fire has occurred and generates fire information; and a semiconductor chip that receives the fire information, wherein the semiconductor chip may comprise: a communication unit that performs radio frequency (RF) communication; a sensing unit that receives the fire information from the sensor; a memory in which an algorithm is stored; a control unit that generates a signal on the basis of the fire information and the algorithm; and a power supply unit that receives power from the outside and supplies the power to the communication unit, the sensing unit, and the control unit.

Description

반도체 칩을 포함하는 화재 감지 장치 및 화재 감지 시스템 Fire detection devices and fire detection systems including semiconductor chips
본 발명은 전력 소모 및 제조 효율이 향상된 반도체 칩을 포함하는 화재 감지 장치 및 화재 감지 시스템에 대한 것이다. The present invention relates to a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency.
일반적으로 건물에는 화재 시 인명 피해를 줄이기 위해 화재 경보 장치가 설치되어 있다. 이러한 화재 경보 장치는 화재에 의해 발생하는 열, 연기, 화염 등을 감지하는 센서의 신호를 제어하는 신호처리용 반도체 및 건물 내의 관계자 또는 거주자에게 화재의 발생을 알리기 위한 통신용 반도체 등으로 구성되어 제조 비용이 증가하고, 이에 따라 화재 감지 장치의 제조 효율이 감소하고, 복수의 반도체들을 따로 동작시키기 위해 전력 소모가 증가하는 문제점이 있다. Typically, buildings are equipped with fire alarm devices to reduce casualties in the event of a fire. These fire alarm devices are composed of a signal processing semiconductor that controls the signal from a sensor that detects heat, smoke, flame, etc. generated by a fire, and a communication semiconductor that notifies officials or residents in the building of the occurrence of a fire, so the manufacturing cost is low. As this increases, the manufacturing efficiency of the fire detection device decreases, and power consumption increases to operate a plurality of semiconductors separately.
본 발명은 전력 소모 및 제조 효율이 향상된 반도체 칩을 포함하는 화재 감지 장치 및 화재 감지 시스템을 제공하는 것을 목적으로 한다.The purpose of the present invention is to provide a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency.
본 발명의 일 실시예에 따른 화재 감지 장치는 화재발생여부를 감지하여 화재 정보를 생성하는 센서 및 상기 화재 정보를 수신하는 반도체 칩을 포함하고, 상기 반도체 칩은 RF 통신(Radio Frequency 통신)을 수행하는 통신부, 상기 센서로부터 상기 화재 정보를 수신하는 센싱부, 알고리즘이 저장되는 메모리, 상기 화재 정보 및 상기 알고리즘을 근거로 신호를 생성하는 제어부, 및 외부로부터 전원을 수신하여, 상기 통신부, 상기 센싱부, 및 상기 제어부에 상기 전원을 공급하는 전원공급부를 포함할 수 있다. A fire detection device according to an embodiment of the present invention includes a sensor that detects whether a fire has occurred and generates fire information, and a semiconductor chip that receives the fire information, and the semiconductor chip performs RF communication (radio frequency communication). a communication unit, a sensing unit that receives the fire information from the sensor, a memory in which an algorithm is stored, a control unit that generates a signal based on the fire information and the algorithm, and a control unit that receives power from the outside, the communication unit, the sensing unit , and a power supply unit that supplies the power to the control unit.
상기 반도체 칩은 상기 화재 정보를 수신하면 제1 시간 경과 후 신호를 송신하고, 상기 신호는 상기 화재 정보에 대한 확인 응답 및 상기 센서를 제어하는 제어 신호를 포함하고, 상기 확인 응답 및 상기 제어 신호는 일체로 전송될 수 있다. When receiving the fire information, the semiconductor chip transmits a signal after a first time period, and the signal includes a confirmation response to the fire information and a control signal for controlling the sensor, and the confirmation response and the control signal include It can be transmitted as a whole.
상기 제어 신호는 상기 센서 및 상기 반도체 칩의 상태를 초기화시킬 수 있다. The control signal may initialize the state of the sensor and the semiconductor chip.
상기 전원공급부는 제1 전력을 소모하는 절전 모드 및 상기 제1 전력보다 높은 제2 전력을 소모하는 노말 모드로 동작하고, 상기 통신부는 상기 절전 모드에서 상기 노말 모드로 바꾸는 활성화신호를 송신할 수 있다. The power supply unit operates in a power saving mode consuming first power and a normal mode consuming a second power higher than the first power, and the communication unit may transmit an activation signal to change the power saving mode to the normal mode. .
상기 전원공급부는 상기 절전 모드로 동작하다가, 수신한 상기 활성화 신호의 크기가 소정의 값 이상일 경우에 상기 노말 모드로 동작할 수 있다. The power supply may operate in the power saving mode and operate in the normal mode when the magnitude of the received activation signal is greater than a predetermined value.
상기 제1 전력의 전류는 1uA(microampere) 내지 5uA이고, 상기 제2 전력의 전류는 20mA(milliampere) 내지 50mA일 수 있다. The current of the first power may be 1uA (microampere) to 5uA, and the current of the second power may be 20mA (milliampere) to 50mA.
상기 RF통신은 400MHz 내지 900MHz 대역의 주파수를 이용할 수 있다. The RF communication can use frequencies in the 400MHz to 900MHz band.
상기 통신부는 외부의 서버로부터 빅데이터를 수신하고, 상기 알고리즘은 화재 정보의 유효성을 판단하는 알고리즘을 포함하며, 상기 제어부는 상기 빅데이터, 상기 알고리즘, 및 상기 화재 정보를 근거로 상기 화재 정보의 유효성을 상황 별로 상이한 기준으로 판단할 수 있다. The communication unit receives big data from an external server, the algorithm includes an algorithm that determines the validity of the fire information, and the control unit determines the validity of the fire information based on the big data, the algorithm, and the fire information. can be judged based on different criteria depending on the situation.
상기 제어부는 상기 화재 정보, 상기 알고리즘, 및 상기 빅데이터를 근거로 상기 화재 정보가 수증기, 담배연기, 및/또는 배기가스와 같은 유효하지 않은 데이터인지 여부를 판단할 수 있다. The control unit may determine whether the fire information is invalid data such as water vapor, cigarette smoke, and/or exhaust gas based on the fire information, the algorithm, and the big data.
상기 통신부는 외부로부터 건축물을 가상으로 구현한 디지털 트윈 정보를 수신하고, 상기 제어부는 상기 디지털 트윈 정보 및 상기 화재 정보를 근거로 화재 분석 데이터를 산출할 수 있다. The communication unit may receive digital twin information that virtually represents the building from the outside, and the control unit may calculate fire analysis data based on the digital twin information and the fire information.
상기 반도체 칩은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. The semiconductor chip may be composed of an application-specific integrated circuit (ASIC).
상기 반도체 칩에 전기적으로 연결된 온도 보상 수정 발진기를 더 포함할 수 있다. It may further include a temperature compensated crystal oscillator electrically connected to the semiconductor chip.
상기 RF 통신은 저전력 광역 통신망(Low-Power Wide-Area Network, LPWAN)을 이용할 수 있다. The RF communication may use a low-power wide-area network (LPWAN).
본 발명의 일 실시예에 따른 화재 감지 시스템은 서로 다른 주소값들을 가지고 화재 발생을 감지하여 화재 정보를 생성하며 서로 RF 통신(Radio Frequency 통신)을 수행하고, 반도체 칩을 포함하는 복수의 화재 감지 장치들, 상기 복수의 센서들 각각과 상기 RF 통신을 수행하고, 상기 복수의 센서들로부터 상기 화재 정보를 수신하며, 상기 반도체 칩을 포함하는 중계기, 상기 중계기와 RF 통신을 수행하고 상기 반도체 칩을 포함하는 수신기, 및 상기 수신기와 상기 RF 통신을 수행하고, 상기 반도체 칩을 포함하는 서버를 포함하고, 상기 반도체 칩은 RF 통신(Radio Frequency 통신)을 수행하는 통신부, 상기 센서로부터 상기 화재 정보를 수신하는 센싱부, 알고리즘이 저장되는 메모리, 상기 화재 정보 및 상기 알고리즘을 근거로 신호를 생성하는 제어부, 및 외부로부터 전원을 수신하고, 상기 통신부, 상기 센싱부, 및 상기 제어부에 상기 전원을 공급하는 전원공급부를 포함할 수 있다. The fire detection system according to an embodiment of the present invention detects the occurrence of a fire using different address values, generates fire information, performs RF communication (radio frequency communication) with each other, and includes a plurality of fire detection devices including semiconductor chips. , a repeater that performs the RF communication with each of the plurality of sensors, receives the fire information from the plurality of sensors, and includes the semiconductor chip, performs the RF communication with the repeater and includes the semiconductor chip A receiver that performs RF communication with the receiver and a server that includes the semiconductor chip, wherein the semiconductor chip receives the fire information from a communication unit that performs RF communication (radio frequency communication) and the sensor. A sensing unit, a memory in which the algorithm is stored, a control unit that generates a signal based on the fire information and the algorithm, and a power supply that receives power from the outside and supplies the power to the communication unit, the sensing unit, and the control unit. May include wealth.
상술된 바에 따르면, 복수의 화재 감지 장치들, 중계기, 수신기, 및 제1 서버 각각에는 동일한 구성을 갖는 반도체 칩이 실장될 수 있다. 반도체 칩의 메모리에는 알고리즘이 저장될 수 있다. 즉, 서로 상이한 별도의 반도체 칩들이 복수의 화재 감지 장치들, 중계기, 수신기, 및 제1 서버에 실장되는 것이 아닌 동일한 구성의 반도체 칩이 실장될 수 있다. 반도체 칩은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 상기 주문형 집적 회로는 화재 감지 및 신호 처리에 최적화되어 설계될 수 있다. 따라서, 제품 제조 비용이 감소하고, 최적화된 설계로 인해 전력 소모가 감소된 화재 감지 시스템을 제공할 수 있다. As described above, a semiconductor chip having the same configuration may be installed in each of the plurality of fire detection devices, repeaters, receivers, and first servers. Algorithms can be stored in the memory of a semiconductor chip. That is, rather than separate, different semiconductor chips being mounted on a plurality of fire detection devices, repeaters, receivers, and first servers, semiconductor chips of the same configuration may be mounted. A semiconductor chip may be composed of an application-specific integrated circuit (ASIC). The custom integrated circuit can be designed to be optimized for fire detection and signal processing. Therefore, product manufacturing costs are reduced, and a fire detection system with reduced power consumption can be provided due to optimized design.
도 1은 본 발명의 일 실시예에 따른 반도체 칩을 도시한 도면이다.1 is a diagram illustrating a semiconductor chip according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 화재 감지 시스템을 도시한 것이다.Figure 2 shows a fire detection system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 화재 감지 장치를 도시한 블록도이다.Figure 3 is a block diagram showing a fire detection device according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 화재발생신호 및 신호가 동작하는 방식을 도시한 도면이다.Figure 4 is a diagram showing a fire signal and how the signal operates according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 제1 서버의 동작을 도시한 것이다. Figure 5 shows the operation of the first server according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 제1 서버의 동작을 도시한 것이다.Figure 6 shows the operation of the first server according to an embodiment of the present invention.
본 명세서에서, 어떤 구성요소(또는 영역, 층, 부분 등)가 다른 구성요소 “상에 있다”, “연결된다”, 또는 “결합된다”고 언급되는 경우에 그것은 다른 구성요소 상에 직접 배치/연결/결합될 수 있거나 또는 그들 사이에 제3의 구성요소가 배치될 수도 있다는 것을 의미한다. In this specification, when a component (or region, layer, portion, etc.) is referred to as being “on,” “connected to,” or “coupled to” another component, it is said to be placed/directly on the other component. This means that they can be connected/combined or a third component can be placed between them.
동일한 도면부호는 동일한 구성요소를 지칭한다. 또한, 도면들에 있어서, 구성요소들의 두께, 비율, 및 치수는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. “및/또는”은 연관된 구성요소들이 정의할 수 있는 하나 이상의 조합을 모두 포함한다.Like reference numerals refer to like elements. Additionally, in the drawings, the thickness, proportions, and dimensions of components are exaggerated for effective explanation of technical content. “And/or” includes all combinations of one or more that can be defined by the associated components.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component, and similarly, the second component may also be named a first component without departing from the scope of the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise.
또한, “아래에”, “하측에”, “위에”, “상측에” 등의 용어는 도면에 도시된 구성요소들의 연관관계를 설명하기 위해 사용된다. 상기 용어들은 상대적인 개념으로, 도면에 표시된 방향을 기준으로 설명된다.Additionally, terms such as “below,” “on the lower side,” “above,” and “on the upper side” are used to describe the relationships between the components shown in the drawings. The above terms are relative concepts and are explained based on the direction indicated in the drawings.
"포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. Terms such as “include” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but do not include one or more other features, numbers, or steps. , it should be understood that this does not exclude in advance the possibility of the presence or addition of operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 본 명세서에서 사용된 모든 용어 (기술 용어 및 과학 용어 포함)는 본 발명이 속하는 기술 분야의 당업자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 또한, 일반적으로 사용되는 사전에서 정의된 용어와 같은 용어는 관련 기술의 맥락에서 갖는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하고, 여기서 명시적으로 정의되지 않는 한 너무 이상적이거나 지나치게 형식적인 의미로 해석되어서는 안된다.Unless otherwise defined, all terms (including technical terms and scientific terms) used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. Additionally, terms such as those defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning they have in the context of the relevant technology, and unless explicitly defined herein, should not be interpreted as having an overly idealistic or overly formal meaning. It shouldn't be.
이하, 도면을 참조하여 본 발명의 실시예들을 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the drawings.
도 1은 본 발명의 일 실시예에 따른 반도체 칩을 도시한 도면이다.1 is a diagram illustrating a semiconductor chip according to an embodiment of the present invention.
도 1을 참조하면, 반도체 칩(AC)은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 반도체 칩(AC)은 제1 방향(DR1) 및 제2 방향(DR2)이 정의하는 면과 평행한 면을 가질 수 있다. 반도체 칩(AC)의 두께 방향은 제3 방향(DR3)이 지시할 수 있다. 반도체 칩(AC)의 상면과 하면은 제3 방향(DR3)에 의해 구분될 수 있다. 제3 방향(DR3)은 제1 방향(DR1) 및 제2 방향(DR2)과 교차하는 방향일 수 있다. 예를 들어, 제1 방향(DR1), 제2 방향(DR2), 및 제3 방향(DR3)은 서로 직교할 수 있다. 또한, 본 명세서에서 제1 방향(DR1)과 제2 방향(DR2)이 정의하는 면을 평면이라 정의하고, "평면 상에서 보았다"는 것은 제3 방향(DR3)에서 바라본 것으로 정의될 수 있다.Referring to FIG. 1, a semiconductor chip (AC) may be composed of an application-specific integrated circuit (ASIC). The semiconductor chip AC may have a surface parallel to a surface defined by the first direction DR1 and the second direction DR2. The thickness direction of the semiconductor chip AC may be indicated by the third direction DR3. The upper and lower surfaces of the semiconductor chip AC may be separated by the third direction DR3. The third direction DR3 may intersect the first direction DR1 and the second direction DR2. For example, the first direction DR1, the second direction DR2, and the third direction DR3 may be orthogonal to each other. Additionally, in this specification, the surface defined by the first direction DR1 and the second direction DR2 is defined as a plane, and “viewed on a plane” may be defined as viewed in the third direction DR3.
반도체 칩(AC)은 제1 방향(DR1)으로 제1 길이(L1)를 가질 수 있다. 제1 길이(L1)는 5mm(millimeter) 내지 10mm일 수 있다. 예를 들어, 제1 길이(L1)는 7mm일 수 있다. The semiconductor chip AC may have a first length L1 in the first direction DR1. The first length L1 may be 5 mm (millimeter) to 10 mm. For example, the first length L1 may be 7 mm.
반도체 칩(AC)는 제2 방향(DR2)으로 제2 길이(L2)를 가질 수 있다. 제2 길이(L2)는 5mm 내지 10mm일 수 있다. 예를 들어, 제2 길이(L2)는 7mm일 수 있다. The semiconductor chip AC may have a second length L2 in the second direction DR2. The second length (L2) may be 5 mm to 10 mm. For example, the second length L2 may be 7 mm.
반도체 칩(AC)은 제3 방향(DR3)으로 제1 두께(W1)를 가질 수 있다. 제1 두께(W1)는 1mm 내지 5mm일 수 있다. 예를 들어, 제1 두께(W1)는 3mm일 수 있다. The semiconductor chip AC may have a first thickness W1 in the third direction DR3. The first thickness W1 may be 1 mm to 5 mm. For example, the first thickness W1 may be 3 mm.
반도체 칩(AC)은 통신부(RF), 센싱부(SP), 메모리(MM), 제어부(CC), 전원공급부(PS)를 포함할 수 있다. A semiconductor chip (AC) may include a communication unit (RF), a sensing unit (SP), a memory (MM), a control unit (CC), and a power supply unit (PS).
통신부(RF)는 RF 통신(Radio Frequency 통신) 방식을 이용한 통신 기능을 포함할 수 있다. 상기 RF 통신 방식은 무선 주파수를 방사하여 정보를 교환하는 통신 방법일 수 있다. 주파수를 이용한 광대역 통신 방식으로 기후 및 환경의 영향이 적어 안정성이 높을 수 있다. 상기 RF 통신 방식은 음성 또는 기타 부가기능을 연동할 수 있으며 전송속도가 빠를 수 있다. 예를 들어, RF 통신 방식은 400MHz 내지 900MHz 대역의 주파수를 이용할 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에서 Ethernet, Wifi, LoRA, M2M, 3G, 4G, LTE, LTE-M, Bluetooth, 또는 WiFi Direct 등과 같은 통신 방식이 이용될 수 있다.The communication unit (RF) may include a communication function using RF communication (Radio Frequency communication). The RF communication method may be a communication method that exchanges information by radiating radio frequencies. As a broadband communication method using frequencies, stability can be high due to low climate and environmental influences. The RF communication method can link voice or other additional functions and can have a high transmission speed. For example, the RF communication method can use frequencies in the 400MHz to 900MHz band. However, this is an example, and in one embodiment of the present invention, communication methods such as Ethernet, Wifi, LoRA, M2M, 3G, 4G, LTE, LTE-M, Bluetooth, or WiFi Direct may be used.
상기 RF 통신 방식은 저전력 광역 통신망(Low-Power Wide-Area Network, LPWAN)을 이용한 통신을 포함할 수 있다. 본 발명에 따르면, 저전력으로 동작 가능한 통신부(RF)에 의해 반도체 칩(AC)은 저전력으로 동작할 수 있고, 반도체 칩(AC)을 탑재한 장치는 향상된 동작 시간을 가질 수 있다. The RF communication method may include communication using a low-power wide-area network (LPWAN). According to the present invention, a semiconductor chip (AC) can operate at low power by means of a communication unit (RF) that can operate at low power, and a device equipped with the semiconductor chip (AC) can have improved operation time.
본 발명의 일 실시예에서, 상기 RF통신 방식은 LBT(Listen Before Transmission)통신 방법을 포함할 수 있다. 이는 선택한 주파수가 다른 시스템에 의해 사용되고 있는지를 파악하여 점유되어 있다고 판단될 때는 다른 주파수를 다시 선택하는 주파수 선택 방식이다. 예를 들어, 송신을 의도하는 노드는 먼저 매체에 대해 청취(Listen)를 하고, 그것이 휴지 상태에 있는 지를 판정한 다음, 송신(Transmission)에 앞서 백오프 프로토콜을 흘려 보낼 수 있다. 이와 같은 LBT 통신 방식을 이용하여 데이터를 분산처리 함으로써, 동일 대역대에서 신호간의 충돌을 방지할 수 있다.In one embodiment of the present invention, the RF communication method may include a Listen Before Transmission (LBT) communication method. This is a frequency selection method that determines whether the selected frequency is being used by another system and reselects another frequency when it is determined to be occupied. For example, a node intending to transmit can first listen to the medium, determine whether it is in an idle state, and then send a backoff protocol before transmitting. By distributing data using this LBT communication method, collisions between signals in the same band can be prevented.
센싱부(SP)는 외부의 센서로부터 화재 정보를 수신할 수 있다. The sensing unit (SP) can receive fire information from an external sensor.
메모리(MM)는 휘발성 메모리 또는 비휘발성 메모리를 포함할 수 있다. 휘발성 메모리는 DRAM, SRAM, 플래시 메모리, 또는 FeRAM을 포함할 수 있다. 비휘발성 메모리는 SSD 또는 HDD를 포함할 수 있다.Memory (MM) may include volatile memory or non-volatile memory. Volatile memory may include DRAM, SRAM, flash memory, or FeRAM. Non-volatile memory may include SSD or HDD.
메모리(MM)에는 센싱부(SP)에서 수신한 상기 화재 정보가 저장될 수 있다. 메모리(MM)에는 알고리즘(AL)이 저장될 수 있다. 알고리즘(AL)은 상기 화재 정보의 유효성을 판단하는 알고리즘 및 전원공급부(PS)의 모드를 동작하는 알고리즘 등을 포함할 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에 따른 메모리(MM)에는 반도체 칩(AC)의 핵심 기능 구현에 필요한 알고리즘들을 더 포함할 수 있다. The fire information received from the sensing unit (SP) may be stored in the memory (MM). An algorithm (AL) may be stored in the memory (MM). The algorithm AL may include an algorithm for determining the validity of the fire information and an algorithm for operating the mode of the power supply unit (PS). However, this is an example, and the memory (MM) according to an embodiment of the present invention may further include algorithms necessary for implementing core functions of the semiconductor chip (AC).
제어부(CC)는 상기 화재 정보 및 알고리즘(AL)을 근거로 신호를 생성할 수 있다. The control unit (CC) may generate a signal based on the fire information and algorithm (AL).
전원공급부(PS)는 외부로부터 전원을 수신하여, 통신부(RF), 센싱부(SP), 제어부(CC)에 상기 전원을 공급할 수 있다. The power supply unit (PS) can receive power from the outside and supply the power to the communication unit (RF), the sensing unit (SP), and the control unit (CC).
도 2는 본 발명의 일 실시예에 따른 화재 감지 시스템을 도시한 것이다.Figure 2 shows a fire detection system according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 화재 감지 시스템(10)은 복수의 화재 감지 장치들(100), 중계기(200), 수신기(300), 및 제1 서버(400)를 포함할 수 있다. Referring to FIGS. 1 and 2 , the fire detection system 10 may include a plurality of fire detection devices 100, a repeater 200, a receiver 300, and a first server 400.
복수의 화재 감지 장치들(100) 각각은 화재가 발생했지는 여부를 감지할 수 있다. 도 2에서는 예시적으로 5 개의 화재 감지 장치들(100)을 도시하였으나, 이에 제한되지는 않는다. Each of the plurality of fire detection devices 100 can detect whether a fire has occurred. FIG. 2 illustrates five fire detection devices 100 by way of example, but is not limited thereto.
복수의 화재 감지 장치들(100) 각각은 화재 발생 여부를 감지할 수 있다. 복수의 화재 감지 장치들(100) 각각은 반도체 칩(AC-1), 센서(SS), 증폭부(AMP), 전지부(TT), 및 안테나(ATN-S)를 포함할 수 있다. 도 2에서 복수의 반도체 칩들(AC-1, AC-2, AC-3, AC-4) 각각은 도 1의 반도체 칩(AC)과 동일한 구성일 수 있다. Each of the plurality of fire detection devices 100 can detect whether a fire has occurred. Each of the plurality of fire detection devices 100 may include a semiconductor chip (AC-1), a sensor (SS), an amplifier (AMP), a battery cell (TT), and an antenna (ATN-S). Each of the plurality of semiconductor chips (AC-1, AC-2, AC-3, and AC-4) in FIG. 2 may have the same configuration as the semiconductor chip (AC) of FIG. 1.
센서(SS)는 연기, 온도, 습도, 및 가스 중 적어도 하나를 감지할 수 있다. 센서(SS)는 연기, 온도, 습도, 및 가스 중 적어도 하나를 감지하여 화재 정보를 생성할 수 있다. 상기 화재 정보는 센서(SS)에서 측정된 값을 포함할 수 있다. 도 3에서는 예시적으로 하나의 센서(SS)를 도시하였으나, 이에 제한되지 않는다. 예를 들어, 복수의 센싱 유닛들(SM) 각각은 복수의 센서들을 포함하고, 복수의 센서들 각각은 연기, 온도, 습도, 및 가스 중 적어도 하나를 감지할 수 있다. The sensor SS may detect at least one of smoke, temperature, humidity, and gas. The sensor SS may generate fire information by detecting at least one of smoke, temperature, humidity, and gas. The fire information may include values measured by the sensor SS. In FIG. 3, one sensor SS is shown as an example, but the present invention is not limited thereto. For example, each of the plurality of sensing units SM includes a plurality of sensors, and each of the plurality of sensors can detect at least one of smoke, temperature, humidity, and gas.
센서(SS)는 반도체 칩(AC-1)과 전기적으로 연결될 수 있다. 반도체 칩(AC-1)의 센싱부(SP)는 센서(SS)로부터 화재 정보를 수신할 수 있다. The sensor (SS) may be electrically connected to the semiconductor chip (AC-1). The sensing unit (SP) of the semiconductor chip (AC-1) may receive fire information from the sensor (SS).
반도체 칩(AC-1)의 메모리(MM)에는 센서(SS)에 대한 정보가 저장될 수 있다. 반도체 칩(AC-1)의 제어부(CC)는 상기 정보를 근거로 화재 감지 장치(100)에 실장된 센서(SS)가 생성하는 신호에 대한 모듈레이션 방식을 자동으로 결정할 수 있다. 이와 같은 자동 모듈레이션 방식을 통해, 화재 감지 장치(100)에 어떤 종류의 센서(SS)가 실장되는지에 관계없이 화재 정보를 용이하게 생성할 수 있다. Information about the sensor SS may be stored in the memory MM of the semiconductor chip AC-1. The control unit (CC) of the semiconductor chip (AC-1) can automatically determine a modulation method for the signal generated by the sensor (SS) mounted on the fire detection device 100 based on the above information. Through this automatic modulation method, fire information can be easily generated regardless of what type of sensor (SS) is mounted on the fire detection device 100.
반도체 칩(AC-1)의 제어부(CC)는 화재 정보를 근거로 제1 화재감지신호(SG-1)를 생성할 수 있다. The control unit (CC) of the semiconductor chip (AC-1) may generate the first fire detection signal (SG-1) based on fire information.
안테나(ATN-S)는 반도체 칩(AC-1)과 전기적으로 연결될 수 있다. 반도체 칩(AC-1)의 통신부(RF)는 제1 화재감지신호(SG-1)를 안테나(ATN-S)에 송신할 수 있다. 제1 화재감지신호(SG-1)는 제1 신호(SG-1a) 및 제2 신호(SG-1b)를 포함할 수 있다. The antenna (ATN-S) can be electrically connected to the semiconductor chip (AC-1). The communication unit (RF) of the semiconductor chip (AC-1) may transmit the first fire detection signal (SG-1) to the antenna (ATN-S). The first fire detection signal (SG-1) may include a first signal (SG-1a) and a second signal (SG-1b).
안테나(ATN-S)는 중계기(200)에 제1 신호(SG-1a)를 송신할 수 있다. 안테나(ATN-S)는 인접한 복수의 화재 감지 장치들(100) 중 적어도 하나에 제1 신호(SG-1a)를 송신할 수 있다. The antenna (ATN-S) may transmit the first signal (SG-1a) to the repeater 200. The antenna ATN-S may transmit the first signal SG-1a to at least one of the plurality of adjacent fire detection devices 100.
화재 감지 장치(100)와 중계기(200)가 서로 멀리 떨어져 중계기(200)가 직접적으로 제1 화재감지신호(SG-1)를 수신하기 어려운 경우, 반도체 칩(AC-1)은 인접한 다른 화재 감지 장치(100)에 제1 화재감지신호(SG-1)를 송신하도록 제어할 수 있다. 화재 감지 장치(100)는 중계기(200)로 신호 전달을 안정적으로 수행할 수 있다. 안테나(ATN-S)는 인접한 다른 화재 감지 장치(100)로부터 제1 화재감지신호(SG-1)를 수신하여 반도체 칩(AC-1)의 통신부(RF)에 제공할 수 있다. When the fire detection device 100 and the repeater 200 are far away from each other and it is difficult for the repeater 200 to directly receive the first fire detection signal (SG-1), the semiconductor chip (AC-1) detects other nearby fires. The device 100 can be controlled to transmit the first fire detection signal (SG-1). The fire detection device 100 can stably transmit signals to the repeater 200. The antenna ATN-S may receive the first fire detection signal SG-1 from another adjacent fire detection device 100 and provide the first fire detection signal SG-1 to the communication unit RF of the semiconductor chip AC-1.
증폭부(AMP)는 제1 신호(SG-1a)를 증폭하여 제2 신호(SG-1b)로 변환할 수 있다. The amplification unit (AMP) may amplify the first signal (SG-1a) and convert it into the second signal (SG-1b).
안테나(ATN-S)는 다른 화재 감지 장치(100)로부터 제1 신호(SG-1a)를 수신할 수 있다. 수신한 제1 신호(SG-1a)는 인접한 다른 화재 감지 장치(100)로부터 전달 받는 과정에서 전송 거리 및 노이즈 등에 의해 전송률 및/또는 정확성이 저하될 수 있다. 증폭부(AMP)는 품질이 저하된 제1 신호(SG-1a)를 증폭하여 제2 신호(SG-1b)로 변환할 수 있다. 제2 신호(SG-1b)는 전송률 및/또는 정확성이 향상될 수 있다. 안테나(ATN-S)는 중계기(200)에 제2 신호(SG-1b)를 전송할 수 있다. 안테나(ATN-S)는 인접한 복수의 화재 감지 장치들(100) 중 적어도 하나에 제2 신호(SG-1b)를 전송할 수 있다. 제2 신호(SG-1b)는 복수의 화재 감지 장치들(100) 및 중계기(200) 사이에 전달되는 신호의 정확성, 전송률, 및 전송 거리 등을 증가시킬 수 있다. The antenna ATN-S may receive the first signal SG-1a from another fire detection device 100. The transmission rate and/or accuracy of the received first signal (SG-1a) may be reduced due to transmission distance and noise during the process of being transmitted from another adjacent fire detection device 100. The amplification unit (AMP) may amplify the first signal (SG-1a) of reduced quality and convert it into the second signal (SG-1b). The second signal (SG-1b) may have improved transmission rate and/or accuracy. The antenna (ATN-S) may transmit the second signal (SG-1b) to the repeater 200. The antenna ATN-S may transmit the second signal SG-1b to at least one of the plurality of adjacent fire detection devices 100. The second signal (SG-1b) can increase the accuracy, transmission rate, and transmission distance of signals transmitted between the plurality of fire detection devices 100 and the repeater 200.
본 발명의 일 실시예에 따른 제2 신호(SG-1b)는 인접한 다른 화재 감지 장치(100)으로 전달되어 상기 인접한 다른 화재 감지 장치(100)의 증폭부(AMP)에서 다시 증폭될 수 있다. The second signal (SG-1b) according to an embodiment of the present invention may be transmitted to another adjacent fire detection device 100 and amplified again in the amplifier (AMP) of the other adjacent fire detection device 100.
본 발명에 따르면, 복수의 화재 감지 장치들(100) 각각은 증폭부(AMP)를 이용하여 데이터를 안정적으로 인접한 화재 감지 장치들(100) 및 중계기(200)에 전달할 수 있다. 따라서, 신뢰성이 향상된 복수의 화재 감지 장치들(100)을 제공할 수 있다. According to the present invention, each of the plurality of fire detection devices 100 can stably transmit data to adjacent fire detection devices 100 and the repeater 200 using an amplifier (AMP). Accordingly, a plurality of fire detection devices 100 with improved reliability can be provided.
전지부(TT)는 반도체 칩(AC-1), 센서(SS), 증폭부(AMP), 및 안테나(ATN-S)에 전원을 공급할 수 있다. 전지부(TT)는 반도체 칩(AC-1)의 전원공급부(PS)에 전기적으로 연결될 수 있다. The battery unit (TT) can supply power to the semiconductor chip (AC-1), sensor (SS), amplifier (AMP), and antenna (ATN-S). The battery unit (TT) may be electrically connected to the power supply unit (PS) of the semiconductor chip (AC-1).
본 발명의 일 실시예에 따른 화재 감지 장치(100)는 RF 통신 방식을 이용할 수 있다. 상기 RF 통신 방식은 전력 소모가 적을 수 있다. 화재 감지 장치(100)의 전력 사용이 최소화될 수 있고, 화재 감지 장치(100)는 저전력 구동이 가능하다. 따라서, 전지부(TT)는 센서(SS), 반도체 칩(AC-1), 증폭부(AMP), 및 안테나(ATN-S)에 전원을 안정적으로 오래 공급할 수 있다. The fire detection device 100 according to an embodiment of the present invention may use an RF communication method. The RF communication method may consume less power. The power usage of the fire detection device 100 can be minimized, and the fire detection device 100 can be operated with low power. Accordingly, the battery unit (TT) can stably supply power to the sensor (SS), semiconductor chip (AC-1), amplifier (AMP), and antenna (ATN-S) for a long time.
반도체 칩(AC-1)의 전원공급부(PS)는 절전 모드 및 노말 모드로 동작할 수 있다. 상기 절전모드는 대기모드로 지칭될 수 있다. 상기 노말 모드는 활성화 모드로 지칭될 수 있다 The power supply unit (PS) of the semiconductor chip (AC-1) can operate in power saving mode and normal mode. The power saving mode may be referred to as standby mode. The normal mode may be referred to as active mode.
반도체 칩(AC-1) 및 화재 감지 장치(100)는 화재 발생이 감지되지 않는 상황에서 전력소모를 최소화하는 상기 절전 모드의 상태로 대기할 수 있다. 상기 절전 모드는 제1 전력을 소모할 수 있다. 상기 제1 전력의 제1 전류는 1uA(microampere) 내지 5uA일 수 있다. 예를 들어, 상기 제1 전류는 3uA일 수 있다. The semiconductor chip (AC-1) and the fire detection device 100 may stand by in the power saving mode that minimizes power consumption in situations where a fire is not detected. The power saving mode may consume first power. The first current of the first power may be 1uA (microampere) to 5uA. For example, the first current may be 3uA.
화재 상황을 감지하거나 활성화신호를 수신하는 경우, 반도체 칩(AC-1) 및 화재 감지 장치(100)는 노말 모드 상태로 활성화될 수 있다. 예를 들어, 센서(SS)가 화재 발생을 감지하여 화재 정보를 생성하는 경우, 절전 모드 상태로 대기 중이던 반도체 칩(AC-1) 및 화재 감지 장치(100)는 노말 모드로 활성화될 수 있다. 상기 노말모드는 제2 전력을 소모할 수 있다. 상기 제2 전력은 상기 제1 전력보다 높을 수 있다. 상기 제2 전력의 제2 전류는 20mA(milliampere) 내지 50mA일 수 있다.When a fire situation is detected or an activation signal is received, the semiconductor chip (AC-1) and the fire detection device 100 may be activated in a normal mode state. For example, when the sensor SS detects a fire and generates fire information, the semiconductor chip AC-1 and the fire detection device 100, which were on standby in power saving mode, may be activated in normal mode. The normal mode may consume second power. The second power may be higher than the first power. The second current of the second power may be 20mA (milliampere) to 50mA.
센서(SS)는 화재 발생을 감지하는 경우, 화재 정보를 생성하여 반도체 칩(AC-1)의 센서부(SP)에 송신할 수 있다. 반도체 칩(AC-1)의 제어부(CC)는 화재 정보를 수신하는 경우, 상기 절전 모드에서 상기 노말 모드로 바꾸는 활성화 신호 및 센서부(SP)가 수신한 화재 정보를 포함하는 신호를 생성할 수 있다. When the sensor SS detects a fire, it can generate fire information and transmit it to the sensor unit SP of the semiconductor chip AC-1. When receiving fire information, the control unit (CC) of the semiconductor chip (AC-1) may generate an activation signal for changing from the power saving mode to the normal mode and a signal including the fire information received by the sensor unit (SP). there is.
반도체 칩(AC-1)의 통신부(RF)는 상기 신호를 안테나(ATN-S)에 송신할 수 있다. 상기 신호는 제1 화재감지신호(SG-1)에 포함될 수 있다. The communication unit (RF) of the semiconductor chip (AC-1) may transmit the signal to the antenna (ATN-S). The signal may be included in the first fire detection signal (SG-1).
상기 신호를 송신하고 난 이후, 반도체 칩(AC-1) 및 화재 감지 장치(100)는 다시 절전 모드로 대기할 수 있다. After transmitting the signal, the semiconductor chip (AC-1) and the fire detection device 100 can standby again in power saving mode.
또한, 화재 감지 장치(100)는 절전 모드로 대기할 수 있다. 화재 감지 장치(100)는 인접한 다른 화재 감지 장치(100)로부터 상기 활성화 신호를 수신하는 경우, 노말 모드로 바뀔 수 있다. Additionally, the fire detection device 100 may standby in power saving mode. When the fire detection device 100 receives the activation signal from another adjacent fire detection device 100, it may change to the normal mode.
반도체 칩(AC-1)의 제어부(CC)는 상기 활성화 신호의 크기가 소정의 값 미만인 경우, 상기 절전 모드로 계속 동작하고, 상기 활성화 신호의 크기가 소정의 값 이상인 경우, 전원공급부(PS)를 상기 노말 모드로 동작할 수 있다. When the magnitude of the activation signal is less than a predetermined value, the control unit (CC) of the semiconductor chip (AC-1) continues to operate in the power saving mode, and when the magnitude of the activation signal is greater than a predetermined value, the power supply unit (PS) can operate in the normal mode.
반도체 칩(AC-1)의 제어부(CC)는 상기 활성화 신호의 크기가 소정의 값 이상인 경우, 상기 활성화 신호를 기준값과 비교할 수 있다. 제어부(CC)는 상기 활성화 신호가 기준값과 일치하지 않으면, 상기 활성화 신호를 다른 신호로 판단하고, 다시 상기 절전 모드로 동작할 수 있다. 제어부(CC)는 상기 활성화 신호가 상기 기준값과 일치한다면 전원공급부(PS)를 상기 노말 모드로 동작할 수 있다. The control unit (CC) of the semiconductor chip (AC-1) may compare the activation signal with a reference value when the magnitude of the activation signal is greater than a predetermined value. If the activation signal does not match the reference value, the control unit (CC) may determine the activation signal to be another signal and operate in the power saving mode again. The control unit (CC) may operate the power supply unit (PS) in the normal mode if the activation signal matches the reference value.
반도체 칩(AC-1)의 전원공급부(PS)는 상기 절전 모드로 동작하다가 수신한 활성화 신호가 적합한 값인 경우, 상기 노말 모드로 동작할 수 있다. The power supply unit (PS) of the semiconductor chip (AC-1) may operate in the power saving mode and then in the normal mode when the received activation signal is an appropriate value.
본 발명에 따르면, 복수의 화재 감지 장치들(100)은 전력을 소모하지 않는 절전 모드 및 화재상황에서 동작하는 노말 모드로 구분되어 동작해 복수의 화재 감지 장치들(100) 각각의 전력 사용을 최소화할 수 있다. 따라서, 복수의 화재 감지 장치들(100) 각각은 저전력 구동이 가능하다. According to the present invention, the plurality of fire detection devices 100 operate in a power saving mode that does not consume power and a normal mode that operates in a fire situation to minimize power use of each of the plurality of fire detection devices 100. can do. Accordingly, each of the plurality of fire detection devices 100 can be driven at low power.
또한, 본 발명에 따르면, 복수의 화재 감지 장치들(100), 중계기(200), 및 수신기(300)에는 동일한 구성을 갖는 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 메모리(MM)에는 장치를 노말 모드 또는 절전 모드로 구동시키기 위한 알고리즘이 저장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 전원공급부(PS)는 상기 알고리즘을 근거로 장치를 노말 모드 또는 절전 모드로 구동할 수 있다. 즉 서로 상이한 반도체 칩들이 복수의 화재 감지 장치들(100), 중계기(200), 및 수신기(300)에 실장되는 것이 아닌 동일한 구성의 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 상기 주문형 집적 회로는 저전력 구동을 위한 전원 제어에 최적화되어 설계될 수 있다. 따라서, 제품 제조 비용이 감소하고, 최적화된 설계로 인해 전력 소모가 감소된 화재 감지 시스템(10)을 제공할 수 있다. In addition, according to the present invention, the plurality of fire detection devices 100, repeater 200, and receiver 300 are equipped with semiconductor chips (AC-1, AC-2, AC-3, AC-4) having the same configuration. ) can be implemented. An algorithm for driving the device in normal mode or power saving mode may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, and AC-4). The power supply unit (PS) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can drive the device in normal mode or power saving mode based on the above algorithm. That is, rather than different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, and receiver 300, semiconductor chips of the same configuration (AC-1, AC-2, AC-3, AC -4) can be implemented. Semiconductor chips (AC-1, AC-2, AC-3, AC-4) may be composed of application-specific integrated circuits (ASICs). The application-specific integrated circuit may be designed to be optimized for power control for low-power operation. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
또한, 본 발명에 따르면, 복수의 화재 감지 장치들(100) 각각의 반도체 칩(AC-1)은 활성화 신호가 적합한 신호가 아닌지 여부를 판단할 수 있다. 상기 활성화 신호가 적합하지 않은 경우, 복수의 화재 감지 장치들(100)은 상기 절전 모드를 유지하고, 상기 활성화 신호가 적합한 경우에 상기 노말 모드로 동작할 수 있다. 복수의 화재 감지 장치들(100)은 불필요하게 전력을 소모하는 것을 방지할 수 있다. 복수의 화재 감지 장치들(100) 각각은 저전력 구동이 가능하다. 따라서, 신뢰성이 향상된 반도체 칩(AC-1)을 포함하는 화재 감지 장치(100)를 제공할 수 있다. Additionally, according to the present invention, the semiconductor chip AC-1 of each of the plurality of fire detection devices 100 can determine whether the activation signal is an appropriate signal. When the activation signal is not suitable, the plurality of fire detection devices 100 may maintain the power saving mode, and when the activation signal is suitable, they may operate in the normal mode. The plurality of fire detection devices 100 can prevent unnecessary power consumption. Each of the plurality of fire detection devices 100 is capable of low-power operation. Accordingly, it is possible to provide a fire detection device 100 including a semiconductor chip (AC-1) with improved reliability.
중계기(200)는 복수의 화재 감지 장치들(100)과 통신할 수 있다. 예를 들어, 중계기(200)는 40 개의 화재 감지 장치들(100)과 통신할 수 있다. 중계기(200)는 제1 화재감지신호(SG-1)를 제2 화재감지신호(SG-2)로 변환할 수 있다. 중계기(200)는 제2 화재감지신호(SG-2)를 수신기(300)에 송신할 수 있다. The repeater 200 can communicate with a plurality of fire detection devices 100. For example, the repeater 200 can communicate with 40 fire detection devices 100. The repeater 200 can convert the first fire detection signal (SG-1) into the second fire detection signal (SG-2). The repeater 200 may transmit the second fire detection signal (SG-2) to the receiver 300.
중계기(200)는 반도체 칩(AC-2) 및 안테나(ATN-G)를 포함할 수 있다. 안테나(ATN-G)는 반도체 칩(AC-2)의 통신부(RF)와 전기적으로 연결될 수 있다. 반도체 칩(AC-2)은 화재 감지 장치(100)의 반도체 칩(AC-1)과 동일한 구성을 가지는 칩일 수 있다. The repeater 200 may include a semiconductor chip (AC-2) and an antenna (ATN-G). The antenna (ATN-G) may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-2). The semiconductor chip AC-2 may have the same configuration as the semiconductor chip AC-1 of the fire detection device 100.
안테나(ATN-G)는 복수의 화재 감지 장치들(100) 및 수신기(300)와 통신할 수 있다. 안테나(ATN-G)는 복수의 화재 감지 장치들(100) 각각으로부터 제1 화재감지신호(SG-1)를 수신할 수 있다. 안테나(ATN-G) 및 복수의 화재 감지 장치들(100) 각각의 안테나(ATN-S)는 RF 통신 방식을 통해 무선으로 통신할 수 있다. 안테나(ATN-G)는 수신기(300)에 제2 화재감지신호(SG-2)를 송신할 수 있다. 안테나(ATN-G) 및 수신기(300)의 안테나(ATN-R)는 RF 통신 방식을 통해 무선으로 통신할 수 있다. The antenna (ATN-G) can communicate with a plurality of fire detection devices 100 and the receiver 300. The antenna ATN-G may receive the first fire detection signal SG-1 from each of the plurality of fire detection devices 100. The antenna (ATN-G) and the antenna (ATN-S) of each of the plurality of fire detection devices 100 may communicate wirelessly through RF communication. The antenna (ATN-G) can transmit the second fire detection signal (SG-2) to the receiver 300. The antenna (ATN-G) and the antenna (ATN-R) of the receiver 300 can communicate wirelessly through RF communication.
반도체 칩(AC-2)의 제어부(CC)는 제1 화재감지신호(SG-1)를 제2 화재감지신호(SG-2)로 변환할 수 있다. 통신부(RF)는 제2 화재 감지 신호(SGa)를 안테나(ATN-G)에 제공할 수 있다. The control unit (CC) of the semiconductor chip (AC-2) can convert the first fire detection signal (SG-1) into the second fire detection signal (SG-2). The communication unit (RF) may provide the second fire detection signal (SGa) to the antenna (ATN-G).
수신기(300)는 중계기(200)로부터 제2 화재감지신호(SG-2)를 수신할 수 있다. 수신기(300)는 복수의 중계기들(200)과 통신할 수 있다. 예를 들어, 수신기(300)는 24개의 중계기들(200)과 통신할 수 있다. 즉, 수신기(300)는 960개의 화재 감지 장치들(100)과 통신할 수 있다. 수신기(300)는 제2 화재감지신호(SG-2)를 제3 화재감지신호(SG-3)로 변환할 수 있다. 수신기(300)는 제3 화재감지신호(SG-3)를 제1 서버(400)에 송신할 수 있다.The receiver 300 may receive the second fire detection signal (SG-2) from the repeater 200. The receiver 300 can communicate with a plurality of repeaters 200. For example, receiver 300 may communicate with 24 repeaters 200. That is, the receiver 300 can communicate with 960 fire detection devices 100. The receiver 300 can convert the second fire detection signal (SG-2) into the third fire detection signal (SG-3). The receiver 300 may transmit the third fire detection signal (SG-3) to the first server 400.
수신기(300)는 표시부(DA-R), 반도체 칩(AC-3), 및 안테나(ATN-R)를 포함할 수 있다. 안테나(ATN-R)는 반도체 칩(AC-3)의 통신부(RF)와 전기적으로 연결될 수 있다. 반도체 칩(AC-3)은 화재 감지 장치(100)의 반도체 칩(AC-1) 및 중계기(300)의 반도체 칩(AC-2)과 동일한 구성을 가지는 칩일 수 있다. The receiver 300 may include a display unit (DA-R), a semiconductor chip (AC-3), and an antenna (ATN-R). The antenna (ATN-R) may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-3). The semiconductor chip AC-3 may have the same configuration as the semiconductor chip AC-1 of the fire detection device 100 and the semiconductor chip AC-2 of the repeater 300.
안테나(ATN-R)는 중계기(200) 및 제1 서버(400)와 통신할 수 있다. 안테나(ATN-R)는 중계기(200)로부터 제2 화재감지신호(SG-2)를 수신할 수 있다. 안테나(ATN-R) 및 중계기(200)의 안테나(ATN-G)는 RF 통신 방식을 통해 무선으로 통신할 수 있다. 안테나(ATN-R)는 제1 서버(400)에 제3 화재감지신호(SG-3)를 송신할 수 있다. 안테나(ATN-R) 및 제1 서버(400)는 RF 통신 방식을 통해 무선으로 통신할 수 있다. The antenna (ATN-R) can communicate with the repeater 200 and the first server 400. The antenna (ATN-R) can receive the second fire detection signal (SG-2) from the repeater 200. The antenna (ATN-R) and the antenna (ATN-G) of the repeater 200 can communicate wirelessly through RF communication. The antenna (ATN-R) may transmit the third fire detection signal (SG-3) to the first server 400. The antenna (ATN-R) and the first server 400 can communicate wirelessly through RF communication.
표시부(DA-R)는 복수의 화재 감지 장치들(100)의 상태 및/또는 중계기(200)의 상태에 대응하는 영상 정보를 제공할 수 있다. 표시부(DA-R)는 액정 표시 패널 또는 유기발광 표시 패널 등을 포함할 수 있다. 표시부(DA-R)는 사용자가 제공하는 외부로부터의 입력을 수신할 수 있다. 예를 들어, 표시부(DA-R)는 터치 유닛을 더 포함할 수 있다. 예를 들어, 사용자는 표시부(DA-R)를 통해 복수의 화재 감지 장치들(100) 각각이 배치되는 장소에 대한 정보, 복수의 화재 감지 장치들(100) 각각이 감지하는 값의 유형에 대한 정보, 및/또는 복수의 화재 감지 장치들(100) 각각의 정상 동작 여부에 대한 정보를 획득 및 제어할 수 있다.The display unit DA-R may provide image information corresponding to the status of the plurality of fire detection devices 100 and/or the status of the repeater 200. The display unit DA-R may include a liquid crystal display panel or an organic light emitting display panel. The display unit (DA-R) can receive input from the outside provided by the user. For example, the display unit DA-R may further include a touch unit. For example, the user may receive information about the location where each of the plurality of fire detection devices 100 is placed and the type of value detected by each of the plurality of fire detection devices 100 through the display unit DA-R. Information and/or information about whether each of the plurality of fire detection devices 100 is operating normally can be obtained and controlled.
반도체 칩(AC-E)의 제어부(CC)는 표시부(DA-R)와 전기적으로 연결될 수 있다. 제어부(CC)는 표시부(DA-R)로부터의 입력을 근거로 수신기(300)를 제어할 수 있다. The control unit (CC) of the semiconductor chip (AC-E) may be electrically connected to the display unit (DA-R). The control unit (CC) can control the receiver 300 based on input from the display unit (DA-R).
반도체 칩(AC-3)의 제어부(CC)는 제2 화재감지신호(SG-2)를 제3 화재감지신호(SG-3)로 변환할 수 있다. 통신부(RF)는 제3 화재감지신호(SG-3)를 안테나(ATN-R)에 제공할 수 있다. The control unit (CC) of the semiconductor chip (AC-3) can convert the second fire detection signal (SG-2) into the third fire detection signal (SG-3). The communication unit (RF) can provide the third fire detection signal (SG-3) to the antenna (ATN-R).
수신기(300)는 중계기(200)를 통해 다양한 장소에 배치된 복수의 화재 감지 장치들(100)을 제어할 수 있다. The receiver 300 can control a plurality of fire detection devices 100 deployed in various locations through the repeater 200.
제1 서버(400)는 수신기(300)로부터 수신한 제3 화재감지신호(SG-3)를 근거로 화재상황을 판단할 수 있다. The first server 400 may determine the fire situation based on the third fire detection signal (SG-3) received from the receiver 300.
제1 서버(400)는 반도체 칩(AC-4)를 포함할 수 있다. 반도체 칩(AC-4)은 화재 감지 장치(100)의 반도체 칩(AC-1), 중계기(200)의 반도체 칩(AC-2), 및 수신기(300)의 반도체 칩(AC-3)과 동일한 구성을 가지는 칩일 수 있다. The first server 400 may include a semiconductor chip (AC-4). The semiconductor chip (AC-4) is a semiconductor chip (AC-1) of the fire detection device 100, a semiconductor chip (AC-2) of the repeater 200, and a semiconductor chip (AC-3) of the receiver 300. The chips may have the same configuration.
반도체 칩(AC-4)의 제어부(CC)는 제3 화재감지신호(SG-3)의 유효성을 판단할 수 있다. 이에 대해서는 후술된다. The control unit (CC) of the semiconductor chip (AC-4) can determine the validity of the third fire detection signal (SG-3). This will be described later.
반도체 칩(AC-4)의 통신부(RF)는 외부의 제2 서버(BS)로부터 빅데이터를 수신할 수 있다. 상기 빅데이터는 제2 서버(BS)의 메모리에 저장되어 있을 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에 따른 상기 빅데이터는 제1 서버(400)의 별도의 메모리에 저장될 수도 있다. The communication unit (RF) of the semiconductor chip (AC-4) can receive big data from an external second server (BS). The big data may be stored in the memory of the second server (BS). However, this is an example, and the big data according to an embodiment of the present invention may be stored in a separate memory of the first server 400.
상기 빅데이터는 화재 발생 여부를 판단하기 위한 주변 환경 데이터를 포함할 수 있다. 예를 들어, 상기 주변 환경 데이터는 날짜 별 화재 발생확률에 대응하는 데이터, 시각 별 화재 발생확률에 대응하는 데이터, 공간 별 화재 발생확률에 대응하는 데이터, 기온 별 화재 발생확률에 대응하는 데이터, 습도 별 화재 발생확률에 대응하는 데이터, 날씨 별 화재 발생확률에 대응하는 데이터, 업종 별 화재 발생확률에 대응하는 데이터, 및 사용자 별 화재 발생확률 에 대응하는 데이터 중 적어도 하나를 포함할 수 있다.The big data may include surrounding environmental data to determine whether a fire has occurred. For example, the surrounding environment data includes data corresponding to the probability of fire occurrence by date, data corresponding to the probability of fire occurrence by time, data corresponding to the probability of fire occurrence by space, data corresponding to the probability of fire occurrence by temperature, and humidity. It may include at least one of data corresponding to the probability of fire occurrence by each weather, data corresponding to the probability of fire occurrence by weather, data corresponding to the probability of fire occurrence by industry, and data corresponding to the probability of fire occurrence by user.
예를 들어, 상기 날짜 별 화재 발생확률에 대응하는 데이터는 요일 별 화재 발생확률 및 달 별 화재 발생확률을 포함할 수 있다. 상기 시각 별 화재 발생확률에 대응하는 데이터는 새벽, 아침, 오후, 저녁, 또는 심야 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 공간 별 화재 발생확률에 대응하는 데이터는 도심, 산간, 해변, 또는 농촌 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 기온 별 화재 발생확률에 대응하는 데이터는 봄, 여름, 가을, 또는 겨울로 구분된 화재 발생확률을 포함할 수 있다. 상기 습도 별 화재 발생확률에 대응하는 데이터는 특정 습도 수치 별 화재 발생 확률을 포함할 수 있다. 상기 날씨 별 화재 발생확률에 대응하는 데이터는 맑은 날, 흐린 날, 또는 비 오는 날 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 업종 별 화재 발생확률에 대응하는 데이터는 가정, 식당, 공장, 또는 사무실 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 사용자 별 화재 발생확률은 연령, 직업, 또는 성별 등으로 구분된 화재 발생확률을 포함할 수 있다. For example, the data corresponding to the fire occurrence probability by date may include the fire occurrence probability by day of the week and the fire occurrence probability by month. The data corresponding to the fire occurrence probability by time may include the fire occurrence probability divided into dawn, morning, afternoon, evening, or late night. Data corresponding to the probability of fire occurrence by space may include the probability of fire occurrence divided into urban areas, mountainous regions, beaches, or rural areas. Data corresponding to the probability of fire occurrence by temperature may include the probability of fire occurrence divided into spring, summer, fall, or winter. The data corresponding to the probability of fire occurrence by humidity may include the probability of fire occurrence by specific humidity level. The data corresponding to the probability of fire occurrence by weather may include the probability of fire occurrence divided into clear days, cloudy days, or rainy days. Data corresponding to the probability of fire occurrence by industry may include the probability of fire occurrence divided into homes, restaurants, factories, or offices. The fire occurrence probability for each user may include the fire occurrence probability classified by age, occupation, or gender.
상기 빅데이터는 주기적으로 업데이트될 수 있다. The big data may be updated periodically.
제1 서버(400)가 제3 화재감지신호(SG-3)를 유효한 신호로 판단한 경우, 복수의 관계자들(20)에게 경고 메시지 및 위치 정보를 송신할 수 있다.When the first server 400 determines that the third fire detection signal (SG-3) is a valid signal, it can transmit a warning message and location information to a plurality of parties 20.
복수의 관계자들(20)은, 예를 들어, 소방서, 화재가 발생한 곳의 관계자들, 국민안전처(또는 국민의 안전에 관련된 공공기관) 등을 포함할 수 있다. 복수의 관계자들(20)은 유선 전화, 스마트폰, 또는 기타 휴대 단말기 등을 통하여 텍스트 메시지, 영상 메시지, 또는 음성 메시지의 형태로 화재 경고 메시지를 수신할 수 있다.The plurality of stakeholders 20 may include, for example, a fire department, officials at a place where a fire occurs, the Ministry of Public Safety and Security (or a public institution related to public safety), etc. A plurality of parties 20 may receive a fire warning message in the form of a text message, video message, or voice message through a landline phone, smartphone, or other mobile terminal.
도 3은 본 발명의 일 실시예에 따른 화재 감지 장치를 도시한 블록도이다.Figure 3 is a block diagram showing a fire detection device according to an embodiment of the present invention.
도 3을 참조하면, 화재 감지 장치(100)는 반도체 칩(AC), 발룬(BL), 안테나(ATN), 저장부(ROM), 제1 센서(SS1), 제2 센서(SS2), 스피커(SPK), 발진기(OSC), 발광부(LED), 및 전원(PW)을 포함할 수 있다. Referring to FIG. 3, the fire detection device 100 includes a semiconductor chip (AC), a balun (BL), an antenna (ATN), a storage unit (ROM), a first sensor (SS1), a second sensor (SS2), and a speaker. (SPK), an oscillator (OSC), a light emitting unit (LED), and a power source (PW).
반도체 칩(AC)은 통신부(RF), 제어부(CC), 센서부(SP), 메모리(MM), 전원공급부(PS)를 포함할 수 있다. The semiconductor chip (AC) may include a communication unit (RF), a control unit (CC), a sensor unit (SP), a memory (MM), and a power supply unit (PS).
안테나(ATN)는 발룬(BL)을 사이에 두고 통신부(RF)와 전기적으로 연결될 수 있다. 발룬(BL)은 평형회로 및 불평형회로 사이의 신호를 변환시킬 수 있다. The antenna (ATN) may be electrically connected to the communication unit (RF) via the balun (BL). Balun (BL) can convert signals between balanced and unbalanced circuits.
제1 센서(SS1)는 열 및/또는 연기를 감지하는 센서를 포함할 수 있다.The first sensor SS1 may include a sensor that detects heat and/or smoke.
제2 센서(SS2)는 제1 센서(SS1)와 상이한 센서일 수 있다. 제2 센서(SS2)는 가속도 센서 및/또는 기울기 센서를 포함할 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에 따른 제1 센서(SS1) 및 제2 센서(SS2) 각각의 측정 대상은 이에 제한되지 않는다. 예를 들어, 제1 센서(SS1) 및 제2 센서(SS2) 각각은 사물 인터넷(Internet of Things, IoT)를 구성하기 위한 센서를 포함할 수 있다. The second sensor SS2 may be a different sensor from the first sensor SS1. The second sensor SS2 may include an acceleration sensor and/or a tilt sensor. However, this is an example, and the measurement objects of each of the first sensor (SS1) and the second sensor (SS2) according to an embodiment of the present invention are not limited thereto. For example, each of the first sensor SS1 and the second sensor SS2 may include a sensor for configuring the Internet of Things (IoT).
제1 센서(SS1) 및 제2 센서(SS2)는 반도체 칩(AC)의 센서부(SP)에 전기적으로 연결될 수 있다. 센서부(SP)는 제1 센서(SS1) 및 제2 센서(SS2) 각각에서 감지한 정보들을 수신할 수 있다.The first sensor SS1 and the second sensor SS2 may be electrically connected to the sensor unit SP of the semiconductor chip AC. The sensor unit (SP) may receive information sensed by each of the first sensor (SS1) and the second sensor (SS2).
저장부(ROM)는 휘발성 메모리 또는 비휘발성 메모리를 포함할 수 있다. 휘발성 메모리는 DRAM, SRAM, 플래시 메모리, 또는 FeRAM을 포함할 수 있다. 비휘발성 메모리는 SSD 또는 HDD를 포함할 수 있다.The storage unit (ROM) may include volatile memory or non-volatile memory. Volatile memory may include DRAM, SRAM, flash memory, or FeRAM. Non-volatile memory may include SSD or HDD.
저장부(ROM)는 메모리(MM)와 전기적으로 연결될 수 있다. The storage unit (ROM) may be electrically connected to the memory (MM).
스피커(SPK)는 경보음을 방출할 수 있다. 스피커(SPK)는 제어부(CC)로부터 화재 감지 장치(100)의 상태에 대한 신호를 수신하여 외부에 알릴 수 있다. The speaker (SPK) can emit an alarm sound. The speaker (SPK) may receive a signal about the status of the fire detection device 100 from the control unit (CC) and inform the outside.
발광부(LED)는 외부에 광을 표시할 수 있다. 발광부(LED)는 제어부(CC)로부터 화재 감지 장치(100)의 상태에 대한 신호를 수신하여 외부에 알릴 수 있다. The light emitting unit (LED) can display light to the outside. The light emitting unit (LED) may receive a signal about the status of the fire detection device 100 from the control unit (CC) and notify the outside.
발진부(OSC)는 제어부(CC)와 전기적으로 연결될 수 있다. 발진부는 온도 보상 수정 발진기(Temperature Compensated crystal Oscillator, TCXO)를 포함할 수 있다. 온도 보상 수정 발진기는 주파수 안정도에 가장 큰 영향을 주는 주파수의 온도 특성을 온도 센서를 부가시켜 수정진동자의 주파수 특성을 안정적으로 제공할 수 있다. The oscillator unit (OSC) may be electrically connected to the control unit (CC). The oscillator may include a temperature compensated crystal oscillator (TCXO). A temperature compensated crystal oscillator can stably provide the frequency characteristics of the crystal oscillator by adding a temperature sensor to determine the temperature characteristics of the frequency that has the greatest impact on frequency stability.
화재 감지 장치(100)는 화재가 발생할 수 있는 공간에 설치될 수 있다. 본 발명과 달리, 화재가 발생되는 경우, 온도가 높아지고 주파수의 온도 특성에 의해 주파수 안정도가 저하될 수 있다. 하지만, 본 발명에 따르면, 화재 감지 장치(100)는 온도 보상 수정 발진기를 포함할 수 있다. 온도 보상 수정 발진기는 주파수 안정도를 온도를 고려하여 제어할 수 있다. 따라서 신뢰성이 향상된 화재 감지 장치(100)를 제공할 수 있다. The fire detection device 100 may be installed in a space where a fire may occur. Unlike the present invention, if a fire occurs, the temperature may increase and frequency stability may be reduced due to the temperature characteristics of the frequency. However, according to the present invention, the fire detection device 100 may include a temperature compensated crystal oscillator. Temperature compensated crystal oscillators can control frequency stability by taking temperature into account. Therefore, a fire detection device 100 with improved reliability can be provided.
도 4는 본 발명의 일 실시예에 따른 화재발생신호 및 신호가 동작하는 방식을 도시한 도면이다.Figure 4 is a diagram showing a fire signal and how the signal operates according to an embodiment of the present invention.
도 2 내지 도 4를 참조하면, 반도체 칩(AC-2)의 메모리(MM)는 신호에 대한 확인 응답 처리 알고리즘을 포함할 수 있다. 반도체 칩(AC-2)의 제어부(CC)는 화재 감지 장치(100)로부터 수신한 제1 화재감지신호(SG-1)를 근거로 신호(SGa)를 생성할 수 있다. 반도체 칩(AC-2)의 통신부(RF)는 신호(SGa)를 안테나(ATN-G)를 통해 송신할 수 있다. 2 to 4, the memory MM of the semiconductor chip AC-2 may include an acknowledgment processing algorithm for signals. The control unit (CC) of the semiconductor chip (AC-2) may generate a signal (SGa) based on the first fire detection signal (SG-1) received from the fire detection device 100. The communication unit (RF) of the semiconductor chip (AC-2) can transmit the signal (SGa) through the antenna (ATN-G).
복수의 화재 감지 장치들(100) 각각은 제1 화재감지신호(SG-1)를 중계기(200)에 전송할 수 있다. 중계기(200)는 제1 화재감지신호(SG-1)를 수신하면, 제1 화재경보신호(SG-1)가 포함하는 화재 정보를 근거로 제1 화재감지신호(SG-1)를 송신한 화재 감지 장치(100)를 판단할 수 있다. 상기 화재 정보에는 화재 감지 장치(100)의 주소값을 포함할 수 있다. Each of the plurality of fire detection devices 100 may transmit a first fire detection signal (SG-1) to the repeater 200. When receiving the first fire detection signal (SG-1), the repeater 200 transmits the first fire detection signal (SG-1) based on the fire information included in the first fire alarm signal (SG-1). The fire detection device 100 can be determined. The fire information may include the address value of the fire detection device 100.
중계기(200)는 제1 화재감지신호(SG-1)를 송신한 화재 감지 장치(100)에 제1 시간(TM1) 경과 후 신호(SGa)를 전송할 수 있다. The repeater 200 may transmit the signal (SGa) to the fire detection device 100 that transmitted the first fire detection signal (SG-1) after the first time (TM1) has elapsed.
신호(SGa)는 확인 응답(ACK) 및 제어 신호(INF)를 포함할 수 있다. 확인 응답(ACK) 및 제어 신호(INF)는 복수의 화재 감지 장치들(100)에 일체로 전송될 수 있다. 즉, 확인 응답(ACK) 및 제어 신호(INF)는 하나의 신호로 전송될 수 있다. The signal (SGa) may include an acknowledgment (ACK) and a control signal (INF). The acknowledgment (ACK) and control signal (INF) may be transmitted to the plurality of fire detection devices 100 in one piece. That is, the acknowledgment (ACK) and control signal (INF) can be transmitted as one signal.
본 발명에 따르면, 확인 응답(ACK) 및 제어 신호(INF)는 동일한 데이터 프레임에 제공되어 전송될 수 있다. 신호(SGa)는 하나의 통신 수단으로 확인 응답(ACK) 및 제어 신호(INF)를 포함하는 다양한 정보를 가진 신호들을 같이 전달하여 신호 전달의 효율성을 향상시킬 수 있다. 또한, 신호(SGa)는 확인 응답(ACK) 및 제어 신호(INF) 중 하나가 전달되지 않는 경우를 배제하여 신호 처리 및 신호 관리를 안정적으로 수행할 수 있다. 따라서, 신뢰성이 향상된 화재 감지 시스템(10)을 제공할 수 있다. According to the present invention, an acknowledgment (ACK) and a control signal (INF) can be provided and transmitted in the same data frame. The signal (SGa) is a communication means that can improve the efficiency of signal transmission by transmitting signals with various information, including an acknowledgment (ACK) and a control signal (INF). Additionally, the signal SGa can stably perform signal processing and signal management by excluding cases where one of the acknowledgment (ACK) and control signal (INF) is not delivered. Accordingly, a fire detection system 10 with improved reliability can be provided.
확인 응답(ACK)은 제1 화재감지신호(SG-1)가 정상적으로 수신되었음을 복수의 화재 감지 장치들(SM)에 확인 응답하는 신호일 수 있다.The acknowledgment (ACK) may be a signal confirming to the plurality of fire detection devices (SM) that the first fire detection signal (SG-1) has been normally received.
제어 신호(INF)는 복수의 화재 감지 장치들(100) 각각을 제어하는 신호일 수 있다. 제어 신호(INF)는 센서(SS) 및 반도체 칩(AC-1)의 상태를 초기화시키는 정보일 수 있다. 복수의 화재 감지 장치들(100) 각각은 제어 신호(INF)를 수신하는 경우, 제1 화재감지신호(SG-1)를 중계기(200)에 송신하는 것을 중단할 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에 따른 제어 신호(INF)는 이에 제한되지 않는다. 예를 들어, 본 발명의 일 실시예에 따른 제어 신호(INF)는 다양한 정보들 각각을 포함하는 신호를 포함할 수 있다. 도 4에서는 예시적으로 하나의 제어 신호(INF)를 도시하였으나, 본 발명의 일 실시예에 따른 제어 신호(INF)의 개수는 이에 제한되지 않는다. 예를 들어, 본 발명의 일 실시예에 따른 제어 신호(INF)는 복수로 제공될 수도 있다. The control signal INF may be a signal that controls each of the plurality of fire detection devices 100. The control signal INF may be information that initializes the states of the sensor SS and the semiconductor chip AC-1. When each of the plurality of fire detection devices 100 receives the control signal INF, it may stop transmitting the first fire detection signal SG-1 to the repeater 200. However, this is an example and the control signal (INF) according to an embodiment of the present invention is not limited thereto. For example, the control signal INF according to an embodiment of the present invention may include a signal including various pieces of information. Although one control signal (INF) is shown as an example in FIG. 4, the number of control signals (INF) according to an embodiment of the present invention is not limited thereto. For example, a plurality of control signals (INF) according to an embodiment of the present invention may be provided.
제1 화재감지신호(SG-1)의 크기(SZ-1)는 신호(SGa)의 크기(SZ-2)보다 클 수 있다. 신호(SGa)가 전송될 때의 트래픽 밀도는 제1 화재감지신호(SG-1)가 전송될 때의 트래픽 밀도보다 작을 수 있다. The size (SZ-1) of the first fire detection signal (SG-1) may be greater than the size (SZ-2) of the signal (SGa). The traffic density when the signal SGa is transmitted may be lower than the traffic density when the first fire detection signal SG-1 is transmitted.
제1 시간(TM1)은 짧은 프레임 간 간격(Short Inter-Frame Space, SIFS)일 수 있다. 제1 시간(TM1)은 가장 짧은 대기지연 시간일 수 있다. 따라서, 신호(SGa)는 복수의 화재 감지 장치들(100)로 전송됨에 있어 가장 높은 우선순위를 가질 수 있다. 제1 시간(TM1)은 수신된 제1 화재감지신호(SG-1)의 처리 시간 및 응답 송출에 소요되는 시간을 합친 시간일 수 있다. The first time (TM1) may be a short inter-frame space (SIFS). The first time (TM1) may be the shortest waiting delay time. Accordingly, the signal SGa may have the highest priority when transmitted to the plurality of fire detection devices 100. The first time (TM1) may be the combined time of the processing time of the received first fire detection signal (SG-1) and the time required to transmit the response.
본 발명에 따르면, 제1 시간(TM1)은 제1 화재감지신호(SG-1)를 수신하자마자 응답 송출하는 최소 필요 시간일 수 있다. 복수의 화재 감지 장치들(100) 및 중계기(200)는 서로 신속한 통신을 할 수 있다. 화재 상황에서 화재 감지 시스템(10)은 신속한 대응을 유도할 수 있다. 따라서, 신뢰성이 향상된 화재 감지 시스템(10)을 제공할 수 있다. According to the present invention, the first time (TM1) may be the minimum necessary time for transmitting a response as soon as the first fire detection signal (SG-1) is received. The plurality of fire detection devices 100 and the repeater 200 can quickly communicate with each other. In a fire situation, the fire detection system 10 can lead to a rapid response. Accordingly, a fire detection system 10 with improved reliability can be provided.
본 발명과 달리 중계기(200)가 복수의 화재 감지 장치들(100)로부터 제1 화재감지신호(SG-1)를 수신하고, 확인 응답을 송신한 후에 별도로 제어 신호를 송신하는 경우, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들의 양이 증가하여 트래픽 밀도가 증가할 수 있다. 따라서, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들이 분실될 수 있고, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들 사이에 간섭이 발생할 수 있으며, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들이 전송됨에 있어서 데이터 손실이 발생할 수 있다. 하지만, 본 발명에 따르면, 중계기(200)가 복수의 화재 감지 장치들(100)로부터 제1 화재감지신호(SG-1)를 수신하면, 중계기(200)는 확인 응답(ACK) 및 제어 신호(INF)를 포함하는 신호(SGa)를 송신할 수 있다. 확인 응답(ACK) 및 제어 신호(INF)는 하나의 데이터 프레임에 일체로 전송되기 때문에 트래픽 밀도가 감소될 수 있다. 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들의 양을 감소시킬 수 있다. 중계기(200)와 복수의 화재 감지 장치들(100) 사이의 트래픽량이 감소될 수 있다. 따라서, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들이 분실되는 것을 방지할 수 있고, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들 사이에 간섭이 발생하는 것을 방지할 수 있으며, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들이 전송됨에 있어서 데이터 손실이 발생하는 것을 방지할 수 있다. 따라서, 중계기(200)와 복수의 화재 감지 장치들(100) 사이에 전송되는 복수의 신호들을 전달하는 신뢰성이 향상된 화재 감지 시스템(10)를 제공할 수 있다. Unlike the present invention, when the repeater 200 receives the first fire detection signal (SG-1) from the plurality of fire detection devices 100 and transmits a confirmation response and then separately transmits a control signal, the repeater 200 ) and the plurality of signals transmitted between the fire detection devices 100 may increase, thereby increasing traffic density. Accordingly, the plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 may be lost, and the plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 may be lost. Interference may occur between them, and data loss may occur when a plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 are transmitted. However, according to the present invention, when the repeater 200 receives the first fire detection signal (SG-1) from the plurality of fire detection devices 100, the repeater 200 sends an acknowledgment (ACK) and a control signal ( A signal (SGa) including INF) can be transmitted. Because the acknowledgment (ACK) and control signal (INF) are transmitted integrally in one data frame, traffic density can be reduced. The amount of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 can be reduced. The amount of traffic between the repeater 200 and the plurality of fire detection devices 100 may be reduced. Therefore, it is possible to prevent a plurality of signals transmitted between the repeater 200 and the plurality of fire detection devices 100 from being lost, and the signals transmitted between the repeater 200 and the plurality of fire detection devices 100 can be prevented. Interference between multiple signals can be prevented, and data loss can be prevented when multiple signals transmitted between the repeater 200 and the multiple fire detection devices 100 are transmitted. there is. Accordingly, it is possible to provide a fire detection system 10 with improved reliability that delivers a plurality of signals transmitted between the repeater 200 and a plurality of fire detection devices 100.
복수의 화재 감지 장치들(100) 각각은 신호(SGa)를 수신하지 못한 경우, 제2 시간 후에 제1 화재감지신호(SG-1)를 중계기(200)에 재전송할 수 있다. 상기 제2 시간은 1분일 수 있다. 다만, 이는 예시적인 것으로 본 발명의 일 실시예에 따른 상기 제2 시간은 이에 제한되지 않는다. 예를 들어, 상기 제2 시간은 중계기(200) 및 복수의 화재 감지 장치들(100) 사이의 통신 상태에 따라 다양하게 정의될 수 있다. When each of the plurality of fire detection devices 100 fails to receive the signal SGa, it may retransmit the first fire detection signal SG-1 to the repeater 200 after a second time. The second time may be 1 minute. However, this is an example and the second time according to an embodiment of the present invention is not limited thereto. For example, the second time may be defined in various ways depending on the communication state between the repeater 200 and the plurality of fire detection devices 100.
또한, 본 발명에 따르면, 복수의 화재 감지 장치들(100) 및 중계기(200)에는 동일한 구성을 갖는 반도체 칩(AC-1, AC-2)이 실장될 수 있다. 반도체 칩(AC-1, AC-2)의 메모리(MM)에는 상기 신호 처리를 위한 알고리즘이 저장될 수 있다. 반도체 칩(AC-1, AC-2)의 제어부(CC)는 상기 알고리즘을 근거로 신호를 용이하게 처리할 수 있다. 즉, 서로 상이한 별도의 반도체 칩들이 복수의 화재 감지 장치들(100) 및 중계기(200)에 실장되는 것이 아닌 동일한 구성의 반도체 칩(AC-1, AC-2)이 실장될 수 있다. 반도체 칩(AC-1, AC-2)은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 상기 주문형 집적 회로는 화재 감지 및 신호 처리에 최적화되어 설계될 수 있다. 따라서, 제품 제조 비용이 감소하고, 최적화된 설계로 인해 전력 소모가 감소된 화재 감지 시스템(10)을 제공할 수 있다. Additionally, according to the present invention, semiconductor chips AC-1 and AC-2 having the same configuration may be mounted on the plurality of fire detection devices 100 and the repeater 200. The algorithm for signal processing may be stored in the memory MM of the semiconductor chips AC-1 and AC-2. The control unit (CC) of the semiconductor chip (AC-1, AC-2) can easily process signals based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100 and the repeater 200, semiconductor chips (AC-1, AC-2) of the same configuration may be mounted. Semiconductor chips (AC-1, AC-2) may be composed of application-specific integrated circuits (ASICs). The custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
도 5는 본 발명의 일 실시예에 따른 제1 서버의 동작을 도시한 것이다. Figure 5 shows the operation of the first server according to an embodiment of the present invention.
도 2, 도 3, 및 도 5를 참조하면, 반도체 칩(AC-4)의 메모리(MM)는 디지털트윈과 연동된 정보를 처리하는 알고리즘을 포함할 수 있다. 반도체 칩(AC-4)의 통신부(RF)는 외부로부터 디지털 트윈 정보(BIM)를 수신할 수 있다. 반도체 칩(AC-4)의 제어부(CC)는 디지털 트윈 정보(BIM) 및 화재 정보(FI)를 근거로 화재 분석 데이터(DATA)를 산출할 수 있다. Referring to FIGS. 2, 3, and 5, the memory (MM) of the semiconductor chip (AC-4) may include an algorithm that processes information linked to the digital twin. The communication unit (RF) of the semiconductor chip (AC-4) can receive digital twin information (BIM) from the outside. The control unit (CC) of the semiconductor chip (AC-4) can calculate fire analysis data (DATA) based on digital twin information (BIM) and fire information (FI).
제1 서버(400)는 디지털 트윈 산출부(410), 빅데이터 수신부(420), 통신부(430), 및 반도체 칩(AC-4)을 포함할 수 있다. The first server 400 may include a digital twin calculation unit 410, a big data reception unit 420, a communication unit 430, and a semiconductor chip (AC-4).
디지털 트윈 산출부(410)는 건축물 및 장소를 가상으로 구현할 수 있다. 상기 건축물 및 장소는 복수의 화재 감지 장치들(100) 및 영상 촬영부(CT)가 배치된 건축물일 수 있다. 디지털 트윈 산출부(410)는 디지털 트윈 정보(BIM)를 제공할 수 있다. 디지털 트윈 산출부(410)는 디지털 트윈 정보(BIM)를 디지털 트윈의 형식으로 제공할 수 있다. The digital twin calculation unit 410 can virtually implement buildings and places. The building and location may be a building in which a plurality of fire detection devices 100 and a video capture unit (CT) are arranged. The digital twin calculation unit 410 can provide digital twin information (BIM). The digital twin calculation unit 410 can provide digital twin information (BIM) in the format of a digital twin.
빅데이터 수신부(420)는 제2 서버(BS)로부터 빅데이터(BD)를 수신할 수 있다. 빅데이터(BD)는 건축물 및 장소에 대한 정보를 포함할 수 있다. 예를 들어, 빅데이터(BD)는 영화관에 대한 정보, 전통 시장 건물에 대한 정보, 박물관에 대한 정보, 육군 본부에 대한 정보, 공군 본부에 대한 정보, 창고에 대한 정보, 사격장에 대한 정보, 군 막사에 대한 정보, 및 화력 발전소에 대한 정보 등을 포함할 수 있다.The big data receiving unit 420 may receive big data (BD) from the second server (BS). Big data (BD) can include information about buildings and places. For example, big data (BD) can include information about movie theaters, information about traditional market buildings, information about museums, information about army headquarters, information about air force headquarters, information about warehouses, information about shooting ranges, information about military It may include information about barracks, information about thermal power plants, etc.
빅데이터(BD)는 화재 가능 원인(FC)에 대해 판단하기 위한 주변 환경 데이터를 더 포함할 수 있다. 예를 들어, 상기 주변 환경 데이터는 날짜 별 화재 발생확률에 대응하는 데이터, 시각 별 화재 발생확률에 대응하는 데이터, 장소 별 화재 발생확률에 대응하는 데이터, 기온 별 화재 발생확률에 대응하는 데이터, 습도 별 화재 발생확률에 대응하는 데이터, 날씨 별 화재 발생확률에 대응하는 데이터, 업종 별 화재 발생확률에 대응하는 데이터, 및 사용자 별 화재 발생확률 에 대응하는 데이터 중 적어도 하나를 포함할 수 있다.Big data (BD) may further include surrounding environmental data to determine the probable cause (FC) of the fire. For example, the surrounding environment data includes data corresponding to the probability of fire occurrence by date, data corresponding to the probability of fire occurrence by time, data corresponding to the probability of fire occurrence by location, data corresponding to the probability of fire occurrence by temperature, and humidity. It may include at least one of data corresponding to the probability of fire occurrence by each weather, data corresponding to the probability of fire occurrence by weather, data corresponding to the probability of fire occurrence by industry, and data corresponding to the probability of fire occurrence by user.
예를 들어, 상기 날짜 별 화재 발생확률에 대응하는 데이터는 요일 별 화재 발생확률 및 달 별 화재 발생확률을 포함할 수 있다. 상기 시각 별 화재 발생확률에 대응하는 데이터는 새벽, 아침, 오후, 저녁, 또는 심야 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 공간 별 화재 발생확률에 대응하는 데이터는 도심, 산간, 해변, 또는 농촌 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 기온 별 화재 발생확률에 대응하는 데이터는 봄, 여름, 가을, 또는 겨울로 구분된 화재 발생확률을 포함할 수 있다. 상기 습도 별 화재 발생확률에 대응하는 데이터는 특정 습도 수치 별 화재 지수를 포함할 수 있다. 상기 날씨 별 화재 발생확률에 대응하는 데이터는 맑은 날, 흐린 날, 또는 비 오는 날 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 업종 별 화재 발생확률에 대응하는 데이터는 가정, 식당, 공장, 또는 사무실 등으로 구분된 화재 발생확률을 포함할 수 있다. 상기 사용자 별 화재 발생확률은 연령, 직업, 또는 성별 등으로 구분된 화재 발생확률을 포함할 수 있다. For example, the data corresponding to the fire occurrence probability by date may include the fire occurrence probability by day of the week and the fire occurrence probability by month. The data corresponding to the fire occurrence probability by time may include the fire occurrence probability divided into dawn, morning, afternoon, evening, or late night. Data corresponding to the probability of fire occurrence by space may include the probability of fire occurrence divided into urban areas, mountainous regions, beaches, or rural areas. Data corresponding to the probability of fire occurrence by temperature may include the probability of fire occurrence divided into spring, summer, fall, or winter. Data corresponding to the probability of fire occurrence by humidity may include a fire index by specific humidity level. Data corresponding to the probability of fire occurrence by weather may include the probability of fire occurrence divided into clear days, cloudy days, or rainy days. Data corresponding to the probability of fire occurrence by industry may include the probability of fire occurrence divided into homes, restaurants, factories, or offices. The fire occurrence probability for each user may include the fire occurrence probability classified by age, occupation, or gender.
반도체 칩(AC-4)의 제어부(CC)는 디지털 트윈 산출부(410)에서 구현한 디지털 트윈 정보(BIM), 빅데이터 수신부(420)가 수신한 빅데이터(BD), 영상 촬영부(CT)가 측정한 영상(IM), 및 화재 정보(FI)를 근거로 화재 분석 데이터(DATA)를 생성할 수 있다.The control unit (CC) of the semiconductor chip (AC-4) includes digital twin information (BIM) implemented by the digital twin calculation unit 410, big data (BD) received by the big data receiving unit 420, and video capture unit (CT). ) can generate fire analysis data (DATA) based on the measured image (IM) and fire information (FI).
반도체 칩(AC-4)의 통신부(RF)는 화재 분석 데이터(DATA)를 통신부(430)에 제공할 수 있다. 통신부(430)는 화재 분석 데이터(DATA)를 복수의 관계자들(20)에게 제공할 수 있다. The communication unit (RF) of the semiconductor chip (AC-4) may provide fire analysis data (DATA) to the communication unit 430. The communication unit 430 may provide fire analysis data (DATA) to a plurality of stakeholders 20.
화재 분석 데이터(DATA)는 디지털 트윈 정보(BIM)과 연동되어 구체적인 화재 상황을 복수의 관계자들(20)에게 제공할 수 있다. Fire analysis data (DATA) can be linked with digital twin information (BIM) to provide specific fire situations to multiple stakeholders (20).
본 발명에 따르면, 복수의 화재 감지 장치들(100), 중계기(200), 수신기(300), 및 제1 서버(400)에는 동일한 구성을 갖는 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 메모리(MM)에는 디지털 트윈 정보(BIM)를 처리하기 위한 알고리즘이 저장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 제어부(CC)는 상기 알고리즘을 근거로 디지털 트윈 정보(BIM)를 용이하게 해석 및 처리할 수 있다. 즉, 서로 상이한 별도의 반도체 칩들이 복수의 화재 감지 장치들(100), 중계기(200), 수신기(300), 및 제1 서버(400)에 실장되는 것이 아닌 동일한 구성의 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 상기 주문형 집적 회로는 화재 감지 및 신호 처리에 최적화되어 설계될 수 있다. 따라서, 제품 제조 비용이 감소하고, 최적화된 설계로 인해 전력 소모가 감소된 화재 감지 시스템(10)을 제공할 수 있다. According to the present invention, the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400 are equipped with semiconductor chips (AC-1, AC-2, AC-) having the same configuration. 3, AC-4) can be installed. An algorithm for processing digital twin information (BIM) may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4). The control unit (CC) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can easily interpret and process digital twin information (BIM) based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400, the semiconductor chip (AC-1) has the same configuration. , AC-2, AC-3, AC-4) can be mounted. Semiconductor chips (AC-1, AC-2, AC-3, AC-4) may be composed of application-specific integrated circuits (ASICs). The custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, the product manufacturing cost is reduced, and the fire detection system 10 with reduced power consumption can be provided due to the optimized design.
도 6은 본 발명의 일 실시예에 따른 제1 서버의 동작을 도시한 것이다.Figure 6 shows the operation of the first server according to an embodiment of the present invention.
도 2, 도 3, 및 도 6을 참조하면, 제1 서버(400)의 통신부(430)는 화재 감지 장치(100)로부터 화재 정보(FI)를 수신할 수 있다. 통신부(430)는 반도체 칩(AC-4)의 통신부(RF)와 전기적으로 연결될 수 있다. 통신부(430)는 화재 정보(FI)를 반도체 칩(AC-4)의 통신부(RF)에 전달할 수 있다. 2, 3, and 6, the communication unit 430 of the first server 400 may receive fire information (FI) from the fire detection device 100. The communication unit 430 may be electrically connected to the communication unit (RF) of the semiconductor chip (AC-4). The communication unit 430 may transmit fire information (FI) to the communication unit (RF) of the semiconductor chip (AC-4).
반도체 칩(AC-4)의 메모리(MM)는 화재 정보(FI)의 유효성을 판단하는 알고리즘을 포함할 수 있다. 유효하지 않은 화재 정보(FI)는 비화재보로 지칭될 수 있다. 상기 비화재보라 함은 화재가 아님에도 불구하고 화재로 간주하여 화재 감지 장치(10)가 동작하는 것을 의미한다.The memory (MM) of the semiconductor chip (AC-4) may include an algorithm that determines the validity of fire information (FI). Invalid fire information (FI) may be referred to as a non-fire report. The non-fire term means that the fire detection device 10 operates by considering the fire to be a fire even though it is not a fire.
반도체 칩(AC-4)의 제어부(CC)는 디지털 트윈 산출부(410)에서 구현한 디지털 트윈 정보(BIM), 빅데이터 수신부(420)가 수신한 빅데이터(BD), 영상 촬영부(CT)가 측정한 영상(IM), 및 화재 정보(FI)를 근거로 반도체 칩(AC-4)의 제어부(CC)는 빅데이터(BD), 상기 알고리즘, 및 화재 정보(FI)를 근거로 화재 정보(FI)의 유효성을 상이한 기준으로 판단할 수 있다. The control unit (CC) of the semiconductor chip (AC-4) includes digital twin information (BIM) implemented by the digital twin calculation unit 410, big data (BD) received by the big data receiving unit 420, and video capture unit (CT). ) Based on the image (IM) and fire information (FI) measured by The validity of information (FI) can be judged by different criteria.
반도체 칩(AC-4)의 제어부(CC)는 화재 정보(FI), 상기 알고리즘, 빅데이터(BD)를 근거로 화재 정보(FI)가 수증기, 담배연기, 및/또는 배기가스와 같은 유효하지 않은 데이터인지 여부를 판단할 수 있다. The control unit (CC) of the semiconductor chip (AC-4) determines whether the fire information (FI) is valid, such as water vapor, cigarette smoke, and/or exhaust gas, based on the fire information (FI), the algorithm, and big data (BD). It can be determined whether the data is not valid or not.
또한, 제1 서버(400)가 제3 화재감지신호(SG-3)를 유효하지 않은 신호로 판단한 경우, 제1 서버(400)는 복수의 화재 감지 장치들(100)의 알람이 울리지 않도록 하는 제어 신호를 복수의 화재 감지 장치들(100)에 전송할 수 있다. In addition, when the first server 400 determines that the third fire detection signal (SG-3) is an invalid signal, the first server 400 prevents the alarms of the plurality of fire detection devices 100 from sounding. A control signal may be transmitted to a plurality of fire detection devices 100.
본 발명에 따르면, 빅데이터(BD)는 상황에 따른 화재 관련 데이터들을 포함할 수 있고, 반도체 칩(AC-4)의 제어부(CC)는 상기 빅데이터(BD) 및 복수의 화재 감지 장치들(100) 각각이 감지한 화재 정보(FI)를 근거로 화재감지신호들(SG-1, SG-2, SG-3)의 유효성을 판단할 수 있다. 따라서, 상황 별로 최저의 비화재보 판단을 할 수 있고, 비화재보 판단의 신뢰성이 향상된 화재 감지 시스템(10)을 제공할 수 있다. According to the present invention, big data (BD) may include fire-related data according to the situation, and the control unit (CC) of the semiconductor chip (AC-4) may include the big data (BD) and a plurality of fire detection devices ( 100) The effectiveness of fire detection signals (SG-1, SG-2, SG-3) can be judged based on the fire information (FI) detected by each. Therefore, it is possible to provide a fire detection system 10 that can determine the lowest non-fire alarm for each situation and has improved reliability of non-fire alarm determination.
또한, 본 발명에 따르면, 복수의 화재 감지 장치들(100), 중계기(200), 수신기(300), 및 제1 서버(400)에는 동일한 구성을 갖는 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 메모리(MM)에는 비화재보를 판단하기 위한 알고리즘이 저장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)의 제어부(CC)는 상기 알고리즘을 근거로 비화재보를 용이하게 판단할 수 있다. 즉, 서로 상이한 별도의 반도체 칩들이 복수의 화재 감지 장치들(100), 중계기(200), 수신기(300), 및 제1 서버(400)에 실장되는 것이 아닌 동일한 구성의 반도체 칩(AC-1, AC-2, AC-3, AC-4)이 실장될 수 있다. 반도체 칩(AC-1, AC-2, AC-3, AC-4)은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성될 수 있다. 상기 주문형 집적 회로는 화재 감지 및 신호 처리에 최적화되어 설계될 수 있다. 따라서, 제품 제조 비용이 감소하고, 최적화된 설계로 인해 전력 소모가 감소된 화재 감지 시스템(10)을 제공할 수 있다. In addition, according to the present invention, the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400 include semiconductor chips (AC-1, AC-2, AC-3, AC-4) can be installed. An algorithm for determining non-fire information may be stored in the memory (MM) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4). The control unit (CC) of the semiconductor chip (AC-1, AC-2, AC-3, AC-4) can easily determine a non-fire report based on the above algorithm. That is, rather than separate, different semiconductor chips being mounted on the plurality of fire detection devices 100, repeater 200, receiver 300, and first server 400, the semiconductor chip (AC-1) has the same configuration. , AC-2, AC-3, AC-4) can be mounted. Semiconductor chips (AC-1, AC-2, AC-3, AC-4) may be composed of application-specific integrated circuits (ASICs). The custom integrated circuit can be designed to be optimized for fire detection and signal processing. Accordingly, product manufacturing costs are reduced, and a fire detection system 10 with reduced power consumption can be provided due to an optimized design.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.Although the present invention has been described above with reference to preferred embodiments, those skilled in the art or have ordinary knowledge in the relevant technical field should not deviate from the spirit and technical scope of the present invention as set forth in the claims to be described later. It will be understood that the present invention can be modified and changed in various ways within the scope of the present invention. Therefore, the technical scope of the present invention should not be limited to what is described in the detailed description of the specification, but should be defined by the scope of the patent claims.
화재 발생을 감지하기 위한 화재 감지 장치는 화재를 예방 및 대처하기 위해 필수적인 구성이다. 본 발명은 력 소모 및 제조 효율이 향상된 반도체 칩을 포함하는 화재 감지 장치 및 화재 감지 시스템을 제공할 수 있다. 따라서, 화재 감지 장치 및 화재 감지 시스템에 관한 본 발명은 산업상 이용가능성이 높다.A fire detection device for detecting the occurrence of a fire is an essential component for preventing and responding to fire. The present invention can provide a fire detection device and a fire detection system including a semiconductor chip with improved power consumption and manufacturing efficiency. Therefore, the present invention regarding fire detection devices and fire detection systems has high industrial applicability.

Claims (14)

  1. 화재발생여부를 감지하여 화재 정보를 생성하는 센서; 및A sensor that detects whether a fire has occurred and generates fire information; and
    상기 화재 정보를 수신하는 반도체 칩을 포함하고,Includes a semiconductor chip that receives the fire information,
    상기 반도체 칩은,The semiconductor chip is,
    RF 통신(Radio Frequency 통신)을 수행하는 통신부;A communication unit that performs RF communication (Radio Frequency communication);
    상기 센서로부터 상기 화재 정보를 수신하는 센싱부;a sensing unit that receives the fire information from the sensor;
    알고리즘이 저장되는 메모리;Memory where algorithms are stored;
    상기 화재 정보 및 상기 알고리즘을 근거로 신호를 생성하는 제어부; 및a control unit that generates a signal based on the fire information and the algorithm; and
    외부로부터 전원을 수신하여, 상기 통신부, 상기 센싱부, 및 상기 제어부에 상기 전원을 공급하는 전원공급부를 포함하는 화재 감지 장치.A fire detection device comprising a power supply unit that receives power from the outside and supplies the power to the communication unit, the sensing unit, and the control unit.
  2. 제1 항에 있어서,According to claim 1,
    상기 반도체 칩은 상기 화재 정보를 수신하면 제1 시간 경과 후 신호를 송신하고, When the semiconductor chip receives the fire information, it transmits a signal after a first time has elapsed,
    상기 신호는 상기 화재 정보에 대한 확인 응답 및 상기 센서를 제어하는 제어 신호를 포함하고,The signal includes a confirmation response to the fire information and a control signal for controlling the sensor,
    상기 확인 응답 및 상기 제어 신호는 일체로 전송되는 화재 감지 장치.A fire detection device in which the confirmation response and the control signal are transmitted as one unit.
  3. 제2 항에 있어서,According to clause 2,
    상기 제어 신호는 상기 센서 및 상기 반도체 칩의 상태를 초기화시키는 화재 감지 장치.A fire detection device wherein the control signal initializes the states of the sensor and the semiconductor chip.
  4. 제1 항에 있어서,According to claim 1,
    상기 전원공급부는 제1 전력을 소모하는 절전 모드 및 상기 제1 전력보다 높은 제2 전력을 소모하는 노말 모드로 동작하고,The power supply unit operates in a power saving mode consuming first power and a normal mode consuming second power higher than the first power,
    상기 통신부는 상기 절전 모드에서 상기 노말 모드로 바꾸는 활성화신호를 송신하는 화재 감지 장치.A fire detection device wherein the communication unit transmits an activation signal to change the power saving mode to the normal mode.
  5. 제4 항에 있어서,According to clause 4,
    상기 전원공급부는 상기 절전 모드로 동작하다가, 수신한 상기 활성화 신호의 크기가 소정의 값 이상일 경우에 상기 노말 모드로 동작하는 화재 감지 장치.A fire detection device in which the power supply unit operates in the power saving mode and operates in the normal mode when the magnitude of the received activation signal is greater than a predetermined value.
  6. 제4 항에 있어서,According to clause 4,
    상기 제1 전력의 전류는 1uA(microampere) 내지 5uA이고,The current of the first power is 1uA (microampere) to 5uA,
    상기 제2 전력의 전류는 20mA(milliampere) 내지 50mA인 화재 감지 장치.A fire detection device wherein the current of the second power is 20mA (milliampere) to 50mA.
  7. 제1 항에 있어서,According to claim 1,
    상기 RF통신은 400MHz 내지 900MHz 대역의 주파수를 이용하는 화재 감지 장치.The RF communication is a fire detection device that uses frequencies in the 400MHz to 900MHz band.
  8. 제1 항에 있어서,According to claim 1,
    상기 통신부는 외부의 서버로부터 빅데이터를 수신하고, The communication unit receives big data from an external server,
    상기 알고리즘은 화재 정보의 유효성을 판단하는 알고리즘을 포함하며,The algorithm includes an algorithm that determines the validity of fire information,
    상기 제어부는 상기 빅데이터, 상기 알고리즘, 및 상기 화재 정보를 근거로 상기 화재 정보의 유효성을 상황 별로 상이한 기준으로 판단하는 화재 감지 장치.The control unit is a fire detection device that determines the validity of the fire information based on the big data, the algorithm, and the fire information according to different criteria for each situation.
  9. 제8 항에 있어서,According to clause 8,
    상기 제어부는 상기 화재 정보, 상기 알고리즘, 및 상기 빅데이터를 근거로 상기 화재 정보가 수증기, 담배연기, 및/또는 배기가스와 같은 유효하지 않은 데이터인지 여부를 판단하는 화재 감지 장치.The control unit is a fire detection device that determines whether the fire information is invalid data such as water vapor, cigarette smoke, and/or exhaust gas based on the fire information, the algorithm, and the big data.
  10. 제1 항에 있어서,According to claim 1,
    상기 통신부는 외부로부터 건축물을 가상으로 구현한 디지털 트윈 정보를 수신하고,The communication unit receives digital twin information that virtually represents the building from the outside,
    상기 제어부는 상기 디지털 트윈 정보 및 상기 화재 정보를 근거로 화재 분석 데이터를 산출하는 화재 감지 장치.The control unit is a fire detection device that calculates fire analysis data based on the digital twin information and the fire information.
  11. 제1 항에 있어서,According to claim 1,
    상기 반도체 칩은 주문형 집적 회로(Application-Specific Integrated Circuit, ASIC)로 구성되는 화재 감지 장치.The semiconductor chip is a fire detection device comprised of an application-specific integrated circuit (ASIC).
  12. 제1 항에 있어서,According to claim 1,
    상기 반도체 칩에 전기적으로 연결된 온도 보상 수정 발진기를 더 포함하는 화재 감지 장치.A fire detection device further comprising a temperature compensated crystal oscillator electrically connected to the semiconductor chip.
  13. 제1 항에 있어서,According to claim 1,
    상기 RF 통신은 저전력 광역 통신망(Low-Power Wide-Area Network, LPWAN)을 이용하는 화재 감지 장치.The RF communication is a fire detection device that uses a low-power wide-area network (LPWAN).
  14. 서로 다른 주소값들을 가지고 화재 발생을 감지하여 화재 정보를 생성하며 서로 RF 통신(Radio Frequency 통신)을 수행하고, 반도체 칩을 포함하는 복수의 화재 감지 장치들;A plurality of fire detection devices that detect a fire using different address values, generate fire information, perform RF communication (radio frequency communication) with each other, and include a semiconductor chip;
    상기 복수의 센서들 각각과 상기 RF 통신을 수행하고, 상기 복수의 센서들로부터 상기 화재 정보를 수신하며, 상기 반도체 칩을 포함하는 중계기; a repeater that performs the RF communication with each of the plurality of sensors, receives the fire information from the plurality of sensors, and includes the semiconductor chip;
    상기 중계기와 RF 통신을 수행하고 상기 반도체 칩을 포함하는 수신기; 및 상기 수신기와 상기 RF 통신을 수행하고, 상기 반도체 칩을 포함하는 서버를 포함하고,a receiver that performs RF communication with the repeater and includes the semiconductor chip; and a server that performs the RF communication with the receiver and includes the semiconductor chip,
    상기 반도체 칩은,The semiconductor chip is,
    RF 통신(Radio Frequency 통신)을 수행하는 통신부;A communication unit that performs RF communication (Radio Frequency communication);
    상기 센서로부터 상기 화재 정보를 수신하는 센싱부;a sensing unit that receives the fire information from the sensor;
    알고리즘이 저장되는 메모리;Memory where algorithms are stored;
    상기 화재 정보 및 상기 알고리즘을 근거로 신호를 생성하는 제어부; 및a control unit that generates a signal based on the fire information and the algorithm; and
    외부로부터 전원을 수신하고, 상기 통신부, 상기 센싱부, 및 상기 제어부에 상기 전원을 공급하는 전원공급부를 포함하는 화재 감지 시스템.A fire detection system comprising a power supply unit that receives power from the outside and supplies the power to the communication unit, the sensing unit, and the control unit.
PCT/KR2023/003135 2022-03-14 2023-03-08 Fire detection device and fire detection system comprising semiconductor chip WO2023177142A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220031428A KR20230134639A (en) 2022-03-14 2022-03-14 Fire detection device comprising a semiconductor chip and fire detection system
KR10-2022-0031428 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023177142A1 true WO2023177142A1 (en) 2023-09-21

Family

ID=88023972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003135 WO2023177142A1 (en) 2022-03-14 2023-03-08 Fire detection device and fire detection system comprising semiconductor chip

Country Status (2)

Country Link
KR (1) KR20230134639A (en)
WO (1) WO2023177142A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721148B1 (en) * 2005-12-02 2007-05-22 삼성전기주식회사 Crystal oscillator
KR20170063595A (en) * 2014-09-26 2017-06-08 퀄컴 인코포레이티드 Algorithm engine for ultra low-power processing of sensor data
KR102188138B1 (en) * 2020-03-05 2020-12-07 주식회사 로제타텍 Fire alarm apparatus
KR102289221B1 (en) * 2020-09-29 2021-08-13 주식회사 로제타텍 Fire protection method and fire protection system
KR102353132B1 (en) * 2021-05-03 2022-01-19 주식회사 로제타텍 Sensor installation method using wireless processing technology to set the installation value of bulk sensor and fire alarm system using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721148B1 (en) * 2005-12-02 2007-05-22 삼성전기주식회사 Crystal oscillator
KR20170063595A (en) * 2014-09-26 2017-06-08 퀄컴 인코포레이티드 Algorithm engine for ultra low-power processing of sensor data
KR102188138B1 (en) * 2020-03-05 2020-12-07 주식회사 로제타텍 Fire alarm apparatus
KR102289221B1 (en) * 2020-09-29 2021-08-13 주식회사 로제타텍 Fire protection method and fire protection system
KR102353132B1 (en) * 2021-05-03 2022-01-19 주식회사 로제타텍 Sensor installation method using wireless processing technology to set the installation value of bulk sensor and fire alarm system using the same

Also Published As

Publication number Publication date
KR20230134639A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
WO2020197226A1 (en) Fire alarm system
WO2022071758A1 (en) Fire alarm having false-alarm prevention function
WO2021177755A2 (en) Fire alarm device
US20050275549A1 (en) Network support for emergency smoke detector/motion detector
WO2011108784A1 (en) Network-based unmanned security system, methods for providing the unmanned security service and for setting up the unmanned security system
WO2017126914A1 (en) Method for controlling at least one device with which mobile device can communicate in wireless communication system, and mobile device
WO2021040266A1 (en) Fire alarm system
WO2019059439A1 (en) Led lamp system having disaster warning and disaster training function
WO2023177142A1 (en) Fire detection device and fire detection system comprising semiconductor chip
WO2023132594A1 (en) Fire detector and fire detector operation method
KR102353132B1 (en) Sensor installation method using wireless processing technology to set the installation value of bulk sensor and fire alarm system using the same
US20030081735A1 (en) System and method for detecting and reporting defective telephone lines and alarm events
WO2019035505A1 (en) Fire detectors linked by mesh network and a method for installing fire detectors
WO2024122943A1 (en) Field terminal for communication and detection
CN102598076B (en) Alarm device for detecting and communicating environment- and system-specific states
WO2022177154A1 (en) Fire alarm device having traffic control function
JP7336658B2 (en) Presentation system, presentation system control method, program, and relay terminal
KR19990073635A (en) Alarm system
WO2023068751A1 (en) Fire alarm device inspection method and fire alarm device
KR102353129B1 (en) Communication inspection method and fire alarm device using the same
US20040105399A1 (en) Survivable call box
JP2009094718A (en) Radio system
JP7270432B2 (en) audio output system
KR102616365B1 (en) Fire detector
JP2001297384A (en) System and method for home security

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771021

Country of ref document: EP

Kind code of ref document: A1