WO2023176989A1 - Separator for capacitor and graphene capacitor comprising same - Google Patents

Separator for capacitor and graphene capacitor comprising same Download PDF

Info

Publication number
WO2023176989A1
WO2023176989A1 PCT/KR2022/003575 KR2022003575W WO2023176989A1 WO 2023176989 A1 WO2023176989 A1 WO 2023176989A1 KR 2022003575 W KR2022003575 W KR 2022003575W WO 2023176989 A1 WO2023176989 A1 WO 2023176989A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
separator
graphene
ceramic layer
layer
Prior art date
Application number
PCT/KR2022/003575
Other languages
French (fr)
Korean (ko)
Inventor
지용주
김익휘
이광제
Original Assignee
주식회사 동평기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 동평기술 filed Critical 주식회사 동평기술
Publication of WO2023176989A1 publication Critical patent/WO2023176989A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a separator for a capacitor and a graphene capacitor including the same. More specifically, the present invention provides a graphene-coated separator for a capacitor that has improved durability, can activate the electrolyte and anode of the capacitor, and can extend the life of the capacitor, a graphene capacitor containing the same, and a method of manufacturing the same. It's about.
  • Supercapacitors have the advantage of providing high power density and long cycle life with fast and stable charge/discharge capabilities through the formation of an electric double layer (EDL), but have the disadvantage of low energy density.
  • EDL electric double layer
  • These supercapacitors can be broadly divided into electric double layer supercapacitors, pseudo supercapacitors, and hybrid supercapacitors.
  • Hybrid supercapacitor refers to a supercapacitor that uses different energy storage methods on both electrodes.
  • a hybrid supercapacitor is a hybrid energy storage device that uses a cathode material that stores energy through oxidation/reduction reactions like a battery and an anode material that collects charges in an electric double layer like a storage battery (electric double layer capacitor).
  • Lithium-ion hybrid supercapacitor (LIHS) is a combination of lithium ion insertion/extraction reaction of LIB type anode electrode and PF 6- adsorption/desorption of EDL type cathode electrode.
  • a supercapacitor typically includes an anode and a cathode, and the two electrodes are separated by a porous separator.
  • a porous separator between the electrodes allows the flow of ionic charge but prevents electrical contact between the electrodes.
  • the variables that have the greatest impact on the power density of a supercapacitor are electrodes, electrolyte, and It is the resistance of the separator.
  • electrodes electrolyte
  • It is the resistance of the separator.
  • water-soluble and organic liquid electrolytes and porous polyolefin separators were used, or polyacrylic acid (PAA) and polyvinyl alcohol (PVA)-based polymer gel electrolytes containing KOH (potassium hydroxide) aqueous solution were used as electrolytes and separators. It has been used.
  • the porous polyolefin-based separator used in conventional technology has the advantage of having sufficient mechanical strength, but its porosity is usually 40-80%, which is significantly lower than that of non-woven fabrics, and the interfacial energy of the surface is lower than that of the electrolyte solvent, so its wettability in the electrolyte is greatly reduced.
  • the separator electrolyte with high ionic conductivity.
  • the electrode and the separator are not integrated, which increases the interfacial resistance and causes leakage due to the use of a liquid electrolyte.
  • the polymer gel electrolyte separator improves leakage and safety, but still has low ionic conductivity and does not use a separate separator reinforcement, so its mechanical properties are low, making it difficult to manufacture ultra-high capacity capacitors and improve their characteristics.
  • the purpose of the present invention is to provide a separator for a capacitor that improves the durability of the separator, activates the electrolyte and anode of the capacitor, and maintains the optimal condition of the capacitor to extend its lifespan.
  • Another object of the present invention is to efficiently manufacture a separator for a capacitor through a simple process, which can improve the durability of the separator, activate the electrolyte and anode of the capacitor, and extend the lifespan by maintaining the optimal capacitor condition. It provides a way to do it.
  • Another object of the present invention is to provide a graphene capacitor with improved durability, activated electrolyte and anode, and extended lifespan by maintaining an optimal capacitor condition.
  • the object of the present invention is not limited to the objects mentioned above, and other objects not mentioned can be clearly understood from the detailed description.
  • a substrate a ceramic layer formed on at least one side of the substrate;
  • a separator for a capacitor is provided, including a graphene layer formed on the ceramic layer.
  • the ceramic layer and the graphene layer may be formed on both sides of the substrate.
  • the ceramic layer may include spherical alumina particles.
  • the ceramic layer and the graphene layer may further include one or more types of organic and inorganic binders.
  • the graphene layer may have a thickness of 0.2 to 5 nm per cm2 per unit area.
  • the separator for the capacitor may have a thickness of 5 to 25 ⁇ m or less.
  • a separator for a capacitor including.
  • a ceramic material in step ii) may include forming a ceramic layer using a dry dispenser supplied with a ceramic layer material including one or more of organic and inorganic binders.
  • step iii) may include forming a graphene layer using a dry dispenser supplied with a graphene layer material containing graphene particles.
  • steps ii) and step iii) may include forming the ceramic layer and the graphene layer on both sides of the substrate.
  • the ceramic layer and the graphene layer may include continuously forming the graphene layer after forming the ceramic layer while moving the substrate in a certain direction.
  • the method of manufacturing a separator for a capacitor of the present application may further include iv) a heat treatment step of heating the separator.
  • a graphene capacitor including a is provided.
  • the capacitor may be a pseudo supercapacitor, an electric double layer (EDLC) supercapacitor, or a hybrid supercapacitor.
  • EDLC electric double layer
  • the graphene coating separator for a capacitor of the present application forms a graphene layer on a ceramic layer, thereby improving the durability of the separator, activating the electrolyte and anode agent of the capacitor, and maintaining the optimal state of the capacitor. You can extend the life of the capacitor by maintaining it.
  • the method of manufacturing a separator for a capacitor of the present application includes a continuous process including a dry dispensing step, so that the durability of the separator is improved, the electrolyte and anode of the capacitor can be activated, and the optimal capacitor is produced.
  • a graphene-coated separator for a capacitor that can maintain its condition and extend the life of the capacitor can be efficiently manufactured through a simple process.
  • the durability of a graphene capacitor including the graphene coating separator for a capacitor of the present application can be improved, the electrolyte and anode agent are activated, and the optimal capacitor condition is maintained, thereby extending the lifespan.
  • FIG. 1 is a cross-sectional view schematically showing a separator for a capacitor according to an embodiment of the present invention.
  • Figure 2 is a flow chart schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
  • Figure 4 is a diagram schematically showing a supercapacitor according to an embodiment of the present invention.
  • a component such as a layer, part, or substrate
  • it is directly “on,” or “on” the other component. It may be “connected” or “coupled,” and may have one or more other components interposed between the two components.
  • a component is described as being “directly on,” “directly connected to,” or “directly coupled to” another component, there cannot be any intervening components between the two components. .
  • FIG. 1 is a cross-sectional view schematically showing a separator for a capacitor according to an embodiment of the present invention.
  • a separator 1 for a capacitor of the present invention includes a substrate 100; A ceramic layer 200 formed on at least one side of the substrate 100; and a graphene layer 300 formed on the ceramic layer 200.
  • the separator 1 provided between the cathode and anode of the capacitor allows the flow of ionic charges, but serves to prevent electrical contact between the electrodes.
  • the substrate 100 of the separator 1 is an insulating porous material and is a bare separator.
  • the substrate 100 includes polypropylene (PP), polyethylene (PE), polyimide (PI), polyolefin, polyester, polyacrylonitrile, polyvinylidene fluoride-hexafluoropropylene, etc.
  • a fibrous non-woven fabric or porous glass filter that may include one or more of polymer, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinyl butyral, polyvinyl alcohol, polyvinylpyrrolidone, and polyamideimide. It can be.
  • the substrate 100 of the separator is polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper, or rayon.
  • separator material commonly used in the battery and capacitor fields, such as fiber.
  • the thickness of the substrate 100 is 1 to 20 ⁇ m, which ensures a smooth flow of ionic charges and has excellent strength and electrical insulation among the physical properties to improve the capacity and lifespan of the capacitor. It may be suitable.
  • the ceramic layer 200 serves to reinforce electrical properties and mechanical strength between electrodes. Additionally, the ceramic layer 200 can suppress side reactions on the surface of the metal electrode and also suppress the generation of dendrites.
  • the ceramic layer 200 may be composed of inorganic particles that are various ceramic materials. Although not limited thereto, the ceramic layer 200 may contain metal fluoride, metal oxide, metal nitride, metal carbide, or a combination thereof. At this time, the metals contained in the inorganic particles are Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, It may be Si, P, As, Se or Te.
  • the inorganic particles may be nano-inorganic particles with a diameter of nanometers. As an example, the inorganic particles may be a metal oxide that exhibits insulating properties, such as aluminum oxide.
  • the ceramic layer 200 is composed of spherical alumina particles, which can be stably fused to the substrate 100 compared to plate-shaped alumina particles, and provides smooth charge transfer and stable coating of the graphene layer 300. It may be suitable for.
  • the ceramic layer 200 has a thickness of 10 to 200 nm so that it can be stably fused to the substrate 100 and is suitable for smooth ion movement and stable coating of the graphene layer 300, and has a thickness of 20 to 170 nm. It may be more suitable.
  • the ceramic layer 200 may further include a binder that binds the inorganic particles together with the inorganic particles.
  • the binder in the ceramic layer 200 is polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP), chitosan, polyethylene glycol, and xanthan. It may include gum, gum arabic, polyacrylonitrile (PAN), poly(3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonate (PSS), PEDOT:PSS, or mixtures thereof.
  • the binder may be located only in the area between the inorganic particles and serve to bind them together. Specifically, the weight ratio of the inorganic particles and binder in the ceramic layer 200 may be within the range of 2:1 to 8:1.
  • the ceramic layer 200 may have multiple nanometer-sized pores.
  • the pore size of the substrate 100 may be 0.01 to 5 ⁇ m. According to the above configuration, the flow of ions can be facilitated while maintaining electrical insulation.
  • the graphene layer 300 includes graphene particles.
  • Graphene is a thin film with a thickness of only 0.2 nm per atom, in which carbon atoms are arranged in a honeycomb shape in which hexagons are laid out tightly.
  • Graphene has the same bonding structure as it has the thickness of one atom layer, but is composed of multiple layers. It is a material that exhibits significantly different characteristics from existing graphite and surpasses carbon nanotubes with excellent properties.
  • both materials have excellent electrical and mechanical properties, but CNT shows conductor and semiconductor characteristics, while graphene shows conductor characteristics.
  • graphene which has a flat structure, is advantageous for large areas and applications in electronic processes. Using these characteristics of graphene, it can be usefully applied to energy storage devices.
  • the graphene layer 300 can improve the electrical conductivity of the electrode and also reduce current density. As a result, in addition to improving the electrochemical reaction efficiency of the electrode active material, it is possible to prevent destruction of the electrode active material or subsequent performance degradation.
  • the average thickness per cm2 per unit area of the graphene particles in the graphene layer 300 may be 0.2 to 20 nm, specifically 0.2 to 10 nm, more specifically 0.2 to 5 nm, and more specifically 0.35 to 5 nm. there is. Additionally, the average width of the graphene particles may be 0.1 to 20 ⁇ m, specifically 1 to 15 ⁇ m, and more specifically 7 to 13 ⁇ m. In addition, the graphene particle may have one or several atomic layers, and as an example, about 1 to 100 atomic layers, more specifically 1 to 50 atomic layers, more specifically 1 to 25 atomic layers, More specifically, it may have 1 to 10 atomic layers, more specifically 1 to 5 atomic layers, and more specifically 1 to 3 atomic layers.
  • Inorganic particles such as silicon particles included in the conventional ceramic layer 200 may crack due to large volume expansion and contraction during charging and discharging, which may have the disadvantage of greatly reducing electrical continuity.
  • an electrolyte layer is created on the surface of the damaged particle, and as charging and discharging continues, the layer becomes thicker, which can be a problem in that capacitor capacity and lifespan are greatly reduced.
  • we attempted to solve this problem by forming a graphene layer 300 on the surface of the ceramic layer 200.
  • the separator 1 including the graphene layer 300 can maintain a charge/discharge speed superior to that of an existing hybrid capacitor and distribute charges evenly due to the electrical characteristics of the graphene mesh. Therefore, it is possible to prevent activation of the electrolyte and positive electrode agent from being inhibited by uneven temperature distribution and uneven electrode distribution due to conventional uneven charge distribution.
  • the problems caused by the conventional ceramic layer 200 described above can be solved, the durability of the separator 1 can be further improved, the electrolyte and anode of the capacitor can be activated, and optimal By maintaining the condition of the capacitor, the lifespan of the capacitor can be extended.
  • the graphene layer 300 may further include one or more types of carbon particles such as carbon nanotubes, acetylene black, Super-P, Ketjen black, activated carbon, etc.
  • the graphene layer 300 may further include a binder.
  • the binder in the graphene layer 300 is polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP), chitosan, polyethylene glycol, and xanthan. It may include gum, gum arabic, polyacrylonitrile (PAN), poly(3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonate (PSS), PEDOT:PSS, or mixtures thereof.
  • the binder in the graphene layer 300 may be PVDF.
  • the binder in the graphene layer 300 may further include, for example, graphite powder, which is a conductive adhesive. It may be appropriate to include 1 to 50 parts by weight of the graphite powder per 100 parts by weight of the binder.
  • the graphene layer 300 is stably fused to the ceramic layer 200, the durability of the separator 1 can be further improved, the electrolyte and anode of the capacitor can be activated, and the optimal By maintaining the condition of the capacitor, the lifespan of the capacitor can be extended.
  • the graphite powder may be Everyohm 30CE (Nippon Graphite Industries, Ltd.).
  • the ceramic layer 200 and the graphene layer 300 may be formed on both sides of the substrate 100. According to the above configuration, the problems caused by the conventional ceramic layer described above can be solved, the durability of the separator 1 can be further improved, the electrolyte and anode agent of the capacitor can be activated, and the optimal state of the capacitor can be maintained. This can further help extend the life of the capacitor.
  • the separator 1 for a capacitor may have a thickness of 1 to 25 ⁇ m, specifically 5 to 25 ⁇ m, and more specifically 10 to 25 ⁇ m. According to the above configuration, the capacity and lifespan of the capacitor can be improved while optimizing the function of the separator.
  • Figure 2 is a flow chart schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
  • a method of manufacturing a separator for a capacitor includes the steps of i) preparing a substrate 100 (S10); ii) forming a ceramic layer 200 on at least one side of the substrate 100 (S20); and iii) forming a graphene layer 300 on the ceramic layer 200 (S30).
  • Step i) is a step (S10) of preparing the substrate 100, which is a bare separator.
  • the substrate 100 may be prepared as an insulating porous material.
  • the substrate 100 may be formed to have a thickness of 1 to 20 ⁇ m. According to the above configuration, smooth movement of charges can be ensured and the capacity and lifespan of the capacitor can be improved.
  • Step ii) is a step (S20) of forming a ceramic layer 200 on at least one side of the substrate 100.
  • the ceramic layer 200 may be formed by various known methods, such as blade coating or spray coating. Although it is not limited to this, it may be appropriate for the ceramic layer 200 to be formed using dry dispensing in terms of improving process efficiency. i.e. ceramic material in step ii);
  • the ceramic layer 200 may be formed using the dry first dispenser 400 supplied with a ceramic layer 200 material containing at least one type of organic and inorganic binder. At this time, the ceramic layer 200 may be formed on the substrate 100 due to electrostatic attraction.
  • Inorganic particles which are the material of the ceramic layer 200, and at least one type of organic and inorganic binder that binds the inorganic particles and helps fusion to the substrate 100 are mixed in a certain ratio, and the first dispenser 400 ) can be supplied to.
  • the ceramic layer 200 material is stably fused to the substrate 100 by the dry first dispenser 400 supplied with the ceramic layer 200 material containing at least one type of organic and inorganic binder. It can be done, and the continuous process can be simple and efficient compared to the wet process using slurry.
  • the ceramic layer 200 is composed of spherical alumina particles, fluidity can be secured during internal movement and spraying in the first dispenser 400 compared to plate-shaped alumina particles, and the substrate 100 It can be stably fused to and can be suitable for smooth charge transfer and stable coating of the graphene layer 300.
  • the ceramic layer 200 formed to a thickness of 10 to 200 nm can be stably fused to the substrate 100 and is suitable for smooth charge transfer and stable coating of the graphene layer 300. and 20 to 170 nm may be more suitable.
  • Step iii) is a step (S30) of forming a graphene layer 300 on the ceramic layer 200.
  • Step iii) may include forming the graphene layer 300 using a dry second dispenser 500 supplied with a graphene layer 300 material including graphene particles and a binder.
  • Graphene particles which are the material of the graphene layer 300, and at least one type of organic and inorganic binder that binds the graphene particles and helps fusion to the ceramic layer 200 are mixed in a certain ratio, and the second dispenser Supplied to (500).
  • the graphene layer 300 material containing at least one type of organic and inorganic binder can be stably fused to the ceramic layer 200 by the dry second dispenser 500 supplied, and can be stably fused to the ceramic layer 200 using a slurry.
  • continuous processes can be simple and efficient.
  • Step ii) and step iii) may include forming the ceramic layer 200 and the graphene layer 300 on both sides of the substrate 100.
  • the ceramic layer 200 and the graphene layer 300 are formed by moving the substrate 100 in a certain direction and forming the ceramic layer 200. It may include continuously forming the fin layer 300. According to the above configuration, the separator 1 for a capacitor can be efficiently manufactured through a batch continuous process.
  • the method of manufacturing a separator for a capacitor of the present application may further include iv) a heat treatment step of heating the separator.
  • the heat treatment may be performed at a temperature of 50 to 130° C. for 1 to 10 hours. According to the heat treatment under the above conditions, the ceramic layer 200 and the graphene layer 300 can be stably fixed by the binder, and the mechanical and electrical properties of the separator can be excellent.
  • Figure 4 is a diagram schematically showing a capacitor including a separator according to an embodiment of the present invention.
  • a graphene capacitor 1000 includes a cathode 1100; anode (1200); A separator 1 for a capacitor described herein provided between the cathode 1100 and the anode 1200; and an electrolyte solution (not shown) in contact with the cathode 1100, the anode 1200, and the separator 1.
  • the graphene capacitor 1000 of the present application refers to a capacitor in which a graphene layer 300, which is a graphene coating layer, is formed on a separator 1.
  • the capacitor may be a pseudo supercapacitor, an electric double layer (EDLC) supercapacitor, or a hybrid supercapacitor.
  • EDLC electric double layer
  • the supercapacitor may be a coin-type, cylindrical, or square-type supercapacitor.
  • Supercapacitors are energy storage devices that can be used as auxiliary batteries or as replacements for batteries due to their excellent output characteristics, long lifespan, low maintenance costs, rapid output response characteristics, and excellent stability.
  • the hybrid capacitor may be a lithium ion capacitor.
  • Supercapacitors can use an asymmetric electrode structure.
  • the cathode 1100 may be a carbon-based electrode with high energy density
  • the anode 1200 may be a lithium or sodium transition metal oxide-based electrode with high output and long lifespan.
  • the negative electrode 1100 may be formed by mixing a negative electrode active material, a binder, a conductive material, and a dispersion medium into various forms.
  • the negative electrode material may be appropriate to add the negative electrode material in an amount of 2 to 20 parts by weight of the conductive material and 2 to 10 parts by weight of the binder based on 100 parts by weight of activated carbon.
  • the content of the dispersion medium is not particularly limited, but may be added in an amount of 200 to 300 parts by weight based on 100 parts by weight of activated carbon.
  • the negative electrode active material may be a mixture of one or more of activated carbon, soft carbon, hard carbon, and graphite.
  • the activated carbon is not particularly limited, and activated carbon used in general electrode production can be used.
  • coconut shell-based carbonized activated carbon, phenol resin-based carbonized activated carbon, etc. can be used, and this includes partially crystalline activated carbon.
  • the specific surface area of the activated carbon powder used is preferably 300 to 2500 m2/g. It may be appropriate for the activated carbon powder to have a particle size in the range of 0.9 to 20 ⁇ m to facilitate electrode forming and dispersion.
  • the conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical changes. Examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, Denka black, carbon fiber, and copper. , metal powders such as nickel, aluminum, and silver, or metal fibers, etc. are possible.
  • the binder is polytetrafluoroethylene (PTFE), polyvinylidenefloride (PVdF), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and polyvinyl butyral.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidenefloride
  • CMC carboxymethylcellulose
  • PVA polyvinyl alcohol
  • polyvinyl butyral polyvinyl butyral
  • PVB poly-N-vinylpyrrolidone
  • SBR styrene butadiene rubber
  • polyamide-imide polyimide
  • One type or two or more types selected from the like may be used in combination.
  • the dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, methyl pyrrolidone (NMP), propylene glycol, or water.
  • EtOH ethanol
  • NMP methyl pyrrolidone
  • propylene glycol or water.
  • the positive electrode 1200 may be formed in various forms by mixing a positive electrode active material containing lithium or sodium transition metal oxide and activated carbon, a binder, a conductive material, and a dispersion medium.
  • the cathode material includes 100 parts by weight of the cathode active material, 2 to 15 parts by weight of a conductive material per 100 parts by weight of the cathode active material, and 2 to 10 parts by weight of a binder per 100 parts by weight of the cathode active material, and the dispersion medium is 100 parts by weight of the cathode active material. It may be appropriate to manufacture it at 200 to 300 parts by weight.
  • the lithium transition metal oxide may be a composite metal oxide having a layered structure, spinel structure, or olivine structure containing lithium and a transition metal.
  • the transition metal may be at least one metal selected from the group consisting of titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), aluminum (Al), and nickel (Ni). .
  • These lithium transition metal oxides include LiMn 2 0 4 , LiCoO 2 , LiNi1/3Co1/3Mn1/3O 2 , Examples include LiNixCoxAlxO 2 and the like.
  • the specific surface area of the lithium transition metal oxide may be suitably in the range of 0.1 to 100 m2/g.
  • the positive electrode develops capacity through a mechanism using chemical reactions, resulting in output asymmetry with the negative electrode.
  • a chemical reaction occurs in the anode using lithium transition metal oxide and a physical reaction occurs in the cathode using activated carbon, resulting in output asymmetry between the anode and the cathode. Therefore, the voltage shock is relatively applied to the carbon electrode, which is the cathode, which limits the use of the hybrid ion capacitor at high output and high voltage, and may cause reliability problems.
  • activated carbon is used as a positive electrode active material along with lithium transition metal oxide.
  • Activated carbon powder used as a positive electrode active material may be coconut shell-based activated carbon, phenol resin-based activated carbon, coke-based activated carbon, or a mixture thereof, and it may be appropriate to use activated carbon powder having a specific surface area of 1,000 to 2,500 m2/g.
  • the activated carbon powder used as a positive electrode active material may be appropriately contained in an amount of 1 to 30 parts by weight based on 100 parts by weight of the positive electrode active material. If the content of activated carbon powder used as a cathode active material is less than 1 part by weight, the effect of suppressing output asymmetry is weak, and if it exceeds 30 parts by weight, the effect of suppressing output asymmetry can no longer be expected, and the energy density of activated carbon is low due to lithium transfer. Because it is insufficient compared to metal oxide, a significant portion of the efficiency of the hybrid system is lost due to capacity reduction. Therefore, the weight ratio of lithium transition metal oxide and activated carbon powder (lithium transition metal oxide: activated carbon powder) in the positive electrode active material is preferably in the range of 99:1 to 70:30.
  • the cathode active material can contain sodium, which is abundant in resources but inexpensive.
  • the conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical changes. Examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, Denka black, carbon fiber, and copper. , metal powders such as nickel, aluminum, and silver, or metal fibers, etc. are possible.
  • the binder is polytetrafluoroethylene (PTFE), polyvinylidenefloride (PVdF), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and polyvinyl butyral (polyvinyl butyral). From vinyl butyral (PVB), poly-N-vinylpyrrolidone (PVP), styrene butadiene rubber (SBR), polyamide-imide, polyimide, etc. One selected type or a mixture of two or more types can be used.
  • the dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, methyl pyrrolidone (NMP), propylene glycol (PG), or water.
  • EtOH ethanol
  • NMP methyl pyrrolidone
  • PG propylene glycol
  • the electrolyte solution may include an organic solvent and lithium salt.
  • the above organic solvent and lithium salt can be used as conventional solvents.
  • a hybrid supercapacitor cell can be formed by injecting an electrolyte solution containing a dissolved lithium salt to impregnate the electrode structure and sealing it.
  • the lithium salt is a lithium salt commonly used in capacitors and is not particularly limited, for example, LiPF 6 , LiBF 4 , LiClO 4 , Li(CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6 or LiAsF 6 etc. can be used.
  • the solvent constituting the electrolyte solution is not particularly limited, but cyclic carbonate-based solvents, linear carbonate-based solvents, ester-based solvents, ether-based solvents, nitrile-based solvents, amide-based solvents, etc. can be used.
  • Ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc. can be used as the cyclic carbonate-based solvent, and dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. can be used as the linear carbonate-based solvent.
  • Ester-based solvents include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and ⁇ -butyrolactone
  • ether-based solvents include 1,2-dimethoxyethane and 1,2-diethane. Toxyethane, tetrahydrofuran, 1,2-dioxane, 2-methyltetrahydrofuran, etc. can be used.
  • the nitrile-based solvent can be used such as acetonitrile
  • the amide-based solvent can be used such as dimethylformamide. can be used.
  • Carbon materials are used as electrode materials for supercapacitors.
  • Graphene is a nanocarbon material that has a high specific surface area and excellent electrical conductivity, making it a very suitable material for application in supercapacitors as it has excellent compatibility with existing carbon-based electrode materials. can do.
  • a porous membrane substrate of polypropylene was prepared.
  • spherical Al 2 O 3 nanopowder As a ceramic layer material, 45 mg of spherical Al 2 O 3 nanopowder (Aldrich, USA) and 11.3 mg of polyvinylidene fluoride (PVDF, Arkema) (mass ratio approximately 4:1) were added to 15 ml of acetone and sonicated for 2 hours. Al 2 O 3 slurry was obtained by mixing through mixing, which was then powdered and supplied to the first dispenser.
  • PVDF polyvinylidene fluoride
  • graphene layer material As a graphene layer material, 45 mg of graphene (thickness 1.6 nm) and 11.3 mg of polyvinylidene fluoride (PVDF, Arkema) (mass ratio approximately 4:1) were added to 15 ml of acetone and mixed through sonication for 2 hours to form graphene. After obtaining the slurry, it was powdered and supplied to the second dispenser.
  • PVDF polyvinylidene fluoride
  • a ceramic layer material was sprayed through the spray nozzles of the first dispenser provided on both sides of the substrate to form a ceramic layer on the surface of the substrate.
  • a separator for a capacitor was manufactured by spraying a graphene layer material on the surface on which the ceramic layer was formed through the spray nozzles of a second dispenser located on both sides of the substrate and behind the first dispenser to form a graphene layer on the surface of the ceramic layer. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to a separator for a capacitor and a graphene capacitor comprising same. More specifically, the present invention relates to: a graphene-coated separator for a capacitor, the separator having improved durability, and being able to activate the electrolyte and positive electrode material of a capacitor and extend the lifespan of a capacitor; a graphene capacitor comprising same; and a production method for same.

Description

커패시터용 분리막 및 이를 포함하는 그래핀 커패시터Separator for capacitors and graphene capacitors containing the same
본 발명은 커패시터용 분리막 및 이를 포함하는 그래핀 커패시터에 관한 것이다. 더욱 상세하게, 본 발명은 내구성이 향상되고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 커패시터의 수명을 연장할 수 있는 커패시터용 그래핀 코팅 분리막, 이를 포함하는 그래핀 커패시터, 및 이의 제조방법에 관한 것이다.The present invention relates to a separator for a capacitor and a graphene capacitor including the same. More specifically, the present invention provides a graphene-coated separator for a capacitor that has improved durability, can activate the electrolyte and anode of the capacitor, and can extend the life of the capacitor, a graphene capacitor containing the same, and a method of manufacturing the same. It's about.
최근 디지털 디바이스, 전자기기, 및 전기 자동차(EV) 분야 등에서 적용 가능한 전기 화학 에너지 저장장치 개발이 활발하다. 최근까지 개발된 에너지 저장장치 중에는 슈퍼커패시터(super capacitor) 및 리튬 이온 전지(Lithium Ion Battery, LIB)가 효과적인 전기 화학 에너지 저장 장치로 알려져 있다.Recently, the development of electrochemical energy storage devices applicable to digital devices, electronic devices, and electric vehicles (EV) fields has been active. Among energy storage devices developed until recently, super capacitors and lithium ion batteries (LIB) are known to be effective electrochemical energy storage devices.
슈퍼커패시터는 전기이중층(Electrical Double Layer, EDL)의 형성으로 빠르고 안정적인 충전/방전 능력으로 높은 전력 밀도 및 긴 사이클 수명을 제공하는 장점이 있는 반면, 에너지 밀도가 낮은 단점이 있다.Supercapacitors have the advantage of providing high power density and long cycle life with fast and stable charge/discharge capabilities through the formation of an electric double layer (EDL), but have the disadvantage of low energy density.
이러한 슈퍼커패시터로는, 크게 전기이중층 슈퍼커패시터, 유사(pseudo) 슈퍼커패시터, 및 하이브리드 슈퍼커패시터로 나눌 수 있다.These supercapacitors can be broadly divided into electric double layer supercapacitors, pseudo supercapacitors, and hybrid supercapacitors.
하이브리드 슈퍼커패시터(Hybrid Supercapacitor)는 양쪽 전극에 각기 다른 에너지 저장방식을 사용하는 슈퍼커패시터를 지칭한다. 즉, 하이브리드 슈퍼커패시터는 전지처럼 산화/환원 반응을 통해 에너지를 저장하는 음극물질과 축전지(전기이중층 커패시터)와 같이 전기이중층에 전하를 모으는 양극물질을 사용한 하이브리드 에너지 저장장치이다. 리튬이온 하이브리드 슈퍼커패시터(LIHS)는 LIB 형 애노드 전극의 리튬 이온 삽입/추출 반응과 EDL 형 캐소드 전극의 PF6- 흡착/탈착을 조합한 형태이다. Hybrid supercapacitor refers to a supercapacitor that uses different energy storage methods on both electrodes. In other words, a hybrid supercapacitor is a hybrid energy storage device that uses a cathode material that stores energy through oxidation/reduction reactions like a battery and an anode material that collects charges in an electric double layer like a storage battery (electric double layer capacitor). Lithium-ion hybrid supercapacitor (LIHS) is a combination of lithium ion insertion/extraction reaction of LIB type anode electrode and PF 6- adsorption/desorption of EDL type cathode electrode.
통상 슈퍼커패시터는 양극 및 음극을 포함하고, 상기 두 전극은 다공성 분리막에 의해 분리되어 있다. 상기 전극들 사이에서 다공성 분리막은 이온 전하의 흐름은 허용하지만, 전극들 사이에 전기적 접촉을 방지한다. Typically, a supercapacitor includes an anode and a cathode, and the two electrodes are separated by a porous separator. A porous separator between the electrodes allows the flow of ionic charge but prevents electrical contact between the electrodes.
슈퍼커패시터의 동력밀도에 가장 큰 영향을 미치는 변수는 전극, 전해질, 및 분리막의 저항이다. 기존에는 수용성 및 유기성 액체 전해질과 다공성 폴리올레핀 분리막이 사용되거나, KOH(수산화칼륨) 수용액을 포함한 폴리아크릴산(polyacrylic acid, PAA) 및 폴리비닐알콜(polyvinyl alchol, PVA)계 고분자 겔 전해질이 전해질 겸 분리막으로 사용되어 왔다. The variables that have the greatest impact on the power density of a supercapacitor are electrodes, electrolyte, and It is the resistance of the separator. Previously, water-soluble and organic liquid electrolytes and porous polyolefin separators were used, or polyacrylic acid (PAA) and polyvinyl alcohol (PVA)-based polymer gel electrolytes containing KOH (potassium hydroxide) aqueous solution were used as electrolytes and separators. It has been used.
그러나 종래의 기술에서 사용되는 다공성 폴리올레핀계 분리막은 충분한 기계적 강도를 가지는 장점이 있지만, 공극률이 보통 40∼80%로 부직포계 보다 크게 떨어지고 표면의 계면 에너지가 전해질 용매 보다 낮아 전해질 속에서 젖음 특성이 크게 떨어져 고이온 전도도를 갖는 분리막 전해질을 제조하는 데 한계가 있었다. 또한, 전극과 분리막이 일체가 되지 않아 계면저항을 증가시키고 액체 전해질을 사용함으로 누액이 되는 단점이 있다.However, the porous polyolefin-based separator used in conventional technology has the advantage of having sufficient mechanical strength, but its porosity is usually 40-80%, which is significantly lower than that of non-woven fabrics, and the interfacial energy of the surface is lower than that of the electrolyte solvent, so its wettability in the electrolyte is greatly reduced. However, there were limitations in producing a separator electrolyte with high ionic conductivity. In addition, there is a disadvantage that the electrode and the separator are not integrated, which increases the interfacial resistance and causes leakage due to the use of a liquid electrolyte.
또한, 고분자 겔 전해질 분리막은 누액과 안전성은 향상시키나 여전히 이온전도도가 낮고 별도의 분리막 보강제가 사용되지 않아 기계적 물성이 떨어져 초고용량 커패시터의 제조 및 특성의 고성능화에는 어려움이 있다.In addition, the polymer gel electrolyte separator improves leakage and safety, but still has low ionic conductivity and does not use a separate separator reinforcement, so its mechanical properties are low, making it difficult to manufacture ultra-high capacity capacitors and improve their characteristics.
나아가 고온 및 고압에서 화학적 분해에 대하여 저항하는 슈퍼커패시터에 사용하기 위한 분리막 물질을 개발할 필요가 있다. Furthermore, there is a need to develop separator materials for use in supercapacitors that resist chemical degradation at high temperatures and pressures.
본 발명의 배경기술로는 한국특허 제10-1056512호에 리튬이온 캐퍼시터 및 이를 위한 제조방법이 기재되어 있다.As background technology for the present invention, a lithium ion capacitor and a manufacturing method therefor are described in Korean Patent No. 10-1056512.
본 발명의 목적은 분리막의 내구성이 향상되고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 수명을 연장할 수 있는 커패시터용 분리막을 제공하는 것이다.The purpose of the present invention is to provide a separator for a capacitor that improves the durability of the separator, activates the electrolyte and anode of the capacitor, and maintains the optimal condition of the capacitor to extend its lifespan.
본 발명의 다른 목적은 분리막의 내구성이 향상되고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 수명을 연장할 수 있는 커패시터용 분리막을 단순한 공정에 의해 효율적으로 제조할 수 있는 방법을 제공하는 것이다. Another object of the present invention is to efficiently manufacture a separator for a capacitor through a simple process, which can improve the durability of the separator, activate the electrolyte and anode of the capacitor, and extend the lifespan by maintaining the optimal capacitor condition. It provides a way to do it.
본 발명의 또 다른 목적은 내구성이 향상되고, 전해질과 양극제가 활성화되고, 최적의 커패시터의 상태를 유지하여 수명이 연장된 그래핀 커패시터를 제공하는 것이다.Another object of the present invention is to provide a graphene capacitor with improved durability, activated electrolyte and anode, and extended lifespan by maintaining an optimal capacitor condition.
본 발명의 목적은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 상세한 설명의 기재로부터 명확하게 이해될 수 있을 것이다.The object of the present invention is not limited to the objects mentioned above, and other objects not mentioned can be clearly understood from the detailed description.
일 측면에 따르면, 기재; 상기 기재의 적어도 일 측면 상에 형성된 세라믹층; 및 상기 세라믹층 상에 형성된 그래핀층;을 포함하는, 커패시터용 분리막이 제공된다.According to one aspect, a substrate; a ceramic layer formed on at least one side of the substrate; A separator for a capacitor is provided, including a graphene layer formed on the ceramic layer.
일 실시예에 따르면, 상기 세라믹층 및 상기 그래핀층은 상기 기재의 양 측면에 형성될 수 있다.According to one embodiment, the ceramic layer and the graphene layer may be formed on both sides of the substrate.
일 실시예에 따르면, 상기 세라믹층은 구상 알루미나 입자를 포함할 수 있다.According to one embodiment, the ceramic layer may include spherical alumina particles.
일 실시예에 따르면, 상기 세라믹층 및 그래핀층은 유기 및 무기 바인더 중 1종 이상을 더 포함하여 이루어질 수 있다.According to one embodiment, the ceramic layer and the graphene layer may further include one or more types of organic and inorganic binders.
일 실시예에 따르면, 상기 그래핀층은 두께가 단위면적당 ㎠당 0.2 내지 5 nm일 수 있다.According to one embodiment, the graphene layer may have a thickness of 0.2 to 5 nm per cm2 per unit area.
일 실시예에 따르면, 상기 커패시터용 분리막은 두께가 5 내지 25 ㎛ 이하일 수 있다. According to one embodiment, the separator for the capacitor may have a thickness of 5 to 25 ㎛ or less.
다른 측면에 따르면, i) 기재를 준비하는 단계; ii) 상기 기재의 적어도 일 측면 상에 세라믹층을 형성하는 단계; 및 iii) 상기 세라믹층 상에 그래핀층을 형성하는 단계;를 포함하는, 커패시터용 분리막 제조방법이 제공된다.According to another aspect, i) preparing a substrate; ii) forming a ceramic layer on at least one side of the substrate; and iii) forming a graphene layer on the ceramic layer. A method of manufacturing a separator for a capacitor is provided, including.
일 실시예에 따르면, 단계 ii)에서 세라믹 물질; 및 유기 및 무기 바인더 중 1종 이상;을 포함하는 세라믹층 물질이 공급된 건식 디스펜서를 이용하여 세라믹층을 형성하는 것을 포함할 수 있다.According to one embodiment, in step ii) a ceramic material; It may include forming a ceramic layer using a dry dispenser supplied with a ceramic layer material including one or more of organic and inorganic binders.
일 실시예에 따르면, 단계 iii)에서 그래핀 입자를 포함하는 그래핀층 물질이 공급된 건식 디스펜서를 이용하여 그래핀층을 형성하는 것을 포함할 수 있다.According to one embodiment, step iii) may include forming a graphene layer using a dry dispenser supplied with a graphene layer material containing graphene particles.
일 실시예에 따르면, 단계 ii) 및 단계 iii)에서 상기 세라믹층 및 상기 그래핀층은 상기 기재의 양 측면에 형성하는 것을 포함할 수 있다.According to one embodiment, steps ii) and step iii) may include forming the ceramic layer and the graphene layer on both sides of the substrate.
일 실시예에 따르면, 단계 ii) 및 단계 iii)에서 상기 세라믹층 및 상기 그래핀층은, 상기 기재를 일정 방향으로 이동하면서 상기 세라믹층 형성 후 상기 그래핀층을 연속적으로 형성하는 것을 포함할 수 있다.According to one embodiment, in steps ii) and step iii), the ceramic layer and the graphene layer may include continuously forming the graphene layer after forming the ceramic layer while moving the substrate in a certain direction.
일 실시예에 따르면, 본원의 커패시터용 분리막 제조방법은 iv) 분리막을 가열하는 열처리 단계;를 더 포함할 수 있다.According to one embodiment, the method of manufacturing a separator for a capacitor of the present application may further include iv) a heat treatment step of heating the separator.
또 다른 측면에 따르면, 음극; 양극; 상기 음극 및 양극 사이에 구비되는 본원에 기재된 커패시터용 분리막; 및 상기 음극, 양극, 및 분리막과 접촉하는 전해액;을 포함하는, 그래핀 커패시터가 제공된다.According to another aspect, the cathode; anode; A separator for a capacitor described herein provided between the cathode and the anode; and an electrolyte solution in contact with the cathode, anode, and separator. A graphene capacitor including a is provided.
일 실시예에 따르면, 상기 커패시터는 유사(pseudo) 슈퍼커패시터, 전기이중층(EDLC) 슈퍼커패시터, 또는 하이브리드(hybrid) 슈퍼커패시터일 수 있다.According to one embodiment, the capacitor may be a pseudo supercapacitor, an electric double layer (EDLC) supercapacitor, or a hybrid supercapacitor.
일 실시예에 의하면, 본원의 커패시터용 그래핀 코팅 분리막은 세라믹층 상에 그래핀층을 형성하여, 분리막의 내구성이 향상되고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 커패시터의 수명을 연장할 수 있다.According to one embodiment, the graphene coating separator for a capacitor of the present application forms a graphene layer on a ceramic layer, thereby improving the durability of the separator, activating the electrolyte and anode agent of the capacitor, and maintaining the optimal state of the capacitor. You can extend the life of the capacitor by maintaining it.
일 실시예에 의하면, 본원의 커패시터용 분리막 제조방법은 건식 디스펜싱 단계를 포함하는 연속공정을 포함하여, 분리막의 내구성이 향상되고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 커패시터의 수명을 연장할 수 있는 커패시터용 그래핀 코팅 분리막을 단순한 공정에 의해 효율적으로 제조할 수 있다.According to one embodiment, the method of manufacturing a separator for a capacitor of the present application includes a continuous process including a dry dispensing step, so that the durability of the separator is improved, the electrolyte and anode of the capacitor can be activated, and the optimal capacitor is produced. A graphene-coated separator for a capacitor that can maintain its condition and extend the life of the capacitor can be efficiently manufactured through a simple process.
일 실시예에 의하면, 본원의 커패시터용 그래핀 코팅 분리막을 포함하는 그래핀 커패시터는 내구성이 향상되고, 전해질과 양극제가 활성화되고, 최적의 커패시터의 상태가 유지되어 수명이 연장될 수 있다.According to one embodiment, the durability of a graphene capacitor including the graphene coating separator for a capacitor of the present application can be improved, the electrolyte and anode agent are activated, and the optimal capacitor condition is maintained, thereby extending the lifespan.
도 1은 본 발명의 일 실시예에 의한 커패시터용 분리막을 개략적으로 보여주는 단면도이다.1 is a cross-sectional view schematically showing a separator for a capacitor according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 의한 커패시터용 분리막의 제조방법을 개략적으로 보여주는 순서도이다.Figure 2 is a flow chart schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 의한 커패시터용 분리막의 제조방법을 개략적으로 보여주는 모식도이다.Figure 3 is a schematic diagram schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 의한 슈퍼커패시터를 개략적으로 나타낸 도면이다. Figure 4 is a diagram schematically showing a supercapacitor according to an embodiment of the present invention.
본 개시의 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 연관되는 이하의 상세한 설명과 실시예들로부터 더욱 명백해질 것이다. The objectives, specific advantages and novel features of the present disclosure will become more apparent from the following detailed description and examples taken in conjunction with the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니 되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 개시의 기술적 사상에 부합되는 의미와 개념으로 해석되어야만 한다.Prior to this, terms or words used in this specification and claims should not be construed in their usual, dictionary meaning, and the inventor may appropriately define the concept of the term in order to explain his or her invention in the best way. It must be interpreted with meaning and concept consistent with the technical idea of the present disclosure based on the principle that it is.
본 명세서에서, 층, 부분, 또는 기판과 같은 구성요소가 다른 구성요소 "위에", "연결되어", 또는 "결합되어" 있는 것으로 기재되어 있는 경우, 이는 직접적으로 다른 구성요소 "위에", "연결되어", 또는 "결합되어" 있는 것일 수 있고, 또한 양 구성요소 사이에 하나 이상의 다른 구성요소를 개재하여 있을 수 있다. 대조적으로, 구성요소가 다른 구성요소 "직접적으로 위에", "직접적으로 연결되어", 또는 "직접적으로 결합되어" 있는 것으로 기재되어 있는 경우, 양 구성요소 사이에는 다른 구성요소가 개재되어 있을 수 없다.In this specification, when a component, such as a layer, part, or substrate, is described as being “on,” “connected to,” or “coupled to” another component, it is directly “on,” or “on” the other component. It may be “connected” or “coupled,” and may have one or more other components interposed between the two components. In contrast, when a component is described as being “directly on,” “directly connected to,” or “directly coupled to” another component, there cannot be any intervening components between the two components. .
본 명세서에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 개시를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.The terms used in this specification are merely used to describe specific embodiments and are not intended to limit the present disclosure. Singular expressions include plural expressions unless the context clearly dictates otherwise.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, terms such as “comprise” or “have” are intended to indicate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "상에"라 함은 대상 부분의 위 또는 아래에 위치함을 의미하는 것이며, 반드시 중력 방향을 기준으로 상 측에 위치하는 것을 의미하는 것이 아니다.In this specification, when a part “includes” a certain component, this means that it may further include other components rather than excluding other components, unless specifically stated to the contrary. In addition, throughout the specification, “on” means located above or below the object part, and does not necessarily mean located above the direction of gravity.
본 개시는 다양한 변환을 가할 수 있고 여러 가지 실시예들을 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 개시를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 개시의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 개시를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 개시의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명은 생략한다.Since the present disclosure can be modified in various ways and can have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present disclosure to specific embodiments, and should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope of the present disclosure. In describing the present disclosure, if it is determined that a detailed description of related known technologies may obscure the gist of the present disclosure, the detailed description will be omitted.
이하, 본 개시의 실시예를 첨부도면을 참조하여 상세히 설명하기로 하며, 첨부도면을 참조하여 설명함에 있어, 동일하거나 대응하는 구성요소는 동일한 도면번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.Hereinafter, embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In the description with reference to the accompanying drawings, identical or corresponding components will be assigned the same drawing numbers and duplicate descriptions thereof will be omitted. do.
도 1은 본 발명의 일 실시예에 의한 커패시터용 분리막을 개략적으로 보여주는 단면도이다.1 is a cross-sectional view schematically showing a separator for a capacitor according to an embodiment of the present invention.
도 1을 참조하면, 일 측면에 따른 본원의 커패시터용 분리막(1)은 기재(100); 상기 기재(100)의 적어도 일 측면 상에 형성된 세라믹층(200); 및 상기 세라믹층(200) 상에 형성된 그래핀층(300);을 포함한다.Referring to FIG. 1, a separator 1 for a capacitor of the present invention according to one aspect includes a substrate 100; A ceramic layer 200 formed on at least one side of the substrate 100; and a graphene layer 300 formed on the ceramic layer 200.
커패시터의 음극과 양극 사이에 구비된 분리막(1)은 이온 전하의 흐름은 허용하지만, 전극들 사이에 전기적 접촉을 방지하는 역할을 한다. The separator 1 provided between the cathode and anode of the capacitor allows the flow of ionic charges, but serves to prevent electrical contact between the electrodes.
상기 분리막(1)의 기재(100)는 절연성의 다공체로 기본 분리막(bare separator)이다. 이에 한정되는 것은 아니나, 상기 기재(100)는 폴리프로필렌(PP), 폴리에틸렌(PE), 폴리이미드(PI), 폴리올레핀, 폴리에스테르, 폴리아크릴로니트릴, 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 공중합체, 셀룰로스 아세테이트, 셀룰로스 아세테이트 부틸레이트, 셀룰로스 아세테이트 프로피오네이트, 폴리비닐부티랄, 폴리비닐알코올, 폴리비닐피롤리돈, 및 폴리아미드이미드 중 하나 이상을 포함하여 이루어질 수 있는 섬유부직포 또는 다공성 유리 필터일 수 있다. The substrate 100 of the separator 1 is an insulating porous material and is a bare separator. Although not limited thereto, the substrate 100 includes polypropylene (PP), polyethylene (PE), polyimide (PI), polyolefin, polyester, polyacrylonitrile, polyvinylidene fluoride-hexafluoropropylene, etc. A fibrous non-woven fabric or porous glass filter that may include one or more of polymer, cellulose acetate, cellulose acetate butylate, cellulose acetate propionate, polyvinyl butyral, polyvinyl alcohol, polyvinylpyrrolidone, and polyamideimide. It can be.
상기 분리막의 기재(100)는 폴리에틸렌 부직포, 폴리프로필렌 부직포, 폴리에스테르 부직포, 폴리아크릴로니트릴 다공성 격리막, 폴리(비닐리덴 플루오라이드) 헥사플루오로프로판 공중합체 다공성 격리막, 셀룰로스 다공성 격리막, 크라프트지 또는 레이온 섬유 등 전지 및 커패시터 분야에서 일반적으로 사용되는 분리막의 기재라면 특별히 제한되지 않는다.The substrate 100 of the separator is polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper, or rayon. There is no particular limitation as long as it is a separator material commonly used in the battery and capacitor fields, such as fiber.
이에 한정되는 것은 아니나, 상기 기재(100)의 두께는 1 내지 20 ㎛인 것이,이온 전하의 원활한 흐름을 확보할 수 있고, 물성 중 강도 및 전기적 절연성이 우수하여 커패시터의 용량 및 수명을 향상시키는 데 적합할 수 있다.Although it is not limited to this, the thickness of the substrate 100 is 1 to 20 ㎛, which ensures a smooth flow of ionic charges and has excellent strength and electrical insulation among the physical properties to improve the capacity and lifespan of the capacitor. It may be suitable.
상기 세라믹층(200)은 전극 사이에서 전기적 특성 및 기계적 강도를 보강하는 역할을 한다. 또한, 상기 세라믹층(200)은 금속 전극 표면상의 부반응을 억제하고 또한 덴드라이트 발생을 억제할 수 있다.The ceramic layer 200 serves to reinforce electrical properties and mechanical strength between electrodes. Additionally, the ceramic layer 200 can suppress side reactions on the surface of the metal electrode and also suppress the generation of dendrites.
상기 세라믹층(200)은 다양한 세라믹 물질인 무기입자들로 구성될 수 있다. 이에 한정되는 것은 아니나, 상기 세라믹층(200)은 금속불화물, 금속산화물, 금속질화물, 금속카바이드, 또는 이들의 조합을 함유할 수 있다. 이 때, 무기입자에 함유된 금속은 Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, Si, P, As, Se 또는 Te일 수 있다. 상기 무기입자는 나노미터의 직경을 갖는 나노무기입자들일 수 있다. 일 예로서, 상기 무기입자들은 금속산화물 일 예로서, 알루미늄 산화물 등의 절연성을 나타내는 금속산화물일 수 있다.The ceramic layer 200 may be composed of inorganic particles that are various ceramic materials. Although not limited thereto, the ceramic layer 200 may contain metal fluoride, metal oxide, metal nitride, metal carbide, or a combination thereof. At this time, the metals contained in the inorganic particles are Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Cs, Ba, La, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Po, Fr, Ra, Ac, It may be Si, P, As, Se or Te. The inorganic particles may be nano-inorganic particles with a diameter of nanometers. As an example, the inorganic particles may be a metal oxide that exhibits insulating properties, such as aluminum oxide.
이에 한정되는 것은 아니나, 상기 세라믹층(200)은 구상 알루미나 입자로 구성되는 것이, 판상 알루미나 입자에 비해 상기 기재(100)에 안정적으로 융착될 수 있고 원활한 전하 이동 및 그래핀층(300)의 안정적 코팅에 적합할 수 있다. Although it is not limited to this, the ceramic layer 200 is composed of spherical alumina particles, which can be stably fused to the substrate 100 compared to plate-shaped alumina particles, and provides smooth charge transfer and stable coating of the graphene layer 300. It may be suitable for.
상기 세라믹층(200)은 두께가 10 내지 200 nm인 것이 기재(100)에 안정적으로 융착될 수 있고 원활한 이온의 이동 및 그래핀층(300)의 안정적 코팅에 적합할 수 있고, 20 내지 170 nm가 더 적합할 수 있다.The ceramic layer 200 has a thickness of 10 to 200 nm so that it can be stably fused to the substrate 100 and is suitable for smooth ion movement and stable coating of the graphene layer 300, and has a thickness of 20 to 170 nm. It may be more suitable.
상기 세라믹층(200)은 상기 무기입자들과 더불어 무기입자들 사이를 결합하는 바인더를 더 포함할 수 있다. 상기 세라믹층(200) 내의 바인더는 폴리아크릴산(PAA), 폴리비닐리덴 플루오라이드(PVDF), 폴리비닐리덴 플루오라이드-co-헥사플루오로프로필렌(PVDF-co-HFP), 키토산, 폴리에틸렌글리콜, 잔탄검, 아라비아검, 폴리아크릴로니트릴(PAN), 폴리(3,4-에틸렌다이옥시티오펜)(PEDOT), 폴리스틸렌술포네이트(PSS), PEDOT:PSS, 또는 이들의 혼합물을 포함할 수 있다. 상기 바인더는 상기 무기입자들 사이의 영역에만 위치하여 이들을 서로 결합하는 역할을 할 수 있다. 구체적으로, 상기 세라믹층(200) 내의 무기입자와 바인더의 중량비는 2:1 내지 8:1의 범위 내에 있을 수 있다. The ceramic layer 200 may further include a binder that binds the inorganic particles together with the inorganic particles. The binder in the ceramic layer 200 is polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP), chitosan, polyethylene glycol, and xanthan. It may include gum, gum arabic, polyacrylonitrile (PAN), poly(3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonate (PSS), PEDOT:PSS, or mixtures thereof. The binder may be located only in the area between the inorganic particles and serve to bind them together. Specifically, the weight ratio of the inorganic particles and binder in the ceramic layer 200 may be within the range of 2:1 to 8:1.
또한, 상기 세라믹층(200)은 나노미터 사이즈의 다수의 기공을 구비할 수 있다. 이에 한정되는 것은 아니나, 상기 기재(100)의 기공 크기는 0.01 내지 5 ㎛일 수 있다. 상기 구성에 의하면, 전기적으로 절연성을 가지면서 이온의 흐름이 용이할 수 있다.Additionally, the ceramic layer 200 may have multiple nanometer-sized pores. Although not limited thereto, the pore size of the substrate 100 may be 0.01 to 5 ㎛. According to the above configuration, the flow of ions can be facilitated while maintaining electrical insulation.
상기 그래핀층(300)은 그래핀 입자를 포함한다. 그래핀은 육각형을 빈틈없이 깔아 놓은 벌집 모양에 탄소 원자가 배열되어 있는 원자 1 개 두께가 0.2 nm 밖에 되지 않는 얇은 막으로, 그래핀은 원자 한층의 두께를 지니기 때문에 동일한 결합구조이지만 여러 층으로 구성되어 있는 흑연과는 확연히 다른 특성을 보이며 뛰어난 특성으로 탄소 나노튜브를 뛰어넘는 소재이다. 특히 그래핀은 탄소나노튜브(CNT)와 비교 시, 두 물체 모두 우수한 전기적, 기계적 물성을 보유했으나, CNT는 도체, 반도체 성격을 보이고 그래핀은 도체서의 성격을 보인다. CNT에 비해 평면구조인 그래핀은 대면적화와 전자공정 적용에 유리하다. 이와 같은 그래핀의 특성을 이용하면 에너지 저장장치에 유용하게 응용될 수 있다.The graphene layer 300 includes graphene particles. Graphene is a thin film with a thickness of only 0.2 nm per atom, in which carbon atoms are arranged in a honeycomb shape in which hexagons are laid out tightly. Graphene has the same bonding structure as it has the thickness of one atom layer, but is composed of multiple layers. It is a material that exhibits significantly different characteristics from existing graphite and surpasses carbon nanotubes with excellent properties. In particular, when comparing graphene with carbon nanotubes (CNT), both materials have excellent electrical and mechanical properties, but CNT shows conductor and semiconductor characteristics, while graphene shows conductor characteristics. Compared to CNTs, graphene, which has a flat structure, is advantageous for large areas and applications in electronic processes. Using these characteristics of graphene, it can be usefully applied to energy storage devices.
상기 그래핀층(300)은 전극의 전기전도성을 향상시킬 수 있고 또한 전류밀도를 완화시킬 수 있다. 그 결과, 전극 활물질의 전기화학적 반응효율 향상과 더불어 전극 활물질의 파괴 또는 이에 따른 성능저하를 예방할 수 있다.The graphene layer 300 can improve the electrical conductivity of the electrode and also reduce current density. As a result, in addition to improving the electrochemical reaction efficiency of the electrode active material, it is possible to prevent destruction of the electrode active material or subsequent performance degradation.
상기 그래핀층(300) 내의 그래핀 입자의 단위면적당 ㎠당 평균 두께는 0.2 내지 20 ㎚, 구체적으로는 0.2 내지 10 ㎚, 더 구체적으로는 0.2 내지 5 nm, 더 구체적으로는 0.35 내지 5 nm일 수 있다. 또한, 상기 그래핀 입자들의 평균 폭은 0.1 내지 20 ㎛, 구체적으로는 1 내지 15 ㎛, 더 구체적으로는 7 내지 13 ㎛일 수 있다. 또한, 그래핀 입자는 1 또는 수개의 원자층을 구비할 수 있고, 일 예로서 약 1 내지 100개의 원자층, 더 구체적으로는 1 내지 50개의 원자층, 더 구체적으로 1 내지 25개의 원자층, 더 구체적으로 1 내지 10개의 원자층, 더 구체적으로 1 내지 5개의 원자층, 더 구체적으로 1 내지 3개의 원자층을 구비할 수 있다.The average thickness per cm2 per unit area of the graphene particles in the graphene layer 300 may be 0.2 to 20 nm, specifically 0.2 to 10 nm, more specifically 0.2 to 5 nm, and more specifically 0.35 to 5 nm. there is. Additionally, the average width of the graphene particles may be 0.1 to 20 ㎛, specifically 1 to 15 ㎛, and more specifically 7 to 13 ㎛. In addition, the graphene particle may have one or several atomic layers, and as an example, about 1 to 100 atomic layers, more specifically 1 to 50 atomic layers, more specifically 1 to 25 atomic layers, More specifically, it may have 1 to 10 atomic layers, more specifically 1 to 5 atomic layers, and more specifically 1 to 3 atomic layers.
종래의 세라믹층(200)에 포함되는 실리콘 입자 등 무기입자는 충방전시 큰 부피 팽창과 수축으로 인해 균열이 발생할 수 있고, 이로 인해 전기적 연속성이 크게 감소하는 단점이 있을 수 있다. 또한, 파손된 입자의 표면에 전해질층이 생성되고 충방전이 지속되면서 그 층이 두꺼워져 캐패시터 용량과 수명이 크게 감소하는 단점도 문제가 될 수 있다. 이와 같은 문제점을 해결하기 위해, 본원에서는 세라믹층(200) 표면에 그래핀층(300)을 형성하여 이를 해결하고자 하였다.Inorganic particles such as silicon particles included in the conventional ceramic layer 200 may crack due to large volume expansion and contraction during charging and discharging, which may have the disadvantage of greatly reducing electrical continuity. In addition, an electrolyte layer is created on the surface of the damaged particle, and as charging and discharging continues, the layer becomes thicker, which can be a problem in that capacitor capacity and lifespan are greatly reduced. In order to solve this problem, we attempted to solve this problem by forming a graphene layer 300 on the surface of the ceramic layer 200.
상기 그래핀층(300)을 포함하는 분리막(1)은 기존의 하이브리드형 커패시터에 보다 우수한 충방전 속도를 유지하면서, 그래핀 매쉬의 전기적 특성으로 균등하게 전하를 분배하게 할 수 있다. 따라서, 종래의 불균등 전하 분포에 의한 불균일 온도 분포 및 불균일한 전극 분포에 의한 전해질 및 양극제의 활성화가 저해되는 것을 방지할 수 있다.The separator 1 including the graphene layer 300 can maintain a charge/discharge speed superior to that of an existing hybrid capacitor and distribute charges evenly due to the electrical characteristics of the graphene mesh. Therefore, it is possible to prevent activation of the electrolyte and positive electrode agent from being inhibited by uneven temperature distribution and uneven electrode distribution due to conventional uneven charge distribution.
따라서, 상기한 구성에 의하면, 상술한 종래 세라믹층(200)에 의한 문제점을 해결하고, 분리막(1)의 내구성을 더욱 향상시킬 수 있고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 커패시터의 수명을 연장할 수 있다. Therefore, according to the above configuration, the problems caused by the conventional ceramic layer 200 described above can be solved, the durability of the separator 1 can be further improved, the electrolyte and anode of the capacitor can be activated, and optimal By maintaining the condition of the capacitor, the lifespan of the capacitor can be extended.
나아가, 상기 그래핀층(300)은 카본나노튜브, 아세틸렌 블랙, Super-P, 케첸 블랙, 활성탄 등과 같은 탄소입자를 1종 이상 더 포함할 수 있다. Furthermore, the graphene layer 300 may further include one or more types of carbon particles such as carbon nanotubes, acetylene black, Super-P, Ketjen black, activated carbon, etc.
또한, 상기 그래핀층(300)은 바인더를 더 포함할 수 있다. 상기 그래핀층(300) 내의 바인더는 폴리아크릴산(PAA), 폴리비닐리덴 플루오라이드(PVDF), 폴리비닐리덴 플루오라이드-co-헥사플루오로프로필렌(PVDF-co-HFP), 키토산, 폴리에틸렌글리콜, 잔탄검, 아라비아검, 폴리아크릴로니트릴(PAN), 폴리(3,4-에틸렌다이옥시티오펜)(PEDOT), 폴리스틸렌술포네이트(PSS), PEDOT:PSS, 또는 이들의 혼합물을 포함할 수 있다. 상기 그래핀층(300) 내의 바인더는 일 예로서, PVDF일 수 있다. 또한, 상기 그래핀층(300) 내의 바인더는 일 예로서, 도전성 접착제인 그라파이트 분말(Graphite powder)을 더 포함할 수 있다. 상기 그라파이트 분말은 바인더 100중량부에 대해 1 내지 50 중량부로 포함하는 것이 적합할 수 있다. 상기한 구성에 의하면, 그래핀층(300)이 세라믹층(200)상에 안정적으로 융착하고, 분리막(1)의 내구성을 더욱 향상시킬 수 있고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 커패시터의 수명을 연장할 수 있다. 예시적으로 상기 그라파이트 분말은 Everyohm 30CE(Nippon Graphite Industries, Ltd.)을 이용할 수 있다.Additionally, the graphene layer 300 may further include a binder. The binder in the graphene layer 300 is polyacrylic acid (PAA), polyvinylidene fluoride (PVDF), polyvinylidene fluoride-co-hexafluoropropylene (PVDF-co-HFP), chitosan, polyethylene glycol, and xanthan. It may include gum, gum arabic, polyacrylonitrile (PAN), poly(3,4-ethylenedioxythiophene) (PEDOT), polystyrene sulfonate (PSS), PEDOT:PSS, or mixtures thereof. As an example, the binder in the graphene layer 300 may be PVDF. Additionally, the binder in the graphene layer 300 may further include, for example, graphite powder, which is a conductive adhesive. It may be appropriate to include 1 to 50 parts by weight of the graphite powder per 100 parts by weight of the binder. According to the above configuration, the graphene layer 300 is stably fused to the ceramic layer 200, the durability of the separator 1 can be further improved, the electrolyte and anode of the capacitor can be activated, and the optimal By maintaining the condition of the capacitor, the lifespan of the capacitor can be extended. For example, the graphite powder may be Everyohm 30CE (Nippon Graphite Industries, Ltd.).
이에 한정되는 것은 아니나, 상기 세라믹층(200) 및 상기 그래핀층(300)은 상기 기재(100)의 양 측면에 형성될 수 있다. 상기한 구성에 의하면, 상술한 종래 세라믹층에 의한 문제점을 해결하고, 분리막(1)의 내구성을 더욱 향상시킬 수 있고, 커패시터의 전해질과 양극제를 활성화시킬 수 있고, 최적의 커패시터의 상태를 유지하여 커패시터의 수명을 연장하는 데 더욱 도움이 될 수 있다. Although not limited to this, the ceramic layer 200 and the graphene layer 300 may be formed on both sides of the substrate 100. According to the above configuration, the problems caused by the conventional ceramic layer described above can be solved, the durability of the separator 1 can be further improved, the electrolyte and anode agent of the capacitor can be activated, and the optimal state of the capacitor can be maintained. This can further help extend the life of the capacitor.
이에 한정되는 것은 아니나, 상기 커패시터용 분리막(1)은 두께가 1 내지 25 ㎛, 구체적으로 5 내지 25 ㎛일 수 있고, 더 구체적으로 10 내지 25 ㎛일 수 있다. 상기한 구성에 의하면, 분리막의 기능을 최적화하면서 커패시터의 용량 및 수명을 향상시킬 수 있다.Although not limited thereto, the separator 1 for a capacitor may have a thickness of 1 to 25 ㎛, specifically 5 to 25 ㎛, and more specifically 10 to 25 ㎛. According to the above configuration, the capacity and lifespan of the capacitor can be improved while optimizing the function of the separator.
이하, 본 발명의 일 실시예에 의한 커패시터용 분리막(1)의 제조방법에 대해 설명한다. 여기서 앞서 살펴본 커패시터용 분리막(1)에 대한 중복되는 설명들은 생략하거나 간소화될 수 있다. Hereinafter, a method of manufacturing the separator 1 for a capacitor according to an embodiment of the present invention will be described. Here, overlapping descriptions of the capacitor separator 1 discussed above may be omitted or simplified.
도 2는 본 발명의 일 실시예에 의한 커패시터용 분리막의 제조방법을 개략적으로 보여주는 순서도이다. 도 3은 본 발명의 일 실시예에 의한 커패시터용 분리막의 제조방법을 개략적으로 보여주는 모식도이다.Figure 2 is a flow chart schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention. Figure 3 is a schematic diagram schematically showing a method of manufacturing a separator for a capacitor according to an embodiment of the present invention.
도 2 및 도 3을 참조하면, 다른 측면에 따른 커패시터용 분리막 제조방법은, i) 기재(100)를 준비하는 단계(S10); ii) 상기 기재(100)의 적어도 일 측면 상에 세라믹층(200)을 형성하는 단계(S20); 및 iii) 상기 세라믹층(200) 상에 그래핀층(300)을 형성하는 단계(S30);를 포함한다.Referring to Figures 2 and 3, a method of manufacturing a separator for a capacitor according to another aspect includes the steps of i) preparing a substrate 100 (S10); ii) forming a ceramic layer 200 on at least one side of the substrate 100 (S20); and iii) forming a graphene layer 300 on the ceramic layer 200 (S30).
단계 i)는 기본 분리막(bare separator)인 기재(100)를 준비하는 단계(S10)이다. 상기 기재(100)는 절연성의 다공체로 준비될 수 있다. 이에 한정되는 것은 아니나, 상기 기재(100)는 1 내지 20 ㎛의 두께로 형성할 수 있다. 상기한 구성에 의하면, 전하의 원활한 이동을 확보할 수 있고, 커패시터의 용량 및 수명을 향상시킬 수 있다.Step i) is a step (S10) of preparing the substrate 100, which is a bare separator. The substrate 100 may be prepared as an insulating porous material. Although not limited thereto, the substrate 100 may be formed to have a thickness of 1 to 20 ㎛. According to the above configuration, smooth movement of charges can be ensured and the capacity and lifespan of the capacitor can be improved.
단계 ii)는 상기 기재(100)의 적어도 일 측면 상에 세라믹층(200)을 형성하는 단계(S20)이다. 상기 세라믹층(200)은 블레이드 코팅, 스프레이 코팅 등 다양한 공지의 방법으로 형성될 수 있다. 이에 한정되는 것은 아니나, 상기 세라믹층(200)은 건식 디스펜싱을 이용하여 형성되는 것이 공정의 효율성 향상면에서 적합할 수 있다. 즉, 단계 ii)에서 세라믹 물질; 및 유기 및 무기 바인더 중 1종 이상;을 포함하는 세라믹층(200) 물질이 공급된 건식 제1디스펜서(400)를 이용하여 세라믹층(200)을 형성할 수 있다. 이때, 상기 기재(100)에 상기 세라믹층(200)이 형성되는 것은 정전기적 인력이 작용할 수 있다.Step ii) is a step (S20) of forming a ceramic layer 200 on at least one side of the substrate 100. The ceramic layer 200 may be formed by various known methods, such as blade coating or spray coating. Although it is not limited to this, it may be appropriate for the ceramic layer 200 to be formed using dry dispensing in terms of improving process efficiency. i.e. ceramic material in step ii); The ceramic layer 200 may be formed using the dry first dispenser 400 supplied with a ceramic layer 200 material containing at least one type of organic and inorganic binder. At this time, the ceramic layer 200 may be formed on the substrate 100 due to electrostatic attraction.
상기 세라믹층(200) 물질인 무기입자들 및 상기 무기입자들 사이를 결합하고 기재(100)로의 융착을 도와주는 유기 및 무기 바인더 중 1종 이상을 일정 비율로 혼합하여, 상기 제1디스펜서(400)에 공급할 수 있다.Inorganic particles, which are the material of the ceramic layer 200, and at least one type of organic and inorganic binder that binds the inorganic particles and helps fusion to the substrate 100 are mixed in a certain ratio, and the first dispenser 400 ) can be supplied to.
상기와 같이 유기 및 무기 바인더 중 1종 이상을 포함하는 세라믹층(200) 물질이 공급된 상기 건식 제1디스펜서(400)에 의해, 상기 기재(100)에 안정적으로 세라믹층(200) 물질이 융착할 수 있고, 슬러리를 이용하는 습식공정과 비교하여 연속공정이 단순하고 효율적일 수 있다.As described above, the ceramic layer 200 material is stably fused to the substrate 100 by the dry first dispenser 400 supplied with the ceramic layer 200 material containing at least one type of organic and inorganic binder. It can be done, and the continuous process can be simple and efficient compared to the wet process using slurry.
이에 한정되는 것은 아니나, 상기 세라믹층(200)은 구상 알루미나 입자로 구성되면, 판상 알루미나 입자에 비해 상기 제1디스펜서(400)에서 내부이동 및 분사시 유동성을 확보할 수 있고, 상기 기재(100)에 안정적으로 융착될 수 있고 원활한 전하 이동 및 그래핀층(300)의 안정적 코팅에 적합할 수 있다. Although it is not limited to this, if the ceramic layer 200 is composed of spherical alumina particles, fluidity can be secured during internal movement and spraying in the first dispenser 400 compared to plate-shaped alumina particles, and the substrate 100 It can be stably fused to and can be suitable for smooth charge transfer and stable coating of the graphene layer 300.
이에 한정되는 것은 아니나, 상기 세라믹층(200)은 10 내지 200 nm의 두께로 형성되는 것이 기재(100)에 안정적으로 융착될 수 있고 원활한 전하 이동 및 그래핀층(300)의 안정적 코팅에 적합할 수 있고, 20 내지 170 nm가 더 적합할 수 있다.Although not limited thereto, the ceramic layer 200 formed to a thickness of 10 to 200 nm can be stably fused to the substrate 100 and is suitable for smooth charge transfer and stable coating of the graphene layer 300. and 20 to 170 nm may be more suitable.
단계 iii)는 상기 세라믹층(200) 상에 그래핀층(300)을 형성하는 단계(S30)이다. 단계 iii)에서 그래핀 입자 및 바인더를 포함하는 그래핀층(300) 물질이 공급된 건식 제2디스펜서(500)를 이용하여 그래핀층(300)을 형성하는 것을 포함할 수 있다.Step iii) is a step (S30) of forming a graphene layer 300 on the ceramic layer 200. Step iii) may include forming the graphene layer 300 using a dry second dispenser 500 supplied with a graphene layer 300 material including graphene particles and a binder.
상기 그래핀층(300) 물질인 그래핀 입자 및 상기 그래핀 입자 사이를 결합하고 세라믹층(200)으로의 융착을 도와주는 유기 및 무기 바인더 중 1종 이상을 일정 비율로 혼합하여, 상기 제2디스펜서(500)에 공급한다.Graphene particles, which are the material of the graphene layer 300, and at least one type of organic and inorganic binder that binds the graphene particles and helps fusion to the ceramic layer 200 are mixed in a certain ratio, and the second dispenser Supplied to (500).
상기와 같이 유기 및 무기 바인더 중 1종 이상을 포함하는 그래핀층(300) 물질이 공급된 상기 건식 제2디스펜서(500)에 의해 상기 세라믹층(200)에 안정적으로 융착할 수 있고, 슬러리를 이용하는 습식공정과 비교하여 연속공정이 단순하고 효율적일 수 있다. As described above, the graphene layer 300 material containing at least one type of organic and inorganic binder can be stably fused to the ceramic layer 200 by the dry second dispenser 500 supplied, and can be stably fused to the ceramic layer 200 using a slurry. Compared to wet processes, continuous processes can be simple and efficient.
단계 ii) 및 단계 iii)에서 상기 세라믹층(200) 및 상기 그래핀층(300)은 상기 기재(100)의 양 측면에 형성하는 것을 포함할 수 있다.Step ii) and step iii) may include forming the ceramic layer 200 and the graphene layer 300 on both sides of the substrate 100.
도 3을 참조하면, 단계 ii) 및 단계 iii)에서 상기 세라믹층(200) 및 상기 그래핀층(300)은, 상기 기재(100)를 일정 방향으로 이동하면서 상기 세라믹층(200) 형성 후 상기 그래핀층(300)을 연속적으로 형성하는 것을 포함할 수 있다. 상기한 구성에 의하면, 커패시터용 분리막(1)을 일괄 연속공정에 의해 효율적으로 제조할 수 있다.Referring to FIG. 3, in steps ii) and iii), the ceramic layer 200 and the graphene layer 300 are formed by moving the substrate 100 in a certain direction and forming the ceramic layer 200. It may include continuously forming the fin layer 300. According to the above configuration, the separator 1 for a capacitor can be efficiently manufactured through a batch continuous process.
본원의 커패시터용 분리막 제조방법은 iv) 분리막을 가열하는 열처리 단계;를 더 포함할 수 있다. 이에 한정되는 것이나, 상기 열처리는 50 내지 130℃의 온도에서 1 내지 10시간 동안 실시할 수 있다. 상기 조건의 열처리에 의하면, 바인더에 의해 세라믹층(200) 및 그래핀층(300)이 안정적으로 정착할 수 있고, 분리막의 기계적, 전기적 물성이 우수할 수 있다. The method of manufacturing a separator for a capacitor of the present application may further include iv) a heat treatment step of heating the separator. Although limited thereto, the heat treatment may be performed at a temperature of 50 to 130° C. for 1 to 10 hours. According to the heat treatment under the above conditions, the ceramic layer 200 and the graphene layer 300 can be stably fixed by the binder, and the mechanical and electrical properties of the separator can be excellent.
도 4는 본 발명의 일 실시예에 의한 분리막을 포함하는 커패시터를 개략적으로 나타낸 도면이다. Figure 4 is a diagram schematically showing a capacitor including a separator according to an embodiment of the present invention.
도 4를 참조하면, 다른 측면에 따른 그래핀 커패시터(1000)는, 음극(1100); 양극(1200); 상기 음극(1100) 및 양극(1200) 사이에 구비되는 본원에 기재된 커패시터용 분리막(1); 및 상기 음극(1100), 양극(1200), 및 분리막(1)과 접촉하는 전해액(미도시);을 포함한다.Referring to FIG. 4, a graphene capacitor 1000 according to another aspect includes a cathode 1100; anode (1200); A separator 1 for a capacitor described herein provided between the cathode 1100 and the anode 1200; and an electrolyte solution (not shown) in contact with the cathode 1100, the anode 1200, and the separator 1.
본원의 그래핀 커패시터(1000)는 분리막(1)에 그래핀 코팅층인 그래핀층(300)이 형성된 커패시터를 의미한다. The graphene capacitor 1000 of the present application refers to a capacitor in which a graphene layer 300, which is a graphene coating layer, is formed on a separator 1.
상기 커패시터는 유사(pseudo) 슈퍼커패시터, 전기이중층(EDLC) 슈퍼커패시터, 또는 하이브리드(hybrid) 슈퍼커패시터일 수 있다.The capacitor may be a pseudo supercapacitor, an electric double layer (EDLC) supercapacitor, or a hybrid supercapacitor.
상기 슈퍼커패시터는 코인(coin)형, 원통형 또는 각형 슈퍼커패시터 일 수 있다.The supercapacitor may be a coin-type, cylindrical, or square-type supercapacitor.
슈퍼커패시터는 우수한 출력 특성과 긴 수명, 낮은 유지비용, 신속한 출력 응답특성, 우수한 안정성 등으로 인해 보조배터리용 혹은 배터리의 대체용으로 사용 가능한 에너지 저장장치다.Supercapacitors are energy storage devices that can be used as auxiliary batteries or as replacements for batteries due to their excellent output characteristics, long lifespan, low maintenance costs, rapid output response characteristics, and excellent stability.
상기 하이브리드 커패시터는 리튬이온 커패시터일 수 있다.The hybrid capacitor may be a lithium ion capacitor.
슈퍼커패시터는 비대칭형 전극 구조를 이용할 수 있다. 예를 들면, 음극(1100)은 고에너지 밀도를 갖는 탄소계 전극을 적용하고, 양극(1200)은 고출력 및 장수명을 갖는 리튬 또는 나트륨 전이금속산화물계 전극을 적용할 수 있다Supercapacitors can use an asymmetric electrode structure. For example, the cathode 1100 may be a carbon-based electrode with high energy density, and the anode 1200 may be a lithium or sodium transition metal oxide-based electrode with high output and long lifespan.
상기 음극(1100)은 음극활물질, 바인더, 도전재, 및 분산매를 혼합한 음극물질을 다양한 형태로 형성한 것일 수 있다.The negative electrode 1100 may be formed by mixing a negative electrode active material, a binder, a conductive material, and a dispersion medium into various forms.
상기 음극물질은 활성탄 100중량부에 대하여 도전재는 2~20중량부, 바인더는 2~10중량부 함유되게 첨가하는 것이 적합할 수 있다. 상기 분산매의 함량은 특별히 제한되는 것은 아니지만 활성탄 100중량부에 대하여 200~300중량부로 첨가할 수 있다. It may be appropriate to add the negative electrode material in an amount of 2 to 20 parts by weight of the conductive material and 2 to 10 parts by weight of the binder based on 100 parts by weight of activated carbon. The content of the dispersion medium is not particularly limited, but may be added in an amount of 200 to 300 parts by weight based on 100 parts by weight of activated carbon.
상기 음극(1100)에서 음극활물질은 활성탄, 소프트카본, 하드카본, 및 그라파이트 중 1종 이상을 혼합한 것일 수 있다.In the negative electrode 1100, the negative electrode active material may be a mixture of one or more of activated carbon, soft carbon, hard carbon, and graphite.
상기 활성탄은 특별히 제한되지 않고 일반적인 전극 제조에 사용되는 활성탄을 사용할 수 있다. 예를 들어, 코코넛 쉘(shell)계 탄화 활성탄, 페놀 레진계 탄화 활성탄 등을 사용할 수 있으며, 이는 부분 결정성 활성탄을 포함한다. 사용되는 활성탄 분말의 비표면적은 300~2500 ㎡/g인 것이 바람직하다. 활성탄 분말의 입도는 전극 성형 및 분산을 용이하게 하기 위하여 0.9~20 ㎛ 범위의 것을 사용하는 것이 적합할 수 있다.The activated carbon is not particularly limited, and activated carbon used in general electrode production can be used. For example, coconut shell-based carbonized activated carbon, phenol resin-based carbonized activated carbon, etc. can be used, and this includes partially crystalline activated carbon. The specific surface area of the activated carbon powder used is preferably 300 to 2500 m2/g. It may be appropriate for the activated carbon powder to have a particle size in the range of 0.9 to 20 ㎛ to facilitate electrode forming and dispersion.
상기 도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P), 덴카블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다.The conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical changes. Examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, Denka black, carbon fiber, and copper. , metal powders such as nickel, aluminum, and silver, or metal fibers, etc. are possible.
또한, 상기 바인더는 폴리테트라플루오르에틸렌(polytetrafluoroethylene; PTFE), 폴리비닐리덴플로라이드(polyvinylidenefloride; PVdF), 카르복시메틸셀룰로오스(carboxymethylcellulose; CMC), 폴리비닐알코올(poly vinyl alcohol; PVA), 폴리비닐부티랄(poly vinyl butyral; PVB), 폴리비닐피롤리돈(poly-N-vinylpyrrolidone; PVP), 스티렌부타디엔고무(styrene butadiene rubber; SBR), 폴리아마이드-이미드(Polyamide-imide), 폴리이미드(polyimide) 등으로부터 선택된 1종 또는 2종 이상을 혼합하여 사용할 수 있다.In addition, the binder is polytetrafluoroethylene (PTFE), polyvinylidenefloride (PVdF), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and polyvinyl butyral. (poly vinyl butyral; PVB), poly-N-vinylpyrrolidone (PVP), styrene butadiene rubber (SBR), polyamide-imide, polyimide One type or two or more types selected from the like may be used in combination.
상기 분산매는 에탄올(EtOH), 아세톤, 이소프로필알콜, 메틸 피롤리돈(NMP), 프로필렌글리콜 등의 유기 용매 또는 물을 사용할 수 있다.The dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, methyl pyrrolidone (NMP), propylene glycol, or water.
상기 양극(1200)은 리튬 또는 나트륨 전이금속산화물과 활성탄을 포함하는 양극활물질, 바인더, 도전재, 및 분산매를 혼합한 양극물질을 다양한 형태로 형성한 것일 수 있다.The positive electrode 1200 may be formed in various forms by mixing a positive electrode active material containing lithium or sodium transition metal oxide and activated carbon, a binder, a conductive material, and a dispersion medium.
상기 양극물질은 양극활물질 100중량부와, 양극활물질 100중량부에 대하여 도전재 2~15중량부와, 양극활물질 100중량부에 대하여 바인더 2~10중량부를 첨가하고, 상기 분산매는 양극활물질 100중량부에 대하여 200~300중량부로 제조하는 것이 적합할 수 있다.The cathode material includes 100 parts by weight of the cathode active material, 2 to 15 parts by weight of a conductive material per 100 parts by weight of the cathode active material, and 2 to 10 parts by weight of a binder per 100 parts by weight of the cathode active material, and the dispersion medium is 100 parts by weight of the cathode active material. It may be appropriate to manufacture it at 200 to 300 parts by weight.
상기 리튬전이금속산화물은 리튬 및 전이금속을 포함하는 층상 구조, 스피넬 구조 또는 올리빈 구조의 복합금속산화물이 적합할 수 있다. 상기 전이금속은 티타늄(Ti), 바나듐(V), 망간(Mn), 철(Fe), 코발트(Co), 알루미늄(Al) 및 니켈(Ni)로 이루어진 군에서 선택된 적어도 하나 이상의 금속일 수 있다. 이러한 리튬전이금속산화물로는 LiMn204, LiCoO2, LiNi1/3Co1/3Mn1/3O2, LiNixCoxAlxO2 등을 예로 들 수 있다. 상기 리튬전이금속산화물의 비표면적은 0.1~100 ㎡/g 범위인 것이 적합할 수 있다.The lithium transition metal oxide may be a composite metal oxide having a layered structure, spinel structure, or olivine structure containing lithium and a transition metal. The transition metal may be at least one metal selected from the group consisting of titanium (Ti), vanadium (V), manganese (Mn), iron (Fe), cobalt (Co), aluminum (Al), and nickel (Ni). . These lithium transition metal oxides include LiMn 2 0 4 , LiCoO 2 , LiNi1/3Co1/3Mn1/3O 2 , Examples include LiNixCoxAlxO 2 and the like. The specific surface area of the lithium transition metal oxide may be suitably in the range of 0.1 to 100 m2/g.
양극활물질로 리튬전이금속산화물만을 사용할 경우에 양극에서는 화학반응을 이용하는 메커니즘으로 용량을 발현하기 때문에 음극과의 출력 비대칭이 발생하게 된다. 즉, 리튬전이금속산화물이 사용된 양극에서는 화학적 반응이 일어나고 활성탄이 사용된 음극에서는 물리적 반응이 일어남에 따라 양극과 음극 사이에 출력 비대칭이 발생한다. 따라서, 음극인 카본류 전극에 전압 충격이 상대적으로 가해짐으로써 고출력 및 고전압에서의 하이브리드 이온 커패시터 사용에 제약을 받게 되며 신뢰성에 문제가 있을 수 있다.When only lithium transition metal oxide is used as the positive electrode active material, the positive electrode develops capacity through a mechanism using chemical reactions, resulting in output asymmetry with the negative electrode. In other words, a chemical reaction occurs in the anode using lithium transition metal oxide and a physical reaction occurs in the cathode using activated carbon, resulting in output asymmetry between the anode and the cathode. Therefore, the voltage shock is relatively applied to the carbon electrode, which is the cathode, which limits the use of the hybrid ion capacitor at high output and high voltage, and may cause reliability problems.
상기와 같은 출력 비대칭을 억제하고 셀(cell) 용량을 향상시켜 하이브리드 이온 커패시터 셀의 내전압 특성 및 출력 특성을 개선하기 위하여 활성탄을 리튬전이금속산화물과 함께 양극활물질로서 사용한다. 양극활물질로 사용되는 활성탄 분말은 야자각계 활성탄, 페놀수지계 활성탄, 코크스계 활성탄 또는 이들의 혼합물을 사용하며, 1,000~2,500 ㎡/g의 비표면적을 갖는 활성탄 분말을 사용하는 것이 적합할 수 있다.In order to improve the withstand voltage characteristics and output characteristics of a hybrid ion capacitor cell by suppressing the above-described output asymmetry and improving cell capacity, activated carbon is used as a positive electrode active material along with lithium transition metal oxide. Activated carbon powder used as a positive electrode active material may be coconut shell-based activated carbon, phenol resin-based activated carbon, coke-based activated carbon, or a mixture thereof, and it may be appropriate to use activated carbon powder having a specific surface area of 1,000 to 2,500 ㎡/g.
양극활물질로 사용되는 상기 활성탄 분말은 양극활물질에 양극활물질 100중량부에 대하여 1~30중량부 함유되는 것이 적합할 수 있다. 양극활물질로 사용되는 활성탄 분말의 함량이 1중량부 미만일 경우에는 출력 비대칭을 억제하는 효과가 미약하고, 30중량부를 초과하는 경우에는 출력 비대칭 억제 효과를 더 이상 기대할 수 없고 활성탄의 에너지 밀도가 리튬전이금속산화물에 비하여 부족하기 때문에 용량감소로 인하여 하이브리드 시스템의 효율을 상당 부분 잃어버리게 된다. 따라서, 양극활물질에서 리튬전이금속산화물과 활성탄 분말의 중량비(리튬전이금속산화물: 활성탄 분말)는 99:1~70:30 범위인 것이 바람직하다. The activated carbon powder used as a positive electrode active material may be appropriately contained in an amount of 1 to 30 parts by weight based on 100 parts by weight of the positive electrode active material. If the content of activated carbon powder used as a cathode active material is less than 1 part by weight, the effect of suppressing output asymmetry is weak, and if it exceeds 30 parts by weight, the effect of suppressing output asymmetry can no longer be expected, and the energy density of activated carbon is low due to lithium transfer. Because it is insufficient compared to metal oxide, a significant portion of the efficiency of the hybrid system is lost due to capacity reduction. Therefore, the weight ratio of lithium transition metal oxide and activated carbon powder (lithium transition metal oxide: activated carbon powder) in the positive electrode active material is preferably in the range of 99:1 to 70:30.
양극활물질로 리튬 대신에 자원량이 풍부하면서도 저가인 나트륨을 포함할 수 있다.Instead of lithium, the cathode active material can contain sodium, which is abundant in resources but inexpensive.
상기 도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 슈퍼-피(Super-P), 덴카블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다.The conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical changes. Examples include natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, Super-P, Denka black, carbon fiber, and copper. , metal powders such as nickel, aluminum, and silver, or metal fibers, etc. are possible.
상기 바인더는 폴리테트라플루오르에틸렌(polytetrafluoroethylene; PTFE), 폴리비닐리덴플로라이드(polyvinylidenefloride; PVdF), 카르복시메틸셀룰로오스(carboxymethylcellulose; CMC), 폴리비닐알코올(poly vinyl alcohol; PVA), 폴리비닐부티랄(poly vinyl butyral; PVB), 폴리비닐피롤리돈(poly-N-vinylpyrrolidone; PVP), 스티렌부타디엔고무(styrene butadiene rubber; SBR), 폴리아마이드-이미드(Polyamide-imide), 폴리이미드(polyimide) 등으로부터 선택된 1종 또는 2종 이상을 혼합하여 사용할 수 있다.The binder is polytetrafluoroethylene (PTFE), polyvinylidenefloride (PVdF), carboxymethylcellulose (CMC), polyvinyl alcohol (PVA), and polyvinyl butyral (polyvinyl butyral). From vinyl butyral (PVB), poly-N-vinylpyrrolidone (PVP), styrene butadiene rubber (SBR), polyamide-imide, polyimide, etc. One selected type or a mixture of two or more types can be used.
상기 분산매는 에탄올(EtOH), 아세톤, 이소프로필알콜, 메틸 피롤리돈(NMP), 프로필렌글리콜(PG) 등의 유기용매 또는 물을 사용할 수 있다.The dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, methyl pyrrolidone (NMP), propylene glycol (PG), or water.
상기 전해액(미도시)은 유기용매 및 리튬염을 포함할 수 있다. 상기 유기용매 및 리튬염은 통상적인 것을 사용할 수 있다.The electrolyte solution (not shown) may include an organic solvent and lithium salt. The above organic solvent and lithium salt can be used as conventional solvents.
상기 전극구조물이 함침되게 리튬염이 용해되어 있는 전해액을 주입하고 밀봉하여 하이브리드 슈퍼커패시터 셀로 구성될 수 있다. 상기 리튬염은 커패시터에서 통상적으로 사용되는 리튬염으로서 특별히 제한되지는 않으며, 예를 들면 LiPF6, LiBF4, LiClO4, Li(CF3SO2)2, LiCF3SO3, LiSbF6 또는 LiAsF6 등을 사용할 수 있다. A hybrid supercapacitor cell can be formed by injecting an electrolyte solution containing a dissolved lithium salt to impregnate the electrode structure and sealing it. The lithium salt is a lithium salt commonly used in capacitors and is not particularly limited, for example, LiPF 6 , LiBF 4 , LiClO 4 , Li(CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiSbF 6 or LiAsF 6 etc. can be used.
상기 전해액을 구성하는 용매는 특별히 한정되는 것은 아니지만, 환상 카보네이트계 용매, 쇄상 카보네이트계 용매, 에스테르계 용매, 에테르계 용매, 니트릴계 용매, 아미드계 용매 등을 사용할 수 있다. 상기 환상 카보네이트계 용매로는 에틸렌카보네이트, 프로필렌카보네이트, 부틸렌카보네이트, 비닐렌카보네이트 등을 사용할 수 있고, 상기 쇄상 카보네이트계 용매로는 디메틸카보네이트, 메틸에틸카보네이트, 디에틸카보네이트 등을 사용할 수 있으며, 상기 에스테르계 용매로는 아세트산메틸, 아세트산에틸, 아세트산프로필, 프로피온산메틸, 프로피온산에틸, γ-부티롤락톤 등을 사용할 수 있고, 상기 에테르계 용매로는 1,2-디메톡시에탄, 1,2-디에톡시에탄, 테트라히드로푸란, 1,2-디옥산, 2-메틸테트라히드로푸란 등을 사용할 수 있으며, 상기 니트릴계 용매로는 아세토니트릴 등을 사용할 수 있고, 상기 아미드계 용매로는 디메틸포름아미드 등을 사용할 수 있다.The solvent constituting the electrolyte solution is not particularly limited, but cyclic carbonate-based solvents, linear carbonate-based solvents, ester-based solvents, ether-based solvents, nitrile-based solvents, amide-based solvents, etc. can be used. Ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, etc. can be used as the cyclic carbonate-based solvent, and dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, etc. can be used as the linear carbonate-based solvent. Ester-based solvents include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone, and ether-based solvents include 1,2-dimethoxyethane and 1,2-diethane. Toxyethane, tetrahydrofuran, 1,2-dioxane, 2-methyltetrahydrofuran, etc. can be used. The nitrile-based solvent can be used such as acetonitrile, and the amide-based solvent can be used such as dimethylformamide. can be used.
슈퍼커패시터의 전극소재로서 탄소재료가 사용되는데 그래핀은 나노탄소 재료로서 높은 비표면적 및 뛰어난 전기전도도를 지니고 있어 기존의 탄소계 전극재료와의 상용성이 우수하여 슈퍼커패시터의 응용에 매우 적합한 재료라 할 수 있다.Carbon materials are used as electrode materials for supercapacitors. Graphene is a nanocarbon material that has a high specific surface area and excellent electrical conductivity, making it a very suitable material for application in supercapacitors as it has excellent compatibility with existing carbon-based electrode materials. can do.
실시예 Example
실시예 1 Example 1
(1) 슈퍼커패시터용 분리막 제조: (1) Manufacture of separator for supercapacitor:
폴리플로필렌의 다공성 멤브레인 기재를 준비하였다. A porous membrane substrate of polypropylene was prepared.
세라믹층 물질로 구상의 Al2O3 나노파우더(Aldrich, USA) 45 mg과 폴리비닐리덴플루오라이드 (PVDF, Arkema) 11.3 mg (질량비 약 4:1)을 아세톤 15 ml에 첨가하고 2시간 동안 소닉케이션을 통해 혼합하여 Al2O3 슬러리를 얻은 후 이를 분말화하여, 제1디스펜서에 공급하였다.As a ceramic layer material, 45 mg of spherical Al 2 O 3 nanopowder (Aldrich, USA) and 11.3 mg of polyvinylidene fluoride (PVDF, Arkema) (mass ratio approximately 4:1) were added to 15 ml of acetone and sonicated for 2 hours. Al 2 O 3 slurry was obtained by mixing through mixing, which was then powdered and supplied to the first dispenser.
그래핀층 물질로 그래핀(두께 1.6nm) 45 mg과 폴리비닐리덴플루오라이드 (PVDF, Arkema) 11.3 mg (질량비 약 4:1)을 아세톤 15ml에 첨가하고 2시간 동안 소닉케이션을 통해 혼합하여 그래핀 슬러리를 얻은 후 이를 분말화하여, 제2디스펜서에 공급하였다.As a graphene layer material, 45 mg of graphene (thickness 1.6 nm) and 11.3 mg of polyvinylidene fluoride (PVDF, Arkema) (mass ratio approximately 4:1) were added to 15 ml of acetone and mixed through sonication for 2 hours to form graphene. After obtaining the slurry, it was powdered and supplied to the second dispenser.
상기 기재를 컨베이어 벨트를 이용하여 일정 방향으로 이동시키면서, 상기 기재 양측에 구비된 제1디스펜서의 분사노즐을 통해 세라믹층 물질을 분사하여 상기 기재 표면에 세라믹층을 형성하였다. While moving the substrate in a certain direction using a conveyor belt, a ceramic layer material was sprayed through the spray nozzles of the first dispenser provided on both sides of the substrate to form a ceramic layer on the surface of the substrate.
상기 세라믹층이 형성된 표면에, 상기 기재 양측이고 상기 제1디스펜서의 후방에 위치한 제2디스펜서의 분사노즐을 통해 그래핀층 물질을 분사하여 상기 세라믹층 표면에 그래핀층을 형성하여 커패시터용 분리막을 제조하였다. A separator for a capacitor was manufactured by spraying a graphene layer material on the surface on which the ceramic layer was formed through the spray nozzles of a second dispenser located on both sides of the substrate and behind the first dispenser to form a graphene layer on the surface of the ceramic layer. .
(2) 슈퍼커패시터 제조: 양극(탄소계 소재, 활물질 90 중량% 이상)과, 음극(다공성 구리(porous Cu) 집전체 상에 형성된 그래파이트 전극)을 준비하고, 상기 양극 및 음극 사이에 상기 제조된 분리막을 케이스 내부에 배치한 다음, 상기 케이스 내부에 전해액(1M 농도의 LiPF6 포함)을 충전하여, 상기 양극, 음극 및 분리막에 상기 전해액을 접촉시켜 슈퍼커패시터(리튬이온 커패시터, 셀 타입: coin cell 2032)를 제조하였다. (2) Supercapacitor manufacturing: prepare a positive electrode (carbon-based material, 90% by weight or more of active material) and a negative electrode (graphite electrode formed on a porous Cu current collector), and the manufactured After placing the separator inside the case, the inside of the case is filled with an electrolyte (including LiPF 6 at a concentration of 1M), and the electrolyte is brought into contact with the anode, cathode, and separator to form a supercapacitor (lithium ion capacitor, cell type: coin cell) 2032) was manufactured.
이상 본 개시를 구체적인 실시예를 통하여 상세히 설명하였으나, 이는 본 개시를 구체적으로 설명하기 위한 것으로, 본 개시는 이에 한정되지 않으며, 본 개시의 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 그 변형이나 개량이 가능함이 명백하다. 본 개시의 단순한 변형 내지 변경은 모두 본 개시의 영역에 속하는 것으로 본 개시의 구체적인 보호 범위는 첨부된 특허청구범위에 의하여 명확해질 것이다. Although the present disclosure has been described in detail through specific examples, this is for the purpose of specifically explaining the present disclosure, and the present disclosure is not limited thereto, and may be understood by those skilled in the art within the technical spirit of the present disclosure. It is clear that modifications and improvements are possible. All simple modifications or changes to the present disclosure fall within the scope of the present disclosure, and the specific scope of protection of the present disclosure will be made clear by the appended claims.
[부호의 설명][Explanation of symbols]
1: 분리막1: Separator
100: 기재100: Listed
200: 세라믹층200: Ceramic layer
300: 그래핀층300: Graphene layer
400: 제1디스펜서400: First dispenser
500: 제2디스펜서500: Second dispenser
1000: 슈퍼커패시터1000: Supercapacitor
1100: 음극1100: cathode
1200: 양극1200: anode

Claims (14)

  1. 기재; write;
    상기 기재의 적어도 일 측면 상에 형성된 세라믹층; 및a ceramic layer formed on at least one side of the substrate; and
    상기 세라믹층 상에 형성된 그래핀층;을 포함하는, 커패시터용 분리막.A separator for a capacitor comprising; a graphene layer formed on the ceramic layer.
  2. 제1항에 있어서,According to paragraph 1,
    상기 세라믹층 및 상기 그래핀층은 상기 기재의 양 측면에 형성된, 커패시터용 분리막.A separator for a capacitor, wherein the ceramic layer and the graphene layer are formed on both sides of the substrate.
  3. 제1항에 있어서,According to paragraph 1,
    상기 세라믹층은 구상 알루미나 입자를 포함하는, 커패시터용 분리막.A separator for a capacitor, wherein the ceramic layer includes spherical alumina particles.
  4. 제1항에 있어서,According to paragraph 1,
    상기 세라믹층 및 그래핀층은 유기 및 무기 바인더 중 1종 이상을 더 포함하여 이루어진, 커패시터용 분리막.A separator for a capacitor, wherein the ceramic layer and the graphene layer further include one or more types of organic and inorganic binders.
  5. 제1항에 있어서,According to paragraph 1,
    상기 그래핀층은 두께가 단위면적당 ㎠당 0.2 내지 5 nm인, 커패시터용 분리막.The graphene layer is a separator for a capacitor having a thickness of 0.2 to 5 nm per cm2 per unit area.
  6. 제1항에 있어서,According to paragraph 1,
    상기 커패시터용 분리막은 두께가 5 내지 25 ㎛인, 커패시터용 분리막.The separator for a capacitor has a thickness of 5 to 25 ㎛.
  7. i) 기재를 준비하는 단계;i) preparing the substrate;
    ii) 상기 기재의 적어도 일 측면 상에 세라믹층을 형성하는 단계; 및ii) forming a ceramic layer on at least one side of the substrate; and
    iii) 상기 세라믹층 상에 그래핀층을 형성하는 단계;를 포함하는, 커패시터용 분리막 제조방법.iii) forming a graphene layer on the ceramic layer.
  8. 제7항에 있어서,In clause 7,
    단계 ii)에서 세라믹; 및 유기 및 무기 바인더 중 1종 이상;을 포함하는 세라믹층 물질이 공급된 건식 디스펜서를 이용하여 세라믹층을 형성하는 것을 포함하는, 커패시터용 분리막 제조방법.Ceramic in step ii); A method of manufacturing a separator for a capacitor, comprising forming a ceramic layer using a dry dispenser supplied with a ceramic layer material containing; and at least one type of organic and inorganic binder.
  9. 제7항에 있어서,In clause 7,
    단계 iii)에서 그래핀 입자를 포함하는 그래핀층 물질이 공급된 건식 디스펜서를 이용하여 그래핀층을 형성하는 것을 포함하는, 커패시터용 분리막 제조방법.A method of manufacturing a separator for a capacitor, comprising forming a graphene layer using a dry dispenser supplied with a graphene layer material containing graphene particles in step iii).
  10. 제7항에 있어서,In clause 7,
    단계 ii) 및 단계 iii)에서 상기 세라믹층 및 상기 그래핀층은 상기 기재의 양 측면에 형성하는 것을 포함하는, 커패시터용 분리막 제조방법.In step ii) and step iii), the ceramic layer and the graphene layer are formed on both sides of the substrate.
  11. 제7항에 있어서,In clause 7,
    단계 ii) 및 단계 iii)에서 상기 세라믹층 및 상기 그래핀층은, 상기 기재를 일정 방향으로 이동하면서 상기 세라믹층 형성 후 상기 그래핀층을 연속적으로 형성하는 것을 포함하는, 커패시터용 분리막 제조방법.In step ii) and step iii), the ceramic layer and the graphene layer are formed continuously after forming the ceramic layer while moving the substrate in a certain direction.
  12. 제7항에 있어서, In clause 7,
    iv) 분리막을 가열하는 열처리 단계;를 더 포함하는, 커패시터용 분리막 제조방법. iv) a heat treatment step of heating the separator; a method of manufacturing a separator for a capacitor, further comprising:
  13. 음극;cathode;
    양극;anode;
    상기 음극 및 양극 사이에 구비되는 제1항에 기재된 커패시터용 분리막; 및A separator for the capacitor according to claim 1 provided between the cathode and the anode; and
    상기 음극, 양극, 및 분리막과 접촉하는 전해액;을 포함하는, 그래핀 커패시터.A graphene capacitor comprising: an electrolyte in contact with the cathode, anode, and separator.
  14. 제13항에 있어서,According to clause 13,
    상기 커패시터는 유사(pseudo) 슈퍼커패시터, 전기이중층(EDLC) 슈퍼커패시터, 또는 하이브리드(hybrid) 슈퍼커패시터인, 그래핀 커패시터.The capacitor is a graphene capacitor, which is a pseudo supercapacitor, an electric double layer (EDLC) supercapacitor, or a hybrid supercapacitor.
PCT/KR2022/003575 2022-03-14 2022-03-15 Separator for capacitor and graphene capacitor comprising same WO2023176989A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0031303 2022-03-14
KR1020220031303A KR102640431B1 (en) 2022-03-14 2022-03-14 Separator for capacitor and graphene capacitor comprising the same

Publications (1)

Publication Number Publication Date
WO2023176989A1 true WO2023176989A1 (en) 2023-09-21

Family

ID=88023521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/003575 WO2023176989A1 (en) 2022-03-14 2022-03-15 Separator for capacitor and graphene capacitor comprising same

Country Status (2)

Country Link
KR (1) KR102640431B1 (en)
WO (1) WO2023176989A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244119A1 (en) * 2012-03-16 2013-09-19 Li-Tec Battery Gmbh Graphene-containing separator for lithium ion batteries
KR20200091563A (en) * 2019-01-23 2020-07-31 현대자동차주식회사 Dual coated separators and lithium secondary battery comprising the same
KR20200119579A (en) * 2019-04-10 2020-10-20 한국전력공사 Seperator for super capacitor, manufacturing method thereof and super capacitor comprising the same
KR20210021729A (en) * 2019-08-19 2021-03-02 주식회사 제라브리드 2-dimensional coating material compositions including graphene and method of making secondary battery separators employing the same
JP2021180097A (en) * 2020-05-13 2021-11-18 株式会社ダイセル Separator for secondary battery, manufacturing method of separator, and secondary battery equipped with separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130244119A1 (en) * 2012-03-16 2013-09-19 Li-Tec Battery Gmbh Graphene-containing separator for lithium ion batteries
KR20200091563A (en) * 2019-01-23 2020-07-31 현대자동차주식회사 Dual coated separators and lithium secondary battery comprising the same
KR20200119579A (en) * 2019-04-10 2020-10-20 한국전력공사 Seperator for super capacitor, manufacturing method thereof and super capacitor comprising the same
KR20210021729A (en) * 2019-08-19 2021-03-02 주식회사 제라브리드 2-dimensional coating material compositions including graphene and method of making secondary battery separators employing the same
JP2021180097A (en) * 2020-05-13 2021-11-18 株式会社ダイセル Separator for secondary battery, manufacturing method of separator, and secondary battery equipped with separator

Also Published As

Publication number Publication date
KR20230134240A (en) 2023-09-21
KR102640431B1 (en) 2024-02-27

Similar Documents

Publication Publication Date Title
WO2019108039A2 (en) Anode and secondary battery comprising same
WO2013012292A9 (en) Separator, manufacturing method thereof, and electrochemical device employing same
WO2014182060A1 (en) Electrode for secondary battery, method for manufacturing same, and secondary battery and cable-type secondary battery comprising same
WO2014193124A1 (en) Porous silicon-based negative electrode active material, method for preparing same, and lithium secondary battery comprising same
WO2018208034A1 (en) Method for manufacturing negative electrode for lithium secondary battery
WO2014157955A1 (en) Anode active material slurry, anode using same slurry, and electrochemical device comprising same
WO2019182364A1 (en) Separator having a coating layer of lithium-containing composite, lithium secondary battery comprising same, and method for manufacturing same secondary battery
WO2018169247A2 (en) Anode for lithium secondary battery, production method therefor, and lithium secondary battery comprising same
WO2020091345A1 (en) Anode active material and lithium secondary battery comprising same
WO2017111566A1 (en) Negative electrode active material having improved output characteristics and electrode for electrochemical device, containing negative electrode active material
WO2019156461A1 (en) Positive electrode, and secondary battery comprising positive electrode
WO2018016737A1 (en) Lithium secondary battery comprising cathode active material for synthesizing lithium cobalt oxide, and manufacturing method therefor
WO2018208035A1 (en) Method for manufacturing lithium secondary battery
WO2020101301A1 (en) Anode active material and manufacturing method therefor
WO2015065116A1 (en) Organic-inorganic complex porous membrane, separator comprising same, and electrode structure body
WO2016117950A1 (en) Lithium secondary battery having improved output characteristics
WO2017209383A1 (en) Carbon-based fiber sheet and lithium-sulfur battery including same
WO2022045852A1 (en) Negative electrode and secondary battery comprising same
WO2020105975A1 (en) Anode active material and lithium secondary battery comprising same
WO2020050559A1 (en) Secondary battery separator having no separator substrate
WO2023008783A1 (en) Electrolyte for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2023176989A1 (en) Separator for capacitor and graphene capacitor comprising same
WO2022149912A1 (en) Positive electrode and lithium secondary battery comprising same
WO2020060079A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
WO2014204214A1 (en) Binder solution for anode, active material slurry for anode comprising same, anode using said active material slurry, and electrochemical device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932356

Country of ref document: EP

Kind code of ref document: A1