WO2017209383A1 - Carbon-based fiber sheet and lithium-sulfur battery including same - Google Patents

Carbon-based fiber sheet and lithium-sulfur battery including same Download PDF

Info

Publication number
WO2017209383A1
WO2017209383A1 PCT/KR2017/003155 KR2017003155W WO2017209383A1 WO 2017209383 A1 WO2017209383 A1 WO 2017209383A1 KR 2017003155 W KR2017003155 W KR 2017003155W WO 2017209383 A1 WO2017209383 A1 WO 2017209383A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
lithium
fiber sheet
based fiber
sulfur battery
Prior art date
Application number
PCT/KR2017/003155
Other languages
French (fr)
Korean (ko)
Inventor
김윤경
김택경
손권남
양두경
임미라
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020170031126A external-priority patent/KR20170136971A/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/060,660 priority Critical patent/US20180375088A1/en
Priority to EP17806876.3A priority patent/EP3381864B1/en
Priority to CN201780010868.1A priority patent/CN108602674A/en
Publication of WO2017209383A1 publication Critical patent/WO2017209383A1/en
Priority to US17/115,016 priority patent/US11811049B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/10Carbon fluorides, e.g. [CF]nor [C2F]n
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a carbon-based fiber sheet having an excellent adsorption effect on lithium polysulfide and a lithium-sulfur battery including the same.
  • a lithium-sulfur (Li-S) battery is a secondary battery that uses a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and uses lithium metal as a negative electrode active material.
  • Sulfur the main material of the positive electrode active material, is very rich in resources, has no toxicity, and has an advantage of having a low weight per atom.
  • the theoretical discharge capacity of the lithium-sulfur battery is 1,675 mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently under study (Ni-MH battery: 450 Wh / kg, Li -FeS battery: 480 Wh / kg, Li-MnO 2 battery: 1,000 Wh / kg, Na-S battery: 800 Wh / kg) is very high compared to the most promising battery developed until now.
  • a reduction reaction in a cyclic S 8 so that the lithium polysulfide is completely Reduction will eventually lead to the formation of lithium sulfide (Lithium sulfide, Li 2 S).
  • Discharge behavior of the lithium-sulfur battery by the process of reduction to each lithium polysulfide is characterized by showing the discharge voltage step by step unlike the lithium ion battery.
  • lithium polysulfides such as Li 2 S 8 , Li 2 S 6 , Li 2 S 4 , and Li 2 S 2
  • lithium polysulfide (Li 2 S x , usually x> 4) having a high number of sulfur oxides can easily melts Lithium polysulfide dissolved in the electrolyte is diffused away from the positive electrode where lithium polysulfide is formed due to the difference in concentration.
  • the lithium polysulfide eluted from the positive electrode is lost out of the positive electrode reaction region, so that stepwise reduction to lithium sulfide (Li 2 S) is impossible.
  • lithium polysulfide which is present in the dissolved state outside the positive electrode and the negative electrode, cannot participate in the charge / discharge reaction of the battery, the amount of sulfur material participating in the electrochemical reaction at the positive electrode decreases, and eventually lithium-sulfur It is a major factor causing a decrease in the charge capacity and energy of the battery.
  • lithium polysulfide diffused to the negative electrode in addition to being suspended or precipitated in the electrolyte, is directly reacted with lithium and fixed in the form of Li 2 S on the surface of the negative electrode, causing a problem of corrosion of the lithium metal negative electrode.
  • the doping of nitrogen to the carbon material has the effect of changing the surface polarity (Polarity) and the lithium polysulfide adsorbed, in particular, among the various nitrogen functional groups doped on the carbon surface (Pyrrolic group and pyridine group (Pyridinic group) )
  • has been reported to have an effect on the adsorption of lithium polysulfide (Chem. Mater., 2015, 27, 2048-2055 / Adv. Funct. Mater., 2014, 24, 1243-1250). Therefore, it is time to increase the nitrogen content of the carbon material to improve the adsorption capacity of lithium polysulfide.
  • the lithium-sulfur battery has a problem in that the capacity and life characteristics of the battery decrease as the charge / discharge cycle progresses due to lithium polysulfide eluted from the positive electrode.
  • the present inventors have conducted various studies to solve the above problems. As a result, by increasing the concentration of nitrogen doped to the carbon-based fiber sheet, lithium polysulfide eluted from the positive electrode is effectively suppressed, thereby improving the capacity and life of the battery. It was confirmed.
  • an object of the present invention is to provide a carbon-based fiber sheet doped with a high concentration of nitrogen.
  • Another object of the present invention to provide a method for producing the carbon-based fiber sheet.
  • Another object of the present invention to provide a lithium-sulfur battery comprising the carbon-based fiber sheet.
  • the present invention provides a carbon-based fiber sheet doped with a high concentration of nitrogen.
  • the present invention provides a method for producing a carbon-based fiber sheet doped with a high concentration of nitrogen.
  • the present invention provides a lithium-sulfur battery including a carbon-based fiber sheet doped with a high concentration of nitrogen between the positive electrode and the separator.
  • the carbon-based fiber sheet for lithium-sulfur batteries according to the present invention serves to prevent diffusion by adsorbing lithium polysulfide eluted from the positive electrode during charging and discharging, thereby inhibiting the shuttle reaction, and thus capacity and life characteristics of the lithium-sulfur battery. Can improve.
  • FIG. 1 is a cross-sectional view of a lithium-sulfur battery to which the carbon-based fiber sheet of the present invention is applied.
  • FIG. 2 is a scanning electron microscope image of carbon fiber felt stabilized by heat treatment of polyacrylonitrile according to the preparation example of the present invention.
  • FIG. 3 is a scanning electron microscope image of a carbon-based fiber sheet prepared by carbonizing a carbon fiber felt according to the preparation example of the present invention.
  • FIG. 6 is a graph showing the charging and discharging efficiency of the lithium-sulfur battery according to the Examples and Comparative Examples of the present invention.
  • the present invention is intended to prevent diffusion by adsorbing lithium polysulfide eluted from the positive electrode through a carbon-based fiber sheet between the positive electrode and the separator of the lithium-sulfur battery.
  • adsorbing lithium polysulfide eluted from the positive electrode through a carbon-based fiber sheet between the positive electrode and the separator of the lithium-sulfur battery.
  • the carbon-based fiber sheet proposed in the present invention means a plurality of fiber structures in which carbon-based fibers form a three-dimensional porous network structure.
  • the fiber structure includes carbon-based fibers forming irregular aggregates in the form of plates, or carbon-based fibers forming regular aggregates in three dimensions through weaving.
  • the carbon-based fiber may be one or more selected from the group consisting of carbon fibers, carbon nanofibers, graphite fibers, and graphene fibers, but is not limited thereto.
  • carbon fibers are used, which can be crystalline or amorphous.
  • the carbon-based fiber sheet may be in the form of one or more fabrics selected from the group consisting of felt, mat, paper, and cloth, preferably using felt.
  • 'felt' refers to the formation of irregular aggregates in the form of a plate made of a fiber produced by spinning a carbon or graphite material.
  • the 'mat' and 'paper' refer to the formation of a thinner aggregate of carbon fiber fibers using an organic binder.
  • the term 'cloth' means that the carbon fibers produced through the spinning and the like form a three-dimensionally regular aggregate through weaving.
  • the carbon-based fiber sheet has a three-dimensional network structure formed by combining carbon-based fibers regularly or irregularly, and excellent in rigidity, and have a plurality of pores without being easily deformed, thereby allowing the movement of the electrolyte to be smoothly performed.
  • the carbon-based fiber sheet has a complex micropores, mesopores, macropores, etc. in the structure, the control of these pores may vary depending on the manufacturing method.
  • the carbon-based fiber sheet in the present invention uses a nitrogen doped.
  • the doping means that a part of the carbon atoms constituting the carbon-based fiber is substituted with a nitrogen atom.
  • nitrogen-doped carbon materials have already become one of the issues in the field of international carbon materials.
  • the main reason is that the nitrogen atom has one more valence electron than the carbon atom, and the nitrogen atom doping provides a six-membered ring structure. After entering, it forms a functional group containing nitrogen such as pyridine, pyrrole, graphite nitrogen and pyridine oxide, thereby improving the surface chemical activity of the carbon material and controlling the electronic structure.
  • lithium polysulfide adsorption capacity is improved to exhibit improved electrochemical properties.
  • Carbon-based fiber sheet according to the present invention is nitrogen doped at least 5% by weight, preferably 5 to 30% by weight, more preferably 10 to 25% by weight based on the total weight, through a conventional nitrogen doping process It is characterized by a high concentration of nitrogen doped compared to the prepared carbon material. If the doping concentration of nitrogen is less than the above range it is not possible to obtain the effect of improving lithium polysulfide adsorption capacity, on the contrary, if it exceeds the above range, capacity reduction and battery characteristics may be reduced.
  • the carbon-based fiber sheet of the present invention is interposed in a lithium-sulfur battery, specifically, between the positive electrode and the separator. Therefore, it is necessary to control the parameters so as to increase the adsorption capacity of lithium polysulfide without affecting the function of the anode and the separator and not affecting the flow of the electrolyte (ie lithium ion transfer, etc.) existing between them. .
  • the parameter may include the diameter of the fibers constituting the carbon-based fiber sheet, the size of the pores in the sheet, the porosity, the specific surface area and the bulk density, and by limiting them, the effect may be maximized.
  • the carbon-based fiber sheet is made of a carbon-based fiber, it is necessary to limit the diameter of the carbon-based fiber, the porosity, porosity and bulk density of the carbon-based fiber sheet, thereby maximizing the effects described above Can be.
  • the diameter of the individual fibers constituting the carbon-based fiber sheet according to the present invention may be 0.01 to 100 ⁇ m, preferably 0.01 to 50 ⁇ m, more preferably 0.05 to 10 ⁇ m, carbon having such characteristics
  • the fiber sheet is preferable to ensure excellent lithium polysulfide adsorption capacity. If the diameter of the carbon-based fiber is less than 0.01 ⁇ m, a problem arises that the structure is not maintained and the structure collapses during heat treatment for carbonization. On the contrary, if the diameter of the carbon-based fiber exceeds 100 ⁇ m, the thickness of the carbon-based fiber sheet is too thick. The problem of lowering the energy density of the battery is rather reduced, so it is suitably used within the above range.
  • the carbon-based fiber sheet according to the present invention may have a thickness of 0.1 to 100 ⁇ m, preferably 0.1 to 50 ⁇ m. If the thickness of the carbon-based fiber sheet is less than the above range it is difficult to secure the lithium polysulfide adsorption effect, on the contrary, if the carbon-based fiber sheet exceeds the above range may act as a resistance may cause problems in battery performance. Usually, considering that the thickness of the positive electrode active material is 100 ⁇ m, it is most preferable that it is 0.1 to 50 ⁇ m.
  • the carbon-based fiber sheet according to the present invention may have a pore size of 0.1 to 10 ⁇ m, porosity of 5 to 90%, specific surface area of 5 to 500 m 2 / g.
  • the pore size is 0.5 to 5 ⁇ m
  • the porosity is 30 to 90%
  • the specific surface area is 10 to 200 m 2 / g
  • the electrochemical property is desirable to secure an improved effect. If the porosity of the carbon-based fiber sheet is less than 0.1 ⁇ m, the electrolyte may be difficult to penetrate into the sheet, and thus the battery may not operate. This causes a problem that lithium polysulfide adsorption does not occur evenly, so it is suitably used within the above range.
  • the porosity when the porosity is higher than the above-mentioned range, mechanical properties of the carbon-based fiber sheet may be degraded, thereby causing problems in battery assembly or driving. On the contrary, when the porosity is lower than the above-mentioned range, the flow of electrolyte may be delayed. Since the differential pressure inside the battery may increase and battery performance may decrease due to overvoltage, it is suitably used within the above range.
  • a bulk density of 0.05 to 0.2 g / cm 3 and preferably 0.1 to 0.15 g / cm 3 based on 3 mm thickness is used as a parameter related to the density of the carbon-based fiber sheet.
  • the fluid pressure of the electrolyte may be interrupted to increase the pressure difference in the battery.
  • the residence time of the electrolyte in the carbon-based fiber sheet is sufficiently increased. Can't keep up
  • the carbon-based fiber sheet of the present invention may further include a catalyst material in order to enhance the adsorption effect of lithium polysulfide.
  • the catalyst material may be a carbon-based conductive material and / or metal particles.
  • the carbon-based conductive material may be carbon paper, carbon fiber, carbon black, acetylene black, activated carbon, fullerene, carbon nanotube, carbon nanowire, carbon nano-horn, carbon nano ring (carbon nano ring) and one kind selected from the group consisting of a combination thereof are possible.
  • the metal particles are Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ti, Zr, Ni, Cu, and Fe At least one selected from the group consisting of is possible. They may use particles of several nanometers to several hundred microns for the catalytic effect of the electrochemical reaction, preferably those having a nanoscale particle size.
  • the catalyst material is used at a level that does not prevent the flow of the electrolyte, and may be used in an amount of 10% by weight or less in the carbon-based fiber sheet.
  • doping may be performed by depositing nitrogen atoms on the carbon-based fiber sheet through a process such as chemical vapor deposition.
  • this method adversely affects the lithium polysulfide adsorption capacity since the doped nitrogen is not uniformly doped throughout the sheet.
  • the carbon-based fiber sheet of the present invention can be produced through a spinning process, in particular using a precursor containing a high nitrogen content to be doped with a high concentration of nitrogen.
  • a carbon-based precursor is dissolved in a solvent to prepare a spinning solution (step i)).
  • the carbon-based precursor is a nitrogen-containing precursor including nitrogen in the molecular structure, and specifically includes 5 to 20% of nitrogen atoms. If out of the range it is not easy to control the doping concentration of nitrogen in the carbon-based fiber sheet after carbonization.
  • the carbon-based precursor may be polyacrylonitrile (PAN), polyaniline (Polyaniline (PANI), polypyrrole (PPY), polyimide (PI), polybenzimidazole (Polybenzimidazole: PBI), polypyrrolidone ( Polypyrrolidone (Ppy), Polyamide (PA), Polyamide-imide (PAI), Polyaramide, Melamine, Melamine-formaldehyde and Fluorine mica At least one selected from the group consisting of), according to one embodiment it is preferable to apply polyacrylonitrile (PAN).
  • the carbon-based precursor when the spinning solution is prepared, may be dissolved as it is or dissolved in a solvent.
  • the method of dissolving in a solvent is advantageous, wherein the carbon-based precursor is preferably included in 3 to 20 parts by weight based on 100 parts by weight of the solvent. If the content is less than 3 parts by weight, a kind of agglomerates called beads are formed for each structure due to low viscosity during electrospinning, and uniform fibers of a certain thickness cannot be produced. The thickness of the fiber sheet produced and produced is nonuniform.
  • organic solvents for the preparation of spinning solutions include ethanol, methanol, propanol, butanol, butanol, isopropylalcohol (IPA), dimethylformamide (DMF) and acetone. (Acetone), tetrahydrofuran (THF), toluene, dimethylacetamide (DMAC) and the like can be used.
  • the solvent is used in accordance with the hydrophilicity or hydrophobicity of the polymer material, and in the case of a polymer having hydrophilicity, distilled water (H 2 O) as well as an organic solvent may be used.
  • the spinning solution preferably has a viscosity of 1,000 to 30,000 cP.
  • the fiber orientation may be slowed down even when a high voltage is applied during electrospinning. Because it can be induced.
  • the spinning solution may be prepared by selecting a polymer material prepared from an appropriate molecular weight and a chemical component among known materials used as the carbon precursor material to have the above-described viscosity.
  • the spinning solution is spun to prepare a sheet in the form of a fibrous web (step ii)).
  • the spinning method and apparatus may be appropriately performed by those skilled in the art by selecting any known methods and apparatus.
  • the distance between the spinning nozzle and the current collector is fixed at 10 to 20 cm, the voltage is set at 10 to 60 kV, and the supply rate of the spinning solution is adjusted to 0.5 to 100 ml per hour to be electrospinning.
  • Electrospinning is highly influenced by the voltage applied between the electrodes. At a voltage lower than the above range, fiberization does not occur easily, and beads are easily formed in the final sheet, and at a voltage exceeding the above range, current is easily flowed while the insulated equipment is shorted.
  • the fibers are effectively formed by spinning at intervals of 15 to 20 cm at a voltage of 20 to 40 kV.
  • the feed rate of the solution in electrospinning is related to the production efficiency of the product. In consideration of the time required for sheet production within the above range, it can be appropriately selected.
  • the spinning solution containing the carbon precursor may be electrospun to prepare a sheet in the form of a fibrous web.
  • the sheet may be felt, mat, paper and cloth as described above, preferably felt.
  • a carbon fiber felt prepared from a commercially available carbon precursor containing nitrogen may be purchased and used, wherein the carbon fiber felt may be applied regardless of the method.
  • a modified acrylic containing 5-15% of a copolymer as well as a homopolymer having a molecular weight of 150,000 or more may be used.
  • itaconic acid or methylacrylate may be used as the composition of the copolymer.
  • step iii) the sheet is stabilized by heat treatment in the presence of oxygen (step iii)).
  • the sheet may be stabilized while heating at a temperature of 100 to 400 ° C., more preferably at a temperature of 200 to 350 ° C., at a rate of 5 to 20 ° C./min for 1 to 10 hours.
  • Such heat treatment conditions are preferable to ensure pore size and porosity for polysulfide adsorption, so that stabilization conditions can be set within the above range.
  • the carbon polymer As the carbon polymer is brought into contact with air and stabilized through heat treatment in the presence of oxygen, the carbon polymer is converted into a more stable chemical structure, and thus, the carbon polymer contains a large amount of nitrogen, thereby maximizing the doping effect of nitrogen. have.
  • the flow rate of oxygen is preferably 50 ⁇ 200 ml / min, there may be a problem of insufficient oxygen when stabilizing when less than, there is a problem, when there is a problem that the structure of the carbon-based fiber sheet collapses by oxidation.
  • the stabilization step if the temperature increase rate is less than the range, it takes too long, and if it exceeds the range, the stabilization reaction may occur rapidly, causing problems. In addition, when the temperature is less than the range takes a long time to stabilize, if the temperature exceeds the range there is a problem that the sheet is oxidized.
  • the stabilization process temperature is performed at a temperature lower than that of the polyacrylonitrile used.
  • the polyacrylonitrile may be stabilized (incompatible).
  • the sheet is then carbonized in an inert atmosphere (step iv)).
  • the carbonization process is fired in an inert gas atmosphere such as helium (He), nitrogen (N 2 ), argon (Ar), neon (Ne) or xenon (Xe). If oxygen or air is present, oxidation occurs and it is difficult to manufacture a sheet consisting solely of carbon / nitrogen. Therefore, carbonization may be performed in an inert atmosphere, and the carbonization process may proceed according to conventional conditions.
  • an inert gas atmosphere such as helium (He), nitrogen (N 2 ), argon (Ar), neon (Ne) or xenon (Xe).
  • the carbonization step may be performed at 600 to 1500 ° C., but firing while heating at a rate of 1 to 10 ° C./min is preferable to secure pore size and porosity for lithium polysulfide adsorption. Can be set.
  • the carbon-based fiber sheet doped with a high concentration of nitrogen presented in one embodiment of the above is preferably applied between an anode and a separator of a lithium-sulfur battery.
  • a lithium-sulfur battery including a positive electrode 100, a negative electrode 200, a separator 300, and an electrolyte 400 impregnated therein, includes the positive electrode 100 and the separator ( It is possible to assemble through the carbon-based fiber sheet 500 between the 300).
  • the carbon-based fiber sheet 500 transmits lithium ions 10 and adsorbs the lithium polysulfide 20.
  • the initial discharge capacity may be increased, and overvoltage characteristics may be improved.
  • it exhibits excellent discharge capacity retention and maintains high capacity even after a long cycle.
  • the carbon-based fiber sheet 500 may be considered to be interposed between the separator 300 and the cathode 200, it does not play a large role in preventing direct adsorption of lithium polysulfide, and is in contact with the anode 100. Most advantageous. In addition, when interposed between the separator 300 and the negative electrode 200 there is a problem that the final thickness of the battery increases.
  • the cathode 100 of the present invention may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof as a cathode active material, and since the sulfur material alone is not electrically conductive, Apply in combination.
  • the conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used.
  • carbon-based materials may be carbon black, graphite, graphene, activated carbon, carbon fiber, carbon nanotubes (CNT), and the like.
  • metallic fibers such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used.
  • the conductive materials may be used alone or in combination.
  • the negative electrode 200 is a negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversible lithium-containing compound, lithium Metals or lithium alloys can be used.
  • the material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof.
  • the material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon.
  • the lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), silicon (Si) and tin (Sn).
  • sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode.
  • inactive sulfur refers to sulfur in which sulfur is no longer able to participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions, and the inert sulfur formed on the surface of the lithium cathode is a protective layer of the lithium cathode. It also has the advantage of acting as).
  • a conventional separator 300 may be interposed between the anode 100 and the cathode 200.
  • the separator 300 is a physical separator having a function of physically separating an electrode, and may be used without particular limitation as long as it is used as a conventional separator, and particularly, has a low resistance to ion movement of the electrolyte 400 and an electrolyte 400. ) It is preferable that the moisture content is excellent.
  • the separator 300 enables transport of lithium ions between the anode 100 and the cathode 200 while separating or insulating the anode 100 and the cathode 200 from each other.
  • the separator 300 may be made of a porous and nonconductive or insulating material.
  • the separator 300 may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
  • a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
  • the electrolyte 400 impregnated in the positive electrode 100, the negative electrode 200, and the separator 300 is a non-aqueous electrolyte containing lithium salt, and is composed of lithium salt and electrolyte solution.
  • an organic solid electrolyte and an inorganic solid electrolyte are used. Etc. are used.
  • Lithium salt of the present invention is a good material to be dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiNO 3, chloroborane lithium And one or more from the group consisting of lower aliphatic lithium carbonate, lithium tetraphenyl carbonate, lithium imide.
  • a non-aqueous organic solvent for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiS
  • the concentration of the lithium salt is 0.2-4M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, 0.3 to 2M, more specifically 0.3 to 1.5M. If the amount is less than 0.2M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. If it is used more than 4M, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions (Li + ).
  • the non-aqueous organic solvent should dissolve lithium salts well, and as the non-aqueous organic solvent of the present invention, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1, 3-dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane , Aprotic organic solvents such as dioxolane derivatives, sulfolane, methyl sulfo
  • organic solid electrolyte examples include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, poly etchation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation. Polymers containing groups and the like can be used.
  • Examples of the inorganic solid electrolyte of the present invention include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
  • the electrolyte of the present invention includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitro, for the purpose of improving the charge / discharge characteristics, flame retardancy, and the like.
  • Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. .
  • a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) may be further included.
  • the battery pack including the lithium-sulfur battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), power It can be used as various power supplies such as storage devices.
  • EV electric vehicle
  • HEV hybrid electric vehicle
  • PHEV plug-in hybrid electric vehicle
  • the positive electrode 100 and the negative electrode 200 are interposed between the positive electrode plate and the negative electrode plate cut to a predetermined size with a separator 300 cut to a predetermined size corresponding to the positive electrode plate and the negative electrode plate, and the positive electrode 100 and the separator
  • the stacked electrode assembly may be manufactured by stacking the carbon-based fiber sheet 500 between the 400.
  • the positive electrode 100 and the negative electrode 200 face each other with the separator 300 sheet interposed therebetween, and the carbon-based fiber sheet 500 is interposed between the positive electrode 100 and the separator 400, and at least two positive electrode plates and negative electrode plates are provided. Or two or more of the unit cells in which the two or more positive and negative plates are stacked with the separator interposed therebetween, and wound the separator sheet, or the size of the electrode plate or unit cell. By stacking the separator sheet, a stack-and-fold type electrode assembly can be manufactured.
  • the polyacrylonitrile (PAN) prepared by the electrospinning of 50 ⁇ m thick felt was heat-treated for 2 hours while heating up at 200 ° C./min at 200 ° C. in an air atmosphere. Thereafter, carbonization was carried out for 2 hours while the temperature was raised at 700 ° C./min at 5 ° C./min to prepare a carbon-based fiber sheet.
  • PAN polyacrylonitrile
  • 2 is a scanning electron microscope image of carbon fiber felt stabilized by heat treatment of polyacrylonitrile according to the preparation example of the present invention.
  • 3 is a scanning electron microscope image of a carbon-based fiber sheet prepared by carbonizing a carbon fiber felt according to the preparation example of the present invention.
  • the carbon-based fiber constituting the carbon-based fiber sheet maintains not only the original fiber shape but also the overall structure.
  • the carbon-based fiber sheet of the present invention has the following physical properties.
  • a lithium-sulfur battery was manufactured by using the carbon-based fiber sheet prepared in the preparation example.
  • a positive electrode mixture of 80 wt% sulfur / carbon composite, 10 wt% carbon black (carbon material), and 10 wt% PVDF (binder) as a conductive material was added to NMP (N-methyl-2-pyrrolidone) as a solvent.
  • NMP N-methyl-2-pyrrolidone
  • the positive electrode slurry was coated on a 20 ⁇ m thick aluminum current collector and dried to prepare a positive electrode for a lithium-sulfur battery having a thickness of 150 ⁇ m.
  • Lithium foil having a thickness of about 150 ⁇ m was used as the cathode, and 20 ⁇ m thick polyethylene was used as the separator.
  • a lithium-sulfur battery was manufactured in the same manner as in Example 1, except that the carbon-based fiber sheet was not included.
  • Ni-doped carbon particles were added to the positive electrode active material composition to prepare a lithium-sulfur battery.
  • a positive electrode slurry was prepared.
  • the positive electrode slurry was coated on a 20 ⁇ m thick aluminum current collector and then dried to prepare a positive electrode having a thickness of 150 ⁇ m.
  • Lithium foil having a thickness of about 150 ⁇ m was used as the negative electrode, and 20 ⁇ m thick polyethylene was used as the separator.
  • Figure 4 is a graph showing the initial discharge capacity, the lithium-sulfur battery of Example 1 with a carbon-based fiber sheet containing a high concentration of nitrogen, the initial discharge capacity was significantly increased compared to the lithium-sulfur battery of the comparative example, It was confirmed that overvoltage was also improved.
  • Example 5 is a graph showing the discharge cycle characteristics, the lithium-sulfur battery of Example 1 showed an excellent discharge capacity retention rate and maintained a capacity of about 740 mAh / g even after 50 cycles.
  • Comparative Example 2 including nitrogen-doped carbon particles as an additive through Figure 5 it was confirmed that the discharge capacity retention rate is sharply lowered.
  • Example 6 is a graph showing charge and discharge efficiency.
  • the lithium-sulfur battery according to Example 1 compared to Comparative Examples 1 and 2 maintained an efficiency of 99% or more even after 36 cycles.

Abstract

The present invention relates to a carbon-based fiber sheet and a lithium-sulfur battery including the same. According to the present invention, a carbon-based fiber sheet for a lithium-sulfur battery is doped with highly concentrated nitrogen so as to perform roles of adsorbing lithium polysulfide eluted from a cathode during charging or discharging and of preventing the diffusion thereof, such that a shuttle reaction is suppressed, thereby enabling capacity and lifespan characteristics of a lithium-sulfur battery to improve.

Description

탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지Carbon-based fiber sheet and lithium-sulfur battery comprising the same
본 출원은 2016년 6월 2일자 한국 특허 출원 제10-2016-0068855호 및 2017년 3월 13일자 한국 특허 출원 제10-2017-0031126호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함한다.This application claims the benefit of priority based on Korean Patent Application No. 10-2016-0068855 filed June 2, 2016 and Korean Patent Application No. 10-2017-0031126 filed March 13, 2017. All content disclosed in the literature is included as part of this specification.
본 발명은 리튬 폴리설파이드에 대한 흡착 효과가 우수한 탄소계 섬유 시트 및 이를 포함하는 리튬-황 전지에 관한 것이다.The present invention relates to a carbon-based fiber sheet having an excellent adsorption effect on lithium polysulfide and a lithium-sulfur battery including the same.
최근 전자제품, 전자기기, 통신기기 등의 소형 경량화가 급속히 진행되고 있으며, 환경 문제와 관련하여 전기 자동차의 필요성이 크게 대두됨에 따라 이들 제품의 동력원으로 사용되는 이차전지의 성능 개선에 대한 요구도 증가하는 실정이다. 그 중 리튬 이차전지는 고 에너지밀도 및 높은 표준전극 전위 때문에 고성능 전지로서 상당한 각광을 받고 있다.Recently, small size and light weight of electronic products, electronic devices, communication devices, etc. are rapidly progressing, and as the necessity of electric vehicles increases in relation to environmental problems, the demand for improving the performance of secondary batteries used as power sources of these products is also increasing. It is the situation. Among them, lithium secondary batteries have received considerable attention as high-performance batteries because of their high energy density and high standard electrode potential.
특히 리튬-황(Li-S) 전지는 S-S 결합(Sulfur-sulfur bond)을 갖는 황 계열 물질을 양극 활물질로 사용하고, 리튬 금속을 음극 활물질로 사용하는 이차전지이다. 양극 활물질의 주재료인 황은 자원이 매우 풍부하고, 독성이 없으며, 낮은 원자당 무게를 가지고 있는 장점이 있다. 또한 리튬-황 전지의 이론 방전용량은 1,675mAh/g-sulfur이며, 이론 에너지밀도가 2,600Wh/㎏로서, 현재 연구되고 있는 다른 전지시스템의 이론 에너지밀도(Ni-MH 전지: 450Wh/㎏, Li-FeS 전지: 480Wh/㎏, Li-MnO2 전지: 1,000Wh/㎏, Na-S 전지: 800Wh/㎏)에 비하여 매우 높기 때문에 현재까지 개발되고 있는 전지 중에서 가장 유망한 전지이다.In particular, a lithium-sulfur (Li-S) battery is a secondary battery that uses a sulfur-based material having an SS bond (Sulfur-sulfur bond) as a positive electrode active material and uses lithium metal as a negative electrode active material. Sulfur, the main material of the positive electrode active material, is very rich in resources, has no toxicity, and has an advantage of having a low weight per atom. In addition, the theoretical discharge capacity of the lithium-sulfur battery is 1,675 mAh / g-sulfur, and the theoretical energy density is 2,600 Wh / kg, and the theoretical energy density of other battery systems currently under study (Ni-MH battery: 450 Wh / kg, Li -FeS battery: 480 Wh / kg, Li-MnO 2 battery: 1,000 Wh / kg, Na-S battery: 800 Wh / kg) is very high compared to the most promising battery developed until now.
리튬-황 전지의 방전 반응 중 음극(negative electrode)에서는 리튬의 산화 반응이 발생하고, 양극(positive electrode)에서는 황의 환원 반응이 발생한다. 방전 전의 황은 환형의 S8 구조를 가지고 있는데, 환원 반응(방전) 시 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 산화 반응(충전) 시 S-S 결합이 다시 형성되면서 S의 산화수가 증가하는 산화-환원 반응을 이용하여 전기 에너지를 저장 및 생성한다. 이런 반응 중 황은 환형의 S8에서 환원 반응에 의해 선형 구조의 리튬 폴리설파이드(Lithium polysulfide, Li2Sx, x = 8, 6, 4, 2)로 변환되게 되며, 결국 이러한 리튬 폴리설파이드가 완전히 환원되면 최종적으로 리튬 설파이드(Lithium sulfide, Li2S)가 생성되게 된다. 각각의 리튬 폴리설파이드로 환원되는 과정에 의해 리튬-황 전지의 방전 거동은 리튬 이온전지와는 달리 단계적으로 방전 전압을 나타내는 것이 특징이다.During the discharge reaction of the lithium-sulfur battery, an oxidation reaction of lithium occurs at a negative electrode, and a reduction reaction of sulfur occurs at a positive electrode. I have a S 8 the structure of the cyclic sulfur prior to discharge, the reduction (discharge) the oxidation of SS bonds are broken As reduces the oxidation number of S, and as the oxidation (charge) when SS bond is formed again, increases the oxidation state of the S - Reduction reactions are used to store and generate electrical energy. During this reaction, sulfur is converted into lithium polysulfide (Lithium polysulfide, Li 2 S x , x = 8, 6, 4, 2) by a reduction reaction in a cyclic S 8 , so that the lithium polysulfide is completely Reduction will eventually lead to the formation of lithium sulfide (Lithium sulfide, Li 2 S). Discharge behavior of the lithium-sulfur battery by the process of reduction to each lithium polysulfide is characterized by showing the discharge voltage step by step unlike the lithium ion battery.
Li2S8, Li2S6, Li2S4, Li2S2 등의 리튬 폴리설파이드 중에서, 특히 황의 산화수가 높은 리튬 폴리설파이드(Li2Sx, 보통 x > 4)는 친수성의 전해액에 쉽게 녹는다. 전해액에 녹은 리튬 폴리설파이드는 농도 차에 의해서 리튬 폴리설파이드가 생성된 양극으로부터 먼 쪽으로 확산되어 간다. 이렇게 양극으로부터 용출된 리튬 폴리설파이드는 양극 반응 영역 밖으로 유실되어 리튬 설파이드(Li2S)로의 단계적 환원이 불가능하다. 즉, 양극과 음극을 벗어나 용해된 상태로 존재하는 리튬 폴리설파이드는 전지의 충·방전 반응에 참여할 수 없게 되므로, 양극에서 전기화학 반응에 참여하는 황 물질의 양이 감소하게 되고, 결국 리튬-황 전지의 충전 용량 감소 및 에너지 감소를 일으키는 주요한 요인이 된다.Among lithium polysulfides such as Li 2 S 8 , Li 2 S 6 , Li 2 S 4 , and Li 2 S 2 , in particular, lithium polysulfide (Li 2 S x , usually x> 4) having a high number of sulfur oxides can Easily melts Lithium polysulfide dissolved in the electrolyte is diffused away from the positive electrode where lithium polysulfide is formed due to the difference in concentration. The lithium polysulfide eluted from the positive electrode is lost out of the positive electrode reaction region, so that stepwise reduction to lithium sulfide (Li 2 S) is impossible. That is, since lithium polysulfide, which is present in the dissolved state outside the positive electrode and the negative electrode, cannot participate in the charge / discharge reaction of the battery, the amount of sulfur material participating in the electrochemical reaction at the positive electrode decreases, and eventually lithium-sulfur It is a major factor causing a decrease in the charge capacity and energy of the battery.
뿐만 아니라 음극으로 확산한 리튬 폴리설파이드는 전해액 중에 부유 또는 침전되는 것 이외에도, 리튬과 직접 반응하여 음극 표면에 Li2S 형태로 고착되므로 리튬 금속 음극을 부식시키는 문제를 발생시킨다.In addition, lithium polysulfide diffused to the negative electrode, in addition to being suspended or precipitated in the electrolyte, is directly reacted with lithium and fixed in the form of Li 2 S on the surface of the negative electrode, causing a problem of corrosion of the lithium metal negative electrode.
이러한 리튬 폴리설파이드의 용출을 최소화하기 위하여, 다양한 탄소 구조나 금속 산화물에 황 입자를 담지하여 복합체를 형성하는 양극 복합체의 모폴로지(Morphology)를 변형시키는 연구가 진행되고 있다.In order to minimize the elution of the lithium polysulfide, researches are being conducted to modify the morphology of the cathode composite which forms a composite by supporting sulfur particles in various carbon structures or metal oxides.
한편, 탄소 소재에 질소를 도핑하면 표면 극성(Polarity)이 변화하여 리튬 폴리설파이드가 흡착되는 효과가 있으며, 특히 탄소 표면에 도핑된 여러 질소 작용기 중, 피롤기(Pyrrolic group)과 피리딘기(Pyridinic group)가 리튬 폴리설파이드의 흡착에 효과를 나타낸다고 보고된 바 있다(Chem. Mater., 2015, 27, 2048-2055/ Adv. Funct. Mater., 2014, 24, 1243-1250). 따라서 탄소 소재에 질소 함량을 높여 리튬 폴리설파이드의 흡착능을 향상시키기 위한 방안이 필요한 시점이다.On the other hand, the doping of nitrogen to the carbon material has the effect of changing the surface polarity (Polarity) and the lithium polysulfide adsorbed, in particular, among the various nitrogen functional groups doped on the carbon surface (Pyrrolic group and pyridine group (Pyridinic group) ) Has been reported to have an effect on the adsorption of lithium polysulfide (Chem. Mater., 2015, 27, 2048-2055 / Adv. Funct. Mater., 2014, 24, 1243-1250). Therefore, it is time to increase the nitrogen content of the carbon material to improve the adsorption capacity of lithium polysulfide.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허공보 제2016-0032862호, (2016.03.25), 질소 도핑된 그래핀의 제조방법 및 이로부터 제조된 질소 도핑된 그래핀Korean Laid-Open Patent Publication No. 2016-0032862, (2016.03.25), a method for preparing nitrogen-doped graphene and nitrogen-doped graphene prepared therefrom
[비특허문헌][Non-Patent Documents]
Jia-Jia Chen et al., Conductive Lewis Base Matrix to Recover the Missing Link of Li2S8 during the Sulfur Redox Cycle in Li-S Battery, Chem. Mater., 2015, 27, 2048-2055Jia-Jia Chen et al., Conductive Lewis Base Matrix to Recover the Missing Link of Li 2 S 8 during the Sulfur Redox Cycle in Li-S Battery, Chem. Mater., 2015, 27, 2048-2055
Jiangxuan Son et al., Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries, Adv. Funct. Mater., 2014, 24, 1243-1250Jiangxuan Son et al., Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High-Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries, Adv. Funct. Mater., 2014, 24, 1243-1250
상술한 바와 같이, 리튬-황 전지는 양극으로부터 용출되어 확산되는 리튬 폴리설파이드로 인하여 충·방전 사이클이 진행될수록 전지의 용량 및 수명 특성이 저하되는 문제점이 있다.As described above, the lithium-sulfur battery has a problem in that the capacity and life characteristics of the battery decrease as the charge / discharge cycle progresses due to lithium polysulfide eluted from the positive electrode.
이에 본 발명자들은 상기한 문제점을 해결하고자 다각적으로 연구를 수행한 결과, 탄소계 섬유 시트에 도핑되는 질소의 농도를 높임에 따라 양극으로부터 용출되는 리튬 폴리설파이드를 효과적으로 억제하여 전지의 용량 및 수명이 개선됨을 확인하였다.Accordingly, the present inventors have conducted various studies to solve the above problems. As a result, by increasing the concentration of nitrogen doped to the carbon-based fiber sheet, lithium polysulfide eluted from the positive electrode is effectively suppressed, thereby improving the capacity and life of the battery. It was confirmed.
따라서 본 발명의 목적은 질소가 고농도로 도핑된 탄소계 섬유 시트를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a carbon-based fiber sheet doped with a high concentration of nitrogen.
본 발명의 다른 목적은 상기 탄소계 섬유시트의 제조방법을 제공하는 데 있다.Another object of the present invention to provide a method for producing the carbon-based fiber sheet.
또한, 본 발명의 또 다른 목적은 상기 탄소계 섬유시트를 포함하는 리튬-황 전지를 제공하는 데 있다.In addition, another object of the present invention to provide a lithium-sulfur battery comprising the carbon-based fiber sheet.
본 발명은 상기의 목적을 달성하기 위하여, 고농도의 질소가 도핑된 탄소계 섬유 시트를 제공한다.In order to achieve the above object, the present invention provides a carbon-based fiber sheet doped with a high concentration of nitrogen.
또한, 본 발명은 상기 고농도의 질소가 도핑된 탄소계 섬유 시트의 제조방법을 제공한다.In addition, the present invention provides a method for producing a carbon-based fiber sheet doped with a high concentration of nitrogen.
또한, 본 발명은 양극과 분리막 사이에 상기 고농도의 질소가 도핑된 탄소계 섬유 시트를 포함하는 리튬-황 전지를 제공한다.In addition, the present invention provides a lithium-sulfur battery including a carbon-based fiber sheet doped with a high concentration of nitrogen between the positive electrode and the separator.
본 발명에 따른 리튬-황 전지용 탄소계 섬유 시트는, 충·방전시 양극으로부터 용출되는 리튬 폴리설파이드를 흡착하여 확산을 방지하는 역할을 하므로, 셔틀반응을 억제하여 리튬-황 전지의 용량 및 수명 특성을 향상시킬 수 있다.The carbon-based fiber sheet for lithium-sulfur batteries according to the present invention serves to prevent diffusion by adsorbing lithium polysulfide eluted from the positive electrode during charging and discharging, thereby inhibiting the shuttle reaction, and thus capacity and life characteristics of the lithium-sulfur battery. Can improve.
도 1은 본 발명의 탄소계 섬유 시트를 적용한 리튬-황 전지의 단면도이다.1 is a cross-sectional view of a lithium-sulfur battery to which the carbon-based fiber sheet of the present invention is applied.
도 2는 본 발명의 제조예에 따라 폴리아크릴로니트릴을 열처리하여 안정화시킨 탄소 섬유 펠트의 주사전자 현미경 이미지이다.2 is a scanning electron microscope image of carbon fiber felt stabilized by heat treatment of polyacrylonitrile according to the preparation example of the present invention.
도 3은 본 발명의 제조예에 따라 탄소 섬유 펠트를 탄화시켜 제조된 탄소계 섬유 시트의 주사전자 현미경 이미지이다.3 is a scanning electron microscope image of a carbon-based fiber sheet prepared by carbonizing a carbon fiber felt according to the preparation example of the present invention.
도 4는 본 발명의 실시예 및 비교예에 따른 리튬-황 전지의 초기 방전용량을 나타낸 그래프이다.4 is a graph showing the initial discharge capacity of the lithium-sulfur battery according to the Examples and Comparative Examples of the present invention.
도 5는 본 발명의 실시예 및 비교예에 따른 리튬-황 전지의 사이클 수명 특성을 나타낸 그래프이다.5 is a graph showing cycle life characteristics of a lithium-sulfur battery according to Examples and Comparative Examples of the present invention.
도 6은 본 발명의 실시예 및 비교예에 따른 리튬-황 전지의 충·방전 효율을 나타낸 그래프이다.6 is a graph showing the charging and discharging efficiency of the lithium-sulfur battery according to the Examples and Comparative Examples of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 예시도면에 의거하여 상세히 설명한다. 이러한 도면은 본 발명을 설명하기 위한 일구현예로서 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에 한정되지 않는다. 이때 도면에서는 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분을 생략하였고, 명세서 전체를 통해 유사한 부분에 대해서는 유사한 도면 부호를 사용하였다. 또한 도면에서 표시된 구성요소의 크기 및 상대적인 크기는 실제 축척과는 무관하며, 설명의 명료성을 위해 축소되거나 과장된 것일 수 있다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. These drawings may be implemented in various different forms as an embodiment for explaining the invention, it is not limited to this specification. In the drawings, parts irrelevant to the description are omitted in order to clearly describe the present invention, and similar reference numerals are used for similar parts throughout the specification. In addition, the size and relative size of the components shown in the drawings are not related to the actual scale, may be reduced or exaggerated for clarity of description.
본 발명은 리튬-황 전지의 양극과 분리막 사이에 탄소계 섬유 시트를 개재하여, 양극으로부터 용출되는 리튬 폴리설파이드를 흡착함으로써, 확산을 방지하고자 하는 것이다. 이하 각 구성을 자세히 설명한다.The present invention is intended to prevent diffusion by adsorbing lithium polysulfide eluted from the positive electrode through a carbon-based fiber sheet between the positive electrode and the separator of the lithium-sulfur battery. Hereinafter, each configuration will be described in detail.
탄소계 섬유 시트Carbon fiber sheet
본 발명에서 제시하는 탄소계 섬유 시트는 탄소계 섬유가 3차원 다공성 네트워크 구조를 형성하는 복수의 섬유 구조체를 의미한다. 상기 섬유 구조체는 탄소계 섬유가 판상 형태로 불규칙적인 집합체를 형성하거나 탄소계 섬유가 직조를 통해 3차원적으로 규칙적인 집합체를 형성한 것을 포함한다.The carbon-based fiber sheet proposed in the present invention means a plurality of fiber structures in which carbon-based fibers form a three-dimensional porous network structure. The fiber structure includes carbon-based fibers forming irregular aggregates in the form of plates, or carbon-based fibers forming regular aggregates in three dimensions through weaving.
이때 상기 탄소계 섬유는 탄소 섬유, 탄소 나노 섬유, 그라파이트 섬유 및 그래핀 섬유로 이루어진 군으로부터 선택되는 1종 이상일 수 있으나, 이에 제한되지 않는다. 바람직하기로 탄소 섬유를 사용하며, 이들은 결정질 또는 비정질일 수 있다.In this case, the carbon-based fiber may be one or more selected from the group consisting of carbon fibers, carbon nanofibers, graphite fibers, and graphene fibers, but is not limited thereto. Preferably carbon fibers are used, which can be crystalline or amorphous.
상기 탄소계 섬유 시트는 펠트(felt), 매트(mat), 페이퍼(paper) 및 천(cloth)로 이루어진 군에서 선택된 1종 이상의 직물 형태일 수 있으며, 바람직하기로 펠트(felt)를 사용한다.The carbon-based fiber sheet may be in the form of one or more fabrics selected from the group consisting of felt, mat, paper, and cloth, preferably using felt.
상기 ‘펠트(felt)’는 탄소 또는 그라파이트 재질을 방사 공정을 통해 제작된 섬유가 판상 형태로 불규칙한 집합체를 형성한 것을 의미한다.The term 'felt' refers to the formation of irregular aggregates in the form of a plate made of a fiber produced by spinning a carbon or graphite material.
상기 ‘매트(mat)’및 ‘페이퍼(paper)’는 탄소 재질의 섬유를 유기질 바인더를 이용하여 펠트보다 더 얇은 형태의 집합체를 형성한 것을 의미한다.The 'mat' and 'paper' refer to the formation of a thinner aggregate of carbon fiber fibers using an organic binder.
상기 ‘천(cloth)’은 방사 등의 공정을 통해 제작된 탄소 섬유가 직조를 통해 3차원적으로 규칙적인 집합체를 형성한 것을 의미한다.The term 'cloth' means that the carbon fibers produced through the spinning and the like form a three-dimensionally regular aggregate through weaving.
상기 탄소계 섬유 시트는 탄소계 섬유가 규칙적 또는 불규칙적으로 결합하여 이루어지는 3차원 네트워크 구조를 가짐으로써 강성이 우수하고, 변형이 쉽게 이루어지지 않으면서도 다수의 기공을 가져 전해액의 이동이 원활이 이루어질 수 있다. 상기 탄소계 섬유 시트는 구조체 내에 마이크로 기공, 메조 기공, 매크로 기공 등이 복합적으로 존재하며, 이러한 기공의 조절은 제조 방법에 따라 달라질 수 있다.The carbon-based fiber sheet has a three-dimensional network structure formed by combining carbon-based fibers regularly or irregularly, and excellent in rigidity, and have a plurality of pores without being easily deformed, thereby allowing the movement of the electrolyte to be smoothly performed. . The carbon-based fiber sheet has a complex micropores, mesopores, macropores, etc. in the structure, the control of these pores may vary depending on the manufacturing method.
카본 블랙과 같은 입자를 사용하는 경우 전지 내 고정이 어렵고, 고정되더라도 전지의 구동 중 이동이 쉽게 발생하여 전해액과의 균일한 접촉이 어려운 문제가 발생한다. 또한, 탄소계 섬유의 경우 내화학성, 내마모성, 내열성이 우수하고 경량성, 넓은 전압 범위에서의 안정성 등의 특성을 가져 전지에 적용이 적합하다. 이와 비교하여 금속 등의 탄소 이외의 재질의 경우 열적, 화학적, 기계적, 전기전자적 성질 등이 탄소에 비해 떨어지며, 전해질 함습, 저항 등 전지 적용시 기본적으로 요구되는 특성 모두를 만족시키기가 어렵다. 따라서, 형태와 재질 측면에서 탄소계 섬유 시트의 사용이 가장 바람직하다 할 수 있다.In the case of using particles such as carbon black, fixing in the battery is difficult, and even if fixed, movement occurs easily during driving of the battery, and thus uniform contact with the electrolyte is difficult. In addition, in the case of the carbon-based fiber, it is excellent in chemical resistance, abrasion resistance, heat resistance, light weight, stability in a wide voltage range, etc., and thus is suitable for application to batteries. In comparison, materials other than carbon, such as metal, are inferior in thermal, chemical, mechanical, and electrical and electronic properties to carbon, and it is difficult to satisfy all of the basic properties required for battery application such as electrolyte damping and resistance. Therefore, the use of a carbon-based fiber sheet in terms of form and material may be most preferred.
특히, 본 발명에서 탄소계 섬유 시트는 질소가 도핑된 것을 사용한다. 상기 도핑은 탄소계 섬유를 구성하는 탄소 원자 일부가 질소 원자로 치환되는 것을 의미한다.In particular, the carbon-based fiber sheet in the present invention uses a nitrogen doped. The doping means that a part of the carbon atoms constituting the carbon-based fiber is substituted with a nitrogen atom.
질소 도핑의 탄소 재료(Nitrogen-doped carbon material) 연구는 이미 국제 탄소 재료 분야 이슈 중의 하나로 되었는데 그 주요 원인은 질소 원자가 탄소 원자보다 원자가 전자가 1개 더 많으며 질소 원자가 도핑을 통해 흑연의 6원자 고리 구조에 진입한 후 피리딘, 피롤, 흑연 질소, 피리딘 산화물 등 질소를 포함한 기능 그룹을 형성하기 때문에 탄소 재료의 표면 화학 활성을 향상시키는 동시에 전자 구조에 대한 조절을 실행한다는데 있다.The study of nitrogen-doped carbon materials has already become one of the issues in the field of international carbon materials. The main reason is that the nitrogen atom has one more valence electron than the carbon atom, and the nitrogen atom doping provides a six-membered ring structure. After entering, it forms a functional group containing nitrogen such as pyridine, pyrrole, graphite nitrogen and pyridine oxide, thereby improving the surface chemical activity of the carbon material and controlling the electronic structure.
이에 리튬-황 전지에서 리튬 폴리설파이드를 흡착하기 위해 질소가 도핑된 탄소 재료를 이용하는 종래 기술이 있었으나, 질소 도핑 농도가 0.01 내지 3 중량% 수준으로 낮아 만족스러운 리튬 폴리설파이드 흡착 효과를 확보할 수 없었다.In the lithium-sulfur battery, there is a conventional technique using a nitrogen-doped carbon material to adsorb lithium polysulfide, but the nitrogen doping concentration is low at 0.01 to 3% by weight, and thus satisfactory lithium polysulfide adsorption effect cannot be obtained. .
본 발명에서는 탄소계 섬유 시트 내 탄소 대신 질소로 최소 5 중량% 이상의 고농도로 도핑함으로써 리튬 폴리설파이드 흡착능을 향상시켜 개선된 전기화학적 특성을 나타내게 된다.In the present invention, by doping at a high concentration of at least 5% by weight or more with nitrogen instead of carbon in the carbon-based fiber sheet, lithium polysulfide adsorption capacity is improved to exhibit improved electrochemical properties.
본 발명에 따른 탄소계 섬유 시트는 질소가 총 중량을 기준으로 5 중량% 이상, 바람직하게는 5 내지 30 중량%, 더욱 바람직하게는 10 내지 25 중량%로 도핑되며, 종래의 질소 도핑 공정을 통해 제조된 탄소 재료에 비해 도핑되는 질소 함량이 고농도인 특징이 있다. 만약 질소의 도핑 농도가 상기 범위 미만이면 리튬 폴리설파이드 흡착능 개선 효과를 얻을 수 없으며, 이와 반대로 상기 범위를 초과하는 경우 용량 저하 및 전지 특성이 저하될 수 있다.Carbon-based fiber sheet according to the present invention is nitrogen doped at least 5% by weight, preferably 5 to 30% by weight, more preferably 10 to 25% by weight based on the total weight, through a conventional nitrogen doping process It is characterized by a high concentration of nitrogen doped compared to the prepared carbon material. If the doping concentration of nitrogen is less than the above range it is not possible to obtain the effect of improving lithium polysulfide adsorption capacity, on the contrary, if it exceeds the above range, capacity reduction and battery characteristics may be reduced.
본 발명의 탄소계 섬유 시트는 후술하는 바와 같이, 리튬-황 전지 내부, 구체적으로 양극과 분리막 사이에 개재된다. 이에 상기 양극과 분리막의 자체 기능에 영향을 주지 않고, 이들 간 존재하는 전해액의 흐름(즉, 리튬 이온 전달 등)에 영향을 주지 않으면서도 리튬 폴리설파이드의 흡착능을 높일 수 있도록 파라미터의 제어가 필요하다.As described later, the carbon-based fiber sheet of the present invention is interposed in a lithium-sulfur battery, specifically, between the positive electrode and the separator. Therefore, it is necessary to control the parameters so as to increase the adsorption capacity of lithium polysulfide without affecting the function of the anode and the separator and not affecting the flow of the electrolyte (ie lithium ion transfer, etc.) existing between them. .
상기 파라미터로는 탄소계 섬유 시트를 구성하는 섬유의 직경, 시트 내 기공의 크기, 기공도, 비표면적 및 벌크 밀도(bulk density) 등을 들 수 있으며, 이들을 한정함으로써 상기 효과를 극대화할 수 있다.The parameter may include the diameter of the fibers constituting the carbon-based fiber sheet, the size of the pores in the sheet, the porosity, the specific surface area and the bulk density, and by limiting them, the effect may be maximized.
우선적으로, 폴리설파이드 흡착 효과능을 높이고, 리튬-황 전지 성능을 저해하지 않고 리튬 이온 전달 효과를 높이기 위해, 다공성 시트로 제작한다. 따라서, 상기 탄소계 섬유 시트는 탄소계 섬유로 이루어지되, 상기 탄소계 섬유의 직경, 탄소계 섬유 시트의 기공, 기공도 및 벌크 밀도의 한정이 필요하며, 이를 통해 전술한 바의 효과를 극대화할 수 있다.First, in order to increase the polysulfide adsorption effect capacity and increase the lithium ion transfer effect without inhibiting the lithium-sulfur battery performance, it is made of a porous sheet. Therefore, the carbon-based fiber sheet is made of a carbon-based fiber, it is necessary to limit the diameter of the carbon-based fiber, the porosity, porosity and bulk density of the carbon-based fiber sheet, thereby maximizing the effects described above Can be.
구체적으로, 본 발명에 따른 탄소계 섬유 시트를 구성하는 개개의 섬유의 직경은 0.01 내지 100 ㎛, 바람직하기로 0.01 내지 50 ㎛, 더욱 바람직하기로 0.05 내지 10 ㎛일 수 있으며, 이러한 특성을 지니는 탄소계 섬유 시트는 우수한 리튬 폴리설파이드 흡착능을 확보하기에 바람직하다. 만약, 상기 탄소계 섬유의 직경이 0.01 ㎛ 미만이면 탄화를 위한 열처리 과정에서 섬유 형상을 유지하지 못하고 구조가 무너지는 문제가 발생하고, 이와 반대로 100 ㎛를 초과하면 탄소계 섬유 시트의 두께가 너무 두꺼워져 전지의 에너지 밀도를 오히려 낮추는 문제가 발생하므로, 상기 범위 내에서 적절히 사용한다.Specifically, the diameter of the individual fibers constituting the carbon-based fiber sheet according to the present invention may be 0.01 to 100 ㎛, preferably 0.01 to 50 ㎛, more preferably 0.05 to 10 ㎛, carbon having such characteristics The fiber sheet is preferable to ensure excellent lithium polysulfide adsorption capacity. If the diameter of the carbon-based fiber is less than 0.01 μm, a problem arises that the structure is not maintained and the structure collapses during heat treatment for carbonization. On the contrary, if the diameter of the carbon-based fiber exceeds 100 μm, the thickness of the carbon-based fiber sheet is too thick. The problem of lowering the energy density of the battery is rather reduced, so it is suitably used within the above range.
또한, 본 발명에 따른 탄소계 섬유 시트는 두께가 0.1 내지 100 ㎛, 바람직하기로 0.1 내지 50 ㎛일 수 있다. 만약 상기 탄소계 섬유 시트의 두께가 상기 범위 미만인 경우 리튬 폴리설파이드 흡착 효과 확보가 어렵고, 이와 반대로 상기 범위를 초과하는 경우 저항으로 작용하여 전지 성능에 문제를 야기할 수 있다. 통상 양극 활물질의 두께가 100 ㎛인 것을 고려할 때 0.1 내지 50 ㎛인 것이 가장 바람직하다.In addition, the carbon-based fiber sheet according to the present invention may have a thickness of 0.1 to 100 ㎛, preferably 0.1 to 50 ㎛. If the thickness of the carbon-based fiber sheet is less than the above range it is difficult to secure the lithium polysulfide adsorption effect, on the contrary, if the carbon-based fiber sheet exceeds the above range may act as a resistance may cause problems in battery performance. Usually, considering that the thickness of the positive electrode active material is 100 μm, it is most preferable that it is 0.1 to 50 μm.
또한 본 발명에 따른 탄소계 섬유 시트는 기공의 크기가 0.1 내지 10 ㎛이고, 기공도는 5 내지 90 %, 비표면적은 5 내지 500 ㎡/g일 수 있다. 바람직하기로, 상기 기공의 크기는 0.5 내지 5 ㎛, 기공도는 30 내지 90 %, 비표면적은 10 내지 200 ㎡/g이며, 이러한 기공 특성은 리튬-황 전지에 적용시, 저항으로 작용하지 않으면서 전기화학적 특성이 개선된 효과를 확보하기에 바람직하다. 만약, 상기 탄소계 섬유 시트의 기공이 0.1 ㎛ 미만이면 전해액이 시트에 침투하기 어려워 전지가 작동할 수 없는 문제가 발생하고, 이와 반대로 10 ㎛를 초과하는 경우에는 탄소계 섬유 시트 내 큰 기공들이 존재함으로써 리튬 폴리설파이드 흡착이 고르게 일어나지 않는 문제가 발생하므로, 상기 범위 내에서 적절히 사용한다.In addition, the carbon-based fiber sheet according to the present invention may have a pore size of 0.1 to 10 ㎛, porosity of 5 to 90%, specific surface area of 5 to 500 m 2 / g. Preferably, the pore size is 0.5 to 5 μm, the porosity is 30 to 90%, the specific surface area is 10 to 200 m 2 / g, and such pore characteristics are not applied as a resistance when applied to lithium-sulfur batteries. Therefore, the electrochemical property is desirable to secure an improved effect. If the porosity of the carbon-based fiber sheet is less than 0.1 μm, the electrolyte may be difficult to penetrate into the sheet, and thus the battery may not operate. This causes a problem that lithium polysulfide adsorption does not occur evenly, so it is suitably used within the above range.
또한, 상기 기공도가 전술한 범위보다 높을 경우 탄소계 섬유 시트의 기계적 물성이 저하되어 전지 조립 또는 구동시 문제가 발생할 수 있고, 이와 반대로 기공도가 전술한 범위보다 낮을 경우 전해액의 흐름이 지체되어 전지 내부에 차압이 높아져 과전압에 의해 전지 성능이 저하될 우려가 있으므로, 상기 범위 내에서 적절히 사용한다. 이에 더해서, 탄소계 섬유 시트의 밀도와 관련된 파라미터로서 벌크 밀도는 3 ㎜ 두께를 기준으로 0.05 내지 0.2 g/㎤, 바람직하기로 0.1 내지 0.15 g/㎤인 것을 사용한다. 상기 벌크 밀도가 전술한 범위보다 높을 경우 전해액의 유체 흐름을 방해하여 전지 내 차압을 높일 수 있고, 이와 반대로 상기 벌크 밀도가 전술한 범위보다 낮을 경우 탄소계 섬유 시트 내부에서의 전해액의 체류 시간을 충분히 유지할 수 없다.In addition, when the porosity is higher than the above-mentioned range, mechanical properties of the carbon-based fiber sheet may be degraded, thereby causing problems in battery assembly or driving. On the contrary, when the porosity is lower than the above-mentioned range, the flow of electrolyte may be delayed. Since the differential pressure inside the battery may increase and battery performance may decrease due to overvoltage, it is suitably used within the above range. In addition, as a parameter related to the density of the carbon-based fiber sheet, a bulk density of 0.05 to 0.2 g / cm 3 and preferably 0.1 to 0.15 g / cm 3 based on 3 mm thickness is used. When the bulk density is higher than the above-mentioned range, the fluid pressure of the electrolyte may be interrupted to increase the pressure difference in the battery. On the contrary, when the bulk density is lower than the above-mentioned range, the residence time of the electrolyte in the carbon-based fiber sheet is sufficiently increased. Can't keep up
본 발명의 탄소계 섬유 시트는 리튬 폴리설파이드의 흡착 효과를 높이기 위해 촉매 물질을 추가로 포함할 수 있다.The carbon-based fiber sheet of the present invention may further include a catalyst material in order to enhance the adsorption effect of lithium polysulfide.
상기 촉매 물질은 카본계 도전재 및/또는 금속 입자일 수 있다.The catalyst material may be a carbon-based conductive material and / or metal particles.
예를 들어, 상기 카본계 도전재는 카본 페이퍼, 카본 파이버, 카본 블랙, 아세틸렌 블랙, 활성 카본, 플러렌(fullerene), 카본 나노 튜브, 카본 나노 와이어, 카본 나노 혼(carbon nano-horn), 카본 나노 링(carbon nano ring) 및 이들의 조합으로 이루어진 군으로부터 선택된 1종이 가능하다.For example, the carbon-based conductive material may be carbon paper, carbon fiber, carbon black, acetylene black, activated carbon, fullerene, carbon nanotube, carbon nanowire, carbon nano-horn, carbon nano ring (carbon nano ring) and one kind selected from the group consisting of a combination thereof are possible.
상기 금속 입자는 Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ti, Zr, Ni, Cu, 및 Fe로 이루어진 군에서 선택된 1종 이상이 가능하다. 이들은 전기화학 반응의 촉매 효과를 위해 수 나노에서 수백 마이크론 입자 크기의 것을 사용할 수 있으며, 바람직하기로 나노 수준의 입자 크기를 갖는 것을 사용한다. The metal particles are Na, Al, Mg, Li, Ti, Zr, Cr, Mn, Co, Cu, Zn, Ru, Pd, Rd, Pt, Ag, Au, W, Ti, Zr, Ni, Cu, and Fe At least one selected from the group consisting of is possible. They may use particles of several nanometers to several hundred microns for the catalytic effect of the electrochemical reaction, preferably those having a nanoscale particle size.
상기 촉매 물질은 전해액의 흐름을 방지하지 않는 수준에서 사용하며, 탄소계 섬유 시트 내 10 중량% 이하의 함량으로 사용할 수 있다.The catalyst material is used at a level that does not prevent the flow of the electrolyte, and may be used in an amount of 10% by weight or less in the carbon-based fiber sheet.
전술한 바의 본 발명에 따른 탄소계 섬유 시트의 제조에는 다양한 방법이 사용될 수 있다.Various methods may be used to prepare the carbon-based fiber sheet according to the present invention as described above.
일례로, 탄소계 섬유 시트를 제조한 후 화학 증착 등의 공정을 통해 상기 탄소계 섬유 시트에 질소 원자를 증착하여 도핑을 수행할 수 있다. 그러나 이러한 방법은 도핑되는 질소가 시트 전체에 균일하게 도핑되지 않으므로 리튬 폴리설파이드 흡착능 개선에 악영향을 준다,For example, after the carbon-based fiber sheet is prepared, doping may be performed by depositing nitrogen atoms on the carbon-based fiber sheet through a process such as chemical vapor deposition. However, this method adversely affects the lithium polysulfide adsorption capacity since the doped nitrogen is not uniformly doped throughout the sheet.
바람직하기로, 본 발명의 탄소계 섬유 시트는 방사 공정을 통해 제조될 수 있으며, 특히 높은 농도의 질소가 도핑되기 위해서 질소 함량이 많은 전구체를 사용한다.Preferably, the carbon-based fiber sheet of the present invention can be produced through a spinning process, in particular using a precursor containing a high nitrogen content to be doped with a high concentration of nitrogen.
구체적으로, 본 발명의 질소가 고농도로 도핑된 탄소계 섬유 시트는 Specifically, the carbon-based fiber sheet doped with a high concentration of nitrogen of the present invention
i) 탄소계 전구체를 포함하는 방사 용액을 제조하는 단계;i) preparing a spinning solution comprising a carbon-based precursor;
ii) 상기 방사 용액을 방사하여 섬유웹 형태의 시트를 제조하는 단계;ii) spinning the spinning solution to produce a sheet in the form of a fibrous web;
iii) 산소 존재 하에서 열처리를 통해 상기 시트를 안정화하는 단계; 및 iii) stabilizing the sheet through heat treatment in the presence of oxygen; And
iv) 상기 시트를 비활성 분위기에서 탄화하는 단계를 거쳐 제조된다.iv) carbonizing the sheet in an inert atmosphere.
이하 각 단계별로 상세히 설명한다.Hereinafter, each step will be described in detail.
먼저, 탄소계 전구체를 용매에 용해시켜 방사 용액을 제조한다(단계 i)).First, a carbon-based precursor is dissolved in a solvent to prepare a spinning solution (step i)).
이때 상기 탄소계 전구체는 분자 구조 내 질소를 포함하는 질소 함유 전구체로서, 구체적으로 질소 원자를 5 내지 20 %로 포함한다. 만약 상기 범위를 벗어날 경우 탄화 이후 탄소계 섬유 시트 내 질소의 도핑 농도의 조절이 용이하지 않다.In this case, the carbon-based precursor is a nitrogen-containing precursor including nitrogen in the molecular structure, and specifically includes 5 to 20% of nitrogen atoms. If out of the range it is not easy to control the doping concentration of nitrogen in the carbon-based fiber sheet after carbonization.
상기 탄소계 전구체는 폴리아크릴로니트릴(Polyacrylonitrile: PAN), 폴리아닐린(Polyaniline: PANI), 폴리피롤(Polypyrrole: PPY), 폴리이미드(Polyimide: PI), 폴리벤즈이미다졸(Polybenzimidazole: PBI), 폴리피롤리돈(Polypyrrolidone: Ppy), 폴리아미드(Polyamide: PA), 폴리아미드이미드(Polyamide-imide: PAI), 폴리아라미드(Polyaramide), 멜라민(Melamine), 멜라민-포름알데히드(Melamine-formaldehyde) 및 불소 마이카 (Fluorine mica)로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 일 구현예에 따르면 폴리아크릴로니트릴(PAN)을 적용하는 것이 바람직하다.The carbon-based precursor may be polyacrylonitrile (PAN), polyaniline (Polyaniline (PANI), polypyrrole (PPY), polyimide (PI), polybenzimidazole (Polybenzimidazole: PBI), polypyrrolidone ( Polypyrrolidone (Ppy), Polyamide (PA), Polyamide-imide (PAI), Polyaramide, Melamine, Melamine-formaldehyde and Fluorine mica At least one selected from the group consisting of), according to one embodiment it is preferable to apply polyacrylonitrile (PAN).
일례로 방사 용액 제조 시 상기 탄소계 전구체는 그대로 용해시키거나, 용매에 용해시킨 것을 사용한다. 구체적으로, 용매에 용해시키는 방식이 유리하며, 이때 용매 100 중량부에 대하여 탄소계 전구체는 3 내지 20 중량부로 포함되는 것이 바람직하다. 그 함량이 3 중량부 미만일 경우에는 전기방사 시 낮은 점도에 의해 구조마다 비드(Bead)라는 일종의 뭉친 부분이 생겨 일정한 두께의 균일한 섬유가 제작되지 못하며, 20 중량부를 초과할 경우에는 섬유 내 뭉침이 발생하고 제조된 섬유 시트의 두께가 불균일하게 제작된다.For example, when the spinning solution is prepared, the carbon-based precursor may be dissolved as it is or dissolved in a solvent. Specifically, the method of dissolving in a solvent is advantageous, wherein the carbon-based precursor is preferably included in 3 to 20 parts by weight based on 100 parts by weight of the solvent. If the content is less than 3 parts by weight, a kind of agglomerates called beads are formed for each structure due to low viscosity during electrospinning, and uniform fibers of a certain thickness cannot be produced. The thickness of the fiber sheet produced and produced is nonuniform.
일례로 방사 용액 제조를 위한 유기 용매로는 에탄올(Ethanol), 메탄올(Methanol), 프로판올(Propanol), 부탄올(Puthanol), 이소프로필알콜(Isopropylalcohol, IPA), 디메틸포름아마이드(Dimethylformamide; DMF), 아세톤(Acetone), 테트라하이드로퓨란(Tetrahydrofuran; THF), 톨루엔(Toluene), 디메틸아세트마이드(Dimethylacetamide; DMAC) 등을 사용할 수 있다. 상기 용매는 고분자 물질의 친수성이나 소수성에 맞추어 사용하고 친수성을 가지는 고분자의 경우, 유기 용매뿐만 아니라 증류수(H2O)도 사용이 가능하다.For example, organic solvents for the preparation of spinning solutions include ethanol, methanol, propanol, butanol, butanol, isopropylalcohol (IPA), dimethylformamide (DMF) and acetone. (Acetone), tetrahydrofuran (THF), toluene, dimethylacetamide (DMAC) and the like can be used. The solvent is used in accordance with the hydrophilicity or hydrophobicity of the polymer material, and in the case of a polymer having hydrophilicity, distilled water (H 2 O) as well as an organic solvent may be used.
일례로 상기 방사 용액은 1,000 내지 30,000 cP의 점도를 갖는 것이 바람직한데, 이와 같은 범위의 높은 점도를 띄게 되면, 전기방사 시 고전압을 인가하여도 섬유의 형성속도를 느리게 하는 작용을 하여 섬유의 배향을 유도할 수 있기 때문이다. 상술된 점도를 갖도록 탄소 전구체 물질로 사용되는 공지된 물질 중 적절한 분자량과 화학적 성분으로 제조된 고분자 물질을 선택하여 방사용액을 준비할 수 있다.For example, the spinning solution preferably has a viscosity of 1,000 to 30,000 cP. When the spinning solution has a high viscosity, the fiber orientation may be slowed down even when a high voltage is applied during electrospinning. Because it can be induced. The spinning solution may be prepared by selecting a polymer material prepared from an appropriate molecular weight and a chemical component among known materials used as the carbon precursor material to have the above-described viscosity.
다음으로, 상기 방사 용액을 방사하여 섬유웹 형태의 시트를 제조한다(단계ii )). Next, the spinning solution is spun to prepare a sheet in the form of a fibrous web (step ii)).
이때 방사 방법 및 장치는 공지된 임의의 방법 및 장치를 선택하여 통상의 기술자가 적절하게 수행할 수 있다.At this time, the spinning method and apparatus may be appropriately performed by those skilled in the art by selecting any known methods and apparatus.
일례로 방사 노즐과 집전체 사이의 거리를 10 내지 20 ㎝로 고정하고, 전압은 10 내지 60 kV로 하고, 방사 용액의 공급 속도는 시간당 0.5 내지 100 ㎖로 조절하여 전기방사(Electrospinning)하는 것이 바람직하다. 전기방사는 전극 사이에 인가되는 전압에 영향을 많이 받는다. 상기 범위보다 낮은 전압에서는 섬유화가 잘 일어나지 않으며 최종 생성된 시트에 비드가 많이 형성되기 쉽고, 상기 범위를 초과한 전압에서는 절연되어 있는 기기장치가 단락되면서 전류가 흐르기 쉽다. 바람직하게는, 20 내지 40 kV 전압에서 15 내지 20 ㎝ 간격으로 방사함으로써 효과적으로 섬유가 형성되게 한다. 또한, 전기방사에서 용액의 공급 속도는 제품의 생산효율과 연관된다. 상기 범위 내에서 시트 제작에 소요되는 시간을 고려하여, 적절하게 선택할 수 있다.For example, the distance between the spinning nozzle and the current collector is fixed at 10 to 20 cm, the voltage is set at 10 to 60 kV, and the supply rate of the spinning solution is adjusted to 0.5 to 100 ml per hour to be electrospinning. Do. Electrospinning is highly influenced by the voltage applied between the electrodes. At a voltage lower than the above range, fiberization does not occur easily, and beads are easily formed in the final sheet, and at a voltage exceeding the above range, current is easily flowed while the insulated equipment is shorted. Preferably, the fibers are effectively formed by spinning at intervals of 15 to 20 cm at a voltage of 20 to 40 kV. In addition, the feed rate of the solution in electrospinning is related to the production efficiency of the product. In consideration of the time required for sheet production within the above range, it can be appropriately selected.
일 구현예로서, 상기 탄소 전구체를 포함하는 방사 용액을 전기방사하여 섬유웹 형태의 시트를 제조할 수 있다. 이때 시트는 전술한 바와 같이 펠트, 매트, 페이퍼 및 천일 수 있으며, 바람직하기로는 펠트이다. 다른 일 구현예로서, 시중에 판매되는 상기 질소를 포함하는 탄소 전구체로부터 제조된 탄소 섬유 펠트를 구입하여 사용할 수 있으며, 이때 탄소 섬유 펠트가 제조된 방법과 무관하게 적용 가능하다.In one embodiment, the spinning solution containing the carbon precursor may be electrospun to prepare a sheet in the form of a fibrous web. The sheet may be felt, mat, paper and cloth as described above, preferably felt. In another embodiment, a carbon fiber felt prepared from a commercially available carbon precursor containing nitrogen may be purchased and used, wherein the carbon fiber felt may be applied regardless of the method.
일례로 폴리아크릴로니트릴을 포함하는 방사 용액으로 전기방사를 수행하는 경우, 분자량이 150,000 이상인 단일 중합체(Homopolymer)뿐 아니라 5 내지 15%의 공중합체(Copolymer)를 함유한 개질된 아크릴을 사용할 수 있다. 이때 공중합체의 조성으로는 이타콘산(Itaconic acid)이나 메틸아크릴레이트(Methylacrylate) 등을 사용할 수 있다.For example, when electrospinning is performed with a spinning solution containing polyacrylonitrile, a modified acrylic containing 5-15% of a copolymer as well as a homopolymer having a molecular weight of 150,000 or more may be used. . In this case, itaconic acid or methylacrylate may be used as the composition of the copolymer.
다음으로, 산소 존재 하에서 열처리를 통해 상기 시트를 안정화한다(단계 iii)).Next, the sheet is stabilized by heat treatment in the presence of oxygen (step iii)).
이때 산화 분위기 하 100 내지 400 ℃의 온도에서, 보다 바람직하게는 200 내지 350 ℃의 온도에서 수행하되, 5 내지 20 ℃/min의 속도로 1 내지 10시간 동안 승온하면서 시트를 안정화할 수 있다. 이러한 열처리 조건은 폴리설파이드 흡착을 위한 기공 사이즈와 기공도를 확보하는데 바람직하므로, 상기 범위 내에서 안정화 조건을 설정할 수 있다.In this case, the sheet may be stabilized while heating at a temperature of 100 to 400 ° C., more preferably at a temperature of 200 to 350 ° C., at a rate of 5 to 20 ° C./min for 1 to 10 hours. Such heat treatment conditions are preferable to ensure pore size and porosity for polysulfide adsorption, so that stabilization conditions can be set within the above range.
특히, 본 발명에서는 산소 존재 하에서 열처리를 통해 탄소 고분자를 공기와 접촉시켜 안정화함에 따라 더 안정한 화학적 구조로 변환이 일어나 다량의 질소를 포함하는 탄소로 변하기 때문에 질소의 도핑 효과를 극대화할 수 있는 이점이 있다. 이때 산소의 유속은 50 ~ 200 ㎖/min이 바람직하며, 미만시 안정화시 필요한 산소가 부족할 수 있으며 문제가 있으며, 초과시 산화에 의해 탄소계 섬유 시트의 구조가 무너지는 문제가 있다.In particular, in the present invention, as the carbon polymer is brought into contact with air and stabilized through heat treatment in the presence of oxygen, the carbon polymer is converted into a more stable chemical structure, and thus, the carbon polymer contains a large amount of nitrogen, thereby maximizing the doping effect of nitrogen. have. At this time, the flow rate of oxygen is preferably 50 ~ 200 ㎖ / min, there may be a problem of insufficient oxygen when stabilizing when less than, there is a problem, when there is a problem that the structure of the carbon-based fiber sheet collapses by oxidation.
상기 안정화 단계에서 승온 속도가 상기 범위 미만인 경우 시간이 너무 오래 걸리며, 상기 범위를 초과하는 경우 안정화 반응이 급격히 일어나 문제를 야기할 수 있다. 또한, 상기 온도가 상기 범위 미만인 경우 안정화에 시간이 오래 걸리며, 상기 범위를 초과하는 경우 시트가 산화되는 문제가 있다.In the stabilization step, if the temperature increase rate is less than the range, it takes too long, and if it exceeds the range, the stabilization reaction may occur rapidly, causing problems. In addition, when the temperature is less than the range takes a long time to stabilize, if the temperature exceeds the range there is a problem that the sheet is oxidized.
일례로 질소 함유 탄소 전구체로 폴리아크릴로니트릴을 적용하는 경우, 이러한 안정화 공정에서 폴리아크릴로니트릴이 열분해 되지 않아야 하므로, 안정화 공정 온도는 사용된 폴리아크릴로니트릴의 열분해 온도보다 낮은 온도에서 수행한다. 안정화 공정을 통해 폴리아크릴로니트릴은 안정화(불융화)될 수 있다.For example, when polyacrylonitrile is applied as a nitrogen-containing carbon precursor, since the polyacrylonitrile should not be pyrolyzed in this stabilization process, the stabilization process temperature is performed at a temperature lower than that of the polyacrylonitrile used. Through the stabilization process the polyacrylonitrile may be stabilized (incompatible).
이어서 상기 시트를 비활성 분위기에서 탄화한다(단계 iv)). The sheet is then carbonized in an inert atmosphere (step iv)).
이때 탄화 과정은 헬륨(He), 질소(N2), 아르곤(Ar), 네온(Ne) 또는 제논(Xe)과 같은 불활성 기체 분위기에서 소성한다. 만약 산소 또는 공기가 존재할 경우 산화가 발생하여 탄소/질소로만 이루어진 시트의 제조가 어려우므로, 불활성 분위기에서 탄화를 수행하고 이러한 탄화 공정은 통상적인 조건에 따라 진행할 수 있다.At this time, the carbonization process is fired in an inert gas atmosphere such as helium (He), nitrogen (N 2 ), argon (Ar), neon (Ne) or xenon (Xe). If oxygen or air is present, oxidation occurs and it is difficult to manufacture a sheet consisting solely of carbon / nitrogen. Therefore, carbonization may be performed in an inert atmosphere, and the carbonization process may proceed according to conventional conditions.
일례로 상기 탄화 단계는 600 내지 1500 ℃에서 수행하되, 1 내지 10 ℃/min의 속도로 승온하면서 소성하는 것이 리튬 폴리설파이드 흡착을 위한 기공 사이즈와 공극률을 확보하는데 바람직하므로, 상기 범위 내에서 탄화 조건을 설정할 수 있다.For example, the carbonization step may be performed at 600 to 1500 ° C., but firing while heating at a rate of 1 to 10 ° C./min is preferable to secure pore size and porosity for lithium polysulfide adsorption. Can be set.
리튬-황 전지Lithium-sulfur battery
전술한 바의 일 구현예에서 제시하는 고농도의 질소가 도핑된 탄소계 섬유 시트는 바람직하게 리튬-황 전지의 양극과 분리막 사이에 개재하여 적용 가능하다.The carbon-based fiber sheet doped with a high concentration of nitrogen presented in one embodiment of the above is preferably applied between an anode and a separator of a lithium-sulfur battery.
보다 구체적으로, 도 1에 제시한 바와 같이 양극(100), 음극(200), 분리막(300) 및 이들에 함침되는 전해질(400)을 포함하는 리튬-황 전지는 상기 양극(100)과 분리막(300) 사이에 탄소계 섬유 시트(500)를 개재하여 조립할 수 있다. 상기 탄소계 섬유 시트(500)는 리튬 이온(10)은 투과하고, 리튬 폴리설파이드(20)를 흡착하게 되어, 결과적으로 초기 방전용량이 증가하고, 과전압 특성을 개선할 수 있다. 또한, 우수한 방전용량 유지율을 보이며, 장시간 사이클 이후에도 고용량을 유지한다.More specifically, as shown in FIG. 1, a lithium-sulfur battery including a positive electrode 100, a negative electrode 200, a separator 300, and an electrolyte 400 impregnated therein, includes the positive electrode 100 and the separator ( It is possible to assemble through the carbon-based fiber sheet 500 between the 300). The carbon-based fiber sheet 500 transmits lithium ions 10 and adsorbs the lithium polysulfide 20. As a result, the initial discharge capacity may be increased, and overvoltage characteristics may be improved. In addition, it exhibits excellent discharge capacity retention and maintains high capacity even after a long cycle.
이러한 탄소계 섬유 시트(500)는 분리막(300)과 음극(200) 사이에도 개재되는 것을 고려할 수 있으나, 리튬 폴리설파이드의 직접적인 흡착을 막는데 큰 역할을 못하며, 양극(100)과 접하도록 하는 것이 가장 유리하다. 또한, 분리막(300)과 음극(200) 사이에 개재할 경우 전지의 최종 두께가 증가하는 문제가 있다.Although the carbon-based fiber sheet 500 may be considered to be interposed between the separator 300 and the cathode 200, it does not play a large role in preventing direct adsorption of lithium polysulfide, and is in contact with the anode 100. Most advantageous. In addition, when interposed between the separator 300 and the negative electrode 200 there is a problem that the final thickness of the battery increases.
한편, 본 발명의 양극(100)은 양극 활물질로서 황 원소(Elemental sulfur, S8), 황 계열 화합물 또는 이들의 혼합물을 포함할 수 있으며, 이들은 황 물질 단독으로는 전기 전도성이 없기 때문에 도전재와 복합하여 적용한다. 상기 황 계열 화합물은 구체적으로, Li2Sn(n≥1), 유기황 화합물 또는 탄소-황 폴리머((C2Sx)n: x=2.5 ~ 50, n≥2) 등일 수 있다.Meanwhile, the cathode 100 of the present invention may include elemental sulfur (S 8 ), a sulfur-based compound, or a mixture thereof as a cathode active material, and since the sulfur material alone is not electrically conductive, Apply in combination. Specifically, the sulfur-based compound may be Li 2 S n (n ≧ 1), an organic sulfur compound, or a carbon-sulfur polymer ((C 2 S x ) n : x = 2.5 to 50, n ≧ 2).
상기 도전재는 다공성일 수 있다. 따라서, 상기 도전재로는 다공성 및 도전성을 갖는 것이라면 제한 없이 사용할 수 있으며, 예를 들어 다공성을 갖는 탄소계 물질을 사용할 수 있다. 이와 같은 탄소계 물질로는 카본 블랙, 그라파이트, 그래 핀, 활성탄, 탄소 섬유, 탄소나노튜브(CNT) 등을 사용할 수 있다. 또한, 금속 메쉬 등의 금속성 섬유; 구리, 은, 니켈, 알루미늄 등의 금속성 분말; 또는 폴리페닐렌 유도체 등의 유기 도전성 재료도 사용할 수 있다. 상기 도전성 재료들은 단독 또는 혼합하여 사용될 수 있다.The conductive material may be porous. Therefore, the conductive material may be used without limitation as long as it has porosity and conductivity, and for example, a carbon-based material having porosity may be used. Such carbon-based materials may be carbon black, graphite, graphene, activated carbon, carbon fiber, carbon nanotubes (CNT), and the like. Moreover, metallic fibers, such as a metal mesh; Metallic powders such as copper, silver, nickel and aluminum; Or organic conductive materials, such as a polyphenylene derivative, can also be used. The conductive materials may be used alone or in combination.
상기 음극(200)은 음극 활물질로서 리튬 이온(Li+)을 가역적으로 흡장(Intercalation) 또는 방출(Deintercalation)할 수 있는 물질, 리튬 이온과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질, 리튬 금속 또는 리튬 합금을 사용할 수 있다. 상기 리튬 이온(Li+)을 가역적으로 흡장 또는 방출할 수 있는 물질은 예컨대 결정질 탄소, 비정질 탄소 또는 이들의 혼합물일 수 있다. 상기 리튬 이온(Li+)과 반응하여 가역적으로 리튬 함유 화합물을 형성할 수 있는 물질은 예를 들어, 산화주석, 티타늄나이트레이트 또는 실리콘일 수 있다. 상기 리튬 합금은 예를 들어, 리튬(Li)과 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr), 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra), 알루미늄(Al), 실리콘(Si) 및 주석(Sn)으로 이루어지는 군에서 선택되는 금속의 합금일 수 있다.The negative electrode 200 is a negative electrode active material, a material capable of reversibly intercalating or deintercalating lithium ions (Li + ), a material capable of reacting with lithium ions to form a reversible lithium-containing compound, lithium Metals or lithium alloys can be used. The material capable of reversibly occluding or releasing the lithium ions (Li + ) may be, for example, crystalline carbon, amorphous carbon or a mixture thereof. The material capable of reacting with the lithium ions (Li + ) to form a lithium-containing compound reversibly may be, for example, tin oxide, titanium nitrate or silicon. The lithium alloy is, for example, lithium (Li) and sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), francium (Fr), beryllium (Be), magnesium (Mg), calcium ( It may be an alloy of a metal selected from the group consisting of Ca), strontium (Sr), barium (Ba), radium (Ra), aluminum (Al), silicon (Si) and tin (Sn).
또한, 리튬-황 전지를 충ㆍ방전하는 과정에서, 양극 활물질로 사용되는 황이 불활성 물질로 변화되어, 리튬 음극 표면에 부착될 수 있다. 이와 같이 불활성 황(Inactive sulfur)은 황이 여러 가지 전기화학적 또는 화학적 반응을 거쳐 양극의 전기화학 반응에 더이상 참여할 수 없는 상태의 황을 의미하며, 리튬 음극 표면에 형성된 불활성 황은 리튬 음극의 보호막(Protective layer)으로서 역할을 하는 장점도 있다.In addition, in the process of charging and discharging the lithium-sulfur battery, sulfur used as the positive electrode active material may be changed into an inert material and adhered to the surface of the lithium negative electrode. As described above, inactive sulfur refers to sulfur in which sulfur is no longer able to participate in the electrochemical reaction of the anode through various electrochemical or chemical reactions, and the inert sulfur formed on the surface of the lithium cathode is a protective layer of the lithium cathode. It also has the advantage of acting as).
양극(100)과 음극(200) 사이는 통상적인 분리막(300)이 개재될 수 있다. 상기 분리막(300)은 전극을 물리적으로 분리하는 기능을 갖는 물리적인 분리막으로서, 통상의 분리막으로 사용되는 것이라면 특별한 제한 없이 사용 가능하며, 특히 전해액(400)의 이온 이동에 대하여 저저항이면서 전해액(400) 함습 능력이 우수한 것이 바람직하다.A conventional separator 300 may be interposed between the anode 100 and the cathode 200. The separator 300 is a physical separator having a function of physically separating an electrode, and may be used without particular limitation as long as it is used as a conventional separator, and particularly, has a low resistance to ion movement of the electrolyte 400 and an electrolyte 400. ) It is preferable that the moisture content is excellent.
또한 상기 분리막(300)은 양극(100)과 음극(200)을 서로 분리 또는 절연시키면서 양극(100)과 음극(200) 사이에 리튬 이온의 수송을 가능하게 한다. 이러한 분리막(300)은 다공성이고 비전도성 또는 절연성인 물질로 이루어질 수 있다. 상기 분리막(300)은 필름과 같은 독립적인 부재이거나, 또는 양극 및/또는 음극에 부가된 코팅층일 수 있다.In addition, the separator 300 enables transport of lithium ions between the anode 100 and the cathode 200 while separating or insulating the anode 100 and the cathode 200 from each other. The separator 300 may be made of a porous and nonconductive or insulating material. The separator 300 may be an independent member such as a film or a coating layer added to the anode and / or the cathode.
구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.Specifically, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer may be used alone. It may be used as a lamination or or a conventional porous non-woven fabric, for example, a non-woven fabric made of glass fibers, polyethylene terephthalate fibers of high melting point, etc. may be used, but is not limited thereto.
상기 양극(100), 음극(200) 및 분리막(300)에 함침되어 있는 전해질(400)은 리튬염을 함유하는 비수계 전해질로서 리튬염과 전해액으로 구성되어 있으며, 이외에도 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.The electrolyte 400 impregnated in the positive electrode 100, the negative electrode 200, and the separator 300 is a non-aqueous electrolyte containing lithium salt, and is composed of lithium salt and electrolyte solution. In addition, an organic solid electrolyte and an inorganic solid electrolyte are used. Etc. are used.
본 발명의 리튬염은 비수계 유기용매에 용해되기 좋은 물질로서, 예컨대, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiB(Ph)4, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, LiSO3CH3, LiSO3CF3, LiSCN, LiC(CF3SO2)3, LiN(CF3SO2)2, LiNO3, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 리튬 이미드로 이루어진 군으로부터 하나 이상이 포함될 수 있다.Lithium salt of the present invention is a good material to be dissolved in a non-aqueous organic solvent, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiB (Ph) 4 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2, LiAsF 6, LiSbF 6, LiAlCl 4, LiSO 3 CH 3, LiSO 3 CF 3, LiSCN, LiC (CF 3 SO 2) 3, LiN (CF 3 SO 2) 2, LiNO 3, chloroborane lithium And one or more from the group consisting of lower aliphatic lithium carbonate, lithium tetraphenyl carbonate, lithium imide.
상기 리튬염의 농도는, 전해질 혼합물의 정확한 조성, 염의 용해도, 용해된 염의 전도성, 전지의 충전 및 방전 조건, 작업 온도 및 리튬 배터리 분야에 공지된 다른 요인과 같은 여러 요인에 따라, 0.2 내지 4M, 구체적으로 0.3 내지 2M, 더욱 구체적으로 0.3 내지 1.5M일 수 있다. 0.2M 미만으로 사용하면 전해질의 전도도가 낮아져서 전해질 성능이 저하될 수 있고, 4M을 초과하여 사용하면 전해질의 점도가 증가하여 리튬 이온(Li+)의 이동성이 감소될 수 있다.The concentration of the lithium salt is 0.2-4M, depending on several factors such as the exact composition of the electrolyte mixture, the solubility of the salt, the conductivity of the dissolved salt, the charging and discharging conditions of the cell, the operating temperature and other factors known in the lithium battery art, 0.3 to 2M, more specifically 0.3 to 1.5M. If the amount is less than 0.2M, the conductivity of the electrolyte may be lowered, and thus the performance of the electrolyte may be lowered. If it is used more than 4M, the viscosity of the electrolyte may be increased to reduce the mobility of lithium ions (Li + ).
상기 비수계 유기용매는 리튬염을 잘 용해시켜야 하며, 본 발명의 비수계 유기용매로는, 예컨대, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로 락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있으며, 상기 유기 용매는 하나 또는 둘 이상의 유기 용매들의 혼합물일 수 있다.The non-aqueous organic solvent should dissolve lithium salts well, and as the non-aqueous organic solvent of the present invention, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, di Ethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2-dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethylsulfoxide, 1, 3-dioxolane, 4-methyl-1,3-dioxene, diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane , Aprotic organic solvents such as dioxolane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, methyl propionate and ethyl propionate It may be used, the organic solvent may be a mixture of one or more organic solvents.
상기 유기 고체 전해질로는, 예컨대, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(Agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화비닐리덴, 이온성 해리기를 포함하는 중합체 등이 사용될 수 있다.Examples of the organic solid electrolyte include polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphate ester polymers, poly etchation lysine, polyester sulfides, polyvinyl alcohol, polyvinylidene fluoride, and ionic dissociation. Polymers containing groups and the like can be used.
본 발명의 무기 고체 전해질로는, 예컨대, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte of the present invention include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitrides, halides, sulfates and the like of Li, such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 , and the like, may be used.
본 발명의 전해질에는 충ㆍ방전 특성, 난연성 등의 개선을 목적으로, 예컨대, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(Glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-ethylene carbonate), PRS(Propene sultone), FPC(Fluoro-propylene carbonate) 등을 더 포함시킬 수 있다.The electrolyte of the present invention includes, for example, pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexa phosphate triamide, nitro, for the purpose of improving the charge / discharge characteristics, flame retardancy, and the like. Benzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinones, N, N-substituted imidazolidines, ethylene glycol dialkyl ethers, ammonium salts, pyrroles, 2-methoxy ethanol, aluminum trichloride and the like may be added. . In some cases, in order to impart nonflammability, a halogen-containing solvent such as carbon tetrachloride and ethylene trifluoride may be further included, and carbon dioxide gas may be further included to improve high temperature storage characteristics, and FEC (Fluoro-ethylene) may be further included. carbonate), propene sultone (PRS), fluoro-propylene carbonate (FPC), and the like.
상기한 리튬-황 전지를 포함하는 전지팩은 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전력 저장장치 등의 다양한 전원 공급장치로 사용될 수 있다.The battery pack including the lithium-sulfur battery is an electric vehicle (EV), a hybrid electric vehicle (HEV), a plug-in hybrid electric vehicle (PHEV), power It can be used as various power supplies such as storage devices.
상술한 양극(100)과 음극(200)을 소정의 크기로 절취한 양극판과 음극판 사이에 상기 양극판과 음극판에 대응하는 소정의 크기로 절취한 분리막(300)을 개재시키고, 양극(100)과 분리막(400) 사이에 탄소계 섬유 시트(500)를 적층함으로써 스택형 전극 조립체를 제조할 수 있다.The positive electrode 100 and the negative electrode 200 are interposed between the positive electrode plate and the negative electrode plate cut to a predetermined size with a separator 300 cut to a predetermined size corresponding to the positive electrode plate and the negative electrode plate, and the positive electrode 100 and the separator The stacked electrode assembly may be manufactured by stacking the carbon-based fiber sheet 500 between the 400.
또는 양극(100)과 음극(200)이 분리막(300) 시트를 사이에 두고 대면하고, 양극(100)과 분리막(400) 사이에 탄소계 섬유 시트(500)를 개재하되, 둘 이상의 양극판 및 음극판들을 분리막 시트 상에 배열하거나 또는 상기 둘 이상의 양극판 및 음극판들이 분리막을 사이에 두고 적층되어 있는 유닛셀들 둘 이상을 분리막 시트상에 배열하고, 상기 분리막 시트를 권취하거나, 전극판 또는 유닛셀의 크기로 분리막 시트를 절곡함으로써 스택 앤 폴딩형 전극조립체를 제조할 수 있다.Alternatively, the positive electrode 100 and the negative electrode 200 face each other with the separator 300 sheet interposed therebetween, and the carbon-based fiber sheet 500 is interposed between the positive electrode 100 and the separator 400, and at least two positive electrode plates and negative electrode plates are provided. Or two or more of the unit cells in which the two or more positive and negative plates are stacked with the separator interposed therebetween, and wound the separator sheet, or the size of the electrode plate or unit cell. By stacking the separator sheet, a stack-and-fold type electrode assembly can be manufactured.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail with reference to Examples. However, embodiments according to the present invention can be modified in many different forms, the scope of the present invention should not be construed as limited to the embodiments described below. The embodiments of the present invention are provided to more completely explain the present invention to those skilled in the art.
<< 제조예Production Example >>
전기방사하여 50 ㎛ 두께의 펠트로 제조된 폴리아크릴로니트릴(PAN)을 공기 분위기에서 200 ℃에서 10 ℃/min의 속도로 승온하면서 2시간 동안 열처리하였다. 이후 700 ℃에서 5 ℃/min의 속도로 승온하면서 2시간 동안 탄화시켜 탄소계 섬유 시트를 제조하였다.The polyacrylonitrile (PAN) prepared by the electrospinning of 50 μm thick felt was heat-treated for 2 hours while heating up at 200 ° C./min at 200 ° C. in an air atmosphere. Thereafter, carbonization was carried out for 2 hours while the temperature was raised at 700 ° C./min at 5 ° C./min to prepare a carbon-based fiber sheet.
<< 시험예Test Example 1> 분석 1> Analysis
(1) 질소 함량 분석(1) nitrogen content analysis
상기 제조예에서 제조된 탄소계 섬유 시트의 질소 함량을 알아보기 위하여 원소 분석(Elemental Analysis)을 실시하였다. 그 결과, 질소가 16 중량% 함유된 것을 확인하였다.Elemental analysis was performed to determine the nitrogen content of the carbon-based fiber sheet prepared in the preparation example. As a result, it was confirmed that nitrogen contained 16% by weight.
(2) 물성 분석(2) property analysis
도 2는 본 발명의 제조예에 따라 폴리아크릴로니트릴을 열처리하여 안정화시킨 탄소 섬유 펠트의 주사전자 현미경 이미지이다. 도 3은 본 발명의 제조예에 따라 탄소 섬유 펠트를 탄화시켜 제조된 탄소계 섬유 시트의 주사전자 현미경 이미지이다.2 is a scanning electron microscope image of carbon fiber felt stabilized by heat treatment of polyacrylonitrile according to the preparation example of the present invention. 3 is a scanning electron microscope image of a carbon-based fiber sheet prepared by carbonizing a carbon fiber felt according to the preparation example of the present invention.
도 2 및 도 3을 참조하면, 안정화 및 탄화 과정을 거친 후에도 탄소계 섬유 시트를 구성하는 탄소계 섬유가 본연의 섬유 형상뿐만 아니라 전체적인 구조를 안정적으로 유지함을 확인하였다.2 and 3, it was confirmed that even after the stabilization and carbonization process, the carbon-based fiber constituting the carbon-based fiber sheet maintains not only the original fiber shape but also the overall structure.
또한, 주사 전자 현미경(Scanning Electron Microscope, SEM) 및 BET(Brnauer,Emmett & Teller) 측정을 통해 분석한 결과, 본 발명의 탄소계 섬유 시트는 하기 물성을 가짐을 확인하였다.In addition, as a result of analysis through a scanning electron microscope (Scanning Electron Microscope, SEM) and BET (Brnauer, Emett & Teller) measurement, it was confirmed that the carbon-based fiber sheet of the present invention has the following physical properties.
* 섬유 직경: 1 ㎛Fiber diameter: 1 μm
* 기공 크기: 4 ㎛* Pore Size: 4 ㎛
* 비표면적: 60 ㎡/g* Specific surface area: 60 ㎡ / g
* 벌크 밀도: 0.001 g/cm3 Bulk Density: 0.001 g / cm 3
* 시트 기공도: 50 %* Sheet porosity: 50%
* 시트 두께: 14 ㎛* Sheet Thickness: 14 ㎛
<< 실시예Example 1> 1>
상기 제조예에서 제조된 탄소계 섬유 시트를 이용하여 리튬-황 전지를 제조하였다.A lithium-sulfur battery was manufactured by using the carbon-based fiber sheet prepared in the preparation example.
먼저, 황/탄소 복합체 80 중량%와 도전재로서 카본블랙(탄소 소재) 10 중량%, 및 PVDF(바인더) 10 중량% 조성의 양극 합제를 용제인 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20 ㎛ 두께의 알루미늄 집전체 상에 코팅 후 건조하여 150 ㎛ 두께를 갖는 리튬-황 전지용 양극을 제조하였다.First, a positive electrode mixture of 80 wt% sulfur / carbon composite, 10 wt% carbon black (carbon material), and 10 wt% PVDF (binder) as a conductive material was added to NMP (N-methyl-2-pyrrolidone) as a solvent. To prepare a positive electrode slurry. The positive electrode slurry was coated on a 20 μm thick aluminum current collector and dried to prepare a positive electrode for a lithium-sulfur battery having a thickness of 150 μm.
음극으로 약 150 ㎛ 두께를 갖는 리튬 호일을 사용하였고, 분리막으로 20 ㎛ 두께의 폴리에틸렌을 사용하였다.Lithium foil having a thickness of about 150 μm was used as the cathode, and 20 μm thick polyethylene was used as the separator.
양극, 탄소계 섬유 시트, 분리막 및 음극 순으로 적층시킨 후, 전해액으로 1M LiN(SO2CF3)2가 용해된 디메톡시에탄, 디옥솔란 및 디글라임(14 : 65 : 21 부피비)의 혼합 용매를 주입하여 리튬-황 전지를 제조하였다.After stacking in the order of positive electrode, carbon-based fiber sheet, separator and negative electrode, mixed solvent of dimethoxyethane, dioxolane and diglyme (14:65:21 volume ratio) in which 1M LiN (SO 2 CF 3 ) 2 was dissolved in electrolyte solution Was injected to produce a lithium-sulfur battery.
<< 비교예Comparative example 1> 1>
탄소계 섬유 시트를 포함하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 리튬-황 전지를 제조하였다.A lithium-sulfur battery was manufactured in the same manner as in Example 1, except that the carbon-based fiber sheet was not included.
<< 비교예Comparative example 2> 2>
질소가 도핑된 탄소 입자를 양극 활물질 조성에 첨가하여 리튬-황 전지를 제조하였다.Ni-doped carbon particles were added to the positive electrode active material composition to prepare a lithium-sulfur battery.
구체적으로, 황/탄소 복합체 75 중량%, 카본블랙 10 중량%, PVDF 10 중량% 및 첨가제로서 질소 도핑(N-doped) 탄소 입자 5 중량%를 NMP(N-methyl-2-pyrrolidone)에 첨가하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 20 ㎛ 두께의 알루미늄 집전체 상에 코팅 후 건조하여 150 ㎛ 두께를 갖는 양극을 제조하였다.Specifically, 75% by weight of sulfur / carbon composite, 10% by weight carbon black, 10% by weight PVDF and 5% by weight of N-doped carbon particles as an additive to NMP (N-methyl-2-pyrrolidone) by adding A positive electrode slurry was prepared. The positive electrode slurry was coated on a 20 μm thick aluminum current collector and then dried to prepare a positive electrode having a thickness of 150 μm.
음극으로는 음극으로 약 150㎛ 두께를 갖는 리튬 호일을 사용하였고, 분리막으로 20 ㎛ 두께의 폴리에틸렌을 사용하였다.Lithium foil having a thickness of about 150 μm was used as the negative electrode, and 20 μm thick polyethylene was used as the separator.
양극, 분리막 및 음극 순으로 적층시킨 후, 전해액으로 1M LiN(SO2CF3)2가 용해된 디메톡시에탄, 디옥솔란 및 디글라임(14 : 65 : 21 부피비)의 혼합 용매를 주입하여 리튬-황 전지를 제작하였다.After stacking in the order of the positive electrode, the separator and the negative electrode, a mixed solvent of dimethoxyethane, dioxolane, and diglyme (14:65:21 volume ratio) in which 1M LiN (SO 2 CF 3 ) 2 was dissolved was injected into an electrolyte solution. A sulfur battery was produced.
<< 시험예Test Example 2> 2>
상기 제조된 실시예 및 비교예의 리튬-황 전지를 10시간의 전해액 함침 후 0.1 C의 속도로 충·방전하며, 초기 방전용량, 방전 사이클 특성 및 충·방전 효율에 관한 데이터가 기록되었으며, 그 결과를 도 4 내지 도 6에 도시하였다.After charging and discharging the lithium-sulfur batteries of Examples and Comparative Examples prepared above for 10 hours at a rate of 0.1 C, data on initial discharge capacity, discharge cycle characteristics, and charge and discharge efficiency were recorded. 4 to 6 are shown.
먼저 도 4는 초기 방전용량을 나타낸 그래프로서, 고농도의 질소가 함유된 탄소계 섬유 시트가 개재된 실시예 1의 리튬-황 전지가 비교예의 리튬-황 전지에 비해 초기 방전용량이 크게 증가하였으며, 과전압도 개선되는 것을 확인하였다.First, Figure 4 is a graph showing the initial discharge capacity, the lithium-sulfur battery of Example 1 with a carbon-based fiber sheet containing a high concentration of nitrogen, the initial discharge capacity was significantly increased compared to the lithium-sulfur battery of the comparative example, It was confirmed that overvoltage was also improved.
특히, 도 4에 나타낸 바와 같이, 질소가 도핑된 탄소 입자를 양극 합제 내 포함하는 비교예 2의 경우 비교예 1에 비해 초기 방전용량이 다소 증가하였으나, 전기 전도도가 낮은 질소 도핑 탄소 입자의 첨가에 따라 방전 과정에서 과전압이 오히려 증가함을 확인할 수 있었다.In particular, as shown in Figure 4, in Comparative Example 2 containing nitrogen-doped carbon particles in the positive electrode mixture, the initial discharge capacity slightly increased compared to Comparative Example 1, but the addition of nitrogen doped carbon particles with low electrical conductivity As a result, the overvoltage increased in the discharge process.
도 5는 방전 사이클 특성을 나타낸 그래프로서, 실시예 1의 리튬-황 전지가 우수한 방전용량 유지율을 보이며 50 사이클이 지나도 약 740 mAh/g 수준의 용량을 유지하는 것으로 나타났다. 또한, 도 5를 통해 첨가제로 질소 도핑 탄소 입자를 포함하는 비교예 2의 경우 방전용량 유지율이 급격히 저하됨을 확인할 수 있었다. 5 is a graph showing the discharge cycle characteristics, the lithium-sulfur battery of Example 1 showed an excellent discharge capacity retention rate and maintained a capacity of about 740 mAh / g even after 50 cycles. In addition, in Comparative Example 2 including nitrogen-doped carbon particles as an additive through Figure 5 it was confirmed that the discharge capacity retention rate is sharply lowered.
도 6은 충·방전 효율을 나타낸 그래프로서, 비교예 1 및 2과 비교하여 실시예 1에 따른 리튬-황 전지의 경우 36 사이클 이후에도 99% 이상의 효율을 유지하였다. 6 is a graph showing charge and discharge efficiency. The lithium-sulfur battery according to Example 1 compared to Comparative Examples 1 and 2 maintained an efficiency of 99% or more even after 36 cycles.
따라서, 상기 도 4 내지 6의 결과로부터 본 발명에 따른 고농도의 질소가 함유된 다공성 탄소 시트를 양극과 분리막 사이에 적용하는 경우 전지 용량과 수명 특성이 향상될 수 있음을 알 수 있었다.Therefore, it can be seen from the results of FIGS. 4 to 6 that the battery capacity and lifespan characteristics can be improved when the porous carbon sheet containing the high concentration of nitrogen according to the present invention is applied between the anode and the separator.
[부호의 설명][Description of the code]
10. 리튬 이온10. Lithium Ion
20. 리튬 폴리설파이드20. Lithium Polysulfide
100. 양극100. Anode
200. 음극200. Cathode
300. 분리막300. Membrane
400. 전해질400. Electrolyte
500. 탄소계 섬유 시트 500. Carbon Based Fiber Sheet

Claims (16)

  1. 질소가 고농도로 도핑된 리튬-황 전지용 탄소계 섬유 시트.Carbon-based fiber sheet for lithium-sulfur battery doped with high concentration of nitrogen.
  2. 제1항에 있어서, The method of claim 1,
    상기 질소는 탄소계 섬유 시트 내 5 내지 30 중량%의 도핑 농도로 도핑된 것인 리튬-황 전지용 탄소계 섬유 시트.The nitrogen is a carbon-based fiber sheet for a lithium-sulfur battery that is doped at a doping concentration of 5 to 30% by weight in the carbon-based fiber sheet.
  3. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유는 탄소 섬유, 탄소 나노 섬유, 그라파이트 섬유 및 그래핀 섬유로 이루어진 군으로부터 선택되는 1종 이상인 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber is at least one carbon-based fiber sheet for a lithium-sulfur battery selected from the group consisting of carbon fibers, carbon nanofibers, graphite fibers and graphene fibers.
  4. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유 시트는 펠트, 매트, 페이퍼 및 천으로 이루어진 군에서 선택된 1종 이상의 직물 형태인 것인 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber sheet is a carbon-based fiber sheet for a lithium-sulfur battery that is in the form of one or more fabrics selected from the group consisting of felt, mat, paper and cloth.
  5. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유 시트는 두께가 0.1 내지 100 ㎛인 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber sheet is a carbon-based fiber sheet for lithium-sulfur battery having a thickness of 0.1 to 100 ㎛.
  6. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유 시트는 직경이 0.01 내지 100 ㎛인 탄소계 섬유로 이루어진 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber sheet is a carbon-based fiber sheet for a lithium-sulfur battery made of carbon-based fibers having a diameter of 0.01 to 100 ㎛.
  7. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유 시트는 기공의 크기가 0.1 내지 10 ㎛이고, 공극률이 5 내지 90 %인 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber sheet is a carbon-based fiber sheet for a lithium-sulfur battery having a pore size of 0.1 to 10 ㎛, porosity of 5 to 90%.
  8. 제1항에 있어서, The method of claim 1,
    상기 탄소계 섬유 시트는 비표면적이 5 내지 500 ㎡/g, 벌크 밀도가 0.05 내지 0.2 g/cm3인 리튬-황 전지용 탄소계 섬유 시트.The carbon-based fiber sheet has a specific surface area of 5 to 500 m 2 / g, bulk density of 0.05 to 0.2 g / cm 3 carbon-based fiber sheet for a lithium-sulfur battery.
  9. i) 탄소계 전구체를 포함하는 방사 용액을 제조하는 단계;i) preparing a spinning solution comprising a carbon-based precursor;
    ii) 상기 방사 용액을 방사하여 섬유웹 형태의 시트를 제조하는 단계;ii) spinning the spinning solution to produce a sheet in the form of a fibrous web;
    iii) 산소 존재 하에서 열처리를 통해 상기 시트를 안정화하는 단계; 및iii) stabilizing the sheet through heat treatment in the presence of oxygen; And
    iv) 상기 시트를 비활성 분위기에서 탄화하는 단계;를 포함하되,iv) carbonizing the sheet in an inert atmosphere;
    상기 탄소계 전구체는 분자 구조 내 질소 원소를 포함하는 것인 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The carbon-based precursor is a method for producing a carbon-based fiber sheet for lithium-sulfur battery containing a nitrogen element in the molecular structure.
  10. 제9항에 있어서, The method of claim 9,
    상기 i) 단계의 탄소계 전구체는 폴리아크릴로니트릴, 폴리아닐린, 폴리피롤, 폴리이미드, 폴리벤즈이미다졸, 폴리피롤리돈, 폴리아미드, 폴리아미드이미드, 폴리아라미드, 멜라민, 멜라민-포름알데히드 및 불소 마이카로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The carbon-based precursor of step i) is made of polyacrylonitrile, polyaniline, polypyrrole, polyimide, polybenzimidazole, polypyrrolidone, polyamide, polyamideimide, polyaramid, melamine, melamine-formaldehyde and fluorine mica Method for producing a carbon-based fiber sheet for lithium-sulfur battery, characterized in that at least one member selected from the group.
  11. 제9항에 있어서, The method of claim 9,
    상기 탄소계 전구체는 분자 구조 내 질소 원자를 5 내지 20 %로 포함하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The carbon precursor is a method for producing a carbon-based fiber sheet for a lithium-sulfur battery containing 5 to 20% of the nitrogen atoms in the molecular structure.
  12. 제9항에 있어서, The method of claim 9,
    상기 iii) 단계의 열처리는 100 내지 400 ℃에서 수행하는 것을 특징으로 하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The heat treatment of step iii) is a method for producing a carbon-based fiber sheet for lithium-sulfur battery, characterized in that carried out at 100 to 400 ℃.
  13. 제9항에 있어서, The method of claim 9,
    상기 iii) 단계의 열처리는 산화 분위기에서 수행하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The heat treatment of step iii) is a method for producing a carbon-based fiber sheet for a lithium-sulfur battery performed in an oxidizing atmosphere.
  14. 제9항에 있어서, The method of claim 9,
    상기 iv) 단계의 탄화는 600 내지 1500 ℃에서 수행하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The carbonization of the step iv) is carried out at 600 to 1500 ℃ carbon-based fiber sheet for a lithium-sulfur battery.
  15. 제9항에 있어서, The method of claim 9,
    상기 iv) 단계의 탄화는 불활성 기체 분위기에서 수행하는 리튬-황 전지용 탄소계 섬유 시트의 제조방법.The carbonization of step iv) is a method for producing a carbon-based fiber sheet for a lithium-sulfur battery performed in an inert gas atmosphere.
  16. 양극; 음극; 그 사이에 개재되는 분리막; 및 이들에 함침되는 전해질을 포함하는 리튬-황 전지에 있어서,anode; cathode; A separator interposed therebetween; And in the lithium-sulfur battery comprising an electrolyte impregnated therein,
    상기 양극과 분리막 사이에 제1항 내지 제8항 중 어느 한 항에 따른 탄소계 섬유 시트가 개재되는 것을 특징으로 하는 리튬-황 전지.A lithium-sulfur battery, wherein the carbon-based fiber sheet according to any one of claims 1 to 8 is interposed between the anode and the separator.
PCT/KR2017/003155 2016-06-02 2017-03-23 Carbon-based fiber sheet and lithium-sulfur battery including same WO2017209383A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/060,660 US20180375088A1 (en) 2016-06-02 2017-03-23 Carbon-based fiber sheet and lithium-sulfur battery including same
EP17806876.3A EP3381864B1 (en) 2016-06-02 2017-03-23 Carbon-based fiber sheet and lithium-sulfur battery including same
CN201780010868.1A CN108602674A (en) 2016-06-02 2017-03-23 Carbon based fibers piece and lithium-sulfur cell comprising it
US17/115,016 US11811049B2 (en) 2016-06-02 2020-12-08 Carbon-based fiber sheet and lithium-sulfur battery including same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20160068855 2016-06-02
KR10-2016-0068855 2016-06-02
KR10-2017-0031126 2017-03-13
KR1020170031126A KR20170136971A (en) 2016-06-02 2017-03-13 Carbon-based fiber sheet and lithium-sulfur battery comprising the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/060,660 A-371-Of-International US20180375088A1 (en) 2016-06-02 2017-03-23 Carbon-based fiber sheet and lithium-sulfur battery including same
US17/115,016 Division US11811049B2 (en) 2016-06-02 2020-12-08 Carbon-based fiber sheet and lithium-sulfur battery including same

Publications (1)

Publication Number Publication Date
WO2017209383A1 true WO2017209383A1 (en) 2017-12-07

Family

ID=60478654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/003155 WO2017209383A1 (en) 2016-06-02 2017-03-23 Carbon-based fiber sheet and lithium-sulfur battery including same

Country Status (1)

Country Link
WO (1) WO2017209383A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004205A (en) * 2018-08-07 2018-12-14 河北工业大学 A kind of preparation method of lithium sulfur battery anode material
CN112331829A (en) * 2020-11-02 2021-02-05 江曙 New energy battery component and preparation method thereof
CN112342644A (en) * 2020-11-26 2021-02-09 湖北亿纬动力有限公司 Porous carbon fiber and preparation method and application thereof
CN114792779A (en) * 2021-11-19 2022-07-26 广东一纳科技有限公司 Flexible battery pole piece and battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112319A (en) * 1996-10-03 1998-04-28 Petoca:Kk Carbon material for lithium secondary battery, and its manufacture
KR20030029112A (en) * 2001-05-22 2003-04-11 후지 주코교 카부시키카이샤 Anode for lithium secondary battery and lithium secondary battery
CN103855361A (en) * 2014-03-28 2014-06-11 清华大学 Method for preparing nitrogen-doped porous carbon nanofiber cloth
KR101422370B1 (en) * 2010-01-21 2014-07-22 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
US20140342249A1 (en) * 2013-05-16 2014-11-20 Hui He Lithium secondary batteries containing lithium salt-ionic liquid solvent electrolyte

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112319A (en) * 1996-10-03 1998-04-28 Petoca:Kk Carbon material for lithium secondary battery, and its manufacture
KR20030029112A (en) * 2001-05-22 2003-04-11 후지 주코교 카부시키카이샤 Anode for lithium secondary battery and lithium secondary battery
KR101422370B1 (en) * 2010-01-21 2014-07-22 고쿠리츠 다이가쿠 호우징 신슈 다이가쿠 Carbon fiber nonwoven fabric, carbon fibers, method for producing the carbon fiber nonwoven fabric, method for producing carbon fibers, electrode, battery, and filter
US20140342249A1 (en) * 2013-05-16 2014-11-20 Hui He Lithium secondary batteries containing lithium salt-ionic liquid solvent electrolyte
CN103855361A (en) * 2014-03-28 2014-06-11 清华大学 Method for preparing nitrogen-doped porous carbon nanofiber cloth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004205A (en) * 2018-08-07 2018-12-14 河北工业大学 A kind of preparation method of lithium sulfur battery anode material
CN109004205B (en) * 2018-08-07 2021-02-09 河北工业大学 Preparation method of lithium-sulfur battery positive electrode material
CN112331829A (en) * 2020-11-02 2021-02-05 江曙 New energy battery component and preparation method thereof
CN112342644A (en) * 2020-11-26 2021-02-09 湖北亿纬动力有限公司 Porous carbon fiber and preparation method and application thereof
CN114792779A (en) * 2021-11-19 2022-07-26 广东一纳科技有限公司 Flexible battery pole piece and battery

Similar Documents

Publication Publication Date Title
KR102105475B1 (en) Carbon-based fiber sheet and lithium-sulfur battery comprising the same
WO2017213325A1 (en) Self-assembled composite of carbon nitride and graphene oxide, manufacturing method for same, positive electrode having same applied thereto, and lithium-sulfur battery comprising same
WO2018030616A1 (en) Sulfur-carbon composite, preparation method therefor, and lithium-sulfur battery comprising same
WO2017131377A1 (en) Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same
WO2015041450A1 (en) Porous silicon-based anode active material, and lithium secondary battery containing same
WO2019088672A1 (en) Anode active material for electrochemical device, anode comprising same anode active material, and electrochemical device comprising same anode
WO2014021626A1 (en) Anode active material for secondary battery and lithium secondary battery comprising same
WO2016032240A1 (en) Negative electrode active material having double coating layers, method for preparing same, and lithium secondary battery comprising same
WO2014098419A1 (en) Cathode material for lithium secondary battery, method for manufacturing same and lithium secondary battery comprising same
WO2017209383A1 (en) Carbon-based fiber sheet and lithium-sulfur battery including same
WO2019103326A2 (en) Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same
WO2014204278A1 (en) High-capacity electrode active material for lithium secondary battery and lithium secondary battery using same
WO2018048081A1 (en) Lithium-sulfur battery
WO2020101301A1 (en) Anode active material and manufacturing method therefor
WO2019156462A1 (en) Novel conductive material, electrode comprising same conductive material, secondary battery comprising same electrode, and method for manufacturing same conductive material
WO2017052246A1 (en) Cathode active material and cathode comprising metal nano particles, and lithium-sulfur battery comprising same
WO2022055309A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2021210814A1 (en) Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
WO2021145633A1 (en) Positive electrode active material for lithium secondary battery, method for producing same, and lithium secondary battery comprising same
WO2016122196A1 (en) Electrode, and method for producing battery and electrode
WO2018097695A1 (en) Cathode active material for lithium-sulfur battery, comprising metal sulfide nanoparticles, and method for producing same
WO2019083257A1 (en) Separator for lithium-sulfur battery, and lithium-sulfur battery comprising same
WO2020166871A1 (en) Cathode active material for lithium secondary battery
WO2019225883A1 (en) Separator for lithium-sulfur battery and lithium-sulfur battery comprising same
WO2020040613A1 (en) Anode active material, anode comprising same, and lithium secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017806876

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017806876

Country of ref document: EP

Effective date: 20180625

NENP Non-entry into the national phase

Ref country code: DE