WO2019156461A1 - Positive electrode, and secondary battery comprising positive electrode - Google Patents

Positive electrode, and secondary battery comprising positive electrode Download PDF

Info

Publication number
WO2019156461A1
WO2019156461A1 PCT/KR2019/001479 KR2019001479W WO2019156461A1 WO 2019156461 A1 WO2019156461 A1 WO 2019156461A1 KR 2019001479 W KR2019001479 W KR 2019001479W WO 2019156461 A1 WO2019156461 A1 WO 2019156461A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
carbon nanotubes
active material
walled carbon
electrode active
Prior art date
Application number
PCT/KR2019/001479
Other languages
French (fr)
Korean (ko)
Inventor
유정우
김예린
김태곤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020534964A priority Critical patent/JP7258396B2/en
Priority to EP19751927.5A priority patent/EP3716364B1/en
Priority to US16/958,925 priority patent/US11929496B2/en
Priority to PL19751927.5T priority patent/PL3716364T3/en
Priority to CN201980006999.1A priority patent/CN111587499A/en
Publication of WO2019156461A1 publication Critical patent/WO2019156461A1/en
Priority to JP2022066427A priority patent/JP7317434B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer comprises a positive electrode active material, a binder, and multi-walled carbon nanotubes, the average length of the multi-walled carbon nanotubes 1 ⁇ m to 2 ⁇ m, and the standard deviation of the length of the multi-walled carbon nanotubes relates to a positive electrode and a secondary battery having 0.5 ⁇ m or less.
  • the lithium secondary battery includes a positive electrode including a positive electrode active material capable of inserting / desorbing lithium ions, a negative electrode containing a negative electrode active material capable of inserting / removing lithium ions, and an electrode having a microporous separator interposed between the positive electrode and the negative electrode. It refers to a battery containing a nonaqueous electrolyte containing lithium ions in the assembly.
  • the positive electrode and / or the negative electrode may include a conductive material to improve conductivity.
  • a conductive material to improve conductivity.
  • viscous conductive materials such as carbon black
  • the content of the conductive material is increased to improve conductivity, it is difficult to achieve a high energy density of the battery while relatively reducing the amount of the positive electrode active material or the negative electrode active material. Therefore, there is a demand for satisfying the power and durability required for a battery that is required even with a small amount of conductive material.
  • the conductivity of the positive electrode active material itself is a low level, the problem appears more.
  • a method of using a nano-sized conductive material such as carbon nanotubes and carbon nanofibers, having a large specific surface area and allowing a large amount of conductive contact with a small amount is introduced.
  • a nano-size conductive material is difficult to be smoothly dispersed in the positive electrode slurry, so that the desired conductivity is difficult to be obtained unless the conductive material content in the positive electrode active material layer exceeds an appropriate level, for example, 1% by weight.
  • An object of the present invention is to ensure the conductivity of the positive electrode even if the conductive material content is significantly reduced, the battery life characteristics can be improved, the content of the positive electrode active material can be increased, the positive electrode and the output characteristics of the battery can be improved It is to provide a secondary battery including the same.
  • the present invention includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer comprises a positive electrode active material, a binder, and multi-walled carbon nanotubes, the average length of the multi-walled carbon nanotubes 1 ⁇ m to 2 ⁇ m, and a standard deviation of the length of the multi-walled carbon nanotubes provides a positive electrode of 0.5 ⁇ m or less.
  • the present invention is the positive electrode; cathode; A separator interposed between the anode and the cathode; And it provides a secondary battery comprising an electrolyte.
  • a multi-walled carbon nanotube is used as a conductive material, and the multi-walled carbon nanotube has a standard deviation of an average length of an appropriate level and an appropriate level. Accordingly, the dispersion of the multi-walled carbon nanotubes in the conductive material dispersion and the positive electrode slurry can be made uniform, and the positive electrode active materials can be electrically connected smoothly by the multi-walled carbon nanotubes in the prepared positive electrode. Accordingly, the life characteristics of the battery can be improved.
  • the dispersibility of the multi-walled carbon nanotubes is improved, even when the multi-walled carbon nanotubes are used in a small amount, the conductivity of the positive electrode can be ensured, so that the content of the positive electrode active material can be relatively increased. Accordingly, output characteristics of the manufactured secondary battery can be improved.
  • Example 1 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Example 1 of the present invention.
  • Figure 2 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Example 2 of the present invention.
  • Figure 3 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Comparative Example 1 of the present invention.
  • Figure 4 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Comparative Example 2 of the present invention.
  • FIG. 5 is a graph showing an increase in discharge capacity and battery resistance with cycles for the batteries according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • FIG. 5 is a graph showing an increase in discharge capacity and battery resistance with cycles for the batteries according to Examples 1 and 2 and Comparative Examples 1 and 2.
  • a positive electrode according to an embodiment of the present invention a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer includes a positive electrode active material, a binder, and multi-walled carbon nanotubes, the multi The average length of the wall carbon nanotubes is 1 ⁇ m to 2 ⁇ m, and the standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 ⁇ m or less.
  • the current collector may be any conductive material without causing chemical change in the battery, and is not particularly limited.
  • the current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel.
  • a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
  • the positive electrode active material layer may be disposed on one surface or both surfaces of the current collector.
  • the cathode active material layer may include a cathode active material, a binder, and multi-walled carbon nanotubes.
  • the cathode active material may be the same as the cathode active material included in the cathode slurry of the above-described embodiment.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y 1 Mn 2-y 1 O 4 (0 ⁇ y 1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-y2 M1 y2 O 2 , wherein M1 is Co, M1
  • the cathode active material may be included in an amount of 96% by weight to 99% by weight based on the total weight of the cathode active material layer, and specifically, may be included in an amount of 97% by weight to 98.5% by weight.
  • the battery life can be improved, but the multi-walled carbon nanotubes and the binder content do not decrease excessively, so the battery life characteristics can be maintained.
  • the binder may be the same as the binder included in the positive electrode slurry of the above-described embodiment.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethylmethacrylate (polymethylmethacrylate) And at least one selected from the group consisting of substances in which hydrogen is substituted with Li, Na, or Ca, and may also include various copolymers thereof. It may be a polyvinylidene fluoride containing a functional group, such as an ether group.
  • the multi-walled carbon nanotubes may refer to carbon nanotubes having two or more graphene layers disposed side by side with respect to the axis of the carbon nanotubes. That is, the number of walls may mean carbon nanotubes of 2 or more.
  • carbon nanotubes having a preferred length and standard deviation of the length may be formed during the dispersion of the conductive material dispersion.
  • the average length of the multi-walled carbon nanotubes may be 1 ⁇ m to 2 ⁇ m, specifically 1.1 ⁇ m to 1.4 ⁇ m, and more specifically 1.1 ⁇ m to 1.2 ⁇ m.
  • the average length of the multi-walled carbon nanotubes is less than 1 ⁇ m, a plurality of too short multi-walled carbon nanotubes are present, the electrical connection between the positive electrode active material can not be made smoothly, the output of the battery is reduced.
  • the average length of the multi-walled carbon nanotubes exceeds 2 ⁇ m, a large number of excessively long multi-walled carbon nanotubes are present, so that the multi-walled carbon nanotubes can be easily entangled with each other in the conductive dispersion and the positive electrode slurry. have. Accordingly, since the multi-walled carbon nanotubes are not uniformly distributed in the positive electrode active material layer, the conductivity of the positive electrode active material layer is lowered. Accordingly, the output and lifespan characteristics of the battery may be lowered.
  • the average length of more than 2 ⁇ m means that the length of the multi-walled carbon nanotubes is not short enough, which may be due to the lack of a particle size distribution control process such as milling. Therefore, the average length of more than 2 ⁇ m the standard deviation of the length of the multi-walled carbon nanotubes can not only be large, specifically exceed 0.5 ⁇ m.
  • the standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 ⁇ m or less, and specifically 0.3 ⁇ m to 0.5 ⁇ m. If the standard deviation of the length of the multi-walled carbon nanotubes exceeds 0.5 ⁇ m, the length difference between the multi-walled carbon nanotubes is large, the conductivity in the positive electrode active material layer is not formed to a uniform degree. As a result, battery output and lifespan characteristics may be degraded. Furthermore, the excessively large standard deviation may be due to the insufficient process of improving the particle size of the multi-walled carbon nanotubes such as milling in the manufacture of the conductive material dispersion, and thus the separation of the multi-walled carbon nanotubes in the conductive material dispersion and the positive electrode active material layer.
  • the battery output and lifespan characteristics are further lowered.
  • the standard deviation is too large, the viscosity of the conductive material dispersion and the positive electrode slurry is excessively increased. Accordingly, when the cathode active material layer is formed, it is difficult to smoothly apply the cathode slurry, and thus the output and life characteristics of the battery may be further reduced.
  • the length of the multi-walled carbon nanotubes may be 0.5 ⁇ m to 3.0 ⁇ m, and specifically 0.7 ⁇ m to 2.5 ⁇ m.
  • the length means not the average length described above, but the length of each of the observed multi-walled carbon nanotubes.
  • the average length, standard deviation of the length of the multi-walled carbon nanotubes described above may be measured by the following method. First, a predetermined amount of the positive electrode active material layer is diluted in an NMP solution amounting to several tens of times of weight, and then, materials constituting the positive electrode active material layer are separated through ultrasonic waves. Thereafter, a part of the upper layer portion of the solution is extracted, and further diluted with an NMP solution weighing tens of times the amount of extraction.
  • the length of a plurality of, for example, 30 or 25 multi-walled carbon nanotubes was measured by scanning electron microscopy (SEM), respectively, and their average and standard deviation were calculated to obtain the multi-walled carbon nanotubes.
  • SEM scanning electron microscopy
  • the multi-walled carbon nanotubes may be included in an amount of 0.1 wt% to 1 wt% based on the total weight of the cathode active material layer, specifically, 0.2 wt% to 0.9 wt%, and more specifically 0.2 wt% to 0.7 wt%. It may be included in weight percent. When the above range is satisfied, conductivity of the positive electrode active material layer may be secured.
  • the inclusion of the multi-walled carbon nanotubes in an amount of 1% by weight or less, in particular 0.7% by weight or less, is hardly achieved only by carbon nanotubes having general physical properties. Specifically, in order to increase the content of the positive electrode active material, if the content of a relatively common carbon nanotube is reduced to a level of 1% by weight or less, the electrical connection between the positive electrode active materials can never be made smoothly the output characteristics of the secondary battery manufactured This is inevitably greatly reduced.
  • the cathode active materials may not be smoothly supported by the carbon nanotubes, the cathode active materials may be detached from the cathode active material layer, or the structure of the cathode active material layer may be easily collapsed, thereby deteriorating mechanical stability of the cathode. Accordingly, the cycle characteristics of the manufactured secondary battery inevitably deteriorate.
  • the positive electrode active material layer contains the multi-walled carbon nanotubes having physical properties such as a proper average length and standard deviation of the length in a uniformly distributed state
  • the content of the multi-walled carbon nanotubes is 1% by weight. Even if it is included below, the electrical connection between the positive electrode active material is maintained, the mechanical stability of the positive electrode active material layer can be secured, the output and life characteristics of the battery can be improved.
  • the cathode active material layer may include a cathode active material having a higher content, and thus the output of the manufactured battery may be further improved. Can be.
  • the loading amount of the positive electrode active material layer may be 15 mg / cm 2 to 40 mg / cm 2 , and specifically 20 mg / cm 2 to 30 mg / cm 2 .
  • the positive electrode thickness may not increase excessively.
  • a problem may not occur in processability when applying the positive electrode slurry.
  • Method for producing a positive electrode preparing a conductive material dispersion; Forming a positive electrode slurry comprising a conductive material dispersion, a positive electrode active material, a binder, and a solvent; And applying and drying the positive electrode slurry on a current collector, wherein the conductive material dispersion includes a multiwall carbon nanotube, a dispersant, and a dispersion medium, and the average length of the multiwall carbon nanotube is 1 ⁇ m to 1 ⁇ m. 2 ⁇ m, and the standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 ⁇ m or less.
  • the preparing of the conductive material dispersion may include forming a mixture by mixing bundle-type multiwall carbon nanotubes, a dispersant, and a dispersion medium, and adjusting the particle size distribution of the bundle multiwall carbon nanotubes. It may include doing.
  • the dispersant may be at least one selected from the group consisting of hydrogenated nitrile butadiene rubber (H-NBR), polyvinylpyrrolidone (PVP), and carboxymethylcellulose (CMC).
  • H-NBR hydrogenated nitrile butadiene rubber
  • PVP polyvinylpyrrolidone
  • CMC carboxymethylcellulose
  • the dispersion medium may be at least one of N-methyl-2-pyrrolidone (NMP) and water.
  • NMP N-methyl-2-pyrrolidone
  • the bundle includes a bundle or a rope in which a plurality of carbon nanotube units are arranged or intertwined side by side in substantially the same orientation in the longitudinal direction of the unit.
  • the carbon nanotubes have a partially agglomerated form, and their lengths are excessively varied, so that if they are used directly as a conductive material without adjusting their shape and length, the bundled multi-walled carbon nanotubes may be bundled in the positive electrode active material layer.
  • Wall carbon nanotubes are uniformly dispersed and difficult to exist, and it is difficult to secure a conductive path.
  • the bundle-type multi-walled carbon nanotubes immediately after the synthesis is completed are randomly aggregated carbon nanotubes of 5 ⁇ m to 50 ⁇ m to have a particle size of several tens of ⁇ m.
  • pellets are manufactured from the bundled multi-walled carbon nanotubes for ease of handling such as transport, storage, and feeding. Accordingly, in order to use the anode as a conductive material, milling operations are required in which the pellets are decomposed to separate bundle-type carbon nanotubes from each other and have a uniform length.
  • the particle size distribution may be adjusted by milling, ultrasonication, or the like, and preferably by milling.
  • the milling may be performed by a ball mill, spike mill, bead mill, basket mill, attrition mill, or the like. Can be advanced by a spike mill.
  • the spike mill may proceed in the following manner.
  • the spike mill is operated while injecting a mixture including the bundled carbon nanotubes, a dispersant, and a dispersion medium into a spike mill device filled with beads.
  • the rotor inside the device rotates, and this rotational force imparts kinetic energy to the beads, resulting in dispersion of the bundled carbon nanotubes in the mixture.
  • the mixture is then discharged through the outlet at a particular discharge rate. This process may be performed under specific conditions to form multi-walled carbon nanotubes included in the anode of the present invention.
  • the size of the beads, the filling amount of the beads, the discharge rate of the mixture, the number of milling is a major condition
  • the conductive material dispersion used in the present invention can be formed by a suitable combination thereof.
  • the combination of each condition as well as the range of each of the above conditions must be properly satisfied.
  • the size of the beads may be 0.5mm to 2mm, specifically 0.6mm to 1mm, may be more specifically 0.6mm to 0.75mm.
  • the size of the beads exceeds 2mm, the shear force generated by the beads is not enough, the dispersion and particle size distribution of the multi-walled carbon nanotubes may not reach the desired level.
  • the size of the bead is less than 0.5mm, the beads as well as the mixture is discharged together to the outlet, the dispersion capacity of the spike mill is not kept constant, and the process of separating the beads from the discharged result is required separately There is.
  • the filling amount of the beads may be 50% to 90%, specifically, 65% to 80%. When the filling amount of the beads is more than 90%, the pressure inside the spike mill apparatus is greatly increased, making continuous spike mill use difficult. If the filling amount of the beads is less than 50%, proper kinetic energy required for dispersion is difficult to form.
  • the discharge rate of the mixture may be 1 kg / min to 5 kg / min, specifically 2 kg / min to 4 kg / min.
  • the number of milling means the number of times the mixture is introduced into the container.
  • the number of milling may be 2 to 3 times.
  • the conductive material dispersion may have a viscosity of 10,000 cps to 30,000 cps at 30 ° C. to 50 ° C., specifically 15,000 cps to 25,000 cps.
  • satisfying the above range it is easy to add during the production of the positive electrode slurry.
  • satisfying the viscosity means that the dispersion of the multi-walled carbon nanotubes is smoothly performed and the particle size distribution satisfies a desirable level.
  • the positive electrode slurry may include the conductive material dispersion, a positive electrode active material, a binder, and a solvent.
  • the positive electrode active material, the binder, the multi-walled carbon nanotubes, and the current collector are the same as the positive electrode active material, the binder, and the multi-walled carbon nanotubes included in the positive electrode of the above-described embodiment, and thus description thereof is omitted.
  • the average length of the multi-walled carbon nanotubes contained on the conductive material dispersion, the standard deviation of the length, the length can be maintained the same in the positive electrode active material layer.
  • the solvent is dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone, NMP), polyvinylidene fluoride-hexafluoro It may be at least one selected from the group consisting of an aqueous solution of a low temperature propylene copolymer (PVDF-co-HFP), an aqueous solution of polyvinylidenefluoride, acetone and water.
  • the solvent may be NMP.
  • Solid content of the positive electrode slurry may be 60% by weight to 80% by weight based on the total weight of the positive electrode slurry, specifically, may be 65% by weight to 75% by weight.
  • the viscosity of the positive electrode slurry is preferably 5,000cps to 25,000cps.
  • the positive electrode active material layer is manufactured by drying the positive electrode slurry to remove the solvent, the content of each of the positive electrode active material, the binder, and the multi-walled carbon nanotubes included in the solid content is based on the total weight of the solid content of the positive electrode slurry. It is equivalent to the numerical value based on the total weight of the positive electrode active material layer included in the positive electrode of one embodiment.
  • the coating and drying may be to apply and dry the current collector to which the positive electrode slurry is applied at a rate of 4m / min to 80m / min at a temperature of 100 °C to 180 °C.
  • roll drying may be performed to adjust the thickness of the anode after drying, and further drying may be performed to remove residual moisture of the anode after rolling.
  • a secondary battery according to another embodiment of the present invention may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte.
  • anode is the same as the anode of the above-described embodiment, a description thereof will be omitted.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on one or both surfaces of the negative electrode current collector.
  • the negative electrode current collector may be any one having conductivity without causing chemical change in the battery, and is not particularly limited.
  • the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel.
  • a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
  • the negative electrode active material layer may include a negative electrode active material, a negative electrode conductive material, and a negative electrode binder.
  • the negative electrode active material may be graphite-based active material particles or silicon-based active material particles.
  • the graphite-based active material particles may be used at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers and graphitized mesocarbon microbeads, and in particular, when using artificial graphite, the rate characteristics may be improved. .
  • the silicon-based active material particles are Si, SiO x (0 ⁇ x ⁇ 2), Si-C composite and Si-Y alloy (where Y is an alkali metal, alkaline earth metal, transition metal, group 13 element, group 14 element, rare earth element And it is an element selected from the group consisting of a combination thereof) may be used one or more selected from the group consisting of, in particular, when using Si can derive a high capacity of the battery.
  • the negative electrode binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid (poly acrylic acid) and may include at least one selected from the group consisting of substances substituted with hydrogen, such as Li, Na or Ca, And also various copolymers thereof.
  • PVDF-co-HFP polyvinylidene fluoride-hexafluoropropylene copolymer
  • the negative electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • graphite such as natural graphite and artificial graphite
  • Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Conductive tubes such as carbon nanotubes
  • Metal powders such as fluorocarbon, aluminum and nickel powders
  • the separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, and can be used without any particular limitation as long as the separator is used as a separator in a secondary battery. It is desirable to be excellent.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • Bundled multi-walled carbon nanotubes in pellet form of several cm size, H-NBR as a dispersant, and NMP as a dispersion medium were mixed at a weight ratio of 4: 0.8: 95.2 to form a mixture.
  • the mixture was dispensed into a spike mill filled with 80% of beads 0.65 mm in size and discharged at a discharge rate of 2 kg / min. Such a process was carried out twice to prepare a conductive material dispersion including a multi-walled carbon nanotube having a controlled particle size distribution.
  • Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 was used as the positive electrode active material and PVdF was used as the binder.
  • the positive electrode active material, the conductive material dispersion, and the NMP were mixed to prepare a positive electrode slurry having a solid content of 72% and a weight ratio of the positive electrode active material, the binder, the dispersant, and the multi-walled carbon nanotubes of 98: 1.52: 0.08: 0.4.
  • the positive electrode slurry was applied and dried to a positive electrode current collector (Al) having a thickness of 20 ⁇ m so that the solid content weight (loading amount) was 21 mg / cm 2 . Thereafter, the current collector on which the positive electrode slurry was placed was rolled by a roll rolling method to adjust the overall thickness to 77 ⁇ m. Thereafter, the current collector was dried in a vacuum oven at 110 ° C. for 6 hours to prepare a positive electrode.
  • Al positive electrode current collector
  • a negative electrode slurry was prepared by mixing artificial graphite as a negative electrode active material, carbon black as a negative electrode conductive material, styrene butadiene rubber (SBR) as a negative electrode binder, and distilled water at a weight ratio of 96.1: 0.5: 2.3: 1.1, respectively.
  • the prepared slurry was applied and dried to a negative electrode current collector (Cu) having a thickness of 20 ⁇ m so that the weight (loading amount) was 10 mg / cm 2 . Thereafter, the current collector on which the positive electrode slurry was formed was rolled by a roll rolling method, and the final thickness (current collector + active material layer) was adjusted to be 80 ⁇ m. Thereafter, the current collector was dried in a vacuum oven at 110 ° C. for 6 hours to prepare a negative electrode.
  • Floro phosphate (LiPF 6 1 mol) was injected to prepare a lithium secondary battery.
  • the conductive material dispersion In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were prepared in the same manner as in Example 1 except that the bead size was changed to 1 mm.
  • the conductive material dispersion In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were prepared in the same manner as in Example 1 except that the bead size was changed to 1 mm and the recovery was performed once.
  • the conductive material dispersion In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were manufactured in the same manner as in Example 1 except that the number of millings was changed to four times.
  • the physical properties of the multi-walled carbon nanotubes present in the conductive material dispersion formed in the battery manufacturing process of Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the following method, respectively, and then, respectively, FIG. 1 (used in Example 1). Multi-walled carbon nanotubes), Figure 2 (multi-walled carbon nanotubes used in Example 2), Figure 3 (multi-walled carbon nanotubes used in Comparative Example 1), Figure 4 (multiple used in Comparative Example 2 Wall carbon nanotubes) and shown in Table 1.
  • NMP was further added to each conductive material dispersion to prepare a dilute solution having 0.005 wt% of the multi-walled carbon nanotubes based on the total weight of the solution.
  • the diluted solution was dropped on a silicon wafer and dried to prepare each sample, and the sample was observed by SEM. At this time, after measuring the length of the observed 25 multi-walled carbon nanotubes, the average length, standard deviation of the length, the maximum length, the minimum length was derived.
  • One cycle and two cycles were charged and discharged at 0.1C, and charging and discharging was performed at 0.5C from three cycles to 200 cycles.
  • the left y-axis represents the discharge capacity (%) of each cycle when the discharge capacity of one cycle is 100%
  • the right y-axis represents the increase ratio of the battery resistance of each cycle to the battery resistance of one cycle. (%).
  • the battery resistance was calculated from the voltage drop that occurs when a current of 3C was applied for 30 seconds while charging 50% of the total battery capacity.
  • the average length of the multi-walled carbon nanotubes included in the positive electrode active material layer satisfies 1 ⁇ m 2 ⁇ m and the standard deviation of the length of the battery of Examples 1 and 2 In this case, it can be seen that the capacity retention rate is higher than that of Comparative Example 1 and Comparative Example 2, and the battery resistance increases much less.
  • Comparative Example 1 the average length of the multi-walled carbon nanotubes satisfies 1 ⁇ m to 2 ⁇ m, but the standard deviation of the lengths is 0.81 ⁇ m and has a value exceeding 0.5 ⁇ m. That is, Comparative Example 1 means that the multi-walled carbon nanotubes having an excessively varying length are included, and the coagulation between the multi-walled carbon nanotubes is generated by the multi-walled carbon nanotubes of some excessively long lengths, thereby forming the positive electrode active material layer. It seems that the multi-walled carbon nanotubes are not uniformly dispersed at. Thereby, it turns out that the capacity retention rate and resistance characteristic of a battery fall.
  • the standard deviation of the length is less than 0.5 ⁇ m, but the average length of the multi-walled carbon nanotube is 0.78 ⁇ m, does not satisfy the range of 1 ⁇ m to 2 ⁇ m. That is, since the length of the multi-walled carbon nanotubes is too short, the electrical connection between the positive electrode active material is not formed smoothly. It can be seen that the capacity retention rate and the resistance characteristics of the battery are thereby deteriorated.

Abstract

The present invention relates to a positive electrode and a secondary battery, the positive electrode comprising a current collector and a positive electrode active material layer which is disposed on the current collector, wherein the positive electrode active material layer comprises a positive electrode active material, a binder and multi-walled carbon nanotubes, wherein the average length of the multi-walled carbon nanotubes is 1㎛ to 2㎛, and the standard deviation of the lengths of the multi-walled carbon nanotubes is 0.5㎛ or less.

Description

양극 및 상기 양극을 포함하는 이차 전지A positive electrode and a secondary battery including the positive electrode
관련출원과의 상호인용Citation with Related Applications
본 출원은 2018년 2월 7일자 출원된 한국 특허 출원 제10-2018-0015313호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0015313, filed February 7, 2018, and all content disclosed in the literature of that Korean Patent Application is incorporated as part of this specification.
기술분야Field of technology
본 발명은 집전체 및 상기 집전체 상에 배치된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질, 바인더, 및 다중벽 탄소나노튜브를 포함하며, 상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛이고, 상기 다중벽 탄소나노튜브 길이의 표준편차는 0.5㎛ 이하인 양극 및 이차전지에 관한 것이다.The present invention includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer comprises a positive electrode active material, a binder, and multi-walled carbon nanotubes, the average length of the multi-walled carbon nanotubes 1 μm to 2 μm, and the standard deviation of the length of the multi-walled carbon nanotubes relates to a positive electrode and a secondary battery having 0.5 μm or less.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.Recently, as technology development and demand for mobile devices increase, the demand for batteries as energy sources is rapidly increasing, and accordingly, researches on batteries capable of meeting various needs have been conducted. In particular, research on lithium secondary batteries having high energy density and excellent lifespan and cycle characteristics as a power source of such a device has been actively conducted.
리튬 이차전지는 리튬 이온의 삽입/탈리가 가능한 양극 활물질을 포함하고 있는 양극과, 리튬 이온의 삽입/탈리가 가능한 음극 활물질을 포함하고 있는 음극, 상기 양극과 음극 사이에 미세 다공성 분리막이 개재된 전극 조립체에 리튬 이온을 함유한 비수 전해질이 포함되어 있는 전지를 의미한다. The lithium secondary battery includes a positive electrode including a positive electrode active material capable of inserting / desorbing lithium ions, a negative electrode containing a negative electrode active material capable of inserting / removing lithium ions, and an electrode having a microporous separator interposed between the positive electrode and the negative electrode. It refers to a battery containing a nonaqueous electrolyte containing lithium ions in the assembly.
상기 양극 및/또는 상기 음극은, 도전성을 향상시키기 위해, 도전재를 포함할 수 있다. 종래에는 카본 블랙 등의 점형 도전재를 주로 사용하였다. 다만, 도전성 향상을 위해 도전재의 함량을 증가시키면, 상대적으로 양극 활물질 또는 음극 활물질의 양이 줄어들면서 전지의 고에너지 밀도 달성이 어렵다. 따라서, 적은 함량의 도전재만으로도 요구되는 전지에 요구되는 출력 및 내구성을 만족시키는 요구가 있다. 특히, 양극의 경우, 양극 활물질 자체의 도전성이 낮은 수준이므로, 상기 문제가 더 크게 나타난다.The positive electrode and / or the negative electrode may include a conductive material to improve conductivity. Conventionally, viscous conductive materials, such as carbon black, were mainly used. However, when the content of the conductive material is increased to improve conductivity, it is difficult to achieve a high energy density of the battery while relatively reducing the amount of the positive electrode active material or the negative electrode active material. Therefore, there is a demand for satisfying the power and durability required for a battery that is required even with a small amount of conductive material. In particular, in the case of the positive electrode, since the conductivity of the positive electrode active material itself is a low level, the problem appears more.
이를 해결하기 위해, 탄소 나노 튜브, 탄소 나노 섬유 등, 비표면적이 넓어서 적은 양으로도 많은 도전적 접촉이 가능한 나노 사이즈의 도전재를 사용하는 방법이 소개되고 있다. 그러나, 이와 같은 나노 사이즈의 도전재는 양극 슬러리 내에서 원활하게 분산되기 어려우므로, 양극 활물질층 내에서 도전재 함량이 적정 수준, 예컨대 1중량% 를 넘어서지 않는 이상 목적하는 도전성을 얻기 어렵다.In order to solve this problem, a method of using a nano-sized conductive material, such as carbon nanotubes and carbon nanofibers, having a large specific surface area and allowing a large amount of conductive contact with a small amount is introduced. However, such a nano-size conductive material is difficult to be smoothly dispersed in the positive electrode slurry, so that the desired conductivity is difficult to be obtained unless the conductive material content in the positive electrode active material layer exceeds an appropriate level, for example, 1% by weight.
따라서, 도전재의 분산성을 개선하여, 적은 도전재 함량에도 불구하고 도전성이 확보되며, 전지의 출력 개선 및 수명 특성을 개선시킬 수 있는 양극의 개발이 요구되고 있다.Accordingly, there is a demand for development of a cathode capable of improving dispersibility of a conductive material, ensuring conductivity despite a small content of a conductive material, and improving battery output and life characteristics.
본 발명의 목적은 도전재 함량을 획기적으로 줄이더라도 양극의 도전성이 확보되므로 전지의 수명 특성이 개선될 수 있으며, 양극 활물질의 함량을 증가시킬 수 있어서, 전지의 출력 특성이 개선될 수 있는 양극 및 이를 포함하는 이차전지를 제공하는 것이다.An object of the present invention is to ensure the conductivity of the positive electrode even if the conductive material content is significantly reduced, the battery life characteristics can be improved, the content of the positive electrode active material can be increased, the positive electrode and the output characteristics of the battery can be improved It is to provide a secondary battery including the same.
본 발명은 집전체 및 상기 집전체 상에 배치된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질, 바인더, 및 다중벽 탄소나노튜브를 포함하며, 상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛이고, 상기 다중벽 탄소나노튜브 길이의 표준편차는 0.5㎛ 이하인 양극을 제공한다.The present invention includes a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer comprises a positive electrode active material, a binder, and multi-walled carbon nanotubes, the average length of the multi-walled carbon nanotubes 1 μm to 2 μm, and a standard deviation of the length of the multi-walled carbon nanotubes provides a positive electrode of 0.5 μm or less.
또한, 본 발명은 상기 양극; 음극; 상기 양극과 상기 음극 사이에 개재된 분리막; 및 전해질을 포함하는 이차 전지를 제공한다.In addition, the present invention is the positive electrode; cathode; A separator interposed between the anode and the cathode; And it provides a secondary battery comprising an electrolyte.
본 발명에 따르면, 도전재로 다중벽 탄소나노튜브가 사용되며, 상기 다중벽 탄소나노튜브가 적정 수준의 평균 길이와 적정 수준의 길이의 표준편차를 가진다. 이에 따라, 도전재 분산액 및 양극 슬러리 내에서 상기 다중벽 탄소나노튜브의 분산이 균일하게 이루어질 수 있으면서, 제조된 양극 내에서 양극 활물질들이 상기 다중벽 탄소나노튜브에 의해 전기적으로 원활하게 연결될 수 있다. 이에 따라, 전지의 수명 특성이 개선될 수 있다. 또한, 상기 다중벽 탄소나노튜브의 분산성이 개선되면서, 상기 다중벽 탄소나노튜브를 적은 함량으로 사용하여도 양극의 도전성이 확보될 수 있으므로, 양극 활물질의 함량이 상대적으로 증가할 수 있다. 이에 따라, 제조된 이차 전지의 출력 특성이 향상될 수 있다.According to the present invention, a multi-walled carbon nanotube is used as a conductive material, and the multi-walled carbon nanotube has a standard deviation of an average length of an appropriate level and an appropriate level. Accordingly, the dispersion of the multi-walled carbon nanotubes in the conductive material dispersion and the positive electrode slurry can be made uniform, and the positive electrode active materials can be electrically connected smoothly by the multi-walled carbon nanotubes in the prepared positive electrode. Accordingly, the life characteristics of the battery can be improved. In addition, since the dispersibility of the multi-walled carbon nanotubes is improved, even when the multi-walled carbon nanotubes are used in a small amount, the conductivity of the positive electrode can be ensured, so that the content of the positive electrode active material can be relatively increased. Accordingly, output characteristics of the manufactured secondary battery can be improved.
도 1은 본 발명의 실시예 1에서 사용된 양극 내에 포함된 다중벽 탄소나노튜브들의 길이를 측정하여 나타낸 그래프이다.1 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Example 1 of the present invention.
도 2는 본 발명의 실시예 2에서 사용된 양극 내에 포함된 다중벽 탄소나노튜브들의 길이를 측정하여 나타낸 그래프이다.Figure 2 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Example 2 of the present invention.
도 3은 본 발명의 비교예 1에서 사용된 양극 내에 포함된 다중벽 탄소나노튜브들의 길이를 측정하여 나타낸 그래프이다.Figure 3 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Comparative Example 1 of the present invention.
도 4는 본 발명의 비교예 2에서 사용된 양극 내에 포함된 다중벽 탄소나노튜브들의 길이를 측정하여 나타낸 그래프이다.Figure 4 is a graph showing the measurement of the length of the multi-walled carbon nanotubes contained in the anode used in Comparative Example 2 of the present invention.
도 5는 실시예 1, 2 및 비교예 1, 2에 따른 전지에 대해 사이클에 따른 방전 용량 및 전지 저항 증가를 나타낸 그래프이다.5 is a graph showing an increase in discharge capacity and battery resistance with cycles for the batteries according to Examples 1 and 2 and Comparative Examples 1 and 2. FIG.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention. At this time, the terms or words used in the present specification and claims should not be construed as being limited to the ordinary or dictionary meanings, and the inventors appropriately define the concept of terms in order to explain their invention in the best way. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that it can.
<양극><Anode>
본 발명의 일 실시예에 따른 양극은, 집전체 및 상기 집전체 상에 배치된 양극 활물질층을 포함하고, 상기 양극 활물질층은 양극 활물질, 바인더, 및 다중벽 탄소나노튜브를 포함하며, 상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛이고, 상기 다중벽 탄소나노튜브 길이의 표준편차는 0.5㎛ 이하일 수 있다.A positive electrode according to an embodiment of the present invention, a current collector and a positive electrode active material layer disposed on the current collector, the positive electrode active material layer includes a positive electrode active material, a binder, and multi-walled carbon nanotubes, the multi The average length of the wall carbon nanotubes is 1 μm to 2 μm, and the standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 μm or less.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. The current collector may be any conductive material without causing chemical change in the battery, and is not particularly limited. For example, the current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel. Specifically, a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
상기 양극 활물질층은 상기 집전체의 일면 또는 양면에 배치될 수 있다. 상기 양극 활물질층은 양극 활물질, 바인더, 및 다중벽 탄소나노튜브를 포함할 수 있다.The positive electrode active material layer may be disposed on one surface or both surfaces of the current collector. The cathode active material layer may include a cathode active material, a binder, and multi-walled carbon nanotubes.
상기 양극 활물질은 상술한 실시예의 양극 슬러리에 포함된 양극 활물질과 동일할 수 있다. 구체적으로, 상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+y1Mn2-y1O4 (0≤y1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-y2M1y2O2 (여기서, M1은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 0.01≤y2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-y3M2y3O2 (여기서, M2은 Co, Ni, Fe, Cr, Zn 또는 Ta 이고, 0.01≤y3≤0.1를 만족한다) 또는 Li2Mn3M3O8 (여기서, M3은 Fe, Co, Ni, Cu 또는 Zn 이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 구체적으로, 상기 양극 활물질은 Li[Ni0.6Mn0.2Co0.2]O2일 수 있다. The cathode active material may be the same as the cathode active material included in the cathode slurry of the above-described embodiment. Specifically, the cathode active material may be a cathode active material that is commonly used. Specifically, the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y 1 Mn 2-y 1 O 4 (0 ≦ y 1 ≦ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-y2 M1 y2 O 2 , wherein M1 is Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and satisfies 0.01 ≦ y2 ≦ 0.3; Formula LiMn 2-y3 M2 y3 O 2 , wherein M2 is Co, Ni, Fe, Cr, Zn or Ta and satisfies 0.01 ≦ y3 ≦ 0.1 or Li 2 Mn 3 M 3 O 8 , wherein M 3 is Fe, Lithium manganese composite oxide represented by Co, Ni, Cu, or Zn; LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions, etc. may be mentioned, but is not limited thereto. Specifically, the cathode active material may be Li [Ni 0.6 Mn 0.2 Co 0.2 ] O 2 .
상기 양극 활물질은 상기 양극 활물질층 전체 중량을 기준으로 96중량% 내지 99중량%로 포함될 수 있으며, 구체적으로 97중량% 내지 98.5중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 전지의 출력이 향상될 수 있으면서도 다중벽 탄소나노튜브, 바인더 함량이 지나치게 줄지 않으므로 전지의 수명 특성이 유지될 수 있다.The cathode active material may be included in an amount of 96% by weight to 99% by weight based on the total weight of the cathode active material layer, and specifically, may be included in an amount of 97% by weight to 98.5% by weight. When the above range is satisfied, the battery life can be improved, but the multi-walled carbon nanotubes and the binder content do not decrease excessively, so the battery life characteristics can be maintained.
상기 바인더는 상술한 실시예의 양극 슬러리에 포함된 바인더와 동일할 수 있다. 구체적으로, 상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다. 예를 들어, 상기 바인더는 카르복실기, 에테르기 등의 관능기가 포함된 폴리비닐리덴플루오라이드 일 수 있다.The binder may be the same as the binder included in the positive electrode slurry of the above-described embodiment. Specifically, the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethylmethacrylate (polymethylmethacrylate) And at least one selected from the group consisting of substances in which hydrogen is substituted with Li, Na, or Ca, and may also include various copolymers thereof. It may be a polyvinylidene fluoride containing a functional group, such as an ether group.
상기 다중벽 탄소나노튜브는 탄소나노튜브의 축에 대하여 나란히 배치된 2 이상의 그래핀층을 가지는 탄소나노튜브를 의미할 수 있다. 즉, 벽(wall)의 개수가 2이상인 탄소나노튜브를 의미할 수 있다. 본 발명에 있어서, 바람직한 길이와 길이의 표준편차를 가지는 탄소나노튜브는 도전재 분산액의 분산 과정에서 형성될 수 있다. The multi-walled carbon nanotubes may refer to carbon nanotubes having two or more graphene layers disposed side by side with respect to the axis of the carbon nanotubes. That is, the number of walls may mean carbon nanotubes of 2 or more. In the present invention, carbon nanotubes having a preferred length and standard deviation of the length may be formed during the dispersion of the conductive material dispersion.
상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛일 수 있으며, 구체적으로 1.1㎛ 내지 1.4㎛일 수 있으며, 보다 구체적으로 1.1㎛ 내지 1.2㎛일 수 있다. 상기 다중벽 탄소나노튜브의 평균 길이가 1㎛ 미만인 경우, 지나치게 짧은 길이의 다중벽 탄소나노튜브가 다수 존재하게 되어 양극 활물질들간의 전기적 연결이 원활하게 이루어질 수 없어서 전지의 출력이 저하된다. 반면, 상기 다중벽 탄소나노튜브의 평균 길이가 2㎛를 초과하는 경우, 지나치게 긴 길이의 다중벽 탄소나노튜브가 다수 존재하게 되어 도전성 분산액 및 양극 슬러리 내에서 다중벽 탄소나노튜브들이 서로 쉽게 엉킬 수 있다. 이에 따라, 다중벽 탄소나노튜브들이 양극 활물질층 내에서 균일하게 분포되지 않으므로, 양극 활물질층의 도전성이 저하되게 된다. 이에 따라, 전지의 출력 및 수명 특성이 저하될 수 있다. The average length of the multi-walled carbon nanotubes may be 1 μm to 2 μm, specifically 1.1 μm to 1.4 μm, and more specifically 1.1 μm to 1.2 μm. When the average length of the multi-walled carbon nanotubes is less than 1㎛, a plurality of too short multi-walled carbon nanotubes are present, the electrical connection between the positive electrode active material can not be made smoothly, the output of the battery is reduced. On the other hand, when the average length of the multi-walled carbon nanotubes exceeds 2㎛, a large number of excessively long multi-walled carbon nanotubes are present, so that the multi-walled carbon nanotubes can be easily entangled with each other in the conductive dispersion and the positive electrode slurry. have. Accordingly, since the multi-walled carbon nanotubes are not uniformly distributed in the positive electrode active material layer, the conductivity of the positive electrode active material layer is lowered. Accordingly, the output and lifespan characteristics of the battery may be lowered.
한편, 평균 길이가 2㎛를 초과하는 것은 다중벽 탄소나노튜브들의 길이가 충분히 짧아지지 않은 것을 의미하며, 이는 밀링 등의 입도 분포 조절 공정이 부족한 것에서 기인할 수 있다. 따라서, 평균 길이가 2㎛를 초과하는 것은 다중벽 탄소나노튜브들의 길이의 표준편차 역시 클 수 밖에 없으며, 구체적으로 0.5㎛를 초과할 수 밖에 없다.On the other hand, the average length of more than 2㎛ means that the length of the multi-walled carbon nanotubes is not short enough, which may be due to the lack of a particle size distribution control process such as milling. Therefore, the average length of more than 2㎛ the standard deviation of the length of the multi-walled carbon nanotubes can not only be large, specifically exceed 0.5㎛.
상기 다중벽 탄소나노튜브의 길이의 표준편차는 0.5㎛ 이하일 수 있으며, 구체적으로 0.3㎛ 내지 0.5㎛일 수 있다. 상기 다중벽 탄소나노튜브의 길이의 표준편차가 0.5㎛를 초과하는 경우, 다중벽 탄소나노튜브들 간의 길이 차이가 커서, 양극 활물질층 내 도전성이 균일한 정도로 형성되지 못한다. 이에 따라 전지의 출력과 수명 특성이 저하될 수 있다. 나아가, 상기 표준편차가 지나치게 큰 것은 도전재 분산액 제조 시 밀링 등의 다중벽 탄소나노튜브 입도 개선 공정이 충분하지 못한 것에서 기인할 수 있으므로, 도전재 분산액 및 양극 활물질층에서 다중벽 탄소나노튜브의 분산성이 저하되므로, 전지의 출력과 수명 특성이 더욱 저하되게 된다. 또한, 상기 표준편차가 지나치게 큰 경우, 도전재 분산액 및 양극 슬러리의 점도가 지나치게 증가하게 된다. 이에 따라, 양극 활물질층 형성 시, 양극 슬러리가 원활하게 도포되기 어려우므로, 전지의 출력과 수명 특성이 더욱 저하될 수 있다.The standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 μm or less, and specifically 0.3 μm to 0.5 μm. If the standard deviation of the length of the multi-walled carbon nanotubes exceeds 0.5㎛, the length difference between the multi-walled carbon nanotubes is large, the conductivity in the positive electrode active material layer is not formed to a uniform degree. As a result, battery output and lifespan characteristics may be degraded. Furthermore, the excessively large standard deviation may be due to the insufficient process of improving the particle size of the multi-walled carbon nanotubes such as milling in the manufacture of the conductive material dispersion, and thus the separation of the multi-walled carbon nanotubes in the conductive material dispersion and the positive electrode active material layer. Since the acidity is lowered, the battery output and lifespan characteristics are further lowered. In addition, when the standard deviation is too large, the viscosity of the conductive material dispersion and the positive electrode slurry is excessively increased. Accordingly, when the cathode active material layer is formed, it is difficult to smoothly apply the cathode slurry, and thus the output and life characteristics of the battery may be further reduced.
상기 다중벽 탄소나노튜브의 길이는 0.5㎛ 내지 3.0㎛일 수 있으며, 구체적으로 0.7㎛ 내지 2.5㎛일 수 있다. 여기서 상기 길이는 상술한 평균 길이가 아니라, 관찰된 다중벽 탄소나노튜브 각각의 길이를 의미한다. 상기 범위를 만족하는 경우, 양극 활물질들 간의 전기적 연결이 적정 수준으로 유지되면서, 동시에 도전재 분산액 및 양극 슬러리 내에서 상기 다중벽 탄소나노튜브의 분산이 균일하게 이루어질 수 있다. 길이가 3.0㎛를 초과하는 다중벽 탄소나노튜브가 소량으로 양극 활물질층에 포함되는 경우라도, 길이가 긴 다중벽 탄소나노튜브에 의해 다중벽 탄소나노튜브들 간의 응집이 발생하므로, 양극 활물질층 내 다중벽 탄소나노튜브가 균일하게 분산되어 존재하기 어렵다. 따라서, 전지의 출력 및 수명 특성이 저하될 수 있다. 또한, 길이가 긴 다중벽 탄소나노튜브가 존재하는 경우, 상기 응집이 발생하게 되면서 도전재 분산액의 점도가 상승하게 되므로, 양극 활물질층 제조 시 공정성이 저하되며, 공정성 저하에 따라 양극 활물질층 내 다중벽 탄소나노튜브의 분산성이 더욱 낮아질 수 있다.The length of the multi-walled carbon nanotubes may be 0.5 μm to 3.0 μm, and specifically 0.7 μm to 2.5 μm. Here, the length means not the average length described above, but the length of each of the observed multi-walled carbon nanotubes. When satisfying the above range, while maintaining the electrical connection between the positive electrode active material at an appropriate level, the dispersion of the multi-walled carbon nanotubes in the conductive material dispersion and the positive electrode slurry can be made uniform. Even in the case where a small amount of multi-walled carbon nanotubes having a length exceeding 3.0 μm is included in the positive electrode active material layer, aggregation of the multi-walled carbon nanotubes occurs by the long multi-walled carbon nanotubes, so that the inside of the positive electrode active material layer Multi-walled carbon nanotubes are uniformly dispersed and difficult to exist. Therefore, the output and lifespan characteristics of the battery may be lowered. In addition, when the long multi-walled carbon nanotubes are present, since the agglomeration occurs, the viscosity of the conductive material dispersion is increased, so that the processability is lowered during fabrication of the cathode active material layer. Dispersibility of the wall carbon nanotubes may be further lowered.
상기 양극 활물질층에 포함된 다중벽 탄소나노튜브에 관하여, 상술한 다중벽 탄소나노튜브의 평균 길이, 길이의 표준편차, 길이는 다음과 같은 방법으로 측정될 수 있다. 먼저 상기 양극 활물질층의 일정량을 수십 배의 중량에 달하는 NMP 용액에 희석시킨 뒤, 초음파를 통해 상기 양극 활물질층을 구성하는 물질을 각각 분리시킨다. 이 후, 용액의 상층부의 일부를 추출하여, 다시 추출량의 수십 배의 중량에 달하는 NMP 용액으로 희석 처리한다. 이 후, 주사전자현미경(SEM)을 통해 관찰하여 다수, 예를 들어 30개 혹은 25개의 다중벽 탄소나노튜브의 길이를 각각 측정한 뒤, 이들의 평균과 표준편차를 구하여 상기 다중벽 탄소나노튜브의 평균 길이, 길이의 표준편차, 길이를 도출해낼 수 있다.With respect to the multi-walled carbon nanotubes included in the positive electrode active material layer, the average length, standard deviation of the length of the multi-walled carbon nanotubes described above may be measured by the following method. First, a predetermined amount of the positive electrode active material layer is diluted in an NMP solution amounting to several tens of times of weight, and then, materials constituting the positive electrode active material layer are separated through ultrasonic waves. Thereafter, a part of the upper layer portion of the solution is extracted, and further diluted with an NMP solution weighing tens of times the amount of extraction. After that, the length of a plurality of, for example, 30 or 25 multi-walled carbon nanotubes was measured by scanning electron microscopy (SEM), respectively, and their average and standard deviation were calculated to obtain the multi-walled carbon nanotubes. We can derive the mean length, standard deviation of length, and length.
상기 다중벽 탄소나노튜브는 상기 양극 활물질층 전체 중량을 기준으로 0.1중량% 내지 1중량%로 포함될 수 있으며, 구체적으로 0.2중량% 내지 0.9중량%로 포함될 수 있고, 보다 구체적으로 0.2중량% 내지 0.7중량%로 포함될 수 있다. 상기 범위를 만족하는 경우, 양극 활물질층의 도전성이 확보될 수 있다.The multi-walled carbon nanotubes may be included in an amount of 0.1 wt% to 1 wt% based on the total weight of the cathode active material layer, specifically, 0.2 wt% to 0.9 wt%, and more specifically 0.2 wt% to 0.7 wt%. It may be included in weight percent. When the above range is satisfied, conductivity of the positive electrode active material layer may be secured.
상기 다중벽 탄소나노튜브가 1중량% 이하, 특히 0.7중량% 이하로 포함되는 것은 결코 일반적인 물성을 가진 탄소나노튜브만으로는 달성되기 어렵다. 구체적으로, 양극 활물질의 함량을 높이기 위해, 상대적으로 일반적인 탄소나노튜브의 함량을 1중량% 이하의 수준으로 줄인다면, 양극 활물질들간의 전기적 연결이 결코 원활하게 이루어질 수 없어서 제조된 이차 전지의 출력 특성이 필연적으로 크게 저하될 수 밖에 없다. 또한, 탄소나노튜브에 의해 양극 활물질들이 원활하게 지지될 수 없으므로 양극 활물질층으로부터 양극 활물질들이 탈리되거나, 양극 활물질층의 구조가 점차 붕괴되기 쉬워서, 양극의 기계적 안정성이 악화될 수 있다. 이에 따라, 제조된 이차 전지의 사이클 특성이 저하될 수 밖에 없다. The inclusion of the multi-walled carbon nanotubes in an amount of 1% by weight or less, in particular 0.7% by weight or less, is hardly achieved only by carbon nanotubes having general physical properties. Specifically, in order to increase the content of the positive electrode active material, if the content of a relatively common carbon nanotube is reduced to a level of 1% by weight or less, the electrical connection between the positive electrode active materials can never be made smoothly the output characteristics of the secondary battery manufactured This is inevitably greatly reduced. In addition, since the cathode active materials may not be smoothly supported by the carbon nanotubes, the cathode active materials may be detached from the cathode active material layer, or the structure of the cathode active material layer may be easily collapsed, thereby deteriorating mechanical stability of the cathode. Accordingly, the cycle characteristics of the manufactured secondary battery inevitably deteriorate.
그러나, 본 발명에서는 양극 활물질층이 적정한 평균 길이, 길이의 표준편차 등의 물성을 지닌 다중벽 탄소나노튜브를 균일하게 분포된 상태로 포함하기 때문에, 상기 다중벽 탄소나노튜브의 함량이 1중량% 이하로 포함되더라도 양극 활물질들간의 전기적 연결이 유지되며, 양극 활물질층의 기계적 안정성이 확보될 수 있어서, 전지의 출력 및 수명 특성이 개선될 수 있다. 또한, 상기 다중벽 탄소나노튜브의 함량이 1중량% 이하로 작은 수준을 유지하기 때문에, 상대적으로 양극 활물질층이 더 많은 함량의 양극 활물질을 포함할 수 있으므로, 제조된 전지의 출력이 더욱 개선될 수 있다.However, in the present invention, since the positive electrode active material layer contains the multi-walled carbon nanotubes having physical properties such as a proper average length and standard deviation of the length in a uniformly distributed state, the content of the multi-walled carbon nanotubes is 1% by weight. Even if it is included below, the electrical connection between the positive electrode active material is maintained, the mechanical stability of the positive electrode active material layer can be secured, the output and life characteristics of the battery can be improved. In addition, since the content of the multi-walled carbon nanotubes is maintained at a level of less than 1% by weight, the cathode active material layer may include a cathode active material having a higher content, and thus the output of the manufactured battery may be further improved. Can be.
상기 양극 활물질층의 로딩량은 15mg/cm2 내지 40mg/cm2일 수 있으며, 구체적으로 20mg/cm2 내지 30mg/cm2일 수 있다. 상기 범위를 만족하는 경우, 양극의 에너지 밀도가 확보되면서, 양극 두께가 지나치게 증가하지 않을 수 있다. 또한, 양극 슬러리 도포 시 공정성에 문제가 발생하지 않을 수 있다.The loading amount of the positive electrode active material layer may be 15 mg / cm 2 to 40 mg / cm 2 , and specifically 20 mg / cm 2 to 30 mg / cm 2 . When satisfying the above range, while securing the energy density of the positive electrode, the positive electrode thickness may not increase excessively. In addition, a problem may not occur in processability when applying the positive electrode slurry.
<양극의 제조 방법><Method of manufacturing anode>
본 발명의 다른 실시예에 따른 양극의 제조 방법은, 도전재 분산액을 준비하는 단계; 도전재 분산액, 양극 활물질, 바인더, 및 용매를 포함하는 양극 슬러리를 형성하는 단계; 및 상기 양극 슬러리를 집전체 상에 도포 및 건조하는 단계를 포함하며, 상기 도전재 분산액은 다중벽 탄소나노튜브, 분산제, 및 분산매를 포함하며, 상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛이고, 상기 다중벽 탄소나노튜브의 길이의 표준편차는 0.5㎛ 이하일 수 있다.Method for producing a positive electrode according to another embodiment of the present invention, preparing a conductive material dispersion; Forming a positive electrode slurry comprising a conductive material dispersion, a positive electrode active material, a binder, and a solvent; And applying and drying the positive electrode slurry on a current collector, wherein the conductive material dispersion includes a multiwall carbon nanotube, a dispersant, and a dispersion medium, and the average length of the multiwall carbon nanotube is 1 μm to 1 μm. 2 μm, and the standard deviation of the length of the multi-walled carbon nanotubes may be 0.5 μm or less.
상기 도전재 분산액을 준비하는 단계는, 번들형(bundle-type) 다중벽 탄소나노튜브, 분산제, 및 분산매를 혼합하여 혼합물을 형성하는 것, 및 상기 번들형 다중벽 탄소나노튜브의 입도 분포를 조절하는 것을 포함할 수 있다.The preparing of the conductive material dispersion may include forming a mixture by mixing bundle-type multiwall carbon nanotubes, a dispersant, and a dispersion medium, and adjusting the particle size distribution of the bundle multiwall carbon nanotubes. It may include doing.
상기 분산제는 수소화 니트릴 부타디엔 고무(H-NBR), 폴리비닐피롤리돈(PVP), 및 카르복시메틸셀룰로스(CMC)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The dispersant may be at least one selected from the group consisting of hydrogenated nitrile butadiene rubber (H-NBR), polyvinylpyrrolidone (PVP), and carboxymethylcellulose (CMC).
상기 분산매는 N-메틸-2-피롤리돈(NMP) 및 물 중 적어도 어느 하나일 수 있다.The dispersion medium may be at least one of N-methyl-2-pyrrolidone (NMP) and water.
상기 번들형 다중벽 탄소나노튜브에 있어서, 상기 번들형은 복수 개의 탄소나노튜브 단위체가 단위체 길이 방향의 축이 실질적으로 동일한 배향으로 나란하게 배열되거나 또는 뒤엉켜있는, 다발(bundle) 혹은 로프(rope) 형태의 2차 형상을 지칭한다. 상기 번들형 다중벽 탄소나노튜브의 경우, 탄소나노튜브가 부분적으로 응집된 형태를 가지며, 길이도 지나치게 다양하므로, 형태 및 길이를 조절하지 않고 바로 도전재로 사용한다면, 양극 활물질층 내에 번들형 다중벽 탄소나노튜브가 균일하게 분산되어 존재하기 어려우며 도전성 경로가 확보되기 어렵다. 따라서, 번들형 다중벽 탄소나노튜브, 분산제, 및 분산매를 혼합한 뒤, 상기 번들형 다중벽 탄소나노튜브의 입도 분포, 다시 말해 형태와 길이를 조절하는 공정이 필요하다.In the bundled multi-walled carbon nanotube, the bundle includes a bundle or a rope in which a plurality of carbon nanotube units are arranged or intertwined side by side in substantially the same orientation in the longitudinal direction of the unit. Refers to the secondary shape of the form. In the case of the bundled multi-walled carbon nanotubes, the carbon nanotubes have a partially agglomerated form, and their lengths are excessively varied, so that if they are used directly as a conductive material without adjusting their shape and length, the bundled multi-walled carbon nanotubes may be bundled in the positive electrode active material layer. Wall carbon nanotubes are uniformly dispersed and difficult to exist, and it is difficult to secure a conductive path. Therefore, after mixing the bundle-type multi-walled carbon nanotubes, a dispersant, and a dispersion medium, there is a need for a process for controlling the particle size distribution, that is, the shape and length of the bundled multi-walled carbon nanotubes.
특히, 합성이 완료된 직후의 번들형 다중벽 탄소나노튜브는 5㎛ 내지 50㎛의 탄소나노튜브들이 무작위로 응집되어 전체 크기가 수십 ㎛의 입자 형태를 띄게 된다. 통상적으로 이송, 보관, 투입 등의 취급 용이성을 위해 상기 번들형 다중벽 탄소나노튜브들로 펠렛을 제조한다. 따라서, 양극에 도전재로 이용하기 위해서는 상기 펠렛을 분해하여 번들형 탄소나노튜브들을 서로 분리하고 길이를 균일하게 하는 밀링 작업이 요구된다.In particular, the bundle-type multi-walled carbon nanotubes immediately after the synthesis is completed are randomly aggregated carbon nanotubes of 5 ㎛ to 50 ㎛ to have a particle size of several tens of ㎛. Typically, pellets are manufactured from the bundled multi-walled carbon nanotubes for ease of handling such as transport, storage, and feeding. Accordingly, in order to use the anode as a conductive material, milling operations are required in which the pellets are decomposed to separate bundle-type carbon nanotubes from each other and have a uniform length.
상기 입도 분포를 조절하는 것은 밀링(milling), 초음파 처리 등의 방법으로 진행될 수 있으며, 바람직하게는 밀링에 의할 수 있다. 상기 밀링은 볼 밀(ball mill), 스파이크 밀(spike mill), 비드 밀(bead mill), 바스켓 밀(basket mill), 어트리션 밀(attrition mill) 등의 방법에 의해 진행될 수 있으며, 구체적으로 스파이크 밀에 의해 진행될 수 있다.The particle size distribution may be adjusted by milling, ultrasonication, or the like, and preferably by milling. The milling may be performed by a ball mill, spike mill, bead mill, basket mill, attrition mill, or the like. Can be advanced by a spike mill.
상기 스파이크 밀은 다음과 같은 방법으로 진행될 수 있다. 상기 번들형 탄소나노튜브, 분산제, 분산매를 포함하는 혼합물을 비드(bead)가 채워져 있는 스파이크 밀 기기 내부로 투입하면서 상기 스파이크 밀을 가동시킨다. 이 때, 상기 기기 내부의 로터가 회전하며, 이 회전력이 비드에 운동에너지를 부여하여 상기 혼합물 내 번들형 탄소나노튜브의 분산이 일어난다. 이 후 혼합물은 특정 토출속도로 유출구를 통해 배출된다. 이러한 공정을 특정 조건에서 수행하여 본 발명의 양극에 포함되는 다중벽 탄소나노튜브가 형성될 수 있다. 특히, 상기 비드의 크기, 비드의 충진량, 혼합물의 토출 속도, 밀링 횟수가 주요한 조건에 해당하며, 이들의 적절한 조합에 의해 본 발명에서 사용되는 도전재 분산액이 형성될 수 있다. 다시 말해, 상기 조건들 각각의 범위 뿐만 아니라, 각 조건들의 조합이 적절하게 만족되어야만 한다.The spike mill may proceed in the following manner. The spike mill is operated while injecting a mixture including the bundled carbon nanotubes, a dispersant, and a dispersion medium into a spike mill device filled with beads. At this time, the rotor inside the device rotates, and this rotational force imparts kinetic energy to the beads, resulting in dispersion of the bundled carbon nanotubes in the mixture. The mixture is then discharged through the outlet at a particular discharge rate. This process may be performed under specific conditions to form multi-walled carbon nanotubes included in the anode of the present invention. In particular, the size of the beads, the filling amount of the beads, the discharge rate of the mixture, the number of milling is a major condition, the conductive material dispersion used in the present invention can be formed by a suitable combination thereof. In other words, the combination of each condition as well as the range of each of the above conditions must be properly satisfied.
상기 비드의 크기는 0.5mm 내지 2mm일 수 있으며, 구체적으로 0.6mm 내지 1mm일 수 있으며, 보다 구체적으로 0.6mm 내지 0.75mm일 수 있다. 상기 비드의 크기가 2mm를 초과할 시, 비드에 의해 발생하는 전단력이 충분하지 않아 다중벽 탄소나노튜브의 분산 및 입도 분포가 바람직한 수준에 도달하지 못할 수 있다. 또한, 상기 비드의 크기가 0.5mm 미만인 경우, 상기 유출구로 상기 혼합물 뿐만 아니라 상기 비드가 함께 배출되어, 스파이크 밀의 분산 능력이 일정하게 유지되지 않으며, 배출된 결과물에서 비드를 분리하는 공정이 별도로 필요한 문제가 있다.The size of the beads may be 0.5mm to 2mm, specifically 0.6mm to 1mm, may be more specifically 0.6mm to 0.75mm. When the size of the beads exceeds 2mm, the shear force generated by the beads is not enough, the dispersion and particle size distribution of the multi-walled carbon nanotubes may not reach the desired level. In addition, when the size of the bead is less than 0.5mm, the beads as well as the mixture is discharged together to the outlet, the dispersion capacity of the spike mill is not kept constant, and the process of separating the beads from the discharged result is required separately There is.
상기 비드의 충진량은 50% 내지 90%일 수 있으며, 구체적으로 65% 내지 80%일 수 있다. 상기 비드의 충진량이 90% 초과인 경우, 스파이크 밀 기기 내부에 압력이 크게 증가하여 지속적인 스파이크 밀 사용이 어렵다. 상기 비드의 충진량이 50% 미만인 경우, 분산에 필요한 적절한 운동 에너지가 형성되기 어렵다.The filling amount of the beads may be 50% to 90%, specifically, 65% to 80%. When the filling amount of the beads is more than 90%, the pressure inside the spike mill apparatus is greatly increased, making continuous spike mill use difficult. If the filling amount of the beads is less than 50%, proper kinetic energy required for dispersion is difficult to form.
상기 혼합물의 토출 속도는 1kg/min 내지 5kg/min일 수 있으며, 구체적으로 2kg/min 내지 4kg/min일 수 있다.The discharge rate of the mixture may be 1 kg / min to 5 kg / min, specifically 2 kg / min to 4 kg / min.
상기 밀링 횟수는 혼합물이 용기 내 투입되는 횟수를 의미한다. 상기 밀링 횟수는 2회 내지 3회일 수 있다.The number of milling means the number of times the mixture is introduced into the container. The number of milling may be 2 to 3 times.
상기 도전재 분산액의 점도는 30℃ 내지 50℃에서 10,000cps 내지 30,000cps일 수 있으며, 구체적으로 15,000cps 내지 25,000cps일 수 있다. 상기 범위를 만족하는 경우, 양극 슬러리 제조 시 투입이 용이하다. 또한, 상기 점도를 만족한다는 것은 다중벽 탄소나노튜브의 분산이 원활하게 이루어지고 입도 분포가 바람직한 수준을 만족하는 것을 의미한다. The conductive material dispersion may have a viscosity of 10,000 cps to 30,000 cps at 30 ° C. to 50 ° C., specifically 15,000 cps to 25,000 cps. When satisfying the above range, it is easy to add during the production of the positive electrode slurry. In addition, satisfying the viscosity means that the dispersion of the multi-walled carbon nanotubes is smoothly performed and the particle size distribution satisfies a desirable level.
상기 양극 슬러리를 형성하는 단계에 있어서, 상기 양극 슬러리는 상기 도전재 분산액, 양극 활물질, 바인더, 및 용매를 포함할 수 있다.In the forming of the positive electrode slurry, the positive electrode slurry may include the conductive material dispersion, a positive electrode active material, a binder, and a solvent.
상기 양극 활물질, 상기 바인더, 상기 다중벽 탄소나노튜브, 상기 집전체는 상술한 실시예의 양극에 포함되는 양극 활물질, 바인더, 다중벽 탄소나노튜브와 동일하므로 설명을 생략한다. 한편, 도전재 분산액 상에 포함된 다중벽 탄소나노튜브의 평균 길이, 길이의 표준편차, 길이는 양극 활물질층에서 동일하게 유지될 수 있다. The positive electrode active material, the binder, the multi-walled carbon nanotubes, and the current collector are the same as the positive electrode active material, the binder, and the multi-walled carbon nanotubes included in the positive electrode of the above-described embodiment, and thus description thereof is omitted. On the other hand, the average length of the multi-walled carbon nanotubes contained on the conductive material dispersion, the standard deviation of the length, the length can be maintained the same in the positive electrode active material layer.
상기 용매는 디메틸셀폭사이드(dimethyl sulfoxide, DMSO), 이소프로필 알코올(isopropyl alcohol), N-메틸-2-피롤리돈(N-Methyl-2-Pyrrolidone, NMP), 폴리비닐리덴 플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP) 수용액, 폴리비닐리덴플루오라이드(polyvinylidenefluoride) 수용액, 아세톤(acetone) 및 물로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 예를 들어, 상기 용매는 NMP 일 수 있다.The solvent is dimethyl sulfoxide (DMSO), isopropyl alcohol, N-methyl-2-pyrrolidone (N-Methyl-2-Pyrrolidone, NMP), polyvinylidene fluoride-hexafluoro It may be at least one selected from the group consisting of an aqueous solution of a low temperature propylene copolymer (PVDF-co-HFP), an aqueous solution of polyvinylidenefluoride, acetone and water. For example, the solvent may be NMP.
상기 양극 슬러리의 고형분은 상기 양극 슬러리 전체 중량을 기준으로 60중량% 내지 80중량%일 수 있으며, 구체적으로 65중량% 내지 75중량%일 수 있다. 상기 범위를 만족하는 경우, 양극 슬러리를 집전체에 도포(코팅)할 수 있을 정도의 점도가 유지되면서, 양극 슬러리 건조가 용이한 장점이 있다. 이 때, 양극 슬러리의 점도는 5,000cps 내지 25,000cps가 바람직하다.Solid content of the positive electrode slurry may be 60% by weight to 80% by weight based on the total weight of the positive electrode slurry, specifically, may be 65% by weight to 75% by weight. When satisfying the above range, while maintaining the viscosity enough to apply (coating) the positive electrode slurry to the current collector, there is an advantage that the positive electrode slurry is easy to dry. At this time, the viscosity of the positive electrode slurry is preferably 5,000cps to 25,000cps.
상기 양극 슬러리를 건조시켜 상기 용매를 제거하여 상기 양극 활물질층이 제조되므로, 상술한 양극 슬러리의 고형분 전체 중량을 기준으로 상기 고형분에 포함된 양극 활물질, 바인더, 다중벽 탄소나노튜브 각각의 함량은 상술한 실시예의 양극에 포함된 양극 활물질층 전체 중량을 기준으로 한 수치와 동등하다.Since the positive electrode active material layer is manufactured by drying the positive electrode slurry to remove the solvent, the content of each of the positive electrode active material, the binder, and the multi-walled carbon nanotubes included in the solid content is based on the total weight of the solid content of the positive electrode slurry. It is equivalent to the numerical value based on the total weight of the positive electrode active material layer included in the positive electrode of one embodiment.
상기 도포 및 건조하는 단계에 있어서, 상기 도포 및 건조는 양극 슬러리가 도포된 상기 집전체를 100℃ 내지 180℃의 온도에서 4m/min 내지 80m/min의 속도로 도포 및 건조시키는 것일 수 있다. 또한, 건조 후 양극 두께를 조절하기 위해 롤 압연을 진행할 수 있으며, 압연 후 양극의 잔류 수분을 제거하기 위해 추가 건조를 실시할 수 있다.In the coating and drying step, the coating and drying may be to apply and dry the current collector to which the positive electrode slurry is applied at a rate of 4m / min to 80m / min at a temperature of 100 ℃ to 180 ℃. In addition, roll drying may be performed to adjust the thickness of the anode after drying, and further drying may be performed to remove residual moisture of the anode after rolling.
<이차 전지><Secondary battery>
본 발명의 또 다른 실시예에 따른 이차 전지는 양극, 음극, 상기 양극과 상기 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있다. 여기서 상기 양극은 상술한 일 실시예의 양극과 동일하므로 설명을 생략하도록 한다. A secondary battery according to another embodiment of the present invention may include a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte. Here, since the anode is the same as the anode of the above-described embodiment, a description thereof will be omitted.
상기 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면 상에 배치된 음극 활물질층을 포함할 수 있다. The negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on one or both surfaces of the negative electrode current collector.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 음극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다.The negative electrode current collector may be any one having conductivity without causing chemical change in the battery, and is not particularly limited. For example, the negative electrode current collector may be copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, or the like on the surface of aluminum or stainless steel. . Specifically, a transition metal that adsorbs carbon such as copper and nickel can be used as the current collector.
상기 음극 활물질층은 음극 활물질, 음극 도전재, 및 음극 바인더를 포함할 수 있다. The negative electrode active material layer may include a negative electrode active material, a negative electrode conductive material, and a negative electrode binder.
상기 음극 활물질은 흑연계 활물질 입자 또는 실리콘계 활물질 입자일 수 있다. 상기 흑연계 활물질 입자는 인조흑연, 천연흑연, 흑연화탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 인조흑연을 사용하는 경우 율 특성을 개선할 수 있다. 상기 실리콘계 활물질 입자는 Si, SiOx(0<x<2), Si-C 복합체 및 Si-Y 합금(여기서, Y는 알칼리 금속, 알칼리 토금속, 전이금속, 13족 원소, 14족 원소, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임)으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 Si를 사용하는 경우 전지의 고용량을 도출할 수 있다.The negative electrode active material may be graphite-based active material particles or silicon-based active material particles. The graphite-based active material particles may be used at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fibers and graphitized mesocarbon microbeads, and in particular, when using artificial graphite, the rate characteristics may be improved. . The silicon-based active material particles are Si, SiO x (0 <x <2), Si-C composite and Si-Y alloy (where Y is an alkali metal, alkaline earth metal, transition metal, group 13 element, group 14 element, rare earth element And it is an element selected from the group consisting of a combination thereof) may be used one or more selected from the group consisting of, in particular, when using Si can derive a high capacity of the battery.
상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.The negative electrode binder may be polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride, polyacrylonitrile, polymethylmethacrylate, Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid (poly acrylic acid) and may include at least one selected from the group consisting of substances substituted with hydrogen, such as Li, Na or Ca, And also various copolymers thereof.
상기 음극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The negative electrode conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples thereof include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator is to separate the negative electrode and the positive electrode and to provide a passage for the movement of lithium ions, and can be used without any particular limitation as long as the separator is used as a separator in a secondary battery. It is desirable to be excellent. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.The electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다. Specifically, the electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.As the non-aqueous organic solvent, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion An aprotic organic solvent such as methyl acid or ethyl propionate can be used.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다. In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate. When the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.The metal salt may be a lithium salt, the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - may be used one selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.In addition to the electrolyte components, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
본 발명의 또 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.According to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
실시예 및 비교예Examples and Comparative Examples
실시예 1: 전지의 제조Example 1 Fabrication of Cells
(1) 도전재 분산액의 제조(1) Preparation of Dispersion of Conductive Material
수 cm 크기의 펠렛 형태의 번들형 다중벽 탄소나노튜브, 분산제인 H-NBR, 분산매인 NMP를 4:0.8:95.2의 중량비로 혼합하여 혼합물을 형성하였다. 상기 혼합물을 크기가 0.65mm인 비드가 80%로 채워진 스파이크 밀에 투입하여 분산시키고 2kg/min의 토출 속도로 배출시켰다. 이와 같은 공정을 2회 진행하여 입도 분포가 조절된 다중벽 탄소나노튜브를 포함한 도전재 분산액을 제조하였다. Bundled multi-walled carbon nanotubes in pellet form of several cm size, H-NBR as a dispersant, and NMP as a dispersion medium were mixed at a weight ratio of 4: 0.8: 95.2 to form a mixture. The mixture was dispensed into a spike mill filled with 80% of beads 0.65 mm in size and discharged at a discharge rate of 2 kg / min. Such a process was carried out twice to prepare a conductive material dispersion including a multi-walled carbon nanotube having a controlled particle size distribution.
(2) 양극의 제조(2) production of anode
양극 활물질로 Li(Ni0.6Mn0.2Co0.2)O2을, 바인더로 PVdF를 사용하였다. 상기 양극 활물질, 상기 도전재 분산액, 및 NMP를 혼합하여, 고형분이 72%이며 상기 양극 활물질, 바인더, 분산제, 다중벽 탄소나노튜브의 중량비가 98:1.52:0.08:0.4인 양극 슬러리를 제조하였다. Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 was used as the positive electrode active material and PVdF was used as the binder. The positive electrode active material, the conductive material dispersion, and the NMP were mixed to prepare a positive electrode slurry having a solid content of 72% and a weight ratio of the positive electrode active material, the binder, the dispersant, and the multi-walled carbon nanotubes of 98: 1.52: 0.08: 0.4.
상기 양극 슬러리를 두께가 20㎛인 양극 집전체(Al)에 고형분 무게(로딩량)이 21mg/cm2이 되도록 도포 및 건조하였다. 이 후, 상기 양극 슬러리가 배치된 집전체를 롤 압연 방법으로 압연하여 전체 두께를 77㎛로 조절하였다. 이 후, 상기 집전체를 진공 오븐 110℃에서 6시간 건조시켜서 양극을 제조하였다.The positive electrode slurry was applied and dried to a positive electrode current collector (Al) having a thickness of 20 μm so that the solid content weight (loading amount) was 21 mg / cm 2 . Thereafter, the current collector on which the positive electrode slurry was placed was rolled by a roll rolling method to adjust the overall thickness to 77 μm. Thereafter, the current collector was dried in a vacuum oven at 110 ° C. for 6 hours to prepare a positive electrode.
(3) 전지의 제조(3) production of batteries
음극 활물질인 인조흑연, 음극 도전재인 카본 블랙, 음극 바인더인 스티렌 부타디엔 고무(SBR)과 CMC를 각각 96.1:0.5:2.3:1.1의 중량비로 증류수에 혼합하여 음극 슬러리를 제조하였다. 제조된 슬러리를 두께가 20㎛인 음극 집전체(Cu)에 무게(로딩량)가 10mg/cm2이 되도록 도포 및 건조하였다. 이 후, 상기 양극 슬러리가 형성된 집전체를 롤 압연 방법으로 압연하여, 최종 두께(집전체+활물질 층)가 80㎛이 되도록 조절하였다. 이 후, 상기 집전체를 110℃의 진공 오븐에서 6시간 건조시켜 음극을 제조하였다.A negative electrode slurry was prepared by mixing artificial graphite as a negative electrode active material, carbon black as a negative electrode conductive material, styrene butadiene rubber (SBR) as a negative electrode binder, and distilled water at a weight ratio of 96.1: 0.5: 2.3: 1.1, respectively. The prepared slurry was applied and dried to a negative electrode current collector (Cu) having a thickness of 20 μm so that the weight (loading amount) was 10 mg / cm 2 . Thereafter, the current collector on which the positive electrode slurry was formed was rolled by a roll rolling method, and the final thickness (current collector + active material layer) was adjusted to be 80 μm. Thereafter, the current collector was dried in a vacuum oven at 110 ° C. for 6 hours to prepare a negative electrode.
상기 제조된 음극 및 양극과 다공성 폴리에틸렌 분리막을 스태킹(Stacking)방식을 이용하여 조립하였으며, 조립된 전지에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)=1/2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰)을 주입하여 리튬 이차전지를 제조하였다.The prepared negative electrode and the positive electrode and the porous polyethylene separator were assembled using a stacking method, and the assembled battery was an electrolyte solution (ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 1/2 (volume ratio), lithium hexa). Floro phosphate (LiPF 6 1 mol) was injected to prepare a lithium secondary battery.
실시예 2: 전지의 제조Example 2: Preparation of Cells
도전재 분산액 제조 시, 비드 크기를 1mm로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 도전재 분산액, 양극, 전지를 제조하였다.In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were prepared in the same manner as in Example 1 except that the bead size was changed to 1 mm.
비교예 1: 전지의 제조Comparative Example 1: Preparation of Battery
도전재 분산액 제조 시, 비드 크기를 1mm로 변경하고 회수를 1회로 한 것을 제외하고는 실시예 1과 동일한 방법으로 도전재 분산액, 양극, 전지를 제조하였다.In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were prepared in the same manner as in Example 1 except that the bead size was changed to 1 mm and the recovery was performed once.
비교예 2: 전지의 제조Comparative Example 2: Preparation of Battery
도전재 분산액 제조 시, 밀링 횟수를 4회로 변경한 것을 제외하고는 실시예 1과 동일한 방법으로 도전재 분산액, 양극, 전지를 제조하였다.In preparing the conductive material dispersion, the conductive material dispersion, the positive electrode, and the battery were manufactured in the same manner as in Example 1 except that the number of millings was changed to four times.
상기 실시예 1, 2 및 비교예 1, 2의 전지 제조 과정에서 형성된 도전재 분산액 내에 존재하는 다중벽 탄소나노튜브의 물성을 다음과 같은 방법으로 측정한 뒤, 각각 도 1(실시예 1에 사용된 다중벽 탄소나노튜브), 도 2(실시예 2에 사용된 다중벽 탄소나노튜브), 도 3(비교예 1에 사용된 다중벽 탄소나노튜브), 도 4(비교예 2에 사용된 다중벽 탄소나노튜브) 및 표 1에 나타내었다.The physical properties of the multi-walled carbon nanotubes present in the conductive material dispersion formed in the battery manufacturing process of Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the following method, respectively, and then, respectively, FIG. 1 (used in Example 1). Multi-walled carbon nanotubes), Figure 2 (multi-walled carbon nanotubes used in Example 2), Figure 3 (multi-walled carbon nanotubes used in Comparative Example 1), Figure 4 (multiple used in Comparative Example 2 Wall carbon nanotubes) and shown in Table 1.
구체적으로 각각의 도전재 분산액에 NMP를 추가로 투입하여 다중벽 탄소나노튜브가 용액 전체 중량을 기준으로 0.005중량%인 희석 용액을 제조하였다. 상기 희석 용액을 실리콘 웨이퍼(wafer) 상에 떨어뜨리고 건조시켜 각각의 샘플을 제작하고, 상기 샘플을 SEM을 통해 관찰하였다. 이 때, 관찰된 25개의 다중벽 탄소나노튜브의 길이를 측정한 뒤, 이를 토대로 평균 길이, 길이의 표준편차, 최대 길이, 최소 길이를 도출하였다.Specifically, NMP was further added to each conductive material dispersion to prepare a dilute solution having 0.005 wt% of the multi-walled carbon nanotubes based on the total weight of the solution. The diluted solution was dropped on a silicon wafer and dried to prepare each sample, and the sample was observed by SEM. At this time, after measuring the length of the observed 25 multi-walled carbon nanotubes, the average length, standard deviation of the length, the maximum length, the minimum length was derived.
도전재 분산액에 포함된 다중벽 탄소나노튜브의 물성Properties of Multi-Walled Carbon Nanotubes in Conductive Dispersions
평균 길이(㎛)Average length (㎛) 길이의 표준편차(㎛)Standard Deviation of Length (μm) 최대 길이(㎛)Max length (㎛) 최소 길이(㎛)Length (μm)
실시예 1Example 1 1.261.26 0.450.45 2.682.68 0.590.59
실시예 2Example 2 1.161.16 0.500.50 2.382.38 0.500.50
비교예 1Comparative Example 1 1.561.56 0.810.81 4.504.50 0.500.50
비교예 2Comparative Example 2 0.780.78 0.460.46 1.931.93 0.050.05
실험예 1: 충방전 사이클에 따른 방전 용량 및 전지 저항 평가Experimental Example 1 Evaluation of Discharge Capacity and Battery Resistance According to Charge and Discharge Cycles
실시예 1, 2 및 비교예 1, 2에서 제조된 이차전지 각각에 대해, 충·방전을 수행하여, 방전 용량 및 전지 저항을 평가한 뒤, 도 5의 그래프 및 표 2로 나타내었다. After charging and discharging each of the secondary batteries manufactured in Examples 1 and 2 and Comparative Examples 1 and 2, the discharge capacity and the battery resistance were evaluated, and are shown in the graphs and Table 2 of FIG. 5.
1회 사이클과 2회 사이클은 0.1C로 충·방전하였고, 3회 사이클부터 200회 사이클까지는 0.5C로 충·방전을 수행하였다. One cycle and two cycles were charged and discharged at 0.1C, and charging and discharging was performed at 0.5C from three cycles to 200 cycles.
충전 조건: CC(정전류)/CV(정전압)(4.2V/0.05C current cut-off) Charging conditions: CC (constant current) / CV (constant voltage) (4.2V / 0.05C current cut-off)
방전 조건: CC(정전류) 조건 2.7VDischarge condition: CC (constant current) condition 2.7 V
도 5의 그래프에서 왼쪽 y축은 1회 사이클의 방전 용량을 100%로 할 때, 각 사이클의 방전 용량(%)을 나타내며, 오른쪽 y축은 1회 사이클의 전지 저항 대비 각 사이클의 전지 저항의 증가량 비율(%)을 나타낸다. In the graph of FIG. 5, the left y-axis represents the discharge capacity (%) of each cycle when the discharge capacity of one cycle is 100%, and the right y-axis represents the increase ratio of the battery resistance of each cycle to the battery resistance of one cycle. (%).
상기 전지 저항은, 전지 전체 용량의 50%를 충전한 상태에서 3C의 전류를 30초동안 인가하였을 때 나타나는 전압 감소로부터 계산하였다.The battery resistance was calculated from the voltage drop that occurs when a current of 3C was applied for 30 seconds while charging 50% of the total battery capacity.
200회 사이클의 방전 용량(%)Discharge capacity (%) of 200 cycles 200회 사이클의 전지 저항 증가량 비율(%)% Of battery resistance increase in 200 cycles
실시예 1Example 1 95.0395.03 2020
실시예 2Example 2 96.496.4 1616
비교예 1Comparative Example 1 85.2485.24 185185
비교예 2Comparative Example 2 90.4190.41 9696
도 5 및 표 2를 참조하면, 양극 활물질층에 포함된 다중벽 탄소나노튜브의 평균 길이가 1㎛ 내지 2㎛를 만족하고 길이의 표준편차가 0.5㎛ 이하인 실시예 1 및 실시예 2의 전지의 경우, 비교예 1 및 비교예 2에 비해 용량 유지율이 높으며, 전지 저항이 훨씬 덜 증가하는 것을 알 수 있다. 5 and Table 2, the average length of the multi-walled carbon nanotubes included in the positive electrode active material layer satisfies 1 2㎛ and the standard deviation of the length of the battery of Examples 1 and 2 In this case, it can be seen that the capacity retention rate is higher than that of Comparative Example 1 and Comparative Example 2, and the battery resistance increases much less.
구체적으로, 비교예 1은 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛을 만족하나 길이의 표준편차가 0.81㎛로 0.5㎛를 초과하는 수치를 가진다. 즉, 비교예 1은 지나치게 다양한 길이의 다중벽 탄소나노튜브를 포함하고 있는 것을 의미하며, 일부 지나치게 긴 길이의 다중벽 탄소나노튜브에 의해 다중벽 탄소나노튜브들 간의 응집이 발생하여 양극 활물질층 내에서 다중벽 탄소나노튜브가 균일하게 분산되지 못한 것으로 보인다. 이에 따라, 전지의 용량 유지율 및 저항 특성이 저하되는 것을 알 수 있다. Specifically, in Comparative Example 1, the average length of the multi-walled carbon nanotubes satisfies 1 μm to 2 μm, but the standard deviation of the lengths is 0.81 μm and has a value exceeding 0.5 μm. That is, Comparative Example 1 means that the multi-walled carbon nanotubes having an excessively varying length are included, and the coagulation between the multi-walled carbon nanotubes is generated by the multi-walled carbon nanotubes of some excessively long lengths, thereby forming the positive electrode active material layer. It seems that the multi-walled carbon nanotubes are not uniformly dispersed at. Thereby, it turns out that the capacity retention rate and resistance characteristic of a battery fall.
비교예 2의 경우, 길이의 표준편차는 0.5㎛이하를 만족하나, 다중벽 탄소나노튜브의 평균 길이가 0.78㎛로 1㎛ 내지 2㎛의 범위를 만족하지 못한다. 즉, 다중벽 탄소나노튜브들의 길이가 지나치게 짧아지므로 양극 활물질 간의 전기적 연결이 원활하게 형성되지 못한다. 이에 따라 전지의 용량 유지율 및 저항 특성이 저하되는 것을 알 수 있다.In the case of Comparative Example 2, the standard deviation of the length is less than 0.5㎛, but the average length of the multi-walled carbon nanotube is 0.78㎛, does not satisfy the range of 1㎛ to 2㎛. That is, since the length of the multi-walled carbon nanotubes is too short, the electrical connection between the positive electrode active material is not formed smoothly. It can be seen that the capacity retention rate and the resistance characteristics of the battery are thereby deteriorated.

Claims (7)

  1. 집전체 및 상기 집전체 상에 배치된 양극 활물질층을 포함하고,A current collector and a positive electrode active material layer disposed on the current collector;
    상기 양극 활물질층은 양극 활물질, 바인더, 및 다중벽 탄소나노튜브를 포함하며,The positive electrode active material layer includes a positive electrode active material, a binder, and multi-walled carbon nanotubes,
    상기 다중벽 탄소나노튜브의 평균 길이는 1㎛ 내지 2㎛이고,The average length of the multi-walled carbon nanotubes is 1㎛ to 2㎛,
    상기 다중벽 탄소나노튜브 길이의 표준편차는 0.5㎛ 이하인 양극.The standard deviation of the multi-walled carbon nanotube length is 0.5㎛ or less.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 다중벽 탄소나노튜브의 길이는 0.5㎛ 내지 3.0㎛인 양극.A length of the multi-walled carbon nanotubes is 0.5㎛ 3.0㎛.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 다중벽 탄소나노튜브는 상기 양극 활물질층 전체 중량을 기준으로 0.1중량% 내지 1중량%로 포함되는 양극.The multi-walled carbon nanotubes include 0.1 wt% to 1 wt% based on the total weight of the cathode active material layer.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 다중벽 탄소나노튜브는 상기 양극 활물질층 전체 중량을 기준으로 0.2중량% 내지 0.7중량%로 포함되는 양극.The multi-walled carbon nanotubes include 0.2 wt% to 0.7 wt% based on the total weight of the cathode active material layer.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 양극 활물질은 상기 양극 활물질층 전체 중량을 기준으로 96중량% 내지 99중량%로 포함되는 양극.The positive electrode active material is a positive electrode containing 96% by weight to 99% by weight based on the total weight of the positive electrode active material layer.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 양극 활물질층의 로딩량은 15mg/cm2 내지 40mg/cm2인 양극.A loading amount of the positive electrode active material layer is 15 mg / cm 2 to 40 mg / cm 2 .
  7. 청구항 1 내지 6 중 어느 하나의 양극;The anode of any one of claims 1 to 6;
    음극;cathode;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및A separator interposed between the anode and the cathode; And
    전해질을 포함하는 이차 전지.Secondary battery comprising an electrolyte.
PCT/KR2019/001479 2018-02-07 2019-02-01 Positive electrode, and secondary battery comprising positive electrode WO2019156461A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2020534964A JP7258396B2 (en) 2018-02-07 2019-02-01 Positive electrode and secondary battery containing the positive electrode
EP19751927.5A EP3716364B1 (en) 2018-02-07 2019-02-01 Positive electrode, and secondary battery comprising positive electrode
US16/958,925 US11929496B2 (en) 2018-02-07 2019-02-01 Positive electrode and secondary battery including same
PL19751927.5T PL3716364T3 (en) 2018-02-07 2019-02-01 Positive electrode, and secondary battery comprising positive electrode
CN201980006999.1A CN111587499A (en) 2018-02-07 2019-02-01 Positive electrode and secondary battery comprising same
JP2022066427A JP7317434B2 (en) 2018-02-07 2022-04-13 Positive electrode and secondary battery containing the positive electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0015313 2018-02-07
KR1020180015313A KR102270116B1 (en) 2018-02-07 2018-02-07 Positive electrode, and secondary battery comprising the positive electrode

Publications (1)

Publication Number Publication Date
WO2019156461A1 true WO2019156461A1 (en) 2019-08-15

Family

ID=67549498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001479 WO2019156461A1 (en) 2018-02-07 2019-02-01 Positive electrode, and secondary battery comprising positive electrode

Country Status (7)

Country Link
US (1) US11929496B2 (en)
EP (1) EP3716364B1 (en)
JP (2) JP7258396B2 (en)
KR (1) KR102270116B1 (en)
CN (1) CN111587499A (en)
PL (1) PL3716364T3 (en)
WO (1) WO2019156461A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102571752B1 (en) * 2020-03-25 2023-08-25 삼성에스디아이 주식회사 Rechargeable lithium battery
KR102643670B1 (en) * 2020-03-26 2024-03-04 삼성에스디아이 주식회사 Rechargeable lithium battery
KR102585559B1 (en) * 2020-10-15 2023-10-05 에스케이온 주식회사 Anode for secondary battery, secondary battery including the same
KR20220059927A (en) * 2020-11-03 2022-05-10 주식회사 나노신소재 Slurry composition for positive electrode of lithium secondary battery
JP7288479B2 (en) * 2021-04-19 2023-06-07 プライムプラネットエナジー&ソリューションズ株式会社 Non-aqueous electrolyte secondary battery
CN116417179A (en) * 2023-03-16 2023-07-11 深圳烯湾科技有限公司 Conductive paste and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160146580A (en) * 2015-06-12 2016-12-21 주식회사 엘지화학 Positive electrode material and secondary battery comprising the same
KR20170072027A (en) * 2015-12-16 2017-06-26 주식회사 포스코 Electrode for lithium sulfur battery, mathod for manufacturing the same, and lithium sulfur battery including the same
KR101764455B1 (en) * 2013-11-28 2017-08-03 주식회사 엘지화학 Cathode for lithium-sulfur battery and method for preparing the same
KR20170111740A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 Method for preparing positive electrode of secondary battery, and positive electrode and secondary battery prepared using the same
KR20170127240A (en) * 2016-05-11 2017-11-21 주식회사 엘지화학 Electrode, method for fabricating the same, and lithium secondary battery comprising the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541434B2 (en) * 1992-11-20 1996-10-09 日本電気株式会社 Carbon nano tube manufacturing method
JP2008300189A (en) 2007-05-31 2008-12-11 Fuji Heavy Ind Ltd Electrode composing material, electrode using it, and lithium ion secondary battery
JP2011243558A (en) * 2010-04-22 2011-12-01 Hitachi Maxell Energy Ltd Lithium secondary battery positive electrode and lithium secondary battery
US9676630B2 (en) * 2012-05-25 2017-06-13 The United States Of America As Represented By The Secretary Of The Army High strength carbon nanotube plasma-treated fibers and methods of making
JP5497109B2 (en) 2012-07-03 2014-05-21 昭和電工株式会社 Composite carbon fiber
JP5978824B2 (en) 2012-07-20 2016-08-24 宇部興産株式会社 Fine carbon dispersion, method for producing the same, electrode paste using the same, and electrode for lithium ion battery
JP2016028109A (en) * 2012-11-13 2016-02-25 保土谷化学工業株式会社 Water dispersion of carboxymethylcellulose sodium containing multilayer carbon nanotube
WO2014112436A1 (en) * 2013-01-17 2014-07-24 日本ゼオン株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery
JP2015185229A (en) * 2014-03-20 2015-10-22 三菱マテリアル株式会社 Electrode of lithium ion secondary battery
US10113056B2 (en) * 2014-08-29 2018-10-30 Lg Chem, Ltd. Composite with improved mechanical properties and molded article including the same
US10312519B2 (en) * 2014-11-26 2019-06-04 Showa Denko K.K. Method for manufacturing electroconductive paste, and electroconductive paste
JP6157016B2 (en) 2015-10-06 2017-07-05 株式会社サンセイアールアンドディ Game machine
WO2017074124A1 (en) * 2015-10-28 2017-05-04 주식회사 엘지화학 Conductive material dispersed liquid and lithium secondary battery manufactured using same
CN107851801B (en) 2015-10-28 2020-12-08 株式会社Lg化学 Conductive material dispersion liquid and lithium secondary battery manufactured using the same
CN107046815B (en) 2015-12-09 2020-06-30 株式会社Lg化学 Positive electrode material slurry for lithium secondary battery comprising at least two conductive materials and lithium secondary battery using the same
JP2016048698A (en) 2016-01-04 2016-04-07 日立化成株式会社 Conducting agent for lithium ion secondary battery positive electrode, positive electrode material for lithium ion secondary battery arranged by use thereof, positive electrode mixture for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764455B1 (en) * 2013-11-28 2017-08-03 주식회사 엘지화학 Cathode for lithium-sulfur battery and method for preparing the same
KR20160146580A (en) * 2015-06-12 2016-12-21 주식회사 엘지화학 Positive electrode material and secondary battery comprising the same
KR20170072027A (en) * 2015-12-16 2017-06-26 주식회사 포스코 Electrode for lithium sulfur battery, mathod for manufacturing the same, and lithium sulfur battery including the same
KR20170111740A (en) * 2016-03-29 2017-10-12 주식회사 엘지화학 Method for preparing positive electrode of secondary battery, and positive electrode and secondary battery prepared using the same
KR20170127240A (en) * 2016-05-11 2017-11-21 주식회사 엘지화학 Electrode, method for fabricating the same, and lithium secondary battery comprising the same

Also Published As

Publication number Publication date
JP2022087254A (en) 2022-06-09
PL3716364T3 (en) 2022-11-21
EP3716364A4 (en) 2021-01-06
JP2021508157A (en) 2021-02-25
US11929496B2 (en) 2024-03-12
JP7317434B2 (en) 2023-07-31
EP3716364B1 (en) 2022-09-21
EP3716364A1 (en) 2020-09-30
KR102270116B1 (en) 2021-06-28
JP7258396B2 (en) 2023-04-17
CN111587499A (en) 2020-08-25
KR20190095835A (en) 2019-08-16
US20200343541A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
WO2019156461A1 (en) Positive electrode, and secondary battery comprising positive electrode
WO2018070703A1 (en) Multilayer anode having, in each layer, different amounts of binder and different active material grain size, and lithium secondary battery comprising same
WO2018164405A1 (en) Anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2019168308A1 (en) Cathode and secondary battery including cathode
WO2020149622A1 (en) Anode and secondary battery comprising said anode
WO2018088735A1 (en) Anode and method for fabricating same
WO2019225879A1 (en) Negative electrode active material for lithium secondary battery and method for preparing same
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2020101301A1 (en) Anode active material and manufacturing method therefor
WO2019093820A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019093830A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019164343A1 (en) Secondary battery
WO2019083332A2 (en) Silicon-carbon composite and lithium secondary battery comprising same
WO2018147558A1 (en) Method for manufacturing electrode for secondary battery suitable for long life
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2021133127A1 (en) Aqueous slurry for positive electrode, positive electrode composition, lithium-ion secondary battery including said positive electrode composition, and methods for manufacturing same
WO2019050216A2 (en) Anode active material, anode comprising same anode active material, and secondary battery comprising same anode
WO2020242257A1 (en) Negative electrode and secondary battery comprising negative electrode
WO2023008866A1 (en) Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same
WO2019103498A1 (en) Silicon-based particle-polymer composite, and cathode active material containing same
WO2018203731A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material
WO2022025506A1 (en) Electrode for secondary battery, and secondary battery comprising same
WO2022045852A1 (en) Negative electrode and secondary battery comprising same
WO2014084610A1 (en) Composite for cathode active material and method for manufacturing same
WO2021085946A1 (en) Method for preparing anode active material, anode active material, anode comprising same, and secondary battery comprising the anode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751927

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534964

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019751927

Country of ref document: EP

Effective date: 20200623

NENP Non-entry into the national phase

Ref country code: DE