WO2018203731A1 - Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material - Google Patents

Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material Download PDF

Info

Publication number
WO2018203731A1
WO2018203731A1 PCT/KR2018/005228 KR2018005228W WO2018203731A1 WO 2018203731 A1 WO2018203731 A1 WO 2018203731A1 KR 2018005228 W KR2018005228 W KR 2018005228W WO 2018203731 A1 WO2018203731 A1 WO 2018203731A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
layer
active material
resin
electrode active
Prior art date
Application number
PCT/KR2018/005228
Other languages
French (fr)
Korean (ko)
Inventor
김동혁
김은경
이용주
조래환
최정현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2019560141A priority Critical patent/JP7027643B2/en
Priority to CN201880028840.5A priority patent/CN110622343B/en
Priority to EP18795093.6A priority patent/EP3611784B1/en
Priority to CN202211141716.4A priority patent/CN115440956A/en
Priority to PL18795093T priority patent/PL3611784T3/en
Priority claimed from KR1020180051920A external-priority patent/KR102227809B1/en
Publication of WO2018203731A1 publication Critical patent/WO2018203731A1/en
Priority to US16/671,487 priority patent/US11929497B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material, a negative electrode including the negative electrode active material, a secondary battery including the negative electrode and a method of manufacturing the negative electrode active material, specifically, the method of manufacturing the negative electrode active material is SiO x (0.5 ⁇ x ⁇ 1.3)
  • the method of manufacturing the negative electrode active material is SiO x (0.5 ⁇ x ⁇ 1.3)
  • Preparing a silicon-based compound comprising a; Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; And heat treating the silicon-based compound having the polymer layer and the metal catalyst layer disposed thereon.
  • a representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing.
  • portable devices such as portable computers, portable telephones, cameras, and the like
  • secondary batteries high energy density, that is, high capacity lithium secondary batteries
  • a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator.
  • the negative electrode includes a negative electrode active material for inserting and detaching lithium ions from the positive electrode, and a silicon-based active material having a large discharge capacity may be used as the negative electrode active material.
  • the silicon-based active material is accompanied with excessive shrinkage and expansion during charging and discharging of the battery, the conductive path in the active material is blocked, thereby deteriorating cycle characteristics of the battery.
  • a carbon coating layer was formed on the surface of the silicon-based active material (see Korean Patent Publication No. 10-2016-0149862). Further, there is an attempt to further improve conductivity by allowing the carbon coating layer to include graphene.
  • conventional chemical vapor deposition (CVD) is mainly used, but this process cannot be simplified because a separate hydrocarbon source must be used.
  • One problem to be solved by the present invention is to provide a method of manufacturing a negative electrode active material that can simplify the process of forming a carbon coating layer containing graphene on the surface of the silicon-based active material.
  • Another object of the present invention is to provide a negative electrode active material, a negative electrode, and a secondary battery capable of controlling excessive volume change of the negative electrode active material during charge and discharge of the battery.
  • preparing a silicon-based compound comprising SiO x (0.5 ⁇ x ⁇ 1.3); Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; Heat-treating the silicon compound on which the polymer layer and the metal catalyst layer are disposed; And removing the metal catalyst layer, wherein the polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin , Cellulose resin, epoxy resin, polystyrene resin, resorcinol-based resin, phloroglucinol-based resin, coal-based pitch, petroleum-based pitch and tar, any one selected from the group consisting of or a mixture of two or more thereof This is provided.
  • the polymer compound is glucose, fructose, galactose, maltose, lacto
  • a silicon-based compound including SiO x (0.5 ⁇ x ⁇ 1.3); An amorphous carbon layer disposed on the silicon compound; A graphene layer disposed on the amorphous carbon layer; And a negative electrode active material including a pore layer corresponding to a spaced space between the amorphous carbon layer and the graphene layer, a negative electrode including the negative electrode active material, and a secondary battery including the negative electrode.
  • the manufacturing method of the negative electrode active material according to an embodiment of the present invention does not require a separate CVD process for supplying a carbon raw material when manufacturing the graphene layer.
  • the amorphous carbon layer and the graphene layer may be formed while the polymer layer and the metal catalyst layer are heat treated, the process may be simplified.
  • the internal stress may be alleviated when the battery is charged and discharged by the pore layer in the negative electrode active material. Accordingly, structure collapse of the negative electrode is suppressed, and the conductive path in the negative electrode active material can be maintained, so that the cycle characteristics of the battery can be improved.
  • the terms “comprise”, “comprise” or “have” are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
  • the thickness of the amorphous carbon layer, the graphene layer, the polymer layer, the metal catalyst layer, etc. may be confirmed through a transmission electron microscope (TEM).
  • Method of manufacturing a negative electrode active material comprises the steps of preparing a silicon-based compound comprising SiO x (0.5 ⁇ x ⁇ 1.3); Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; Heat-treating the silicon compound on which the polymer layer and the metal catalyst layer are disposed; And removing the metal catalyst layer, wherein the polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin , Cellulose resin, epoxy resin, polystyrene resin, resorcinol-based resin, phloroglucinol-based resin, coal-based pitch, petroleum-based pitch and tar, any one selected from the group consisting of or a mixture of two or more thereof.
  • the polymer compound is glucose, fructose, galacto
  • the silicon-based compound may include SiO x (0.5 ⁇ x ⁇ 1.3). Preparing the silicon-based compound may include reacting the SiO x1 (0 ⁇ x1 ⁇ 2) with a metal.
  • the SiO x1 (0 ⁇ x1 ⁇ 2 ) may be in the form containing the Si and SiO 2. That is, x and x1 correspond to the number ratio of O to Si contained in the SiO x (0.5 ⁇ x ⁇ 1.3) or the SiO x1 (0 ⁇ x1 ⁇ 2), respectively.
  • the silicon-based compound may further include a metal silicate.
  • the metal silicate may be doped into the SiO x (0.5 ⁇ x ⁇ 1.3) through reacting the SiO x1 (0 ⁇ x1 ⁇ 2) with a metal.
  • the metal silicate may be located inside the silicon-based compound.
  • the metal silicate may be present in a doped state in the SiO x (0.5 ⁇ x ⁇ 1.3).
  • the metal silicate includes at least one selected from the group consisting of Li 2 Si 2 O 5 , Li 3 SiO 3 , Li 4 SiO 4 , Mg 2 SiO 4 , MgSiO 3 , Ca 2 SiO 4 , CaSiO 3 , and TiSiO 4 . It may include.
  • the metal of the metal silicate may be included in an amount of 1 to 30 parts by weight, and specifically 2 to 20 parts by weight, based on 100 parts by weight of SiO x (0.5 ⁇ x ⁇ 1.3). When the above range is satisfied, the growth of Si grains can be suppressed and the initial efficiency can be improved.
  • the SiO x1 (0 ⁇ x1 ⁇ 2 ) with reaction with the metal may be one of a metallic powder or a metallic gas and a reaction containing the metal to SiO x1 (0 ⁇ x1 ⁇ 2 ).
  • the metal may be at least one selected from the group consisting of Li, Mg, Ti, and Ca, and specifically, Li and Mg.
  • the reaction may be performed at 300 ° C. to 1000 ° C. for 1 hour to 24 hours.
  • the reaction may be performed while flowing an inert gas.
  • the inert gas may be at least one selected from the group consisting of Ar, N 2 , Ne, He, and Kr.
  • the preparing of the silicon-based compound may further include removing a part of the metal silicate generated during the reaction with the metal.
  • preparing the silicon-based compound may include removing metal silicates disposed on a surface of the silicon-based compound of the metal silicates generated during the reaction with the metal.
  • the metal silicate can be removed using an aqueous HCl solution.
  • the average particle diameter (D 50 ) of the silicon compound may be 0.1 ⁇ m to 20 ⁇ m, and specifically 0.5 ⁇ m to 10 ⁇ m. When the average particle diameter of the silicon compound satisfies the above range, the rate rate of the battery may be improved.
  • disposing a polymer layer including a polymer compound on the silicon-based compound may include a general method.
  • the polymer layer may be thermally cured after applying the polymer compound on the silicon-based compound, or heat-treated after the carbon-containing material is applied on the silicon-based compound to form the polymer layer.
  • the polymer layer includes polyimide
  • polyacrylic acid (PAA) may be coated on the silicon compound, followed by heat treatment to form the polymer layer.
  • the polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin, cellulose resin, epoxy resin, polystyrene resin, resorcy It may be any one selected from the group consisting of nol resin, phloroglucinol resin, coal-based pitch, petroleum-based pitch and tar, or a mixture of two or more thereof, and specifically, may be polyimide.
  • the polymer layer may have a thickness of 0.001 ⁇ m to 10 ⁇ m, and specifically 0.01 ⁇ m to 5 ⁇ m. If the thickness range is satisfied, a sufficient carbon source can be supplied, so that the graphene layer can be formed continuously and uniformly.
  • the disposing a metal catalyst layer on the polymer layer may include the following method.
  • the silicon-based compound on which the polymer layer is formed may be added to a solution containing a metal salt, and then a metal catalyst layer may be disposed on the polymer layer by using an electroless plating method of adding and stirring a reducing agent.
  • the metal catalyst layer may include at least one selected from the group consisting of Ni, Cu, Fe, Cu, and Co, and specifically, may include Ni.
  • the metal catalyst layer may have a thickness of 0.001 ⁇ m to 10 ⁇ m, and specifically 0.01 ⁇ m to 5 ⁇ m. When the thickness range is satisfied, the graphene layer having high crystallinity may be continuously and uniformly formed.
  • the weight ratio of the polymer layer and the metal catalyst layer may be 1: 1 to 20: 1, and specifically 2: 1 to 10: 1.
  • the graphene layer may be formed continuously and uniformly.
  • the polymer layer may be carbonized through the heat treatment of the silicon-based compound in which the polymer layer and the metal catalyst layer are disposed. Accordingly, an amorphous carbon layer may be formed on the silicon compound.
  • a carbon source generated from a polymer layer may be supplied to the metal catalyst layer to form a graphene layer.
  • the heat treatment may be carried out at 300 °C to 1000 °C, specifically 450 °C to 900 °C. When the heat treatment range is satisfied, the graphene layer having high crystallinity may be formed while silicon grain growth is suppressed.
  • the heat treatment may be performed for 0.5 minutes to 1 hour.
  • the removing of the metal catalyst layer may include the following method.
  • the silicon-based compound having the metal catalyst layer formed in the acidic solution may be added, and then etched and dried for a predetermined time to remove the metal catalyst layer.
  • a pore layer corresponding to a spaced space between the amorphous carbon layer and the metal catalyst layer may be formed. Accordingly, since the volume of the negative electrode active material may be prevented from being excessively changed during charging and discharging of the battery, a conductive path in the negative electrode active material may be secured, thereby improving cycle characteristics.
  • a negative active material a silicon-based compound containing SiO x (0.5 ⁇ x ⁇ 1.3); An amorphous carbon layer disposed on the silicon compound; A graphene layer disposed on the amorphous carbon layer; And a pore layer corresponding to a spaced space between the amorphous carbon layer and the graphene layer.
  • the silicon-based compound including SiO x (0.5 ⁇ x ⁇ 1.3) is the same as described above, and thus description thereof is omitted.
  • the amorphous carbon layer may be disposed on the silicon compound.
  • the amorphous carbon layer may include amorphous carbon, and specifically, may be made of amorphous carbon. By the amorphous carbon layer, the rate (rate) characteristics of the battery can be improved.
  • the amorphous carbon layer may have a thickness of 0.001 ⁇ m to 10 ⁇ m, and specifically 0.01 ⁇ m to 5 ⁇ m. When the thickness range is satisfied, it is possible to manufacture a battery having excellent rate characteristics without reducing the initial efficiency.
  • the graphene layer may be disposed on the amorphous carbon layer.
  • the graphene layer may include graphene, and specifically, may be made of graphene.
  • graphene means a carbonaceous structure having a thickness of 0.2 nm or less, including carbon atoms constituting a hexagonal lattice, having flexibility, and having a thin film form.
  • the graphene layer may have a thickness of 0.5 nm to 200 nm, and specifically 1 nm to 100 nm. If the thickness range is satisfied, the cycle characteristics of the battery may be improved.
  • the amorphous carbon layer and the graphene layer may be formed by carbonizing the above-described polymer layer.
  • the pore layer may be located between the amorphous carbon layer and the graphene layer. Specifically, the pore layer corresponds to a spaced space between the amorphous carbon layer and the graphene layer.
  • the void layer may be one spaced space or two or more spaced spaces. That is, the pore layer may exist on at least a portion of the surface of the amorphous carbon layer, and in the case of two or more spaced spaces, they may be scattered on the surface of the amorphous carbon layer.
  • the pore layer is not formed only by removing the metal catalyst layer. Specifically, the pore layer may be implemented because the polymer layer is contracted while being carbonized (pyrolyzed) by the heat treatment.
  • the heat treatment proceeds, so that the pore layer may be formed.
  • the pore layer may play a role of alleviating internal stress caused by a change in volume of the silicon-based compound during charge and discharge of the battery, thereby maintaining a conductive path of the negative electrode active material.
  • the average thickness of the pore layer may be 0.5nm to 200nm, specifically, may be 100nm to 200nm. When the thickness is satisfied, a sufficient area for alleviating the internal stress caused by the volume change of the silicon-based compound during charge and discharge of the battery is secured, so that the conductive path of the negative electrode active material can be more smoothly maintained.
  • the negative electrode according to another embodiment of the present invention may include a negative electrode active material, wherein the negative electrode active material is the same as the negative electrode active material described above.
  • the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector.
  • the negative electrode active material layer may include the negative electrode active material.
  • the negative electrode active material layer may further include a binder and / or a conductive material.
  • the negative electrode may further include graphite particles, and the graphite particles may be included in the negative electrode active material layer.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidene fluoride (PVDF)), polyacrylonitrile, polymethylmethacrylate (polymethylmethacrylate) , Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM) , Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid (poly acrylic acid) and hydrogen may be included at least one selected from the group consisting of substances substituted with Li, Na or Ca and the like. And also various copolymers thereof.
  • PVDF-co-HFP polyvinylid
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery.
  • Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the graphite-based active material particles may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, and graphitized mesocarbon microbeads.
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
  • the positive electrode may include a positive electrode active material.
  • the cathode active material may be a cathode active material that is commonly used.
  • the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y 1 Mn 2-y 1 O 4 (0 ⁇ y 1 ⁇ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-y2 M y2 O 2 , wherein M is Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and satisfies 0.01 ⁇ y
  • the separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used.
  • porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used.
  • a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
  • the electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion
  • An aprotic organic solvent such as methyl acid or ethyl
  • ethylene carbonate and propylene carbonate which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate.
  • an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
  • the metal salt may be a lithium salt
  • the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -
  • the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery.
  • haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc.
  • Ethyl phosphite triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida
  • One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
  • the temperature of the chamber was then raised to 800 ° C.
  • Ar was used as the inert gas.
  • the chamber temperature was reduced to room temperature to collect the product in the reaction vessel.
  • the collected product was acid treated with HCl.
  • the acid-treated product was milled to have an average particle diameter (D 50 ) of 5 ⁇ m to prepare a silicon compound.
  • the silicon-based compound includes Li 2 Si 2 O 5 and Li 2 SiO 3 , which are metal silicates, and lithium of Li 2 Si 2 O 5 and Li 2 SiO 3 is 100 weight of the silicon-based compound. It was confirmed that the total amount included 5 parts by weight.
  • the silicon compound of Preparation Example 1 was added to a dimethylacetamide (DMAC) solution containing poly acrylic acid (PAA), and stirred for 1 hour in a reducing atmosphere. At this time, Ar gas was used for formation of a reducing atmosphere. Thereafter, the silicon-based compound was extracted through centrifugation, and then PAA-coated silicon-based compound was obtained by vacuum drying.
  • the PAA-coated silicon-based compound was imidized by heat treatment at 300 ° C. for 60 minutes in a reducing atmosphere to form a polyimide layer having a thickness of 1 ⁇ m on the silicon-based compound.
  • the silicon compound on which the polyimide layer was formed was introduced into an aqueous potassium hydroxide (KOH) solution at 50 ° C., followed by stirring for 10 minutes. Thereafter, the silicon compound was extracted by centrifugation. The extracted silicon compound was added to a nickel sulfate (Ni 2 SO 4 ) aqueous solution, stirred for 10 minutes, and then rinsed. Thereafter, the silicon compound was added to an aqueous borohydride solution at 50 ° C., and stirred for 30 minutes to prepare particles having a nickel catalyst layer having a thickness of 100 nm formed on the polyimide layer.
  • KOH potassium hydroxide
  • the particles were introduced into a tube furnace and heat-treated at 600 ° C. for 10 minutes in a reducing atmosphere to form an amorphous carbon layer from the polyimide layer; And a graphene layer disposed on the nickel catalyst layer and including a plurality of graphenes. At this time, Ar gas was used for the reducing atmosphere.
  • the amorphous carbon layer had a thickness of 300 nm and the graphene layer had a thickness of 50 nm.
  • the silicon-based compound having the amorphous carbon layer and the graphene layer formed on the surface of the 1M FeCl 3 aqueous solution was etched for 2 hours, and then dried with ethanol to remove the nickel catalyst layer. As the nickel catalyst layer was removed, a gap layer corresponding to a space in which the amorphous carbon layer and the graphene layer were spaced apart from each other was formed between the amorphous carbon layer and the graphene layer.
  • the thickness of the pore layer was 100 nm to 200 nm.
  • a negative electrode active material of Example 2 was prepared in the same manner as in Example 1, except that the nickel catalyst layer was formed to have a thickness of 50 nm.
  • the thickness of the amorphous carbon layer in the prepared negative active material was 150nm, the thickness of the graphene layer was 25nm.
  • the thickness of the said void layer was 50 nm or more and less than 100 nm.
  • the silicon compound in which the amorphous carbon layer is disposed was placed in a reaction vessel of a chamber, and the temperature of the chamber was raised to 950 ° C. At this time, the atmospheric pressure of the chamber was maintained at 10 mTorr using a rotary pump. Thereafter, after injecting methane gas for 5 minutes, the temperature of the chamber was reduced to room temperature. Thereafter, the product in the reaction vessel was collected to form a crystalline carbon layer having a thickness of 50 nm on the amorphous carbon layer. There was no spaced space between the amorphous carbon layer and the crystalline carbon layer.
  • the silicon compound on which the amorphous carbon layer was formed was added to an aqueous potassium hydroxide (KOH) solution at 50 ° C., followed by stirring for 10 minutes. Thereafter, the silicon compound was extracted by centrifugation. The extracted silicon compound was added to a nickel sulfate (Ni 2 SO 4 ) aqueous solution, stirred for 10 minutes, and then rinsed. Thereafter, the silicon-based compound was added to an aqueous solution of borohydride at 50 ° C., and stirred for 30 minutes to prepare particles having a nickel catalyst layer having a thickness of 100 nm formed on the amorphous carbon layer.
  • KOH potassium hydroxide
  • the silicon-based compound having the nickel catalyst layer and the amorphous carbon layer disposed on the surface thereof was placed in the reaction vessel of the chamber, and the temperature of the chamber was raised to 950 ° C.
  • the atmospheric pressure of the chamber was maintained at 10 mTorr using a rotary pump.
  • the temperature of the chamber was reduced to room temperature.
  • the product in the reaction vessel was collected to form a graphene layer having a thickness of 50 nm on the amorphous carbon layer. There is no spaced space between the amorphous carbon layer and the graphene layer.
  • Examples 1, 2 and Comparative Examples 1, 2, and 3 each of the negative electrode active material, natural graphite, and carbon black, CMC, and styrene butadiene rubber (SBR) having an average particle diameter (D 50 ) of 65 nm were 9.6: 86.2: A negative electrode slurry with a mixture solid content of 45% was prepared by adding and mixing the solvent with distilled water at 1.0: 1.7: 1.5.
  • SBR styrene butadiene rubber
  • Each of the negative electrode slurry was applied to a copper (Cu) metal thin film which is a negative electrode current collector having a thickness of 20 ⁇ m at a loading of 160 mg / 25 cm 2 and dried. At this time, the temperature of the air circulated was 70 °C. Subsequently, a negative electrode was prepared by rolling and applying the slurry to which the slurry was applied and dried, and drying in a vacuum oven at 130 ° C. for 8 hours.
  • Cu copper
  • a negative electrode current collector having a thickness of 20 ⁇ m at a loading of 160 mg / 25 cm 2
  • Each of the negative electrodes was cut into 1.4875 cm 2 circles to form a negative electrode, and a positive electrode was used for Li-metal.
  • An electrolyte solution containing LiPF 6 dissolved in a concentration of 1 M was injected into a mixed solution having a mixing volume of 7: 3 of ethyl methyl carbonate (EMC) and ethylene carbonate (EC) through a separator of porous polyethylene between the positive electrode and the negative electrode.
  • EMC ethyl methyl carbonate
  • EC ethylene carbonate
  • One cycle was charged at 0.1 C and discharged at 0.1 C.
  • the charge was charged at 0.5 C and discharged at 0.5 C from two cycles to 50 cycles.
  • Capacity retention rate (%) (50 discharge capacity / 1 1.0V discharge capacity) ⁇ 100
  • Example 3 Example 4 Comparative Example 4 Comparative Example 5 Comparative Example 6 Capacity retention 96 91 75 85 87
  • the capacity retention rate is significantly higher than that of the battery of Comparative Example 4 using the negative electrode active material containing no graphene High.
  • the batteries of Examples 3 and 4 have a higher capacity retention rate than the batteries of Comparative Examples 5 and 6 including the negative electrode active material prepared by a general method of sequentially forming an amorphous carbon layer and a crystalline carbon layer (or graphene layer). You can see that. This is because, in the case of the negative electrode active materials of Examples 1 and 2, the pore layer plays a role of suppressing structural collapse of the negative electrode active material and maintaining a conductive path.

Abstract

The present invention relates to a method for preparing a negative electrode active material, the method comprising the steps of: preparing a silicon-based compound containing SiOx (0.5<x<1.3); disposing a polymer layer containing a polymer compound on the silicon-based compound; disposing a metal catalyst layer on the polymer layer; heat-treating the silicon-based compound on which the polymer layer and the metal catalyst layer have been disposed; and removing the metal catalyst layer, wherein the polymer compound is any one selected from the group consisting of glucose, fructose, galactose, maltose, lactose, sucrose, a phenol-based resin, a naphthalene resin, a polyvinyl alcohol resin, a urethane resin, a polyimide, a furan resin, a cellulose resin, an epoxy resin, a polystyrene resin, a resorcinol-based resin, a phloroglucinol-based resin, a coal-based pitch, a petroleum-based pitch, and tar, or a mixture of two or more thereof.

Description

음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법A negative electrode active material, a negative electrode including the negative electrode active material, a secondary battery including the negative electrode and a method of manufacturing the negative electrode active material
관련출원과의 상호인용Citation with Related Applications
본 출원은 2017년 5월 4일자 출원된 한국 특허 출원 제10-2017-0057050호 및 2018년 5월 4일자 출원된 한국 특허 출원 제10-2018-0051920호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2017-0057050 filed May 4, 2017 and Korean Patent Application No. 10-2018-0051920 filed May 4, 2018, and All content disclosed in the literature of a Korean patent application is included as part of this specification.
기술분야Field of technology
본 발명은 음극 활물질, 상기 음극 활물질을 포함하는 음극, 상기 음극을 포함하는 이차 전지 및 상기 음극 활물질의 제조 방법에 관한 것으로, 구체적으로 상기 음극 활물질의 제조 방법은 SiOx (0.5<x<1.3)를 포함하는 규소계 화합물을 준비하는 단계; 상기 규소계 화합물 상에 고분자 화합물을 포함하는 폴리머층을 배치하는 단계; 상기 폴리머층 상에 금속 촉매층을 배치하는 단계; 및 상기 폴리머층과 상기 금속 촉매층이 배치된 상기 규소계 화합물을 열처리하는 단계를 포함하는 것을 특징으로 한다.The present invention relates to a negative electrode active material, a negative electrode including the negative electrode active material, a secondary battery including the negative electrode and a method of manufacturing the negative electrode active material, specifically, the method of manufacturing the negative electrode active material is SiO x (0.5 <x <1.3) Preparing a silicon-based compound comprising a; Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; And heat treating the silicon-based compound having the polymer layer and the metal catalyst layer disposed thereon.
화석연료 사용의 급격한 증가로 인하여 대체 에너지나 청정에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학 반응을 이용한 발전, 축전 분야이다.Due to the rapid increase in the use of fossil fuels, the demand for the use of alternative energy or clean energy is increasing, and the most actively researched fields are power generation and storage using electrochemical reactions.
현재 이러한 전기화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차 전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 최근에는 휴대용 컴퓨터, 휴대용 전화기, 카메라 등의 휴대용 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차 전지 중 높은 에너지 밀도, 즉 고용량의 리튬 이차전지에 대해 많은 연구가 행해져 왔고, 또한 상용화되어 널리 사용되고 있다.A representative example of an electrochemical device using such electrochemical energy is a secondary battery, and its use area is gradually increasing. Recently, as the development and demand of portable devices such as portable computers, portable telephones, cameras, and the like, the demand for secondary batteries is rapidly increasing, and among such secondary batteries, high energy density, that is, high capacity lithium secondary batteries Much research has been done on the market and commercialized and widely used.
일반적으로 이차 전지는 양극, 음극, 전해질, 및 분리막으로 구성된다. 음극은 양극으로부터 나온 리튬 이온을 삽입하고 탈리시키는 음극 활물질을 포함하며, 상기 음극 활물질로는 방전 용량이 큰 실리콘계 활물질이 사용될 수 있다. 다만, 상기 실리콘계 활물질은 전지의 충방전 시 과도한 수축과 팽창을 동반하므로, 활물질 내 전도성 경로가 차단되어 전지의 사이클 특성이 저하된다. Generally, a secondary battery is composed of a positive electrode, a negative electrode, an electrolyte, and a separator. The negative electrode includes a negative electrode active material for inserting and detaching lithium ions from the positive electrode, and a silicon-based active material having a large discharge capacity may be used as the negative electrode active material. However, since the silicon-based active material is accompanied with excessive shrinkage and expansion during charging and discharging of the battery, the conductive path in the active material is blocked, thereby deteriorating cycle characteristics of the battery.
이를 해결하기 위해, 종래에는 실리콘계 활물질 표면에 탄소 코팅층을 형성시켰다(대한민국 공개특허공보 제10-2016-0149862호 참조). 나아가, 상기 탄소 코팅층이 그래핀을 포함하도록 하여, 전도성을 더욱 개선하려는 시도가 있다. 실리콘계 활물질 표면에 그래핀을 배치시키기 위해, 종래에는 화학 기상 증착법(CVD)이 주로 사용되고 있으나, 이는 별도의 탄화수소 소스를 사용해야 하므로 공정이 간소화될 수 없었다.In order to solve this problem, conventionally, a carbon coating layer was formed on the surface of the silicon-based active material (see Korean Patent Publication No. 10-2016-0149862). Further, there is an attempt to further improve conductivity by allowing the carbon coating layer to include graphene. In order to arrange the graphene on the surface of the silicon-based active material, conventional chemical vapor deposition (CVD) is mainly used, but this process cannot be simplified because a separate hydrocarbon source must be used.
따라서, 실리콘계 활물질 표면에 그래핀을 포함하는 탄소 코팅층을 배치시킬 수 있는 간소화된 공정이 요구된다.Accordingly, there is a need for a simplified process for disposing a carbon coating layer including graphene on the surface of a silicon-based active material.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허공보 제10-2016-0149862호Republic of Korea Patent Publication No. 10-2016-0149862
본 발명이 해결하고자 하는 일 과제는 실리콘계 활물질 표면에 그래핀을 포함하는 탄소 코팅층을 형성시키는 공정의 간소화가 가능한 음극 활물질의 제조방법을 제공하는 것이다.One problem to be solved by the present invention is to provide a method of manufacturing a negative electrode active material that can simplify the process of forming a carbon coating layer containing graphene on the surface of the silicon-based active material.
본 발명이 해결하고자 하는 또 다른 과제는 전지의 충방전 시 음극 활물질의 과도한 부피 변화를 제어할 수 있는 음극 활물질, 음극, 및 이차 전지를 제공하는 것이다.Another object of the present invention is to provide a negative electrode active material, a negative electrode, and a secondary battery capable of controlling excessive volume change of the negative electrode active material during charge and discharge of the battery.
본 발명의 일 실시예에 따르면, SiOx (0.5<x<1.3)를 포함하는 규소계 화합물을 준비하는 단계; 상기 규소계 화합물 상에 고분자 화합물을 포함하는 폴리머층을 배치하는 단계; 상기 폴리머층 상에 금속 촉매층을 배치하는 단계; 상기 폴리머층과 상기 금속 촉매층이 배치된 상기 규소계 화합물을 열처리하는 단계; 및 상기 금속 촉매층을 제거하는 단계를 포함하며, 상기 고분자 화합물은 글루코스, 프락토스, 갈락토오스, 말토오스, 락토오스, 수크로스, 페놀계 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄수지, 폴리이미드, 퓨란 수지, 셀룰로오스 수지, 에폭시 수지, 폴리스티렌 수지, 레조시놀계 수지, 플로로글루시놀계 수지, 석탄계 핏치, 석유계 핏치 및 타르로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 음극 활물질의 제조 방법이 제공된다.According to one embodiment of the invention, preparing a silicon-based compound comprising SiO x (0.5 <x <1.3); Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; Heat-treating the silicon compound on which the polymer layer and the metal catalyst layer are disposed; And removing the metal catalyst layer, wherein the polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin , Cellulose resin, epoxy resin, polystyrene resin, resorcinol-based resin, phloroglucinol-based resin, coal-based pitch, petroleum-based pitch and tar, any one selected from the group consisting of or a mixture of two or more thereof This is provided.
본 발명의 또 다른 실시예에 따르면, SiOx (0.5<x<1.3)를 포함하는 규소계 화합물; 상기 규소계 화합물 상에 배치된 비정질 탄소층; 상기 비정질 탄소층 상에 배치된 그래핀층; 및 상기 비정질 탄소층과 상기 그래핀층 사이의 이격된 공간에 해당하는 공극층을 포함하는 음극 활물질, 상기 음극 활물질을 포함하는 음극, 및 상기 음극을 포함하는 이차 전지가 제공된다.According to another embodiment of the present invention, a silicon-based compound including SiO x (0.5 <x <1.3); An amorphous carbon layer disposed on the silicon compound; A graphene layer disposed on the amorphous carbon layer; And a negative electrode active material including a pore layer corresponding to a spaced space between the amorphous carbon layer and the graphene layer, a negative electrode including the negative electrode active material, and a secondary battery including the negative electrode.
본 발명의 일 실시예에 따른 음극 활물질의 제조방법은 그래핀층 제조 시 탄소 원료를 공급하는 별도의 CVD 공정을 필요로 하지 않는다. 또한, 폴리머층과 금속 촉매층이 열처리되면서 비정질 탄소층과 그래핀층이 형성될 수 있으므로, 공정의 간소화가 가능하다.The manufacturing method of the negative electrode active material according to an embodiment of the present invention does not require a separate CVD process for supplying a carbon raw material when manufacturing the graphene layer. In addition, since the amorphous carbon layer and the graphene layer may be formed while the polymer layer and the metal catalyst layer are heat treated, the process may be simplified.
본 발명의 또 다른 실시예에 따른 음극 활물질에 따르면, 음극 활물질 내 공극층에 의하여 전지의 충방전 시 내부 응력이 완화될 수 있다. 이에 따라, 음극의 구조 붕괴가 억제되며, 음극 활물질 내 도전성 경로가 유지될 수 있으므로, 전지의 사이클 특성이 개선될 수 있다.According to the negative electrode active material according to another embodiment of the present invention, the internal stress may be alleviated when the battery is charged and discharged by the pore layer in the negative electrode active material. Accordingly, structure collapse of the negative electrode is suppressed, and the conductive path in the negative electrode active material can be maintained, so that the cycle characteristics of the battery can be improved.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as being limited to their ordinary or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best describe their invention. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing exemplary embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.As used herein, the terms "comprise", "comprise" or "have" are intended to indicate that there is a feature, number, step, component, or combination thereof, that is, one or more other features, It should be understood that it does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
본 명세서에 있어서, 비정질 탄소층, 그래핀층, 폴리머층, 금속 촉매층 등의 두께는 transmission electron microscope(TEM)을 통해 확인될 수 있다.In the present specification, the thickness of the amorphous carbon layer, the graphene layer, the polymer layer, the metal catalyst layer, etc. may be confirmed through a transmission electron microscope (TEM).
본 발명의 일 실시예에 따른 음극 활물질의 제조방법은 SiOx (0.5<x<1.3)를 포함하는 규소계 화합물을 준비하는 단계; 상기 규소계 화합물 상에 고분자 화합물을 포함하는 폴리머층을 배치하는 단계; 상기 폴리머층 상에 금속 촉매층을 배치하는 단계; 상기 폴리머층과 상기 금속 촉매층이 배치된 상기 규소계 화합물을 열처리하는 단계; 및 상기 금속 촉매층을 제거하는 단계를 포함하며, 상기 고분자 화합물은 글루코스, 프락토스, 갈락토오스, 말토오스, 락토오스, 수크로스, 페놀계 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄수지, 폴리이미드, 퓨란 수지, 셀룰로오스 수지, 에폭시 수지, 폴리스티렌 수지, 레조시놀계 수지, 플로로글루시놀계 수지, 석탄계 핏치, 석유계 핏치 및 타르로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.Method of manufacturing a negative electrode active material according to an embodiment of the present invention comprises the steps of preparing a silicon-based compound comprising SiO x (0.5 <x <1.3); Disposing a polymer layer including a polymer compound on the silicon compound; Disposing a metal catalyst layer on the polymer layer; Heat-treating the silicon compound on which the polymer layer and the metal catalyst layer are disposed; And removing the metal catalyst layer, wherein the polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin , Cellulose resin, epoxy resin, polystyrene resin, resorcinol-based resin, phloroglucinol-based resin, coal-based pitch, petroleum-based pitch and tar, any one selected from the group consisting of or a mixture of two or more thereof.
상기 규소계 화합물은 SiOx(0.5<x<1.3)를 포함할 수 있다. 상기 규소계 화합물을 준비하는 단계는 상기 SiOx1(0<x1<2)를 금속과 반응시키는 것을 포함할 수 있다. 상기 SiOx1(0<x1<2)는 Si 및 SiO2가 포함된 형태일 수 있다. 즉, 상기 x 및 x1은 각각 상기 SiOx(0.5<x<1.3) 또는 상기 SiOx1(0<x1<2) 내에 포함된 Si에 대한 O의 개수비에 해당한다.The silicon-based compound may include SiO x (0.5 <x <1.3). Preparing the silicon-based compound may include reacting the SiO x1 (0 <x1 <2) with a metal. The SiO x1 (0 <x1 <2 ) may be in the form containing the Si and SiO 2. That is, x and x1 correspond to the number ratio of O to Si contained in the SiO x (0.5 <x <1.3) or the SiO x1 (0 <x1 <2), respectively.
상기 규소계 화합물은 금속 실리케이트를 더 포함할 수도 있다. 구체적으로, 상기 금속 실리케이트는 상기 SiOx1(0<x1<2)를 금속과 반응시키는 것을 통해 상기 SiOx(0.5<x<1.3)에 도핑될 수 있다. 상기 금속 실리케이트는 상기 규소계 화합물 내부에 위치할 수 있다.The silicon-based compound may further include a metal silicate. Specifically, the metal silicate may be doped into the SiO x (0.5 <x <1.3) through reacting the SiO x1 (0 <x1 <2) with a metal. The metal silicate may be located inside the silicon-based compound.
상기 금속 실리케이트는 상기 SiOx(0.5<x<1.3) 내에 도핑된 상태로 존재할 수 있다. 상기 금속 실리케이트는 Li2Si2O5, Li3SiO3, Li4SiO4, Mg2SiO4, MgSiO3, Ca2SiO4, CaSiO3, 및 TiSiO4로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다.The metal silicate may be present in a doped state in the SiO x (0.5 <x <1.3). The metal silicate includes at least one selected from the group consisting of Li 2 Si 2 O 5 , Li 3 SiO 3 , Li 4 SiO 4 , Mg 2 SiO 4 , MgSiO 3 , Ca 2 SiO 4 , CaSiO 3 , and TiSiO 4 . It may include.
상기 금속 실리케이트의 금속은 상기 SiOx(0.5<x<1.3) 100중량부에 대해, 1중량부 내지 30중량부로 포함될 수 있으며, 구체적으로 2중량부 내지 20중량부로 포함될 수 있다. 상기 범위를 만족하는 경우, Si 결정립의 성장이 억제되고 초기 효율이 개선될 수 있다.The metal of the metal silicate may be included in an amount of 1 to 30 parts by weight, and specifically 2 to 20 parts by weight, based on 100 parts by weight of SiO x (0.5 <x <1.3). When the above range is satisfied, the growth of Si grains can be suppressed and the initial efficiency can be improved.
상기 SiOx1(0<x1<2)와 상기 금속과의 반응은 SiOx1(0<x1<2)를 상기 금속을 포함하는 금속성 파우더 또는 금속성 가스와 반응시키는 것일 수 있다. The SiO x1 (0 <x1 <2 ) with reaction with the metal may be one of a metallic powder or a metallic gas and a reaction containing the metal to SiO x1 (0 <x1 <2 ).
상기 금속은 Li, Mg, Ti 및 Ca로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있으며, 구체적으로 Li 및 Mg일 수 있다. 상기 반응은 300℃ 내지 1000℃에서 1시간 내지 24시간 동안 수행될 수 있다. The metal may be at least one selected from the group consisting of Li, Mg, Ti, and Ca, and specifically, Li and Mg. The reaction may be performed at 300 ° C. to 1000 ° C. for 1 hour to 24 hours.
상기 반응은 불활성 가스를 흘려주면서 수행될 수 있다. 상기 불활성 가스는 Ar, N2, Ne, He, 및 Kr로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The reaction may be performed while flowing an inert gas. The inert gas may be at least one selected from the group consisting of Ar, N 2 , Ne, He, and Kr.
상기 규소계 화합물을 준비하는 단계는, 상기 금속과의 반응 과정에서 발생된 상기 금속 실리케이트의 일부를 제거하는 것을 더 포함할 수 있다. 구체적으로, 상기 규소계 화합물을 준비하는 단계는, 상기 금속과의 반응 과정에서 발생된 상기 금속 실리케이트 중 상기 규소계 화합물 표면 상에 배치된 금속 실리케이트를 제거하는 것을 포함할 수 있다. 상기 금속 실리케이트는 HCl 수용액을 사용하여 제거될 수 있다.The preparing of the silicon-based compound may further include removing a part of the metal silicate generated during the reaction with the metal. Specifically, preparing the silicon-based compound may include removing metal silicates disposed on a surface of the silicon-based compound of the metal silicates generated during the reaction with the metal. The metal silicate can be removed using an aqueous HCl solution.
상기 규소계 화합물의 평균 입경(D50)은 0.1㎛ 내지 20㎛일 수 있으며, 구체적으로 0.5㎛ 내지 10㎛일 수 있다. 상기 규소계 화합물의 평균 입경이 상기 범위를 만족하는 경우 전지의 율 특성(rate)가 개선될 수 있다.The average particle diameter (D 50 ) of the silicon compound may be 0.1 μm to 20 μm, and specifically 0.5 μm to 10 μm. When the average particle diameter of the silicon compound satisfies the above range, the rate rate of the battery may be improved.
반드시 이에 한정되는 것은 아니나, 상기 규소계 화합물 상에 고분자 화합물을 포함하는 폴리머층을 배치하는 단계는 일반적인 방법을 포함할 수 있다. 예를 들어, 고분자 화합물을 자체를 상기 규소계 화합물 상에 도포 후 열 경화시키거나, 탄소 함유 물질을 상기 규소계 화합물 상에 도포 후 열처리하여 상기 폴리머층을 형성할 수 있다. 더욱 구체적인 예를 들면, 상기 폴리머층이 폴리이미드를 포함하는 경우, 폴리아크릴산(Poly acrylic acid, PAA)을 상기 규소계 화합물 상에 코팅한 뒤, 열처리하여 상기 폴리머층을 형성할 수 있다.Although not necessarily limited thereto, disposing a polymer layer including a polymer compound on the silicon-based compound may include a general method. For example, the polymer layer may be thermally cured after applying the polymer compound on the silicon-based compound, or heat-treated after the carbon-containing material is applied on the silicon-based compound to form the polymer layer. More specifically, for example, when the polymer layer includes polyimide, polyacrylic acid (PAA) may be coated on the silicon compound, followed by heat treatment to form the polymer layer.
상기 고분자 화합물은 글루코스, 프락토스, 갈락토오스, 말토오스, 락토오스, 수크로스, 페놀계 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄수지, 폴리이미드, 퓨란 수지, 셀룰로오스 수지, 에폭시 수지, 폴리스티렌 수지, 레조시놀계 수지, 플로로글루시놀계 수지, 석탄계 핏치, 석유계 핏치 및 타르로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있으며, 구체적으로 폴리이미드일 수 있다. The polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin, cellulose resin, epoxy resin, polystyrene resin, resorcy It may be any one selected from the group consisting of nol resin, phloroglucinol resin, coal-based pitch, petroleum-based pitch and tar, or a mixture of two or more thereof, and specifically, may be polyimide.
상기 폴리머층의 두께는 0.001㎛ 내지 10㎛일 수 있으며, 구체적으로 0.01㎛ 내지 5㎛일 수 있다. 상기 두께 범위를 만족하는 경우, 충분한 탄소 소스가 공급될 수 있으므로, 그래핀층이 연속적이고 균일하게 형성될 수 있다.The polymer layer may have a thickness of 0.001 μm to 10 μm, and specifically 0.01 μm to 5 μm. If the thickness range is satisfied, a sufficient carbon source can be supplied, so that the graphene layer can be formed continuously and uniformly.
반드시 이에 한정되는 것은 아니나, 상기 폴리머층 상에 금속 촉매층을 배치하는 단계는 다음과 같은 방법을 포함할 수 있다.Although not necessarily limited thereto, the disposing a metal catalyst layer on the polymer layer may include the following method.
상기 폴리머층이 형성된 상기 규소계 화합물을 금속염이 포함된 용액에 투입한 뒤, 환원제를 투입하고 교반하는 무전해 도금법을 이용하여 상기 폴리머층 상에 금속 촉매층을 배치할 수 있다.The silicon-based compound on which the polymer layer is formed may be added to a solution containing a metal salt, and then a metal catalyst layer may be disposed on the polymer layer by using an electroless plating method of adding and stirring a reducing agent.
상기 금속 촉매층은 Ni, Cu, Fe, Cu 및 Co로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 구체적으로 Ni을 포함할 수 있다.The metal catalyst layer may include at least one selected from the group consisting of Ni, Cu, Fe, Cu, and Co, and specifically, may include Ni.
상기 금속 촉매층의 두께는 0.001㎛ 내지 10㎛ 일 수 있으며, 구체적으로 0.01㎛ 내지 5㎛일 수 있다. 상기 두께 범위를 만족하는 경우, 결정성이 높은 그래핀층이 연속적이고 균일하게 형성될 수 있다.The metal catalyst layer may have a thickness of 0.001 μm to 10 μm, and specifically 0.01 μm to 5 μm. When the thickness range is satisfied, the graphene layer having high crystallinity may be continuously and uniformly formed.
상기 폴리머층 상에 금속 촉매층을 배치하는 단계에 있어서, 상기 폴리머층과 상기 금속 촉매층의 중량비는 1:1 내지 20:1일 수 있으며, 구체적으로 2:1 내지 10:1일 수 있다. 상기 중량비 범위를 만족하는 경우, 그래핀층이 연속적이고 균일하게 형성될 수 있다.In the disposing of the metal catalyst layer on the polymer layer, the weight ratio of the polymer layer and the metal catalyst layer may be 1: 1 to 20: 1, and specifically 2: 1 to 10: 1. When the weight ratio range is satisfied, the graphene layer may be formed continuously and uniformly.
상기 폴리머층과 상기 금속 촉매층이 배치된 상기 규소계 화합물을 열처리하는 단계를 통해, 상기 폴리머층이 탄화될 수 있다. 이에 따라, 상기 규소계 화합물 상에 비정질 탄소층이 형성될 수 있다. 이와 동시에, 폴리머층으로부터 생성된 탄소 소스가 상기 금속 촉매층에 공급되어 그래핀층이 형성될 수 있다. 상기 열처리는 300℃ 내지 1000℃에서, 구체적으로 450℃ 내지 900℃로 수행될 수 있다. 상기 열처리 범위를 만족하는 경우, 실리콘 결정립 성장이 억제되면서 결정성이 높은 그래핀층이 형성될 수 있다. 상기 열처리는 0.5분 내지 1시간 동안 수행될 수 있다. The polymer layer may be carbonized through the heat treatment of the silicon-based compound in which the polymer layer and the metal catalyst layer are disposed. Accordingly, an amorphous carbon layer may be formed on the silicon compound. At the same time, a carbon source generated from a polymer layer may be supplied to the metal catalyst layer to form a graphene layer. The heat treatment may be carried out at 300 ℃ to 1000 ℃, specifically 450 ℃ to 900 ℃. When the heat treatment range is satisfied, the graphene layer having high crystallinity may be formed while silicon grain growth is suppressed. The heat treatment may be performed for 0.5 minutes to 1 hour.
반드시 이에 한정되는 것은 아니나, 상기 금속 촉매층을 제거하는 단계는 다음과 같은 방법을 포함할 수 있다.Although not necessarily limited thereto, the removing of the metal catalyst layer may include the following method.
산성 용액에 상기 금속 촉매층이 형성된 규소계 화합물을 투입한 뒤, 소정의 시간으로 에칭하고, 건조하여 금속 촉매층을 제거할 수 있다.The silicon-based compound having the metal catalyst layer formed in the acidic solution may be added, and then etched and dried for a predetermined time to remove the metal catalyst layer.
상기 금속 촉매층을 제거하는 단계에 의하여, 상기 비정질 탄소층과 상기 금속 촉매층 사이의 이격된 공간에 해당하는 공극층이 형성될 수 있다. 이에 따라, 전지의 충방전 시, 음극 활물질의 부피가 과도하게 변화하는 것이 방지될 수 있으므로 음극 활물질 내 도전성 경로가 확보되어 사이클 특성이 개선될 수 있다.By removing the metal catalyst layer, a pore layer corresponding to a spaced space between the amorphous carbon layer and the metal catalyst layer may be formed. Accordingly, since the volume of the negative electrode active material may be prevented from being excessively changed during charging and discharging of the battery, a conductive path in the negative electrode active material may be secured, thereby improving cycle characteristics.
본 발명의 또 다른 실시예에 따른 음극 활물질은, SiOx (0.5<x<1.3)를 포함하는 규소계 화합물; 상기 규소계 화합물 상에 배치된 비정질 탄소층; 상기 비정질 탄소층 상에 배치된 그래핀층; 및 상기 비정질 탄소층과 상기 그래핀층 사이의 이격된 공간에 해당하는 공극층을 포함할 수 있다. 여기서 상기 SiOx (0.5<x<1.3)를 포함하는 규소계 화합물은 상술한 바와 동일하므로 설명을 생략한다.A negative active material according to another embodiment of the present invention, a silicon-based compound containing SiO x (0.5 <x <1.3); An amorphous carbon layer disposed on the silicon compound; A graphene layer disposed on the amorphous carbon layer; And a pore layer corresponding to a spaced space between the amorphous carbon layer and the graphene layer. Here, the silicon-based compound including SiO x (0.5 <x <1.3) is the same as described above, and thus description thereof is omitted.
상기 비정질 탄소층은 상기 규소계 화합물 상에 배치될 수 있다. 상기 비정질 탄소층은 비정질 탄소를 포함할 수 있으며, 구체적으로 비정질 탄소로 이루어질 수 있다. 상기 비정질 탄소층에 의하여, 전지의 율(rate) 특성이 개선될 수 있다.The amorphous carbon layer may be disposed on the silicon compound. The amorphous carbon layer may include amorphous carbon, and specifically, may be made of amorphous carbon. By the amorphous carbon layer, the rate (rate) characteristics of the battery can be improved.
상기 비정질 탄소층의 두께는 0.001㎛ 내지 10㎛일 수 있고, 구체적으로 0.01㎛ 내지 5㎛일 수 있다. 상기 두께 범위를 만족하는 경우, 초기효율의 감소없이 우수한 율 특성을 가지는 전지 제조가 가능하다.The amorphous carbon layer may have a thickness of 0.001 μm to 10 μm, and specifically 0.01 μm to 5 μm. When the thickness range is satisfied, it is possible to manufacture a battery having excellent rate characteristics without reducing the initial efficiency.
상기 그래핀층은 상기 비정질 탄소층 상에 배치될 수 있다. 상기 그래핀층은 그래핀을 포함할 수 있으며, 구체적으로 그래핀으로 이루어질 수 있다. 본 발명에서 그래핀이란, 두께가 0.2nm 이하이며, 육각형의 격자를 이루는 탄소 원자들을 포함하고, 유연성을 가지며, 박막 형태인 탄소질 구조체를 의미한다. 상기 그래핀층에 의하여, 충방전 시 규소계 화합물의 부피팽창이 제어될 수 있으므로, 도전 경로(path)가 차단되는 것이 방지되어 전지의 사이클 특성이 개선될 수 있다.The graphene layer may be disposed on the amorphous carbon layer. The graphene layer may include graphene, and specifically, may be made of graphene. In the present invention, graphene means a carbonaceous structure having a thickness of 0.2 nm or less, including carbon atoms constituting a hexagonal lattice, having flexibility, and having a thin film form. By the graphene layer, since the volume expansion of the silicon-based compound can be controlled during charge and discharge, the conductive path (block) can be prevented from being blocked to improve the cycle characteristics of the battery.
상기 그래핀층의 두께는 0.5nm 내지 200nm일 수 있고, 구체적으로 1nm 내지 100nm 일 수 있다. 상기 두께 범위를 만족하는 경우, 전지의 사이클 특성이 개선될 수 있다.The graphene layer may have a thickness of 0.5 nm to 200 nm, and specifically 1 nm to 100 nm. If the thickness range is satisfied, the cycle characteristics of the battery may be improved.
상기 비정질 탄소층과 상기 그래핀층은 상술한 폴리머층이 탄화되어 형성된 것일 수 있다.The amorphous carbon layer and the graphene layer may be formed by carbonizing the above-described polymer layer.
상기 공극층은 상기 비정질 탄소층과 상기 그래핀층 사이에 위치할 수 있다. 구체적으로, 상기 공극층은 상기 비정질 탄소층과 상기 그래핀층 사이의 이격된 공간에 해당한다. 상기 공극층은 하나의 이격된 공간이거나, 2 이상의 이격된 공간들일 수 있다. 즉, 상기 공극층은 상기 비정질 탄소층의 표면의 적어도 일부 상에 존재할 수 있으며, 2 이상의 이격된 공간인 경우 이들이 상기 비정질 탄소층 표면 상에 산재되어 존재할 수 있다. 상기 공극층은 상기 금속 촉매층이 제거되는 것만으로 형성되지 않는다. 구체적으로, 상기 공극층은 상술한 폴리머층이 상기 열처리에 의해 탄화(열분해)되면서 수축되므로 구현될 수 있다. 즉, 본 발명의 제조방법에 따라 폴리머층과 금속 촉매층이 순차적으로 형성된 뒤, 열처리가 진행되므로 상기 공극층이 형성될 수 있다. 상기 공극층은 전지의 충방전 시 규소계 화합물의 부피 변화에 따른 내부 응력을 완화시키는 역할을 할 수 있어서, 음극 활물질의 도전성 경로을 유지할 수 있다. The pore layer may be located between the amorphous carbon layer and the graphene layer. Specifically, the pore layer corresponds to a spaced space between the amorphous carbon layer and the graphene layer. The void layer may be one spaced space or two or more spaced spaces. That is, the pore layer may exist on at least a portion of the surface of the amorphous carbon layer, and in the case of two or more spaced spaces, they may be scattered on the surface of the amorphous carbon layer. The pore layer is not formed only by removing the metal catalyst layer. Specifically, the pore layer may be implemented because the polymer layer is contracted while being carbonized (pyrolyzed) by the heat treatment. That is, after the polymer layer and the metal catalyst layer are sequentially formed according to the manufacturing method of the present invention, the heat treatment proceeds, so that the pore layer may be formed. The pore layer may play a role of alleviating internal stress caused by a change in volume of the silicon-based compound during charge and discharge of the battery, thereby maintaining a conductive path of the negative electrode active material.
상기 공극층의 평균 두께는 0.5nm 내지 200nm일 수 있으며, 구체적으로 100nm 내지 200nm일 수 있다. 상기 두께를 만족하는 경우, 전지의 충방전 시 규소계 화합물의 부피 변화에 따른 내부 응력을 완화시킬 수 있는 충분한 영역이 확보되어, 음극 활물질의 도전성 경로가 더욱 원활하게 유지될 수 있다.The average thickness of the pore layer may be 0.5nm to 200nm, specifically, may be 100nm to 200nm. When the thickness is satisfied, a sufficient area for alleviating the internal stress caused by the volume change of the silicon-based compound during charge and discharge of the battery is secured, so that the conductive path of the negative electrode active material can be more smoothly maintained.
본 발명의 또 다른 실시예에 따른 음극은 음극 활물질을 포함할 수 있으며, 여기서 상기 음극 활물질은 상술한 음극 활물질과 동일하다. 구체적으로, 상기 음극은 집전체 및 상기 집전체 상에 배치된 음극 활물질층을 포함할 수 있다. 상기 음극 활물질층은 상기 음극 활물질을 포함할 수 있다. 나아가, 상기 음극 활물질층은 바인더 및/또는 도전재를 더 포함할 수 있다. 또한, 상기 음극은 흑연계 입자를 더 포함할 수 있으며, 상기 흑연계 입자는 상기 음극 활물질층에 포함될 수 있다.The negative electrode according to another embodiment of the present invention may include a negative electrode active material, wherein the negative electrode active material is the same as the negative electrode active material described above. Specifically, the negative electrode may include a current collector and a negative electrode active material layer disposed on the current collector. The negative electrode active material layer may include the negative electrode active material. Furthermore, the negative electrode active material layer may further include a binder and / or a conductive material. In addition, the negative electrode may further include graphite particles, and the graphite particles may be included in the negative electrode active material layer.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride, PVDF), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.The binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidene fluoride (PVDF)), polyacrylonitrile, polymethylmethacrylate (polymethylmethacrylate) , Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM) , Sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, poly acrylic acid (poly acrylic acid) and hydrogen may be included at least one selected from the group consisting of substances substituted with Li, Na or Ca and the like. And also various copolymers thereof.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery. Examples of the conductive material include graphite such as natural graphite and artificial graphite; Carbon blacks such as carbon black, acetylene black, Ketjen black, channel black, farnes black, lamp black and thermal black; Conductive fibers such as carbon fibers and metal fibers; Conductive tubes such as carbon nanotubes; Metal powders such as fluorocarbon, aluminum and nickel powders; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
상기 흑연계 활물질 입자는 인조흑연, 천연흑연, 흑연화 탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 1종 이상일 수 있다. 상기 흑연계 활물질 입자를 2차 입자와 함께 사용함으로써, 전지의 충·방전 특성이 개선될 수 있다.The graphite-based active material particles may be at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber, and graphitized mesocarbon microbeads. By using the graphite active material particles together with the secondary particles, the charge and discharge characteristics of the battery can be improved.
본 발명의 또 다른 실시예에 따른 이차 전지는, 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 음극은 상술한 음극과 동일하다. 상기 음극에 대해서는 상술하였으므로, 구체적인 설명을 생략한다.A secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, and the negative electrode is the same as the negative electrode described above. Since the cathode has been described above, a detailed description thereof will be omitted.
상기 양극은 양극 활물질을 포함할 수 있다. 상기 양극 활물질은 통상적으로 사용되는 양극 활물질일 수 있다. 구체적으로, 상기 양극 활물질은 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+y1Mn2-y1O4 (0≤y1≤0.33), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 동 산화물(Li2CuO2); LiV3O8, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-y2My2O2 (여기서, M은 Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, 0.01≤y2≤0.3를 만족한다)으로 표현되는 Ni 사이트형 리튬 니켈 산화물; 화학식 LiMn2-y3My3O2 (여기서, M은 Co, Ni, Fe, Cr, Zn 또는 Ta 이고, 0.01≤y3≤0.1를 만족한다) 또는 Li2Mn3MO8 (여기서, M은 Fe, Co, Ni, Cu 또는 Zn 이다.)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 양극은 Li-metal일 수도 있다.The positive electrode may include a positive electrode active material. The cathode active material may be a cathode active material that is commonly used. Specifically, the cathode active material may be a layered compound such as lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), or a compound substituted with one or more transition metals; Lithium manganese oxides such as Li 1 + y 1 Mn 2-y 1 O 4 (0 ≦ y 1 ≦ 0.33), LiMnO 3 , LiMn 2 O 3 , LiMnO 2 ; Lithium copper oxide (Li 2 CuO 2 ); Vanadium oxides such as LiV 3 O 8 , V 2 O 5 , Cu 2 V 2 O 7, and the like; Ni-site type lithium nickel oxide represented by the formula LiNi 1-y2 M y2 O 2 , wherein M is Co, Mn, Al, Cu, Fe, Mg, B, or Ga, and satisfies 0.01 ≦ y2 ≦ 0.3; LiMn 2-y3 M y3 O 2 , wherein M is Co, Ni, Fe, Cr, Zn or Ta, and satisfies 0.01 ≦ y3 ≦ 0.1; or Li 2 Mn 3 MO 8 , wherein M is Fe, Lithium manganese composite oxide represented by Co, Ni, Cu, or Zn .; LiMn 2 O 4 in which a part of Li in the formula is substituted with alkaline earth metal ions, etc. may be mentioned, but is not limited thereto. The anode may be Li-metal.
분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.The separator separates the negative electrode from the positive electrode and provides a passage for lithium ions, and can be used without particular limitation as long as the separator is used as a separator in a secondary battery. In particular, it has a low resistance to ion migration of the electrolyte and an excellent ability to hydrate the electrolyte. It is preferable. Specifically, a porous polymer film, for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene / butene copolymer, ethylene / hexene copolymer and ethylene / methacrylate copolymer or the like Laminate structures of two or more layers may be used. In addition, conventional porous nonwoven fabrics such as nonwoven fabrics made of high melting point glass fibers, polyethylene terephthalate fibers and the like may be used. In addition, a coated separator including a ceramic component or a polymer material may be used to secure heat resistance or mechanical strength, and may be optionally used as a single layer or a multilayer structure.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.The electrolyte may include an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, a molten inorganic electrolyte, and the like, which can be used in manufacturing a lithium secondary battery, but are not limited thereto.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다. Specifically, the electrolyte may include a non-aqueous organic solvent and a metal salt.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.As the non-aqueous organic solvent, for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylo lactone, 1,2-dime Methoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolon, formamide, dimethylformamide, dioxoron, acetonitrile, nitromethane, methyl formate, Methyl acetate, phosphate triester, trimethoxy methane, dioxorone derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethers, pyrion An aprotic organic solvent such as methyl acid or ethyl propionate can be used.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다. In particular, ethylene carbonate and propylene carbonate, which are cyclic carbonates among the carbonate-based organic solvents, may be preferably used as high-viscosity organic solvents because they have high dielectric constants to dissociate lithium salts well, such as dimethyl carbonate and diethyl carbonate. When the same low viscosity, low dielectric constant linear carbonate is mixed and used in an appropriate ratio, an electrolyte having a high electrical conductivity can be made, and thus it can be more preferably used.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종 이상을 사용할 수 있다.The metal salt may be a lithium salt, the lithium salt is a material that is readily soluble in the non-aqueous electrolyte, for example, is in the lithium salt anion F -, Cl -, I - , NO 3 -, N (CN ) 2 -, BF 4 -, ClO 4 -, PF 6 -, (CF 3) 2 PF 4 -, (CF 3) 3 PF 3 -, (CF 3) 4 PF 2 -, (CF 3) 5 PF - , (CF 3) 6 P - , CF 3 SO 3 -, CF 3 CF 2 SO 3 -, (CF 3 SO 2) 2 N -, (FSO 2) 2 N -, CF 3 CF 2 (CF 3) 2 CO -, (CF 3 SO 2 ) 2 CH -, (SF 5) 3 C -, (CF 3 SO 2) 3 C -, CF 3 (CF 2) 7 SO 3 -, CF 3 CO 2 -, CH 3 CO 2 -, SCN - can be used at least one member selected from the group consisting of - and (CF 3 CF 2 SO 2) 2 N.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.In addition to the electrolyte components, the electrolyte includes, for example, haloalkylene carbonate-based compounds such as difluoro ethylene carbonate, pyridine, tri, etc. for the purpose of improving battery life characteristics, reducing battery capacity, and improving discharge capacity of the battery. Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N, N-substituted imida One or more additives such as zolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol or aluminum trichloride may be included.
본 발명의 다른 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.According to another embodiment of the present invention, a battery module including the secondary battery as a unit cell and a battery pack including the same are provided. Since the battery module and the battery pack include the secondary battery having high capacity, high rate characteristics, and cycle characteristics, a medium-large device selected from the group consisting of an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, and a power storage system It can be used as a power source.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 상기 실시예는 본 기재를 예시하는 것일 뿐 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.Hereinafter, preferred embodiments are provided to aid in understanding the present invention, but the above embodiments are merely illustrative of the present disclosure, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present disclosure. It is natural that such variations and modifications fall within the scope of the appended claims.
실시예 및 비교예Examples and Comparative Examples
제조예 1: 규소계 화합물의 준비Preparation Example 1 Preparation of Silicon Compound
SiO 분말 20g 및 금속 리튬 파우더 2g을 혼합 후 챔버의 반응 용기 안에 수납하고, 이어 상기 챔버의 온도를 800℃로 승온하였다. 이 때, 불활성 가스는 Ar을 사용하였다. 이 후, 2시간 동안 열처리한 뒤, 챔버 온도를 상온으로 감온하여, 반응 용기 내의 생성물을 포집하였다. 포집된 생성물을 HCl을 이용하여 산처리하였다. 이 후, 산처리된 생성물을 평균 입경(D50)이 5㎛이 되도록 밀링하여, 규소계 화합물을 제조하였다. XRD로 측정한 결과, 상기 규소계 화합물은 금속 실리케이트인 Li2Si2O5 및 Li2SiO3를 포함하며, 상기 Li2Si2O5 및 Li2SiO3의 리튬은 상기 규소계 화합물 100중량부에 대해 총 5중량부로 포함된 것을 확인하였다.After mixing 20 g of SiO powder and 2 g of metal lithium powder were accommodated in a reaction vessel of a chamber, the temperature of the chamber was then raised to 800 ° C. At this time, Ar was used as the inert gas. Thereafter, after the heat treatment for 2 hours, the chamber temperature was reduced to room temperature to collect the product in the reaction vessel. The collected product was acid treated with HCl. Thereafter, the acid-treated product was milled to have an average particle diameter (D 50 ) of 5 μm to prepare a silicon compound. As measured by XRD, the silicon-based compound includes Li 2 Si 2 O 5 and Li 2 SiO 3 , which are metal silicates, and lithium of Li 2 Si 2 O 5 and Li 2 SiO 3 is 100 weight of the silicon-based compound. It was confirmed that the total amount included 5 parts by weight.
실시예 1: 음극 활물질의 제조Example 1 Preparation of Anode Active Material
(1) 폴리머층 형성(1) polymer layer formation
제조예 1의 규소계 화합물을 폴리아크릴산(Poly acrylic acid, PAA)이 포함된 디메틸아세트아미드(dimethylacetamide, DMAC) 용액에 투입하고, 환원 분위기에서 1시간 동안 교반하였다. 이 때, 환원 분위기 형성에는 Ar 가스가 사용되었다. 이 후, 원심분리를 통해 상기 규소계 화합물을 추출한 뒤, 진공 건조를 통해 표면에 PAA가 코팅된 규소계 화합물을 수득하였다. 표면에 PAA가 코팅된 규소계 화합물을 환원 분위기, 300℃에서 60분간 열처리하여 이미드화(imidization)시켜 규소계 화합물 상에 1㎛ 두께의 폴리이미드층을 형성하였다.The silicon compound of Preparation Example 1 was added to a dimethylacetamide (DMAC) solution containing poly acrylic acid (PAA), and stirred for 1 hour in a reducing atmosphere. At this time, Ar gas was used for formation of a reducing atmosphere. Thereafter, the silicon-based compound was extracted through centrifugation, and then PAA-coated silicon-based compound was obtained by vacuum drying. The PAA-coated silicon-based compound was imidized by heat treatment at 300 ° C. for 60 minutes in a reducing atmosphere to form a polyimide layer having a thickness of 1 μm on the silicon-based compound.
(2) 금속 촉매층의 형성(2) Formation of Metal Catalyst Layer
폴리이미드층이 형성된 규소계 화합물을 50℃의 수산화칼륨(potassium hydroxide, KOH) 수용액에 투입한 뒤, 10분간 교반하였다. 이 후, 원심분리를 통해 상기 규소계 화합물을 추출하였다. 추출된 상기 규소계 화합물을 황산 니켈(nickel sulfate, Ni2SO4) 수용액에 투입하고 10분간 교반한 뒤, 세척(rinsing)하였다. 이 후, 상기 규소계 화합물을 50℃의 수소화불소(borohydride) 수용액에 투입하고, 30분간 교반하여 100nm 두께의 니켈 촉매층이 상기 폴리이미드층 상에 형성된 입자를 제조하였다. The silicon compound on which the polyimide layer was formed was introduced into an aqueous potassium hydroxide (KOH) solution at 50 ° C., followed by stirring for 10 minutes. Thereafter, the silicon compound was extracted by centrifugation. The extracted silicon compound was added to a nickel sulfate (Ni 2 SO 4 ) aqueous solution, stirred for 10 minutes, and then rinsed. Thereafter, the silicon compound was added to an aqueous borohydride solution at 50 ° C., and stirred for 30 minutes to prepare particles having a nickel catalyst layer having a thickness of 100 nm formed on the polyimide layer.
(3) 열처리(3) heat treatment
상기 입자를 튜브 반응로(tube furnace)에 투입하고, 600℃, 환원 분위기에서 10분간 열처리하여, 상기 폴리이미드층으로부터 비정질 탄소층; 및 니켈 촉매층 상에 배치되며 복수의 그래핀을 포함하는 그래핀층;을 형성하였다. 이 때, 환원 분위기를 위해 Ar 가스를 사용하였다. 상기 비정질 탄소층의 두께는 300nm였으며, 상기 그래핀층의 두께는 50nm였다. The particles were introduced into a tube furnace and heat-treated at 600 ° C. for 10 minutes in a reducing atmosphere to form an amorphous carbon layer from the polyimide layer; And a graphene layer disposed on the nickel catalyst layer and including a plurality of graphenes. At this time, Ar gas was used for the reducing atmosphere. The amorphous carbon layer had a thickness of 300 nm and the graphene layer had a thickness of 50 nm.
(4) 금속 촉매층의 제거(4) removal of the metal catalyst layer
1M FeCl3 수용액에, 표면 상에 상기 비정질 탄소층과 그래핀층이 형성된 규소계 화합물을 투입하여 2시간 동안 에칭한 뒤, 에탄올로 건조시켜 상기 니켈 촉매층을 제거하였다. 상기 니켈 촉매층이 제거되면서, 상기 비정질 탄소층과 상기 그래핀층 사이에는 상기 비정질 탄소층과 상기 그래핀층이 서로 이격된 공간에 해당하는 공극층이 형성되었다. 상기 공극층의 두께는 100nm 내지 200nm 였다. The silicon-based compound having the amorphous carbon layer and the graphene layer formed on the surface of the 1M FeCl 3 aqueous solution was etched for 2 hours, and then dried with ethanol to remove the nickel catalyst layer. As the nickel catalyst layer was removed, a gap layer corresponding to a space in which the amorphous carbon layer and the graphene layer were spaced apart from each other was formed between the amorphous carbon layer and the graphene layer. The thickness of the pore layer was 100 nm to 200 nm.
실시예 2: 음극 활물질의 제조Example 2: Preparation of Anode Active Material
두께가 50nm가 되도록 니켈 촉매층을 형성한 것을 제외하고는, 실시예 1과 동일한 방법으로 실시예 2의 음극 활물질을 제조하였다. 제조된 음극 활물질 내에서 상기 비정질 탄소층의 두께는 150nm였으며, 상기 그래핀층의 두께는 25nm였다. 또한, 상기 공극층의 두께는 50nm 이상 100nm 미만 이였다.A negative electrode active material of Example 2 was prepared in the same manner as in Example 1, except that the nickel catalyst layer was formed to have a thickness of 50 nm. The thickness of the amorphous carbon layer in the prepared negative active material was 150nm, the thickness of the graphene layer was 25nm. In addition, the thickness of the said void layer was 50 nm or more and less than 100 nm.
비교예 1: 음극 활물질의 제조Comparative Example 1: Preparation of Anode Active Material
(1) 비정질 탄소층 형성(1) amorphous carbon layer formation
제조예 1의 규소계 화합물 100g과 콜타르 피치 7g을 혼합한 후, 950℃에서 열처리함으로써, 규소계 화합물 표면에 300nm두께의 비정질 탄소층이 배치된 음극 활물질을 형성하였다.100 g of the silicon compound of Preparation Example 1 and 7 g of coal tar pitch were mixed and then heat treated at 950 ° C. to form a negative electrode active material having an amorphous carbon layer having a thickness of 300 nm disposed on the surface of the silicon compound.
비교예 2: 음극 활물질의 제조Comparative Example 2: Preparation of Anode Active Material
(1) 비정질 탄소층 형성(1) amorphous carbon layer formation
제조예 1의 규소계 화합물 100g과 콜타르 피치 7g을 혼합한 후, 950℃에서 열처리함으로써, 규소계 화합물 표면에 300nm두께의 비정질 탄소층을 형성하였다.After mixing 100 g of the silicon-based compound of Preparation Example 1 and 7 g of coal tar pitch, and heat treatment at 950 ° C, an amorphous carbon layer having a thickness of 300 nm was formed on the surface of the silicon-based compound.
(2) 결정질 탄소층 형성(2) crystalline carbon layer formation
구체적으로, 상기 비정질 탄소층이 배치된 규소계 화합물을 챔버의 반응 용기 안에 두고, 상기 챔버의 온도를 950℃로 승온하였다. 이 때, 로터리 펌프를 이용하여 챔버의 기압을 10mTorr로 유지하였다. 이 후, 5분 동안 메탄 가스를 주입한 뒤, 챔버의 온도를 상온으로 감온시켰다. 이 후, 반응 용기 내의 생성물을 포집하여, 상기 비정질 탄소층 상에 두께가 50nm인 결정질 탄소층을 형성하였다. 상기 비정질 탄소층과 상기 결정질 탄소층 사이에는 이격된 공간이 존재하지 않았다.Specifically, the silicon compound in which the amorphous carbon layer is disposed was placed in a reaction vessel of a chamber, and the temperature of the chamber was raised to 950 ° C. At this time, the atmospheric pressure of the chamber was maintained at 10 mTorr using a rotary pump. Thereafter, after injecting methane gas for 5 minutes, the temperature of the chamber was reduced to room temperature. Thereafter, the product in the reaction vessel was collected to form a crystalline carbon layer having a thickness of 50 nm on the amorphous carbon layer. There was no spaced space between the amorphous carbon layer and the crystalline carbon layer.
비교예 3: 음극 활물질의 제조Comparative Example 3: Preparation of Anode Active Material
(1) 비정질 탄소층 형성(1) amorphous carbon layer formation
제조예 1의 규소계 화합물 100g과 콜타르 피치 7g을 혼합한 후, 950℃에서 열처리함으로써, 규소계 화합물 표면에 300nm두께의 비정질 탄소층을 형성하였다.After mixing 100 g of the silicon-based compound of Preparation Example 1 and 7 g of coal tar pitch, and heat treatment at 950 ° C, an amorphous carbon layer having a thickness of 300 nm was formed on the surface of the silicon-based compound.
(2) 금속 촉매층의 형성(2) Formation of Metal Catalyst Layer
비정질 탄소층이 형성된 규소계 화합물을 50℃의 수산화칼륨(potassium hydroxide, KOH) 수용액에 투입한 뒤, 10분간 교반하였다. 이 후, 원심분리를 통해 상기 규소계 화합물을 추출하였다. 추출된 상기 규소계 화합물을 황산 니켈(nickel sulfate, Ni2SO4) 수용액에 투입하고 10분간 교반한 뒤, 세척(rinsing)하였다. 이 후, 상기 규소계 화합물을 50℃의 수소화불소(borohydride) 수용액에 투입하고, 30분간 교반하여 100nm 두께의 니켈 촉매층이 상기 비정질 탄소층 상에 형성된 입자를 제조하였다.The silicon compound on which the amorphous carbon layer was formed was added to an aqueous potassium hydroxide (KOH) solution at 50 ° C., followed by stirring for 10 minutes. Thereafter, the silicon compound was extracted by centrifugation. The extracted silicon compound was added to a nickel sulfate (Ni 2 SO 4 ) aqueous solution, stirred for 10 minutes, and then rinsed. Thereafter, the silicon-based compound was added to an aqueous solution of borohydride at 50 ° C., and stirred for 30 minutes to prepare particles having a nickel catalyst layer having a thickness of 100 nm formed on the amorphous carbon layer.
(3) 그래핀층의 형성(3) Formation of Graphene Layer
구체적으로, 니켈 촉매층과 비정질 탄소층이 표면에 배치된 상기 규소계 화합물을 챔버의 반응 용기 안에 두고, 상기 챔버의 온도를 950℃로 승온하였다. 이 때, 로터리 펌프를 이용하여 챔버의 기압을 10mTorr로 유지하였다. 이 후, 5분 동안 메탄 가스를 주입한 뒤, 챔버의 온도를 상온으로 감온시켰다. 이 후, 반응 용기 내의 생성물을 포집하여, 상기 비정질 탄소층 상에 두께가 50nm인 그래핀층을 형성하였다. 상기 비정질 탄소층과 상기 그래핀층 사이에는 이격된 공간이 존재하지 않았다.Specifically, the silicon-based compound having the nickel catalyst layer and the amorphous carbon layer disposed on the surface thereof was placed in the reaction vessel of the chamber, and the temperature of the chamber was raised to 950 ° C. At this time, the atmospheric pressure of the chamber was maintained at 10 mTorr using a rotary pump. Thereafter, after injecting methane gas for 5 minutes, the temperature of the chamber was reduced to room temperature. Thereafter, the product in the reaction vessel was collected to form a graphene layer having a thickness of 50 nm on the amorphous carbon layer. There is no spaced space between the amorphous carbon layer and the graphene layer.
실시예 3, 4 및 비교예 4, 5, 6: 이차 전지의 제조Examples 3, 4 and Comparative Examples 4, 5, 6: Preparation of Secondary Battery
실시예 1, 2 및 비교예 1, 2, 3의 음극 활물질을 각각 사용하여, 실시예 3, 4 및 비교예 4, 5, 6의 이차 전지를 제조하였다. Secondary batteries of Examples 3 and 4 and Comparative Examples 4, 5 and 6 were prepared using the negative electrode active materials of Examples 1 and 2 and Comparative Examples 1, 2 and 3, respectively.
구체적으로, 실시예 1, 2 및 비교예 1, 2, 3 각각의 음극 활물질, 천연흑연, 평균입경(D50)이 65nm인 카본블랙, CMC, 스티렌 부타디엔 고무(SBR)를 중량비 9.6:86.2:1.0:1.7:1.5 로 용매인 증류수에 첨가 및 혼합하여 혼합물 고형분 45%의 음극 슬러리를 제조하였다.Specifically, Examples 1, 2 and Comparative Examples 1, 2, and 3 each of the negative electrode active material, natural graphite, and carbon black, CMC, and styrene butadiene rubber (SBR) having an average particle diameter (D 50 ) of 65 nm were 9.6: 86.2: A negative electrode slurry with a mixture solid content of 45% was prepared by adding and mixing the solvent with distilled water at 1.0: 1.7: 1.5.
상기 음극 슬러리 각각을 두께가 20㎛인 음극 집전체인 구리(Cu) 금속 박막에 160mg/25cm2의 로딩으로 도포, 건조하였다. 이때 순환되는 공기의 온도는 70℃였다. 이어서, 상기 슬러리가 도포, 건조된 음극 집전체를 압연(roll press)하고 130℃의 진공 오븐에서 8시간 동안 건조시켜 음극을 제조하였다.Each of the negative electrode slurry was applied to a copper (Cu) metal thin film which is a negative electrode current collector having a thickness of 20 μm at a loading of 160 mg / 25 cm 2 and dried. At this time, the temperature of the air circulated was 70 ℃. Subsequently, a negative electrode was prepared by rolling and applying the slurry to which the slurry was applied and dried, and drying in a vacuum oven at 130 ° C. for 8 hours.
상기 음극을 각각 1.4875cm2의 원형으로 절단하여 이를 음극으로 하고, 양극은 Li-metal을 사용하였다. 상기 양극과 음극 사이에 다공성 폴리에틸렌의 분리막을 개재하고, 에틸메틸카보네이트(EMC)와 에틸렌카보네이트(EC)의 혼합 부피기 7:3인 혼합 용액에 1M 농도의 LiPF6이 용해된 전해액을 주입하여 Li-metal 및 음극이 1장씩 포함된 코인 하프 전지(coin-half-cell)을 제조하였다.Each of the negative electrodes was cut into 1.4875 cm 2 circles to form a negative electrode, and a positive electrode was used for Li-metal. An electrolyte solution containing LiPF 6 dissolved in a concentration of 1 M was injected into a mixed solution having a mixing volume of 7: 3 of ethyl methyl carbonate (EMC) and ethylene carbonate (EC) through a separator of porous polyethylene between the positive electrode and the negative electrode. A coin-half-cell including a metal and a negative electrode was prepared one by one.
시험예 1: 용량 유지율의 평가Test Example 1: Evaluation of Capacity Retention Rate
실시예 3, 4 및 비교예 4, 5, 6의 이차 전지 각각에 대하여, 다음과 같은 방법으로 용량 유지율을 평가한 뒤, 표 1에 나타내었다.For each of the secondary batteries of Examples 3 and 4 and Comparative Examples 4, 5 and 6, the capacity retention rate was evaluated in the following manner, and then shown in Table 1.
실시예 3, 4 및 비교예 4, 5, 6의 이차 전지 각각에 대하여, 다음과 같은 방법으로 용량 유지율을 평가한 뒤, 표 3에 나타내었다.For each of the secondary batteries of Examples 3 and 4 and Comparative Examples 4, 5 and 6, the capacity retention rate was evaluated in the following manner, and then shown in Table 3.
1회 사이클은 0.1C로 충전, 0.1C로 방전하였고, 2회 사이클부터 50회 싸이클까지는 0.5C로 충전, 0.5C로 방전을 수행하였다. One cycle was charged at 0.1 C and discharged at 0.1 C. The charge was charged at 0.5 C and discharged at 0.5 C from two cycles to 50 cycles.
충전 조건: CC(정전류)/CV(정전압)(5mV/0.005C current cut-off) Charging Conditions: CC (Constant Current) / CV (Constant Voltage) (5mV / 0.005C current cut-off)
방전 조건: CC(정전류) 조건 1.0VDischarge condition: CC (constant current) condition 1.0 V
용량 유지율은 각각 다음과 같은 계산에 의해 도출되었다. Dose retention rates were each derived by the following calculations.
용량 유지율(%) = (50회 방전 용량 / 1회 1.0V 방전 용량)×100Capacity retention rate (%) = (50 discharge capacity / 1 1.0V discharge capacity) × 100
실시예 3Example 3 실시예 4Example 4 비교예 4Comparative Example 4 비교예 5Comparative Example 5 비교예 6Comparative Example 6
용량 유지율Capacity retention 9696 9191 7575 8585 8787
상기 표 1을 참조하면, 본원발명의 제조방법에 따라 제조된 음극 활물질을 사용한 실시예 3, 4의 전지의 경우, 그래핀을 불포함하는 음극 활물질을 사용한 비교예 4의 전지에 비해 용량 유지율이 현저히 높았다. 또한, 실시예 3, 4의 전지는 비정질 탄소층과 결정질 탄소층(또는 그래핀층)을 순차적으로 형성시키는 일반적인 방법으로 제조된 음극 활물질을 포함하는 비교예 5, 6의 전지에 비해서도 용량 유지율이 높은 것을 확인할 수 있다. 이는, 실시예 1, 2의 음극 활물질의 경우, 공극층이 음극 활물질의 구조 붕괴를 억제하고 도전성 경로를 유지하는 역할을 하기 때문으로 보인다.Referring to Table 1, in the case of the batteries of Examples 3 and 4 using the negative electrode active material prepared according to the manufacturing method of the present invention, the capacity retention rate is significantly higher than that of the battery of Comparative Example 4 using the negative electrode active material containing no graphene High. In addition, the batteries of Examples 3 and 4 have a higher capacity retention rate than the batteries of Comparative Examples 5 and 6 including the negative electrode active material prepared by a general method of sequentially forming an amorphous carbon layer and a crystalline carbon layer (or graphene layer). You can see that. This is because, in the case of the negative electrode active materials of Examples 1 and 2, the pore layer plays a role of suppressing structural collapse of the negative electrode active material and maintaining a conductive path.

Claims (15)

  1. SiOx (0.5<x<1.3)를 포함하는 규소계 화합물;Silicon-based compounds comprising SiO x (0.5 <x <1.3);
    상기 규소계 화합물 상에 배치된 비정질 탄소층;An amorphous carbon layer disposed on the silicon compound;
    상기 비정질 탄소층 상에 배치된 그래핀층; 및A graphene layer disposed on the amorphous carbon layer; And
    상기 비정질 탄소층과 상기 그래핀층 사이의 이격된 공간에 해당하는 공극층을 포함하는 음극 활물질.An anode active material comprising a pore layer corresponding to the spaced space between the amorphous carbon layer and the graphene layer.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 공극층의 평균 두께는 0.5nm 내지 200nm인 음극 활물질.The anode active material has an average thickness of 0.5nm to 200nm.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 비정질 탄소층의 두께는 0.001㎛ 내지 10㎛인 음극 활물질.The amorphous carbon layer has a thickness of 0.001 μm to 10 μm.
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 그래핀층의 두께는 0.5nm 내지 200nm인 음극 활물질.The thickness of the graphene layer is a negative electrode active material is 0.5nm to 200nm.
  5. SiOx (0.5<x<1.3)를 포함하는 규소계 화합물을 준비하는 단계;Preparing a silicon compound including SiO x (0.5 <x <1.3);
    상기 규소계 화합물 상에 고분자 화합물을 포함하는 폴리머층을 배치하는 단계;Disposing a polymer layer including a polymer compound on the silicon compound;
    상기 폴리머층 상에 금속 촉매층을 배치하는 단계;Disposing a metal catalyst layer on the polymer layer;
    상기 폴리머층과 상기 금속 촉매층이 배치된 상기 규소계 화합물을 열처리하는 단계; 및Heat-treating the silicon compound on which the polymer layer and the metal catalyst layer are disposed; And
    상기 금속 촉매층을 제거하는 단계를 포함하며,Removing the metal catalyst layer;
    상기 고분자 화합물은 글루코스, 프락토스, 갈락토오스, 말토오스, 락토오스, 수크로스, 페놀계 수지, 나프탈렌 수지, 폴리비닐알콜 수지, 우레탄수지, 폴리이미드, 퓨란 수지, 셀룰로오스 수지, 에폭시 수지, 폴리스티렌 수지, 레조시놀계 수지, 플로로글루시놀계 수지, 석탄계 핏치, 석유계 핏치 및 타르로 이루어진 군에서 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물인 음극 활물질의 제조 방법.The polymer compound is glucose, fructose, galactose, maltose, lactose, sucrose, phenolic resin, naphthalene resin, polyvinyl alcohol resin, urethane resin, polyimide, furan resin, cellulose resin, epoxy resin, polystyrene resin, resorcy A method for producing a negative electrode active material, which is any one selected from the group consisting of nol resin, fluoroglucinol resin, coal pitch, petroleum pitch and tar, or a mixture of two or more thereof.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 규소계 화합물은 금속 실리케이트를 더 포함하며,The silicon compound further includes a metal silicate,
    상기 금속 실리케이트는 Li2Si2O5, Li3SiO3, Li4SiO4, Mg2SiO4, MgSiO3, Ca2SiO4, CaSiO3, 및 TiSiO4로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 음극 활물질의 제조 방법.The metal silicate includes at least one selected from the group consisting of Li 2 Si 2 O 5 , Li 3 SiO 3 , Li 4 SiO 4 , Mg 2 SiO 4 , MgSiO 3 , Ca 2 SiO 4 , CaSiO 3 , and TiSiO 4 . The manufacturing method of the negative electrode active material containing.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 금속 실리케이트의 금속은 상기 SiOx(0.5<x<1.3) 100중량부에 대해, 1중량부 내지 30중량부로 포함되는 음극 활물질의 제조 방법.The metal of the metal silicate is 1 part by weight to 30 parts by weight with respect to 100 parts by weight of the SiO x (0.5 <x <1.3) is a manufacturing method of the negative electrode active material.
  8. 청구항 5에 있어서,The method according to claim 5,
    상기 폴리머층의 두께는 0.001㎛ 내지 10㎛인 음극 활물질의 제조 방법.The polymer layer has a thickness of 0.001 μm to 10 μm.
  9. 청구항 5에 있어서,The method according to claim 5,
    상기 금속 촉매층은 Ni, Cu, Fe, Cu 및 Co로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 음극 활물질의 제조 방법.The metal catalyst layer is a method for producing a negative electrode active material including at least one selected from the group consisting of Ni, Cu, Fe, Cu and Co.
  10. 청구항 5에 있어서,The method according to claim 5,
    상기 금속 촉매층의 두께는 0.001㎛ 내지 10㎛인 음극 활물질의 제조 방법.The metal catalyst layer has a thickness of 0.001 μm to 10 μm.
  11. 청구항 5에 있어서,The method according to claim 5,
    상기 폴리머층과 상기 금속 촉매층의 중량비는 1:1 내지 20:1인 음극 활물질의 제조방법.The weight ratio of the polymer layer and the metal catalyst layer is 1: 1 to 20: 1 method of producing a negative electrode active material.
  12. 청구항 5에 있어서,The method according to claim 5,
    상기 열처리는 300℃ 내지 1000℃에서 0.5분 내지 1시간 수행되는 음극 활물질의 제조 방법.The heat treatment is a method for producing a negative electrode active material is performed at 300 ℃ to 1000 ℃ 0.5 minutes to 1 hour.
  13. 청구항 1의 음극 활물질을 포함하는 음극.A negative electrode comprising the negative electrode active material of claim 1.
  14. 청구항 13에 있어서,The method according to claim 13,
    흑연계 입자를 더 포함하는 음극.A negative electrode further comprising graphite particles.
  15. 청구항 13의 음극;A negative electrode of claim 13;
    양극;anode;
    상기 양극과 상기 음극 사이에 개재된 분리막; 및A separator interposed between the anode and the cathode; And
    전해질을 포함하는 이차 전지.Secondary battery comprising an electrolyte.
PCT/KR2018/005228 2017-05-04 2018-05-04 Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material WO2018203731A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019560141A JP7027643B2 (en) 2017-05-04 2018-05-04 A method for manufacturing a negative electrode active material, a negative electrode containing the negative electrode active material, a secondary battery including the negative electrode, and the negative electrode active material.
CN201880028840.5A CN110622343B (en) 2017-05-04 2018-05-04 Method for preparing negative active material
EP18795093.6A EP3611784B1 (en) 2017-05-04 2018-05-04 Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material
CN202211141716.4A CN115440956A (en) 2017-05-04 2018-05-04 Negative electrode active material, negative electrode including the same, and secondary battery including the negative electrode
PL18795093T PL3611784T3 (en) 2017-05-04 2018-05-04 Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material
US16/671,487 US11929497B2 (en) 2017-05-04 2019-11-01 Negative electrode active material, negative electrode including the negative electrode active material, secondary battery including the negative electrode, and method of preparing the negative electrode active material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170057050 2017-05-04
KR10-2017-0057050 2017-05-04
KR10-2018-0051920 2018-05-04
KR1020180051920A KR102227809B1 (en) 2017-05-04 2018-05-04 Negative electrode active material, negative electrode comprising the negative electrode active material, lithium secondarty battery comprising the negative electrode and method for preparing the negative electrode active material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/671,487 Continuation US11929497B2 (en) 2017-05-04 2019-11-01 Negative electrode active material, negative electrode including the negative electrode active material, secondary battery including the negative electrode, and method of preparing the negative electrode active material

Publications (1)

Publication Number Publication Date
WO2018203731A1 true WO2018203731A1 (en) 2018-11-08

Family

ID=64016167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/005228 WO2018203731A1 (en) 2017-05-04 2018-05-04 Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material

Country Status (1)

Country Link
WO (1) WO2018203731A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112490419A (en) * 2020-11-05 2021-03-12 浙江大学 Maltose-derived carbon/titanium niobium oxygen composite material and preparation method and application thereof
CN114122339A (en) * 2020-08-31 2022-03-01 贝特瑞新材料集团股份有限公司 Silicon-based composite material, preparation method thereof and lithium ion battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166474A1 (en) * 2006-02-17 2008-07-10 Masahiro Deguchi Conductive composite particle, method of manufacturing the same, electrode using the same, lithium ion secondary battery
KR20100043060A (en) * 2007-07-12 2010-04-27 스미또모 가가꾸 가부시끼가이샤 Electrode for electrochemical energy storage device
KR101042009B1 (en) * 2008-09-30 2011-06-16 한국전기연구원 Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
KR20160001481A (en) * 2014-06-27 2016-01-06 주식회사 엘지화학 Surface coated porous silicon based anode active material and preparation method thereof
KR20160103272A (en) * 2015-02-24 2016-09-01 주식회사 포스코이에스엠 Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same
KR20160149862A (en) 2015-06-19 2016-12-28 주식회사 엘지화학 Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080166474A1 (en) * 2006-02-17 2008-07-10 Masahiro Deguchi Conductive composite particle, method of manufacturing the same, electrode using the same, lithium ion secondary battery
KR20100043060A (en) * 2007-07-12 2010-04-27 스미또모 가가꾸 가부시끼가이샤 Electrode for electrochemical energy storage device
KR101042009B1 (en) * 2008-09-30 2011-06-16 한국전기연구원 Manufacturing Method of Negative Active Material, Negative Active Material thereof And Lithium Secondary Battery Comprising The Same
KR20160001481A (en) * 2014-06-27 2016-01-06 주식회사 엘지화학 Surface coated porous silicon based anode active material and preparation method thereof
KR20160103272A (en) * 2015-02-24 2016-09-01 주식회사 포스코이에스엠 Manufacturing method of lithium manganese complex oxide coated with lithium polysilicate, lithium manganese complex oxide for lithium rechargeable batteries made by the same, and lithium rechargeable batteries comprising the same
KR20160149862A (en) 2015-06-19 2016-12-28 주식회사 엘지화학 Silicon oxide-carbon-polymer composite, and negative electrode active material comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611784A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114122339A (en) * 2020-08-31 2022-03-01 贝特瑞新材料集团股份有限公司 Silicon-based composite material, preparation method thereof and lithium ion battery
CN112490419A (en) * 2020-11-05 2021-03-12 浙江大学 Maltose-derived carbon/titanium niobium oxygen composite material and preparation method and application thereof
CN112490419B (en) * 2020-11-05 2022-04-12 浙江大学 Maltose-derived carbon/titanium niobium oxygen composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
WO2019151774A1 (en) Anode active material, preparation method for anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2017164702A1 (en) Negative electrode and method for manufacturing same
WO2019078690A2 (en) Negative active material, negative electrode comprising negative active material, and secondary battery comprising negative electrode
WO2020149622A1 (en) Anode and secondary battery comprising said anode
WO2019172661A1 (en) Method for manufacturing negative electrode
WO2018164405A1 (en) Anode active material, anode comprising anode active material, and secondary battery comprising anode
WO2018203599A1 (en) Anode active material, anode comprising anode active material, secondary battery comprising anode, and method for preparing anode active material
WO2021187961A1 (en) Positive electrode active material for secondary battery and lithium secondary battery comprising same
WO2018217071A1 (en) Fabrication method of cathode for secondary battery, cathode for secondary battery fabricated thereby, and lithium secondary battery comprising same cathode
WO2019156461A1 (en) Positive electrode, and secondary battery comprising positive electrode
US11929497B2 (en) Negative electrode active material, negative electrode including the negative electrode active material, secondary battery including the negative electrode, and method of preparing the negative electrode active material
WO2018088735A1 (en) Anode and method for fabricating same
WO2020101301A1 (en) Anode active material and manufacturing method therefor
WO2022010121A1 (en) Anode having improved rapid-charge property, and lithium secondary battery
WO2019156462A1 (en) Novel conductive material, electrode comprising same conductive material, secondary battery comprising same electrode, and method for manufacturing same conductive material
WO2019093820A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019164343A1 (en) Secondary battery
WO2022055309A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, and secondary battery comprising negative electrode
WO2020149681A1 (en) Anode and secondary battery comprising anode
WO2019093830A1 (en) Negative electrode active material, negative electrode comprising same negative electrode active material, and secondary battery comprising same negative electrode
WO2019050216A2 (en) Anode active material, anode comprising same anode active material, and secondary battery comprising same anode
WO2021112607A1 (en) Method for producing positive electrode material for secondary battery
WO2018226070A1 (en) Negative electrode, secondary battery including same negative electrode, and method for manufacturing same negative electrode
WO2018174616A1 (en) Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery comprising same
WO2018203731A1 (en) Negative electrode active material, negative electrode comprising negative electrode active material, secondary battery comprising negative electrode, and method for preparing negative electrode active material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18795093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019560141

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018795093

Country of ref document: EP

Effective date: 20191111