WO2023176818A1 - Cutting blade made of cemented carbide - Google Patents

Cutting blade made of cemented carbide Download PDF

Info

Publication number
WO2023176818A1
WO2023176818A1 PCT/JP2023/009814 JP2023009814W WO2023176818A1 WO 2023176818 A1 WO2023176818 A1 WO 2023176818A1 JP 2023009814 W JP2023009814 W JP 2023009814W WO 2023176818 A1 WO2023176818 A1 WO 2023176818A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
blade
cemented carbide
cutting edge
cutting blade
Prior art date
Application number
PCT/JP2023/009814
Other languages
French (fr)
Japanese (ja)
Other versions
WO2023176818A9 (en
Inventor
篤史 小林
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2023559060A priority Critical patent/JPWO2023176818A1/ja
Publication of WO2023176818A1 publication Critical patent/WO2023176818A1/en
Publication of WO2023176818A9 publication Critical patent/WO2023176818A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates

Definitions

  • the present disclosure relates to a cutting blade made of cemented carbide.
  • This application claims priority based on Japanese Patent Application No. 2022-043429, which is a Japanese patent application filed on March 18, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
  • the cemented carbide cutting blade includes a base, and a blade part that is provided on an extension of the base and has a cutting edge that is the cutting edge, and the recess depth of the Co part that constitutes the left and right blade surfaces forming the cutting edge.
  • the present invention relates to a cutting blade made of cemented carbide having a diameter of 0.008 ⁇ m or more and 0.3 ⁇ m or less.
  • FIG. 1 is a front view of a cutting blade 1 made of cemented carbide.
  • FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide.
  • FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
  • FIG. 4 is a photograph showing the surfaces of the blade surfaces 201 and 202.
  • FIG. 5 shows a formula for determining kurtosis Sku.
  • FIG. 6 is a front view of the cemented carbide cutting blade 1 shown for explaining the cutting method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 10-217181 discloses a flat cutting blade for cutting thin plate-like workpieces such as ceramic green sheets, which secures a narrow cutting edge angle that enables high-precision cutting.
  • the present invention discloses a flat cutting blade that has high buckling strength.
  • a solution to this problem is to form the cutting edge with a flat or concave curved surface that is symmetrical with respect to the center line Y, and to connect the cutting edge and the base with one or more reinforcing parts of the symmetrical concave curved surface. It is proposed to shorten the distance of the cutting section to ensure high-precision cutting while increasing buckling strength.
  • Patent Document 2 International Publication No. 2014-050884 discloses a base on a flat plate, left and right blade surfaces that are inclined to approach each other from both sides of the base, and a convex curved surface formed to connect the left and right blade surfaces.
  • the short distance between the intersection of two straight lines along the left and right blade surfaces and the tip of the cutting edge is 1 ⁇ m or more and 10 ⁇ m or less, and the tip
  • the length of the portion is different on the left and right sides with respect to the center line of the base, and the difference is 1 ⁇ m or more and 20 ⁇ m or less, and further, the internal angle of the intersection angle of the two straight lines along the left and right blade surfaces is 4 ⁇ m.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2004-174464 discloses that grinding grooves can be easily formed using a cup-shaped grindstone.
  • a grinding groove extending in the short side direction is formed on the blade surface, and the blade surface is composed of a plurality of stepped surfaces divided in the short side direction, and the stepped surface on the cutting edge side has a larger angle.
  • a cutting blade characterized by:
  • a dicing method As methods for cutting green sheets, there are a method of cutting with a rotating round blade called a dicing method, and a push cutting method using a flat cutting blade as disclosed in the present disclosure.
  • the former method has disadvantages such as poor material yield due to a large amount of cutting waste and poor cutting speed, so the push-cutting method is useful for small-sized products.
  • FIG. 1 is a front view of a cemented carbide cutting blade 1.
  • FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide.
  • FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
  • a cutting blade 1 made of cemented carbide includes a cutting edge part 2 that performs cutting, a connecting part 3 connected to the cutting edge part 2, and a cutting blade fixing part 5 connected to the connecting part 3. It has a base 4 fixed by.
  • the object to be cut 100 can be cut by pressing the cutting edge portion 2 against the object to be cut 100.
  • a cutting blade 1 made of cemented carbide as a flat cutting blade extends in the x direction orthogonal to the y and z directions in FIG.
  • Blade surfaces 201 and 202 are provided on both sides of the cutting edge portion 2.
  • the blade surfaces 203 and 204 are provided, resulting in a two-stage blade.
  • Each blade surface 201 to 204 may have a linear shape or a curved shape.
  • the ridgeline where the blade surface 201 and the blade surface 202 intersect is the blade edge 210.
  • the cemented carbide cutting blade 1 includes a connecting portion 3 as a base, and a cutting edge portion 2 as a blade portion that is provided on an extension of the connecting portion 3 and has a cutting edge 210 as the most distal end.
  • the recess depth of the Co part constituting the left and right blade surfaces 201 and 202 forming the cutting edge is 0.008 ⁇ m or more and 0.3 ⁇ m or less.
  • the cemented carbide cutting blade 1 configured in this way, since the Co portion constituting the blade surface is recessed, the contact area between the object to be cut and the blade surface is reduced, thereby reducing cutting resistance. can. It is possible to prevent adhesive components from adhering to the recessed areas. As a result, cutting performance can be improved. If the depth of the recess in the Co portion is less than 0.008 ⁇ m, the effect of the recess is not sufficient. If the depth of the recess in the Co portion exceeds 0.3 ⁇ m, the surface of the blade surface becomes rough, resulting in a rough cut surface.
  • the ratio of the area of the Co depression on the left and right blade surfaces forming the cutting edge is 6% or more and 30% or less.
  • the depth of the Co depression on the left and right blade surfaces forming the cutting edge is 0.010 ⁇ m or more and 0.3 ⁇ m or less.
  • the kurtosis (Sku), which is a parameter of the surface roughness of the left and right blade surfaces forming the cutting edge, is Sku>3.
  • the cobalt content in the cemented carbide is in the range of 3% by mass or more and 25% by mass or less.
  • the hardness of the cemented carbide is a Vickers hardness Hv of 1300 or more and 2030 or less.
  • Such thin blades are made of hard materials such as carbon tool steel, stainless steel, and cemented carbide.
  • machining is not easy, and the reasons for this are that, although the material is hard, although it has rigidity, it is difficult to cut, has low toughness and is easily chipped, and if the blade is thin, it is made of hard material. Particularly at the tip of the cutting edge, the blade tends to escape due to the pressure of the grindstone during machining.
  • the present inventor attempted to reduce the contact area on which the cutting edge acts by making the WC convex by making the Co constituting the blade surface into a concave shape from the viewpoint of tribology. It has been confirmed that this reduces the cutting resistance and also reduces the phenomenon in which the glue that adheres to the blade surface when cutting the MLCC green sheet is transferred to the cut surface and the green sheet is reattached. This provides the following effects.
  • the green sheet elastically recovers, and the width of the green sheet is restored to be larger than the set cutting width.
  • the glue adhering to the first blade surface comes into contact with the cut surface of the green sheet, causing re-adhesion.
  • the amount of glue adhering to the workpiece can be suppressed by forcibly removing the Co part on the blade surface and increasing the area of the recessed part to serve as a glue reservoir. Therefore, reattachment (sticking together again) of the cut workpieces can be suppressed.
  • FIG. 4 is a photograph showing the surfaces of the blade surfaces 201 and 202.
  • the black part is tungsten carbide 21, and the white part is cobalt 22.
  • the cobalt 22 in a concave shape, it is possible to prevent the cut workpiece from adhering to the cobalt 22 again.
  • the blade surface according to the present disclosure has a step difference between the WC and Co that is 0.008 ⁇ m or more and 0.3 ⁇ m or less, and the kurtosis (histogram sharpness (Sku)) of the roughness curve on the front and back surfaces of the blade surface is more than 3. It is preferable.
  • FIG. 5 shows a formula for determining kurtosis Sku.
  • Kurtosis is determined according to JIS B0681-2 (2016) and is shown by the formula in FIG. 5. It refers to the kurtosis of the surface and is an index that expresses the sharpness of the height distribution.
  • SKu 3
  • Sku 3
  • the number of sharp, sharp protrusions or depressions increases with respect to the reference height Sq (root mean square height)
  • Sku becomes smaller than 3
  • the number of steep, sharp protrusions increases. (or represents a decrease in the number of recesses).
  • the Sku of the blade surface exceeds 3, the contact area when cutting the green sheet becomes smaller and the cutting resistance becomes smaller.
  • the material used for the cutting blade is a cemented carbide whose main components are tungsten carbide and cobalt, and the size of the tungsten carbide crystal grains in the alloy is an average grain size of 0.1 ⁇ m or more and 4 ⁇ m or less, more preferably 2 ⁇ m or less.
  • the average grain size is determined by measuring the surface of the cemented carbide in an SEM photograph at a magnification of 10,000 times, selecting 100 arbitrary crystals, and using the formula (major axis + minor axis)/2 for each crystal. The particle size was calculated based on , and the average value of 100 particle sizes was determined.
  • TaC tantalum carbide
  • V 8 C 7 vanadium carbide
  • Cr 3 C 2 chromium carbide
  • the amount of each added is 0.1% by mass or more and 2% by mass.
  • Cobalt used in the cemented carbide ranges from 3% by mass to 25% by mass, preferably from 5% by mass to 20% by mass.
  • TaC, V 8 C 7 and Cr 3 C 2 are obtained by dissolving these components from cemented carbide using nitric acid or hydrofluoric acid, and then converting the resulting liquid into a liquid using an ICP emission spectrometer (Issuance spectroscopy). can be measured. After Co is dissolved from a cemented carbide using nitric acid or hydrofluoric acid, the mass of the solution whose liquid properties are adjusted can be measured using a potentiometric titration device (potentiometric titration method).
  • the hardness of the cemented carbide preferably has a Vickers hardness Hv of 1300 or more and 2030 or less. Thickness
  • the base material thickness T of the cemented carbide cutting blade is preferably 0.1 mm or more and 0.6 mm or less. By setting it within this range, it can be used as a cutting blade (compatible with a cutting machine) for laminated ceramic green sheets.
  • the cutter with a thickness of 0.1 mm is used for the thinnest chips of ceramic capacitors, and can reduce the grinding allowance and reduce the grinding resistance when producing sharp edges such as a 20° cutting edge angle by grinding, resulting in high precision. You can make a cutting edge.
  • cutters with a base material thickness of 0.4 to 0.6 mm are suitable for cutting thick chips with a thickness of 1 mm or more because the rigidity (bending of the root of the cutting edge) can be improved by increasing the thickness of the cutter itself. There is. Another advantage is that the rigidity of the base of the blade is increased, making diagonal cuts less likely to occur.
  • the thickness of a carbide cutting blade can be measured using a micrometer or a laser measuring device.
  • the relationship between the length L (mm) and the height W (mm) (FIG. 2) of the cemented carbide cutting blade is preferably 1 ⁇ L/W ⁇ 20.
  • the cutting edge angle ⁇ is 6° ⁇ 30° or less.
  • the smaller the cutting edge angle the smaller the cutting resistance and the less likely diagonal cutting will occur. In other words, the volume that penetrates into the workpiece becomes smaller.
  • a single-stage blade may be used, but since the width dimension forming the blade surface becomes large, there are problems such as the blade tip being prone to collapse due to grinding resistance and making it difficult to process the blade edge into a highly accurate shape. It is known that chipping during cutting is extremely likely to occur when ⁇ 20°.
  • the tip blade was formed using cemented carbide FM10K material manufactured by Allied Materials Co., Ltd.
  • the flat cutting blade used in the test has a blade length direction L: 40 mm, a base thickness T: 0.1 mm, and a blade height W: 25.0 mm.
  • the cutting edge angle ⁇ of the cutting edge part 2 as the cutting part is 20° ⁇ 5'
  • the first stage blade width is 0.1 mm
  • the second stage blade angle (the extended plane of the second stage blade surface intersects angle) was set to 4° ⁇ 10'.
  • a surface grinder was used, and a diamond cylindrical grindstone was used to true the side of the grindstone, and the material was fixed on a special work rest with an adjustable angle.
  • cemented carbide cutting blades 1 of sample numbers 1 to 55 shown in Tables 1 to 3 were manufactured.
  • the method for removing Co from the blade surfaces 201 and 202 that form the tip angle was to create a chemical solution in which nitric acid (HNO 3 ) was diluted with 5 times as much water as CONC1 (concentrated nitric acid was diluted with 4 to 5 times as much water).
  • the cemented carbide cutting blade 1 is set in a jig that can immerse the cutting edge in nitric acid to a depth of 0.2 mm, and the cutting blade is immersed in the chemical solution for 10 seconds to 50 minutes.
  • the depth of the Co depression was controlled by time management.
  • ⁇ Measurement of step difference between WC and Co> The average distance of the convex portions or concave portions, the average height of the convex portions, or the average depth of the concave portions were measured on the surface having the WC convex portions or the Co concave portions using an atomic force microscope (AFM: Dimension Icon) manufactured by Bruker. The maximum sample size that can be measured with this AFM is ⁇ 210, so it can be observed without destroying the cutting blade. The measurement conditions were a scan area of 5 ⁇ m ⁇ 5 ⁇ m.
  • the scanning speed of the cantilever was measured at 0.1 to 80 Hz, and the height of the WC convex portion and the maximum depth of the Co concave portion were determined from the 3D profile regarding the height of each point. This was measured at three locations each on the front and back blade surfaces randomly selected from the surface of the blade surface formed above, and the maximum height difference between WC and Co was determined.
  • the Sku kurtosis of the blade surface was measured using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation, and the measurement range in the longitudinal section was 140 ⁇ m in the X direction and 30 ⁇ m in the Z direction. shall be.
  • the measurement field of view was set to have an objective lens magnification of 50 times and a ZOOM magnification of 1 time.
  • ⁇ Measurement of blade edge width> To measure the edge line width of the cutting edge, use a Schottky field emission scanning electron microscope JSM-7900F manufactured by JEOL Ltd. to take an image from a direction perpendicular to the edge of the cutting edge at 5,000 to 10,000 times magnification, and measure the machine coordinates and length measurement function. A cutter with a cutting edge edge of 0.5 ⁇ m or less was used as the test blade.
  • Chipping of the cutting blade was measured using a tool measuring microscope STM-UM manufactured by Olympus Corporation at a magnification of 500 times. In all samples, it was confirmed that the chip depth was within 1.5 ⁇ m and the chip width was within 10 ⁇ m.
  • an object to be cut (work) 100 is cut with a cutting blade 1 made of cemented carbide.
  • An acrylic base 102 is placed on the cutting dynamometer 103.
  • a thermally releasable adhesive sheet 101 is interposed between the base and the object 100 to be cut.
  • the object to be cut 100 is cut by moving the object to be cut 100 in the direction shown by the arrow 110 while reciprocating the cutting blade 1 made of cemented carbide in the direction shown by the arrow 111.
  • a 1 mm foamed double-sided adhesive sheet and a workpiece (the above-mentioned PVC board) having a thickness of 0.5 mm ⁇ 0.1 (these constitute the object to be cut 100) are used, and the cutter installation accuracy is set at the workpiece in the longitudinal direction and the blade angle ⁇ 0. 5°, and the cross-sectional angle between the workpiece and the blade was 90° ⁇ 0.5°.
  • the cutting conditions were a cutting speed of 300 mm/s, a cutting interval of 1 mm, and an indentation depth of 0.1 mm into the adhesive layer of the thermally releasable sheet.
  • Tables 1 to 3 The results obtained by repeating this result for each condition are shown in Tables 1 to 3.
  • the "cutting resistance” in Tables 1 to 3 is the average cutting resistance measured by the cutting dynamometer 103, and was defined as 160N or less: A, more than 160N and 169N or less: B, and more than 169N: C.
  • "Reattachment” indicates the percentage of the number of reattachments to the cemented carbide cutting blade 1 at 1000 cutting locations, 0.5% or less: A, more than 0.5% and 2.0% or less: B, 2 More than .0%: Rated C.
  • the area ratio of recessed Co to smooth WC grains is preferably 6% to 30%. If the area ratio of Co recesses exceeds 30%, the strength of the cutting edge will be extremely reduced, leading to chipping. On the other hand, if the area of the Co recess is less than 6%, the contact area increases, cutting resistance increases, and sharpness decreases. A more preferable range is 10% to 22%. The most preferable range is 10% to 15%.
  • the depth of the recess in the Co portion needs to be 0.008 ⁇ m or more and 0.3 ⁇ m or less. If the depth of the concave portion of the step Co between WC and Co is smaller than 0.008 ⁇ m, it will become a worn surface and the contact area with the workpiece will increase, resulting in high cutting resistance. On the other hand, if the step is larger than 0.3 ⁇ m, chipping will be induced at the cutting edge.
  • a more preferable range is 0.010 ⁇ m or more and 0.3 ⁇ m or less. Moreover, the most preferable range is 0.010 ⁇ m or more and 0.1 ⁇ m or less.
  • the step difference between WC and Co is 0.008 ⁇ m to 0.3 ⁇ m.
  • Sku the sharpness of the histogram exceeds 3

Abstract

This cutting blade made of cemented carbide comprises a base part and a blade part that is provided on a line of extension of the base part and that has a blade edge at the farthest edge end. The recess depth of Co parts constituting the left and right blade surfaces forming the blade edge is 0.008-0.3 μm inclusive.

Description

超硬合金製切断刃Cemented carbide cutting blade
 本開示は、超硬合金製切断刃に関する。本出願は、2022年3月18日に出願した日本特許出願である特願2022-043429号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a cutting blade made of cemented carbide. This application claims priority based on Japanese Patent Application No. 2022-043429, which is a Japanese patent application filed on March 18, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
 従来、超硬合金製切断刃は、たとえば特開平10-217181号公報(特許文献1)、国際公開2014-050884号(特許文献2)および特開2004-17444号公報(特許文献3)において開示されている。 Conventionally, cutting blades made of cemented carbide have been disclosed, for example, in JP-A-10-217181 (Patent Document 1), WO 2014-050884 (Patent Document 2), and JP-A-2004-17444 (Patent Document 3). has been done.
特開平10-217181号公報Japanese Patent Application Publication No. 10-217181 国際公開2014-050884号International Publication No. 2014-050884 特開2004-17444号公報Japanese Patent Application Publication No. 2004-17444
 超硬合金製切断刃は、基部と、前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、刃先を形成する左右刃面を構成するCo部の凹み深さが0.008μm以上0.3μm以下である、超硬合金製切断刃に関する。 The cemented carbide cutting blade includes a base, and a blade part that is provided on an extension of the base and has a cutting edge that is the cutting edge, and the recess depth of the Co part that constitutes the left and right blade surfaces forming the cutting edge. The present invention relates to a cutting blade made of cemented carbide having a diameter of 0.008 μm or more and 0.3 μm or less.
図1は、超硬合金製切断刃1の正面図である。FIG. 1 is a front view of a cutting blade 1 made of cemented carbide. 図2は、超硬合金製切断刃1の斜視図である。FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide. 図3は、2段の超硬合金製切断刃1の斜視図である。FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1. 図4は、刃面201,202の表面を示す写真である。FIG. 4 is a photograph showing the surfaces of the blade surfaces 201 and 202. 図5は、クルトシスSkuを求める式を示す。FIG. 5 shows a formula for determining kurtosis Sku. 図6は、切断方法を説明するために示す超硬合金製切断刃1の正面図である。FIG. 6 is a front view of the cemented carbide cutting blade 1 shown for explaining the cutting method.
[本開示が解決しようとする課題]
 従来の超硬合金製切断刃においては、切断性能が低いという問題があった。
[Problems to be solved by this disclosure]
Conventional cemented carbide cutting blades have had the problem of low cutting performance.
 特許文献1(特開平10-217181号公報)は、セラミックグリーンシート等の薄板状のワークを切断する平刃状の切断刃にあって、高精度な切断を可能にする狭い刃先角を確保しつつ座屈強度が高い平刃状の切断刃を開示している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 10-217181) discloses a flat cutting blade for cutting thin plate-like workpieces such as ceramic green sheets, which secures a narrow cutting edge angle that enables high-precision cutting. The present invention discloses a flat cutting blade that has high buckling strength.
 その解決手段として、刃先部を中心線Yに対し左右対称の平面または凹湾曲面で形成し、刃先部と基部とを一段又は複数段の左右対称の凹湾曲面の補強部で連絡することで切断実行部の距離を短くして高精度な切断加工を確保しつつ座屈強度を高めることを提案している。 A solution to this problem is to form the cutting edge with a flat or concave curved surface that is symmetrical with respect to the center line Y, and to connect the cutting edge and the base with one or more reinforcing parts of the symmetrical concave curved surface. It is proposed to shorten the distance of the cutting section to ensure high-precision cutting while increasing buckling strength.
 特許文献2(国際公開2014-050884号)は、平板上の基部と、前記基部の両面から互いに近づくように傾斜した左右刃面と、前記左右刃面を結ぶように形成され、凸湾曲面を有する刃先先端を有し、板厚方向の断面形状において、前記左右刃面に沿った2本の直線の交点と前記刃先先端の再尾短距離が1μm以上、10μm以下であり、かつ、前記先端部の長さが、前記基部の中心線に対して左右で異なり、その差異が1μm以上、20μm以下であり、さらに、前記左右刃面に沿った2本の直線の交差角度の内角が、4度以上、60度以下であることを特徴とする平刃状切断刃を提案している。 Patent Document 2 (International Publication No. 2014-050884) discloses a base on a flat plate, left and right blade surfaces that are inclined to approach each other from both sides of the base, and a convex curved surface formed to connect the left and right blade surfaces. In the cross-sectional shape in the plate thickness direction, the short distance between the intersection of two straight lines along the left and right blade surfaces and the tip of the cutting edge is 1 μm or more and 10 μm or less, and the tip The length of the portion is different on the left and right sides with respect to the center line of the base, and the difference is 1 μm or more and 20 μm or less, and further, the internal angle of the intersection angle of the two straight lines along the left and right blade surfaces is 4 μm. We have proposed a flat cutting blade characterized by an angle of at least 60 degrees.
 特許文献3(特開2004-17444号公報)は、カップ型砥石を使用し、研削溝を容易に形成することができることを開示している。板状のセラミック体をその厚み方向に押圧力を作用させて切断する略矩形形状の切断刃であって、長辺方向の一辺に沿って平面によって形成された刃面を有し、該刃面に短辺方向に延在する研削溝が形成され、前記刃面は短辺方向に分割された複数の段付き面によって構成され、刃先側の段付き面ほど大きい角度を有していることを特徴とする切断刃を開示している。 Patent Document 3 (Japanese Unexamined Patent Publication No. 2004-17444) discloses that grinding grooves can be easily formed using a cup-shaped grindstone. A substantially rectangular cutting blade for cutting a plate-shaped ceramic body by applying a pressing force in the thickness direction thereof, the blade having a blade surface formed by a plane along one side in the long side direction; A grinding groove extending in the short side direction is formed on the blade surface, and the blade surface is composed of a plurality of stepped surfaces divided in the short side direction, and the stepped surface on the cutting edge side has a larger angle. Discloses a cutting blade characterized by:
 近年、MLCC(Multilayer Ceramic Capacitors)の高密度積層技術により、大型のMLCCのダウンサイズ化が進んでいる。ダウンサイズ化されることでNi電極の積層数は増え、また、誘電体であるチタン酸バリウムの粒径を数十nmにすることで厚み方向の電極間距離は数百nm以下となってきている。そのため、グリーンシートの硬度は高くなるに加え、電極間距離が短くなると切断面品位が悪化する傾向にある。そのような中で、本発明者は超硬合金製切断刃において、ワークを低い切断抵抗で切断し、切断面にダメージを緩和することができる超硬合金製切断刃を見出した。 In recent years, downsizing of large MLCCs has been progressing due to the high-density stacking technology of MLCCs (Multilayer Ceramic Capacitors). Downsizing has increased the number of stacked Ni electrodes, and by reducing the particle size of the dielectric barium titanate to tens of nanometers, the distance between the electrodes in the thickness direction has become less than a few hundred nanometers. There is. Therefore, in addition to increasing the hardness of the green sheet, when the distance between the electrodes becomes short, the quality of the cut surface tends to deteriorate. Under such circumstances, the present inventors have discovered a cemented carbide cutting blade that can cut a workpiece with low cutting resistance and reduce damage to the cut surface.
 また、当切断刃を使用するMLCC製造過程では精密に切れる切断刃の要求がある一方、切断後の再付着など押切り刃特有の問題があり、刃面に凹凸を設けることで接着剤溜まりなどの機能を持たせることで切断後のMLCC(グリーンシート小片)の再付着を防止する切断刃でもある。 In addition, in the MLCC manufacturing process where this cutting blade is used, there is a demand for cutting blades that can cut with precision, but there are problems unique to push-cutting blades such as re-adhesion after cutting, and the unevenness of the blade surface causes adhesive pooling. It is also a cutting blade that prevents MLCC (green sheet small pieces) from re-adhering after cutting by having this function.
 積層セラミックスコンデンサを製造するために、厚さが数百μmから数mmの積層されたグリーンシートの切断要求がある。これを精度良く連続的に切断した後、ひとつひとつの被切断物を焼成し、両端に電極を取り付けることでコンデンサとしている。ここで、コンデンサは近年スマートフォンを代表とする小型機対応のため小サイズ化の要求が増しており、そのため高度な切断精度が要求される。このような小サイズセラミックコンデンサを実現するためには、切断刃の刃先に機能を持たせ切断面に損傷を与えないことが必要である。 In order to manufacture multilayer ceramic capacitors, there is a need to cut laminated green sheets with a thickness of several hundred μm to several mm. After cutting this continuously with high precision, each piece is fired and electrodes are attached to both ends to create a capacitor. In recent years, there has been an increasing demand for capacitors to be smaller in size to accommodate small devices such as smartphones, which requires a high level of cutting precision. In order to realize such a small-sized ceramic capacitor, it is necessary to give the cutting edge of the cutting blade a function so as not to damage the cutting surface.
 グリーンシートの切断方法としては、ダイシング法と呼ばれる回転丸刃にて切断する方法と、本開示のような平刃状切断刃を用いた押切方式がある。前者は切削屑が多く出る為に材料歩留が悪く、また切断速度が劣るという欠点などがあり、小サイズ品には押切方式が有用である。 As methods for cutting green sheets, there are a method of cutting with a rotating round blade called a dicing method, and a push cutting method using a flat cutting blade as disclosed in the present disclosure. The former method has disadvantages such as poor material yield due to a large amount of cutting waste and poor cutting speed, so the push-cutting method is useful for small-sized products.
 図1は、超硬合金製切断刃1の正面図である。図2は、超硬合金製切断刃1の斜視図である。図3は、2段の超硬合金製切断刃1の斜視図である。 FIG. 1 is a front view of a cemented carbide cutting blade 1. FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide. FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
 図1から図3で示すように、超硬合金製切断刃1は、切断を実行する刃先部2、刃先部2に連結される連結部3および連結部3に連結されて切断刃固定部5によって固定される基部4とを有する。 As shown in FIGS. 1 to 3, a cutting blade 1 made of cemented carbide includes a cutting edge part 2 that performs cutting, a connecting part 3 connected to the cutting edge part 2, and a cutting blade fixing part 5 connected to the connecting part 3. It has a base 4 fixed by.
 被切断物100に刃先部2を押しつけることで、被切断物100を切断することができる。平刃状切断刃としての超硬合金製切断刃1は、図1におけるyおよびz方向と直交するx方向に延在している。 The object to be cut 100 can be cut by pressing the cutting edge portion 2 against the object to be cut 100. A cutting blade 1 made of cemented carbide as a flat cutting blade extends in the x direction orthogonal to the y and z directions in FIG.
 刃先部2の両側に刃面201,202が設けられている。図3では刃面203,204が設けられることで、2段刃となっている。各刃面201から204は直線形状であってもよく、曲線形状であってもよい。刃面201と刃面202が交差する稜線が刃先210である。 Blade surfaces 201 and 202 are provided on both sides of the cutting edge portion 2. In FIG. 3, the blade surfaces 203 and 204 are provided, resulting in a two-stage blade. Each blade surface 201 to 204 may have a linear shape or a curved shape. The ridgeline where the blade surface 201 and the blade surface 202 intersect is the blade edge 210.
 本開示に従った超硬合金製切断刃1は、基部としての連結部3と、連結部3の延長線上に設けられ、最先端部である刃先210を有する刃部としての刃先部2とを備え、刃先を形成する左右の刃面201,202を構成するCo部の凹み深さが0.008μm以上0.3μm以下である。 The cemented carbide cutting blade 1 according to the present disclosure includes a connecting portion 3 as a base, and a cutting edge portion 2 as a blade portion that is provided on an extension of the connecting portion 3 and has a cutting edge 210 as the most distal end. The recess depth of the Co part constituting the left and right blade surfaces 201 and 202 forming the cutting edge is 0.008 μm or more and 0.3 μm or less.
 このように構成された、超硬合金製切断刃1においては、刃面を構成するCo部が凹んでいるため、被切断物と刃面との接触面積を低減して切断抵抗を低下させることできる。凹みの部分に粘着成分が付着することを防止できる。その結果、切断性能を向上させることができる。Co部の凹みの深さが0.008μm未満であれば凹みの効果が十分ではない。Co部の凹みの深さが0.3μmを超えると刃面の表面が粗くなり、切断面が荒れる。 In the cemented carbide cutting blade 1 configured in this way, since the Co portion constituting the blade surface is recessed, the contact area between the object to be cut and the blade surface is reduced, thereby reducing cutting resistance. can. It is possible to prevent adhesive components from adhering to the recessed areas. As a result, cutting performance can be improved. If the depth of the recess in the Co portion is less than 0.008 μm, the effect of the recess is not sufficient. If the depth of the recess in the Co portion exceeds 0.3 μm, the surface of the blade surface becomes rough, resulting in a rough cut surface.
 好ましくは、刃先を形成する左右刃面のCoの凹み面積の割合が6%以上30%以下である。 Preferably, the ratio of the area of the Co depression on the left and right blade surfaces forming the cutting edge is 6% or more and 30% or less.
 好ましくは、刃先を形成する左右刃面のCoの凹み深さが0.010μm以上0.3μm以下である。 Preferably, the depth of the Co depression on the left and right blade surfaces forming the cutting edge is 0.010 μm or more and 0.3 μm or less.
 好ましくは、刃先を形成する左右刃面の表面粗さのパラメータであるクルトシス(Sku)がSku>3である。 Preferably, the kurtosis (Sku), which is a parameter of the surface roughness of the left and right blade surfaces forming the cutting edge, is Sku>3.
 好ましくは、超硬合金中のコバルトの含有率が3質量%以上25質量%以下の範囲である。 Preferably, the cobalt content in the cemented carbide is in the range of 3% by mass or more and 25% by mass or less.
 好ましくは、超硬合金の硬度はビッカース硬度Hv1300以上、2030以下である。 Preferably, the hardness of the cemented carbide is a Vickers hardness Hv of 1300 or more and 2030 or less.
 このような薄刃は例えば炭素工具鋼、ステンレス鋼の他、超硬合金などの硬質材料が用いられている。しかし加工が容易ではなくその原因として、特に材質が硬質材料である場合、剛性はあるものの、難切削性であり且つ靱性が低く欠け易いことや、また、刃厚が薄い場合硬質材料であっても特に刃先先端部では加工中に砥石の押圧により刃が逃げようとすることなどが挙げられる。 Such thin blades are made of hard materials such as carbon tool steel, stainless steel, and cemented carbide. However, machining is not easy, and the reasons for this are that, although the material is hard, although it has rigidity, it is difficult to cut, has low toughness and is easily chipped, and if the blade is thin, it is made of hard material. Particularly at the tip of the cutting edge, the blade tends to escape due to the pressure of the grindstone during machining.
 従来、上述の特性を満たすために種々の切断刃が提案されているが、形状を複雑化させた場合、更に加工が困難となることは避けられず、安定した形状精度と加工性を共に満足する切断刃は得られていない。 Conventionally, various cutting blades have been proposed to meet the above characteristics, but if the shape is complicated, it is inevitable that processing becomes even more difficult. A cutting blade that does this has not been obtained.
 効果
 本発明者は刃面にトライボロジーの観点より刃面を構成するCoに凹み形状としてWCを凸とすることで刃先が作用する接触面積の低減を図ることを試みた。これにより、切断抵抗の低減を図ると共にMLCCグリーンシート切断時に刃面に付着する糊が切断面に転写しグリーンシートが再付着する現象を低減できることが確認された。これにより、以下の効果が得られる。
Effect The present inventor attempted to reduce the contact area on which the cutting edge acts by making the WC convex by making the Co constituting the blade surface into a concave shape from the viewpoint of tribology. It has been confirmed that this reduces the cutting resistance and also reduces the phenomenon in which the glue that adheres to the blade surface when cutting the MLCC green sheet is transferred to the cut surface and the green sheet is reattached. This provides the following effects.
 1)切断抵抗の低減
 従来の研削加工で仕上げた刃面に対しWCを凸にCoを凹とした刃面にすることで刃面の接触面積を低減し切断時の摩擦抵抗を下げることで刃先を鋭角にせずとも、欠損しにくい刃先角度θで刃先欠損の抑制をしつつ切断抵抗を15%~28%低減することができる。
1) Reduction of cutting resistance Compared to the blade surface finished by conventional grinding, the blade surface is made convex with WC and concave with Co, reducing the contact area of the blade surface and lowering the frictional resistance during cutting. Even if the cutting edge angle θ is not made acute, cutting resistance can be reduced by 15% to 28% while suppressing cutting edge breakage at a cutting edge angle θ that is less likely to break.
 2)刃面をクレーター状(WC凸Co凹)にすることによりMLCCの切断表面への接着剤付着を抑制
 切断したMLCCグリーンシートの再付着(切ったワークが再びくっつく現象)を低減することができる。MLCCグリーンシートの切断刃による切断方法は発泡剥離剤を使用した片面テープでグリーンシートを接着し押切されている。切断刃の刃先はグリーンシートを接着している糊の範囲まで刃先を切込み切断されるが、その際、刃先に糊が付着する。また、切れ味の悪い刃先は、グリーンシートに切り込んだ後、切断刃を抜く際にグリーンシートが弾性回復し、設定切れ幅よりグリーンシートの幅は大きく復元する。その時、第一の刃面に付着した糊がグリーンシートの切断面に触れることで再付着が発生する。本現象に対し刃面表面のCo部を強制的に除去し凹み部分の面積を大きくすることで糊溜まりの役割を持たせることでワークに付着する糊の量を抑制することができる。従い、切断ワークの再付着(再度くっつく)を抑制することができる。
2) By making the blade surface crater-shaped (WC convex, Co concave), adhesive adhesion to the cut surface of MLCC is suppressed. Re-adhesion of cut MLCC green sheets (a phenomenon in which cut workpieces stick together again) can be reduced. can. The MLCC green sheet is cut using a cutting blade by adhering the green sheet with a single-sided tape using a foam release agent and pressing it. The cutting edge of the cutting blade cuts into the area of the glue that adheres the green sheet, but at that time, the glue adheres to the cutting edge. Furthermore, after cutting into the green sheet, when the cutting blade is removed from the cutting edge with poor sharpness, the green sheet elastically recovers, and the width of the green sheet is restored to be larger than the set cutting width. At this time, the glue adhering to the first blade surface comes into contact with the cut surface of the green sheet, causing re-adhesion. In response to this phenomenon, the amount of glue adhering to the workpiece can be suppressed by forcibly removing the Co part on the blade surface and increasing the area of the recessed part to serve as a glue reservoir. Therefore, reattachment (sticking together again) of the cut workpieces can be suppressed.
 図4は、刃面201,202の表面を示す写真である。図4において、黒い部分がタングステンカーバイド21であり、白い部分がコバルト22である。本開示においては、コバルト22を凹形状とすることで、コバルト22への切断ワークの再付着を防止出来る。 FIG. 4 is a photograph showing the surfaces of the blade surfaces 201 and 202. In FIG. 4, the black part is tungsten carbide 21, and the white part is cobalt 22. In the present disclosure, by forming the cobalt 22 in a concave shape, it is possible to prevent the cut workpiece from adhering to the cobalt 22 again.
 クルトシス
 本開示に従った刃面は、前記WCとCoの段差は0.008μm以上0.3μm以下である刃面表裏の、粗さ曲線のクルトシス(ヒストグラムの尖り具合(Sku))が3を超えることが好ましい。図5は、クルトシスSkuを求める式を示す。
Kurtosis The blade surface according to the present disclosure has a step difference between the WC and Co that is 0.008 μm or more and 0.3 μm or less, and the kurtosis (histogram sharpness (Sku)) of the roughness curve on the front and back surfaces of the blade surface is more than 3. It is preferable. FIG. 5 shows a formula for determining kurtosis Sku.
 クルトシス(Sku)はJIS B0681-2(2018年)に従って求められるものであり、図5における式で示される。表面の尖度(せんど)を意味し、高さ分布のとがり(鋭さ)を表す指標である。SKuが3のときは凸部または凹部の尖り分布が正規分布に近いことを示す。Skuが3より大きくなるにつれて、基準高さSq(二乗平均平方根高さ)に対して急峻な尖った凸部または凹部の数が増加し、Skuが3よりも小さくなるにつれて、急峻な鋭い凸部(または凹部の数が少なくなることを表す)となる。つまり、刃面のSkuが3を超えるとグリーンシートを切断時の接触面積が小さくなり切断抵抗が小さくなることを示す。 Kurtosis (Sku) is determined according to JIS B0681-2 (2018) and is shown by the formula in FIG. 5. It refers to the kurtosis of the surface and is an index that expresses the sharpness of the height distribution. When SKu is 3, it indicates that the sharpness distribution of the convex portions or concave portions is close to a normal distribution. As Sku becomes larger than 3, the number of sharp, sharp protrusions or depressions increases with respect to the reference height Sq (root mean square height), and as Sku becomes smaller than 3, the number of steep, sharp protrusions increases. (or represents a decrease in the number of recesses). In other words, when the Sku of the blade surface exceeds 3, the contact area when cutting the green sheet becomes smaller and the cutting resistance becomes smaller.
 材質
 切断刃に用いる材質はタングステンカーバイドとコバルトを主成分とした超硬合金で合金中のタングステンカーバイド結晶粒の大きさは平均粒径0.1μm以上4μm以下であり、2μm以下がさらに好ましい。平均粒径は、SEM写真において、超硬合金の表面を1万倍の倍率で測定して、任意の100個の結晶を選択し、各々の結晶において(長径+短径)/2の計算式に基づいて粒径を計算し、100個の粒径の平均値を求めた。
Material The material used for the cutting blade is a cemented carbide whose main components are tungsten carbide and cobalt, and the size of the tungsten carbide crystal grains in the alloy is an average grain size of 0.1 μm or more and 4 μm or less, more preferably 2 μm or less. The average grain size is determined by measuring the surface of the cemented carbide in an SEM photograph at a magnification of 10,000 times, selecting 100 arbitrary crystals, and using the formula (major axis + minor axis)/2 for each crystal. The particle size was calculated based on , and the average value of 100 particle sizes was determined.
 また、タングステンカーバイトの結晶粒を制御するため結晶粒成長抑制のための成分TaC(タンタルカーバイド)を0.1質量%以上2質量%以下添加することも可能である。この添加剤はV(バナジウムカーバイド)、Cr(クロムカーバイド)でも置き替え及び組み合わせる事ができる。その場合は各々の添加量が0.1質量%以上2質量%である。超硬合金に使用されるコバルトは3質量%以上25質量%以下の範囲であり、5質量%以上20質量%以下の範囲であることが好ましい。TaC、V、Crは、硝酸、フッ酸を用いてこれらの成分を超硬合金から溶解したのち後、液体状にしたものをICP発光分光装置(発行分光法)で質量を測定できる。Coは、硝酸、フッ酸を用いて超硬合金から溶解した後、液性を調整した溶液を電位差滴定装置(電位差滴定法)で質量を測定できる。 Furthermore, in order to control the crystal grains of tungsten carbide, it is also possible to add TaC (tantalum carbide), a component for suppressing crystal grain growth, of 0.1% by mass or more and 2% by mass or less. This additive can also be replaced and combined with V 8 C 7 (vanadium carbide), Cr 3 C 2 (chromium carbide). In that case, the amount of each added is 0.1% by mass or more and 2% by mass. Cobalt used in the cemented carbide ranges from 3% by mass to 25% by mass, preferably from 5% by mass to 20% by mass. TaC, V 8 C 7 and Cr 3 C 2 are obtained by dissolving these components from cemented carbide using nitric acid or hydrofluoric acid, and then converting the resulting liquid into a liquid using an ICP emission spectrometer (Issuance spectroscopy). can be measured. After Co is dissolved from a cemented carbide using nitric acid or hydrofluoric acid, the mass of the solution whose liquid properties are adjusted can be measured using a potentiometric titration device (potentiometric titration method).
 超硬合金の硬度はビッカース硬度Hvが、1300以上、2030以下が好ましい。
 厚み
 超硬合金製切断刃の基材厚さTは、0.1mm以上~0.6mm以下が好ましい。この範囲とすることにより、積層セラミックグリーンシートの切断刃(切断機に対応)として使用できる。厚み0.1mmサイズのカッターは、セラミックコンデンサーの中でも薄いチップ用で刃先角度20°などの鋭角刃を研削加工で製作する上で研削代を小さくでき、研削抵抗を下げることができるため高精度な刃先を作ることができる。一方基材厚0.4~0.6mmのカッターは、カッター自体の厚みを大きくすることで剛性(刃先の根本の撓み)を向上させることができるため厚み1mm以上の厚いチップの切断に適している。また、刃の根本の剛性が高まることで斜め切断が起こりにくいなどの利点がある。
The hardness of the cemented carbide preferably has a Vickers hardness Hv of 1300 or more and 2030 or less.
Thickness The base material thickness T of the cemented carbide cutting blade is preferably 0.1 mm or more and 0.6 mm or less. By setting it within this range, it can be used as a cutting blade (compatible with a cutting machine) for laminated ceramic green sheets. The cutter with a thickness of 0.1 mm is used for the thinnest chips of ceramic capacitors, and can reduce the grinding allowance and reduce the grinding resistance when producing sharp edges such as a 20° cutting edge angle by grinding, resulting in high precision. You can make a cutting edge. On the other hand, cutters with a base material thickness of 0.4 to 0.6 mm are suitable for cutting thick chips with a thickness of 1 mm or more because the rigidity (bending of the root of the cutting edge) can be improved by increasing the thickness of the cutter itself. There is. Another advantage is that the rigidity of the base of the blade is increased, making diagonal cuts less likely to occur.
 超硬切断刃の厚さの測定方法は、マイクロメータ、またはレーザー測定器がある。
 超硬合金切断刃の長さL(mm)と高さW(mm)(図2)との関係は1≦L/W≦20となることが好ましい。
The thickness of a carbide cutting blade can be measured using a micrometer or a laser measuring device.
The relationship between the length L (mm) and the height W (mm) (FIG. 2) of the cemented carbide cutting blade is preferably 1≦L/W≦20.
 刃先角度θは6°≦θ≦30°以下であることが好ましい。
 刃先角度が小さい方が切断抵抗は小さくなり、ナナメ切断も起こりにくくなる。つまり、ワークに侵入する体積が小さくなるからである。10°以下については1段刃でも良いが、刃面を形成する幅寸法が大きくなるため研削抵抗により倒れやすく刃先を高精度な形状に加工しにくいなどの問題がある。刃付け時のチッピングについてはθ≦20°を境に極端に発生しやすくなることがわかっている。
It is preferable that the cutting edge angle θ is 6°≦θ≦30° or less.
The smaller the cutting edge angle, the smaller the cutting resistance and the less likely diagonal cutting will occur. In other words, the volume that penetrates into the workpiece becomes smaller. For angles of 10 degrees or less, a single-stage blade may be used, but since the width dimension forming the blade surface becomes large, there are problems such as the blade tip being prone to collapse due to grinding resistance and making it difficult to process the blade edge into a highly accurate shape. It is known that chipping during cutting is extremely likely to occur when θ≦20°.
 (実施例1)
 株式会社アライドマテリアル製超硬合金FM10K素材を用いて先端刃部の形成加工行った。試験に用いる平刃状切断刃は、刃渡り方向L:40mm、基部厚さT:0.1mm、刃高さW:25.0mmである。切断実行部としての刃先部2の切れ刃角度θを20°±5’とし第1段目の刃幅を0.1mmとし2段目の刃角度(2段目の刃面の延長面が交差して形成する角度)を4°±10’とした。刃先成形加工に於いては平面研削盤を用い、ダイヤモンド円筒砥石を使用し砥石の側面をツルーイングし、角度調整可能な専用のワークレストに素材を固定して加工を行った。これにより表1から3に示す試料番号1から55の超硬合金製切断刃1を作製した。
(Example 1)
The tip blade was formed using cemented carbide FM10K material manufactured by Allied Materials Co., Ltd. The flat cutting blade used in the test has a blade length direction L: 40 mm, a base thickness T: 0.1 mm, and a blade height W: 25.0 mm. The cutting edge angle θ of the cutting edge part 2 as the cutting part is 20° ± 5', the first stage blade width is 0.1 mm, and the second stage blade angle (the extended plane of the second stage blade surface intersects angle) was set to 4°±10'. For the cutting edge forming process, a surface grinder was used, and a diamond cylindrical grindstone was used to true the side of the grindstone, and the material was fixed on a special work rest with an adjustable angle. As a result, cemented carbide cutting blades 1 of sample numbers 1 to 55 shown in Tables 1 to 3 were manufactured.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <刃面を形成するCo凹み形成>
 先端角を形成する刃面201,202のCoの除去方法は硝酸(HNO)をCONC1に対し5倍の水で希釈した(濃硝酸を4から5倍の水で希釈する)薬液を作った。また、切断刃の刃先~0.2mmの深さの範囲で刃先を硝酸に浸すことができる治具に超硬合金製切断刃1をセットし、その薬液に10秒~50分刃先を浸し、時間管理でCoの凹みの深さ制御を行った。
<Co recess formation forming the blade surface>
The method for removing Co from the blade surfaces 201 and 202 that form the tip angle was to create a chemical solution in which nitric acid (HNO 3 ) was diluted with 5 times as much water as CONC1 (concentrated nitric acid was diluted with 4 to 5 times as much water). . In addition, the cemented carbide cutting blade 1 is set in a jig that can immerse the cutting edge in nitric acid to a depth of 0.2 mm, and the cutting blade is immersed in the chemical solution for 10 seconds to 50 minutes. The depth of the Co depression was controlled by time management.
 <刃面を形成するCoの凹み面積の割合測定>
 刃面を形成するCo凹みの割合については画像処理ソフト:プラネトロン社製イメージプラスを用い、10000倍のSEM写真の画像をソフトに取り込み8μm×8μmの範囲にあるCoとWCを画像処理により2値化(図4)し計測した。1段目の刃面201,202においてWCを黒とし、Coを白として強調し、Coの割合を当ソフトにより面積計算し割合を算出した。
<Measurement of the ratio of the area of the Co depressions forming the blade surface>
Regarding the proportion of Co depressions forming the blade surface, we used image processing software: Planetron's Image Plus, imported a 10,000x SEM photograph image into the software, and processed Co and WC in an 8 μm x 8 μm area into binary values through image processing. (Figure 4) and measured. On the first stage blade surfaces 201 and 202, WC was highlighted as black and Co was highlighted as white, and the area of Co was calculated using this software to calculate the percentage.
 <WCとCoの段差測定>
 凸部又は凹部の平均距離、及び凸部の平均高さ又は凹部の平均深さは、WC凸部又はCo凹部を有する表面をブルカー社製原子間力顕微鏡(AFM:Dimension Icon)により測定した。本AFMの測定可能な最大試料サイズはφ210であるため切断刃を破壊することなく観察できる。測定条件はスキャンエリア5μm×5μmの範囲である。カンチレバーの走査速度を0.1~80Hzで測定し各地点の高さに関する3DプロファイルからWC凸部の高さとCo凹部の最大深さを求めた。これを前記で形成した刃面の表面から無作為に選び出された表裏刃面各3箇所において測定を行い、WCとCoの最大高低差を求めた。
<Measurement of step difference between WC and Co>
The average distance of the convex portions or concave portions, the average height of the convex portions, or the average depth of the concave portions were measured on the surface having the WC convex portions or the Co concave portions using an atomic force microscope (AFM: Dimension Icon) manufactured by Bruker. The maximum sample size that can be measured with this AFM is φ210, so it can be observed without destroying the cutting blade. The measurement conditions were a scan area of 5 μm×5 μm. The scanning speed of the cantilever was measured at 0.1 to 80 Hz, and the height of the WC convex portion and the maximum depth of the Co concave portion were determined from the 3D profile regarding the height of each point. This was measured at three locations each on the front and back blade surfaces randomly selected from the surface of the blade surface formed above, and the maximum height difference between WC and Co was determined.
 <表面粗さSku(面のクルトシス)の測定>
 刃面のSku尖度(せんど)はZygo Corporation製の非接触三次元粗さ測定装置(Nexview(登録商標))を用い、上記縦断面における測定範囲を、X方向に140μm、Z方向に30μmとする。測定視野は、対物レンズの倍率を50倍、ZOOM倍率×1倍とした。
<Measurement of surface roughness Sku (surface kurtosis)>
The Sku kurtosis of the blade surface was measured using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation, and the measurement range in the longitudinal section was 140 μm in the X direction and 30 μm in the Z direction. shall be. The measurement field of view was set to have an objective lens magnification of 50 times and a ZOOM magnification of 1 time.
 <刃先稜線幅の測定>
 刃先の稜線幅測定は日本電子社製のショットキー電界放出型走査電子顕微鏡JSM-7900Fを用いて5,000~10000倍にて刃先稜に対し直交する方向から撮像し、機械座標と測長機能を活用して0.5μm以下の刃先稜のカッターをテスト刃に使用した。
<Measurement of blade edge width>
To measure the edge line width of the cutting edge, use a Schottky field emission scanning electron microscope JSM-7900F manufactured by JEOL Ltd. to take an image from a direction perpendicular to the edge of the cutting edge at 5,000 to 10,000 times magnification, and measure the machine coordinates and length measurement function. A cutter with a cutting edge edge of 0.5 μm or less was used as the test blade.
 <欠け測定>
 切断刃の欠けについては、オリンパス社製工具測定顕微鏡STM-UM 500倍により測定した。すべての試料において、欠け深さ1.5μm以内で欠け幅10μm以内であることを確認した。
<Chip measurement>
The chipping of the cutting blade was measured using a tool measuring microscope STM-UM manufactured by Olympus Corporation at a magnification of 500 times. In all samples, it was confirmed that the chip depth was within 1.5 μm and the chip width was within 10 μm.
 <切断テスト>
 本願切断刃を用いてその効果を確認するため、塩化ビニル板の押切切断を行い切断抵抗、切断刃が被切断物につけた切断傷をもとに切断面の評価を行い、また、再付着の発生率を確認し本願の効果を確認した。図6で示すように、超硬合金製切断刃1において被切断物(ワーク)100を切断する。切削動力計103の上にアクリル製の台座102が載置されている。台座と被切断物100との間に熱剥離粘着シート101が介在している。矢印111で示す方向に超硬合金製切断刃1を往復運動させつつ矢印110で示す方向に被切断物100を移動させることで、被切断物100を切断する。
<Cutting test>
In order to confirm the effectiveness of the present cutting blade, we performed push-cutting on vinyl chloride plates and evaluated the cut surface based on the cutting resistance and the scratches the cutting blade made on the object being cut. The effectiveness of this application was confirmed by checking the incidence rate. As shown in FIG. 6, an object to be cut (work) 100 is cut with a cutting blade 1 made of cemented carbide. An acrylic base 102 is placed on the cutting dynamometer 103. A thermally releasable adhesive sheet 101 is interposed between the base and the object 100 to be cut. The object to be cut 100 is cut by moving the object to be cut 100 in the direction shown by the arrow 110 while reciprocating the cutting blade 1 made of cemented carbide in the direction shown by the arrow 111.
 本テストの条件
 カッター仕様:刃先角度θ16°~20°、2段目の角度4°、厚みT:0.1mm、長さL:40mm
 ワーク材質:塩ビ板 厚み0.5mm、長さ290mm、幅30mm
 テスト装置:牧野フライス製作所製マシニングセンタV55(以下切断機という)にキスラー製の切削動力計103をセット(以下、切削動力計と言う)しワークセットは動力計定盤上面から10mmのアクリル板、厚み1mmの発泡両面粘着シート、厚み0.5mm±0.1のワーク(上記塩ビ板)(これらが被切断物100を構成する)とし、カッターの取り付け精度は長手方向のワークと刃角度±0.5°、ワークと刃断面角度90°±0.5°とした。切断条件は切断速度300mm/s、切断間隔1mm、押込み量は熱剥離シートの糊層に0.1mm刃先が切り込まれる条件で1000回塩化ビニルの切断を行い、切断抵抗、切断面品位、ワークの再付着の評価を行った。本結果を条件ごとに繰り返した結果を表1から3に記す。
Conditions for this test Cutter specifications: Blade angle θ16° to 20°, second stage angle 4°, thickness T: 0.1mm, length L: 40mm
Work material: PVC board, thickness 0.5mm, length 290mm, width 30mm
Test equipment: A cutting dynamometer 103 manufactured by Kistler was set (hereinafter referred to as the cutting dynamometer) in a machining center V55 (hereinafter referred to as the cutting machine) manufactured by Makino Milling Co., Ltd. The work set was an acrylic plate with a thickness of 10 mm from the top of the dynamometer surface plate. A 1 mm foamed double-sided adhesive sheet and a workpiece (the above-mentioned PVC board) having a thickness of 0.5 mm±0.1 (these constitute the object to be cut 100) are used, and the cutter installation accuracy is set at the workpiece in the longitudinal direction and the blade angle ±0. 5°, and the cross-sectional angle between the workpiece and the blade was 90°±0.5°. The cutting conditions were a cutting speed of 300 mm/s, a cutting interval of 1 mm, and an indentation depth of 0.1 mm into the adhesive layer of the thermally releasable sheet. We evaluated the reattachment of The results obtained by repeating this result for each condition are shown in Tables 1 to 3.
 表1から3における「切断抵抗」は切削動力計103にて測定された平均切断抵抗であり、160N以下:A、160N超169N以下:B、169N超:Cとした。「再付着」は1000箇所の切断箇所において超硬合金製切断刃1に再付着した個数の割合を示し、0.5%以下:A、0.5%超2.0%以下:B、2.0%超:Cとした。 The "cutting resistance" in Tables 1 to 3 is the average cutting resistance measured by the cutting dynamometer 103, and was defined as 160N or less: A, more than 160N and 169N or less: B, and more than 169N: C. "Reattachment" indicates the percentage of the number of reattachments to the cemented carbide cutting blade 1 at 1000 cutting locations, 0.5% or less: A, more than 0.5% and 2.0% or less: B, 2 More than .0%: Rated C.
 刃面を構成するCo部の凹みの最適な割合に関して、平滑なWC粒子に対する凹んだCoの面積割合は6%~30%が好ましい。Co凹みの面積割合が30%を越えると刃先の強度が極端に低下し欠けを誘発する。また、一方でCo凹みの面積が6%を下回ると接触面積が増え切断抵抗が増し切れ味低下が発生する。より好ましい範囲は10%~22%である。また最も好ましい範囲は10%~15%である。 Regarding the optimum ratio of recesses in the Co part constituting the blade surface, the area ratio of recessed Co to smooth WC grains is preferably 6% to 30%. If the area ratio of Co recesses exceeds 30%, the strength of the cutting edge will be extremely reduced, leading to chipping. On the other hand, if the area of the Co recess is less than 6%, the contact area increases, cutting resistance increases, and sharpness decreases. A more preferable range is 10% to 22%. The most preferable range is 10% to 15%.
 WCとCoの最適な段差範囲に関して、Co部の凹部の深さが0.008μm以上0.3μm以下である必要がある。WCとCoの段差Coの凹部の深さが0.008μmより小さいと、摩滅面となりワークとの接触面積が大きくなり切断抵抗が高くなる。一方段差が0.3μmより大きいと、刃先にチッピングを誘発する。より好ましい範囲は0.010μm以上0.3μm以下である。また最も好ましい範囲は0.010μm以上0.1μm以下である。 Regarding the optimum step range between WC and Co, the depth of the recess in the Co portion needs to be 0.008 μm or more and 0.3 μm or less. If the depth of the concave portion of the step Co between WC and Co is smaller than 0.008 μm, it will become a worn surface and the contact area with the workpiece will increase, resulting in high cutting resistance. On the other hand, if the step is larger than 0.3 μm, chipping will be induced at the cutting edge. A more preferable range is 0.010 μm or more and 0.3 μm or less. Moreover, the most preferable range is 0.010 μm or more and 0.1 μm or less.
 三次元粗さパラメータ Sku(クルトシス)の最適範囲に関して、WCとCoの段差は0.008μm~0.3μmである刃面表裏の、粗さ曲線のクルトシス:Sku(ヒストグラムの尖り度合は3を超えることが好ましい。より好ましくは4以上が好ましい。 Regarding the optimum range of the three-dimensional roughness parameter Sku (kurtosis), the step difference between WC and Co is 0.008 μm to 0.3 μm.Kurtosis of the roughness curve on the front and back of the blade surface: Sku (the sharpness of the histogram exceeds 3) It is preferable, and more preferably 4 or more.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 超硬合金製切断刃、2 刃先部、3 連結部、4 基部、5 切断刃固定部、100 被切断物、201,202,203,204 刃面、210 刃先。 1 Cemented carbide cutting blade, 2 Blade tip, 3 Connection part, 4 Base, 5 Cutting blade fixing part, 100 Object to be cut, 201, 202, 203, 204 Blade surface, 210 Blade edge.

Claims (6)

  1.  基部と、前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、刃先を形成する左右刃面を構成するCo部の凹み深さが0.008μm以上0.3μm以下である、超硬合金製切断刃。 It comprises a base, and a blade part that is provided on an extension line of the base and has a cutting edge that is the cutting edge, and the depth of the recess of the Co part that constitutes the left and right blade surfaces forming the cutting edge is 0.008 μm or more and 0.3 μm. The following is a cutting blade made of cemented carbide.
  2.  前記刃先を形成する前記左右刃面のCoの凹み面積の割合が6%以上30%以下である、請求項1に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to claim 1, wherein the ratio of the Co recess area of the left and right blade surfaces forming the cutting edge is 6% or more and 30% or less.
  3.  前記刃先を形成する前記左右刃面のCoの凹み深さが最大0.010μm以上0.3μm以下である、請求項1または2に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to claim 1 or 2, wherein the depth of the Co recess on the left and right blade surfaces forming the cutting edge is at least 0.010 μm and not more than 0.3 μm.
  4.  前記刃先を形成する前記左右刃面の表面粗さのパラメータであるクルトシス(Sku)がSku>3である、請求項1から3のいずれか1項に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to any one of claims 1 to 3, wherein kurtosis (Sku), which is a parameter of surface roughness of the left and right blade surfaces forming the cutting edge, is Sku>3.
  5.  超硬合金中のコバルトの含有率が3質量%以上25質量%以下の範囲である、請求項1から4のいずれか1項に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to any one of claims 1 to 4, wherein the content of cobalt in the cemented carbide is in the range of 3% by mass or more and 25% by mass or less.
  6.  超硬合金の硬度はビッカース硬度Hv1300以上、2030以下である、請求項1から5のいずれか1項に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to any one of claims 1 to 5, wherein the hardness of the cemented carbide is a Vickers hardness of Hv 1300 or more and Hv 2030 or less.
PCT/JP2023/009814 2022-03-18 2023-03-14 Cutting blade made of cemented carbide WO2023176818A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023559060A JPWO2023176818A1 (en) 2022-03-18 2023-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043429 2022-03-18
JP2022043429 2022-03-18

Publications (2)

Publication Number Publication Date
WO2023176818A1 true WO2023176818A1 (en) 2023-09-21
WO2023176818A9 WO2023176818A9 (en) 2024-02-08

Family

ID=88023850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009814 WO2023176818A1 (en) 2022-03-18 2023-03-14 Cutting blade made of cemented carbide

Country Status (3)

Country Link
JP (1) JPWO2023176818A1 (en)
TW (1) TW202346057A (en)
WO (1) WO2023176818A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141386A (en) * 1984-12-14 1986-06-28 松下電工株式会社 Knife
JP2004292278A (en) * 2003-03-28 2004-10-21 Kawaguchiko Seimitsu Co Ltd Glass cutter wheel, method of manufacturing the same, automatic glass scriber provided with the same, glass cutter, glass cut by using the same and electronic instrument device employing the glass
WO2017169303A1 (en) * 2016-03-31 2017-10-05 株式会社不二製作所 Structure of cutting edge of machining tool, and surface treatment method for same
WO2021256282A1 (en) * 2020-06-19 2021-12-23 株式会社アライドマテリアル Cemented carbide cutting blade

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141386A (en) * 1984-12-14 1986-06-28 松下電工株式会社 Knife
JP2004292278A (en) * 2003-03-28 2004-10-21 Kawaguchiko Seimitsu Co Ltd Glass cutter wheel, method of manufacturing the same, automatic glass scriber provided with the same, glass cutter, glass cut by using the same and electronic instrument device employing the glass
WO2017169303A1 (en) * 2016-03-31 2017-10-05 株式会社不二製作所 Structure of cutting edge of machining tool, and surface treatment method for same
WO2021256282A1 (en) * 2020-06-19 2021-12-23 株式会社アライドマテリアル Cemented carbide cutting blade

Also Published As

Publication number Publication date
JPWO2023176818A1 (en) 2023-09-21
TW202346057A (en) 2023-12-01
WO2023176818A9 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
TWI584928B (en) Flat cutting blade and green sheet cutting blade
KR101599201B1 (en) Flat blade-shaped cutting blade and green sheet cutting blade
JP7142802B2 (en) Cemented carbide cutting blade
WO2023176818A1 (en) Cutting blade made of cemented carbide
JP7018339B2 (en) Manufacturing method of non-linearly processed resin sheet
JP2019191464A (en) Resin sheet and method for producing the same
WO2023176819A9 (en) Cutting blade made of super-hard alloy
JP5031500B2 (en) Manufacturing method of diamond cutting member
US11780018B2 (en) Rotary cutting tool
JP6938781B2 (en) Flat blade cutting blade
JP7292487B2 (en) Cemented carbide cutting blade
JP7298006B2 (en) Cemented carbide cutting blade
JP7142801B2 (en) Cemented carbide cutting blade
JP7144641B2 (en) Cemented carbide cutting blade
WO2021131120A1 (en) Endmill for cutting optical film and optical film manufacturing method using said end mill
JPWO2023176818A5 (en)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023559060

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770773

Country of ref document: EP

Kind code of ref document: A1