WO2023176819A9 - Cutting blade made of super-hard alloy - Google Patents

Cutting blade made of super-hard alloy Download PDF

Info

Publication number
WO2023176819A9
WO2023176819A9 PCT/JP2023/009816 JP2023009816W WO2023176819A9 WO 2023176819 A9 WO2023176819 A9 WO 2023176819A9 JP 2023009816 W JP2023009816 W JP 2023009816W WO 2023176819 A9 WO2023176819 A9 WO 2023176819A9
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
blade
cemented carbide
less
cutting blade
Prior art date
Application number
PCT/JP2023/009816
Other languages
French (fr)
Japanese (ja)
Other versions
WO2023176819A1 (en
Inventor
篤史 小林
Original Assignee
株式会社アライドマテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アライドマテリアル filed Critical 株式会社アライドマテリアル
Priority to JP2023559064A priority Critical patent/JPWO2023176819A1/ja
Publication of WO2023176819A1 publication Critical patent/WO2023176819A1/en
Publication of WO2023176819A9 publication Critical patent/WO2023176819A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates

Definitions

  • the present disclosure relates to a cutting blade made of cemented carbide.
  • This application claims priority based on Japanese Patent Application No. 2022-043430, which is a Japanese patent application filed on March 18, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
  • the cemented carbide cutting blade includes a base and a blade part that is provided on an extension of the base and has a cutting edge that is the cutting edge, and is a distortion of the WC particles that constitute the left and right blade surfaces that form the cutting edge.
  • the KAM value is 0 or more and 4.0 or less.
  • FIG. 1 is a front view of a cutting blade 1 made of cemented carbide.
  • FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide.
  • FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
  • FIG. 4 is a front view of the cemented carbide cutting blade 1 shown for explaining the cutting method.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 10-217181 discloses a flat cutting blade for cutting thin plate-like workpieces such as ceramic green sheets, which secures a narrow cutting edge angle that enables high-precision cutting.
  • the present invention discloses a flat cutting blade that has high buckling strength.
  • a solution to this problem is to form the cutting edge with a flat or concave curved surface that is symmetrical with respect to the center line Y, and to connect the cutting edge and the base with one or more reinforcing parts of the symmetrical concave curved surface. It is proposed to shorten the distance of the cutting section to ensure high-precision cutting while increasing buckling strength.
  • Patent Document 2 International Publication No. 2014-050884 discloses a base on a flat plate, left and right blade surfaces that are inclined to approach each other from both sides of the base, and a convex curved surface formed to connect the left and right blade surfaces.
  • the shortest distance between the intersection of two straight lines along the left and right blade surfaces and the tip of the cutting edge is 1 ⁇ m or more and 10 ⁇ m or less, and The length is different on the left and right sides with respect to the center line of the base, and the difference is 1 ⁇ m or more and 20 ⁇ m or less, and the internal angle of the intersection angle of the two straight lines along the left and right blade surfaces is 4 degrees or more.
  • Patent Document 3 Japanese Unexamined Patent Publication No. 2004-174464 discloses that grinding grooves can be easily formed using a cup-shaped grindstone.
  • a grinding groove extending in the short side direction is formed on the blade surface, and the blade surface is composed of a plurality of stepped surfaces divided in the short side direction, and the stepped surface on the cutting edge side has a larger angle.
  • a cutting blade characterized by:
  • this patent describes a cutting blade made of cemented carbide that suppresses distortion (processing damage) of the WC grains that make up the cutting edge, improves chipping resistance, suppresses deterioration of cut surface quality and cutting resistance due to chipping, and provides a long-lasting product.
  • This invention relates to a long-life cemented carbide cutter.
  • a dicing method As methods for cutting green sheets, there are a method of cutting with a rotating round blade called a dicing method, and a push cutting method using a flat cutting blade as disclosed in the present disclosure.
  • the former method has disadvantages such as poor material yield due to a large amount of cutting waste and poor cutting speed, so the push-cutting method is useful for small-sized products.
  • FIG. 1 is a front view of a cemented carbide cutting blade 1.
  • FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide.
  • FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
  • a cutting blade 1 made of cemented carbide includes a cutting edge part 2 that performs cutting, a connecting part 3 connected to the cutting edge part 2, and a cutting blade fixing part 5 connected to the connecting part 3. It has a base 4 fixed by.
  • the object to be cut 100 can be cut by pressing the cutting edge portion 2 against the object to be cut 100.
  • a cutting blade 1 made of cemented carbide as a flat cutting blade extends in the x direction orthogonal to the y and z directions in FIG.
  • Blade surfaces 201 and 202 are provided on both sides of the cutting edge portion 2.
  • the blade surfaces 203 and 204 are provided, resulting in a two-stage blade.
  • Each blade surface 201 to 204 may have a linear shape or a curved shape.
  • the ridgeline where the blade surface 201 and the blade surface 202 intersect is the blade edge 210.
  • the cemented carbide cutting blade 1 includes a connecting portion 3 as a base, and a cutting edge portion 2 as a blade portion that is provided on an extension of the connecting portion 3 and has a cutting edge 210 as the most distal end.
  • the KAM value which is the distortion of the WC particles constituting the left and right blade surfaces 201 and 202 forming the cutting edge 210, is 0 or more and 4.0 or less.
  • the KAM value which is the distortion of the WC particles forming the blade surfaces 201 and 202, is 0 or more and 4.0 or less, so cracks inside the WC are suppressed. It is possible to improve fracture resistance.
  • the KAM value is 0.3 or more and 4.0 or less. More preferably, the KAM value is 0.3 or more and 2.1 or less.
  • the cobalt content in the cemented carbide is 3% by mass or more and 25% by mass or less.
  • the hardness of the cemented carbide is a Vickers hardness of Hv 1300 or more and Hv 2030 or less.
  • Such thin blades are made of hard materials such as carbon tool steel, stainless steel, and cemented carbide.
  • machining is not easy, and the reasons for this are that, although the material is hard, although it has rigidity, it is difficult to cut, has low toughness and is easily chipped, and if the blade is thin, it is made of hard material. Particularly at the tip of the cutting edge, the blade tends to escape due to the pressure of the grindstone during machining.
  • the WC that makes up the blade surface deteriorates due to the accuracy of the processing machine, changes in the grindstone over time, and external disturbances such as vibration.
  • the number of chips that occur can be reduced and the size of the chips can be reduced.
  • the material used for the cutting blade is a cemented carbide whose main components are tungsten carbide and cobalt, and the average grain size of the tungsten carbide crystal grains in the alloy is 0.1 ⁇ m to 4 ⁇ m, preferably 2 ⁇ m or less.
  • the average grain size is determined by measuring the surface of the cemented carbide in an SEM photograph at a magnification of 10,000 times, selecting 100 arbitrary crystals, and using the formula (major axis + minor axis)/2 for each crystal. The particle size was calculated based on , and the average value of 100 particle sizes was determined.
  • TaC, V 8 C 7 , and Cr 3 C 2 are produced by dissolving these components from cemented carbide using nitric acid or hydrofluoric acid, and then converting the resulting liquid into a liquid using an ICP emission spectrometer (emission spectroscopy) to determine the mass. can be measured. After Co is dissolved from a cemented carbide using nitric acid or hydrofluoric acid, the mass of the solution whose liquid properties are adjusted can be measured using a potentiometric titration device (potentiometric titration method).
  • the Vickers hardness Hv is preferably 1,300 or more and 2,030 or less, and a more preferable range is 1,850 or more and 2,150 or less.
  • the base material thickness T of the cemented carbide cutting blade is preferably 0.1 mm or more and 0.6 mm or less. By setting it within this range, it can be used as a cutting blade (compatible with a cutting machine) for laminated ceramic green sheets.
  • the cutter with a thickness of 0.1 mm is used for the thinnest chips of ceramic capacitors, and can reduce the grinding allowance and reduce the grinding resistance when producing sharp edges such as a 20° cutting edge angle by grinding, resulting in high precision. You can make a cutting edge.
  • cutters with a base material thickness of 0.4 to 0.6 mm are suitable for cutting thick chips with a thickness of 1 mm or more because the rigidity (bending of the root of the cutting edge) can be improved by increasing the thickness of the cutter itself. There is. Another advantage is that the rigidity of the base of the blade is increased, making diagonal cuts less likely to occur.
  • the thickness of a carbide cutting blade can be measured using a micrometer or a laser measuring device.
  • the relationship between the length L (mm) and the height W (mm) (FIG. 2) of the cemented carbide cutting blade is preferably 1 ⁇ L/W ⁇ 20.
  • the cutting edge angle ⁇ is 6° ⁇ 30° or less.
  • the smaller the cutting edge angle the smaller the cutting resistance and the less likely diagonal cutting will occur. In other words, the volume that penetrates into the workpiece becomes smaller.
  • a single-stage blade may be used, but since the width dimension forming the blade surface becomes large, there are problems such as the blade tip being prone to collapse due to grinding resistance and making it difficult to process the blade edge into a highly accurate shape. It is known that chipping during cutting is extremely likely to occur when ⁇ 20°.
  • Example A tip blade portion was formed using cemented carbide FM10K material manufactured by Allied Materials Co., Ltd.
  • the flat cutting blade used in the test has a blade length direction L: 40 mm, a base thickness T: 0.1 mm, and a blade height W: 25.0 mm.
  • the cutting edge angle ⁇ of the cutting edge part 2 as the cutting part is 20° ⁇ 5'
  • the first stage blade width is 0.1 mm
  • the second stage blade angle (the extended plane of the second stage blade surface intersects angle) was set to 4° ⁇ 10'.
  • a surface grinder was used, and a diamond cylindrical grindstone was used to true the side of the grindstone, and the material was fixed on a special work rest with an adjustable angle.
  • cemented carbide cutting blades 1 having sample numbers 1 to 45, 101 to 145, 201 to 245, and 301 to 345 shown in Tables 1 to 8 were produced.
  • the roughness Sa (arithmetic mean roughness) of the blade surface was measured by using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation, and measuring the measurement range in the above longitudinal section in the X direction directly below the cutting edge. It was set to 140 ⁇ m and 30 ⁇ m in the Z direction.
  • the measurement field of view was set to have an objective lens magnification of 50 times and a ZOOM magnification of 1 time.
  • ⁇ Measurement of blade edge width> To measure the edge line width of the cutting edge, use a JEOL Schottky field emission scanning electron microscope JSM7900F to take an image from a direction perpendicular to the edge of the cutting edge at 5,000 to 10,000 times magnification, and utilize mechanical coordinates and length measurement functions. It was measured by It was confirmed that the edge line width of the cutting edge was 0.5 ⁇ m or less in all the samples, and these samples were used as test blades.
  • ⁇ WC distortion measurement> The distortion of the WC particles on the left and right blade surfaces 201 and 202 constituting the cutting edge 210 is measured using a reflected electron beam formed using the SEM/EBSD (Electron Back Scatter Diffraction) method, an electron back scattering diffraction device mounted on the aforementioned electron microscope.
  • This method uses a diffraction pattern (channeling pattern) to measure crystal orientation.
  • the measurement conditions are as follows: measurement magnification: 20,000 times, acceleration voltage: 25 KV, irradiation current: 12 nA, using a reflected electron beam diffraction pattern (channeling pattern) formed by applying an electron beam to the cutting edge at a 70° inclination. Distortion was quantified and evaluated by measuring a KAM (kernel average misorientation value) map.
  • Chipping of the cutting blade was measured using a tool measuring microscope STM-UM manufactured by Olympus Corporation at a magnification of 500 times. In all samples, it was confirmed that the chip depth was within 1.5 ⁇ m and the chip width was within 10 ⁇ m.
  • an object to be cut (work) 100 is cut with a cutting blade 1 made of cemented carbide.
  • An acrylic base 102 is placed on the cutting dynamometer 103.
  • a thermally releasable adhesive sheet 101 is interposed between the base and the object 100 to be cut.
  • the object to be cut 100 is cut by moving the object to be cut 100 in the direction shown by the arrow 110 while reciprocating the cutting blade 1 made of cemented carbide in the direction shown by the arrow 111.
  • the work set was a 10 mm thick acrylic plate from the top of the dynamometer surface plate, A foamed double-sided adhesive sheet with a thickness of 1 mm, a workpiece (the above-mentioned PVC board) with a thickness of 0.5 mm ⁇ 0.1 mm (these constitute the object to be cut 100), and the installation accuracy of the cutter is the workpiece in the longitudinal direction and the blade angle ⁇ 0. .5°, and the workpiece and blade cross-sectional angle were 90° ⁇ 0.5°.
  • the cutting conditions were a cutting speed of 300 mm/s, a cutting interval of 12 mm, and an indentation amount of 0.1 mm in the adhesive layer of the thermally releasable sheet.
  • PVC was cut 1000 times, and the cutting resistance, cut surface quality, and The number of chips of 10 ⁇ m or more when cut once, 500 times, and 1000 times was evaluated. The results obtained by repeating this result for each condition are shown in Tables 1 to 8.
  • KAM value which is an index of distortion
  • good cutting results were obtained when the KAM value was 0 or more and 4.0 or less, and the number of cut lines due to chipping was 3 or less.
  • the preferable KAM value range is 0.3 or more and 4.0 or less.
  • a better range of KAM values is 0.3 or more and 2.1 or less.
  • the most preferable value is 0.3 or less.
  • the KAM value is set to 0.3 or more in the above embodiment. That is, considering only performance, it is preferable to set the KAM value to less than 0.3.
  • the number of chips with the corresponding chip width is shown.
  • the column “10 ⁇ m ⁇ ” is the number of chips with a width exceeding 9.5 ⁇ m
  • the column “6 ⁇ m ⁇ 9 ⁇ m” is the number of chips with a width exceeding 6.5 ⁇ m and 9.5 ⁇ m or less
  • the column “3 ⁇ m ⁇ 5 ⁇ m” is the number of chips with a width exceeding 9.5 ⁇ m.
  • the column shows the number of chips with a width of more than 2.5 ⁇ m and less than 5.5 ⁇ m.
  • KAM value good cutting results were obtained in terms of the number of chips in the range of 0.3 or more and 4.0 or less.
  • a better range of KAM values is 0.3 or more and 2.1 or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Powder Metallurgy (AREA)
  • Nonmetal Cutting Devices (AREA)

Abstract

This cutting blade made of a super-hard alloy comprises a base portion, and a blade portion provided on an extension line of the base portion and having a blade tip, which is a tip end portion. A KAM value, which represents distortion of WC particles constituting left and right blade surfaces forming the blade tip, is 0 to 4.0 inclusive.

Description

超硬合金製切断刃Cemented carbide cutting blade
 本開示は、超硬合金製切断刃に関する。本出願は、2022年3月18日に出願した日本特許出願である特願2022-043430号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to a cutting blade made of cemented carbide. This application claims priority based on Japanese Patent Application No. 2022-043430, which is a Japanese patent application filed on March 18, 2022. All contents described in the Japanese patent application are incorporated herein by reference.
 従来、超硬合金製切断刃は、たとえば特開平10-217181号公報(特許文献1)、国際公開2014-050884号(特許文献2)および特開2004-17444号公報(特許文献3)において開示されている。 Conventionally, cutting blades made of cemented carbide have been disclosed, for example, in JP-A-10-217181 (Patent Document 1), WO 2014-050884 (Patent Document 2), and JP-A-2004-17444 (Patent Document 3). has been done.
特開平10-217181号公報Japanese Patent Application Publication No. 10-217181 国際公開2014-050884号International Publication No. 2014-050884 特開2004-17444号公報Japanese Patent Application Publication No. 2004-17444
 超硬合金製切断刃は、基部と、前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、刃先を形成する左右刃面を構成するWC粒子の歪みであるKAM値が0以上4.0以下である。 The cemented carbide cutting blade includes a base and a blade part that is provided on an extension of the base and has a cutting edge that is the cutting edge, and is a distortion of the WC particles that constitute the left and right blade surfaces that form the cutting edge. The KAM value is 0 or more and 4.0 or less.
図1は、超硬合金製切断刃1の正面図である。FIG. 1 is a front view of a cutting blade 1 made of cemented carbide. 図2は、超硬合金製切断刃1の斜視図である。FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide. 図3は、2段の超硬合金製切断刃1の斜視図である。FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1. 図4は、切断方法を説明するために示す超硬合金製切断刃1の正面図である。FIG. 4 is a front view of the cemented carbide cutting blade 1 shown for explaining the cutting method.
[本開示が解決しようとする課題]
 従来の超硬合金製切断刃においては、耐久性が低いという問題があった。
[Problems to be solved by this disclosure]
Conventional cutting blades made of cemented carbide have a problem of low durability.
 特許文献1(特開平10-217181号公報)は、セラミックグリーンシート等の薄板状のワークを切断する平刃状の切断刃にあって、高精度な切断を可能にする狭い刃先角を確保しつつ座屈強度が高い平刃状の切断刃を開示している。 Patent Document 1 (Japanese Unexamined Patent Publication No. 10-217181) discloses a flat cutting blade for cutting thin plate-like workpieces such as ceramic green sheets, which secures a narrow cutting edge angle that enables high-precision cutting. The present invention discloses a flat cutting blade that has high buckling strength.
 その解決手段として、刃先部を中心線Yに対し左右対称の平面または凹湾曲面で形成し、刃先部と基部とを一段又は複数段の左右対称の凹湾曲面の補強部で連絡することで切断実行部の距離を短くして高精度な切断加工を確保しつつ座屈強度を高めることを提案している。 A solution to this problem is to form the cutting edge with a flat or concave curved surface that is symmetrical with respect to the center line Y, and to connect the cutting edge and the base with one or more reinforcing parts of the symmetrical concave curved surface. It is proposed to shorten the distance of the cutting section to ensure high-precision cutting while increasing buckling strength.
[規則91に基づく訂正 08.12.2023]
 特許文献2(国際公開2014-050884号)は、平板上の基部と、前記基部の両面から互いに近づくように傾斜した左右刃面と、前記左右刃面を結ぶように形成され、凸湾曲面を有する刃先先端を有し、板厚方向の断面形状において、前記左右刃面に沿った2本の直線の交点と前記刃先先端の最短距離が1μm以上、10μm以下であり、かつ、前記先端部の長さが、前記基部の中心線に対して左右で異なり、その差異が1μm以上、20μm以下であり、さらに、前記左右刃面に沿った2本の直線の交差角度の内角が、4度以上、60度以下であることを特徴とする平刃状切断刃を提案している。
[Amendment based on Rule 91 08.12.2023]
Patent Document 2 (International Publication No. 2014-050884) discloses a base on a flat plate, left and right blade surfaces that are inclined to approach each other from both sides of the base, and a convex curved surface formed to connect the left and right blade surfaces. In the cross-sectional shape in the plate thickness direction, the shortest distance between the intersection of two straight lines along the left and right blade surfaces and the tip of the cutting edge is 1 μm or more and 10 μm or less, and The length is different on the left and right sides with respect to the center line of the base, and the difference is 1 μm or more and 20 μm or less, and the internal angle of the intersection angle of the two straight lines along the left and right blade surfaces is 4 degrees or more. , has proposed a flat cutting blade characterized by an angle of 60 degrees or less.
 特許文献3(特開2004-17444号公報)は、カップ型砥石を使用し、研削溝を容易に形成することができることを開示している。板状のセラミック体をその厚み方向に押圧力を作用させて切断する略矩形形状の切断刃であって、長辺方向の一辺に沿って平面によって形成された刃面を有し、該刃面に短辺方向に延在する研削溝が形成され、前記刃面は短辺方向に分割された複数の段付き面によって構成され、刃先側の段付き面ほど大きい角度を有していることを特徴とする切断刃を開示している。 Patent Document 3 (Japanese Unexamined Patent Publication No. 2004-17444) discloses that grinding grooves can be easily formed using a cup-shaped grindstone. A substantially rectangular cutting blade for cutting a plate-shaped ceramic body by applying a pressing force in the thickness direction thereof, the blade having a blade surface formed by a plane along one side in the long side direction; A grinding groove extending in the short side direction is formed on the blade surface, and the blade surface is composed of a plurality of stepped surfaces divided in the short side direction, and the stepped surface on the cutting edge side has a larger angle. Discloses a cutting blade characterized by:
 近年、MLCC(Multilayer Ceramic Capacitors)の高密度積層技術により、大型のMLCCのダウンサイズ化が進んでいる。ダウンサイズ化されることでNi電極の積層数は増え、また、誘電体であるチタン酸バリウムの粒径を数十nmにすることで厚み方向の電極間距離は数百nm以下となってきている。そのため、グリーンシートの硬度は高くなるに加え、電極間距離が短くなると切断面品位が悪化する傾向にある。そのような中で、本特許は超硬合金製切断刃において、刃先を構成するWC粒子の歪(加工ダメージ)を抑え耐欠損性を高め欠けによる切断面品位、切断抵抗の悪化を抑制し長寿命な超硬合金製カッターを提供する発明に関するものである。 In recent years, downsizing of large MLCCs has been progressing due to the high-density stacking technology of MLCCs (Multilayer Ceramic Capacitors). Downsizing has increased the number of stacked Ni electrodes, and by reducing the particle size of the dielectric barium titanate to tens of nanometers, the distance between the electrodes in the thickness direction has become less than a few hundred nanometers. There is. Therefore, in addition to increasing the hardness of the green sheet, when the distance between the electrodes becomes short, the quality of the cut surface tends to deteriorate. Under these circumstances, this patent describes a cutting blade made of cemented carbide that suppresses distortion (processing damage) of the WC grains that make up the cutting edge, improves chipping resistance, suppresses deterioration of cut surface quality and cutting resistance due to chipping, and provides a long-lasting product. This invention relates to a long-life cemented carbide cutter.
 積層セラミックスコンデンサを製造するために、厚さが数百μmから数mmの積層されたグリーンシートの切断要求がある。これを精度良く連続的に切断した後、ひとつひとつの被切断物を焼成し、両端に電極を取り付けることでコンデンサとしている。ここで、コンデンサは近年スマートフォンを代表とする小型機対応のため小サイズ化の要求が増しており、そのため高度な切断精度が要求される。このような小サイズセラミックコンデンサを実現するためには、刃先加工において発生するWC粒子の歪みを軽減しカッター使用時に発生する衝撃及び熱変位から進展する欠けを抑制することでグリーンシート切断面に損傷を与えないことが必要である。 In order to manufacture multilayer ceramic capacitors, there is a need to cut laminated green sheets with a thickness of several hundred μm to several mm. After cutting this material continuously with high precision, each object is fired and electrodes are attached to both ends to create a capacitor. In recent years, there has been an increasing demand for capacitors to be smaller in size to accommodate small devices such as smartphones, which requires a high level of cutting precision. In order to create such small-sized ceramic capacitors, we need to reduce the distortion of WC particles that occurs during cutting edge machining, and prevent damage to the cut surface of the green sheet by suppressing chipping that develops from the impact and thermal displacement that occurs when using a cutter. It is necessary not to give
 グリーンシートの切断方法としては、ダイシング法と呼ばれる回転丸刃にて切断する方法と、本開示のような平刃状切断刃を用いた押切方式がある。前者は切削屑が多く出る為に材料歩留が悪く、また切断速度が劣るという欠点などがあり、小サイズ品には押切方式が有用である。 As methods for cutting green sheets, there are a method of cutting with a rotating round blade called a dicing method, and a push cutting method using a flat cutting blade as disclosed in the present disclosure. The former method has disadvantages such as poor material yield due to a large amount of cutting waste and poor cutting speed, so the push-cutting method is useful for small-sized products.
 図1は、超硬合金製切断刃1の正面図である。図2は、超硬合金製切断刃1の斜視図である。図3は、2段の超硬合金製切断刃1の斜視図である。 FIG. 1 is a front view of a cemented carbide cutting blade 1. FIG. 2 is a perspective view of the cutting blade 1 made of cemented carbide. FIG. 3 is a perspective view of the two-stage cemented carbide cutting blade 1.
 図1から図3で示すように、超硬合金製切断刃1は、切断を実行する刃先部2、刃先部2に連結される連結部3および連結部3に連結されて切断刃固定部5によって固定される基部4とを有する。 As shown in FIGS. 1 to 3, a cutting blade 1 made of cemented carbide includes a cutting edge part 2 that performs cutting, a connecting part 3 connected to the cutting edge part 2, and a cutting blade fixing part 5 connected to the connecting part 3. It has a base 4 fixed by.
 被切断物100に刃先部2を押しつけることで、被切断物100を切断することができる。平刃状切断刃としての超硬合金製切断刃1は、図1におけるyおよびz方向と直交するx方向に延在している。 The object to be cut 100 can be cut by pressing the cutting edge portion 2 against the object to be cut 100. A cutting blade 1 made of cemented carbide as a flat cutting blade extends in the x direction orthogonal to the y and z directions in FIG.
 刃先部2の両側に刃面201,202が設けられている。図3では刃面203,204が設けられることで、2段刃となっている。各刃面201から204は直線形状であってもよく、曲線形状であってもよい。刃面201と刃面202が交差する稜線が刃先210である。 Blade surfaces 201 and 202 are provided on both sides of the cutting edge portion 2. In FIG. 3, the blade surfaces 203 and 204 are provided, resulting in a two-stage blade. Each blade surface 201 to 204 may have a linear shape or a curved shape. The ridgeline where the blade surface 201 and the blade surface 202 intersect is the blade edge 210.
 本開示に従った超硬合金製切断刃1は、基部としての連結部3と、連結部3の延長線上に設けられ、最先端部である刃先210を有する刃部としての刃先部2とを備え、刃先210を形成する左右の刃面201,202を構成するWC粒子の歪みであるKAM値が0以上4.0以下である。 The cemented carbide cutting blade 1 according to the present disclosure includes a connecting portion 3 as a base, and a cutting edge portion 2 as a blade portion that is provided on an extension of the connecting portion 3 and has a cutting edge 210 as the most distal end. The KAM value, which is the distortion of the WC particles constituting the left and right blade surfaces 201 and 202 forming the cutting edge 210, is 0 or more and 4.0 or less.
 このように構成された、超硬合金製切断刃1においては、刃面201,202を構成するWC粒子の歪みであるKAM値が0以上4.0以下であるため、WC内部の亀裂を抑制でき、耐欠損性を高めることができる。 In the cemented carbide cutting blade 1 configured in this way, the KAM value, which is the distortion of the WC particles forming the blade surfaces 201 and 202, is 0 or more and 4.0 or less, so cracks inside the WC are suppressed. It is possible to improve fracture resistance.
 好ましくは、前記KAM値が0.3以上4.0以下である。より好ましくは、前記KAM値が0.3以上2.1以下である。 Preferably, the KAM value is 0.3 or more and 4.0 or less. More preferably, the KAM value is 0.3 or more and 2.1 or less.
 好ましくは、超硬合金中のコバルトの含有率が3質量%以上25質量%以下である。
 好ましくは、超硬合金の硬度はビッカース硬度Hv1300以上、2030以下である。
Preferably, the cobalt content in the cemented carbide is 3% by mass or more and 25% by mass or less.
Preferably, the hardness of the cemented carbide is a Vickers hardness of Hv 1300 or more and Hv 2030 or less.
 このような薄刃は例えば炭素工具鋼、ステンレス鋼の他、超硬合金などの硬質材料が用いられている。しかし加工が容易ではなくその原因として、特に材質が硬質材料である場合、剛性はあるものの、難切削性であり且つ靱性が低く欠け易いことや、また、刃厚が薄い場合硬質材料であっても特に刃先先端部では加工中に砥石の押圧により刃が逃げようとすることなどが挙げられる。さらに、加工機の精度、砥石の経時変化、振動などの外乱により刃面を構成するWCの劣化が挙げられる。 Such thin blades are made of hard materials such as carbon tool steel, stainless steel, and cemented carbide. However, machining is not easy, and the reasons for this are that, although the material is hard, although it has rigidity, it is difficult to cut, has low toughness and is easily chipped, and if the blade is thin, it is made of hard material. Particularly at the tip of the cutting edge, the blade tends to escape due to the pressure of the grindstone during machining. Furthermore, the WC that makes up the blade surface deteriorates due to the accuracy of the processing machine, changes in the grindstone over time, and external disturbances such as vibration.
 従来、上述の特性を満たすために種々の切断刃が提案されているが、形状を複雑化させた場合、更に加工が困難となることは避けられず、安定した形状精度と加工性を共に満足する切断刃は得られていない。 Conventionally, various cutting blades have been proposed to meet the above characteristics, but if the shape is complicated, it is inevitable that processing becomes even more difficult. A cutting blade that does this has not been obtained.
 効果
 欠けの発生個数の低減と欠けのサイズを縮小することができる。
Effect: The number of chips that occur can be reduced and the size of the chips can be reduced.
 WC粒子の歪値をSEM/EBSD (Electron Back Scatter Diffraction)法を用い測定領域全体の結晶方位分布(方位マップ)を取得し結晶方位差情報から、内部の残留歪をKAM(kernel Average Misorientation)値マップの測定にて数値化した。結果、KAM値を4.0以下にすることでWC内部の亀裂を抑制でき、耐欠損性を高めることができることが判明した。本手法を使用することで刃先を鈍角にせずとも、鋭角な刃先角度θでも欠けの抑制を図ることができ、切れ味が長期に持続し、寿命の長い超硬切断刃を提供することができる。 Obtain the crystal orientation distribution (orientation map) of the entire measurement area using the SEM/EBSD (Electron Back Scatter Diffraction) method to obtain the strain value of the WC particle, and use the crystal orientation difference information to calculate the internal residual strain as a KAM (kernel average misorientation) value. It was quantified by measuring the map. As a result, it was found that by setting the KAM value to 4.0 or less, cracks inside the WC could be suppressed and fracture resistance could be improved. By using this method, it is possible to suppress chipping even at an acute cutting edge angle θ without making the cutting edge obtuse, and it is possible to provide a carbide cutting blade that maintains sharpness for a long time and has a long life.
 材質
 切断刃に用いる材質はタングステンカーバイドとコバルトを主成分とした超硬合金で合金中のタングステンカーバイド結晶粒の大きさは平均粒径が0.1μm~4μmで2μm以下が好ましい。平均粒径は、SEM写真において、超硬合金の表面を1万倍の倍率で測定して、任意の100個の結晶を選択し、各々の結晶において(長径+短径)/2の計算式に基づいて粒径を計算し、100個の粒径の平均値を求めた。
Material The material used for the cutting blade is a cemented carbide whose main components are tungsten carbide and cobalt, and the average grain size of the tungsten carbide crystal grains in the alloy is 0.1 μm to 4 μm, preferably 2 μm or less. The average grain size is determined by measuring the surface of the cemented carbide in an SEM photograph at a magnification of 10,000 times, selecting 100 arbitrary crystals, and using the formula (major axis + minor axis)/2 for each crystal. The particle size was calculated based on , and the average value of 100 particle sizes was determined.
[規則91に基づく訂正 08.12.2023]
 また、タングステンカーバイトの結晶粒を制御するため結晶粒成長抑制のための成分TaC(タンタルカーバイド)を0.1~2質量%添加することも可能である。この添加剤はV(バナジウムカーバイド)、Cr(クロムカーバイド)でも置き替え及び組み合わせる事ができる。その場合は各々の添加量が0.1~2質量%。超硬合金に使用されるコバルトは3~25質量%の範囲が好ましく、5~20質量%の範囲であることがより好ましい。TaC、V、Crは、硝酸、フッ酸を用いてこれらの成分を超硬合金から溶解したのち後、液体状にしたものをICP発光分光装置(発光分光法)で質量を測定できる。Coは、硝酸、フッ酸を用いて超硬合金から溶解した後、液性を調整した溶液を電位差滴定装置(電位差滴定法)で質量を測定できる。
[Amendment based on Rule 91 08.12.2023]
Furthermore, in order to control the crystal grains of tungsten carbide, it is also possible to add 0.1 to 2% by mass of TaC (tantalum carbide), a component for suppressing crystal grain growth. This additive can also be replaced and combined with V 8 C 7 (vanadium carbide), Cr 3 C 2 (chromium carbide). In that case, the amount of each added is 0.1 to 2% by mass. The cobalt used in the cemented carbide preferably ranges from 3 to 25% by mass, more preferably from 5 to 20% by mass. TaC, V 8 C 7 , and Cr 3 C 2 are produced by dissolving these components from cemented carbide using nitric acid or hydrofluoric acid, and then converting the resulting liquid into a liquid using an ICP emission spectrometer (emission spectroscopy) to determine the mass. can be measured. After Co is dissolved from a cemented carbide using nitric acid or hydrofluoric acid, the mass of the solution whose liquid properties are adjusted can be measured using a potentiometric titration device (potentiometric titration method).
 超硬合金の硬度はビッカース硬度Hvが、1300以上、2030以下が好ましく、より好ましい範囲は1850以上2150以下である。 As for the hardness of the cemented carbide, the Vickers hardness Hv is preferably 1,300 or more and 2,030 or less, and a more preferable range is 1,850 or more and 2,150 or less.
 厚み
 超硬合金製切断刃の基材厚さTは、0.1mm以上~0.6mm以下が好ましい。この範囲とすることにより、積層セラミックグリーンシートの切断刃(切断機に対応)として使用できる。厚み0.1mmサイズのカッターは、セラミックコンデンサーの中でも薄いチップ用で刃先角度20°などの鋭角刃を研削加工で製作する上で研削代を小さくでき、研削抵抗を下げることができるため高精度な刃先を作ることができる。一方基材厚0.4~0.6mmのカッターは、カッター自体の厚みを大きくすることで剛性(刃先の根本の撓み)を向上させることができるため厚み1mm以上の厚いチップの切断に適している。また、刃の根本の剛性が高まることで斜め切断が起こりにくいなどの利点がある。
Thickness The base material thickness T of the cemented carbide cutting blade is preferably 0.1 mm or more and 0.6 mm or less. By setting it within this range, it can be used as a cutting blade (compatible with a cutting machine) for laminated ceramic green sheets. The cutter with a thickness of 0.1 mm is used for the thinnest chips of ceramic capacitors, and can reduce the grinding allowance and reduce the grinding resistance when producing sharp edges such as a 20° cutting edge angle by grinding, resulting in high precision. You can make a cutting edge. On the other hand, cutters with a base material thickness of 0.4 to 0.6 mm are suitable for cutting thick chips with a thickness of 1 mm or more because the rigidity (bending of the root of the cutting edge) can be improved by increasing the thickness of the cutter itself. There is. Another advantage is that the rigidity of the base of the blade is increased, making diagonal cuts less likely to occur.
 超硬切断刃の厚さの測定方法は、マイクロメータ、またはレーザー測定器がある。
 超硬合金切断刃の長さL(mm)と高さW(mm)(図2)との関係は1≦L/W≦20となることが好ましい。
The thickness of a carbide cutting blade can be measured using a micrometer or a laser measuring device.
The relationship between the length L (mm) and the height W (mm) (FIG. 2) of the cemented carbide cutting blade is preferably 1≦L/W≦20.
 刃先角度θは6°≦θ≦30°以下であることが好ましい。
 刃先角度が小さい方が切断抵抗は小さくなり、ナナメ切断も起こりにくくなる。つまり、ワークに侵入する体積が小さくなるからである。10°以下については1段刃でも良いが、刃面を形成する幅寸法が大きくなるため研削抵抗により倒れやすく刃先を高精度な形状に加工しにくいなどの問題がある。刃付け時のチッピングについてはθ≦20°を境に極端に発生しやすくなることがわかっている。
It is preferable that the cutting edge angle θ is 6°≦θ≦30° or less.
The smaller the cutting edge angle, the smaller the cutting resistance and the less likely diagonal cutting will occur. In other words, the volume that penetrates into the workpiece becomes smaller. For angles of 10 degrees or less, a single-stage blade may be used, but since the width dimension forming the blade surface becomes large, there are problems such as the blade tip being prone to collapse due to grinding resistance and making it difficult to process the blade edge into a highly accurate shape. It is known that chipping during cutting is extremely likely to occur when θ≦20°.
 実施例
 株式会社アライドマテリアル製超硬合金FM10K素材を用いて先端刃部の形成加工行った。試験に用いる平刃状切断刃は、刃渡り方向L:40mm、基部厚さT:0.1mm、刃高さW:25.0mmである。切断実行部としての刃先部2の切れ刃角度θを20°±5’とし第1段目の刃幅を0.1mmとし2段目の刃角度(2段目の刃面の延長面が交差して形成する角度)を4°±10’とした。刃先成形加工に於いては平面研削盤を用い、ダイヤモンド円筒砥石を使用し砥石の側面をツルーイングし、角度調整可能な専用のワークレストに素材を固定して加工を行った。これにより表1から表8に示す試料番号1から45、101から145、201から245および301から345の超硬合金製切断刃1を作製した。
Example A tip blade portion was formed using cemented carbide FM10K material manufactured by Allied Materials Co., Ltd. The flat cutting blade used in the test has a blade length direction L: 40 mm, a base thickness T: 0.1 mm, and a blade height W: 25.0 mm. The cutting edge angle θ of the cutting edge part 2 as the cutting part is 20° ± 5', the first stage blade width is 0.1 mm, and the second stage blade angle (the extended plane of the second stage blade surface intersects angle) was set to 4°±10'. For the cutting edge forming process, a surface grinder was used, and a diamond cylindrical grindstone was used to true the side of the grindstone, and the material was fixed on a special work rest with an adjustable angle. As a result, cemented carbide cutting blades 1 having sample numbers 1 to 45, 101 to 145, 201 to 245, and 301 to 345 shown in Tables 1 to 8 were produced.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 <刃先表面WCの残留歪の除去>
 電解研磨を用いた電気化学的研磨を行う事で超硬合金の刃先表面を除去し、先端角を形成する刃面に残留する砥石による刃先形成時に残留したと思われる歪みを除去した。切断刃の刃部を下方に向け、その形状に添う形に成形した電極を下部に置き、これらを100g/dmのNaNOを含む電解液中に浸漬し、超硬合金切断刃が陽極となる様に電源を配置し、0.1~1.0A/cm程度の電流密度になる様に電圧を調整した。
<Removal of residual strain on the cutting edge surface WC>
By performing electrochemical polishing using electrolytic polishing, the surface of the cemented carbide cutting edge was removed, and the distortion that remained on the blade surface that forms the tip angle, which was thought to have remained during the formation of the cutting edge with a grindstone, was removed. With the blade of the cutting blade facing downward, an electrode molded to follow the shape is placed at the bottom, and these are immersed in an electrolyte containing 100 g/dm 3 of NaNO 3 so that the cemented carbide cutting blade serves as the anode. The power supplies were arranged so that the voltage was adjusted so that the current density was about 0.1 to 1.0 A/cm 2 .
 電解研磨は、超硬切断刃の表面状態を確認しながら研磨条件、研磨時間を調整した。
 <表面粗さの測定>
 刃面の粗さ測定Sa(算術平均粗さ)はZygo Corporation製の非接触三次元粗さ測定装置(Nexview(登録商標))を用い、上記縦断面における測定範囲を、刃先直下のX方向に140μm、Z方向に30μmとした。測定視野は、対物レンズの倍率を50倍、ZOOM倍率×1倍とした。
During electrolytic polishing, the polishing conditions and polishing time were adjusted while checking the surface condition of the carbide cutting blade.
<Measurement of surface roughness>
The roughness Sa (arithmetic mean roughness) of the blade surface was measured by using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation, and measuring the measurement range in the above longitudinal section in the X direction directly below the cutting edge. It was set to 140 μm and 30 μm in the Z direction. The measurement field of view was set to have an objective lens magnification of 50 times and a ZOOM magnification of 1 time.
 <刃先稜線幅の測定>
 刃先の稜線幅測定は日本電子社製のショットキー電界放出型走査電子顕微鏡JSM7900Fを用いて5,000~10000倍にて刃先稜に対し直交する方向から撮像し、機械座標と測長機能を活用して測定した。すべての試料において、刃先稜線幅は、0.5μm以下であることを確認し、これらをテスト刃に使用した。
<Measurement of blade edge width>
To measure the edge line width of the cutting edge, use a JEOL Schottky field emission scanning electron microscope JSM7900F to take an image from a direction perpendicular to the edge of the cutting edge at 5,000 to 10,000 times magnification, and utilize mechanical coordinates and length measurement functions. It was measured by It was confirmed that the edge line width of the cutting edge was 0.5 μm or less in all the samples, and these samples were used as test blades.
 <WCの歪測定>
 刃先210を構成する左右の刃面201,202におけるWC粒子の歪測定は前述の電子顕微鏡に搭載された電子後方散乱回折装置SEM/EBSD(Electron Back Scatter Diffraction)法を用い形成される反射電子線回折パターン(チャンネリングパターン)を利用し、結晶方位を測定する方法である。測定条件については測定倍率20000倍、加速電圧25KV、照射電流12nAにて刃先を70°傾斜させて電子線を当て形成される反射電子線回折パターン(チャンネリングパターン)を利用し、刃先刃面の歪をKAM(kernel Average Misorientation値)マップの測定にて数値化し評価を行った。
<WC distortion measurement>
The distortion of the WC particles on the left and right blade surfaces 201 and 202 constituting the cutting edge 210 is measured using a reflected electron beam formed using the SEM/EBSD (Electron Back Scatter Diffraction) method, an electron back scattering diffraction device mounted on the aforementioned electron microscope. This method uses a diffraction pattern (channeling pattern) to measure crystal orientation. The measurement conditions are as follows: measurement magnification: 20,000 times, acceleration voltage: 25 KV, irradiation current: 12 nA, using a reflected electron beam diffraction pattern (channeling pattern) formed by applying an electron beam to the cutting edge at a 70° inclination. Distortion was quantified and evaluated by measuring a KAM (kernel average misorientation value) map.
 <欠け測定>
 切断刃の欠けについては、オリンパス社製工具測定顕微鏡STM-UM 500倍により測定した。すべての試料において、欠け深さ1.5μm以内で欠け幅10μm以内であることを確認した。
<Chip measurement>
The chipping of the cutting blade was measured using a tool measuring microscope STM-UM manufactured by Olympus Corporation at a magnification of 500 times. In all samples, it was confirmed that the chip depth was within 1.5 μm and the chip width was within 10 μm.
 <切断テスト>
 本願切断刃を用いてその効果を確認するため、塩化ビニル板の押切切断を行い切断抵抗、切断刃が被切断物につけた切断傷をもとに切断面の評価を行った。本開示の効果を確認した。図4で示すように、超硬合金製切断刃1において被切断物(ワーク)100を切断する。切削動力計103の上にアクリル製の台座102が載置されている。台座と被切断物100との間に熱剥離粘着シート101が介在している。矢印111で示す方向に超硬合金製切断刃1を往復運動させつつ矢印110で示す方向に被切断物100を移動させることで、被切断物100を切断する。
<Cutting test>
In order to confirm the effectiveness of the cutting blade of the present invention, a vinyl chloride plate was pressed and cut, and the cut surface was evaluated based on the cutting resistance and the scratches made by the cutting blade on the object to be cut. The effectiveness of the present disclosure was confirmed. As shown in FIG. 4, an object to be cut (work) 100 is cut with a cutting blade 1 made of cemented carbide. An acrylic base 102 is placed on the cutting dynamometer 103. A thermally releasable adhesive sheet 101 is interposed between the base and the object 100 to be cut. The object to be cut 100 is cut by moving the object to be cut 100 in the direction shown by the arrow 110 while reciprocating the cutting blade 1 made of cemented carbide in the direction shown by the arrow 111.
[規則91に基づく訂正 08.12.2023]
 本テストの条件
 カッター仕様:刃先角度θ16°~20°、2段目の角度4°、厚みT:0.1mm、長さL:40mm
 ワーク材質:塩ビ板 厚み0.5mm、長さ290mm、幅30mm
 テスト装置:牧野フライス製作所製マシニングセンタV55(以下切断機という)にキスラー製の切削動力計103をセット(以下、切削動力計と言う)しワークセットは動力計定盤上面から厚み10mmのアクリル板、厚み1mmの発泡両面粘着シート、厚み0.5mm±0.1mmのワーク(上記塩ビ板)(これらが被切断物100を構成する)とし、カッターの取り付け精度は長手方向のワークと刃角度±0.5°、ワークと刃断面角度90°±0.5°とした。切断条件は切断速度300mm/s、切断間隔12mm、押込み量は熱剥離シートの糊層に0.1mm刃先が切り込まれる条件で1000回塩化ビニルの切断を行い、切断抵抗、切断面品位、1回、500回、1000回カット時の10μm以上の欠け発生個数を評価した。本結果を条件ごとに繰り返した結果を表1から8に記す。
[Amendment based on Rule 91 08.12.2023]
Conditions for this test Cutter specifications: Blade angle θ16° to 20°, second stage angle 4°, thickness T: 0.1mm, length L: 40mm
Work material: PVC board, thickness 0.5mm, length 290mm, width 30mm
Test equipment: A cutting dynamometer 103 manufactured by Kistler was set (hereinafter referred to as the cutting dynamometer) in a machining center V55 (hereinafter referred to as the cutting machine) manufactured by Makino Milling Co., Ltd. The work set was a 10 mm thick acrylic plate from the top of the dynamometer surface plate, A foamed double-sided adhesive sheet with a thickness of 1 mm, a workpiece (the above-mentioned PVC board) with a thickness of 0.5 mm ± 0.1 mm (these constitute the object to be cut 100), and the installation accuracy of the cutter is the workpiece in the longitudinal direction and the blade angle ± 0. .5°, and the workpiece and blade cross-sectional angle were 90°±0.5°. The cutting conditions were a cutting speed of 300 mm/s, a cutting interval of 12 mm, and an indentation amount of 0.1 mm in the adhesive layer of the thermally releasable sheet. PVC was cut 1000 times, and the cutting resistance, cut surface quality, and The number of chips of 10 μm or more when cut once, 500 times, and 1000 times was evaluated. The results obtained by repeating this result for each condition are shown in Tables 1 to 8.
 表1から表8において、「切断面」の欄の評価に関して、1000回目カット時の切断箇所(最後の切断箇所)をマイクロスコープにおいて観察した結果、切断筋が3本以下であれは「A」、4本以上であれば「B」とした。 In Tables 1 to 8, regarding the evaluation in the "cut surface" column, as a result of observing the cut point at the 1000th cut (the last cut point) with a microscope, if there are 3 or less cut lines, it is rated "A". , if there were four or more, it was rated "B".
[規則91に基づく訂正 08.12.2023]
 歪みの指標となるKAM値については、0以上4.0以下において、欠けによる切断筋が3個以内で良好な切断結果が得られた。好ましいKAM値の範囲は0.3以上4.0以下である。より良い範囲としてはKAM値の範囲は0.3以上2.1以下である。最も好ましいのは0.3以下である。ただし、KAM値を0以上0.3未満の範囲とするにはコスト高であるため、上記の実施例ではKAM値を0.3以上としている。すなわち、性能のみをみればKAM値を0.3未満とすることが好ましい。
[Amendment based on Rule 91 08.12.2023]
Regarding the KAM value, which is an index of distortion, good cutting results were obtained when the KAM value was 0 or more and 4.0 or less, and the number of cut lines due to chipping was 3 or less. The preferable KAM value range is 0.3 or more and 4.0 or less. A better range of KAM values is 0.3 or more and 2.1 or less. The most preferable value is 0.3 or less. However, since it is expensive to set the KAM value in the range of 0 or more and less than 0.3, the KAM value is set to 0.3 or more in the above embodiment. That is, considering only performance, it is preferable to set the KAM value to less than 0.3.
 表1から8の「欠け幅」の欄において、該当する欠け幅の欠けの数を示している。「10μm~」の欄には9.5μmを超える幅の欠けの数、「6μm~9μm」の欄には6.5μmを超え9.5μm以下の幅の欠けの数、「3μm~5μm」の欄には2.5μmを超え5.5μm以下の幅の欠けの数を示している。 In the "Chip Width" column of Tables 1 to 8, the number of chips with the corresponding chip width is shown. The column "10μm ~" is the number of chips with a width exceeding 9.5μm, the column "6μm ~ 9μm" is the number of chips with a width exceeding 6.5μm and 9.5μm or less, and the column "3μm ~ 5μm" is the number of chips with a width exceeding 9.5μm. The column shows the number of chips with a width of more than 2.5 μm and less than 5.5 μm.
 KAM値については、0.3以上4.0以下の範囲において、欠けの数に関して良好な切断結果が得られた。より良い範囲としてはKAM値の範囲は0.3以上2.1以下である。 Regarding the KAM value, good cutting results were obtained in terms of the number of chips in the range of 0.3 or more and 4.0 or less. A better range of KAM values is 0.3 or more and 2.1 or less.
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present invention is indicated by the claims rather than the above description, and it is intended that equivalent meanings and all changes within the scope of the claims are included.
 1 超硬合金製切断刃、2 刃先部、3 連結部、4 基部、5 切断刃固定部、100 被切断物、201,202,203,204 刃面、210 刃先。 1 Cemented carbide cutting blade, 2 Blade tip, 3 Connection part, 4 Base, 5 Cutting blade fixing part, 100 Object to be cut, 201, 202, 203, 204 Blade surface, 210 Blade tip.

Claims (5)

  1.  基部と、前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、前記刃先を形成する左右刃面を構成するWC粒子の歪みであるKAM値が0以上4.0以下である、超硬合金製切断刃。 The KAM value, which is the distortion of the WC particles constituting the left and right blade surfaces that form the cutting edge, is 0 or more and 4. comprises a base and a blade part that is provided on an extension of the base and has a cutting edge that is the cutting edge, and has a KAM value of 0 or more.4. 0 or less, a cutting blade made of cemented carbide.
  2.  前記KAM値が0.3以上4.0以下である、請求項1に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to claim 1, wherein the KAM value is 0.3 or more and 4.0 or less.
  3.  前記KAM値が0.3以上2.1以下である、請求項2に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to claim 2, wherein the KAM value is 0.3 or more and 2.1 or less.
  4. [規則91に基づく訂正 08.12.2023]
     超硬合金中のコバルトの含有率が3質量%以上25質量%以下の範囲である、請求項1から3のいずれか1項に記載の超硬合金製切断刃。
    [Amendment based on Rule 91 08.12.2023]
    The cemented carbide cutting blade according to any one of claims 1 to 3, wherein the content of cobalt in the cemented carbide is in the range of 3% by mass or more and 25% by mass or less.
  5.  超硬合金の硬度はビッカース硬度Hv1300以上、2030以下である、請求項1から4のいずれか1項に記載の超硬合金製切断刃。 The cemented carbide cutting blade according to any one of claims 1 to 4, wherein the hardness of the cemented carbide is a Vickers hardness of Hv1300 or more and Hv2030 or less.
PCT/JP2023/009816 2022-03-18 2023-03-14 Cutting blade made of super-hard alloy WO2023176819A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023559064A JPWO2023176819A1 (en) 2022-03-18 2023-03-14

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043430 2022-03-18
JP2022-043430 2022-03-18

Publications (2)

Publication Number Publication Date
WO2023176819A1 WO2023176819A1 (en) 2023-09-21
WO2023176819A9 true WO2023176819A9 (en) 2024-02-29

Family

ID=88023860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009816 WO2023176819A1 (en) 2022-03-18 2023-03-14 Cutting blade made of super-hard alloy

Country Status (3)

Country Link
JP (1) JPWO2023176819A1 (en)
TW (1) TW202346051A (en)
WO (1) WO2023176819A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5835307B2 (en) * 2013-11-22 2015-12-24 住友電気工業株式会社 Cemented carbide and surface-coated cutting tool using the same
JP6608945B2 (en) * 2015-09-29 2019-11-20 京セラ株式会社 Rod and cutting tool
JP7051052B2 (en) * 2020-03-31 2022-04-11 株式会社タンガロイ Cover cutting tool
WO2021256282A1 (en) * 2020-06-19 2021-12-23 株式会社アライドマテリアル Cemented carbide cutting blade

Also Published As

Publication number Publication date
TW202346051A (en) 2023-12-01
JPWO2023176819A1 (en) 2023-09-21
WO2023176819A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
TWI584928B (en) Flat cutting blade and green sheet cutting blade
KR101599201B1 (en) Flat blade-shaped cutting blade and green sheet cutting blade
JP7142802B2 (en) Cemented carbide cutting blade
KR20190077027A (en) Cutting insert
WO2023176819A9 (en) Cutting blade made of super-hard alloy
WO2023176818A1 (en) Cutting blade made of cemented carbide
WO2021256280A1 (en) Cemented carbide cutting blade
JP6938781B2 (en) Flat blade cutting blade
JP7142801B2 (en) Cemented carbide cutting blade
JP7292487B2 (en) Cemented carbide cutting blade
JP7144641B2 (en) Cemented carbide cutting blade
CN113587853B (en) Method for measuring chip deformation

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023559064

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770774

Country of ref document: EP

Kind code of ref document: A1