JP7298006B2 - Cemented carbide cutting blade - Google Patents

Cemented carbide cutting blade Download PDF

Info

Publication number
JP7298006B2
JP7298006B2 JP2022500073A JP2022500073A JP7298006B2 JP 7298006 B2 JP7298006 B2 JP 7298006B2 JP 2022500073 A JP2022500073 A JP 2022500073A JP 2022500073 A JP2022500073 A JP 2022500073A JP 7298006 B2 JP7298006 B2 JP 7298006B2
Authority
JP
Japan
Prior art keywords
blade
cutting
cemented carbide
cutting edge
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022500073A
Other languages
Japanese (ja)
Other versions
JPWO2021256280A1 (en
Inventor
篤史 小林
武彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Original Assignee
ALMT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp filed Critical ALMT Corp
Publication of JPWO2021256280A1 publication Critical patent/JPWO2021256280A1/ja
Application granted granted Critical
Publication of JP7298006B2 publication Critical patent/JP7298006B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D35/00Tools for shearing machines or shearing devices; Holders or chucks for shearing tools
    • B23D35/001Tools for shearing machines or shearing devices; Holders or chucks for shearing tools cutting members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/01Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work
    • B26D1/04Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member
    • B26D1/06Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor involving a cutting member which does not travel with the work having a linearly-movable cutting member wherein the cutting member reciprocates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D1/00Cutting through work characterised by the nature or movement of the cutting member or particular materials not otherwise provided for; Apparatus or machines therefor; Cutting members therefor
    • B26D1/0006Cutting members therefor
    • B26D2001/002Materials or surface treatments therefor, e.g. composite materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Nonmetal Cutting Devices (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crushing And Pulverization Processes (AREA)

Description

本開示は、超硬合金製切断刃に関する。本出願は、2020年6月19日に出願した日本特許出願である特願2020-105952号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。 The present disclosure relates to cemented carbide cutting blades. This application claims priority from Japanese Patent Application No. 2020-105952 filed on June 19, 2020. All the contents described in the Japanese patent application are incorporated herein by reference.

従来、切断刃は、たとえば特開平10-217181号公報(特許文献1)、特開2001-158016号公報(特許文献2)、国際公開第2014/050883号(特許文献3)、国際公開第2014/050884号(特許文献4)、特開2017-42911号公報(特許文献5)および特開2004-17444号公報(特許文献6)に開示されている。 Conventionally, cutting blades, for example, JP-A-10-217181 (Patent Document 1), JP-A-2001-158016 (Patent Document 2), International Publication No. 2014/050883 (Patent Document 3), International Publication No. 2014 /050884 (Patent Document 4), JP-A-2017-42911 (Patent Document 5) and JP-A-2004-17444 (Patent Document 6).

特開平10-217181号公報JP-A-10-217181 特開2001-158016号公報Japanese Patent Application Laid-Open No. 2001-158016 国際公開第2014/050883号WO2014/050883 国際公開第2014/050884号WO2014/050884 特開2017-42911号公報JP 2017-42911 A 特開2004-17444号公報JP-A-2004-17444

本開示の超硬合金製切断刃は、基部と、基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、ビッカース硬度HVが1250以上2030以下であり、刃渡り方向に直交する縦断面において、刃先を座標原点とし、刃先から基部に向かう方向をZ軸方向とし、Z軸方向および刃渡り方向に直交する方向をY軸方向とし、刃部の外表面をYZ平面で表し、外表面の第一の点の座標を(Y1,Z1(=1.00μm))としa=Z1/(Y1)で定義される定数aと、外表面の第二の点の座標を(Y2,Z2(=5.00μm))としb=Z2/(Y2)で定義される定数bとの比率b/aが0.30以上1.00以下であり、Z1における刃部のY軸方向厚さT1が0.60μm以上1.50μm以下である。T1が0.60μm以上0.91μm以下において0.30≦b/a≦1.52T1-0.61であり、T1が0.91μm以上1.06μmにおいて0.64T1-0.28≦b/a≦1.52T1-0.61であり、T1が1.06μm以上1.50μmにおいて0.64T1-0.28≦b/a≦1.00である。The cemented carbide cutting blade of the present disclosure includes a base and a cutting edge that is provided on the extension of the base and has a cutting edge that is the most advanced portion, has a Vickers hardness HV of 1250 or more and 2030 or less, and has a Vickers hardness HV of 1250 or more and 2030 or less In the perpendicular longitudinal section, the cutting edge is the coordinate origin, the direction from the cutting edge to the base is the Z-axis direction, the direction perpendicular to the Z-axis direction and the blade span direction is the Y-axis direction, and the outer surface of the blade is represented by the YZ plane. , where the coordinates of the first point on the outer surface are (Y1, Z1 (=1.00 μm)), the constant a defined by a=Z1/(Y1) 2 and the coordinates of the second point on the outer surface are ( Y2, Z2 (= 5.00 μm)), b = Z2 / (Y2) The ratio b / a to the constant b defined by 2 is 0.30 or more and 1.00 or less, and the Y axis of the blade at Z1 The direction thickness T1 is 0.60 μm or more and 1.50 μm or less. 0.30≦b/a≦1.52T1−0.61 when T1 is 0.60 μm or more and 0.91 μm or less, and 0.64T1−0.28≦b/a when T1 is 0.91 μm or more and 1.06 μm ≦1.52T1−0.61, and 0.64T1−0.28≦b/a≦1.00 when T1 is 1.06 μm or more and 1.50 μm.

図1は、実施の形態1に従った超硬合金製切断刃1の縦断面図である。FIG. 1 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 1. FIG. 図2は、実施の形態2に従った超硬合金製切断刃1の縦断面図である。FIG. 2 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 2. As shown in FIG. 図3は、実施の形態3に従った超硬合金製切断刃1の縦断面図である。FIG. 3 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 3. As shown in FIG. 図4は、切断試験を説明するための装置の斜視図である。FIG. 4 is a perspective view of an apparatus for explaining the cutting test. 図5は、図4中のV-V線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line VV in FIG. 図6は、表1から3で示す各試料番号の超硬合金製切断刃1において、刃先121tから1.00μmの位置(Z=Z1=1.00μm)の刃部120の厚みT1と、b/aとの関係を示すグラフである。6 shows the thickness T1 and b It is a graph which shows the relationship with /a. 図7は、切断刃の欠けを示す顕微鏡観察写真(マイクロスコープ)観察像である。FIG. 7 is a microscope observation photograph (microscope) observation image showing chipping of the cutting blade.

[本開示が解決しようとする課題]
刃厚が薄いと、カット衝撃に刃先が耐えられず、チッピングが発生するという問題があった。刃厚が厚いと、切断抵抗が高く、断面品質悪くなり断面が荒れるという問題があった。
[Problems to be Solved by the Present Disclosure]
If the blade thickness is thin, there is a problem that the cutting edge cannot withstand the cutting impact and chipping occurs. If the thickness of the blade is thick, there is a problem that the cutting resistance is high, the quality of the cross section is deteriorated, and the cross section becomes rough.

[本開示の実施形態の説明]
最初に本開示の実施態様を列記して説明する。
[Description of Embodiments of the Present Disclosure]
First, the embodiments of the present disclosure are listed and described.

(実施の形態1)
図1は、実施の形態1に従った超硬合金製切断刃1の縦断面図である。図1で示すように、超硬合金製切断刃1は刃渡り方向に延びる刃先121tを有する。図1は、刃渡り方向に直交する方向の縦断面である。平刃状の超硬合金製切断刃1は、図1に示すように基部110、および切断実行部である刃部120を有する。基部110と刃部120との間に連結部を有していてもよい。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 1. FIG. As shown in FIG. 1, the cemented carbide cutting blade 1 has a cutting edge 121t extending in the blade span direction. FIG. 1 is a longitudinal section in a direction perpendicular to the blade length direction. As shown in FIG. 1, the flat blade-shaped cemented carbide cutting blade 1 has a base portion 110 and a blade portion 120 as a cutting portion. A connecting portion may be provided between the base portion 110 and the blade portion 120 .

(材質)
超硬合金製切断刃1に用いた材質はタングステンカーバイドとコバルトを主成分とした超硬合金である。超硬合金に使用されるコバルトの含有率は3~25質量%の範囲である。コバルトの含有率は5~20%の範囲であることが好ましい。超硬合金中を構成する元素の組成の特定は、ICP発光分光分析、Co滴定によって行う。本開示における超硬合金とは主成分タングステンカーバイド、コバルトの他、粒度等の特性調整の為、クロム、バナジウム、タンタル、ニオブ等の元素を含む場合もある。超硬合金中のタングステンカーバイド結晶の大きさが0.1μm~4μmであることが好ましい。結晶の大きさが2μm以下がより好ましい。
(Material)
The material used for the cemented carbide cutting blade 1 is a cemented carbide containing tungsten carbide and cobalt as main components. The content of cobalt used in cemented carbide is in the range of 3-25% by weight. The cobalt content is preferably in the range of 5-20%. The composition of the elements constituting the cemented carbide is specified by ICP emission spectroscopic analysis and Co titration. The cemented carbide in the present disclosure may contain elements such as chromium, vanadium, tantalum, niobium, etc. for adjusting properties such as grain size, in addition to the main components tungsten carbide and cobalt. Preferably, the size of the tungsten carbide crystals in the cemented carbide is between 0.1 μm and 4 μm. More preferably, the crystal size is 2 μm or less.

また、超硬合金中のタングステンカーバイトの結晶粒成長抑制のための成分TaC(タンタルカーバイド)を有し、その含有率が0.1~2質量%であることが好ましい。結晶粒成長を抑制するための添加剤はV(バナジウムカーバイド)、Cr(クロムカーバイド)であってもよい。TaC、V、Crの少なくとも一種類の置き替え、及び組み合わせる事ができる。その場合は各々の含有率が0.1~2質量%となる。In addition, it preferably has a component TaC (tantalum carbide) for suppressing grain growth of tungsten carbide in the cemented carbide, and its content is preferably 0.1 to 2% by mass. Additives for suppressing grain growth may be V 8 C 7 (vanadium carbide), Cr 3 C 2 (chromium carbide). At least one of TaC, V8C7 , Cr3C2 can be substituted and combined. In that case, the content of each is 0.1 to 2% by mass.

超硬合金のビッカース硬度HVは1250以上2030以下である。ビッカース硬度はビッカース硬さ試験機により測定する。ビッカース硬度が1250未満である場合、材質として耐変形性能が小さくなり、切断において重要視される耐座屈性、垂直切断性を満たすことがし難くなる。ビッカース硬度が2030を超えると、組織や刃先端部稜線が滑らかであっても高硬度であり欠けが発生し易くなる。また、欠け対策としては、材質だけでなく刃先先端形状が重要である。 The cemented carbide has a Vickers hardness HV of 1250 or more and 2030 or less. Vickers hardness is measured with a Vickers hardness tester. If the Vickers hardness is less than 1250, the deformation resistance performance of the material is low, and it becomes difficult to satisfy the buckling resistance and vertical cutting properties that are considered important in cutting. If the Vickers hardness exceeds 2030, even if the structure and the edge line of the cutting edge are smooth, the hardness is high and chipping is likely to occur. Also, as a countermeasure against chipping, not only the material but also the tip shape of the cutting edge is important.

(形状)
超硬合金製切断刃1の形状は基本的に矩形の板形状である。板の最も短い辺を厚さとする。
(shape)
The shape of the cemented carbide cutting blade 1 is basically a rectangular plate shape. The thickness is the shortest side of the board.

超硬合金製切断刃1は、基部110と、基部110の延長線上に設けられ、最先端部である刃先121tに向けて厚みが薄くなる形状を有する刃部120とを備える。 The cemented carbide cutting blade 1 includes a base portion 110 and a blade portion 120 which is provided on an extension line of the base portion 110 and has a shape whose thickness decreases toward a cutting edge 121t which is the most distal portion.

基部110の厚さは一定であることが好ましい。基部110は、たとえば50~1000μmの厚みがあり、切断される切断物の大きさにより必要とされる厚みが変わる。また切断を行う刃部120は基部110から延長される一辺に形成される。刃部120から基部110に向かう方向(Z軸方向)の刃部120の寸法を刃部120の長さまたは高さと表す。刃渡り方向および刃部120の長さ方向に対して垂直な方向(Y軸方向)の寸法を刃部120の厚みと表す。 Preferably, the thickness of the base 110 is constant. The base portion 110 has a thickness of, for example, 50 to 1000 μm, and the required thickness varies depending on the size of the object to be cut. A blade portion 120 for cutting is formed on one side extending from the base portion 110 . The dimension of the blade portion 120 in the direction (Z-axis direction) from the blade portion 120 toward the base portion 110 is expressed as the length or height of the blade portion 120 . The dimension in the direction (Y-axis direction) perpendicular to the blade length direction and the length direction of the blade portion 120 is referred to as the thickness of the blade portion 120 .

刃渡り方向に直交する縦断面において刃先から5.00μmの範囲において刃部120の外形が外方向に凸120tの部分を有し、凸120tの部分は刃先121tおよび刃先121tからの長さ方向の距離がZ2(5.00μm)の位置を結ぶ直線Sよりも外側に位置する。凸120tの部分が存在することで凸120tの部分が存在しないストレート形状の切断刃と比較して刃部120の強度を高くすることができる。 In a longitudinal section perpendicular to the blade span direction, the outer shape of the blade part 120 has a portion of 120t that protrudes outward in a range of 5.00 μm from the blade edge, and the convex 120t portion is the blade edge 121t and the distance in the length direction from the blade edge 121t. is positioned outside the straight line S connecting the positions of Z2 (5.00 μm). The presence of the convex portion 120t makes it possible to increase the strength of the blade portion 120 compared to a straight cutting blade that does not have the convex portion 120t.

外表面121sは湾曲した形状である。互いに対向する位置にある2つの外表面121sのなす角度は、刃先121tに近づくにつれて大きくなる。この実施の形態では、外表面121sは中心線Cに対して左右対称である。しかしながら、外表面121sは中心線Cに対して左右非対称であってもよい。刃先121tからの距離Z1の点1201と、刃先121tからの距離Z2の点1203とでは、外表面121sの傾斜が異なる。 The outer surface 121s has a curved shape. The angle formed by the two outer surfaces 121s facing each other increases as the cutting edge 121t is approached. 121 s of outer surfaces are bilaterally symmetrical with respect to the centerline C in this embodiment. However, the outer surface 121s may be asymmetrical with respect to the centerline C. The inclination of the outer surface 121s differs between a point 1201 at a distance Z1 from the cutting edge 121t and a point 1203 at a distance Z2 from the cutting edge 121t.

超硬合金製切断刃1の切断対象物は、たとえば、積層コンデンサ若しくは積層インダクタなどの焼成前のセラミックグリーンシート、金属箔、紙、繊維または、硬質樹脂などである。 The objects to be cut by the cemented carbide cutting blade 1 are, for example, unfired ceramic green sheets such as laminated capacitors or laminated inductors, metal foils, paper, fibers, or hard resins.

押切りによる切断の場合、切断対象物を押し広げながら切断する。切断対象物である、例えばセラミックグリーンシートであれば、素材硬度が高いものは切断刃への負荷が増加し、切断刃に欠けが発生し易くなっている。 In the case of cutting by force cutting, the object to be cut is cut while being spread. In the case of the object to be cut, for example, a ceramic green sheet, if the material hardness is high, the load on the cutting blade increases, and chipping of the cutting blade is likely to occur.

図1に示すように、Z軸方向に超硬合金製切断刃1を下降し、切断を行う超硬合金製切断刃1においては、刃先に大きな負荷がかかる。薄刃で且つ2つの外表面121sがなす角度が小さい方、即ち鋭角とした場合、欠け(チッピングとも言う)が発生し易い。欠けが発生すると当然ながら切れ味は悪くなり、切断対象物の切断断面には傷がつき易くなり寿命となる。このような刃先121t最先端部が極めて鋭角である場合、他の材料に比較し高硬度且つ靱性が低い超硬合金は、耐座屈性、耐摩耗性に優れるものの、特に欠け易い課題がある。 As shown in FIG. 1, a large load is applied to the cutting edge of the cemented carbide cutting blade 1 that is lowered in the Z-axis direction for cutting. If the blade is thin and the angle formed by the two outer surfaces 121s is small, that is, if the angle is acute, chipping is likely to occur. When chipping occurs, the sharpness of the blade naturally deteriorates, and the cut cross section of the object to be cut is easily damaged, shortening the life of the blade. When the tip of the cutting edge 121t has an extremely sharp angle, cemented carbide, which has high hardness and low toughness compared to other materials, has excellent buckling resistance and wear resistance, but has a problem that it is particularly susceptible to chipping. .

本発明者は刃先121tの欠けを防止するために、刃部120の特定の点を通る二次関数に着目した。縦断面をYZ平面とし、刃先121tを座標原点(0,0)とする。原点と、第一の点(Y1,Z1(=1.00μm))とを通る二次曲線Z=aYの定数aを求める。刃部120の外形が中心線C(座標原点を通るZ軸)に対して左右対称形状である場合にはY1=T1/2とする。刃部120の外形が中心線Cに対して左右非対称形状である場合には刃部120の外形上の点は(Y11,Z1)と(Y12,Z1)となる。Y11とY12とを比較して絶対値の大きい方をY1とする。In order to prevent chipping of the cutting edge 121t, the inventor focused on a quadratic function passing through a specific point of the cutting edge 120. FIG. Let the longitudinal section be the YZ plane, and let the cutting edge 121t be the coordinate origin (0, 0). A constant a of a quadratic curve Z= aY passing through the origin and the first point (Y1, Z1 (=1.00 μm)) is obtained. When the outer shape of the blade portion 120 is symmetrical with respect to the center line C (Z-axis passing through the origin of coordinates), Y1=T1/2. When the outer shape of the blade portion 120 is left-right asymmetric with respect to the center line C, the points on the outer shape of the blade portion 120 are (Y11, Z1) and (Y12, Z1). Y11 and Y12 are compared, and the larger absolute value is taken as Y1.

原点と、第二の点(Y2,Z2(=5.00μm))とを通る二次曲線Z=bYの定数bを求める。刃部120の外形が中心線Cに対して左右対称形状である場合にはY2=T2/2とする。刃部120の外形が中心線Cに対して左右非対称形状である場合には刃部120の外形上の点は(Y21,Z2)と(Y22,Z2)となる。Y21とY22とを比較して絶対値の大きい方をY2とする。a=Z1/(Y1)、およびb=Z2/(Y2)によりaおよびbを求める。A constant b of a quadratic curve Z= bY passing through the origin and the second point (Y2, Z2 (=5.00 μm)) is obtained. When the outer shape of the blade portion 120 is symmetrical with respect to the center line C, Y2=T2/2. When the outer shape of the blade portion 120 is left-right asymmetric with respect to the center line C, the points on the outer shape of the blade portion 120 are (Y21, Z2) and (Y22, Z2). Y21 and Y22 are compared, and the larger absolute value is taken as Y2. Obtain a and b by a=Z1/(Y1) 2 and b=Z2/(Y2) 2 .

ここで、b/aの値が0.30以上、1.00以下である。0.30未満の場合は、表裏2つの刃面から得られる刃先先端角度θが大きいことを示し、刃面での切断抵抗は大きくなり、切断時の押し広げる力が大きくなり、切断物に亀裂を生じさせるリスクがある。b/aが1.00を超える場合は刃先先端が比較的平であり、表裏2つの刃面から得られる刃先先端角度θが小さいことを示し、刃先先端の鋭利さは鈍くなりまた、切断時の衝撃が先端部に大きくかかり、欠け易いリスクがある。Z1における刃部の厚さT1が0.60μm以上1.50μm以下である。T1が0.60μm未満であれば刃部が薄くなり欠けやすいリスクがある。T1が1.50μmを超えると刃部が厚くなりすぎて切断抵抗が大きくなる。 Here, the value of b/a is 0.30 or more and 1.00 or less. If it is less than 0.30, it indicates that the blade tip angle θ obtained from the two blade surfaces is large, the cutting resistance on the blade surface is large, the force to spread when cutting is large, and the cut object is cracked. there is a risk of causing If b/a exceeds 1.00, the tip of the cutting edge is relatively flat, indicating that the tip angle θ obtained from the two blade surfaces is small, and the sharpness of the tip of the cutting edge becomes dull. A large impact is applied to the tip, and there is a risk of it being easily chipped. A thickness T1 of the blade portion at Z1 is 0.60 μm or more and 1.50 μm or less. If T1 is less than 0.60 μm, there is a risk that the blade will be thin and easily chipped. If T1 exceeds 1.50 μm, the blade portion becomes too thick and the cutting resistance increases.

T1が0.60μm以上0.91μm以下において0.30≦b/a≦1.52T1-0.61であり、T1が0.91μm以上1.06μmにおいて0.64T1-0.28≦b/a≦1.52T1-0.61であり、T1が1.06μm以上1.50μmにおいて0.64T1-0.28≦b/a≦1.00である。この範囲外であれば、刃先の強度が小さくなり刃先に欠けが生じやすくなる、または、切断抵抗が大きくなり被切断物の切断面が粗くなる、などの不都合が生じる。 0.30≦b/a≦1.52T1−0.61 when T1 is 0.60 μm or more and 0.91 μm or less, and 0.64T1−0.28≦b/a when T1 is 0.91 μm or more and 1.06 μm ≦1.52T1−0.61, and 0.64T1−0.28≦b/a≦1.00 when T1 is 1.06 μm or more and 1.50 μm. If the cutting edge is out of this range, the strength of the cutting edge is reduced and chipping of the cutting edge is likely to occur, or the cutting resistance increases and the cut surface of the object to be cut becomes rough.

Yが0からY2のすべての範囲において、刃部120の外表面121sは座標原点と点(Y2,Z2)とを結ぶ直線sよりも外側に位置する。 In the entire range of Y from 0 to Y2, the outer surface 121s of the blade portion 120 is positioned outside the straight line s connecting the coordinate origin and the point (Y2, Z2).

本開示は、主に積層セラミックコンデンサのセラミックスグリーンシート(以下グリーンシートとも呼ぶ)などの切断対象物を押切り切断する平刃状切断刃に関する。b/aおよびT1を上述の範囲とすることで、高精度な切断加工、切断対象物への損傷の抑制、安定した切断対象物の形状の実現できる。また切断刃が長寿命であるなどの効果が得られる。 The present disclosure mainly relates to a flat cutting blade that press-cuts and cuts an object to be cut such as a ceramic green sheet (hereinafter also referred to as a green sheet) of a laminated ceramic capacitor. By setting b/a and T1 within the ranges described above, it is possible to realize highly accurate cutting, suppress damage to the object to be cut, and achieve a stable shape of the object to be cut. In addition, effects such as a long life of the cutting blade can be obtained.

ここで、超硬合金製切断刃は、切断に寄与する切断実行部即ち刃先部およびこの切断刃を切断装置に固定するために平行な面を有する基部(シャンクとも呼ぶ)を持つ形状である。より具体的な必要特性としては、切れ味よく、耐摩耗性があり、切断対象物に対する耐溶着性があり、座屈に対し強度があり、更に長寿命であることなどが求められている。 Here, the cemented carbide cutting blade is shaped to have a cutting-contributing part, or cutting edge, and a base (also called a shank) with parallel surfaces for fixing the cutting blade to a cutting device. More specific properties required include good sharpness, wear resistance, adhesion resistance to the object to be cut, strength against buckling, and long life.

切れ味に関しては、特に刃先の形状が重要とされ、被切断物への損傷をも考慮し、薄刃で且つ刃先先端の角度は小さい方(鋭角)がよい。しかし薄刃になるほど強度が悪化することは避けられない。そのため現在用いられている切断刃は刃先から基部までの間に一段又は複数段の角度を付けることにより、最先端の刃先角度を大きくするなどの工夫がされている。 Regarding sharpness, the shape of the cutting edge is particularly important, and in consideration of damage to the object to be cut, a thin blade with a small angle (acute angle) at the tip of the cutting edge is preferable. However, it is inevitable that the thinner the blade, the worse the strength. Therefore, cutting blades that are currently used are devised such as increasing the edge angle of the cutting edge by providing a one-step or multiple-step angle from the blade edge to the base.

このような薄刃は、例えば高炭素鋼の他、超硬合金などの硬質材料が用いられている。しかし加工が容易ではなくその原因として、特に材質が硬質材料である場合、剛性はあるものの、難切削性であり且つ靱性が低く欠け易い。また製品使用時にも欠け易くなる。 Hard materials such as cemented carbide are used for such thin blades, in addition to high carbon steel, for example. However, it is not easy to process. Especially when the material is a hard material, although it has rigidity, it is difficult to cut and has low toughness and is easily chipped. Moreover, it becomes easy to chip when using the product.

従来、上述の特性を満たすために種々の切断刃が提案されているが、欠け難い材質と刃先形状についての詳細な知見がなかった。 Conventionally, various cutting blades have been proposed in order to satisfy the above characteristics, but there has been no detailed knowledge about chipping-resistant materials and blade edge shapes.

また、縦断面において刃先に近づくにつれて刃部の幅が細くなるように外形が曲線形状とされることが好ましい。曲線形状は、単一の曲率半径を有するものであってもよく、複数の曲率半径を有する、いわゆる複合R形状であってもよい。 In addition, it is preferable that the outer shape is curved so that the width of the cutting portion becomes narrower as it approaches the cutting edge in the longitudinal section. The curved shape may have a single radius of curvature, or a so-called compound R shape having multiple radii of curvature.

縦断面において刃先に近づくにつれて刃部の幅が細くなるように外形が曲線形状とされることで、応力集中部位における欠けを最も効果的に抑制できる。 By forming the outer shape in a curved shape so that the width of the blade portion becomes narrower as it approaches the cutting edge in the vertical cross section, chipping at the stress concentrated portion can be most effectively suppressed.

本開示は、欠けに影響する因子である、上記、材質、および最先端部形状、即ち刃厚の組み合わせを最適化したものであり、これらを全て満たすことにより欠けが発生し易いことを見出したものである。 The present disclosure optimizes the combination of the above, the material and the tip shape, that is, the blade thickness, which are factors that affect chipping, and found that chipping is likely to occur by satisfying all of these. It is.

また、耐欠け性に関しては、刃先121tが鋭利であることは切れ味良いが、欠け発生においてはリスクあり、このリスクをさらに軽減するためには刃部120先端部が曲面を有することが効果的である。刃先121tは切断継続するに従い摩耗することは明白であり、上述のb/aおよびT1の範囲を満たし且つ丸みを持たせる方がより望ましい。 As for chipping resistance, sharpness of the cutting edge 121t provides good sharpness, but there is a risk of chipping. be. It is obvious that the cutting edge 121t wears as it continues to cut, and it is more desirable to satisfy the ranges of b/a and T1 described above and to have roundness.

基部110方向に形成する切断実行部である刃部120の刃面がひとつの刃面、また複数の刃面を有しても同様の効果が得られる。また、縦断面形状においてその外形が直線から成る場合、また一部に曲線を有していても同様の効果が得られる。 The same effect can be obtained even if the blade portion 120, which is the cutting execution portion formed in the direction of the base portion 110, has one blade surface or a plurality of blade surfaces. In addition, when the outer shape of the vertical cross-section is straight, or has a curved line in part, the same effect can be obtained.

刃部120を加工して上記の形状を得る方法は、たとえば、従来法と同様に砥石による研磨によりなされる。また微小曲面の形成手法としてブラスト手法を用いることができる。さらに、切断対象物より柔らかい、例えば研磨剤を分散させた粘度等を切断することで微小曲面を形成することができる。 A method of processing the blade portion 120 to obtain the above shape is, for example, polishing with a whetstone as in the conventional method. A blasting method can be used as a method for forming a minute curved surface. Furthermore, a fine curved surface can be formed by cutting a material that is softer than the object to be cut, such as a material in which an abrasive is dispersed.

例えば、硬質材料粉を混合した硬質研磨剤入り固形物を超硬合金製切断刃1で切断することにより、硬質研磨剤入り固形物中の硬質材料と刃部120を接触させて加工を行い、刃部120を形成することができる。 For example, by cutting a hard abrasive-containing solid material mixed with hard material powder with the cemented carbide cutting blade 1, the hard material in the hard abrasive-containing solid material is brought into contact with the blade portion 120 for processing. A blade 120 can be formed.

ここで、硬質研磨剤入り固形物としては、例えば、粘土質材料が挙げられる。また、硬質材料としてはダイヤモンド、W、Mo、WC、Al、TiO、TiC、TiCN、SiC、Si、BN等の粉末が例として挙げられる。Here, examples of the hard abrasive-containing solid matter include clayey materials. Examples of hard materials include powders of diamond, W, Mo, WC, Al 2 O 3 , TiO 2 , TiC, TiCN, SiC, Si 3 N 4 and BN.

これらの硬質材料の粉末粒径は、二次粒子の平均粒径がFsss(Fisher Sub-Sieve Sizer)粒度で1μm以下であるのが好ましい。特に仕上げとして硬質材料粒子の種類、サイズ、固形物への添加量並びに加工時間を調整して得ることができる。なお、超硬合金製切断刃1の製造方法は、上述のものに限定されない。 As for the powder particle size of these hard materials, the average particle size of the secondary particles is preferably 1 μm or less in Fsss (Fisher Sub-Sieve Sizer) particle size. In particular, the finish can be obtained by adjusting the type and size of the hard material particles, the amount added to the solid matter, and the processing time. In addition, the manufacturing method of the cemented carbide cutting blade 1 is not limited to the one described above.

(実施の形態2)
図2は、実施の形態2に従った超硬合金製切断刃1の縦断面図である。図2で示すように、実施の形態2に従った超硬合金製切断刃1においては、第二部分122は刃先121tからの距離がZ2(5.00μm)を超える部分に存在する。
(Embodiment 2)
FIG. 2 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 2. As shown in FIG. As shown in FIG. 2, in the cemented carbide cutting blade 1 according to Embodiment 2, the second portion 122 exists in a portion where the distance from the cutting edge 121t exceeds Z2 (5.00 μm).

(実施の形態3)
図3は、実施の形態3に従った超硬合金製切断刃1の縦断面図である。図3で示すように、高さZ1近傍において、外表面121sの傾斜が不連続に変化する点が存在する点において、実施の形態1に従った超硬合金製切断刃1と異なる。
(Embodiment 3)
FIG. 3 is a longitudinal sectional view of a cemented carbide cutting blade 1 according to Embodiment 3. As shown in FIG. As shown in FIG. 3, it differs from the cemented carbide cutting blade 1 according to Embodiment 1 in that there is a point where the inclination of the outer surface 121s changes discontinuously near the height Z1.

[本開示の実施形態の詳細]
(実施例1)
図4は、切断試験を説明するための装置の斜視図である。図5は、図4中のV-V線に沿った断面図である。試験に用いる超硬合金製切断刃1(平刃状切断刃)は、刃渡り方向(X軸方向)40mm、基部厚さ(Y軸方向)0.1mm、刃高さ(Z軸方向)22.0mmであり、切断実行部の刃加工高さ(刃部120のZ軸方向高さ)2.0mmとした。材質は炭化タングステンおよびコバルトを基本組成としており、炭化クロム、炭化バナジウム、および炭化タンタル等の金属炭化物を添加剤として炭化タングステンの粒径を調整、更にコバルト添加量を調整して超硬合金の焼結体を得た。一例としてビッカース硬度1580の超硬合金素材を使用した。硬度を変更するには炭化タングステンの粒径調整とコバルトの添加量を調整し行った。
[Details of Embodiments of the Present Disclosure]
(Example 1)
FIG. 4 is a perspective view of an apparatus for explaining the cutting test. FIG. 5 is a cross-sectional view taken along line VV in FIG. The cemented carbide alloy cutting blade 1 (flat cutting blade) used in the test had a blade span direction (X-axis direction) of 40 mm, a base thickness (Y-axis direction) of 0.1 mm, and a blade height (Z-axis direction) of 22 mm. 0 mm, and the blade processing height of the cutting execution portion (the height of the blade portion 120 in the Z-axis direction) was 2.0 mm. The basic composition of the material is tungsten carbide and cobalt, and metal carbides such as chromium carbide, vanadium carbide, and tantalum carbide are used as additives to adjust the grain size of tungsten carbide. got the result. As an example, a cemented carbide material with a Vickers hardness of 1580 was used. The hardness was changed by adjusting the grain size of tungsten carbide and the amount of cobalt added.

<研磨>
製造された焼結体はダイヤモンド砥石を用いた研削機により厚さ100μm、刃高さ22mm、長さ40mmの板形状に削り出し先端刃部加工用の素材とした。
<Grinding>
The produced sintered body was ground by a grinder using a diamond whetstone into a plate having a thickness of 100 μm, a blade height of 22 mm, and a length of 40 mm, and the plate was used as a material for processing the tip blade portion.

<刃付け>
続いて上記素材を用いて先端刃部の形成加工行った。形成加工に於いてはダイヤモンド円筒砥石を使用した専用の研削機を用い角度調整可能な専用のワークレストに素材を固定して加工を行った。刃部が2段である場合には、加工は素材長辺長さ40mm方向の一辺に対して最も先端にある先端角を持つ第一部分121、それに連なり配置され基部110に連続する第二部分122を有する刃部120を形成した。
<Sharpening>
Subsequently, the cutting edge was formed using the above material. In the forming process, a dedicated grinder with a diamond cylindrical grindstone was used, and the material was fixed to a dedicated work rest with an adjustable angle. When the blade has two steps, the processing is performed by the first portion 121 having the tip angle that is the most tip with respect to one side in the direction of the material long side length of 40 mm, and the second portion 122 that is arranged contiguously with it and continues to the base portion 110. was formed.

<平面の外表面成形>
図2で示すような平面の外表面122sを形成するためには、円筒砥石を用いて最先端部に対して凸形状加工を両面に施した。
<Flat outer surface molding>
In order to form the flat outer surface 122s as shown in FIG. 2, a cylindrical grindstone was used to process the leading end into a convex shape on both sides.

<凸湾曲の外表面成形>
図1で示すような凸湾曲面である外表面121sを形成するためには、炭化タングステンとコバルトをパラフィンなどのバインダーでプレス成型し長さ50mm-幅50mm-高さ30mmのブロック状にし、そのブロックに刃先を高速で連続的に押し付け凸型形状を成形した。凸の大きさを調整するには押し付け速度、角度、深さにより調整を行った。凸形状の形成にあたっては非常に精密な加工である為、切断メディアとなる炭化タングステン粒子や押し付け速度、深さなどの緻密な研削条件の設定が非常に肝要である。
<Convex outer surface molding>
In order to form the outer surface 121s, which is a convex curved surface as shown in FIG. A convex shape was formed by continuously pressing the cutting edge against the block at high speed. The pressing speed, angle, and depth were used to adjust the size of the protrusions. Since the formation of the convex shape is a very precise process, it is very important to set fine grinding conditions such as tungsten carbide particles as cutting media, pressing speed and depth.

外表面121s,122sの算術平均粗さSa(算術平均高さISO25178)は0.02μm以下とした。外表面121s,122sの算術平均粗さSaは、白色干渉計を用いた非接触式の面粗さ測定装置を用いて測定する。具体的には、Zygo Corporation製の非接触三次元粗さ測定装置(Nexview(登録商標))を用い、上記縦断面における測定範囲を、X方向に0.15mm、Z方向に0.05mmとする。測定視野は、ズームレンズの倍率を2倍、対物レンズの倍率を50倍とした。 The arithmetic mean roughness Sa (arithmetic mean height ISO25178) of the outer surfaces 121s and 122s was set to 0.02 μm or less. The arithmetic average roughness Sa of the outer surfaces 121s and 122s is measured using a non-contact surface roughness measuring device using a white light interferometer. Specifically, using a non-contact three-dimensional roughness measuring device (Nexview (registered trademark)) manufactured by Zygo Corporation, the measurement range in the longitudinal section is 0.15 mm in the X direction and 0.05 mm in the Z direction. . The field of view for measurement was a zoom lens with a magnification of 2× and an objective lens with a magnification of 50×.

<断面確認>
断面確認を日本電子社製のショットキー電界放出形走査電子顕微鏡JSM-7900Fを用いて10,000倍にて撮像し、機械座標と測長機能を活用し、刃先121tから1.00μmおよび5.00μmの部分の刃厚(刃部120の厚み)を測定した。ビッカース換算硬さは、フィッシャー・インストルメンツ社製PICODENTOR HM500を用いて測定した。それらの結果を表1から3に示す。
<Confirmation of cross section>
The cross-section was confirmed by using a Schottky field emission scanning electron microscope JSM-7900F manufactured by JEOL Ltd. at a magnification of 10,000. The blade thickness (thickness of the blade portion 120) at the 00 μm portion was measured. The Vickers conversion hardness was measured using PICODENTOR HM500 manufactured by Fisher Instruments. The results are shown in Tables 1-3.

Figure 0007298006000001
Figure 0007298006000001

Figure 0007298006000002
Figure 0007298006000002

Figure 0007298006000003
Figure 0007298006000003

表1から3における「硬度HV」とは超硬合金製切断刃1のビッカース硬度をいう。
「T1(μm)」とは刃先121tからZ軸方向に1.00μmの位置(Z=Z1)における刃部120のY軸方向の厚みをいう。「T2(μm)」とは刃先121tからZ軸方向に5.00μmの位置(Z=Z2)における刃部120のY軸方向の厚みをいう。
"Hardness HV" in Tables 1 to 3 refers to the Vickers hardness of the cemented carbide cutting blade 1.
“T1 (μm)” refers to the thickness of the cutting edge 120 in the Y-axis direction at a position 1.00 μm from the cutting edge 121t in the Z-axis direction (Z=Z1). “T2 (μm)” refers to the thickness of the cutting edge 120 in the Y-axis direction at a position 5.00 μm from the cutting edge 121t in the Z-axis direction (Z=Z2).

「定数a」とは外表面の第一の点の座標を(Y1,Z1(=1.00μm))としたときに、a=Z1/(Y1)で定義される定数をいう。「定数b」とは外表面の第二の点の座標を(Y2,Z2(=5.00μm))としたときに、b=Z2/(Y2)で定義される定数をいう。「b/a」とは定数bを定数aで割った値をいう。「図」とは各試料の形状に対応する図面を示す。すべての試料において、座標原点から点1203の間において、直線Sよりも外側に位置する凸120tが存在することを確認した。さらに、座標原点から点1203の間において、すべての外表面121sが直線Sよりも外側に位置することを確認した。"Constant a" is a constant defined by a=Z1/(Y1) 2 where the coordinates of the first point on the outer surface are (Y1, Z1 (=1.00 μm)). "Constant b" is a constant defined by b=Z2/(Y2) 2 where the coordinates of the second point on the outer surface are (Y2, Z2 (=5.00 μm)). "b/a" refers to the value obtained by dividing the constant b by the constant a. "Figure" indicates a drawing corresponding to the shape of each sample. It was confirmed that there is a protrusion 120t positioned outside the straight line S between the coordinate origin and the point 1203 in all the samples. Furthermore, it was confirmed that all the outer surfaces 121s were located outside the straight line S between the coordinate origin and the point 1203 .

図6は、表1から3で示す各試料番号の超硬合金製切断刃1において、刃先121tから1.00μmの位置(Z=Z1=1.00μm)の刃部120の厚みT1と、b/aとの関係を示すグラフである。各表における「座標位置」とは、図6における各試料の座標位置を示す。 6 shows the thickness T1 and b It is a graph which shows the relationship with /a. "Coordinate position" in each table indicates the coordinate position of each sample in FIG.

切断評価試験は、均一な組成と硬度に着目して、切断対象物は一般的に入手可能な塩ビ板とした。厚みが0.1mm以上3.0mm以下の粘着シートを用いて固定した。また、粘着シートは、押切切断時に刃先最先端部が切断対象物を支持するテーブルと接触して欠けることを防ぐ機能を有している。切断対象物においては、X軸方向の幅が30mm、Z軸方向の厚さが0.5mm、である。切断速度は、Z軸方向に300mm/sとした。 In the cutting evaluation test, a generally available vinyl chloride plate was used as a cutting object, focusing on uniform composition and hardness. It was fixed using an adhesive sheet having a thickness of 0.1 mm or more and 3.0 mm or less. In addition, the adhesive sheet has the function of preventing the leading edge of the cutting edge from chipping due to contact with the table that supports the object to be cut during press cutting. The object to be cut has a width of 30 mm in the X-axis direction and a thickness of 0.5 mm in the Z-axis direction. The cutting speed was 300 mm/s in the Z-axis direction.

本テストの条件(図4および図5)
ワーク材質:塩化ビニル板100 厚み0.5mm、幅290mm、長さ30mm、ビッカース換算硬さHVが15
テスト装置:牧野フライス製作所製マシニングセンタV55(ステージ2004)にキスラー製切削動力計9255(切削動力計2003)をセットしたもの
ワークセット:下から厚み10mmのアクリル板2002、厚み1mmの両面粘着シート2001、ワークとしての塩化ビニル板100を積層した。
Test conditions (Figures 4 and 5)
Work material: PVC plate 100, thickness 0.5 mm, width 290 mm, length 30 mm, Vickers equivalent hardness HV of 15
Test equipment: Machining center V55 (stage 2004) manufactured by Makino Milling Machine Co., Ltd. and Kistler's cutting dynamometer 9255 (cutting dynamometer 2003) set. A vinyl chloride plate 100 as a work was laminated.

切断条件:切断速度300mm/秒、押込み量0.55mm、長手方向のワークと刃角度±0.5°、ワークと刃断面角度90°±0.5°、切断回数100回(2.5mm間隔)
図4および5に示すような装置にて、チャック3001,3002により超硬合金製切断刃1を保持した。超硬合金製切断刃1の降下速度を30mm/秒として連続的に切断した。ここで連続的に切断するために切断対象物である塩化ビニル板100の同じ位置を切断しないように、超硬合金製切断刃1が上昇するたびに切断位置が移動できるようにした。
Cutting conditions: cutting speed 300mm/sec, push amount 0.55mm, longitudinal workpiece and blade angle ±0.5°, workpiece and blade cross section angle 90°±0.5°, number of cuts 100 times (2.5mm interval )
In the apparatus shown in FIGS. 4 and 5, the cemented carbide cutting blade 1 was held by chucks 3001 and 3002 . The cemented carbide cutting blade 1 was lowered at a speed of 30 mm/sec and cut continuously. In order to continuously cut, the cutting position is moved each time the cemented carbide cutting blade 1 rises so as not to cut the vinyl chloride plate 100 at the same position.

上記切断を100回行った後の刃先の状態を、刃渡り方向全体の欠けの発生数により評価した。カウントする欠けの定義は、刃先の稜線部において、欠けの幅10μm以上、又は深さ3μmを超えた場合のいずれかを欠け(図7)としてカウントした。 After 100 cuts, the state of the cutting edge was evaluated by the number of chippings along the entire length of the cutting edge. As for the definition of chipping to be counted, chips having a width of 10 μm or more or a chip having a depth exceeding 3 μm were counted as chips (FIG. 7).

図7は、切断刃の欠けを示す顕微鏡観察写真(マイクロスコープ)観察像である。欠けの測定方法では、100回押切切断した後の40mmの刃渡り全面を倍率1000倍にて測定顕微鏡観察にて行った。具体的には、オリンパス製の測定顕微鏡(STM6-LM)に、50倍の接眼レンズおよび20倍の対物レンズを取り付け、切断刃(XZ面)を平面に置く。図7の切断刃の刃先121tと測定ステージが平行になるように注意する。刃先121tに焦点を合わせ、測定器のX軸方向の基準線に欠け121kの両端に位置する刃先121tを合わせ、Yの測定値を「0」とし、基準にする。図7のX軸方向の基準線と欠け121kの端との交わる2点の間の距離を欠け121kの幅とする。X軸から測定して欠け121kのY方向に一番低い箇所を欠け121kの深さとする。この時、幅10μm以上、深さ3μm以上のいずれか一方でも該当した場合に刃先に欠け121kが発生したと定義した。 FIG. 7 is a microscope observation photograph (microscope) observation image showing chipping of the cutting blade. In the method of measuring chipping, the entire surface of the 40 mm blade after 100 times of press cutting was observed with a measuring microscope at a magnification of 1000 times. Specifically, an Olympus measuring microscope (STM6-LM) was equipped with a 50-fold eyepiece lens and a 20-fold objective lens, and the cutting blade (XZ plane) was placed on a plane. Care is taken so that the cutting edge 121t of the cutting blade in FIG. 7 and the measuring stage are parallel. The blade edge 121t is focused, the blade edges 121t located at both ends of the chip 121k are aligned with the reference line in the X-axis direction of the measuring instrument, and the Y measurement value is set to "0" as a reference. The width of the chip 121k is defined as the distance between two points where the reference line in the X-axis direction in FIG. 7 intersects with the edge of the chip 121k. The lowest point in the Y direction of the chip 121k measured from the X axis is the depth of the chip 121k. At this time, it was defined that chipping 121k occurred at the cutting edge when either one of width 10 μm or more and depth 3 μm or more was satisfied.

刃先121tの欠けが5個以内の場合の評価を「A」とし、欠けが6から20個の場合の評価を「B」とし、欠けが20個を超える場合の評価を「C」とした。 An evaluation of "A" was given when the cutting edge 121t had 5 or fewer chips, a "B" rating was given when there were 6 to 20 chips, and a "C" rating was given when there were more than 20 chips.

切断面状態については、切断面評価は、100回目の切断品に対し、切断面を50倍にて拡大撮影し、切断方向の30μm以上の長さの傷の数を数えた。評価は3段階とし、10ヶ以下を「A」、11ヶ以上20ヶ以下を「B」、20ヶ超えを「C」として評価した。 Regarding the state of the cut surface, the cut surface was evaluated by photographing the 100th cut product at a magnification of 50 times and counting the number of scratches with a length of 30 μm or more in the cutting direction. Evaluation was made into three grades, "A" for 10 or less, "B" for 11 to 20, and "C" for more than 20.

切断評価の結果を図6に示す。横軸に表1から3におけるT1、縦軸にb/aを示している。五角形の実線で囲まれた範囲、具体的には、T1が0.60μm以上0.91μm以下において0.30≦b/a≦1.52T1-0.61であり、T1が0.91μm以上1.06μmにおいて0.64T1-0.28≦b/a≦1.52T1-0.61であり、T1が1.06μm以上1.50μmにおいて0.64T1-0.28≦b/a≦1.00の範囲が効果を発揮する範囲である。この範囲において表1から3における「刃先の欠けの状態」および「切断面性状」において「A」の結果が得られていることが分かる。 The results of cutting evaluation are shown in FIG. The horizontal axis indicates T1 in Tables 1 to 3, and the vertical axis indicates b/a. The range surrounded by the solid line of the pentagon, specifically, when T1 is 0.60 μm or more and 0.91 μm or less, 0.30≦b/a≦1.52T1−0.61, and T1 is 0.91 μm or more 1 0.64T1−0.28≦b/a≦1.52T1−0.61 at .06 μm, and 0.64T1−0.28≦b/a≦1.00 at T1 of 1.06 μm or more and 1.50 μm is the effective range. It can be seen that in this range, the results of "A" were obtained for "cutting edge state" and "cut surface quality" in Tables 1 to 3.

今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments and examples disclosed this time are illustrative in all respects and should not be considered restrictive. The scope of the present invention is indicated by the scope of the claims rather than the above description, and is intended to include all changes within the meaning and scope equivalent to the scope of the claims.

1 超硬合金製切断刃、100 塩化ビニル板、110 基部、120 刃部、120t 凸、121 第一部分、121k 欠け、121s,122s 外表面、121t 刃先、122 第二部分、2001 両面粘着シート、2002 アクリル板、2003、 切削動力計、2004 ステージ、3001,3002 チャック。 1 cemented carbide cutting blade, 100 vinyl chloride plate, 110 base, 120 blade, 120t convex, 121 first part, 121k chipping, 121s, 122s outer surface, 121t cutting edge, 122 second part, 2001 double-sided adhesive sheet, 2002 Acrylic plate, 2003, Cutting dynamometer, 2004 Stage, 3001, 3002 Chuck.

Claims (2)

基部と、
前記基部の延長線上に設けられ、最先端部である刃先を有する刃部とを備え、
ビッカース硬度HVが1250以上2030以下であり、
刃渡り方向に直交する縦断面において、前記刃先を座標原点とし、前記刃先から前記基部に向かう方向をZ軸方向とし、Z軸方向および刃渡り方向に直交する方向をY軸方向とし、前記刃部の外表面をYZ平面で表し、前記外表面の第一の点の座標を(Y1,Z1(=1.00μm))としa=Z1/(Y1)で定義される定数aと、前記外表面の第二の点の座標を(Y2,Z2(=5.00μm))としb=Z2/(Y2)で定義される定数bとの比率b/aが0.30以上1.00以下であり、
Z1における前記刃部のY軸方向厚さT1が0.60μm以上1.50μm以下であり、
T1が0.60μm以上0.91μm以下において0.30≦b/a≦1.52T1-0.61であり、
T1が0.91μm以上1.06μmにおいて0.64T1-0.28≦b/a≦1.52T1-0.61であり、
T1が1.06μm以上1.50μmにおいて0.64T1-0.28≦b/a≦1.00である、超硬合金製切断刃。
a base;
A blade portion provided on an extension line of the base portion and having a cutting edge that is the most distal portion,
Vickers hardness HV is 1250 or more and 2030 or less,
In a longitudinal section perpendicular to the blade length direction, the blade edge is the coordinate origin, the direction from the blade edge to the base is the Z-axis direction, and the direction perpendicular to the Z-axis direction and the blade length direction is the Y-axis direction. The outer surface is represented by the YZ plane, the coordinates of the first point on the outer surface are (Y1, Z1 (= 1.00 μm)), and the constant a defined by a=Z1/(Y1) 2 , and the outer surface Let the coordinates of the second point be (Y2, Z2 (= 5.00 μm)), and the ratio b/a to the constant b defined by b=Z2/(Y2) 2 is 0.30 or more and 1.00 or less can be,
Y-axis direction thickness T1 of the blade portion at Z1 is 0.60 μm or more and 1.50 μm or less,
T1 is 0.30 ≤ b/a ≤ 1.52T1-0.61 when T1 is 0.60 μm or more and 0.91 μm or less,
0.64T1−0.28≦b/a≦1.52T1−0.61 when T1 is 0.91 μm or more and 1.06 μm,
A cutting blade made of cemented carbide, which satisfies 0.64T1-0.28≤b/a≤1.00 when T1 is 1.06 μm or more and 1.50 μm.
Yが0からY2のすべての範囲において、前記刃部の外表面は前記座標原点と点(Y2,Z2)とを結ぶ直線よりも外側に位置する、請求項1に記載の超硬合金製切断刃。 2. Cemented carbide cutting according to claim 1, wherein the outer surface of said blade portion is located outside the straight line connecting said coordinate origin and point (Y2, Z2) in all ranges of Y from 0 to Y2. blade.
JP2022500073A 2020-06-19 2021-06-03 Cemented carbide cutting blade Active JP7298006B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020105952 2020-06-19
JP2020105952 2020-06-19
PCT/JP2021/021202 WO2021256280A1 (en) 2020-06-19 2021-06-03 Cemented carbide cutting blade

Publications (2)

Publication Number Publication Date
JPWO2021256280A1 JPWO2021256280A1 (en) 2021-12-23
JP7298006B2 true JP7298006B2 (en) 2023-06-26

Family

ID=79267864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022500073A Active JP7298006B2 (en) 2020-06-19 2021-06-03 Cemented carbide cutting blade

Country Status (5)

Country Link
JP (1) JP7298006B2 (en)
KR (1) KR20220156647A (en)
CN (1) CN115697657A (en)
TW (1) TWI810583B (en)
WO (1) WO2021256280A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027972A (en) 2004-07-20 2006-02-02 Nippon Electric Glass Co Ltd Fiber cutting blade and cutting device equipped with it
JP2007269506A (en) 2006-03-30 2007-10-18 Nippon Electric Glass Co Ltd Glass fiber cutting blade, its manufacturing method and cutting apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100217181B1 (en) 1997-01-21 1999-09-01 윤종용 Method of track buffering and system decoder for high speed data transmiting
JP4187397B2 (en) 2000-10-06 2008-11-26 Uht株式会社 Cutting blade
KR20040017444A (en) 2002-08-21 2004-02-27 엘지전자 주식회사 Structure for fixing refrigerant pipe of regenerator
CN104684699B (en) 2012-09-28 2017-05-17 联合材料公司 Green sheet cutting blade with flat blade-shaped cutting blade
JP5766886B2 (en) 2012-09-28 2015-08-19 株式会社アライドマテリアル Flat blade cutting blade and green sheet cutting blade
KR20170042911A (en) 2015-10-12 2017-04-20 태평양정기(주) Suspension

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006027972A (en) 2004-07-20 2006-02-02 Nippon Electric Glass Co Ltd Fiber cutting blade and cutting device equipped with it
JP2007269506A (en) 2006-03-30 2007-10-18 Nippon Electric Glass Co Ltd Glass fiber cutting blade, its manufacturing method and cutting apparatus

Also Published As

Publication number Publication date
TW202204111A (en) 2022-02-01
KR20220156647A (en) 2022-11-25
CN115697657A (en) 2023-02-03
WO2021256280A1 (en) 2021-12-23
JPWO2021256280A1 (en) 2021-12-23
TWI810583B (en) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI584928B (en) Flat cutting blade and green sheet cutting blade
TWI544998B (en) Flat cutting blade and green sheet cutting blade
JP7142802B2 (en) Cemented carbide cutting blade
JP2001300813A (en) Ball end mill
KR102214373B1 (en) Cutting insert
KR20130004231A (en) Cutting tool
JP7298006B2 (en) Cemented carbide cutting blade
JP7142801B2 (en) Cemented carbide cutting blade
CN109475945A (en) Coated cutting tool
JP7292487B2 (en) Cemented carbide cutting blade
JP6938781B2 (en) Flat blade cutting blade
EP3848173A1 (en) Rotary cutting tool
JP7144641B2 (en) Cemented carbide cutting blade
WO2023176819A1 (en) Cutting blade made of super-hard alloy
JP5240624B2 (en) Blade-tip-exchangeable tip and method for manufacturing the same
WO2023176818A1 (en) Cutting blade made of cemented carbide
KR20180125520A (en) Cutting inserts and cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230614

R150 Certificate of patent or registration of utility model

Ref document number: 7298006

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150