WO2023176716A1 - Method for manufacturing polarizer - Google Patents

Method for manufacturing polarizer Download PDF

Info

Publication number
WO2023176716A1
WO2023176716A1 PCT/JP2023/009269 JP2023009269W WO2023176716A1 WO 2023176716 A1 WO2023176716 A1 WO 2023176716A1 JP 2023009269 W JP2023009269 W JP 2023009269W WO 2023176716 A1 WO2023176716 A1 WO 2023176716A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin film
stretching
polarizer
crosslinking
nip roll
Prior art date
Application number
PCT/JP2023/009269
Other languages
French (fr)
Japanese (ja)
Inventor
邦智 齋藤
成志 中里
寿和 松本
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2023176716A1 publication Critical patent/WO2023176716A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a method for manufacturing a polarizer, and further relates to a method for manufacturing a polarizing plate and a roll body of a polarizing plate.
  • Liquid crystal display devices are widely used not only in liquid crystal televisions, but also in personal computers, mobile terminals such as mobile phones, and in-vehicle applications such as car navigation systems.
  • a liquid crystal display device has a liquid crystal panel with polarizing plates including polarizers attached to both sides of a liquid crystal cell, and displays images by controlling light from a backlight with the liquid crystal panel.
  • organic EL display devices like liquid crystal display devices, have been widely used in televisions, mobile terminals such as mobile phones, and in-vehicle applications such as car navigation systems.
  • a circularly polarizing plate (a polarizer and a ⁇ /4 plate) is installed on the viewing side surface of the image display element. ) may be placed.
  • Polarizers are usually manufactured by subjecting a resin film made of polyvinyl alcohol-based resin to swelling treatment, dyeing treatment, crosslinking treatment, and stretching treatment. It is known that in manufacturing a polarizer, a stretching treatment is performed while a resin film is immersed in a crosslinking bath (for example, Patent Document 1, etc.).
  • An object of the present invention is to provide a method for manufacturing a polarizer, a method for manufacturing a polarizing plate, and a roll body of a polarizing plate, in which variations in length in the direction perpendicular to the stretching direction are suppressed.
  • the present invention provides the following method for manufacturing a polarizer, method for manufacturing a polarizing plate, and roll body of a polarizing plate.
  • the cross-linking and stretching process is a process in which stretching is performed in multiple stages, and the first stage of the stretching is performed so as to satisfy the following formula (1).
  • a method for manufacturing a polarizer v ⁇ 0.3t ⁇ X1 ⁇ v ⁇ 1.2t (1)
  • X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
  • v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
  • t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process.
  • a method for producing a polarizer in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin as a forming material comprising: a swelling step of swelling the resin film while conveying it; a dyeing step of dyeing the resin film after the swelling step while conveying it; A crosslinking and stretching step of immersing the resin film after the dyeing step in a crosslinking bath while transporting it and stretching it in the transporting direction in the crosslinking bath,
  • the cross-linking and stretching process is a process in which a stretching process is performed in multiple stages, and the first stage of the stretching process is performed so as to satisfy the relationship of the following formula (2). , a method for manufacturing a polarizer.
  • X2 represents the distance [m] that the resin film is transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stage stretching process in the crosslinking/stretching process.
  • v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
  • t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process.
  • [3] The method for producing a polarizer according to [2], wherein the crosslinking and stretching step further satisfies the relationship of formula (1) below.
  • X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
  • v and t represent the same meanings as above.
  • X1 represents the distance that the resin film is conveyed from the start to the completion of the first-stage stretching process.
  • X1 In the crosslinking and stretching step, the distance that the resin film is conveyed from the start to the completion of at least one of the stretching treatments performed after the first stage is at least 2 times and no more than 10 times the distance X1.
  • the method for producing a polarizer according to [1] or [3], which is [5] The method according to any one of [1] to [4], wherein in the cross-linking and stretching step, the first-stage stretching treatment and the subsequent second-stage stretching treatment are performed in the same cross-linking bath. Method of manufacturing polarizer.
  • a first nip roll, a second nip roll, and a third nip roll are arranged in order from the upstream side in the transport direction,
  • the first stage stretching process is performed between the first nip roll and the second nip roll
  • the method for manufacturing a polarizer according to [5] wherein the second-stage stretching process is performed between the second nip roll and the third nip roll.
  • the width of the resin film after the crosslinking and stretching step is The rotational speed of the second nip roll when Rvmin [m /min],
  • a roll body of a polarizing plate obtained by winding a polarizing plate into a roll shape The polarizing plate has a polarizer and a protective film laminated on one or both sides of the polarizer, A roll body of a polarizing plate, wherein the difference between the width of the polarizer at a winding start portion of the roll body and the width of the polarizer at a winding end portion of the roll body is 0.1 mm or more and 3 mm or less in absolute value. .
  • a polarizer of the present invention it is possible to manufacture a polarizer in which variation in length in the direction orthogonal to the stretching direction is suppressed.
  • FIG. 2 is a schematic diagram for explaining a crosslinking and stretching step in a method for manufacturing a polarizer according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram for explaining a crosslinking and stretching step in a method for manufacturing a polarizer according to an embodiment of the present invention.
  • the polarizer of this embodiment is a polarizing film in which a dichroic dye is adsorbed and oriented on a resin film 1 made of polyvinyl alcohol resin.
  • the method for manufacturing a polarizer of this embodiment is a method for manufacturing a polarizer while conveying the resin film 1, a swelling step of swelling the resin film 1 while conveying it; a dyeing step of dyeing the resin film 1 after the swelling step while conveying it;
  • the resin film 1 after the dyeing process is immersed in a crosslinking bath 10 while being conveyed, and is stretched in the conveyance direction in the crosslinking bath 10.
  • the resin film 1 is unrolled from a roll body in which a long resin film 1 is wound into a roll, and while being conveyed, the above-mentioned swelling step, dyeing step, and crosslinking and stretching step are carried out. I do.
  • the resin film 1 can be conveyed using a known conveyance means, and is carried along a film conveyance path made up of a combination of a nip roll made up of a pair of rolls, a guide roll made up of one roll, etc. It is preferable to do so.
  • the method for manufacturing a polarizer further includes a complementary color step of performing color adjustment treatment on the resin film 1 after the crosslinking and stretching step using a complementary color solution, a washing step of washing the resin film 1 using a cleaning solution, a drying step of drying the resin film 1, and the like. Good too. Details of each step will be described later.
  • the polarizer obtained by processing in each of the above steps may be sequentially wound around a take-up roll to form a roll, or it may be used as a polarizing plate as described below without being wound. It can also be used in a manufacturing method.
  • the crosslinking and stretching step is started by immersing the resin film 1 in the crosslinking bath 10.
  • the crosslinking and stretching process is a process of performing multi-stage stretching in the crosslinking bath 10, and the first stage of the stretching process is performed using the following formula (1) and formula (2). Do this so that at least one of the relationships is satisfied.
  • the n-th stretching process performed in the crosslinking and stretching process may be referred to as "n-th stretching process”.
  • v ⁇ 0.4t ⁇ X2 ⁇ v ⁇ 1.2t (2) [In formula (1) and formula (2), X1 represents the distance [m] that the resin film 1 is transported from the start to the completion of the first stretching process.
  • X2 represents the distance [m] that the resin film 1 is transported from the start of immersion of the resin film 1 in the crosslinking bath 10 to the completion of the first stretching process in the crosslinking and stretching process.
  • v represents the conveyance speed [m/min] of the resin film 1 in the crosslinking and stretching process.
  • t represents the time [min] required until the shrinkage of the resin film 1 is saturated when the resin film 1 after the dyeing process is immersed in the crosslinking bath 10 used for the first stretching process. ]
  • the multi-stage stretching process performed in the cross-linking and stretching process may be performed in two or more stages, may be three or more stages, may be four or more stages, and is usually 10 stages or less, and 8 stages or less. There may be five levels or less. It is preferable that the crosslinking and stretching process is a process of performing a two-stage or three-stage stretching process.
  • the distance X1 in formula (1) may be greater than or equal to v x 0.4t [m], may be greater than or equal to v x 0.5t [m], and may be greater than or equal to v x 0.6t [m]. Alternatively, it may be less than or equal to v ⁇ 1.1t [m], or may be less than or equal to v ⁇ 1.0t [m].
  • the distance X1 is less than v x 0.3 t [m]
  • Width stability tends to decrease.
  • the distance X2 in formula (2) may be greater than or equal to v x 0.5t [m], may be greater than or equal to v x 0.6t [m], and may be greater than or equal to v x 0.7t [m]. Alternatively, it may be less than or equal to v ⁇ 1.1t [m], or may be less than or equal to v ⁇ 1.0t [m]. If the distance 1 is more likely to be cut.
  • the first stretching treatment in the crosslinking and stretching step may satisfy one or both of formula (1) and formula (2).
  • distance X1 may be smaller than distance X2, or may be the same as distance X2.
  • a crosslinked structure is introduced into the polyvinyl alcohol resin that constitutes the resin film 1 by immersing the resin film 1 in a crosslinking bath 10. At this time, it is thought that shrinkage occurs in the resin film 1 due to the introduction of the crosslinked structure.
  • the first stretching process is performed so as to satisfy at least one of Expression (1) and Expression (2). Therefore, in the step of performing the first stretching treatment, the resin film due to the introduction of the crosslinked structure is It is presumed that film 1 is shrinking. Moreover, in the second stretching process, only the contraction due to neck-in of the resin film 1 can be caused without substantially causing the contraction of the resin film 1 due to the introduction of the crosslinked structure.
  • a polarizer having a stable width means that the variation (standard deviation) in the length (width) in the direction orthogonal to the stretching direction when manufactured for 100,000 m is 3 mm or less (preferably 1 mm or less). Refers to a certain polarizer.
  • the magnitude of neck-in occurring in the resin film 1 is adjusted by adjusting the stretching ratio after the second stretching process. This allows the resin film 1 to be adjusted to a desired width.
  • the optical properties (particularly the degree of polarization) of the polarizer tend to improve as the neck-in that occurs in the resin film 1 increases.
  • the distance X1 is not particularly limited as long as it satisfies the relationship of formula (1), but is usually 1 m or more, may be 2 m or more, may be 3 m or more, and is usually 10 m or less. , 8 m or less, or 5 m or less.
  • the distance X2 is not particularly limited as long as it satisfies the relationship of formula (2), but is usually 1 m or more, may be 2 m or more, may be 3 m or more, and is usually 10 m or less. , 8 m or less, or 5 m or less.
  • the conveyance speed ve is the speed at which the resin film 1 is conveyed by the second nip roll 12 located on the downstream side in the conveyance direction.
  • the conveyance speed v [m/min] is not particularly limited, but is usually 0.1 m/min or more, 0.5 m/min or more, may be 1.0 m/min or more, and 3.0 m/min It may be more than 5.0 m/min, and it is usually less than 30 m/min, it may be less than 25 m/min, it may be less than 20 m/min, and it may be less than 15 m/min. /min or less.
  • the time t [min] in formulas (1) and (2) is the time required for the shrinkage of the resin film 1 to be saturated when the resin film 1 after the dyeing process is immersed in the crosslinking bath used in the first stretching process. It takes time.
  • the time t can be determined as the time required for the length of the resin film 1 in the width direction to become constant after immersing the resin film 1 in the crosslinking bath used in the first stretching process. It can be determined by the method described.
  • the time t varies depending on the type of resin film 1 used in the polarizer manufacturing method, but is, for example, 0.1 min or more, may be 0.3 min or more, may be 0.5 min or more, or , 2.0 min or less, 1.5 min or less, or 1.0 min or less.
  • the crosslinking and stretching step can be performed while transporting the resin film 1 in a crosslinking bath 10, as shown in FIG.
  • nip rolls are arranged in the crosslinking bath 10 depending on the number of stages of the stretching process performed in the crosslinking bath 10.
  • a first nip roll 11, a second nip roll 12, and a third nip roll 13 are arranged in order from the upstream side in the transport direction.
  • the first stretching process can be performed between the first nip roll 11 and the second nip roll 12, and the second stretching process can be performed between the second nip roll 12 and the third nip roll 13. .
  • the position of the first nip roll 11 becomes the starting position of the first stretching process.
  • the position of the second nip roll 12 is the completion position of the first stretching process and the start position of the second stretching process.
  • the position of the third nip roll 13 is the completion position of the second stretching process.
  • the distance X1 is the distance over which the resin film 1 is transported between the position of the first nip roll 11 and the position of the second nip roll 12.
  • the distance X2 is the distance that the resin film 1 is conveyed between the position where the resin film 1 is immersed in the crosslinking bath 10 and the position of the second nip roll 12.
  • the first nip roll 11 is arranged so that the nip position of the first nip roll 11 is located at the position where the resin film 1 starts immersing in the crosslinking bath.
  • the installation positions of the first nip roll 11 and the third nip roll 13 are preferably fixed (immovable). Thereby, by adjusting the installation position of the second nip roll 12 in the crosslinking bath 10, the first stretching process can be performed so as to satisfy at least one of the above formulas (1) and (2).
  • the rotational speed Rv2 [m/min] of the second nip roll 12 satisfies the following formula (3).
  • the rotation speed Rv2 here means the length of the resin film 1 conveyed by the second nip roll 12 per unit time.
  • Rvmin-10 ⁇ Rv2 ⁇ Rvmin+10 (3) [In formula (3), Rv2 represents the rotation speed [m/min] of the second nip roll 12.
  • Rvmin is the width of the resin film 1 after the crosslinking and stretching process, when the rotational speed of the first nip roll 11 is Rv1 [m/min] and the rotational speed of the third nip roll 13 is Rv3 [m/min]. It represents the rotational speed [m/min] of the second nip roll 12 when it becomes the minimum. ]
  • the rotation speed Rv1 means the length of the resin film 1 that the first nip roll 11 conveys per unit time
  • the rotation speed Rv3 means the length of the resin film 1 that the third nip roll 13 conveys per unit time. means.
  • the rotational speed Rv2 of the second nip roll 12 is the rotational speed set when the rotational speed Rv1 of the first nip roll 11 and the rotational speed Rv3 of the third nip roll 13 are each fixed values.
  • the time when the width of the resin film 1 after the crosslinking and stretching process is the minimum is the difference in the width of the resin film 1 before and after the crosslinking and stretching process (from the width of the resin film 1 before the crosslinking and stretching process to the width of the resin film 1 after the crosslinking and stretching process). This refers to the time when the value obtained by subtracting the width of the resin film 1) is at its maximum, and this is the time when the neck-in of the resin film 1 in the crosslinking and stretching process is at its maximum.
  • Rv2 may be Rvmin-8 [m/min] or more, Rvmin-6 [m/min] or more, Rvmin-5 [m/min] or more, and It may be Rvmin+8 [m/min] or less, it may be Rvmin+6 [m/min] or less, it may be Rvmin+5 [m/min] or less, or it may be Rvmin [m/min]. .
  • the rotation speed Rv1 may be, for example, 2.0 m/min or more, 3.0 m/min or more, 4.0 m/min or more, or 20.0 m/min or less. It may be 15.0 m/min or less, or it may be 12.0 m/min or less.
  • the rotation speed Rv3 is preferably larger than the rotation speed Rv1 and the rotation speed Rv2, for example, it may be 5.0 m/min or more, it may be 7.0 m/min or more, and it may be 10.0 m/min. It may be more than that, or it may be less than 35.0 m/min, it may be less than 30.0 m/min, or it may be less than 25.0 m/min.
  • the rotational speed Rv2 is preferably larger than the rotational speed Rv1 and smaller than the rotational speed Rv3, for example, it may be 4.0 m/min or more, 0 m/min or more, 6.0 m/min or more, 7.0 m/min or more, 30.0 m/min or less, 25
  • the speed may be .0 m/min or less, 20.0 m/min or less, or 15.0 m/min or less.
  • the rotational speed Rv2 of the second nip roll in the crosslinking and stretching step may be controlled to be constant or may be varied during the period during which the resin film 11 is conveyed from the start of manufacturing of the polarizer to the completion of manufacturing. may be controlled.
  • the rotational speed Rv2 may vary within the range of Rvmin ⁇ 10 [m/min], and may vary within the range of Rvmin ⁇ 8 [m/min]. , Rvmin ⁇ 6 [m/min] or Rvmin ⁇ 5 [m/min].
  • the rotation speed Rv2 it is preferable to control the rotation speed Rv2 so that the variation (standard deviation) in the width of the polarizer is, for example, 3 mm or less, preferably 1 mm or less over the length of the polarizer.
  • the width of the polarizer at the beginning of the roll and the width of the polarizer at the end of the roll are determined. It is preferable to control the rotation speed Rv2 so that the difference with the width is 3 mm or less in absolute value.
  • FIG. 1 shows a case where the first stretching process and the second stretching process are performed in the same crosslinking bath 10
  • the first stretching process and the second stretching process may be performed in different crosslinking baths.
  • the composition of the crosslinking liquid in each crosslinking bath and the type of crosslinking bath, such as the temperature of the crosslinking bath are the same.
  • the stretching process after the third stretching process may be performed in the same crosslinking bath 10 as the first stretching process and the second stretching process; may be carried out in a separate crosslinking bath.
  • the stretching ratio of the resin film 1 in the first stretching treatment is not particularly limited, but is usually more than 1.0 times, may be 1.01 times or more, may be 1.05 times or more, and may be 1.0 times or more. .1 times or more, and usually 3.0 times or less, 2.5 times or less, 2.0 times or less, 1.8 times or less. It's okay.
  • the resin film 1 is transported from the start to the completion of the stretching process in at least one of the stretching processes after the second stretching process, which is a stretching process performed after the first stretching process. It is preferable that the distance Xf satisfies at least one of the following equations (4) and (5). 2 ⁇ X1 ⁇ Xf ⁇ 10 ⁇ X1 (4) 2 ⁇ X2 ⁇ Xf ⁇ 12 ⁇ X2 (5)
  • the distance Xf may be twice or more of X1, may be three times or more, may be four times or more, and may be no more than 10 times X1, It may be 9 times or less, or it may be 8 times or less.
  • the distance Xf may be twice or more of X2, may be three times or more, may be four times or more, and may be no more than 12 times X2, It may be 10 times or less, or it may be 9 times or less.
  • the crosslinking treatment step involves three or more stages of stretching treatment
  • at least one of the relationships of formula (4) and formula (5) may be satisfied in all of the stretching treatments other than the first stretching treatment.
  • At least one of the stretching treatments other than the first stretching treatment may satisfy at least one of Expression (4) and Expression (5).
  • the distance Xf is This is the distance over which the resin film 1 is transported.
  • the total stretching ratio (cumulative stretching ratio) from the second stretching process to the final stretching process in the crosslinking and stretching process is not particularly limited, it is preferably larger than the stretching ratio in the first stretching process.
  • the total stretching ratio of the stretching processes after the second stretching process is usually 1.1 times or more, may be 1.5 times or more, may be 1.8 times or more, and may be 2.0 times or more. It may be 2.5 times or more, and it is usually 7.0 times or less, it may be 6.0 times or less, it may be 5.0 times or less, It may be 4.5 times or less, or it may be 4.0 times or less.
  • the total stretching ratio (cumulative stretching ratio) in the entire stretching process in the crosslinking and stretching process may be, for example, 2.0 times or more, 3.0 times or more, or 3.5 times or more. It may also be 7.0 times or less, 6.8 times or less, or 6.5 times or less.
  • the polarizing plate of this embodiment is obtained by laminating a protective film on one or both sides of a polarizer obtained by the above-described method for manufacturing a polarizer.
  • the polarizer and the protective film are preferably laminated via a bonding layer (adhesive layer or pressure-sensitive adhesive layer).
  • the method for manufacturing the polarizing plate of this embodiment is as follows: Obtaining a polarizer by the above polarizer manufacturing method; The method includes a step of laminating a protective film on one or both sides of the polarizer without slitting the polarizer obtained in the step of obtaining the polarizer in the transport direction.
  • the polarizer When manufacturing a polarizing plate, the polarizer is sometimes slit in the transport direction in order to align the width of the polarizer in the length direction, and the slit polarizer and a protective film are laminated.
  • a polarizer with suppressed width variations in the length direction can be obtained without slitting the polarizer in the transport direction. Therefore, a polarizing plate can be obtained by laminating a protective film without slitting the polarizer in the transport direction.
  • the polarizing plate may be slit. That is, the polarizer may be slit after a protective film is laminated on one or both sides of the polarizer.
  • the step of laminating a protective film on both sides or one side of a polarizer involves applying a laminating agent (adhesive or pressure-sensitive adhesive) to form a laminating layer on at least one laminating surface of the polarizer and the protective film. This can be done by coating or the like.
  • a laminating agent adheresive or pressure-sensitive adhesive
  • the protective films may be laminated on one side of the polarizer in order, and while laminating one protective film and polarizer, the other protective film and polarizer may be laminated. You may also perform bonding.
  • a polarizing plate roll body is a polarizing plate wound into a roll.
  • a roll of a polarizing plate can usually be obtained by winding a polarizing plate around a winding core.
  • a long polarizer can be obtained.
  • the long polarizer obtained by the above polarizer manufacturing method can be made into a long polarizing plate by laminating a protective film on one or both sides of the long polarizer without slitting it in the conveying direction. .
  • the length (winding length) of the polarizing plate constituting the roll body of the polarizing plate is not particularly limited, but from the viewpoint of improving the stability of the width of the polarizer, it can be set to 300 m or more and 5000 m or less.
  • the difference between the width of the polarizer at the beginning of winding of the roll and the width of the polarizer at the end of winding of the roll can be 3 mm or less in absolute value, and 0.1 mm. It can be greater than or equal to 3 mm.
  • the absolute value of the difference may be 0.1 mm or more and 2 mm or less, 0.1 mm or more and 1 mm or less, or 0.1 mm or more and 0.5 mm or less.
  • the width of the polarizer at the beginning of winding of the roll body may be larger or smaller than the width of the polarizer at the end of winding of the roll body.
  • the absolute value of the difference in the roll body is within the above range, it is easy to obtain a roll body with a good winding appearance.
  • the absolute value of the above-mentioned difference in the roll body exceeds 3 mm, problems such as a part of the roll body rising in a streak-like manner are likely to occur, and the roll body is likely to have a poor winding appearance.
  • the polarizer is slit in the transport direction, the width of the polarizer is almost constant, and in the case of a roll of polarizing plate, the width of the polarizer at the beginning of winding of the roll and the width of the polarizer at the end of winding of the roll are the same. The difference between the width and the width is likely to be less than 0.1 mm in absolute value.
  • slit debris may be generated or cracks may occur in the polarizer.
  • the variation (standard deviation) in the width of the polarizer obtained by the manufacturing method of the present invention is 3 mm or less (preferably 1 mm or less), the winding of the roll of the polarizer can be started without slitting in the conveying direction. It is possible to obtain a roll body with a good winding shape in which the difference between the width of the polarizer at a portion and the width of the polarizer at the end of winding of the roll body is 3 mm or less in absolute value.
  • variation (standard deviation) in the width of the polarizer in the roll of the polarizing plate of the present invention can be 3 mm or less (preferably 1 mm or less).
  • the winding start portion of a roll of polarizing plate refers to the polarizing plate at the winding start side on the winding core side of the roll body (the center side in the radial direction of the roll body), and the width of the polarizer at the winding start portion of the roll body. refers to the width of the polarizer at a position 1 m in the length direction from the end of the polarizing plate at the beginning of winding.
  • the winding end portion of the roll body of the polarizing plate refers to the polarizing plate at the winding end side on the outer peripheral side of the roll body (radially outside of the roll body), and the width of the polarizer at the winding end portion of the roll body is , refers to the width of the polarizer at a position 1 m in the length direction from the end of the winding of the polarizing plate.
  • a polarizer is an absorption-type polarizing film that has the property of absorbing linearly polarized light with a vibration plane parallel to its absorption axis and transmitting linearly polarized light with a vibration plane perpendicular to the absorption axis (parallel to the transmission axis).
  • a polarizer is a polarizing film in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin (hereinafter sometimes referred to as "PVA resin").
  • the thickness of the polarizer is not particularly limited, but may be, for example, 3 ⁇ m or more, 4 ⁇ m or more, 5 ⁇ m or more, 35 ⁇ m or less, 30 ⁇ m or less.
  • the thickness may be 25 ⁇ m or less.
  • the thickness of the polarizer is 35 ⁇ m or less, for example, it is possible to suppress the influence of polyenization of PVA-based resin on deterioration of optical properties in a high-temperature environment.
  • the thickness of the polarizer is 3 ⁇ m or more, it is easy to achieve a configuration that achieves desired optical characteristics.
  • the PVA resin constituting the resin film is obtained by saponifying polyvinyl acetate resin.
  • polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith.
  • examples of other copolymerizable monomers include unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, and unsaturated sulfonic acids.
  • the degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more and 100 mol% or less.
  • the degree of polymerization of the PVA resin is, for example, 1,000 or more and 10,000 or less, preferably 1,500 or more and 5,000 or less.
  • the PVA resin may be modified, such as polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. modified with aldehydes.
  • dichroic dye adsorbed and oriented on the resin film examples include iodine or dichroic dye.
  • the dichroic dye is iodine.
  • the dichroic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Splat Blue G, Splat Blue GL, Splat Orange GL, Direct Sky Blue, Examples include Direct First Orange S and First Black.
  • the thickness of the resin film as the raw film depends on the thickness of the polarizer to be manufactured, but for example, it may be 20 ⁇ m or more, 35 ⁇ m or more, 40 ⁇ m or more, 45 ⁇ m or more. It may also be 80 ⁇ m or less, 70 ⁇ m or less, or 60 ⁇ m or less.
  • the swelling process is a process in which the resin film is treated, for example, by immersing the resin film in a swelling liquid in a swelling bath or by spraying the swelling liquid.
  • the swelling process can remove dirt on the surface of the resin film, plasticizers, blocking agents, etc. in the resin film, as well as impart easy dyeability and plasticize the resin film.
  • As the swelling liquid a medium mainly composed of water, such as water, distilled water, or pure water, is usually used.
  • the swelling liquid contains 0.01% by mass or more of boric acid (JP-A-10-153709), chloride (JP-A-06-281816), inorganic acids, inorganic salts, water-soluble organic solvents, alcohols, etc. It is also possible to use an aqueous solution containing 10% by mass or less.
  • the temperature of the swelling liquid is preferably 10°C or more and 50°C or less, more preferably 10°C or more and 40°C or less, and even more preferably 15°C or more and 30°C or less.
  • the immersion time is preferably 10 seconds or more and 300 seconds or less, and more preferably 20 seconds or more and 200 seconds or less.
  • the temperature of the swelling liquid is, for example, 20°C or more and 70°C or less, preferably 30°C or more and 60°C or less, and the immersion time when immersing it in the swelling bath is , preferably 30 seconds or more and 300 seconds or less, more preferably 60 seconds or more and 240 seconds or less.
  • the problem that the resin film swells in the width direction tends to cause wrinkles in the resin film.
  • One way to transport the film while removing wrinkles is to use rolls with a widening function such as expander rolls, spiral rolls, and crown rolls as guide rolls used to transport the film through the swelling bath, or to use cross guide rolls. , bend bars, and other widening devices such as tenter clips.
  • Another means for suppressing the occurrence of wrinkles is to perform a stretching process. For example, uniaxial stretching can be performed in a swelling bath by utilizing the difference in circumferential speed between nip rolls.
  • the resin film In the swelling treatment, the resin film also swells and expands in the transport direction, so if the resin film is not actively stretched, it is necessary to use a swelling bath, for example, to eliminate slack in the resin film in the transport direction. It is preferable to take measures such as controlling the speed of nip rolls disposed before and after the.
  • the water flow in the swelling bath is controlled by an underwater shower, and an EPC device (Edge Position Control device: detects the edge of the film and prevents the film from meandering. It is also useful to use a device such as
  • the dyeing step is performed for the purpose of adsorbing and orienting the dichroic dye to the resin film after the swelling step.
  • the processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the resin film do not occur.
  • the dyeing step may be carried out by immersing the resin film after the swelling treatment in a dyeing bath for a predetermined time and then drawing it out, or may be carried out by spraying a dyeing liquid or the like.
  • the resin film subjected to the dyeing process is preferably a resin film that has been subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing process.
  • the uniaxial stretching treatment before the dyeing process it is preferable to perform the uniaxial stretching process during the dyeing process.
  • an aqueous solution with a mass ratio of iodine/potassium iodide/water 0.003 to 3/0.1 to 10/100.
  • potassium iodide other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used together.
  • the staining solution may contain compounds other than iodide, such as boric acid, zinc chloride, cobalt chloride, and the like.
  • the aqueous solution contains 0.003 parts by mass or more of iodine per 100 parts by mass of water, It can be considered a dye bath.
  • the temperature of the dyeing bath when dipping the resin film is usually 10 to 45°C, preferably 10°C to 40°C, more preferably 20°C to 35°C, and the immersion time of the film is usually 30°C to 45°C.
  • the duration is at least 60 seconds, preferably at least 60 seconds and at most 300 seconds.
  • This dyeing solution may contain a dyeing aid, for example, an inorganic salt such as sodium sulfate, a surfactant, and the like.
  • One type of dichroic dye may be used alone, or two or more types of dichroic dyes may be used in combination.
  • the temperature of the dyeing bath when dipping the resin film is, for example, 20°C or more and 80°C or less, preferably 30°C or more and 70°C or less, and the immersion time of the resin film is usually 30 seconds or more and 600 seconds or less. , preferably 60 seconds or more and 300 seconds or less.
  • the resin film can be uniaxially stretched in a dyeing bath. Uniaxial stretching of the resin film can be carried out by a method such as creating a difference in peripheral speed between nip rolls placed in the dyeing bath or before and after the dyeing bath.
  • the crosslinking and stretching step is a step in which the resin film dyed in the dyeing step is immersed in a treatment bath (crosslinking bath) containing a crosslinking agent and stretched in the crosslinking bath.
  • the crosslinking treatment can improve the water resistance, etc. of the resin film.
  • the crosslinking and stretching step can be carried out by stretching and transporting the resin film along a film transport path constructed by nip rolls, guide rolls, and the like arranged in a crosslinking bath.
  • the stretching process performed in the cross-linking stretching process is as described above, and the stretching process performed in the cross-linking stretching process is a stretching process in which uniaxial stretching is performed in the transport direction (longitudinal direction) using the difference in circumferential speed between the nip rolls. It is preferable.
  • the crosslinking liquid a solution in which a crosslinking agent is dissolved in a solvent can be used.
  • the crosslinking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination of two or more.
  • the solvent for example, water can be used, but it may also contain an organic solvent that is compatible with water.
  • the concentration of the crosslinking agent in the crosslinking solution is not limited to this, but is preferably in the range of 1% by mass or more and 20% by mass or less, more preferably in the range of 6% by mass or more and 15% by mass or less. preferable.
  • the crosslinking liquid can be an aqueous solution containing, for example, 1 part by mass or more and 10 parts by mass or less of boric acid per 100 parts by mass of water.
  • the crosslinking solution preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 part by mass or more and 30 parts by mass based on 100 parts by mass of water. It can be less than or equal to parts by mass.
  • iodides include potassium iodide and zinc iodide. Two or more types of iodides may be contained.
  • nitrate may be present together.
  • the nitrate may include at least one selected from the group consisting of aluminum nitrate, copper nitrate, sodium nitrate, potassium nitrate, zinc nitrate, and magnesium nitrate.
  • the nitrate includes zinc nitrate.
  • the concentrations of boric acid and iodide in the crosslinking liquid and the temperature of the crosslinking liquid can be changed as appropriate depending on the purpose.
  • the crosslinking liquid can be, for example, an aqueous solution having a concentration of boric acid/iodide/water in a mass ratio of 3 to 10/1 to 20/100. If necessary, other crosslinking agents may be used in place of boric acid, or boric acid and other crosslinking agents may be used in combination.
  • the temperature of the crosslinking bath when dipping the resin film is usually 50°C or more and 70°C or less, preferably 53°C or more and 65°C or less, and the immersion time of the resin film is usually 30 seconds or more and 600 seconds or less.
  • the temperature of the crosslinking bath is usually 50°C or higher and 85°C or lower, preferably 55°C or higher and 80°C. It is as follows.
  • the complementary color process is a process for adjusting the hue of the resin film after the crosslinking and stretching process.
  • the complementary color process is a treatment process performed on the resin film after the crosslinking and stretching process without any stretching process.
  • the complementary color process may be carried out by immersing the resin film after the cross-linking and stretching process in a complementary color bath (complementary color liquid stored in a complementary color bath) for a predetermined time and then pulling it out, or by spraying the complementary color liquid. It's okay.
  • the complementary color solution may be an aqueous solution containing, for example, 1 to 10 parts by mass of boric acid per 100 parts by mass of water.
  • the complementary color solution preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 part by mass or more and 30 parts by mass based on 100 parts by mass of water. It can be less than or equal to parts by mass.
  • iodides include potassium iodide and zinc iodide. Two or more types of iodides may be contained.
  • nitrate may be present together.
  • the nitrate may include at least one selected from the group consisting of aluminum nitrate, copper nitrate, sodium nitrate, potassium nitrate, zinc nitrate, and magnesium nitrate.
  • the nitrate includes zinc nitrate.
  • the complementary color solution for example, when iodine is used as a dichroic dye, a concentration of boric acid/iodide/water in a mass ratio of 1 to 5/3 to 30/100 can be used.
  • the temperature of the complementary color bath when dipping the resin film is usually 10°C or more and 45°C or less, and the immersion time of the resin film is usually 1 second or more and 300 seconds or less, preferably 2 seconds or more and 100 seconds or less. .
  • the complementary color process may be performed multiple times, for example, 2 to 5 times.
  • the composition and temperature of each complementary color solution used may be the same or different as long as it is within the above range.
  • the cleaning process is performed for the purpose of removing excess chemicals such as boric acid and iodine attached to the resin film after the crosslinking and stretching process, or, if a complementary color process is performed, to the resin film after the complementary color process.
  • the cleaning process can be performed, for example, by immersing the resin film after the crosslinking and stretching process or the complementary color process in a cleaning bath (a cleaning liquid contained in a cleaning tank), or by spraying the cleaning liquid as a shower or the like.
  • the cleaning step may be performed using a combination of dipping and spraying.
  • the temperature of the cleaning liquid in the cleaning process is usually 2°C or more and 40°C or less, and the immersion time when the resin film is immersed in the cleaning liquid is usually 2 seconds or more and 120 seconds or less.
  • rolls with a widening function such as expander rolls, spiral rolls, and crown rolls are used as guide rolls, and rolls such as cross guiders, bend bars, and tenter clips are used as guide rolls. Other widening devices may also be used.
  • stretching treatment may be performed to suppress the occurrence of wrinkles.
  • the drying process is a process of drying the resin film after the crosslinking and stretching process, the complementary color process, or the washing process.
  • the method of drying the resin film is not particularly limited, but can be carried out using a drying oven, for example.
  • the drying oven may include, for example, a hot air dryer.
  • the drying temperature is, for example, 30° C. or more and 100° C. or less, and the drying time is, for example, 30 seconds or more and 600 seconds or less.
  • the process of drying the resin film can also be performed using a far-infrared heater.
  • a polarizing plate is a polarizer with protective films laminated on one or both sides. It is preferable that the polarizer and the protective film are laminated via a bonding layer.
  • the polarizing plate may be a long polarizing plate, and its length may be 300 m or more and 5000 m or less.
  • a protective film for example, a film made of acetyl cellulose resin such as triacetyl cellulose or diacetyl cellulose; a film made of polyester resin such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; a polycarbonate resin film, cyclo Examples include olefin resin films; acrylic resin films; and films made of chain olefin resins such as polypropylene resins.
  • the bonding surface of the polarizer and/or protective film may be treated with corona treatment, flame treatment, plasma treatment, ultraviolet irradiation, primer coating treatment, saponification treatment, etc. Processing may be performed.
  • the bonding layer interposed between the polarizer and the protective film can be formed using an adhesive or a pressure-sensitive adhesive.
  • Adhesives include active energy ray-curable adhesives such as ultraviolet curable adhesives, aqueous solutions of polyvinyl alcohol resins, aqueous solutions containing crosslinking agents, and water-based adhesives such as urethane emulsion adhesives. Agents can be mentioned.
  • a zinc compound such as zinc nitrate may be added to the water-based adhesive.
  • the ultraviolet curable adhesive may be a mixture of an acrylic compound and a radical photopolymerization initiator, a mixture of an epoxy compound and a cationic photopolymerization initiator, or the like.
  • a cationically polymerizable epoxy compound and a radically polymerizable acrylic compound can be used together, and a photocationic polymerization initiator and a photoradical polymerization initiator can also be used together as an initiator.
  • Polarizing plates can be used in display devices.
  • the image display element used in the display device include a liquid crystal display element, an organic EL display element, and the like.
  • a polarizing plate may be used by placing it on the viewing side, it may be placed on the backlight side, or it may be used on both the viewing side and the backlight side.
  • the display device can be used in mobile devices such as televisions, personal computers, mobile phones and tablet terminals, and in-vehicle applications. Examples of in-vehicle applications include display devices used in car navigation devices, speedometers, touch panels for air conditioners, back monitors, rear monitors, and the like.
  • Example 1 A resin film made of a long polyvinyl alcohol resin with a thickness of 45 ⁇ m [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 23°C.
  • the resin film was immersed in a swelling bath made of pure water for 110 seconds and uniaxially stretched 2.1 times in the transport direction of the resin film (swelling step). Thereafter, the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio). The resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
  • the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio).
  • the resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step).
  • a crosslinking bath As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
  • the distance X2(1) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v ⁇ 0.46t.
  • the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll)
  • Xf(1) is the distance X1(1) and 6.1 times the distance X2(1).
  • Rv2 was set to Rvmin+2.7 m/min.
  • Example 2 A resin film made of a long polyvinyl alcohol resin with a thickness of 45 ⁇ m [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 21.5 The resin film was immersed in a swelling bath made of pure water at a temperature of 90 seconds for an immersion time of 90 seconds, and uniaxially stretched 2.3 times in the transport direction of the resin film (swelling step).
  • VF-PE#4500 manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more
  • the film pulled out from the swelling bath was immersed for 180 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio).
  • the resin film was immersed in water and uniaxially stretched 1.13 times in the transport direction of the resin film (dying process).
  • the film pulled out from the dyeing bath was immersed for 62 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio).
  • the resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step).
  • a crosslinking bath As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
  • the distance X2 (2) that the resin film is transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v ⁇ 0.49t.
  • the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll) Xf(2) is set to 6.8 times the distance X1(2), and the distance X2 It was set to 6.0 times that of (2).
  • Rv2 was manufactured while being controlled to vary between Rvmin+2.3 m/min and Rvmin+3.3 m/min.
  • Saponified cellulose acylate film TD40 (manufactured by Fujifilm Corporation, thickness 40 ⁇ m) was laminated on both sides of the polarizer produced above using a water-based adhesive and dried to produce a long polarizing plate. did. At this time, the polarizer was not subjected to slit treatment to remove the ends in the width direction. A long polarizing plate of 1000 m thus produced was wound into a roll to obtain a roll body.
  • the width of the polarizer at the beginning of the winding of the polarizing plate roll (1 m in the length direction from the end of the polarizing plate at the beginning of winding) and the width of the polarizer at the end of the winding of the polarizing plate roll (the position at the end of the winding of the polarizing plate) The difference from the width of the polarizer at a position 1 m from the end in the length direction was 0.3 mm in absolute value.
  • the roll shape of the polarizing plate was good, and no slit debris was observed.
  • the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio).
  • the resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
  • the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio).
  • the resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step).
  • a crosslinking bath As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
  • the distance X2 (c1) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v ⁇ 0.26t.
  • the conveyance distance of the resin film in the second stretching process (the conveyance distance of the resin film between the second nip roll and the third nip roll) Xf (c1) is set to 15.0 times the distance X1 (c1), and the distance X2 It was 11.5 times that of (c1).
  • Rv2 was set to Rvmin+2.7 m/min.
  • the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio).
  • the resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
  • the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio).
  • the resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step).
  • a crosslinking bath As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
  • the distance X2 (c2) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v ⁇ 1.67t.
  • the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll) Xf (c2) is set to 1.3 times the distance X1 (c2), and the distance X2 It was 1.2 times that of (c2).
  • Rv2 was set to Rvmin+2.7 m/min.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Delivering By Means Of Belts And Rollers (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a method for manufacturing a polarizer in which variation in length in a direction orthogonal to a stretching direction is suppressed.

Description

偏光子の製造方法Polarizer manufacturing method
 本発明は、偏光子の製造方法に関し、さらに偏光板の製造方法、及び偏光板のロール体にも関する。 The present invention relates to a method for manufacturing a polarizer, and further relates to a method for manufacturing a polarizing plate and a roll body of a polarizing plate.
 液晶表示装置(LCD)は、液晶テレビだけでなく、パソコン、携帯電話等のモバイル端末、及びカーナビ等の車載用途にも広く用いられている。通常、液晶表示装置は、液晶セルの両側に、偏光子を含む偏光板を貼合した液晶パネルを有し、バックライトからの光を液晶パネルで制御することにより画像等の表示を行っている。近年では、有機EL表示装置も液晶表示装置と同様に、テレビ、携帯電話等のモバイル端末、カーナビ等の車載用途に広く用いられている。有機EL表示装置では、外光が金属電極(陰極)で反射され鏡面のように視認されることを抑止するために、画像表示素子の視認側表面に円偏光板(偏光子とλ/4板とを含む)が配置されることがある。 Liquid crystal display devices (LCDs) are widely used not only in liquid crystal televisions, but also in personal computers, mobile terminals such as mobile phones, and in-vehicle applications such as car navigation systems. Typically, a liquid crystal display device has a liquid crystal panel with polarizing plates including polarizers attached to both sides of a liquid crystal cell, and displays images by controlling light from a backlight with the liquid crystal panel. . In recent years, organic EL display devices, like liquid crystal display devices, have been widely used in televisions, mobile terminals such as mobile phones, and in-vehicle applications such as car navigation systems. In an organic EL display device, in order to prevent external light from being reflected by a metal electrode (cathode) and viewed as a mirror surface, a circularly polarizing plate (a polarizer and a λ/4 plate) is installed on the viewing side surface of the image display element. ) may be placed.
 偏光子は通常、ポリビニルアルコール系樹脂を形成材料とする樹脂フィルムに対して、膨潤処理、染色処理、架橋処理、延伸処理を行って製造される。偏光子の製造にあたり、架橋浴に樹脂フィルムを浸漬した状態で延伸処理を行うことが知られている(例えば、特許文献1等)。 Polarizers are usually manufactured by subjecting a resin film made of polyvinyl alcohol-based resin to swelling treatment, dyeing treatment, crosslinking treatment, and stretching treatment. It is known that in manufacturing a polarizer, a stretching treatment is performed while a resin film is immersed in a crosslinking bath (for example, Patent Document 1, etc.).
国際公開第2017/138551号International Publication No. 2017/138551
 樹脂フィルムを長さ方向に延伸すると、幅方向(延伸方向に直交する方向)に樹脂フィルムが収縮するネックインと呼ばれる現象が生じる。架橋浴中で樹脂フィルムの長さ方向に延伸処理を行うと、延伸後の樹脂フィルムの幅が長さ方向でばらつき、長さ方向において安定した幅を有する偏光子が得られないことが見出された。 When a resin film is stretched in the length direction, a phenomenon called neck-in occurs in which the resin film contracts in the width direction (direction perpendicular to the stretching direction). It was discovered that when a resin film is stretched in the length direction in a crosslinking bath, the width of the stretched resin film varies in the length direction, making it impossible to obtain a polarizer with a stable width in the length direction. It was done.
 本発明は、延伸方向に直交する方向の長さのばらつきが抑制された偏光子の製造方法、偏光板の製造方法、及び偏光板のロール体の提供を目的とする。 An object of the present invention is to provide a method for manufacturing a polarizer, a method for manufacturing a polarizing plate, and a roll body of a polarizing plate, in which variations in length in the direction perpendicular to the stretching direction are suppressed.
 本発明は、以下の偏光子の製造方法、偏光板の製造方法、及び偏光板のロール体を提供する。
 〔1〕 ポリビニルアルコール系樹脂を形成材料とする樹脂フィルムに二色性色素が吸着配向している偏光子の製造方法であって、
 前記樹脂フィルムを搬送しながら膨潤させる膨潤工程と、
 前記膨潤工程後の前記樹脂フィルムを搬送しながら染色する染色工程と、
 前記染色工程後の前記樹脂フィルムを搬送しながら架橋浴に浸漬し、前記架橋浴中で搬送方向に延伸する架橋延伸工程と、を含み、
 前記架橋延伸工程は、多段階で延伸処理を行う工程であり、かつ、前記延伸処理のうちの1段階目の延伸処理は、下記式(1)の関係を満たすように行うことを特徴とする、偏光子の製造方法。
  v×0.3t≦X1≦v×1.2t  (1)
[式(1)中、
 X1は、前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離[m]を表す。
 vは、前記架橋延伸工程における前記樹脂フィルムの搬送速度[m/min]を表す。
 tは、前記1段階目の延伸処理に用いる前記架橋浴に、前記染色工程後の前記樹脂フィルムを浸漬したときに、前記樹脂フィルムの収縮が飽和するまでに要する時間[min]を表す。]
 〔2〕 ポリビニルアルコール系樹脂を形成材料とする樹脂フィルムに二色性色素が吸着配向している偏光子の製造方法であって、
 前記樹脂フィルムを搬送しながら膨潤させる膨潤工程と、
 前記膨潤工程後の前記樹脂フィルムを搬送しながら染色する染色工程と、
 前記染色工程後の前記樹脂フィルムを搬送しながら架橋浴に浸漬し、前記架橋浴中で搬送方向に延伸する架橋延伸工程と、を含み、
 前記架橋延伸工程は、多段階で延伸処理を行う工程であり、かつ、前記延伸処理のうちの1段階目の延伸処理は、下記式(2)の関係を満たすように行うことを特徴とする、偏光子の製造方法。
  v×0.4t≦X2≦v×1.2t  (2)
[式(2)中、
 X2は、前記架橋延伸工程において、前記架橋浴への前記樹脂フィルムの浸漬を開始してから前記1段階目の延伸処理が完了するまでに前記樹脂フィルムが搬送される距離[m]を表す。
 vは、前記架橋延伸工程における前記樹脂フィルムの搬送速度[m/min]を表す。
 tは、前記1段階目の延伸処理に用いる前記架橋浴に、前記染色工程後の前記樹脂フィルムを浸漬したときに、前記樹脂フィルムの収縮が飽和するまでに要する時間[min]を表す。]
 〔3〕 前記架橋延伸工程はさらに、下記式(1)の関係を満たす、〔2〕に記載の偏光子の製造方法。
  v×0.3t≦X1≦v×1.2t  (1)
[式(1)中、
 X1は、前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離[m]を表す。
 v及びtは、上記と同じ意味を表す。]
 〔4〕 前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離をX1とするとき、
 前記架橋延伸工程において、前記1段階目よりも後に行う延伸処理のうちの少なくとも1つの延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離は、前記距離X1の2倍以上10倍以下である、〔1〕又は〔3〕に記載の偏光子の製造方法。
 〔5〕 前記架橋延伸工程において、前記1段階目の延伸処理と、その後に行う2段階目の延伸処理とを、同じ架橋浴中で行う、〔1〕~〔4〕のいずれかに記載の偏光子の製造方法。
 〔6〕 前記架橋浴には、搬送方向上流側から順に、第1ニップロール、第2ニップロール、及び第3ニップロールが配置されており、
 前記1段階目の延伸処理は、前記第1ニップロールと前記第2ニップロールとの間で行い、
 前記2段階目の延伸処理は、前記第2ニップロールと前記第3ニップロールとの間で行う、〔5〕に記載の偏光子の製造方法。
 〔7〕 前記第2ニップロールは、前記第1ニップロールと前記第2ニップロールとの間の前記樹脂フィルムの搬送距離が調整可能となるように移動可能に設けられている、〔6〕に記載の偏光子の製造方法。
 〔8〕 前記第1ニップロールの回転速度をRv1[m/min]とし、前記第3ニップロールの回転速度をRv3[m/min]とした場合において、前記架橋延伸工程の後の前記樹脂フィルムの幅が最小となるときの前記第2ニップロールの回転速度をRvmin[m
/min]とするとき、
 前記第2ニップロールの回転速度Rv2[m/min]は、Rvmin±10[m/min]の範囲内である、〔6〕又は〔7〕に記載の偏光子の製造方法。
 〔9〕 前記架橋延伸工程は、前記第2ニップロールの回転速度Rv2[m/min]を変動させながら延伸処理を行う、〔8〕に記載の偏光子の製造方法。
 〔10〕 〔1〕~〔9〕のいずれかに記載の偏光子の製造方法によって偏光子を得る工程と、
 前記偏光子を得る工程で得られた前記偏光子を搬送方向にスリットすることなく、前記偏光子の片面又は両面に保護フィルムを積層する工程と、を含む、偏光板の製造方法。
 〔11〕 偏光板をロール状に巻回した偏光板のロール体であって、
 前記偏光板は、偏光子と、前記偏光子の片面又は両面に積層された保護フィルムと、を有し、
 前記ロール体の巻き始め部分における前記偏光子の幅と、前記ロール体の巻き終わり部分における前記偏光子の幅との差は、絶対値で0.1mm以上3mm以下である、偏光板のロール体。
The present invention provides the following method for manufacturing a polarizer, method for manufacturing a polarizing plate, and roll body of a polarizing plate.
[1] A method for producing a polarizer in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin as a forming material,
a swelling step of swelling the resin film while conveying it;
a dyeing step of dyeing the resin film after the swelling step while conveying it;
A crosslinking and stretching step of immersing the resin film after the dyeing step in a crosslinking bath while transporting it and stretching it in the transporting direction in the crosslinking bath,
The cross-linking and stretching process is a process in which stretching is performed in multiple stages, and the first stage of the stretching is performed so as to satisfy the following formula (1). , a method for manufacturing a polarizer.
v×0.3t≦X1≦v×1.2t (1)
[In formula (1),
X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process. ]
[2] A method for producing a polarizer in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin as a forming material, comprising:
a swelling step of swelling the resin film while conveying it;
a dyeing step of dyeing the resin film after the swelling step while conveying it;
A crosslinking and stretching step of immersing the resin film after the dyeing step in a crosslinking bath while transporting it and stretching it in the transporting direction in the crosslinking bath,
The cross-linking and stretching process is a process in which a stretching process is performed in multiple stages, and the first stage of the stretching process is performed so as to satisfy the relationship of the following formula (2). , a method for manufacturing a polarizer.
v×0.4t≦X2≦v×1.2t (2)
[In formula (2),
X2 represents the distance [m] that the resin film is transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stage stretching process in the crosslinking/stretching process.
v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process. ]
[3] The method for producing a polarizer according to [2], wherein the crosslinking and stretching step further satisfies the relationship of formula (1) below.
v×0.3t≦X1≦v×1.2t (1)
[In formula (1),
X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
v and t represent the same meanings as above. ]
[4] When the distance that the resin film is conveyed from the start to the completion of the first-stage stretching process is defined as X1,
In the crosslinking and stretching step, the distance that the resin film is conveyed from the start to the completion of at least one of the stretching treatments performed after the first stage is at least 2 times and no more than 10 times the distance X1. The method for producing a polarizer according to [1] or [3], which is
[5] The method according to any one of [1] to [4], wherein in the cross-linking and stretching step, the first-stage stretching treatment and the subsequent second-stage stretching treatment are performed in the same cross-linking bath. Method of manufacturing polarizer.
[6] In the crosslinking bath, a first nip roll, a second nip roll, and a third nip roll are arranged in order from the upstream side in the transport direction,
The first stage stretching process is performed between the first nip roll and the second nip roll,
The method for manufacturing a polarizer according to [5], wherein the second-stage stretching process is performed between the second nip roll and the third nip roll.
[7] The polarized light according to [6], wherein the second nip roll is movably provided so that the conveyance distance of the resin film between the first nip roll and the second nip roll can be adjusted. Method of producing children.
[8] When the rotational speed of the first nip roll is Rv1 [m/min] and the rotational speed of the third nip roll is Rv3 [m/min], the width of the resin film after the crosslinking and stretching step is The rotational speed of the second nip roll when Rvmin [m
/min],
The method for manufacturing a polarizer according to [6] or [7], wherein the rotation speed Rv2 [m/min] of the second nip roll is within the range of Rvmin±10 [m/min].
[9] The method for producing a polarizer according to [8], wherein in the crosslinking and stretching step, the stretching process is performed while varying the rotational speed Rv2 [m/min] of the second nip roll.
[10] Obtaining a polarizer by the method for producing a polarizer according to any one of [1] to [9];
A method for manufacturing a polarizing plate, comprising the step of laminating a protective film on one or both sides of the polarizer without slitting the polarizer obtained in the step of obtaining the polarizer in the transport direction.
[11] A roll body of a polarizing plate obtained by winding a polarizing plate into a roll shape,
The polarizing plate has a polarizer and a protective film laminated on one or both sides of the polarizer,
A roll body of a polarizing plate, wherein the difference between the width of the polarizer at a winding start portion of the roll body and the width of the polarizer at a winding end portion of the roll body is 0.1 mm or more and 3 mm or less in absolute value. .
 本発明の偏光子の製造方法によれば、延伸方向に直交する方向の長さのばらつきが抑制された偏光子を製造することができる。 According to the method for manufacturing a polarizer of the present invention, it is possible to manufacture a polarizer in which variation in length in the direction orthogonal to the stretching direction is suppressed.
本発明の一実施形態に係る偏光子の製造方法における架橋延伸工程を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a crosslinking and stretching step in a method for manufacturing a polarizer according to an embodiment of the present invention.
 以下、図面を参照しつつ本発明の実施形態を説明するが、本発明は以下の実施形態に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following embodiments.
 (偏光子の製造方法)
 図1は、本発明の一実施形態に係る偏光子の製造方法における架橋延伸工程を説明するための模式図である。
(Manufacturing method of polarizer)
FIG. 1 is a schematic diagram for explaining a crosslinking and stretching step in a method for manufacturing a polarizer according to an embodiment of the present invention.
 本実施形態の偏光子は、ポリビニルアルコール系樹脂を形成材料とする樹脂フィルム1に二色性色素が吸着配向している偏光フィルムである。 The polarizer of this embodiment is a polarizing film in which a dichroic dye is adsorbed and oriented on a resin film 1 made of polyvinyl alcohol resin.
 本実施形態の偏光子の製造方法は、樹脂フィルム1を搬送しながら偏光子を製造する方法であり、
 樹脂フィルム1を搬送しながら膨潤させる膨潤工程と、
 膨潤工程後の樹脂フィルム1を搬送しながら染色する染色工程と、
 染色工程後の樹脂フィルム1を搬送しながら架橋浴10に浸漬し、架橋浴10中で搬送方向に延伸する架橋延伸工程と、を含む。
The method for manufacturing a polarizer of this embodiment is a method for manufacturing a polarizer while conveying the resin film 1,
a swelling step of swelling the resin film 1 while conveying it;
a dyeing step of dyeing the resin film 1 after the swelling step while conveying it;
The resin film 1 after the dyeing process is immersed in a crosslinking bath 10 while being conveyed, and is stretched in the conveyance direction in the crosslinking bath 10.
 偏光子の製造方法では、例えば、長尺の樹脂フィルム1がロール状に巻回されたロール体から樹脂フィルム1を繰り出し、これを搬送しながら、上記の膨潤工程、染色工程、及び架橋延伸工程を行う。樹脂フィルム1の搬送は、公知の搬送手段を用いて行うことができ、一対のロールで構成されたニップロール及び1つのロールで構成されるガイドロール等を組み合わせて構成されたフィルム搬送経路に沿って行うことが好ましい。 In the method for manufacturing a polarizer, for example, the resin film 1 is unrolled from a roll body in which a long resin film 1 is wound into a roll, and while being conveyed, the above-mentioned swelling step, dyeing step, and crosslinking and stretching step are carried out. I do. The resin film 1 can be conveyed using a known conveyance means, and is carried along a film conveyance path made up of a combination of a nip roll made up of a pair of rolls, a guide roll made up of one roll, etc. It is preferable to do so.
 偏光子の製造方法は、さらに、架橋延伸工程後の樹脂フィルム1を、補色液を用いて色調整処理を行う補色工程、洗浄液を用いて洗浄する洗浄工程、乾燥する乾燥工程等を含んでいてもよい。各工程の詳細については、後述する。 The method for manufacturing a polarizer further includes a complementary color step of performing color adjustment treatment on the resin film 1 after the crosslinking and stretching step using a complementary color solution, a washing step of washing the resin film 1 using a cleaning solution, a drying step of drying the resin film 1, and the like. Good too. Details of each step will be described later.
 上記した各工程での処理が施されて得られた偏光子は、巻取ロールに順次巻き取ってロール状に巻回されたロール体としてもよいし、巻き取ることなくそのまま後述する偏光板の製造方法に供することもできる。 The polarizer obtained by processing in each of the above steps may be sequentially wound around a take-up roll to form a roll, or it may be used as a polarizing plate as described below without being wound. It can also be used in a manufacturing method.
 偏光子の製造方法において、架橋延伸工程は、架橋浴10への樹脂フィルム1の浸漬によって開始する。架橋延伸工程は、架橋浴10中で多段階の延伸処理を行う工程であり、かつ、当該延伸処理のうちの1段階目の延伸処理は、下記式(1)及び式(2)のうちの少なくとも一方の関係を満たすように行う。以下、架橋延伸工程において行われるn段階目の延伸処理を、「第n延伸処理」ということがある。
  v×0.3t≦X1≦v×1.2t  (1)
  v×0.4t≦X2≦v×1.2t  (2)
[式(1)及び式(2)中、
 X1は、第1延伸処理の開始から完了までに樹脂フィルム1が搬送される距離[m]を表す。
 X2は、架橋延伸工程において、架橋浴10への樹脂フィルム1の浸漬を開始してから第1延伸処理が完了するまでに樹脂フィルム1が搬送される距離[m]を表す。
 vは、架橋延伸工程における樹脂フィルム1の搬送速度[m/min]を表す。
 tは、第1延伸処理に用いる架橋浴10に、染色工程後の樹脂フィルム1を浸漬したときに、樹脂フィルム1の収縮が飽和するまでに要する時間[min]を表す。]
In the method for manufacturing a polarizer, the crosslinking and stretching step is started by immersing the resin film 1 in the crosslinking bath 10. The crosslinking and stretching process is a process of performing multi-stage stretching in the crosslinking bath 10, and the first stage of the stretching process is performed using the following formula (1) and formula (2). Do this so that at least one of the relationships is satisfied. Hereinafter, the n-th stretching process performed in the crosslinking and stretching process may be referred to as "n-th stretching process".
v×0.3t≦X1≦v×1.2t (1)
v×0.4t≦X2≦v×1.2t (2)
[In formula (1) and formula (2),
X1 represents the distance [m] that the resin film 1 is transported from the start to the completion of the first stretching process.
X2 represents the distance [m] that the resin film 1 is transported from the start of immersion of the resin film 1 in the crosslinking bath 10 to the completion of the first stretching process in the crosslinking and stretching process.
v represents the conveyance speed [m/min] of the resin film 1 in the crosslinking and stretching process.
t represents the time [min] required until the shrinkage of the resin film 1 is saturated when the resin film 1 after the dyeing process is immersed in the crosslinking bath 10 used for the first stretching process. ]
 架橋延伸工程で行われる多段階の延伸処理は、2段階以上であればよく、3段階以上であってもよく、4段階以上であってもよく、通常10段階以下であり、8段階以下であってもよく、5段階以下であってもよい。架橋延伸工程は、2段階又は3段階の延伸処理を行う工程であることが好ましい。 The multi-stage stretching process performed in the cross-linking and stretching process may be performed in two or more stages, may be three or more stages, may be four or more stages, and is usually 10 stages or less, and 8 stages or less. There may be five levels or less. It is preferable that the crosslinking and stretching process is a process of performing a two-stage or three-stage stretching process.
 式(1)における距離X1は、v×0.4t[m]以上であってもよく、v×0.5t[m]以上であってもよく、v×0.6t[m]以上であってもよく、また、v×1.1t[m]以下であってもよく、v×1.0t[m]以下であってもよい。距離X1がv×0.3t[m]未満となるときには、2段階目以降の延伸処理過程において、ポリビニルアルコール系樹脂への架橋構造の導入と樹脂フィルム1のネックインとが同時に進行するため、幅の安定性が低下しやすい。また、距離X1がv×1.2t[m]を超える場合には、ポリビニルアルコール系樹脂の架橋が進みすぎるため、2段階目以降の延伸処理過程においてネックインの調整が困難になる傾向があり、樹脂フィルム1の切断等が生じやすくなる。 The distance X1 in formula (1) may be greater than or equal to v x 0.4t [m], may be greater than or equal to v x 0.5t [m], and may be greater than or equal to v x 0.6t [m]. Alternatively, it may be less than or equal to v×1.1t [m], or may be less than or equal to v×1.0t [m]. When the distance X1 is less than v x 0.3 t [m], the introduction of the crosslinked structure into the polyvinyl alcohol resin and the neck-in of the resin film 1 proceed at the same time in the second and subsequent stretching process. Width stability tends to decrease. Furthermore, if the distance X1 exceeds v x 1.2t [m], crosslinking of the polyvinyl alcohol resin will progress too much, making it difficult to adjust the neck-in in the second and subsequent stretching processes. , the resin film 1 is likely to be cut.
 式(2)における距離X2は、v×0.5t[m]以上であってもよく、v×0.6t[m]以上であってもよく、v×0.7t[m]以上であってもよく、また、v×1.1t[m]以下であってもよく、v×1.0t[m]以下であってもよい。距離X2がv×1.2t[m]を超える場合には、架橋が進みすぎるため、2段階目以降の延伸処理過程において樹脂フィルム1のネックインの調整が困難になる傾向があり、樹脂フィルム1の切断等が生じやすくなる。 The distance X2 in formula (2) may be greater than or equal to v x 0.5t [m], may be greater than or equal to v x 0.6t [m], and may be greater than or equal to v x 0.7t [m]. Alternatively, it may be less than or equal to v×1.1t [m], or may be less than or equal to v×1.0t [m]. If the distance 1 is more likely to be cut.
 架橋延伸工程における第1延伸処理は、式(1)及び式(2)のうちの一方を満たしてもよく、両方を満たしてもよい。第1延伸処理が式(1)及び式(2)の両方を満たす場合、距離X1は、距離X2よりも小さくてもよく、距離X2と同じであってもよい。 The first stretching treatment in the crosslinking and stretching step may satisfy one or both of formula (1) and formula (2). When the first stretching process satisfies both formula (1) and formula (2), distance X1 may be smaller than distance X2, or may be the same as distance X2.
 架橋延伸工程では、樹脂フィルム1を架橋浴10に浸漬することによって、樹脂フィルム1を構成するポリビニルアルコール系樹脂に架橋構造が導入される。このとき、樹脂フィルム1には、架橋構造の導入に伴う収縮が生じると考えられる。第1延伸処理は式(1)及び式(2)のうちの少なくとも一方を満たすように行われる。そのため、第1延伸処理を行う工程では、第2延伸処理以降に行う延伸処理に伴って生じる樹脂フィルム1のネックインに影響することを十分に抑制できる程度に、上記架橋構造の導入に伴う樹脂フィルム1の収縮が生じていると推測される。また、第2延伸処理において、架橋構造の導入に伴う樹脂フィルム1の収縮を実質的に生じさせないで、樹脂フィルム1のネックインによる収縮だけを生じさせることができる。これにより、第2延伸処理以降の延伸処理により、樹脂フィルム1の幅方向の長さ(幅)を制御しやすくなるため、樹脂フィルム1の幅が長さ方向でばらつくことを抑制し、安定した幅を有する偏光子を製造することができる。安定した幅を有する偏光子とは、具体的には、10万m製造したときの延伸方向に直交する方向の長さ(幅)のばらつき(標準偏差)が3mm以下(好ましくは1mm以下)である偏光子をいう。 In the crosslinking and stretching step, a crosslinked structure is introduced into the polyvinyl alcohol resin that constitutes the resin film 1 by immersing the resin film 1 in a crosslinking bath 10. At this time, it is thought that shrinkage occurs in the resin film 1 due to the introduction of the crosslinked structure. The first stretching process is performed so as to satisfy at least one of Expression (1) and Expression (2). Therefore, in the step of performing the first stretching treatment, the resin film due to the introduction of the crosslinked structure is It is presumed that film 1 is shrinking. Moreover, in the second stretching process, only the contraction due to neck-in of the resin film 1 can be caused without substantially causing the contraction of the resin film 1 due to the introduction of the crosslinked structure. This makes it easier to control the length (width) of the resin film 1 in the width direction through the stretching treatments after the second stretching treatment, thereby suppressing variations in the width of the resin film 1 in the length direction and ensuring stable Polarizers having a width can be manufactured. Specifically, a polarizer having a stable width means that the variation (standard deviation) in the length (width) in the direction orthogonal to the stretching direction when manufactured for 100,000 m is 3 mm or less (preferably 1 mm or less). Refers to a certain polarizer.
 上記のように第1延伸処理を行うため、本実施形態の偏光子の製造方法では、第2延伸処理以降における延伸倍率を調整することにより、樹脂フィルム1に生じるネックインの大きさを調整することができ、樹脂フィルム1を所望の幅に調整することができる。偏光子の光学特性(特に偏光度)は、樹脂フィルム1に発生するネックインが大きくなると向上しやすい。上記のように第1延伸処理を行うことにより、第2延伸処理以降の延伸処理での延伸倍率を調整することにより、樹脂フィルム1に大きなネックインを生じさせることができる。そのため、本実施形態の偏光子の製造方法によれば、優れた光学特性の偏光子が得られやすくなる。 Since the first stretching process is performed as described above, in the polarizer manufacturing method of this embodiment, the magnitude of neck-in occurring in the resin film 1 is adjusted by adjusting the stretching ratio after the second stretching process. This allows the resin film 1 to be adjusted to a desired width. The optical properties (particularly the degree of polarization) of the polarizer tend to improve as the neck-in that occurs in the resin film 1 increases. By performing the first stretching process as described above, a large neck-in can be caused in the resin film 1 by adjusting the stretching ratio in the second and subsequent stretching processes. Therefore, according to the method for manufacturing a polarizer of this embodiment, a polarizer with excellent optical properties can be easily obtained.
 距離X1は、式(1)の関係を満たす範囲にあれば特に限定されないが、通常1m以上であり、2m以上であってもよく、3m以上であってもよく、また、通常10m以下であり、8m以下であってもよく、5m以下であってもよい。距離X2は、式(2)の関係を満たす範囲にあれば特に限定されないが、通常1m以上であり、2m以上であってもよく、3m以上であってもよく、また、通常10m以下であり、8m以下であってもよく、5m以下であってもよい。 The distance X1 is not particularly limited as long as it satisfies the relationship of formula (1), but is usually 1 m or more, may be 2 m or more, may be 3 m or more, and is usually 10 m or less. , 8 m or less, or 5 m or less. The distance X2 is not particularly limited as long as it satisfies the relationship of formula (2), but is usually 1 m or more, may be 2 m or more, may be 3 m or more, and is usually 10 m or less. , 8 m or less, or 5 m or less.
 本明細書において、式(1)及び式(2)における搬送速度v[m/min]は、第1延伸処理を開始する位置での樹脂フィルム1の搬送速度vs[m/min]と、第1延伸処理を完了する位置での樹脂フィルム1の搬送速度ve[m/min]の平均値である。すなわち、搬送速度v=(vs+ve)/2である。例えば、後述する図1に示す第1ニップロール11及び第2ニップロール12の間で第1延伸処理を行う場合、搬送速度vsは、搬送方向上流側に位置する第1ニップロール11によって樹脂フィルム1を搬送する速度である。搬送速度veは、搬送方向下流側に位置する第2ニップロール12によって樹脂フィルム1を搬送する速度である。 In this specification, the conveyance speed v [m/min] in formulas (1) and (2) is the conveyance speed vs [m/min] of the resin film 1 at the position where the first stretching process is started, and This is the average value of the transport speed ve [m/min] of the resin film 1 at the position where one stretching process is completed. That is, the conveyance speed v=(vs+ve)/2. For example, when performing the first stretching process between the first nip roll 11 and the second nip roll 12 shown in FIG. This is the speed at which The conveyance speed ve is the speed at which the resin film 1 is conveyed by the second nip roll 12 located on the downstream side in the conveyance direction.
 搬送速度v[m/min]は特に限定されないが、通常0.1m/min以上であり、0.5m/min以上であり、1.0m/min以上であってもよく、3.0m/min以上であってもよく、5.0m/min以上であってもよく、また、通常30m/min以下であり、25m/min以下であってもよく、20m/min以下であってもよく、15m/min以下であってもよい。 The conveyance speed v [m/min] is not particularly limited, but is usually 0.1 m/min or more, 0.5 m/min or more, may be 1.0 m/min or more, and 3.0 m/min It may be more than 5.0 m/min, and it is usually less than 30 m/min, it may be less than 25 m/min, it may be less than 20 m/min, and it may be less than 15 m/min. /min or less.
 式(1)及び式(2)における時間t[min]は、第1延伸処理に用いる架橋浴に、染色工程後の樹脂フィルム1を浸漬したときに、樹脂フィルム1の収縮が飽和するまでに要する時間である。時間tは、第1延伸処理に用いる架橋浴に樹脂フィルム1を浸漬し、樹脂フィルム1の幅方向の長さが一定になるまでに要する時間として決定することができ、例えば後述する実施例に記載の手法によって決定することができる。 The time t [min] in formulas (1) and (2) is the time required for the shrinkage of the resin film 1 to be saturated when the resin film 1 after the dyeing process is immersed in the crosslinking bath used in the first stretching process. It takes time. The time t can be determined as the time required for the length of the resin film 1 in the width direction to become constant after immersing the resin film 1 in the crosslinking bath used in the first stretching process. It can be determined by the method described.
 時間tは、偏光子の製造方法に用いる樹脂フィルム1の種類等によって異なるが、例えば0.1min以上であり、0.3min以上であってもよく、0.5min以上であってもよく、また、2.0min以下であってもよく、1.5min以下であってもよく、1.0min以下であってもよい。 The time t varies depending on the type of resin film 1 used in the polarizer manufacturing method, but is, for example, 0.1 min or more, may be 0.3 min or more, may be 0.5 min or more, or , 2.0 min or less, 1.5 min or less, or 1.0 min or less.
 架橋延伸工程は、図1に示すように、架橋浴10中で樹脂フィルム1を搬送しながら行うことができる。例えば、架橋浴10中には、当該架橋浴10中で行う延伸処理の段数に応じて、ニップロールが配置される。図1に示す架橋浴10では、搬送方向上流側から順に、第1ニップロール11、第2ニップロール12、及び第3ニップロール13が配置されている。これにより、架橋浴10では、第1ニップロール11と第2ニップロール12との間で第1延伸処理を行い、第2ニップロール12と第3ニップロール13との間で第2延伸処理を行うことができる。このとき、第1ニップロール11の位置は、第1延伸処理の開始位置となる。第2ニップロール12の位置は、第1延伸処理の完了位置であって第2延伸処理の開始位置となる。第3ニップロール13の位置は、第2延伸処理の完了位置となる。 The crosslinking and stretching step can be performed while transporting the resin film 1 in a crosslinking bath 10, as shown in FIG. For example, nip rolls are arranged in the crosslinking bath 10 depending on the number of stages of the stretching process performed in the crosslinking bath 10. In the crosslinking bath 10 shown in FIG. 1, a first nip roll 11, a second nip roll 12, and a third nip roll 13 are arranged in order from the upstream side in the transport direction. Thereby, in the crosslinking bath 10, the first stretching process can be performed between the first nip roll 11 and the second nip roll 12, and the second stretching process can be performed between the second nip roll 12 and the third nip roll 13. . At this time, the position of the first nip roll 11 becomes the starting position of the first stretching process. The position of the second nip roll 12 is the completion position of the first stretching process and the start position of the second stretching process. The position of the third nip roll 13 is the completion position of the second stretching process.
 図1に示す架橋浴10において第1延伸処理を行う場合、距離X1は、第1ニップロール11の位置と第2ニップロール12の位置との間の樹脂フィルム1が搬送される距離である。距離X2は、架橋浴10に樹脂フィルム1が浸漬する位置と第2ニップロール12の位置との間の樹脂フィルム1が搬送される距離である。距離X1と距離X2とが同じである場合、第1ニップロール11は、樹脂フィルム1が架橋浴に浸漬を開始する位置に、第1ニップロール11のニップ位置が位置するように配置される。 When performing the first stretching process in the crosslinking bath 10 shown in FIG. 1, the distance X1 is the distance over which the resin film 1 is transported between the position of the first nip roll 11 and the position of the second nip roll 12. The distance X2 is the distance that the resin film 1 is conveyed between the position where the resin film 1 is immersed in the crosslinking bath 10 and the position of the second nip roll 12. When the distance X1 and the distance X2 are the same, the first nip roll 11 is arranged so that the nip position of the first nip roll 11 is located at the position where the resin film 1 starts immersing in the crosslinking bath.
 図1に示す架橋浴10において架橋延伸工程を行う場合、第2ニップロール12は、架橋浴10中において、第1ニップロール11と第2ニップロール12との間の樹脂フィルム1の搬送距離を調整可能となるように移動可能に設けられていることが好ましい。この場合、第1ニップロール11及び第3ニップロール13の設置位置は固定されている(移動不可に設けられている)ことが好ましい。これにより、第2ニップロール12の架橋浴10中の設置位置を調整することにより、上記式(1)及び式(2)のうちの少なくとも一方を満たすように第1延伸処理を行うことができる。 When performing the crosslinking and stretching process in the crosslinking bath 10 shown in FIG. It is preferable that it be movably provided. In this case, the installation positions of the first nip roll 11 and the third nip roll 13 are preferably fixed (immovable). Thereby, by adjusting the installation position of the second nip roll 12 in the crosslinking bath 10, the first stretching process can be performed so as to satisfy at least one of the above formulas (1) and (2).
 図1に示す架橋浴10において架橋延伸工程を行う場合、第2ニップロール12の回転速度Rv2[m/min]は、下記式(3)を満たすことが好ましい。ここでいう回転速度Rv2とは、第2ニップロール12が単位時間あたりに搬送する樹脂フィルム1の長さを意味する。
  Rvmin-10≦Rv2≦Rvmin+10  (3)
[式(3)中、
 Rv2は、第2ニップロール12の回転速度[m/min]を表す。
 Rvminは、第1ニップロール11の回転速度をRv1[m/min]とし、第3ニップロール13の回転速度をRv3[m/min]とした場合において、架橋延伸工程の後の樹脂フィルム1の幅が最小となるときの第2ニップロール12の回転速度[m/min]を表す。]
 上記回転速度Rv1は、第1ニップロール11が単位時間あたりに搬送する樹脂フィルム1の長さを意味し、上記回転速度Rv3は、第3ニップロール13が単位時間あたりに搬送する樹脂フィルム1の長さを意味する。
When performing the crosslinking and stretching step in the crosslinking bath 10 shown in FIG. 1, it is preferable that the rotational speed Rv2 [m/min] of the second nip roll 12 satisfies the following formula (3). The rotation speed Rv2 here means the length of the resin film 1 conveyed by the second nip roll 12 per unit time.
Rvmin-10≦Rv2≦Rvmin+10 (3)
[In formula (3),
Rv2 represents the rotation speed [m/min] of the second nip roll 12.
Rvmin is the width of the resin film 1 after the crosslinking and stretching process, when the rotational speed of the first nip roll 11 is Rv1 [m/min] and the rotational speed of the third nip roll 13 is Rv3 [m/min]. It represents the rotational speed [m/min] of the second nip roll 12 when it becomes the minimum. ]
The rotation speed Rv1 means the length of the resin film 1 that the first nip roll 11 conveys per unit time, and the rotation speed Rv3 means the length of the resin film 1 that the third nip roll 13 conveys per unit time. means.
 第2ニップロール12の回転速度Rv2は、第1ニップロール11の回転速度Rv1、及び、第3ニップロール13の回転速度Rv3をそれぞれ固定値としたときに設定される回転速度である。架橋延伸工程の後の樹脂フィルム1の幅が最小となるときとは、架橋延伸工程の前後における樹脂フィルム1の幅の差(架橋延伸工程前の樹脂フィルム1の幅から、架橋延伸工程後の樹脂フィルム1の幅を差し引いた値)が最大となるときをいい、架橋延伸工程における樹脂フィルム1のネックインが最大となるときである。 The rotational speed Rv2 of the second nip roll 12 is the rotational speed set when the rotational speed Rv1 of the first nip roll 11 and the rotational speed Rv3 of the third nip roll 13 are each fixed values. The time when the width of the resin film 1 after the crosslinking and stretching process is the minimum is the difference in the width of the resin film 1 before and after the crosslinking and stretching process (from the width of the resin film 1 before the crosslinking and stretching process to the width of the resin film 1 after the crosslinking and stretching process). This refers to the time when the value obtained by subtracting the width of the resin film 1) is at its maximum, and this is the time when the neck-in of the resin film 1 in the crosslinking and stretching process is at its maximum.
 Rv2は、Rvmin-8[m/min]以上であってもよく、Rvmin-6[m/min]以上であってもよく、Rvmin-5[m/min]以上であってもよく、また、Rvmin+8[m/min]以下であってもよく、Rvmin+6[m/min]以下であってもよく、Rvmin+5[m/min]以下であってもよく、Rvmin[m/min]であってもよい。 Rv2 may be Rvmin-8 [m/min] or more, Rvmin-6 [m/min] or more, Rvmin-5 [m/min] or more, and It may be Rvmin+8 [m/min] or less, it may be Rvmin+6 [m/min] or less, it may be Rvmin+5 [m/min] or less, or it may be Rvmin [m/min]. .
 架橋延伸工程を、式(3)を満たすように行うことにより、架橋延伸工程における樹脂フィルム1に大きなネックインを生じさせることができる。これにより、優れた光学特性を有する偏光子が得られやすくなる。 By performing the cross-linking and stretching process so as to satisfy formula (3), a large neck-in can be caused in the resin film 1 in the cross-linking and stretching process. This makes it easier to obtain a polarizer with excellent optical properties.
 回転速度Rv1は、例えば2.0m/min以上であってもよく、3.0m/min以上であってもよく、4.0m/min以上であってもよく、また、20.0m/min以下であってもよく、15.0m/min以下であってもよく、12.0m/min以下であってもよい。回転速度Rv3は、回転速度Rv1及び回転速度Rv2よりも大きいことが好ましく、例えば、5.0m/min以上であってもよく、7.0m/min以上であってもよく、10.0m/min以上であってもよく、また、35.0m/min以下であってもよく、30.0m/min以下であってもよく、25.0m/min以下であってもよい。 The rotation speed Rv1 may be, for example, 2.0 m/min or more, 3.0 m/min or more, 4.0 m/min or more, or 20.0 m/min or less. It may be 15.0 m/min or less, or it may be 12.0 m/min or less. The rotation speed Rv3 is preferably larger than the rotation speed Rv1 and the rotation speed Rv2, for example, it may be 5.0 m/min or more, it may be 7.0 m/min or more, and it may be 10.0 m/min. It may be more than that, or it may be less than 35.0 m/min, it may be less than 30.0 m/min, or it may be less than 25.0 m/min.
 回転速度Rv1及びRv3が上記の範囲である場合、回転速度Rv2は、回転速度Rv1よりも大きく、回転速度Rv3よりも小さいことが好ましく、例えば、4.0m/min以上であってもよく、5.0m/min以上であってもよく、6.0m/min以上であってもよく、7.0m/min以上であってもよく、また、30.0m/min以下であってもよく、25.0m/min以下であってもよく、20.0m/min以下であってもよく、15.0m/min以下であってもよい。 When the rotational speeds Rv1 and Rv3 are within the above range, the rotational speed Rv2 is preferably larger than the rotational speed Rv1 and smaller than the rotational speed Rv3, for example, it may be 4.0 m/min or more, 0 m/min or more, 6.0 m/min or more, 7.0 m/min or more, 30.0 m/min or less, 25 The speed may be .0 m/min or less, 20.0 m/min or less, or 15.0 m/min or less.
 第1延伸処理の後に行う延伸処理を多段階で行う場合、例えば第1延伸処理の後に第2延伸処理及び第3延伸処理を行うというように、第1延伸処理の後に複数の延伸処理を行う場合には、第2ニップロール及び第3ニップロールの回転速度を上記Rv2と同様に調整することも有用な技術である。 When performing the stretching process in multiple stages after the first stretching process, for example, performing the second stretching process and the third stretching process after the first stretching process, multiple stretching processes are performed after the first stretching process. In some cases, it is also a useful technique to adjust the rotational speeds of the second nip roll and the third nip roll in the same manner as Rv2 above.
 本発明の製造方法においては、偏光子の製造開始から製造完了まで樹脂フィルム11を搬送する期間中、架橋延伸工程における第2ニップロールの回転速度Rv2を一定に制御してもよいし、変動するように制御してもよい。回転速度Rv2を変動させる場合、回転速度Rv2は、Rvmin±10[m/min]の範囲内で変動していればよく、Rvmin±8[m/min]の範囲内で変動していてもよく、Rvmin±6[m/min]の範囲内で変動していてもよく、Rvmin±5[m/min]の範囲内で変動していてもよい。偏光子の幅のばらつき(標準偏差)が、偏光子の長さ方向にわたって例えば3mm以下、好ましくは1mm以下となるように回転速度Rv2を制御することが好ましい。本発明の製造方法で得られた偏光子を用いて、後述する偏光板のロール体を得た場合に、ロール体の巻き始め部分における偏光子の幅とロール体の巻き終わり部分における偏光子の幅との差が絶対値で3mm以下となるように回転速度Rv2を制御することが好ましい。 In the manufacturing method of the present invention, the rotational speed Rv2 of the second nip roll in the crosslinking and stretching step may be controlled to be constant or may be varied during the period during which the resin film 11 is conveyed from the start of manufacturing of the polarizer to the completion of manufacturing. may be controlled. When varying the rotational speed Rv2, the rotational speed Rv2 may vary within the range of Rvmin ± 10 [m/min], and may vary within the range of Rvmin ± 8 [m/min]. , Rvmin±6 [m/min] or Rvmin±5 [m/min]. It is preferable to control the rotation speed Rv2 so that the variation (standard deviation) in the width of the polarizer is, for example, 3 mm or less, preferably 1 mm or less over the length of the polarizer. When the polarizer obtained by the manufacturing method of the present invention is used to obtain a roll of a polarizing plate, which will be described later, the width of the polarizer at the beginning of the roll and the width of the polarizer at the end of the roll are determined. It is preferable to control the rotation speed Rv2 so that the difference with the width is 3 mm or less in absolute value.
 図1では、第1延伸処理及び第2延伸処理を同じ架橋浴10中で行う場合を示しているが、第1延伸処理と第2延伸処理とは、それぞれ別の架橋浴で行ってもよい。第1延伸処理と第2延伸処理とをそれぞれ別の架橋浴で行う場合も、各架橋浴の架橋液の組成及び架橋浴の温度等の架橋浴の種類は、同じであることが好ましい。 Although FIG. 1 shows a case where the first stretching process and the second stretching process are performed in the same crosslinking bath 10, the first stretching process and the second stretching process may be performed in different crosslinking baths. . Even when the first stretching treatment and the second stretching treatment are performed in separate crosslinking baths, it is preferable that the composition of the crosslinking liquid in each crosslinking bath and the type of crosslinking bath, such as the temperature of the crosslinking bath, are the same.
 架橋延伸工程が、第3延伸処理以降の延伸処理を含む場合、第3延伸処理以降の延伸処理は、第1延伸処理及び第2延伸処理と同じ架橋浴10中で行ってもよく、これとは別の架橋浴中で行ってもよい。 When the crosslinking/stretching step includes a stretching process after the third stretching process, the stretching process after the third stretching process may be performed in the same crosslinking bath 10 as the first stretching process and the second stretching process; may be carried out in a separate crosslinking bath.
 第1延伸処理における樹脂フィルム1の延伸倍率は、特に限定されないが、通常1.0倍超であり、1.01倍以上であってもよく、1.05倍以上であってもよく、1.1倍以上であってもよく、また、通常3.0倍以下であり、2.5倍以下であってもよく、2.0倍以下であってもよく、1.8倍以下であってもよい。 The stretching ratio of the resin film 1 in the first stretching treatment is not particularly limited, but is usually more than 1.0 times, may be 1.01 times or more, may be 1.05 times or more, and may be 1.0 times or more. .1 times or more, and usually 3.0 times or less, 2.5 times or less, 2.0 times or less, 1.8 times or less. It's okay.
 架橋延伸工程では、第1延伸処理よりも後に行う延伸処理である第2延伸処理以降の延伸処理のうちの少なくとも1つの延伸処理において、当該延伸処理の開始から完了までに樹脂フィルム1が搬送される距離Xfは、下記式(4)及び式(5)のうちの少なくとも一方の関係を満たすことが好ましい。
  2×X1≦Xf≦10×X1  (4)
  2×X2≦Xf≦12×X2  (5)
In the crosslinking and stretching process, the resin film 1 is transported from the start to the completion of the stretching process in at least one of the stretching processes after the second stretching process, which is a stretching process performed after the first stretching process. It is preferable that the distance Xf satisfies at least one of the following equations (4) and (5).
2×X1≦Xf≦10×X1 (4)
2×X2≦Xf≦12×X2 (5)
 式(4)において、距離Xfは、X1の2倍以上であればよく、3倍以上であってもよく、4倍以上であってもよく、また、X1の10倍以下であればよく、9倍以下であってもよく、8倍以下であってもよい。式(5)において、距離Xfは、X2の2倍以上であればよく、3倍以上であってもよく、4倍以上であってもよく、また、X2の12倍以下であればよく、10倍以下であってもよく、9倍以下であってもよい。 In formula (4), the distance Xf may be twice or more of X1, may be three times or more, may be four times or more, and may be no more than 10 times X1, It may be 9 times or less, or it may be 8 times or less. In formula (5), the distance Xf may be twice or more of X2, may be three times or more, may be four times or more, and may be no more than 12 times X2, It may be 10 times or less, or it may be 9 times or less.
 架橋処理工程が、3段階以上の延伸処理を行う場合、第1延伸処理以外の延伸処理のすべてにおいて、式(4)及び式(5)のうちの少なくとも一方の関係を満たしてもよく、第1延伸処理以外の延伸処理のうちの少なくとも1つの延伸処理が、式(4)及び式(5)のうちの少なくとも一方の関係を満たしてもよい。 When the crosslinking treatment step involves three or more stages of stretching treatment, at least one of the relationships of formula (4) and formula (5) may be satisfied in all of the stretching treatments other than the first stretching treatment. At least one of the stretching treatments other than the first stretching treatment may satisfy at least one of Expression (4) and Expression (5).
 架橋延伸工程が式(4)及び式(5)のうちの少なくとも一方を満たすことにより、第2延伸処理以降の延伸処理において、樹脂フィルム1に十分なネックインを生じさせることができる。これにより、樹脂フィルム1の幅が長さ方向でばらつくことを抑制し、安定した幅を有する偏光子をより一層製造しやすくなる。架橋延伸工程が式(4)及び式(5)のうちの少なくとも一方を満たすことにより、第2延伸処理以降の延伸処理において樹脂フィルム1が搬送される距離を十分に確保することができるため、樹脂フィルム1に大きなネックインを生じさせやすくなり、光学特性に優れた偏光子を製造しやすくなる。 By satisfying at least one of formula (4) and formula (5) in the crosslinking and stretching step, sufficient neck-in can be caused in the resin film 1 in the stretching treatment after the second stretching treatment. This suppresses variations in the width of the resin film 1 in the length direction, making it easier to manufacture a polarizer having a stable width. By satisfying at least one of formula (4) and formula (5) in the crosslinking/stretching process, a sufficient distance for the resin film 1 to be transported in the stretching process after the second stretching process can be ensured. This makes it easier to cause large neck-in in the resin film 1, making it easier to manufacture a polarizer with excellent optical properties.
 図1に示す架橋浴10において、第2延伸処理が式(4)及び式(5)のうちの少なくとも一方を満たす場合、距離Xfは、第2ニップロール12の位置と第3ニップロール13の位置との間の樹脂フィルム1が搬送される距離となる。 In the crosslinking bath 10 shown in FIG. 1, when the second stretching process satisfies at least one of formula (4) and formula (5), the distance Xf is This is the distance over which the resin film 1 is transported.
 架橋延伸工程における、第2延伸処理以降から最終延伸処理の総延伸倍率(累積延伸倍率)は、特に限定されないが、第1延伸処理における延伸倍率よりも大きいことが好ましい。第2延伸処理以降の延伸処理の総延伸倍率は、通常1.1倍以上であり、1.5倍以上であってもよく、1.8倍以上であってもよく、2.0倍以上であってもよく、2.5倍以上であってもよく、また、通常7.0倍以下であり、6.0倍以下であってもよく、5.0倍以下であってもよく、4.5倍以下であってもよく、4.0倍以下であってもよい。 Although the total stretching ratio (cumulative stretching ratio) from the second stretching process to the final stretching process in the crosslinking and stretching process is not particularly limited, it is preferably larger than the stretching ratio in the first stretching process. The total stretching ratio of the stretching processes after the second stretching process is usually 1.1 times or more, may be 1.5 times or more, may be 1.8 times or more, and may be 2.0 times or more. It may be 2.5 times or more, and it is usually 7.0 times or less, it may be 6.0 times or less, it may be 5.0 times or less, It may be 4.5 times or less, or it may be 4.0 times or less.
 架橋延伸工程における全延伸処理における総延伸倍率(累積の延伸倍率)は、例えば、2.0倍以上であってもよく、3.0倍以上であってもよく、3.5倍以上であってもよく、また、7.0倍以下であってもよく、6.8倍以下であってもよく、6.5倍以下であってもよい。 The total stretching ratio (cumulative stretching ratio) in the entire stretching process in the crosslinking and stretching process may be, for example, 2.0 times or more, 3.0 times or more, or 3.5 times or more. It may also be 7.0 times or less, 6.8 times or less, or 6.5 times or less.
 (偏光板の製造方法)
 本実施形態の偏光板は、上記の偏光子の製造方法で得られた偏光子の片面又は両面に保護フィルムが積層されたものである。偏光子と保護フィルムとは、貼合層(接着剤層又は粘着剤層)を介して積層されていることが好ましい。
(Manufacturing method of polarizing plate)
The polarizing plate of this embodiment is obtained by laminating a protective film on one or both sides of a polarizer obtained by the above-described method for manufacturing a polarizer. The polarizer and the protective film are preferably laminated via a bonding layer (adhesive layer or pressure-sensitive adhesive layer).
 本実施形態の偏光板の製造方法は、
 上記の偏光子の製造方法によって偏光子を得る工程と、
 偏光子を得る工程で得た偏光子を搬送方向にスリットすることなく、偏光子の片面又は両面に保護フィルムを積層する工程と、を含む。
The method for manufacturing the polarizing plate of this embodiment is as follows:
Obtaining a polarizer by the above polarizer manufacturing method;
The method includes a step of laminating a protective film on one or both sides of the polarizer without slitting the polarizer obtained in the step of obtaining the polarizer in the transport direction.
 偏光板を製造する際には、偏光子の幅を長さ方向に揃えるために偏光子を搬送方向にスリットし、このスリットした偏光子と保護フィルムとを積層することがある。上記した偏光子の製造方法によれば、偏光子を搬送方向にスリットしなくても、長さ方向において幅のばらつきが抑制された偏光子を得ることができる。そのため、偏光子を搬送方向にスリットすることなく、保護フィルムを積層して偏光板を得ることができる。なお、偏光板はスリットされてもよい。すなわち、偏光子の片面又は両面に保護フィルムを積層した後、偏光子はスリットされてもよい。 When manufacturing a polarizing plate, the polarizer is sometimes slit in the transport direction in order to align the width of the polarizer in the length direction, and the slit polarizer and a protective film are laminated. According to the method for manufacturing a polarizer described above, a polarizer with suppressed width variations in the length direction can be obtained without slitting the polarizer in the transport direction. Therefore, a polarizing plate can be obtained by laminating a protective film without slitting the polarizer in the transport direction. Note that the polarizing plate may be slit. That is, the polarizer may be slit after a protective film is laminated on one or both sides of the polarizer.
 偏光子の両面又は片面に保護フィルムを積層する工程は、偏光子及び保護フィルムのうちの少なくとも一方の貼合面に、貼合層を形成するための貼合剤(接着剤又は粘着剤)を塗布等することによって行うことができる。偏光子の両面に保護フィルムを積層する場合、偏光子の片面に順に保護フィルムを積層してもよく、一方の保護フィルムと偏光子との貼合を行いながら、他方の保護フィルムと偏光子との貼合を行ってもよい。 The step of laminating a protective film on both sides or one side of a polarizer involves applying a laminating agent (adhesive or pressure-sensitive adhesive) to form a laminating layer on at least one laminating surface of the polarizer and the protective film. This can be done by coating or the like. When laminating protective films on both sides of a polarizer, the protective films may be laminated on one side of the polarizer in order, and while laminating one protective film and polarizer, the other protective film and polarizer may be laminated. You may also perform bonding.
 (偏光板のロール体)
 偏光板のロール体は、偏光板をロール状に巻回したものである。偏光板のロール体は通常、巻き芯に偏光板を巻回することによって得ることができる。上記した偏光子の製造方法では、長尺の偏光子を得ることができる。上記した偏光子の製造方法によって得られた長尺の偏光子は、搬送方向にスリットすることなく、その片面又は両面に保護フィルムが積層されることにより、長尺の偏光板とすることができる。例えばこのようにして得られた長尺の偏光板をロール状に巻回することにより、保管や移送等に適した偏光板のロール体とすることができる。偏光板のロール体を構成する偏光板の長さ(巻取り長さ)は、特に制限されないが、偏光子の幅の安定性を高める観点から、300m以上5000m以下とすることができる。
(Polarizing plate roll)
A polarizing plate roll body is a polarizing plate wound into a roll. A roll of a polarizing plate can usually be obtained by winding a polarizing plate around a winding core. With the method for manufacturing a polarizer described above, a long polarizer can be obtained. The long polarizer obtained by the above polarizer manufacturing method can be made into a long polarizing plate by laminating a protective film on one or both sides of the long polarizer without slitting it in the conveying direction. . For example, by winding the long polarizing plate obtained in this way into a roll, it is possible to make a roll of the polarizing plate suitable for storage, transportation, and the like. The length (winding length) of the polarizing plate constituting the roll body of the polarizing plate is not particularly limited, but from the viewpoint of improving the stability of the width of the polarizer, it can be set to 300 m or more and 5000 m or less.
 偏光板のロール体において、ロール体の巻き始め部分における偏光子の幅と、ロール体の巻き終わり部分における偏光子の幅との差は、絶対値で3mm以下であることができ、0.1mm以上3mm以下であることができる。上記差の絶対値は、0.1mm以上2mm以下であってもよく、0.1mm以上1mm以下であってもよく、0.1mm以上0.5mm以下であってもよい。ロール体の巻き始め部分における偏光子の幅は、ロール体の巻き終わり部分における偏光子の幅よりも大きくてもよく、小さくてもよい。 In the roll of the polarizing plate, the difference between the width of the polarizer at the beginning of winding of the roll and the width of the polarizer at the end of winding of the roll can be 3 mm or less in absolute value, and 0.1 mm. It can be greater than or equal to 3 mm. The absolute value of the difference may be 0.1 mm or more and 2 mm or less, 0.1 mm or more and 1 mm or less, or 0.1 mm or more and 0.5 mm or less. The width of the polarizer at the beginning of winding of the roll body may be larger or smaller than the width of the polarizer at the end of winding of the roll body.
 ロール体における上記差の絶対値が上記した範囲内であることにより、巻姿が良好なロール体が得られやすい。これに対し、ロール体における上記差の絶対値が3mmを超えると、ロール体の一部がスジ状に盛り上がる等の不具合が発生しやすくなり、巻姿が良好ではないロール体となりやすい。一方、偏光子を搬送方向にスリットした場合、偏光子の幅はほぼ一定となり、偏光板のロール体において、ロール体の巻き始め部分における偏光子の幅と、ロール体の巻き終わり部分における偏光子の幅との差は、絶対値で0.1mm未満となりやすい。しかし、偏光子を搬送方向にスリットすると、スリット屑が発生したり、偏光子にクラックが発生することがある。 When the absolute value of the difference in the roll body is within the above range, it is easy to obtain a roll body with a good winding appearance. On the other hand, if the absolute value of the above-mentioned difference in the roll body exceeds 3 mm, problems such as a part of the roll body rising in a streak-like manner are likely to occur, and the roll body is likely to have a poor winding appearance. On the other hand, when the polarizer is slit in the transport direction, the width of the polarizer is almost constant, and in the case of a roll of polarizing plate, the width of the polarizer at the beginning of winding of the roll and the width of the polarizer at the end of winding of the roll are the same. The difference between the width and the width is likely to be less than 0.1 mm in absolute value. However, when the polarizer is slit in the transport direction, slit debris may be generated or cracks may occur in the polarizer.
 本発明の製造方法で得られる偏光子の幅のばらつき(標準偏差)は3mm以下(好ましくは1mm以下)であることから、搬送方向にスリットをしなくても、偏光板のロール体の巻き始め部分における偏光子の幅と、ロール体の巻き終わり部分における偏光子の幅との差が絶対値で3mm以下という巻姿が良好なロール体を得ることができる。 Since the variation (standard deviation) in the width of the polarizer obtained by the manufacturing method of the present invention is 3 mm or less (preferably 1 mm or less), the winding of the roll of the polarizer can be started without slitting in the conveying direction. It is possible to obtain a roll body with a good winding shape in which the difference between the width of the polarizer at a portion and the width of the polarizer at the end of winding of the roll body is 3 mm or less in absolute value.
 また、本発明の偏光板のロール体の偏光子の幅のばらつき(標準偏差)は3mm以下(好ましくは1mm以下)であることができる。 Further, the variation (standard deviation) in the width of the polarizer in the roll of the polarizing plate of the present invention can be 3 mm or less (preferably 1 mm or less).
 偏光板のロール体の巻き始め部分とは、ロール体の巻き芯側(ロール体の径方向の中心側)にある巻き始め側の偏光板をいい、ロール体の巻き始め部分における偏光子の幅とは、偏光板の巻き始めの端部から長さ方向に1mの位置の偏光子の幅をいう。偏光板のロール体の巻き終わり部分とは、ロール体の外周側(ロール体の径方向の外側)にある巻き終わり側の偏光板をいい、ロール体の巻き終わり部分における偏光子の幅とは、偏光板の巻き終わりの端部から長さ方向に1mの位置の偏光子の幅をいう。 The winding start portion of a roll of polarizing plate refers to the polarizing plate at the winding start side on the winding core side of the roll body (the center side in the radial direction of the roll body), and the width of the polarizer at the winding start portion of the roll body. refers to the width of the polarizer at a position 1 m in the length direction from the end of the polarizing plate at the beginning of winding. The winding end portion of the roll body of the polarizing plate refers to the polarizing plate at the winding end side on the outer peripheral side of the roll body (radially outside of the roll body), and the width of the polarizer at the winding end portion of the roll body is , refers to the width of the polarizer at a position 1 m in the length direction from the end of the winding of the polarizing plate.
 以下、偏光子及び偏光板の製造方法の各工程、及び、これらの製造方法に用いる材料等について詳細に説明する。 Hereinafter, each step of the manufacturing method of a polarizer and a polarizing plate, and the materials used in these manufacturing methods will be explained in detail.
 (偏光子)
 偏光子は、その吸収軸に平行な振動面をもつ直線偏光を吸収し、吸収軸に直交する(透過軸と平行な)振動面をもつ直線偏光を透過する性質を有する吸収型の偏光フィルムである。偏光子は、ポリビニルアルコール系樹脂(以下、「PVA系樹脂」ということがある。)を形成材料とする樹脂フィルムに二色性色素が吸着配向している偏光フィルムである。
(polarizer)
A polarizer is an absorption-type polarizing film that has the property of absorbing linearly polarized light with a vibration plane parallel to its absorption axis and transmitting linearly polarized light with a vibration plane perpendicular to the absorption axis (parallel to the transmission axis). be. A polarizer is a polarizing film in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin (hereinafter sometimes referred to as "PVA resin").
 偏光子の厚みは特に限定されないが、例えば、3μm以上であってもよく、4μm以上であってもよく、5μm以上であってもよく、また、35μm以下であってもよく、30μm以下であってもよく、25μm以下であってもよい。偏光子の厚みが35μm以下であることにより、例えば、高温環境下でPVA系樹脂のポリエン化が光学特性の低下に与える影響を抑制することができる。偏光子の厚みが3μm以上であることにより所望の光学特性を達成する構成とすることが容易となる。 The thickness of the polarizer is not particularly limited, but may be, for example, 3 μm or more, 4 μm or more, 5 μm or more, 35 μm or less, 30 μm or less. The thickness may be 25 μm or less. When the thickness of the polarizer is 35 μm or less, for example, it is possible to suppress the influence of polyenization of PVA-based resin on deterioration of optical properties in a high-temperature environment. When the thickness of the polarizer is 3 μm or more, it is easy to achieve a configuration that achieves desired optical characteristics.
 (樹脂フィルム)
 樹脂フィルムを構成するPVA系樹脂は、ポリ酢酸ビニル系樹脂を鹸化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとこれに共重合可能な他の単量体との共重合体が挙げられる。共重合可能な他の単量体としては、例えば不飽和カルボン酸類、エチレン等のオレフィン類、ビニルエーテル類、不飽和スルホン酸類等が挙げられる。
(resin film)
The PVA resin constituting the resin film is obtained by saponifying polyvinyl acetate resin. Examples of polyvinyl acetate-based resins include polyvinyl acetate, which is a homopolymer of vinyl acetate, and copolymers of vinyl acetate and other monomers copolymerizable therewith. Examples of other copolymerizable monomers include unsaturated carboxylic acids, olefins such as ethylene, vinyl ethers, and unsaturated sulfonic acids.
 PVA系樹脂の鹸化度は、好ましくは85モル%以上、より好ましくは90モル%以上、さらに好ましくは99モル%以上100モル%以下である。PVA系樹脂の重合度としては、例えば1000以上10000以下であり、好ましくは1500以上5000以下である。PVA系樹脂は変性されていてもよく、例えばアルデヒド類で変性されたポリビニルホルマール、ポリビニルアセタール、ポリビニルブチラール等でもよい。 The degree of saponification of the PVA-based resin is preferably 85 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more and 100 mol% or less. The degree of polymerization of the PVA resin is, for example, 1,000 or more and 10,000 or less, preferably 1,500 or more and 5,000 or less. The PVA resin may be modified, such as polyvinyl formal, polyvinyl acetal, polyvinyl butyral, etc. modified with aldehydes.
 樹脂フィルムに吸着配向している二色性色素としては、ヨウ素又は二色性染料が挙げられる。二色性色素はヨウ素であることが好ましい。二色性染料としては、レッドBR、レッドLR、レッドR、ピンクLB、ルビンBL、ボルドーGS、スカイブルーLG、レモンイエロー、ブルーBR、ブルー2R、ネイビーRY、グリーンLG、バイオレットLB、バイオレットB、ブラックH、ブラックB、ブラックGSP、イエロー3G、イエローR、オレンジLR、オレンジ3R、スカーレットGL、スカーレットKGL、コンゴーレッド、ブリリアントバイオレットBK、スプラブルーG、スプラブルーGL、スプラオレンジGL、ダイレクトスカイブルー、ダイレクトファーストオレンジS、ファーストブラック等が挙げられる。 Examples of the dichroic dye adsorbed and oriented on the resin film include iodine or dichroic dye. Preferably, the dichroic dye is iodine. The dichroic dyes include Red BR, Red LR, Red R, Pink LB, Rubin BL, Bordeaux GS, Sky Blue LG, Lemon Yellow, Blue BR, Blue 2R, Navy RY, Green LG, Violet LB, Violet B, Black H, Black B, Black GSP, Yellow 3G, Yellow R, Orange LR, Orange 3R, Scarlet GL, Scarlet KGL, Congo Red, Brilliant Violet BK, Splat Blue G, Splat Blue GL, Splat Orange GL, Direct Sky Blue, Examples include Direct First Orange S and First Black.
 原反フィルムとしての樹脂フィルムの厚みは、製造する偏光子の厚みにもよるが、例えば、20μm以上であってもよく、35μm以上であってもよく、40μm以上であってもよく、45μm以上であってもよく、また、80μm以下であってもよく、70μm以下であってもよく、60μm以下であってもよい。 The thickness of the resin film as the raw film depends on the thickness of the polarizer to be manufactured, but for example, it may be 20 μm or more, 35 μm or more, 40 μm or more, 45 μm or more. It may also be 80 μm or less, 70 μm or less, or 60 μm or less.
 (膨潤工程)
 膨潤工程は、例えば、樹脂フィルムを膨潤浴中の膨潤液に浸漬する又は膨潤液を噴霧する等によって処理する工程である。膨潤工程により、樹脂フィルムの表面の汚れ、樹脂フィルム中の可塑剤やブロッキング剤等を除去できるほか、易染色性を付与したり、樹脂フィルムを可塑化したりすることができる。膨潤液には、通常、水、蒸留水、純水等の水を主成分とする媒体が用いられる。膨潤液には、ホウ酸(特開平10-153709号公報)、塩化物(特開平06-281816号公報)、無機酸、無機塩、水溶性有機溶媒、アルコール類等を0.01質量%以上10質量%以下の範囲で添加した水溶液を使用することも可能である。
(swelling process)
The swelling process is a process in which the resin film is treated, for example, by immersing the resin film in a swelling liquid in a swelling bath or by spraying the swelling liquid. The swelling process can remove dirt on the surface of the resin film, plasticizers, blocking agents, etc. in the resin film, as well as impart easy dyeability and plasticize the resin film. As the swelling liquid, a medium mainly composed of water, such as water, distilled water, or pure water, is usually used. The swelling liquid contains 0.01% by mass or more of boric acid (JP-A-10-153709), chloride (JP-A-06-281816), inorganic acids, inorganic salts, water-soluble organic solvents, alcohols, etc. It is also possible to use an aqueous solution containing 10% by mass or less.
 膨潤液の温度は、10℃以上50℃以下であることが好ましく、10℃以上40℃以下であることがより好ましく、15℃以上30℃以下であることがさらに好ましい。膨潤浴に浸漬する場合、浸漬時間は、例えば10秒以上300秒以下であることが好ましく、20秒以上200秒以下であることがより好ましい。樹脂フィルムが予め気体中で延伸されている場合、膨潤液の温度は、例えば20℃以上70℃以下であり、好ましくは30℃以上60℃以下であり、膨潤浴に浸漬する場合の浸漬時間は、好ましくは30秒以上300秒以下であり、より好ましくは60秒以上240秒以下である。 The temperature of the swelling liquid is preferably 10°C or more and 50°C or less, more preferably 10°C or more and 40°C or less, and even more preferably 15°C or more and 30°C or less. When immersing in a swelling bath, the immersion time is preferably 10 seconds or more and 300 seconds or less, and more preferably 20 seconds or more and 200 seconds or less. When the resin film is stretched in advance in gas, the temperature of the swelling liquid is, for example, 20°C or more and 70°C or less, preferably 30°C or more and 60°C or less, and the immersion time when immersing it in the swelling bath is , preferably 30 seconds or more and 300 seconds or less, more preferably 60 seconds or more and 240 seconds or less.
 膨潤浴では、樹脂フィルムが幅方向に膨潤して樹脂フィルムにシワが入るといった問題が生じやすい。このシワを取りつつフィルムを搬送するための1つの手段として、膨潤浴中を搬送するために用いるガイドロールにエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることが挙げられる。シワの発生を抑制するためのもう1つの手段は延伸処理を施すことである。例えば、ニップロールとニップロールとの周速差を利用して膨潤浴中で一軸延伸処理を施すことができる。 In the swelling bath, the problem that the resin film swells in the width direction tends to cause wrinkles in the resin film. One way to transport the film while removing wrinkles is to use rolls with a widening function such as expander rolls, spiral rolls, and crown rolls as guide rolls used to transport the film through the swelling bath, or to use cross guide rolls. , bend bars, and other widening devices such as tenter clips. Another means for suppressing the occurrence of wrinkles is to perform a stretching process. For example, uniaxial stretching can be performed in a swelling bath by utilizing the difference in circumferential speed between nip rolls.
 膨潤処理では、樹脂フィルムの搬送方向にも樹脂フィルムが膨潤して拡大するので、樹脂フィルムに積極的な延伸を行わない場合は、搬送方向の樹脂フィルムのたるみを無くすために、例えば、膨潤浴の前後に配置するニップロールの速度をコントロールする等の手段を講ずることが好ましい。また、膨潤浴中のフィルム搬送を安定化させる目的で、膨潤浴中での水流を水中シャワーで制御したり、EPC装置(Edge Position Control装置:フィルムの端部を検出し、フィルムの蛇行を防止する装置)等を併用したりすることも有用である。 In the swelling treatment, the resin film also swells and expands in the transport direction, so if the resin film is not actively stretched, it is necessary to use a swelling bath, for example, to eliminate slack in the resin film in the transport direction. It is preferable to take measures such as controlling the speed of nip rolls disposed before and after the. In addition, in order to stabilize the transport of the film in the swelling bath, the water flow in the swelling bath is controlled by an underwater shower, and an EPC device (Edge Position Control device: detects the edge of the film and prevents the film from meandering. It is also useful to use a device such as
 (染色工程)
 染色工程は、膨潤工程後の樹脂フィルムに二色性色素を吸着、配向させる等の目的で行われる。処理条件は、当該目的が達成できる範囲で、かつ樹脂フィルムの極端な溶解や失透等の不具合が生じない範囲で決定される。染色工程は、膨潤処理後の樹脂フィルムを染色浴に所定時間浸漬し、次いで引き出すことによって実施してもよく、染色液を噴霧等することによって実施してもよい。二色性色素の染色性を高めるために、染色工程に供される樹脂フィルムは、少なくともある程度の一軸延伸処理を施した樹脂フィルムであることが好ましく、又は染色工程前の一軸延伸処理の代わりに、あるいは染色工程前の一軸延伸処理に加えて、染色工程時に一軸延伸処理を行うことが好ましい。
(dying process)
The dyeing step is performed for the purpose of adsorbing and orienting the dichroic dye to the resin film after the swelling step. The processing conditions are determined within a range in which the objective can be achieved and in which problems such as extreme dissolution and devitrification of the resin film do not occur. The dyeing step may be carried out by immersing the resin film after the swelling treatment in a dyeing bath for a predetermined time and then drawing it out, or may be carried out by spraying a dyeing liquid or the like. In order to improve the dyeability of the dichroic dye, the resin film subjected to the dyeing process is preferably a resin film that has been subjected to at least some uniaxial stretching treatment, or instead of the uniaxial stretching treatment before the dyeing process. Alternatively, in addition to the uniaxial stretching treatment before the dyeing process, it is preferable to perform the uniaxial stretching process during the dyeing process.
 二色性色素としてヨウ素を用いる場合、染色浴の染色液には、例えば、濃度が質量比でヨウ素/ヨウ化カリウム/水=0.003~3/0.1~10/100である水溶液を用いることができる。ヨウ化カリウムに代えて、ヨウ化亜鉛等の他のヨウ化物を用いてもよく、ヨウ化カリウムと他のヨウ化物を併用してもよい。染色液には、ヨウ化物以外の化合物、例えば、ホウ酸、塩化亜鉛、塩化コバルト等を共存させてもよい。ホウ酸を添加する場合は、ヨウ素を含む点で後述する架橋延伸工程及び補色工程と区別され、水溶液が水100質量部に対し、ヨウ素を0.003質量部以上含んでいるものであれば、染色浴とみなすことができる。樹脂フィルムを浸漬するときの染色浴の温度は、通常10~45℃、好ましくは10℃以上40℃以下であり、より好ましくは20℃以上35℃以下であり、フィルムの浸漬時間は、通常30秒以上600秒以下、好ましくは60秒以上300秒以下である。 When using iodine as a dichroic dye, the dyeing solution in the dyeing bath contains, for example, an aqueous solution with a mass ratio of iodine/potassium iodide/water = 0.003 to 3/0.1 to 10/100. Can be used. Instead of potassium iodide, other iodides such as zinc iodide may be used, or potassium iodide and other iodides may be used together. The staining solution may contain compounds other than iodide, such as boric acid, zinc chloride, cobalt chloride, and the like. When adding boric acid, it is distinguished from the later-described cross-linking and stretching process and complementary coloring process in that it contains iodine, and if the aqueous solution contains 0.003 parts by mass or more of iodine per 100 parts by mass of water, It can be considered a dye bath. The temperature of the dyeing bath when dipping the resin film is usually 10 to 45°C, preferably 10°C to 40°C, more preferably 20°C to 35°C, and the immersion time of the film is usually 30°C to 45°C. The duration is at least 60 seconds, preferably at least 60 seconds and at most 300 seconds.
 二色性色素として水溶性二色性染料を用いる場合、染色浴の染色液には、例えば、濃度が質量比で二色性染料/水=0.001~0.1/100である水溶液を用いることができる。この染色液には、染色助剤等を共存させてもよく、例えば、硫酸ナトリウム等の無機塩や界面活性剤等を含有していてもよい。二色性染料は1種のみを単独で用いてもよいし、2種類以上の二色性染料を併用してもよい。樹脂フィルムを浸漬するときの染色浴の温度は、例えば20℃以上80℃以下であり、好ましくは30℃以上70℃以下であり、樹脂フィルムの浸漬時間は、通常30秒以上600秒以下であり、好ましくは60秒以上300秒以下である。 When using a water-soluble dichroic dye as the dichroic dye, the dyeing solution in the dyeing bath contains, for example, an aqueous solution with a concentration of dichroic dye/water = 0.001 to 0.1/100 in mass ratio. Can be used. This dyeing solution may contain a dyeing aid, for example, an inorganic salt such as sodium sulfate, a surfactant, and the like. One type of dichroic dye may be used alone, or two or more types of dichroic dyes may be used in combination. The temperature of the dyeing bath when dipping the resin film is, for example, 20°C or more and 80°C or less, preferably 30°C or more and 70°C or less, and the immersion time of the resin film is usually 30 seconds or more and 600 seconds or less. , preferably 60 seconds or more and 300 seconds or less.
 染色工程では、染色浴で樹脂フィルムの一軸延伸を行うことができる。樹脂フィルムの一軸延伸は、染色浴中又は染色浴の前後に配置したニップロールとニップロールとの間に周速差をつける等の方法によって行うことができる。 In the dyeing process, the resin film can be uniaxially stretched in a dyeing bath. Uniaxial stretching of the resin film can be carried out by a method such as creating a difference in peripheral speed between nip rolls placed in the dyeing bath or before and after the dyeing bath.
 染色工程においても、膨潤工程と同様に樹脂フィルムのシワを除きつつ樹脂フィルムを搬送するために、ガイドロールにエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることができる。シワの発生を抑制するためのもう1つの手段は、膨潤工程と同様、延伸処理を施すことである。 In the dyeing process, as in the swelling process, in order to transport the resin film while removing wrinkles from the resin film, rolls with widening functions such as expander rolls, spiral rolls, and crown rolls are used as guide rolls, and cross guiders are used as guide rolls. , bend bars, tenter clips, etc. may be used. Another means for suppressing the occurrence of wrinkles is to perform a stretching treatment, similar to the swelling process.
 (架橋延伸工程)
 架橋延伸工程は、染色工程にて染色された樹脂フィルムを、架橋剤を含む処理浴(架橋浴)に浸漬し、架橋浴中で延伸する工程である。架橋処理により、樹脂フィルムの耐水性等を向上することができる。架橋延伸工程は、架橋浴中に配置されたニップロール及びガイドロール等によって構築されたフィルム搬送経路に沿って樹脂フィルムを延伸しながら搬送させることにより、実施することができる。架橋延伸工程で行う延伸処理は上記したとおりであり、架橋延伸工程で行う延伸処理は、ニップロールとニップロールとの周速差を利用して、搬送方向(長手方向)に一軸延伸する延伸処理であることが好ましい。
(Crosslinking and stretching process)
The crosslinking and stretching step is a step in which the resin film dyed in the dyeing step is immersed in a treatment bath (crosslinking bath) containing a crosslinking agent and stretched in the crosslinking bath. The crosslinking treatment can improve the water resistance, etc. of the resin film. The crosslinking and stretching step can be carried out by stretching and transporting the resin film along a film transport path constructed by nip rolls, guide rolls, and the like arranged in a crosslinking bath. The stretching process performed in the cross-linking stretching process is as described above, and the stretching process performed in the cross-linking stretching process is a stretching process in which uniaxial stretching is performed in the transport direction (longitudinal direction) using the difference in circumferential speed between the nip rolls. It is preferable.
 架橋液としては、架橋剤を溶媒に溶解した溶液を使用できる。架橋剤としては、例えば、ホウ酸、ホウ砂等のホウ素化合物や、グリオキザール、グルタルアルデヒド等が挙げられる。これらは1種を用いてもよく、2種以上を併用して用いてもよい。溶媒としては、例えば水が使用できるが、さらに、水と相溶性のある有機溶媒を含んでもよい。架橋液における架橋剤の濃度は、これに限定されるものではないが、1質量%以上20質量%以下の範囲にあることが好ましく、6質量%以上15質量%以下の範囲にあることがより好ましい。 As the crosslinking liquid, a solution in which a crosslinking agent is dissolved in a solvent can be used. Examples of the crosslinking agent include boron compounds such as boric acid and borax, glyoxal, and glutaraldehyde. These may be used alone or in combination of two or more. As the solvent, for example, water can be used, but it may also contain an organic solvent that is compatible with water. The concentration of the crosslinking agent in the crosslinking solution is not limited to this, but is preferably in the range of 1% by mass or more and 20% by mass or less, more preferably in the range of 6% by mass or more and 15% by mass or less. preferable.
 架橋液は、水100質量部に対してホウ酸を例えば1質量部以上10質量部以下含有する水溶液であることができる。架橋液は、染色液に含まれる二色性色素がヨウ素の場合、ホウ酸に加えてヨウ化物を含有することが好ましく、その量は、水100質量部に対して、例えば1質量部以上30質量部以下とすることができる。ヨウ化物としては、ヨウ化カリウム、ヨウ化亜鉛等が挙げられる。2種以上のヨウ化物を含有させてもよい。また、ヨウ化物以外の化合物、例えば、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウム等を共存させてもよい。また、硝酸塩を共存させてもよい。硝酸塩は、硝酸アルミニウム、硝酸銅、硝酸ナトリウム、硝酸カリウム、硝酸亜鉛、及び硝酸マグネシウムからなる群から選ばれる少なくとも1種を含むことができる。硝酸塩は、硝酸亜鉛を含むことが好ましい。 The crosslinking liquid can be an aqueous solution containing, for example, 1 part by mass or more and 10 parts by mass or less of boric acid per 100 parts by mass of water. When the dichroic dye contained in the dyeing solution is iodine, the crosslinking solution preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 part by mass or more and 30 parts by mass based on 100 parts by mass of water. It can be less than or equal to parts by mass. Examples of iodides include potassium iodide and zinc iodide. Two or more types of iodides may be contained. Further, compounds other than iodide, such as sodium thiosulfate, potassium sulfite, sodium sulfate, etc., may be present. Further, nitrate may be present together. The nitrate may include at least one selected from the group consisting of aluminum nitrate, copper nitrate, sodium nitrate, potassium nitrate, zinc nitrate, and magnesium nitrate. Preferably, the nitrate includes zinc nitrate.
 架橋延伸工程においては、その目的によって、架橋液のホウ酸及びヨウ化物の濃度、並びに架橋液の温度を適宜変更することができる。架橋液は、例えば、濃度が質量比でホウ酸/ヨウ化物/水=3~10/1~20/100の水溶液であることができる。必要に応じ、ホウ酸に代えて他の架橋剤を用いてもよく、ホウ酸と他の架橋剤を併用してもよい。樹脂フィルムを浸漬するときの架橋浴の温度は、通常50℃以上70℃以下であり、好ましくは53℃以上65℃以下であり、樹脂フィルムの浸漬時間は、通常30秒以上600秒以下であり、好ましくは40秒以上300秒以下であり、より好ましくは60秒以上200秒以下である。また、膨潤工程前に予め延伸した樹脂フィルムに対して、染色工程及び架橋延伸工程をこの順に施す場合、架橋浴の温度は、通常50℃以上85℃以下であり、好ましくは55℃以上80℃以下である。 In the crosslinking and stretching step, the concentrations of boric acid and iodide in the crosslinking liquid and the temperature of the crosslinking liquid can be changed as appropriate depending on the purpose. The crosslinking liquid can be, for example, an aqueous solution having a concentration of boric acid/iodide/water in a mass ratio of 3 to 10/1 to 20/100. If necessary, other crosslinking agents may be used in place of boric acid, or boric acid and other crosslinking agents may be used in combination. The temperature of the crosslinking bath when dipping the resin film is usually 50°C or more and 70°C or less, preferably 53°C or more and 65°C or less, and the immersion time of the resin film is usually 30 seconds or more and 600 seconds or less. , preferably 40 seconds or more and 300 seconds or less, more preferably 60 seconds or more and 200 seconds or less. In addition, when a dyeing process and a crosslinking/stretching process are performed in this order on a resin film that has been stretched in advance before the swelling process, the temperature of the crosslinking bath is usually 50°C or higher and 85°C or lower, preferably 55°C or higher and 80°C. It is as follows.
 (補色工程)
 補色工程は、架橋延伸工程後の樹脂フィルムの色相を調整する処理である。補色工程は、架橋延伸工程後の樹脂フィルムに対して、延伸処理を伴わずに行う処理工程である。補色工程は、補色浴(補色槽に収容された補色液)に架橋延伸工程後の樹脂フィルムを所定時間浸漬し、次いで引き出すことによって実施してもよく、補色液を噴霧等することによって実施してもよい。
(Complementary color process)
The complementary color process is a process for adjusting the hue of the resin film after the crosslinking and stretching process. The complementary color process is a treatment process performed on the resin film after the crosslinking and stretching process without any stretching process. The complementary color process may be carried out by immersing the resin film after the cross-linking and stretching process in a complementary color bath (complementary color liquid stored in a complementary color bath) for a predetermined time and then pulling it out, or by spraying the complementary color liquid. It's okay.
 補色液としては、水100質量部に対してホウ酸を例えば1~10質量部含有する水溶液であることができる。補色液は、染色液に含まれる二色性色素がヨウ素の場合、ホウ酸に加えてヨウ化物を含有することが好ましく、その量は、水100質量部に対して、例えば1質量部以上30質量部以下とすることができる。ヨウ化物としては、ヨウ化カリウム、ヨウ化亜鉛等が挙げられる。2種以上のヨウ化物を含有させてもよい。また、ヨウ化物以外の化合物、例えば、チオ硫酸ナトリウム、亜硫酸カリウム、硫酸ナトリウム等を共存させてもよい。また、硝酸塩を共存させてもよい。硝酸塩は、硝酸アルミニウム、硝酸銅、硝酸ナトリウム、硝酸カリウム、硝酸亜鉛、及び硝酸マグネシウムからなる群から選ばれる少なくとも1種を含むことができる。硝酸塩は、硝酸亜鉛を含むことが好ましい。 The complementary color solution may be an aqueous solution containing, for example, 1 to 10 parts by mass of boric acid per 100 parts by mass of water. When the dichroic dye contained in the dyeing solution is iodine, the complementary color solution preferably contains iodide in addition to boric acid, and the amount thereof is, for example, 1 part by mass or more and 30 parts by mass based on 100 parts by mass of water. It can be less than or equal to parts by mass. Examples of iodides include potassium iodide and zinc iodide. Two or more types of iodides may be contained. Further, compounds other than iodide, such as sodium thiosulfate, potassium sulfite, sodium sulfate, etc., may be present. Further, nitrate may be present together. The nitrate may include at least one selected from the group consisting of aluminum nitrate, copper nitrate, sodium nitrate, potassium nitrate, zinc nitrate, and magnesium nitrate. Preferably, the nitrate includes zinc nitrate.
 補色液においては、例えば、二色性色素としてヨウ素を用いた場合、濃度が質量比でホウ酸/ヨウ化物/水=1~5/3~30/100を使用することができる。樹脂フィルムを浸漬するときの補色浴の温度は、通常10℃以上45℃以下であり、樹脂フィルムの浸漬時間は、通常1秒以上300秒以下であり、好ましくは2秒以上100秒以下である。 In the complementary color solution, for example, when iodine is used as a dichroic dye, a concentration of boric acid/iodide/water in a mass ratio of 1 to 5/3 to 30/100 can be used. The temperature of the complementary color bath when dipping the resin film is usually 10°C or more and 45°C or less, and the immersion time of the resin film is usually 1 second or more and 300 seconds or less, preferably 2 seconds or more and 100 seconds or less. .
 補色工程は複数回行ってもよく、例えば2~5回行ってもよい。この場合、使用する各補色液の組成及び温度は、上記の範囲内であれば同じであってもよく、異なっていてもよい。 The complementary color process may be performed multiple times, for example, 2 to 5 times. In this case, the composition and temperature of each complementary color solution used may be the same or different as long as it is within the above range.
 (洗浄工程)
 洗浄工程は、洗浄処理は、架橋延伸工程後の樹脂フィルム、又は、補色工程を行う場合は補色工程後の樹脂フィルムに付着した余分なホウ酸やヨウ素等の薬剤を除去する目的で行われる。洗浄工程は、例えば、架橋延伸工程後又は補色工程後の樹脂フィルムを洗浄浴(洗浄槽に収容された洗浄液)に浸漬する、又は、洗浄液をシャワー等として噴霧することによって行うことができる。洗浄工程は、浸漬と噴霧とを併用して行ってもよい。
(Washing process)
The cleaning process is performed for the purpose of removing excess chemicals such as boric acid and iodine attached to the resin film after the crosslinking and stretching process, or, if a complementary color process is performed, to the resin film after the complementary color process. The cleaning process can be performed, for example, by immersing the resin film after the crosslinking and stretching process or the complementary color process in a cleaning bath (a cleaning liquid contained in a cleaning tank), or by spraying the cleaning liquid as a shower or the like. The cleaning step may be performed using a combination of dipping and spraying.
 洗浄工程における洗浄液の温度は、通常2℃以上40℃以下であり、洗浄液に樹脂フィルムを浸漬する場合の浸漬時間は、通常2秒以上120秒以下である。 The temperature of the cleaning liquid in the cleaning process is usually 2°C or more and 40°C or less, and the immersion time when the resin film is immersed in the cleaning liquid is usually 2 seconds or more and 120 seconds or less.
 洗浄工程においても、シワを除きつつ樹脂フィルムを搬送する目的で、ガイドロールにエキスパンダーロール、スパイラルロール、クラウンロールのような拡幅機能を有するロールを用いたり、クロスガイダー、ベンドバー、テンタークリップのような他の拡幅装置を用いたりすることができる。洗浄工程において、シワの発生を抑制するために延伸処理を施してもよい。 In the cleaning process, in order to convey the resin film while removing wrinkles, rolls with a widening function such as expander rolls, spiral rolls, and crown rolls are used as guide rolls, and rolls such as cross guiders, bend bars, and tenter clips are used as guide rolls. Other widening devices may also be used. In the washing step, stretching treatment may be performed to suppress the occurrence of wrinkles.
 (乾燥工程)
 乾燥工程は、架橋延伸工程、補色工程、又は洗浄工程後の樹脂フィルムを乾燥させる処理を行う工程である。樹脂フィルムの乾燥方法は特に制限されないが、例えば乾燥炉を用いて行うことができる。乾燥炉は例えば熱風乾燥機を備えるものとすることができる。乾燥温度は、例えば30℃以上100℃以下であり、乾燥時間は、例えば30秒以上600秒以下である。樹脂フィルムを乾燥させる処理は、遠赤外線ヒーターを用いて行うこともできる。
(drying process)
The drying process is a process of drying the resin film after the crosslinking and stretching process, the complementary color process, or the washing process. The method of drying the resin film is not particularly limited, but can be carried out using a drying oven, for example. The drying oven may include, for example, a hot air dryer. The drying temperature is, for example, 30° C. or more and 100° C. or less, and the drying time is, for example, 30 seconds or more and 600 seconds or less. The process of drying the resin film can also be performed using a far-infrared heater.
 (偏光板)
 偏光板は、偏光子の片面又は両面に保護フィルムが積層されたものである。偏光子と保護フィルムとは貼合層を介して積層されていることが好ましい。偏光板は、長尺の偏光板であってもよく、その長さは300m以上5000m以下であってもよい。
(Polarizer)
A polarizing plate is a polarizer with protective films laminated on one or both sides. It is preferable that the polarizer and the protective film are laminated via a bonding layer. The polarizing plate may be a long polarizing plate, and its length may be 300 m or more and 5000 m or less.
 保護フィルムとしては、例えば、トリアセチルセルロースやジアセチルセルロースのようなアセチルセルロース系樹脂からなるフィルム;ポリエチレンテレフタレート、ポリエチレンナフタレート及びポリブチレンテレフタレートのようなポリエステル系樹脂からなるフィルム;ポリカーボネート系樹脂フィルム、シクロオレフィン系樹脂フィルム;アクリル系樹脂フィルム;ポリプロピレン系樹脂の鎖状オレフィン系樹脂からなるフィルムが挙げられる。 As a protective film, for example, a film made of acetyl cellulose resin such as triacetyl cellulose or diacetyl cellulose; a film made of polyester resin such as polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate; a polycarbonate resin film, cyclo Examples include olefin resin films; acrylic resin films; and films made of chain olefin resins such as polypropylene resins.
 偏光子と保護フィルムとの接着性を向上させるために、偏光子及び/又は保護フィルムの貼合面に、コロナ処理、火炎処理、プラズマ処理、紫外線照射、プライマー塗布処理、ケン化処理等の表面処理を施してもよい。 In order to improve the adhesion between the polarizer and the protective film, the bonding surface of the polarizer and/or protective film may be treated with corona treatment, flame treatment, plasma treatment, ultraviolet irradiation, primer coating treatment, saponification treatment, etc. Processing may be performed.
 偏光子と保護フィルムとの間に介在される貼合層は、接着剤又は粘着剤を用いて形成することができる。接着剤としては、紫外線硬化性接着剤のような活性エネルギー線硬化性接着剤や、ポリビニルアルコール系樹脂の水溶液、又はこれに架橋剤が配合された水溶液、ウレタン系エマルジョン接着剤のような水系接着剤を挙げることができる。水系接着剤には、硝酸亜鉛等の亜鉛化合物が添加されていてよい。紫外線硬化型接着剤は、アクリル系化合物と光ラジカル重合開始剤の混合物や、エポキシ化合物と光カチオン重合開始剤の混合物等であることができる。カチオン重合性のエポキシ化合物とラジカル重合性のアクリル系化合物とを併用し、開始剤として光カチオン重合開始剤と光ラジカル重合開始剤を併用することもできる。 The bonding layer interposed between the polarizer and the protective film can be formed using an adhesive or a pressure-sensitive adhesive. Adhesives include active energy ray-curable adhesives such as ultraviolet curable adhesives, aqueous solutions of polyvinyl alcohol resins, aqueous solutions containing crosslinking agents, and water-based adhesives such as urethane emulsion adhesives. Agents can be mentioned. A zinc compound such as zinc nitrate may be added to the water-based adhesive. The ultraviolet curable adhesive may be a mixture of an acrylic compound and a radical photopolymerization initiator, a mixture of an epoxy compound and a cationic photopolymerization initiator, or the like. A cationically polymerizable epoxy compound and a radically polymerizable acrylic compound can be used together, and a photocationic polymerization initiator and a photoradical polymerization initiator can also be used together as an initiator.
 偏光板は、表示装置に用いることができる。表示装置に用いる画像表示素子としては、例えば液晶表示素子、有機EL表示素子等が挙げられる。液晶表示装置を構築するにあたって偏光板は、視認側に配置して用いられてもよいし、バックライト側に配置して用いられてもよいし、視認側及びバックライト側の双方に用いられてもよい。表示装置は、テレビ、パーソナルコンピューター、携帯電話やタブレット端末等のモバイル機器用途、車載用途に用いることができる。車載用途としては、例えば、カーナビゲーション装置、スピードメーター、エアコン用タッチパネル、バックモニター及びリアモニター等に用いる表示装置等が挙げられる。 Polarizing plates can be used in display devices. Examples of the image display element used in the display device include a liquid crystal display element, an organic EL display element, and the like. In constructing a liquid crystal display device, a polarizing plate may be used by placing it on the viewing side, it may be placed on the backlight side, or it may be used on both the viewing side and the backlight side. Good too. The display device can be used in mobile devices such as televisions, personal computers, mobile phones and tablet terminals, and in-vehicle applications. Examples of in-vehicle applications include display devices used in car navigation devices, speedometers, touch panels for air conditioners, back monitors, rear monitors, and the like.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples.
 [実施例1における時間tの決定]
 実施例1の手順にしたがって、膨潤工程及び染色工程を行った樹脂フィルム(幅14.4mm)を準備した。染色工程後の上記樹脂フィルムを、実施例1の架橋延伸工程で用いる架橋浴に浸漬し、浸漬開始から10秒毎に、樹脂フィルムの幅の変化を測定した。この測定を4枚の樹脂フィルムについて行った。いずれの樹脂フィルムにおいても、浸漬開始から30秒(0.5min)後に、樹脂フィルムの幅が13.5mm又は13.6mmの一定の幅となったため、樹脂フィルムの収縮が飽和したと判断し、上記した式(1)及び式(2)における時間tを0.5minに設定した。
[Determination of time t in Example 1]
According to the procedure of Example 1, a resin film (width 14.4 mm) which was subjected to a swelling process and a dyeing process was prepared. The resin film after the dyeing process was immersed in the crosslinking bath used in the crosslinking and stretching process of Example 1, and changes in the width of the resin film were measured every 10 seconds from the start of immersion. This measurement was performed on four resin films. In either resin film, the width of the resin film reached a constant width of 13.5 mm or 13.6 mm 30 seconds (0.5 min) after the start of dipping, so it was determined that the shrinkage of the resin film was saturated. The time t in the above equations (1) and (2) was set to 0.5 min.
 〔実施例1〕
 厚み45μmの長尺のポリビニルアルコール系樹脂を形成材料とする樹脂フィルム〔(株)クラレ製の商品名「VF-PE#4500」、ケン化度99.9モル%以上〕を、温度23℃の純水からなる膨潤浴に浸漬時間110秒で浸漬させ、樹脂フィルムの搬送方向に2.1倍に一軸延伸する処理を行った(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ素/ホウ酸/水が1.0/0.5/100(質量比)であるヨウ素を含む染色液からなる温度23℃の染色浴に浸漬時間163秒で浸漬させ、樹脂フィルムの搬送方向に1.22倍に一軸延伸する処理を行った(染色工程)。
[Example 1]
A resin film made of a long polyvinyl alcohol resin with a thickness of 45 μm [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 23°C. The resin film was immersed in a swelling bath made of pure water for 110 seconds and uniaxially stretched 2.1 times in the transport direction of the resin film (swelling step). Thereafter, the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio). The resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
 次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が2.3/3.7/100(質量比)である架橋液からなる温度59℃の架橋浴に浸漬時間92秒で浸漬させ、樹脂フィルムの搬送方向に一軸延伸する処理を行った(架橋延伸工程)。架橋浴として、浴中に搬送方向上流側から第1ニップロール、第2ニップロール、及び第3ニップロールがこの順に配置された浴を用い、第1ニップロールと第2ニップロールとの間で一軸延伸処理(第1延伸処理)を行い、第2ニップロールと第3ニップロールとの間で一軸延伸処理(第2延伸処理)を行った。 Next, the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio). The resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step). As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
 第1延伸処理における樹脂フィルムの搬送距離(第1ニップロールと第2ニップロールとの間の樹脂フィルムの搬送距離)である距離X1(1)は、上記で決定した時間tを0.4倍した値と架橋延伸工程における樹脂フィルムの搬送速度vとを乗じて算出される値(X1(1)=v×0.4t)に設定した。架橋浴への樹脂フィルムの浸漬を開始してから第1延伸処理が完了するまでに樹脂フィルムが搬送される距離X2(1)はv×0.46tに設定した。また、第2延伸処理における樹脂フィルムの搬送距離(第2ニップロールと第3ニップロールとの間の樹脂フィルムの搬送距離)Xf(1)は、距離X1(1)
の7.0倍とし、距離X2(1)の6.1倍とした。Rv2は、Rvmin+2.7m/minとした。
The distance X1 (1), which is the transport distance of the resin film in the first stretching process (the transport distance of the resin film between the first nip roll and the second nip roll), is the value obtained by multiplying the time t determined above by 0.4. and the transport speed v of the resin film in the crosslinking/stretching step (X1(1)=v×0.4t). The distance X2(1) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v×0.46t. Further, the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll) Xf(1) is the distance X1(1)
and 6.1 times the distance X2(1). Rv2 was set to Rvmin+2.7 m/min.
 その後、温度38℃で乾燥して(乾燥工程)、ポリビニルアルコール系樹脂にヨウ素が吸着配向している厚み18μmの偏光子を得た。 Thereafter, it was dried at a temperature of 38° C. (drying step) to obtain a polarizer with a thickness of 18 μm in which iodine was adsorbed and oriented on the polyvinyl alcohol resin.
 乾燥工程後の偏光子について、10万m製造したときの延伸方向に直交する方向の長さ(幅)のばらつき(標準偏差)を確認したところ、ばらつきは2.9mmであり、長さ方向において安定した幅を有していた。 After the drying process, we checked the variation (standard deviation) in the length (width) in the direction perpendicular to the stretching direction when 100,000 m of polarizers were manufactured, and found that the variation was 2.9 mm. It had a stable width.
 [実施例2における時間tの決定]
 実施例2の手順にしたがって、膨潤工程及び染色工程を行った樹脂フィルム(幅14.4mm)を準備した。染色工程後の上記樹脂フィルムを、実施例2の架橋延伸工程で用いる架橋浴に浸漬し、浸漬開始から10秒毎に、樹脂フィルムの幅の変化を測定した。この測定を4枚の樹脂フィルムについて行った。いずれの樹脂フィルムにおいても、浸漬開始から20秒(0.33min)後に、樹脂フィルムの幅が13.4mm又は13.5mmの一定の幅となったため、樹脂フィルムの収縮が飽和したと判断し、上記した式(1)及び式(2)における時間tを0.33minに設定した。
[Determination of time t in Example 2]
According to the procedure of Example 2, a resin film (width 14.4 mm) which was subjected to a swelling process and a dyeing process was prepared. The resin film after the dyeing process was immersed in the crosslinking bath used in the crosslinking and stretching process of Example 2, and changes in the width of the resin film were measured every 10 seconds from the start of immersion. This measurement was performed on four resin films. In either resin film, the width of the resin film reached a constant width of 13.4 mm or 13.5 mm 20 seconds (0.33 min) after the start of dipping, so it was determined that the shrinkage of the resin film was saturated. The time t in the above equations (1) and (2) was set to 0.33 min.
 〔実施例2〕
 厚み45μmの長尺のポリビニルアルコール系樹脂を形成材料とする樹脂フィルム〔(株)クラレ製の商品名「VF-PE#4500」、ケン化度99.9モル%以上〕を、温度21.5℃の純水からなる膨潤浴に浸漬時間90秒で浸漬させ、樹脂フィルムの搬送方向に2.3倍に一軸延伸する処理を行った(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ素/ホウ酸/水が1.0/0.5/100(質量比)であるヨウ素を含む染色液からなる温度23℃の染色浴に浸漬時間180秒で浸漬させ、樹脂フィルムの搬送方向に1.13倍に一軸延伸する処理を行った(染色工程)。
[Example 2]
A resin film made of a long polyvinyl alcohol resin with a thickness of 45 μm [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 21.5 The resin film was immersed in a swelling bath made of pure water at a temperature of 90 seconds for an immersion time of 90 seconds, and uniaxially stretched 2.3 times in the transport direction of the resin film (swelling step). Thereafter, the film pulled out from the swelling bath was immersed for 180 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio). The resin film was immersed in water and uniaxially stretched 1.13 times in the transport direction of the resin film (dying process).
 次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が2.3/3.7/100(質量比)である架橋液からなる温度59℃の架橋浴に浸漬時間62秒で浸漬させ、樹脂フィルムの搬送方向に一軸延伸する処理を行った(架橋延伸工程)。架橋浴として、浴中に搬送方向上流側から第1ニップロール、第2ニップロール、及び第3ニップロールがこの順に配置された浴を用い、第1ニップロールと第2ニップロールとの間で一軸延伸処理(第1延伸処理)を行い、第2ニップロールと第3ニップロールとの間で一軸延伸処理(第2延伸処理)を行った。 Next, the film pulled out from the dyeing bath was immersed for 62 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio). The resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step). As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
 第1延伸処理における樹脂フィルムの搬送距離(第1ニップロールと第2ニップロールとの間の樹脂フィルムの搬送距離)である距離X1(2)は、上記で決定した時間tを0.43倍した値と架橋延伸工程における樹脂フィルムの搬送速度vとを乗じて算出される値(X1(2)=v×0.43t)に設定した。架橋浴への樹脂フィルムの浸漬を開始してから第1延伸処理が完了するまでに樹脂フィルムが搬送される距離X2(2)はv×0.49tに設定した。また、第2延伸処理における樹脂フィルムの搬送距離(第2ニップロールと第3ニップロールとの間の樹脂フィルムの搬送距離)Xf(2)は、距離X1(2)の6.8倍とし、距離X2(2)の6.0倍とした。Rv2は、Rvmin+2.3m/min以上Rvmin+3.3m/min以下の間で変動させる制御を行いながら製造した。 The distance X1 (2), which is the transport distance of the resin film in the first stretching process (the transport distance of the resin film between the first nip roll and the second nip roll), is the value obtained by multiplying the time t determined above by 0.43. and the transport speed v of the resin film in the crosslinking/stretching step (X1(2)=v×0.43t). The distance X2 (2) that the resin film is transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v×0.49t. Further, the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll) Xf(2) is set to 6.8 times the distance X1(2), and the distance X2 It was set to 6.0 times that of (2). Rv2 was manufactured while being controlled to vary between Rvmin+2.3 m/min and Rvmin+3.3 m/min.
 その後、温度38℃で乾燥して(乾燥工程)、ポリビニルアルコール系樹脂にヨウ素が吸着配向している厚み18μmの偏光子を得た。 Thereafter, it was dried at a temperature of 38° C. (drying step) to obtain a polarizer with a thickness of 18 μm in which iodine was adsorbed and oriented on the polyvinyl alcohol resin.
 乾燥工程後の偏光子について、10万m製造したときの延伸方向に直交する方向の長さ
(幅)のばらつき(標準偏差)を確認したところ、ばらつきは0.8mmであり、長さ方向に沿って安定した幅を有していた。
After the drying process, we checked the variation (standard deviation) in the length (width) in the direction perpendicular to the stretching direction when 100,000 m of polarizers were manufactured, and found that the variation was 0.8 mm. It had a stable width along the length.
 上記で作製した偏光子の両面にケン化処理したセルロースアシレートフィルムTD40(富士フイルム株式会社製、厚み40μm)を、水系接着剤により貼合し乾燥処理を行って、長尺の偏光板を作製した。この際、偏光子は、幅方向の端部を除去するスリット処理は施されていない。こうして作製した長尺の偏光板1000mをロール状に巻き回してロール体を得た。偏光板のロール体の巻き始め部分(偏光板の巻き始めの端部から長さ方向に1mの位置)における偏光子の幅と、偏光板のロール体の巻き終わり部分(偏光板の巻き終わりの端部から長さ方向に1mの位置)における偏光子の幅との差は、絶対値で0.3mmであった。偏光板のロール体の巻姿は良好であり、スリット屑の発生も見られなかった。 Saponified cellulose acylate film TD40 (manufactured by Fujifilm Corporation, thickness 40 μm) was laminated on both sides of the polarizer produced above using a water-based adhesive and dried to produce a long polarizing plate. did. At this time, the polarizer was not subjected to slit treatment to remove the ends in the width direction. A long polarizing plate of 1000 m thus produced was wound into a roll to obtain a roll body. The width of the polarizer at the beginning of the winding of the polarizing plate roll (1 m in the length direction from the end of the polarizing plate at the beginning of winding) and the width of the polarizer at the end of the winding of the polarizing plate roll (the position at the end of the winding of the polarizing plate) The difference from the width of the polarizer at a position 1 m from the end in the length direction was 0.3 mm in absolute value. The roll shape of the polarizing plate was good, and no slit debris was observed.
 [比較例1及び比較例2における時間tの決定]
 比較例1及び2の手順にしたがって、膨潤工程及び染色工程を行った樹脂フィルム(幅14.4mm)を準備した。染色工程後の上記樹脂フィルムを、比較例1及び2の架橋延伸工程で用いる架橋浴に浸漬し、浸漬開始から10秒毎に、樹脂フィルムの幅の変化を測定した。この測定を4枚の樹脂フィルムについて行った。いずれの樹脂フィルムにおいても、浸漬開始から30秒(0.5min)後に、樹脂フィルムの幅が13.5mm又は13.6mmの一定の幅となったため、樹脂フィルムの収縮が飽和したと判断し、上記した式(1)及び式(2)における時間tを0.5minに設定した。
[Determination of time t in Comparative Example 1 and Comparative Example 2]
According to the procedures of Comparative Examples 1 and 2, a resin film (width 14.4 mm) that was subjected to a swelling process and a dyeing process was prepared. The resin film after the dyeing process was immersed in the crosslinking bath used in the crosslinking and stretching process of Comparative Examples 1 and 2, and changes in the width of the resin film were measured every 10 seconds from the start of immersion. This measurement was performed on four resin films. In either resin film, the width of the resin film reached a constant width of 13.5 mm or 13.6 mm 30 seconds (0.5 min) after the start of dipping, so it was determined that the shrinkage of the resin film was saturated. The time t in the above equations (1) and (2) was set to 0.5 min.
 〔比較例1〕
 厚み45μmの長尺のポリビニルアルコール系樹脂を形成材料とする樹脂フィルム〔(株)クラレ製の商品名「VF-PE#4500」、ケン化度99.9モル%以上〕を、温度23℃の純水からなる膨潤浴に浸漬時間110秒で浸漬させ、樹脂フィルムの搬送方向に2.1倍に一軸延伸する処理を行った(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ素/ホウ酸/水が1.0/0.5/100(質量比)であるヨウ素を含む染色液からなる温度23℃の染色浴に浸漬時間163秒で浸漬させ、樹脂フィルムの搬送方向に1.22倍に一軸延伸する処理を行った(染色工程)。
[Comparative example 1]
A resin film made of a long polyvinyl alcohol resin with a thickness of 45 μm [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 23°C. The resin film was immersed in a swelling bath made of pure water for 110 seconds and uniaxially stretched 2.1 times in the transport direction of the resin film (swelling step). Thereafter, the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio). The resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
 次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が2.3/3.7/100(質量比)である架橋液からなる温度59℃の架橋浴に浸漬時間92秒で浸漬させ、樹脂フィルムの搬送方向に一軸延伸する処理を行った(架橋延伸工程)。架橋浴として、浴中に搬送方向上流側から第1ニップロール、第2ニップロール、及び第3ニップロールがこの順に配置された浴を用い、第1ニップロールと第2ニップロールとの間で一軸延伸処理(第1延伸処理)を行い、第2ニップロールと第3ニップロールとの間で一軸延伸処理(第2延伸処理)を行った。 Next, the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio). The resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step). As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
 第1延伸処理における樹脂フィルムの搬送距離(第1ニップロールと第2ニップロールとの間の樹脂フィルムの搬送距離)である距離X1(c1)は、上記で決定した時間tを0.2倍した値と架橋延伸工程における樹脂フィルムの搬送速度vとを乗じて算出される値(X1(c1)=v×0.2t)に設定した。架橋浴への樹脂フィルムの浸漬を開始してから第1延伸処理が完了するまでに樹脂フィルムが搬送される距離X2(c1)はv×0.26tに設定した。また、第2延伸処理における樹脂フィルムの搬送距離(第2ニップロールと第3ニップロールとの間の樹脂フィルムの搬送距離)Xf(c1)は、距離X1(c1)の15.0倍とし、距離X2(c1)の11.5倍とした。Rv2は、Rvmin+2.7m/minとした。 The distance X1 (c1), which is the transport distance of the resin film in the first stretching process (the transport distance of the resin film between the first nip roll and the second nip roll), is the value obtained by multiplying the time t determined above by 0.2. and the transport speed v of the resin film in the crosslinking and stretching step (X1(c1)=v×0.2t). The distance X2 (c1) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v×0.26t. Further, the conveyance distance of the resin film in the second stretching process (the conveyance distance of the resin film between the second nip roll and the third nip roll) Xf (c1) is set to 15.0 times the distance X1 (c1), and the distance X2 It was 11.5 times that of (c1). Rv2 was set to Rvmin+2.7 m/min.
 その後、温度38℃で乾燥して(乾燥工程)、ポリビニルアルコール系樹脂にヨウ素が吸着配向している厚み18μmの偏光子を得た。 Thereafter, it was dried at a temperature of 38° C. (drying step) to obtain a polarizer with a thickness of 18 μm in which iodine was adsorbed and oriented on the polyvinyl alcohol resin.
 乾燥工程後の偏光子について、10万m製造したときの延伸方向に直交する方向の長さ(幅)のばらつき(標準偏差)を確認したところ、ばらつきは3mmを超えており、長さ方向において安定した幅で製造できなかった。 When we checked the variation (standard deviation) in the length (width) in the direction perpendicular to the stretching direction when 100,000 m of polarizers were manufactured after the drying process, the variation exceeded 3 mm, and the It was not possible to manufacture it with a stable width.
 〔比較例2〕
 厚み45μmの長尺のポリビニルアルコール系樹脂を形成材料とする樹脂フィルム〔(株)クラレ製の商品名「VF-PE#4500」、ケン化度99.9モル%以上〕を、温度23℃の純水からなる膨潤浴に浸漬時間110秒で浸漬させ、樹脂フィルムの搬送方向に2.1倍に一軸延伸する処理を行った(膨潤工程)。その後、膨潤浴から引き出したフィルムを、ヨウ素/ホウ酸/水が1.0/0.5/100(質量比)であるヨウ素を含む染色液からなる温度23℃の染色浴に浸漬時間163秒で浸漬させ、樹脂フィルムの搬送方向に1.22倍に一軸延伸する処理を行った(染色工程)。
[Comparative example 2]
A resin film made of a long polyvinyl alcohol resin with a thickness of 45 μm [trade name “VF-PE#4500” manufactured by Kuraray Co., Ltd., saponification degree of 99.9 mol% or more] was heated at a temperature of 23°C. The resin film was immersed in a swelling bath made of pure water for 110 seconds and uniaxially stretched 2.1 times in the transport direction of the resin film (swelling step). Thereafter, the film pulled out from the swelling bath was immersed for 163 seconds in a dyeing bath at a temperature of 23°C consisting of a dyeing solution containing iodine with a ratio of iodine/boric acid/water of 1.0/0.5/100 (mass ratio). The resin film was immersed in water and uniaxially stretched 1.22 times in the transport direction of the resin film (dying process).
 次いで、染色浴から引き出したフィルムを、ヨウ化カリウム/ホウ酸/水が2.3/3.7/100(質量比)である架橋液からなる温度59℃の架橋浴に浸漬時間92秒で浸漬させ、樹脂フィルムの搬送方向に一軸延伸する処理を行った(架橋延伸工程)。架橋浴として、浴中に搬送方向上流側から第1ニップロール、第2ニップロール、及び第3ニップロールがこの順に配置された浴を用い、第1ニップロールと第2ニップロールとの間で一軸延伸処理(第1延伸処理)を行い、第2ニップロールと第3ニップロールとの間で一軸延伸処理(第2延伸処理)を行った。 Next, the film pulled out from the dyeing bath was immersed for 92 seconds in a crosslinking bath at a temperature of 59°C consisting of a crosslinking solution containing potassium iodide/boric acid/water at a ratio of 2.3/3.7/100 (mass ratio). The resin film was immersed and uniaxially stretched in the transport direction of the resin film (crosslinking and stretching step). As a crosslinking bath, a bath in which a first nip roll, a second nip roll, and a third nip roll are arranged in this order from the upstream side in the conveying direction is used, and a uniaxial stretching process (first 1 stretching treatment) was performed, and uniaxial stretching treatment (second stretching treatment) was performed between the second nip roll and the third nip roll.
 第1延伸処理における樹脂フィルムの搬送距離(第1ニップロールと第2ニップロールとの間の樹脂フィルムの搬送距離)である距離X1(c2)は、上記で決定した時間tを1.4倍した値と架橋延伸工程における樹脂フィルムの搬送速度vとを乗じて算出される値(X1(c2)=v×1.4t)に設定した。架橋浴への樹脂フィルムの浸漬を開始してから第1延伸処理が完了するまでに樹脂フィルムが搬送される距離X2(c2)はv×1.67tに設定した。また、第2延伸処理における樹脂フィルムの搬送距離(第2ニップロールと第3ニップロールとの間の樹脂フィルムの搬送距離)Xf(c2)は、距離X1(c2)の1.3倍とし、距離X2(c2)の1.2倍とした。Rv2は、Rvmin+2.7m/minとした。 The distance X1 (c2), which is the transport distance of the resin film in the first stretching process (the transport distance of the resin film between the first nip roll and the second nip roll), is the value obtained by multiplying the time t determined above by 1.4. and the transport speed v of the resin film in the crosslinking/stretching step (X1(c2)=v×1.4t). The distance X2 (c2) that the resin film was transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stretching treatment was set to v×1.67t. In addition, the transport distance of the resin film in the second stretching process (the transport distance of the resin film between the second nip roll and the third nip roll) Xf (c2) is set to 1.3 times the distance X1 (c2), and the distance X2 It was 1.2 times that of (c2). Rv2 was set to Rvmin+2.7 m/min.
 その後、温度38℃で乾燥して(乾燥工程)、ポリビニルアルコール系樹脂にヨウ素が吸着配向している厚み18μmの偏光子を得た。 Thereafter, it was dried at a temperature of 38° C. (drying step) to obtain a polarizer with a thickness of 18 μm in which iodine was adsorbed and oriented on the polyvinyl alcohol resin.
 乾燥工程後の偏光子について、10万m製造したときの延伸方向に直交する方向の長さ(幅)のばらつき(標準偏差)を確認したところ、ばらつきは3mmを超えており、長さ方向において安定した幅で製造できなかった。 When we checked the variation (standard deviation) in the length (width) in the direction perpendicular to the stretching direction when 100,000 m of polarizers were manufactured after the drying process, the variation exceeded 3 mm, and the It was not possible to manufacture it with a stable width.
 1 樹脂フィルム、10 架橋浴、11 第1ニップロール、12 第2ニップロール、13 第3ニップロール。 1 resin film, 10 crosslinking bath, 11 first nip roll, 12 second nip roll, 13 third nip roll.

Claims (11)

  1.  ポリビニルアルコール系樹脂を形成材料とする樹脂フィルムに二色性色素が吸着配向している偏光子の製造方法であって、
     前記樹脂フィルムを搬送しながら膨潤させる膨潤工程と、
     前記膨潤工程後の前記樹脂フィルムを搬送しながら染色する染色工程と、
     前記染色工程後の前記樹脂フィルムを搬送しながら架橋浴に浸漬し、前記架橋浴中で搬送方向に延伸する架橋延伸工程と、を含み、
     前記架橋延伸工程は、多段階で延伸処理を行う工程であり、かつ、前記延伸処理のうちの1段階目の延伸処理は、下記式(1)の関係を満たすように行うことを特徴とする、偏光子の製造方法。
      v×0.3t≦X1≦v×1.2t  (1)
    [式(1)中、
     X1は、前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離[m]を表す。
     vは、前記架橋延伸工程における前記樹脂フィルムの搬送速度[m/min]を表す。
     tは、前記1段階目の延伸処理に用いる前記架橋浴に、前記染色工程後の前記樹脂フィルムを浸漬したときに、前記樹脂フィルムの収縮が飽和するまでに要する時間[min]を表す。]
    A method for producing a polarizer in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin as a forming material, the method comprising:
    a swelling step of swelling the resin film while conveying it;
    a dyeing step of dyeing the resin film after the swelling step while conveying it;
    A crosslinking and stretching step of immersing the resin film after the dyeing step in a crosslinking bath while transporting it and stretching it in the transporting direction in the crosslinking bath,
    The cross-linking and stretching process is a process in which stretching is performed in multiple stages, and the first stage of the stretching is performed so as to satisfy the following formula (1). , a method for manufacturing a polarizer.
    v×0.3t≦X1≦v×1.2t (1)
    [In formula (1),
    X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
    v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
    t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process. ]
  2.  ポリビニルアルコール系樹脂を形成材料とする樹脂フィルムに二色性色素が吸着配向している偏光子の製造方法であって、
     前記樹脂フィルムを搬送しながら膨潤させる膨潤工程と、
     前記膨潤工程後の前記樹脂フィルムを搬送しながら染色する染色工程と、
     前記染色工程後の前記樹脂フィルムを搬送しながら架橋浴に浸漬し、前記架橋浴中で搬送方向に延伸する架橋延伸工程と、を含み、
     前記架橋延伸工程は、多段階で延伸処理を行う工程であり、かつ、前記延伸処理のうちの1段階目の延伸処理は、下記式(2)の関係を満たすように行うことを特徴とする、偏光子の製造方法。
      v×0.4t≦X2≦v×1.2t  (2)
    [式(2)中、
     X2は、前記架橋延伸工程において、前記架橋浴への前記樹脂フィルムの浸漬を開始してから前記1段階目の延伸処理が完了するまでに前記樹脂フィルムが搬送される距離[m]を表す。
     vは、前記架橋延伸工程における前記樹脂フィルムの搬送速度[m/min]を表す。
     tは、前記1段階目の延伸処理に用いる前記架橋浴に、前記染色工程後の前記樹脂フィルムを浸漬したときに、前記樹脂フィルムの収縮が飽和するまでに要する時間[min]を表す。]
    A method for producing a polarizer in which a dichroic dye is adsorbed and oriented on a resin film made of polyvinyl alcohol resin as a forming material, the method comprising:
    a swelling step of swelling the resin film while conveying it;
    a dyeing step of dyeing the resin film after the swelling step while conveying it;
    A crosslinking and stretching step of immersing the resin film after the dyeing step in a crosslinking bath while transporting it and stretching it in the transporting direction in the crosslinking bath,
    The cross-linking and stretching process is a process in which a stretching process is performed in multiple stages, and the first stage of the stretching process is performed so as to satisfy the relationship of the following formula (2). , a method for manufacturing a polarizer.
    v×0.4t≦X2≦v×1.2t (2)
    [In formula (2),
    X2 represents the distance [m] that the resin film is transported from the start of immersion of the resin film in the crosslinking bath to the completion of the first stage stretching process in the crosslinking/stretching step.
    v represents the conveyance speed [m/min] of the resin film in the crosslinking and stretching step.
    t represents the time [min] required until the shrinkage of the resin film is saturated when the resin film after the dyeing process is immersed in the crosslinking bath used in the first stage stretching process. ]
  3.  前記架橋延伸工程はさらに、下記式(1)の関係を満たす、請求項2に記載の偏光子の製造方法。
      v×0.3t≦X1≦v×1.2t  (1)
    [式(1)中、
     X1は、前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離[m]を表す。
     v及びtは、上記と同じ意味を表す。]
    The method for manufacturing a polarizer according to claim 2, wherein the crosslinking and stretching step further satisfies the following formula (1).
    v×0.3t≦X1≦v×1.2t (1)
    [In formula (1),
    X1 represents the distance [m] that the resin film is conveyed from the start to the completion of the first-stage stretching process.
    v and t represent the same meanings as above. ]
  4.  前記1段階目の延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離をX1とするとき、
     前記架橋延伸工程において、前記1段階目よりも後に行う延伸処理のうちの少なくとも1つの延伸処理の開始から完了までに前記樹脂フィルムが搬送される距離は、前記距離X1の2倍以上10倍以下である、請求項1又は3に記載の偏光子の製造方法。
    When the distance that the resin film is conveyed from the start to the completion of the first stage stretching process is defined as X1,
    In the crosslinking and stretching step, the distance that the resin film is conveyed from the start to the completion of at least one of the stretching treatments performed after the first stage is at least 2 times and no more than 10 times the distance X1. The method for manufacturing a polarizer according to claim 1 or 3.
  5.  前記架橋延伸工程において、前記1段階目の延伸処理と、その後に行う2段階目の延伸処理とを、同じ架橋浴中で行う、請求項1~3のいずれか1項に記載の偏光子の製造方法。 The polarizer according to any one of claims 1 to 3, wherein in the cross-linking and stretching step, the first-stage stretching treatment and the subsequent second-stage stretching treatment are performed in the same cross-linking bath. Production method.
  6.  前記架橋浴には、搬送方向上流側から順に、第1ニップロール、第2ニップロール、及び第3ニップロールが配置されており、
     前記1段階目の延伸処理は、前記第1ニップロールと前記第2ニップロールとの間で行い、
     前記2段階目の延伸処理は、前記第2ニップロールと前記第3ニップロールとの間で行う、請求項5に記載の偏光子の製造方法。
    In the crosslinking bath, a first nip roll, a second nip roll, and a third nip roll are arranged in order from the upstream side in the conveyance direction,
    The first stage stretching process is performed between the first nip roll and the second nip roll,
    The method for manufacturing a polarizer according to claim 5, wherein the second-stage stretching process is performed between the second nip roll and the third nip roll.
  7.  前記第2ニップロールは、前記第1ニップロールと前記第2ニップロールとの間の前記樹脂フィルムの搬送距離が調整可能となるように移動可能に設けられている、請求項6に記載の偏光子の製造方法。 The manufacturing of the polarizer according to claim 6, wherein the second nip roll is movably provided so that the conveyance distance of the resin film between the first nip roll and the second nip roll can be adjusted. Method.
  8.  前記第1ニップロールの回転速度をRv1[m/min]とし、前記第3ニップロールの回転速度をRv3[m/min]とした場合において、前記架橋延伸工程の後の前記樹脂フィルムの幅が最小となるときの前記第2ニップロールの回転速度をRvmin[m/min
    ]とするとき、
     前記第2ニップロールの回転速度Rv2[m/min]は、Rvmin±10[m/min]の範囲内である、請求項6に記載の偏光子の製造方法。
    When the rotational speed of the first nip roll is Rv1 [m/min] and the rotational speed of the third nip roll is Rv3 [m/min], the width of the resin film after the crosslinking and stretching step is the minimum. The rotational speed of the second nip roll when
    ] When
    7. The method for manufacturing a polarizer according to claim 6, wherein the rotational speed Rv2 [m/min] of the second nip roll is within a range of Rvmin±10 [m/min].
  9.  前記架橋延伸工程は、前記第2ニップロールの回転速度Rv2[m/min]を変動させながら延伸処理を行う、請求項8に記載の偏光子の製造方法。 The method for manufacturing a polarizer according to claim 8, wherein in the crosslinking and stretching step, the stretching process is performed while varying the rotational speed Rv2 [m/min] of the second nip roll.
  10.  請求項1~3のいずれか1項に記載の偏光子の製造方法によって偏光子を得る工程と、
     前記偏光子を得る工程で得られた前記偏光子を搬送方向にスリットすることなく、前記偏光子の片面又は両面に保護フィルムを積層する工程と、を含む、偏光板の製造方法。
    Obtaining a polarizer by the method for manufacturing a polarizer according to any one of claims 1 to 3;
    A method for manufacturing a polarizing plate, comprising the step of laminating a protective film on one or both sides of the polarizer without slitting the polarizer obtained in the step of obtaining the polarizer in the transport direction.
  11.  偏光板をロール状に巻回した偏光板のロール体であって、
     前記偏光板は、偏光子と、前記偏光子の片面又は両面に積層された保護フィルムと、を有し、
     前記ロール体の巻き始め部分における前記偏光子の幅と、前記ロール体の巻き終わり部分における前記偏光子の幅との差は、絶対値で0.1mm以上3mm以下である、偏光板のロール体。
    A roll body of a polarizing plate obtained by winding a polarizing plate into a roll shape,
    The polarizing plate has a polarizer and a protective film laminated on one or both sides of the polarizer,
    A roll body of a polarizing plate, wherein the difference between the width of the polarizer at a winding start portion of the roll body and the width of the polarizer at a winding end portion of the roll body is 0.1 mm or more and 3 mm or less in absolute value. .
PCT/JP2023/009269 2022-03-16 2023-03-10 Method for manufacturing polarizer WO2023176716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040947 2022-03-16
JP2022040947 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176716A1 true WO2023176716A1 (en) 2023-09-21

Family

ID=88023301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009269 WO2023176716A1 (en) 2022-03-16 2023-03-10 Method for manufacturing polarizer

Country Status (2)

Country Link
JP (1) JP2023138399A (en)
WO (1) WO2023176716A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238771A1 (en) * 2015-02-16 2016-08-18 Samsung Sdi Co., Ltd. Polarizing plate and optical display including the same
JP2017027013A (en) * 2015-07-27 2017-02-02 住友化学株式会社 Production method of polarizing film
JP2019086543A (en) * 2017-11-01 2019-06-06 住友化学株式会社 Apparatus for manufacturing polarization film and method for manufacturing polarization film
JP2022022085A (en) * 2020-07-22 2022-02-03 住友化学株式会社 Method for manufacturing polarization film and polyvinyl alcohol film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160238771A1 (en) * 2015-02-16 2016-08-18 Samsung Sdi Co., Ltd. Polarizing plate and optical display including the same
JP2017027013A (en) * 2015-07-27 2017-02-02 住友化学株式会社 Production method of polarizing film
JP2019086543A (en) * 2017-11-01 2019-06-06 住友化学株式会社 Apparatus for manufacturing polarization film and method for manufacturing polarization film
JP2022022085A (en) * 2020-07-22 2022-02-03 住友化学株式会社 Method for manufacturing polarization film and polyvinyl alcohol film

Also Published As

Publication number Publication date
JP2023138399A (en) 2023-10-02

Similar Documents

Publication Publication Date Title
JP5722255B2 (en) Manufacturing method of polarizing plate
KR102130185B1 (en) Process for producing polarizing film
JP6649068B2 (en) Manufacturing method of polarizing film
KR101553411B1 (en) A polarizing film a polarizer and a process for manufacturing these
JP2013148806A (en) Polarizing film and manufacturing method thereof and polarizer
JP2020071240A (en) Polarizer and manufacturing method therefor
KR20180105604A (en) Method of manufacturing polarizer
TWI409507B (en) A method for producing a polarizing film, and a polarizer and an optical laminate
WO2018016542A1 (en) Method for producing polarizing film
JP6067158B1 (en) Manufacturing method of polarizing film
JP4421886B2 (en) Method for producing iodine polarizing film and method for producing polarizing plate
WO2023176716A1 (en) Method for manufacturing polarizer
JP7012891B2 (en) Method for manufacturing polarizing film
JP2022065070A (en) Manufacturing method of polarizing plate
TW202413252A (en) Method of manufacturing polarizer
JP2021139934A (en) Method for producing polarizing film
CN108139533B (en) Method for producing stretched film and method for producing polarizing film
JP2005173216A (en) Manufacturing method of polarizing film, manufacturing method of polarizing plate and manufacturing method of optical laminate
WO2022202332A1 (en) Production method for polarizing film and polarizing plate
WO2023037939A1 (en) Method for producing polarizing film and method for producing polarizing plate
JP7504744B2 (en) Polarizing plate and organic EL display device
JP2022136808A (en) Method of manufacturing polarizing film
JP2023087830A (en) Method and device for manufacturing polarization film
KR20230109564A (en) Method for manufacturing a polarizing plate
JP2023084925A (en) Method for manufacturing polarization film, and polarization film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770671

Country of ref document: EP

Kind code of ref document: A1