WO2023176552A1 - Sheet, and paper for printing - Google Patents

Sheet, and paper for printing Download PDF

Info

Publication number
WO2023176552A1
WO2023176552A1 PCT/JP2023/008344 JP2023008344W WO2023176552A1 WO 2023176552 A1 WO2023176552 A1 WO 2023176552A1 JP 2023008344 W JP2023008344 W JP 2023008344W WO 2023176552 A1 WO2023176552 A1 WO 2023176552A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
sheet
thermoplastic resin
less
resin
Prior art date
Application number
PCT/JP2023/008344
Other languages
French (fr)
Japanese (ja)
Inventor
達也 鈴木
康弘 野田
Original Assignee
株式会社ユポ・コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユポ・コーポレーション filed Critical 株式会社ユポ・コーポレーション
Publication of WO2023176552A1 publication Critical patent/WO2023176552A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/32Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed at least two layers being foamed and next to each other
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets

Definitions

  • the present invention relates to sheets and printing paper.
  • resin sheets have been widely used as printing paper for labels, wrapping paper, posters, calendars, catalogs, public notices, etc.
  • the resin sheet In order to clearly display printed contents like pulp paper, the resin sheet must have an appropriate degree of whiteness. Therefore, resin sheets used for printing paper often have a porous layer (see, for example, Patent Document 1).
  • Recycling of plastic waste includes thermal recycling, material recycling, chemical recycling, etc.
  • chemical recycling produces new materials from raw materials obtained by chemically decomposing waste, so it is possible to produce materials with fewer foreign substances.
  • the resin sheet having the porous layer described above is manufactured by molding a resin composition into a sheet shape using a molding device.
  • the rigidity of the sheets is low, leading to transportation problems during printing (paper feeding/ejection, etc.) and reduced tear resistance. there were.
  • An object of the present invention is to provide a sheet that has excellent transportability during printing and tear resistance while reducing environmental load.
  • a sheet comprising a biaxially stretched layer containing a thermoplastic resin,
  • the thermoplastic resin includes a chemically recycled polyolefin,
  • the crystallinity of the thermoplastic resin in the biaxially stretched layer is 40 to 52%
  • a sheet in which the biaxially stretched layer is a biaxially stretched porous layer containing particles.
  • the surface layer is a uniaxially stretched porous layer containing a thermoplastic resin and particles, The sheet according to [4] above, wherein the content of the particles in the surface layer is 30 to 80% by mass.
  • thermoplastic resin in the surface layer contains a chemically recycled polyolefin, The sheet according to [5] above, wherein the thermoplastic resin in the surface layer has a crystallinity of 45 to 50%.
  • thermoplastic resin in the surface layer contains an acid-modified polyolefin.
  • (meth)acrylic refers to both acrylic and methacrylic.
  • the sheet of the present invention includes a biaxially stretched layer containing a thermoplastic resin.
  • the thermoplastic resin in the biaxially stretched layer has a crystallinity of 40 to 52% and contains chemically recycled polyolefin.
  • chemically recycled polyolefin refers to a polyolefin resin produced by a chemical recycling method, for example, by collecting a used polyolefin resin and depolymerizing it to repolymerize the decomposed monomer. refers to a polyolefin resin obtained by
  • recycled polyolefin resins By using recycled polyolefin resins in this way, it is possible to reduce the amount of newly manufactured unused (hereinafter referred to as virgin) resin, thereby reducing the environmental impact. be.
  • polyolefin resins produced by chemical recycling methods are less likely to contain foreign substances such as particles than material recycling methods, in which used polyolefin resins are melted and pelletized and reused as raw materials for new products. There tends to be less. Since tearing of the sheet caused by foreign matter can be reduced, the tear resistance of the sheet can be increased while reducing the environmental load.
  • the biaxially stretched layer in the present invention has less anisotropy in the direction of the stretching axis than the uniaxially stretched layer, so it is possible to improve the tear resistance of the sheet.
  • a thermoplastic resin with a crystallinity of 52% or less deterioration in tear resistance due to orientation of the thermoplastic resin is suppressed.
  • the biaxially stretched layer has higher rigidity and superior mechanical strength than the non-stretched layer or the uniaxially stretched layer.
  • the stiffness of this biaxially stretched layer is further increased by using a thermoplastic resin with a crystallinity of 40% or more. It is possible to provide a sheet that is less likely to stick to rollers, wrinkle or twist during paper feeding or ejection in a printing device, and has excellent conveyance properties. Therefore, it is possible to provide a sheet that has excellent conveyance properties and tear resistance while reducing environmental load.
  • the biaxially stretched layer is a layer in which a resin composition is stretched in one direction (the longitudinal direction (MD) of the sheet) and in a direction substantially perpendicular to the one direction (the transverse direction (TD) of the sheet).
  • the biaxially stretched layer contains a thermoplastic resin having a specific degree of crystallinity as described above, and contains chemically recycled polyolefin as all or part of the thermoplastic resin.
  • the crystallinity of the thermoplastic resin is 40% or more, preferably 42% or more, more preferably 44% or more, from the viewpoint of sheet conveyance, pore formation, gloss, etc. From the viewpoint of resistance, it is 52% or less, preferably 51% or less, and more preferably 50% or less.
  • the crystallinity is measured by differential scanning calorimetry.
  • Methods for controlling the crystallinity of the thermoplastic resin within a desired range include, for example, a method of controlling the stereoregularity of the thermoplastic resin, a method of mixing thermoplastic resins with different degrees of crystallinity, and the like.
  • a copolymerizable monomer other than the monomer constituting the target resin is mixed during the synthesis of a thermoplastic resin
  • the degree of crystallinity of the synthesized thermoplastic resin may change significantly. For example, if a trace amount of ethylene is mixed during the synthesis of polypropylene, polypropylene may be obtained that has a lower degree of crystallinity than polypropylene containing only propylene monomer. In such cases, resins with different crystallinities may be obtained for each unit, such as a synthetic lot.
  • the melting point of the thermoplastic resin is preferably 120°C or higher, more preferably 140°C or higher, and 160°C or higher, from the viewpoint of ensuring shape stability when placed under high temperatures in various printing methods. It is more preferable that it is above. From the viewpoint of facilitating molding, the melting point is preferably 250°C or lower, more preferably 220°C or lower, even more preferably 200°C or lower, and particularly preferably 180°C or lower. .
  • the melting point refers to the endothermic peak top temperature accompanying melting in differential scanning calorimetry.
  • the melt flow rate (MFR) (230° C., 2.16 kg load) of the thermoplastic resin is preferably 1.0 g/10 minutes or more, more preferably 2.0 g/10 minutes or more, and 4. More preferably, it is 0 g/10 minutes or more.
  • the melt flow rate is preferably 20 g/10 minutes or less, more preferably 12 g/10 minutes or less, even more preferably 10 g/10 minutes or less.
  • the above melt flow rate is obtained in accordance with JIS K7210-1:2014.
  • the thermoplastic resin contains two or more types of resins, it is preferable from the viewpoint of moldability that resins having different melt flow rates are included.
  • thermoplastic resin includes a first resin having a melt flow rate of 1.0 g/10 minutes or more and 5.0 g/10 minutes or less, and a first resin having a melt flow rate of more than 5.0 g/10 minutes and 30 g/10 minutes. /10 minutes or less.
  • the thermoplastic resin preferably contains a polyolefin resin or a polyester resin, more preferably a polyolefin resin, and even more preferably a polypropylene resin.
  • the thermoplastic resin preferably consists of a polyolefin resin or a polyester resin, more preferably a polyolefin resin, and even more preferably a polypropylene resin.
  • the polyolefin resin refers to a resin having 50% by mass or more of olefin as a constituent unit.
  • the polyolefin resin may have only olefin as its constituent unit.
  • the polyolefin resin include polyethylene resin, polypropylene resin, polymethylpentene resin, cyclic olefin resin, and copolymers thereof.
  • the polyester resin include polyethylene terephthalate, polyethylene naphthalate, and aliphatic polyester.
  • the content of the thermoplastic resin in the biaxially stretched layer is preferably 20% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, and 60% by mass or more, from the viewpoint of improving sheet formability or mechanical strength. Particularly preferably % by mass or more. From the viewpoint of imparting various functions, the content of the thermoplastic resin is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
  • the method of depolymerization and subsequent repolymerization of the recovered used resin is not particularly limited. From the viewpoint of mechanical strength, it is preferable that the chemically recycled polyolefin contains chemically recycled polypropylene.
  • the degree of crystallinity of the chemically recycled polyolefin is preferably 30% or more, more preferably 35% or more, even more preferably 40% or more, and 45% from the viewpoint of sheet conveyance properties and pore formation properties of the biaxially stretched layer. The above is particularly preferable. From the viewpoint of tear resistance, the degree of crystallinity of the chemically recycled polyolefin is preferably 60% or less, more preferably 55% or less, and even more preferably 50% or less.
  • the content of chemically recycled polyolefin in the thermoplastic resin in the biaxially stretched layer is preferably 3% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and 30% by mass from the viewpoint of reducing environmental load. % or more is particularly preferred, 40% by mass or more is even more particularly preferred, and even more particularly preferably 50% by mass or more.
  • the content of the chemically recycled polyolefin may be 100% by mass, but from the viewpoint of crystallinity control, it is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less. , 70% by mass or less is particularly preferred. Note that the preferred content of chemically recycled polyolefin in all thermoplastic resins used in the entire sheet is also the same as above.
  • thermoplastic resin may contain an unused (virgin) polyolefin resin that is a new raw material.
  • the content of unused polyolefin resin in the thermoplastic resin in the biaxially stretched layer is, for example, 10% by mass or more, preferably 20% by mass or more, and 30% by mass or more, from the viewpoint of controlling the crystallinity within a desired range. It is more preferably at least 40% by mass, even more preferably at least 40% by mass. From the viewpoint of reducing environmental load, the content of the unused polyolefin resin is preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less. .
  • the unused polyolefin resin may include a biomass-derived polyolefin resin.
  • biomass-derived polyolefin resin compared to petroleum-derived polyolefin resin, it is possible to reduce the amount of carbon dioxide gas emitted per sheet volume during the manufacturing stage, contributing to a reduction in environmental impact.
  • the biomass-derived polyolefin resin that can be used is not particularly limited as long as it contains structural units derived from monomers produced using biomass as a raw material.
  • some or all of the propylene used as a monomer for polypropylene resins may be derived from biomass, and some or all of the ethylene or ⁇ -olefin used as a comonomer may be derived from biomass. .
  • the content of biomass-derived polyolefin resin in unused polyolefin resin is, for example, 5% by mass or more, preferably 10% by mass or more, and 20% by mass or more. is more preferable, and even more preferably 30% by mass or more.
  • the content of the biomass-derived polyolefin is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less.
  • the thermoplastic resin in the biaxially oriented layer can include acid-modified polyolefin.
  • the acid-modified polyolefin reduces paper dust generated during printing when the biaxially oriented layer contains particles. Easier to reduce.
  • acid-modified polyolefins examples include acid anhydride group-containing polyolefins obtained by random copolymerization or graft copolymerization of maleic anhydride; carboxylic acid group-containing polyolefins obtained by random copolymerization or graft copolymerization of unsaturated carboxylic acids such as (meth)acrylic acid; Containing polyolefin; epoxy group-containing polyolefin obtained by random copolymerization or graft copolymerization of glycidyl (meth)acrylate, and the like.
  • examples include maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, acrylic acid-modified polypropylene, ethylene/methacrylic acid random copolymer, ethylene/glycidyl methacrylate random copolymer, or glycidyl methacrylate-modified polypropylene. .
  • maleic anhydride-modified polypropylene or maleic anhydride-modified polyethylene is preferred.
  • the acid modification rate of the acid-modified polyolefin is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, preferably 20% by mass or less, and more preferably 15% by mass or less. If the acid modification rate is 0.01% by mass or more, the effect of suppressing paper dust can be easily obtained. If the acid modification rate is 20% by mass or less, the softening point of the acid-modified polyolefin will not become too low, and kneading with the thermoplastic resin will be relatively easy.
  • the content of acid-modified polyolefin in the biaxially stretched layer when containing acid-modified polyolefin is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 30 parts by mass or more, based on 100 parts by mass of particles. It is preferably at most 20 parts by mass, more preferably at most 20 parts by mass.
  • the content of the acid-modified polyolefin is 0.5 parts by mass or more, the adhesive force between the thermoplastic resin and the particles increases, so that the effect of suppressing paper dust can be easily obtained.
  • the content of the acid-modified polyolefin is 30 parts by mass or less, stretchability is good and it becomes easy to suppress stretching breakage during molding.
  • the biaxially stretched layer can further contain particles.
  • the biaxially stretched layer is preferably a biaxially stretched porous layer containing particles.
  • a resin film containing particles in addition to a thermoplastic resin with a desired degree of crystallinity is stretched, a large number of flat fine pores are formed inside the film, starting from the particles and extending in the stretching direction, resulting in a porous state. It can be a layer.
  • the biaxially stretched porous layer long flat pores may be formed in the stretching axis direction (plane direction) around the particles. According to such a stretched porous layer, it is easy to whiten the sheet, make it opaque, and reduce the weight while imparting strength to the sheet. Since the resin component in the biaxially stretched layer is replaced with particles or holes, the amount of resin in the biaxially stretched layer can be further reduced. Since the carbon dioxide gas emission coefficient of the pores is 0, the amount of carbon dioxide gas emitted during the manufacturing stage can also be reduced, which can greatly contribute to reducing the environmental load. By setting the crystallinity of the thermoplastic resin contained together with the particles in the biaxially stretched layer to 40% or more, sufficient pores are easily formed to make the biaxially stretched layer white, opaque, and lightweight. Become.
  • Particles that can be used include, for example, inorganic particles or organic particles.
  • inorganic particles are preferable from the viewpoint of reducing environmental load because they have a smaller carbon dioxide gas emission coefficient than resins.
  • Inorganic particles that can be used include, for example, calcium carbonate, calcined clay, talc, diatomaceous earth, clay, barium sulfate, magnesium oxide, zinc oxide, titanium oxide, barium titanate, silica, alumina, zeolite, mica, sericite, bentonite, sepiolite. , vermiculite, dolomite, wollastonite, or glass fiber. From the viewpoint of stability of pore formation during stretching, calcium carbonate, calcined clay, or talc are preferred, and calcium carbonate is more preferred.
  • the surface of the inorganic particles may be treated with a fatty acid, a polymeric surfactant, an antistatic agent, or the like.
  • organic particles examples include polyester, polystyrene, polyamide, polycarbonate, polycyclic olefin, poly(meth)acrylate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyether ketone, and polyether ether ketone.
  • One type of inorganic particles and organic particles may be selected from the above and used alone, or two or more types may be used in combination. When two or more types are combined, it may be a combination of inorganic particles and organic particles.
  • the average particle diameter of the particles is preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, and even more preferably 0.5 ⁇ m or more, from the viewpoint of ease of mixing with the thermoplastic resin or pore-forming property. From the viewpoint of suppressing minute tears on the sheet surface originating from the particles, the average particle diameter of the particles is preferably 30 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the average particle diameter of the particles in the biaxially stretched layer can be determined by observing the cross section of the biaxially stretched layer with a scanning electron microscope (SEM). From the image captured by SEM, the diameter of the circumscribed circle of the particles contained in the biaxially stretched layer can be measured at 10 points for arbitrarily selected particles, and the diameter that corresponds to 50% of the cumulative number of particles can be determined as the average particle diameter. can.
  • SEM scanning electron microscope
  • the content of particles in the biaxially stretched layer when containing particles is preferably 5% by mass or more, more preferably 15% by mass or more from the viewpoint of pore formation, and 80% by mass or less from the viewpoint of formability. It is preferably 70% by mass or less, more preferably 60% by mass or less, particularly preferably 50% by mass or less, even more preferably 40% by mass or less, even more particularly preferably 30% by mass or less.
  • the biaxially stretched layer can further include additives.
  • additives include heat stabilizers (antioxidants), neutralizers, nucleating agents, light stabilizers, dispersants, lubricants, colorants, plasticizers, mold release agents, flame retardants, antistatic agents, Alternatively, examples include ultraviolet absorbers.
  • a heat stabilizer may be added for the purpose of suppressing deterioration of the thermoplastic resin and allowing the sheet to be used stably over a long period of time.
  • the heat stabilizer one or more types can be appropriately used from among the commonly known hindered phenol type, phosphorus type, or amine type heat stabilizers.
  • the content of the heat stabilizer in the biaxially stretched layer is preferably 0.01% by mass or more, for example, from the viewpoint of expressing the function of the heat stabilizer. is 0.05% by mass or more, more preferably 0.1% by mass or more, and from the viewpoint of improving molding stability or appearance, is preferably 1.5% by mass or less, and more preferably 1% by mass or less.
  • the light stabilizer one or more kinds of commonly known light stabilizers such as hindered amine type, benzotriazole type, or benzophenone type can be used as appropriate. It is also preferable to use a light stabilizer and the above heat stabilizer in combination.
  • the content of the light stabilizer in the biaxially stretched layer is preferably 0.01% by mass or more, and the molding stability Alternatively, from the viewpoint of improving the appearance, the content is preferably 1.5% by mass or less, more preferably 1% by mass or less.
  • Dispersants and lubricants include, for example, silane coupling agents; fatty acids having 8 to 24 carbon atoms such as oleic acid and stearic acid, metal salts thereof, amides thereof, or esters with alcohols having 1 to 6 carbon atoms; Examples include poly(meth)acrylic acid or metal salts thereof, and one type or two or more types thereof can be used.
  • the sheet of the present invention can include a surface layer on the biaxially stretched layer.
  • a surface layer on the biaxially stretched layer.
  • FIG. 1 shows an example of a sheet 10 that includes a surface layer.
  • the sheet 10 illustrated in FIG. 1 includes a biaxially stretched layer 1 and a surface layer 2 on both sides thereof.
  • the surface layer is preferably a uniaxially stretched porous layer containing a thermoplastic resin and particles. If the surface layer is a uniaxially stretched porous layer, it will be easier to give the sheet a paper texture and reduce the generation of paper dust, but compared to the case where the surface layer is a biaxially stretched layer, the stiffness and uniformity of the sheet will be lower. The tear resistance in this direction tends to decrease. Therefore, in order to suppress the decrease in stiffness and tear resistance of the sheet while obtaining the effects of the surface layer being a uniaxially stretched porous layer, the crystallinity and particle content of the thermoplastic resin are designed to It is preferable to change it from a biaxially stretched layer. In addition, when a surface layer is provided on both surfaces of a biaxially stretched layer, the design of the material of two surface layers, its content, etc. may be the same or different.
  • thermoplastic resin examples include the same materials as those described in the section of ⁇ Biaxially Stretched Layer>.
  • the crystallinity of the thermoplastic resin in the surface layer is preferably 45% or more, more preferably 46% or more, and still more preferably 47% or more, from the viewpoint of sheet conveyance properties and pore-forming properties. , from the viewpoint of tear resistance, preferably 50% or less.
  • the content of the thermoplastic resin in the surface layer is preferably 20% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, and 60% by mass or more. Particularly preferred. From the viewpoint of imparting various functions, the content of the thermoplastic resin is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • thermoplastic resin in the surface layer includes chemically recycled polyolefin.
  • chemically recycled polyolefin examples include the same materials as those described in the section of ⁇ Biaxially Stretched Layer>.
  • the degree of crystallinity of the chemically recycled polyolefin in the surface layer is preferably 40% or more, more preferably 42% or more, even more preferably 44% or more, from the viewpoint of sheet conveyance properties and pore formation properties in the surface layer. It is particularly preferably at least 46%, and from the viewpoint of tear resistance, it is preferably at most 52%, more preferably at most 51%, even more preferably at most 50%.
  • the content of chemically recycled polyolefin in the thermoplastic resin in the surface layer is preferably 3% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and 30% by mass or more from the viewpoint of reducing environmental load. is particularly preferred, 40% by mass or more is particularly preferred, and 50% by mass or more is even more particularly preferred.
  • the content of the chemically recycled polyolefin may be 100% by mass, but from the viewpoint of crystallinity control, it is preferably less than 100% by mass, more preferably 90% by mass or less, even more preferably 80% by mass or less, Particularly preferred is 70% by mass or less.
  • the thermoplastic resin in the surface layer preferably contains acid-modified polyolefin.
  • the acid-modified polyolefin makes it easier for the thermoplastic resin in the surface layer to adhere to the particles, suppressing the particles from falling off from the surface layer, which is the outermost surface of the sheet, and suppressing the generation of paper dust.
  • Examples of the acid-modified polyolefin that can be used for the surface layer include the same materials as those described in the section ⁇ Biaxially oriented layer>.
  • the content of the acid-modified polyolefin in the surface layer is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 1 part by mass or more, based on 100 parts by mass of particles. More preferably .5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, particularly preferably 3 parts by mass or less. .
  • the content of the acid-modified polyolefin is 0.5 parts by mass or more, the adhesive force between the thermoplastic resin and the particles increases, so that the effect of suppressing paper dust can be easily obtained.
  • the content of the acid-modified polyolefin is 30 parts by mass or less, stretchability is good and it becomes easy to suppress stretching breakage during molding.
  • Particles that can be used in the surface layer include the same materials as those described in the ⁇ Biaxially oriented layer> section, and preferred materials, average particle diameters, etc. are also as described in the ⁇ Biaxially oriented layer> section. be.
  • the content of particles in the surface layer is preferably 30% by mass or more, more preferably 35% by mass or more, and 40% by mass or more, from the viewpoint of increasing whiteness etc. and imparting a paper texture to the sheet appearance. It is more preferably 65% by mass or less, more preferably 60% by mass or less, and even more preferably 55% by mass or less, from the viewpoint of suppressing a decrease in the stiffness and tear resistance of the sheet.
  • the thickness of the biaxially stretched layer is preferably 50 ⁇ m or more, more preferably 60 ⁇ m or more, even more preferably 70 ⁇ m or more, from the viewpoint of imparting mechanical strength, and preferably 500 ⁇ m or less, from the viewpoint of imparting lightness, and 400 ⁇ m or more.
  • the thickness is more preferably below, further preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less.
  • the thickness of the surface layer is preferably 1 ⁇ m or more, 1.5 ⁇ m or more, or 2 ⁇ m or more from the viewpoint of imparting mechanical strength to the sheet and suppressing bleed-out of specific components from the biaxially stretched layer to the sheet surface. preferable. From the viewpoint of suppressing a decrease in stiffness and tear resistance and from the viewpoint of imparting lightness, the thickness of the surface layer is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, further preferably 30 ⁇ m or less, and particularly preferably 20 ⁇ m or less. When surface layers are provided on both sides of the biaxially stretched layer, the thickness of each surface layer may be the same or different.
  • the porosity is preferably 10% or more, and 15% or more from the viewpoint of whiteness, opacity, weight reduction, or reduction of environmental load. It is more preferable that the amount is at least 20%, and even more preferably 20% or more. From the viewpoint of maintaining mechanical strength, the porosity is preferably 45% or less, more preferably 40% or less, and even more preferably 35% or less.
  • the porosity is preferably 7% or more, and preferably 10% or more from the viewpoint of whiteness, opacity, weight reduction, or reduction of environmental load. is more preferable, and even more preferably 15% or more. From the viewpoint of maintaining mechanical strength, the porosity is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less. The above-mentioned porosity is measured by the method described in Examples described later.
  • the Clark stiffness (S value) of the sheet of the present invention is preferably 15 or more, more preferably 20 or more, and even more preferably 25 or more.
  • the Clark stiffness is preferably 50 or less, more preferably 45 or less, and even more preferably 40 or less.
  • the above-mentioned Clark stiffness is 15 or more, the sheet is less likely to bend during conveyance, and wrinkles and the like of the sheet tend to be suppressed.
  • the Clark stiffness is 50 or less, the sheet tends to easily follow the shape of the conveyance roller, making it easier to convey the sheet at high speed.
  • the above Clark stiffness is measured in accordance with JIS-P-8143.
  • the method for manufacturing the sheet of the present invention is not particularly limited.
  • a sheet with a single layer structure consisting of biaxially stretched layers can be obtained by forming a resin composition containing the above-mentioned thermoplastic resin and other components into a sheet shape, and then biaxially stretching the resin composition.
  • a sheet having a multilayer structure including a surface layer can be obtained by forming a sheet of the surface layer and laminating it on a biaxially stretched layer.
  • Examples of the sheet forming method include cast molding, calendar molding, rolling molding, inflation molding, etc. in which molten resin is extruded into a sheet shape using a single-layer or multi-layer T-die, I-die, etc. connected to a screw extruder.
  • a method can also be used in which a mixture of a thermoplastic resin and an organic solvent or oil is cast or calendered and then the solvent or oil is removed.
  • Examples of the method for forming a sheet with a multilayer structure include a multilayer die method using a feed block or multi-manifold, an extrusion lamination method using multiple dies, etc., and each method can be combined.
  • Stretching methods include, for example, a longitudinal stretching method using a difference in the peripheral speed of a group of rolls, a lateral stretching method using a tenter oven, a sequential biaxial stretching method that combines these, a rolling method, and a simultaneous biaxial stretching method that uses a combination of a tenter oven and a pantograph.
  • Examples include an axial stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor.
  • a simultaneous biaxial stretching (inflation molding) method in which a molten resin is extruded into a tube shape using a circular die connected to a screw extruder and air is blown into the tube can also be used.
  • each layer may be stretched individually before being laminated, or may be stretched all at once after being laminated. Alternatively, the stretched layers may be stretched again after being laminated.
  • the stretching temperature during stretching is preferably in a range equal to or higher than the glass transition temperature of the thermoplastic resin.
  • the stretching temperature must be within a range that is above the glass transition point of the amorphous portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin.
  • the temperature is preferably 2 to 60°C lower than the melting point of the thermoplastic resin.
  • the stretching speed is not particularly limited, but from the viewpoint of stable stretching and forming, it is preferably within the range of 20 to 350 m/min.
  • the stretching ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when stretching a thermoplastic resin film containing a propylene homopolymer or its copolymer in one direction, the lower limit of the stretching ratio is usually 1.2 times or more, preferably 2 times or more, and the upper limit is 1.2 times or more, preferably 2 times or more. is usually 12 times or less, preferably 10 times or less.
  • the lower limit of the area stretching ratio is usually 1.5 times or more, preferably 10 times or more, and the upper limit is usually 60 times or less, preferably 50 times or less.
  • the upper limit of the stretching ratio is usually 1.2 times or more, preferably 2 times or more, and the lower limit is usually 10 times or less, preferably It is 5 times or less.
  • the stretching ratio in the case of biaxial stretching is an area stretching ratio, and the lower limit is usually 1.5 times or more, preferably 4 times or more, and the upper limit is usually 20 times or less, preferably 12 times or less. If the stretching ratio is within the above range, the desired porosity can be obtained and the opacity can be easily improved. In addition, the sheet is less likely to break, and stable stretch molding tends to be possible.
  • the printing paper of the present invention includes the sheet described above. Therefore, like the sheet described above, it is possible to provide printing paper that not only reduces environmental impact but also has excellent transportability during printing and tear resistance.
  • the printing paper may be made of the above-mentioned sheet, but it may also be provided with other layers, such as a coating layer or the like, on the sheet from the viewpoint of improving adhesion with ink.
  • the printing method is not particularly limited, and not only general printing methods such as offset printing method using oil-based ink or UV ink, UV flexo printing method, etc., but also UV inkjet printing method, dry electrophotographic printing method, etc. can be used. I can do it.
  • Table 1 lists the materials used.
  • Resin compositions (a2) to (a4) Chemical recycled PP2 and chemical recycled PP3 (polypropylene obtained by extracting a propylene component from a monomer obtained by depolymerizing collected used polypropylene resin and polymerizing it (crystallinity: 42%) ), chemically recycled PP4 (polypropylene obtained by extracting the propylene component from the monomer obtained by depolymerizing the recovered used polypropylene resin and polymerizing it (crystallinity: 48%, melting point: 161°C) , MFR (230°C, 2.16 kg load): 8.6 g/10 minutes), chemical recycling PP5 (propylene component is extracted from the monomer obtained by depolymerizing the recovered used polypropylene resin, and Resin compositions (a2) to (a4) were prepared in the same manner as resin composition (a1), except that polypropylene obtained by polymerization (crystallinity: 54%) was used.
  • Resin compositions (a10) and (a14) 59 parts by mass of virgin PP (unused propylene homopolymer (manufactured by Nippon Polypropylene Co., Ltd., product name: Novatec PP FY4)) and chemically recycled PP6 (from monomers obtained by depolymerizing recovered used polypropylene resins) 20 parts by mass of polypropylene (crystallinity: 60%) obtained by extracting the propylene component and polymerizing it; A resin composition consisting of 20 parts by mass (average particle diameter: 1.2 ⁇ m)) and 1 part by mass of acid-modified PP (maleic acid-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Modic P908, softening point: 140°C)) Product (a10) was prepared. A resin composition (a14) was prepared in the same manner as the resin composition (a10) except that the blending amounts of each component of the resin composition (a10) were changed as shown in Table 2.
  • resin composition (a12) A resin composition (a12) was prepared in the same manner as resin composition (a1) except that chemically recycled PP2 was not blended and the blended amount of virgin PP was changed to 79 parts by mass.
  • Resin composition (a13) 39 parts by mass of virgin PP (unused propylene homopolymer (manufactured by Nippon Polypropylene Co., Ltd., product name: Novatec PP FY4)) and chemically recycled PP1 (from monomers obtained by depolymerizing recovered used polypropylene resins) 40 parts by mass of polypropylene (crystallinity: 30%) obtained by extracting the propylene component and polymerizing it; A resin composition consisting of 20 parts by mass (average particle diameter: 1.2 ⁇ m)) and 1 part by mass of acid-modified PP (maleic acid-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Modic P908, softening point: 140°C)) Product (a13) was prepared.
  • resin composition (a15) A resin composition (a15) was prepared in the same manner as the resin composition (a1) except that the blending amounts of each component of the resin composition (a1) were changed as shown in Table 2.
  • Resin compositions (a16) and (a17) The amount of virgin PP was changed to 20 parts by mass, and biomass PP (plant-derived propylene homopolymer (manufactured by Borealis, trade name: HC101BF, melting point: 163°C, MFR (230°C, 2.16 kg load): Each resin composition (a16) was prepared in the same manner as resin composition (a3) except that 19 parts by mass (5.0 g/10 min)) was added. Further, the blending amounts of each component of the resin composition (a16) were changed as shown in Table 2, and a resin composition (a17) was prepared.
  • Table 2 is a list of the blending amounts of materials in each resin composition.
  • thermoplastic resin the melting point of the resin composition is the melting point of the thermoplastic resin.
  • weight average of the melting points of each thermoplastic resin was calculated as the melting point of the entire thermoplastic resin.
  • MFR Melt flow rate
  • ⁇ Crystallinity> 5 mg of the thermoplastic resin used in the resin composition was collected, and heated at a rate of 10°C/min in nitrogen using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., trade name: DSC7000X), and heated to 60°C. The heat of fusion was measured between ⁇ 180°C. Then, the crystallinity (%) of the thermoplastic resin was calculated using the following formula. The heat of complete crystal fusion of polypropylene and polyethylene was calculated as 207 J/g and 293 J/g. Crystallinity (%) Measured heat of fusion / Heat of fusion of perfectly crystalline body x 100
  • the weight average of the crystallinity of each thermoplastic resin was calculated as the crystallinity of the entire thermoplastic resin.
  • Example 1 The resin composition (a1) was kneaded in an extruder set at 230°C, then fed into a feed block die set at 250°C and extruded into a sheet. This was cooled with a cooling device, and the resulting unstretched sheet was heated to 135° C. and stretched 4 times in the longitudinal direction to obtain a 4 times stretched film. Next, the 4 times stretched film was cooled to 60° C., heated again to about 145° C. using a tenter oven, and stretched 8 times in the transverse direction. After performing an annealing treatment in an oven adjusted to 160°C, it was cooled to 60°C, and the edges were slit to obtain a sheet with a total thickness of 80 ⁇ m having a single layer structure (biaxially stretched layer).
  • Examples 2 to 12 and Comparative Examples 1 to 4 Sheets of Examples 2 to 12 and Comparative Examples 1 to 4 were obtained in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3 to form a biaxially stretched layer.
  • Example 13 After kneading the resin composition (a3) in an extruder set at 230°C, it was supplied to an extrusion die set at 250°C and extruded into a sheet. This was cooled with a cooling device, and the obtained unstretched sheet was heated to 135° C. and stretched 4 times in the longitudinal direction using a large number of roll groups having different circumferential speeds to obtain a 4 times stretched film. Next, the resin composition (a11) was kneaded using two extruders set at 250°C. This was supplied to an extrusion die set at 250° C., extruded into a sheet, and laminated on both sides of the 4-fold stretched film to obtain a 3-layer laminated film.
  • the laminated film was cooled to 60°C, heated again to about 145°C using a tenter oven, and stretched 8 times in the transverse direction. Next, an annealing treatment was performed in an oven adjusted to 160°C, and after cooling to 60°C, the edges were slit to obtain the sheet of Example 13.
  • the sheet of Example 13 had three layers in which a surface layer made of a resin composition (a11), a biaxially stretched layer made of a resin composition (a3), and a surface layer made of a resin composition (a11) were laminated in this order.
  • composition a11/a3/a11, thickness: 25 ⁇ m/60 ⁇ m/25 ⁇ m, number of stretching axes: uniaxial/biaxial/uniaxial), and the total thickness was 110 ⁇ m.
  • ⁇ Porosity> Cut out any part of the sheet, embed it in epoxy resin and let it solidify, then cut it perpendicular to the plane of the sheet using a microtome, and attach it to the observation sample stand so that the cut surface becomes the observation surface. I attached it. Gold or gold-palladium or the like was deposited on the observation surface, and the pores were observed at an arbitrary magnification that was easy to observe (for example, a magnification of 500 times to 3000 times). The observation area was captured as image data, image processing was performed using an image analysis device, and the area ratio (%) occupied by the void portion was determined. In the case of a multilayer structure, the boundaries between each layer were determined based on the differences in their appearance, and the area ratio (%) of pores within each layer was determined. The measured values at ten or more arbitrary locations were averaged to determine the porosity (%).
  • ⁇ Whiteness> The whiteness was measured in accordance with JIS L-1015 using a measuring device (manufactured by Suga Test Instruments Co., Ltd.: SM-5), and the measured values are shown in Table 3. A whiteness of 90 or higher can be evaluated as having an appropriate whiteness.
  • the content of chemically recycled polyolefin in the thermoplastic resin of the entire sheet was evaluated according to the following criteria.
  • a grade of C or above can be evaluated as having a high degree of contribution to the environment.
  • E Content is 0% by mass
  • ⁇ Tear resistance> In accordance with JIS P-8116, the Elmendorf tear strength of the sheets obtained in Examples and Comparative Examples in the TD direction (transverse direction of the sheet) was measured. Tear resistance was evaluated by Elmendorf tear strength according to the following criteria. A: Tear strength is 500 gf or more B: Tear strength is 200 gf or more and less than 500 gf C: Tear strength is less than 200 gf
  • ⁇ Stretching stability> The stretching stability was visually evaluated based on the following criteria based on the presence or absence of stretching unevenness during sheet stretching.
  • D A film with a poor appearance was obtained, with some stretching unevenness.
  • ⁇ Paper dust> A printed layer was formed on the sheets obtained in the Examples and Comparative Examples using a 612CD type printing machine manufactured by Hamada Printing Machinery Co., Ltd. To form the printing layer, offset printing ink (trade name: Best SP Indigo) manufactured by T&KTOKA was used. The paper dust left on the printing press was evaluated by the whiteness of the blanket cylinder according to the following criteria. A: When 2,000 sheets were passed through the printing press, the blanket was hardly stained and there was almost no paper dust.
  • Table 3 shows the evaluation results.
  • the sheets of Examples 1 to 12 had porosity of the biaxially stretched layer in the range of 10 to 45%, and had appropriate whiteness.
  • the biaxially stretched layer contains chemically recycled polyolefin, contributing to a reduction in environmental load.
  • the porosity of the biaxially stretched layer was 0%, and the whiteness was as low as 88.
  • the sheet of Comparative Example 2 does not use chemically recycled polyolefin and cannot contribute to reducing environmental load.
  • the sheets of Comparative Examples 3 to 5 use chemically recycled polyolefin, but in Comparative Examples 3 and 5, the degree of crystallinity of the thermoplastic resin in the biaxially stretched layer is lower than 40%, and the prescribed stiffness cannot be obtained. transportability is low because it cannot be transported.
  • Comparative Example 4 has low tear resistance because the crystallinity of the thermoplastic resin exceeds 52%.

Abstract

The problem addressed by the present invention is to provide a resin sheet having excellent transportability and tear resistance during printing while also reducing environmental impact. The resin sheet of the present invention is equipped with a biaxially oriented layer containing a thermoplastic resin. The thermoplastic resin contains a chemically recycled polyolefin. The degree of crystallization of the thermoplastic resin in the biaxially oriented layer is 40-52%. The biaxially oriented layer is a biaxially oriented porous layer containing particles.

Description

シート及び印刷用紙Sheets and printing paper
 本発明は、シート及び印刷用紙に関する。 The present invention relates to sheets and printing paper.
 従来、ラベル、包装紙、ポスター、カレンダー、カタログ、又は公告等の印刷用紙として、樹脂シートが広く利用されている。パルプ紙のように印刷内容を明瞭に表示するためには、樹脂シートの適切な白色度が要求される。そのため、印刷用紙に用いられる樹脂シートはしばしば多孔質層を有する(例えば、特許文献1参照)。 Conventionally, resin sheets have been widely used as printing paper for labels, wrapping paper, posters, calendars, catalogs, public notices, etc. In order to clearly display printed contents like pulp paper, the resin sheet must have an appropriate degree of whiteness. Therefore, resin sheets used for printing paper often have a porous layer (see, for example, Patent Document 1).
特開平8-142286号公報Japanese Patent Application Publication No. 8-142286
 最近、環境問題に対する意識の高まりからリサイクルへの関心が高まっている。プラスチック廃棄物のリサイクルには、サーマルリサイクル、マテリアルリサイクル、又はケミカルリサイクル等がある。なかでもケミカルリサイクルは、廃棄物を化学的に分解した原料から新たな材料を製造するため、異物が少ない材料を製造できる。 Recently, interest in recycling has increased due to growing awareness of environmental issues. Recycling of plastic waste includes thermal recycling, material recycling, chemical recycling, etc. Among these, chemical recycling produces new materials from raw materials obtained by chemically decomposing waste, so it is possible to produce materials with fewer foreign substances.
 上記多孔質層を有する樹脂シートは、成形装置によって樹脂組成物をシート状に成形することにより製造される。しかし、ケミカルリサイクルによって製造された樹脂を用いて樹脂シートを同様に製造したところ、シートの剛度が低く印刷時に搬送トラブル(給排紙性など)が生じたり、引裂き耐性が低下したりすることがあった。 The resin sheet having the porous layer described above is manufactured by molding a resin composition into a sheet shape using a molding device. However, when resin sheets are manufactured in the same way using resin manufactured through chemical recycling, the rigidity of the sheets is low, leading to transportation problems during printing (paper feeding/ejection, etc.) and reduced tear resistance. there were.
 本発明は、環境負荷を低減しつつも、印刷時の搬送性及び引裂き耐性にも優れたシートを提供することを目的とする。 An object of the present invention is to provide a sheet that has excellent transportability during printing and tear resistance while reducing environmental load.
 本発明者らが上記課題を解決すべく鋭意検討を行った結果、以下のとおり、本発明を完成した。 As a result of intensive studies to solve the above problems, the present inventors completed the present invention as follows.
[1]熱可塑性樹脂を含有する二軸延伸層を備えるシートであって、
 前記熱可塑性樹脂が、ケミカルリサイクルポリオレフィンを含み、
 前記二軸延伸層中の前記熱可塑性樹脂の結晶化度が、40~52%であり、
 前記二軸延伸層が、粒子を含有する二軸延伸多孔質層である
 シート。
[1] A sheet comprising a biaxially stretched layer containing a thermoplastic resin,
The thermoplastic resin includes a chemically recycled polyolefin,
The crystallinity of the thermoplastic resin in the biaxially stretched layer is 40 to 52%,
A sheet in which the biaxially stretched layer is a biaxially stretched porous layer containing particles.
[2]前記熱可塑性樹脂中の前記ケミカルリサイクルポリオレフィンの含有量が、3質量%以上である
 上記[1]に記載のシート。
[2] The sheet according to [1] above, wherein the content of the chemically recycled polyolefin in the thermoplastic resin is 3% by mass or more.
[3]前記ケミカルリサイクルポリオレフィンが、ケミカルリサイクルポリプロピレンを含む
 上記[1]又は[2]に記載のシート。
[3] The sheet according to [1] or [2] above, wherein the chemically recycled polyolefin includes chemically recycled polypropylene.
[4]前記二軸延伸層上に表面層を備える
 上記[1]~[3]のいずれかに記載のシート。
[4] The sheet according to any one of [1] to [3] above, comprising a surface layer on the biaxially stretched layer.
[5]前記表面層が、熱可塑性樹脂及び粒子を含有する一軸延伸多孔質層であり、
 前記表面層中の前記粒子の含有量が、30~80質量%である
 上記[4]に記載のシート。
[5] The surface layer is a uniaxially stretched porous layer containing a thermoplastic resin and particles,
The sheet according to [4] above, wherein the content of the particles in the surface layer is 30 to 80% by mass.
[6]前記表面層中の前記熱可塑性樹脂が、ケミカルリサイクルポリオレフィンを含み、
 前記表面層中の前記熱可塑性樹脂の結晶化度が、45~50%である
 上記[5]に記載のシート。
[6] The thermoplastic resin in the surface layer contains a chemically recycled polyolefin,
The sheet according to [5] above, wherein the thermoplastic resin in the surface layer has a crystallinity of 45 to 50%.
[7]前記表面層中の前記熱可塑性樹脂が、酸変性ポリオレフィンを含む
 上記[5]又は[6]に記載のシート。
[7] The sheet according to [5] or [6] above, wherein the thermoplastic resin in the surface layer contains an acid-modified polyolefin.
[8]上記[1]~[7]のいずれかに記載のシートを備える印刷用紙。 [8] Printing paper comprising the sheet according to any one of [1] to [7] above.
 本発明によれば、環境負荷を低減しつつも、印刷時の搬送性及び引裂き耐性にも優れたシートを提供することができる。 According to the present invention, it is possible to provide a sheet that has excellent transportability during printing and tear resistance while reducing environmental load.
シートの一例を示す断面図である。It is a sectional view showing an example of a sheet.
 以下、本発明のシート及び印刷用紙について詳細に説明する。以下の説明は本発明の一例(代表例)であり、本発明はこれに限定されない。 Hereinafter, the sheet and printing paper of the present invention will be explained in detail. The following explanation is an example (representative example) of the present invention, and the present invention is not limited thereto.
 以下の説明において、「(メタ)アクリル」の記載は、アクリルとメタクリルの両方を示す。 In the following description, the term "(meth)acrylic" refers to both acrylic and methacrylic.
(シート)
 本発明のシートは、熱可塑性樹脂を含有する二軸延伸層を備える。二軸延伸層中の熱可塑性樹脂は、その結晶化度が40~52%であり、ケミカルリサイクルポリオレフィンを含む。本発明において、ケミカルリサイクルポリオレフィンとは、ケミカルリサイクル法によって製造されたポリオレフィン系樹脂をいい、例えば使用済みのポリオレフィン系樹脂を回収し、これを解重合することによって分解されたモノマーを再度重合することにより得られたポリオレフィン系樹脂をいう。
(sheet)
The sheet of the present invention includes a biaxially stretched layer containing a thermoplastic resin. The thermoplastic resin in the biaxially stretched layer has a crystallinity of 40 to 52% and contains chemically recycled polyolefin. In the present invention, chemically recycled polyolefin refers to a polyolefin resin produced by a chemical recycling method, for example, by collecting a used polyolefin resin and depolymerizing it to repolymerize the decomposed monomer. refers to a polyolefin resin obtained by
 このようにリサイクルされたポリオレフィン系樹脂を使用することにより、新規に製造される未使用(以下、バージンということがある)の樹脂の使用量を減らすことができるため、環境負荷の低減が可能である。加えてケミカルリサイクル法によって製造されたポリオレフィン系樹脂は、使用済みのポリオレフィン系樹脂を溶融してペレット化する等、そのまま新たな製品の原料として再利用するマテリアルリサイクルに比べて、粒子のような異物が少ない傾向がある。異物が起点となって生じるシートの破れ等を減らすことができるため、環境負荷を低減しつつもシートの引裂き耐性を高めることができる。 By using recycled polyolefin resins in this way, it is possible to reduce the amount of newly manufactured unused (hereinafter referred to as virgin) resin, thereby reducing the environmental impact. be. In addition, polyolefin resins produced by chemical recycling methods are less likely to contain foreign substances such as particles than material recycling methods, in which used polyolefin resins are melted and pelletized and reused as raw materials for new products. There tends to be less. Since tearing of the sheet caused by foreign matter can be reduced, the tear resistance of the sheet can be increased while reducing the environmental load.
 また本発明における二軸延伸層は、一軸延伸層に比べて延伸軸方向への異方性も小さいため、シートの引裂き耐性を向上させることができる。加えて結晶化度が52%以下の熱可塑性樹脂を使用することにより、熱可塑性樹脂の配向による引裂き耐性の低下を抑えている。 Furthermore, the biaxially stretched layer in the present invention has less anisotropy in the direction of the stretching axis than the uniaxially stretched layer, so it is possible to improve the tear resistance of the sheet. In addition, by using a thermoplastic resin with a crystallinity of 52% or less, deterioration in tear resistance due to orientation of the thermoplastic resin is suppressed.
 さらに二軸延伸層は、無延伸層又は一軸延伸層よりも剛度が高く、優れた機械的強度を有する。この二軸延伸層の剛度は、結晶化度が40%以上の熱可塑性樹脂の使用によって、さらに高められている。印刷装置における給紙又は排紙時にローラーへのシートの貼り付き、シワ又はヨレが生じにくく、搬送性に優れたシートを提供できる。よって、環境負荷を低減しつつも、シートの搬送性及び引裂き耐性にも優れたシートの提供が可能である。 Further, the biaxially stretched layer has higher rigidity and superior mechanical strength than the non-stretched layer or the uniaxially stretched layer. The stiffness of this biaxially stretched layer is further increased by using a thermoplastic resin with a crystallinity of 40% or more. It is possible to provide a sheet that is less likely to stick to rollers, wrinkle or twist during paper feeding or ejection in a printing device, and has excellent conveyance properties. Therefore, it is possible to provide a sheet that has excellent conveyance properties and tear resistance while reducing environmental load.
<二軸延伸層>
 二軸延伸層は、樹脂組成物が一方向(シートの長手方向(MD))と当該一方向に対し略垂直方向(シートの短手方向(TD))に延伸された層である。二軸延伸層は、上述のように特定の結晶化度を有する熱可塑性樹脂を含有し、当該熱可塑性樹脂の全部又は一部としてケミカルリサイクルポリオレフィンを含む。
<Biaxially stretched layer>
The biaxially stretched layer is a layer in which a resin composition is stretched in one direction (the longitudinal direction (MD) of the sheet) and in a direction substantially perpendicular to the one direction (the transverse direction (TD) of the sheet). The biaxially stretched layer contains a thermoplastic resin having a specific degree of crystallinity as described above, and contains chemically recycled polyolefin as all or part of the thermoplastic resin.
<<結晶化度>>
 熱可塑性樹脂の結晶化度は、シートの搬送性、空孔形成性及び光沢度等の観点から、40%以上であり、好ましくは42%以上であり、さらに好ましくは44%以上であり、引裂き耐性の観点から、52%以下であり、好ましくは51%以下であり、さらに好ましくは50%以下である。
 上記結晶化度は、示差走査熱量分析により測定される。
<<Crystallinity>>
The crystallinity of the thermoplastic resin is 40% or more, preferably 42% or more, more preferably 44% or more, from the viewpoint of sheet conveyance, pore formation, gloss, etc. From the viewpoint of resistance, it is 52% or less, preferably 51% or less, and more preferably 50% or less.
The crystallinity is measured by differential scanning calorimetry.
 熱可塑性樹脂の結晶化度を所望の範囲に制御する方法としては、例えば熱可塑性樹脂の立体規則性を制御する方法、結晶化度が異なる熱可塑性樹脂を混合する方法等が挙げられる。特に、熱可塑性樹脂の合成時に、目的の樹脂を構成するモノマー以外の共重合性モノマーが混在する場合、合成された熱可塑性樹脂の結晶化度が大きく変化することがある。例えば、ポリプロピレンの合成時にエチレンが微量混入すると、プロピレンモノマーのみのポリプロピレンよりも結晶化度が低いポリプロピレンが得られることがある。このような場合、合成ロットのような単位ごとに結晶化度が異なる樹脂が得られることがある。 Methods for controlling the crystallinity of the thermoplastic resin within a desired range include, for example, a method of controlling the stereoregularity of the thermoplastic resin, a method of mixing thermoplastic resins with different degrees of crystallinity, and the like. In particular, when a copolymerizable monomer other than the monomer constituting the target resin is mixed during the synthesis of a thermoplastic resin, the degree of crystallinity of the synthesized thermoplastic resin may change significantly. For example, if a trace amount of ethylene is mixed during the synthesis of polypropylene, polypropylene may be obtained that has a lower degree of crystallinity than polypropylene containing only propylene monomer. In such cases, resins with different crystallinities may be obtained for each unit, such as a synthetic lot.
<<熱可塑性樹脂>>
 熱可塑性樹脂の融点は、種々の印刷方法で高温下に置かれた際の形状安定性を確保する観点から、120℃以上であることが好ましく、140℃以上であることがより好ましく、160℃以上であることがさらに好ましい。上記融点は、成形を容易とする観点から、250℃以下であることが好ましく、220℃以下であることがより好ましく、200℃以下であることがさらに好ましく、180℃以下であることが特に好ましい。ここで、融点とは示差走査熱量分析における融解に伴う吸熱ピークトップ温度を指す。
<<Thermoplastic resin>>
The melting point of the thermoplastic resin is preferably 120°C or higher, more preferably 140°C or higher, and 160°C or higher, from the viewpoint of ensuring shape stability when placed under high temperatures in various printing methods. It is more preferable that it is above. From the viewpoint of facilitating molding, the melting point is preferably 250°C or lower, more preferably 220°C or lower, even more preferably 200°C or lower, and particularly preferably 180°C or lower. . Here, the melting point refers to the endothermic peak top temperature accompanying melting in differential scanning calorimetry.
 熱可塑性樹脂のメルトフローレート(MFR)(230℃、2.16kg荷重)は、1.0g/10分以上であることが好ましく、2.0g/10分以上であることがより好ましく、4.0g/10分以上であることがさらに好ましい。上記メルトフローレートは、20g/10分以下であることが好ましく、12g/10分以下であることがより好ましく、10g/10分以下であることがさらに好ましい。上記メルトフローレートは、JIS K7210-1:2014に準拠して得られる。また、熱可塑性樹脂が2種類以上の樹脂を含む場合、成形性の観点から、メルトフローレートの異なる樹脂を含むことが好ましい。熱可塑性樹脂は、より具体的には、メルトフローレートが1.0g/10分以上5.0g/10分以下である第1樹脂と、メルトフローレートが5.0g/10分を超え、30g/10分以下である第2樹脂とを含むことが好ましい。 The melt flow rate (MFR) (230° C., 2.16 kg load) of the thermoplastic resin is preferably 1.0 g/10 minutes or more, more preferably 2.0 g/10 minutes or more, and 4. More preferably, it is 0 g/10 minutes or more. The melt flow rate is preferably 20 g/10 minutes or less, more preferably 12 g/10 minutes or less, even more preferably 10 g/10 minutes or less. The above melt flow rate is obtained in accordance with JIS K7210-1:2014. Moreover, when the thermoplastic resin contains two or more types of resins, it is preferable from the viewpoint of moldability that resins having different melt flow rates are included. More specifically, the thermoplastic resin includes a first resin having a melt flow rate of 1.0 g/10 minutes or more and 5.0 g/10 minutes or less, and a first resin having a melt flow rate of more than 5.0 g/10 minutes and 30 g/10 minutes. /10 minutes or less.
 二軸延伸層に使用できる熱可塑性樹脂としては、例えばポリオレフィン系樹脂;ポリエステル系樹脂;ポリアミド系樹脂;ポリカーボネート系樹脂;ポリスチレン系樹脂;ポリフェニレンスルフィド系樹脂等が挙げられる。熱可塑性樹脂の結晶化度を所望の範囲に制御する観点から、これらの1種又は2種以上を使用することができる。 Examples of thermoplastic resins that can be used in the biaxially stretched layer include polyolefin resins; polyester resins; polyamide resins; polycarbonate resins; polystyrene resins; polyphenylene sulfide resins. From the viewpoint of controlling the crystallinity of the thermoplastic resin within a desired range, one or more of these can be used.
 熱可塑性樹脂は、機械的強度の観点から、好ましくはポリオレフィン系樹脂又はポリエステル系樹脂を含み、より好ましくはポリオレフィン系樹脂を含み、さらに好ましくはポリプロピレン系樹脂を含む。同様の観点から、上記熱可塑性樹脂は、好ましくはポリオレフィン系樹脂又はポリエステル系樹脂からなり、より好ましくはポリオレフィン系樹脂からなり、さらに好ましくはポリプロピレン系樹脂からなる。 From the viewpoint of mechanical strength, the thermoplastic resin preferably contains a polyolefin resin or a polyester resin, more preferably a polyolefin resin, and even more preferably a polypropylene resin. From the same viewpoint, the thermoplastic resin preferably consists of a polyolefin resin or a polyester resin, more preferably a polyolefin resin, and even more preferably a polypropylene resin.
 本明細書において、ポリオレフィン系樹脂とは、その構成単位としてオレフィンを50質量%以上有する樹脂をいう。ポリオレフィン系樹脂は、その構成単位がオレフィンのみであってもよい。ポリオレフィン系樹脂としては、例えばポリエチレン系樹脂、ポリプロピレン系樹脂、ポリメチルペンテン系樹脂、環状オレフィン系樹脂、又はこれらの共重合体等が挙げられる。
 ポリエステル系樹脂としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート、又は脂肪族ポリエステル等が挙げられる。
In this specification, the polyolefin resin refers to a resin having 50% by mass or more of olefin as a constituent unit. The polyolefin resin may have only olefin as its constituent unit. Examples of the polyolefin resin include polyethylene resin, polypropylene resin, polymethylpentene resin, cyclic olefin resin, and copolymers thereof.
Examples of the polyester resin include polyethylene terephthalate, polyethylene naphthalate, and aliphatic polyester.
 二軸延伸層中の熱可塑性樹脂の含有量は、シート成形性又は機械的強度向上の観点から、20質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましい。様々な機能付与の観点からは、上記熱可塑性樹脂の含有量は、90質量%以下が好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましい。 The content of the thermoplastic resin in the biaxially stretched layer is preferably 20% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, and 60% by mass or more, from the viewpoint of improving sheet formability or mechanical strength. Particularly preferably % by mass or more. From the viewpoint of imparting various functions, the content of the thermoplastic resin is preferably 90% by mass or less, more preferably 85% by mass or less, and even more preferably 80% by mass or less.
<<ケミカルリサイクルポリオレフィン>>
 二軸延伸層に使用できるケミカルリサイクルポリオレフィンは、上述のようにケミカルリサイクル法によって製造されるのであれば、回収された使用済みの樹脂の解重合及びその後の再重合の方法は特に限定されない。機械的強度の観点からは、ケミカルリサイクルポリオレフィンが、ケミカルリサイクルポリプロピレンを含むことが好ましい。
<<Chemical recycled polyolefin>>
As long as the chemically recycled polyolefin that can be used in the biaxially stretched layer is produced by the chemical recycling method as described above, the method of depolymerization and subsequent repolymerization of the recovered used resin is not particularly limited. From the viewpoint of mechanical strength, it is preferable that the chemically recycled polyolefin contains chemically recycled polypropylene.
 ケミカルリサイクルポリオレフィンの結晶化度は、シートの搬送性及び二軸延伸層の空孔形成性等の観点から、30%以上が好ましく、35%以上がより好ましく、40%以上がさらに好ましく、45%以上が特に好ましい。引裂き耐性の観点からは、上記ケミカルリサイクルポリオレフィンの結晶化度は、60%以下が好ましく、55%以下がより好ましく、50%以下がさらに好ましい。 The degree of crystallinity of the chemically recycled polyolefin is preferably 30% or more, more preferably 35% or more, even more preferably 40% or more, and 45% from the viewpoint of sheet conveyance properties and pore formation properties of the biaxially stretched layer. The above is particularly preferable. From the viewpoint of tear resistance, the degree of crystallinity of the chemically recycled polyolefin is preferably 60% or less, more preferably 55% or less, and even more preferably 50% or less.
 二軸延伸層中の熱可塑性樹脂におけるケミカルリサイクルポリオレフィンの含有量は、環境負荷低減の観点から、3質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上が特に好ましく、40質量%以上がより特に好ましく、50質量%以上がさらに特に好ましい。上記ケミカルリサイクルポリオレフィンの含有量は、100質量%であってもよいが、結晶化度制御の観点からは、100質量%未満が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下が特に好ましい。
 なお、シート全体に使用されるすべての熱可塑性樹脂におけるケミカルリサイクルポリオレフィンの好ましい含有量も上記と同様である。
The content of chemically recycled polyolefin in the thermoplastic resin in the biaxially stretched layer is preferably 3% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and 30% by mass from the viewpoint of reducing environmental load. % or more is particularly preferred, 40% by mass or more is even more particularly preferred, and even more particularly preferably 50% by mass or more. The content of the chemically recycled polyolefin may be 100% by mass, but from the viewpoint of crystallinity control, it is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less. , 70% by mass or less is particularly preferred.
Note that the preferred content of chemically recycled polyolefin in all thermoplastic resins used in the entire sheet is also the same as above.
<<未使用のポリオレフィン系樹脂>>
 熱可塑性樹脂は、上記ケミカルリサイクルポリオレフィンに加えて、新規原料である未使用(バージン)のポリオレフィン系樹脂を含んでいてもよい。
<<Unused polyolefin resin>>
In addition to the above-mentioned chemically recycled polyolefin, the thermoplastic resin may contain an unused (virgin) polyolefin resin that is a new raw material.
 二軸延伸層中の熱可塑性樹脂における未使用のポリオレフィン系樹脂の含有量は、結晶化度を所望の範囲に制御する観点から、例えば10質量%以上であり、20質量%以上が好ましく、30質量%以上がより好ましく、40質量%以上がさらに好ましい。環境負荷低減の観点からは、上記未使用のポリオレフィン系樹脂の含有量は、90質量%以下が好ましく、80質量%以下がより好ましく、70質量%以下がさらに好ましく、60質量%以下が特に好ましい。 The content of unused polyolefin resin in the thermoplastic resin in the biaxially stretched layer is, for example, 10% by mass or more, preferably 20% by mass or more, and 30% by mass or more, from the viewpoint of controlling the crystallinity within a desired range. It is more preferably at least 40% by mass, even more preferably at least 40% by mass. From the viewpoint of reducing environmental load, the content of the unused polyolefin resin is preferably 90% by mass or less, more preferably 80% by mass or less, even more preferably 70% by mass or less, and particularly preferably 60% by mass or less. .
<<バイオマス由来のポリオレフィン系樹脂>>
 上記未使用のポリオレフィン系樹脂は、バイオマス由来のポリオレフィン系樹脂を含むことができる。バイオマス由来のポリオレフィン系樹脂を含むことにより、石油由来のポリオレフィン系樹脂と比べて、製造段階におけるシートの体積当たりの二酸化炭素ガスの排出量を減らすことができ、環境負荷の低減に貢献できる。
<<Polyolefin resin derived from biomass>>
The unused polyolefin resin may include a biomass-derived polyolefin resin. By including biomass-derived polyolefin resin, compared to petroleum-derived polyolefin resin, it is possible to reduce the amount of carbon dioxide gas emitted per sheet volume during the manufacturing stage, contributing to a reduction in environmental impact.
 使用できるバイオマス由来のポリオレフィン系樹脂としては、バイオマスを原料として製造されたモノマー由来の構成単位を含むのであれば、特に限定されない。例えば、ポリプロピレン系樹脂のモノマーとして使用されるプロピレンの一部又は全部がバイオマス由来であってもよいし、コモノマーとして使用されるエチレン又はα-オレフィンの一部又は全部がバイオマス由来であってもよい。 The biomass-derived polyolefin resin that can be used is not particularly limited as long as it contains structural units derived from monomers produced using biomass as a raw material. For example, some or all of the propylene used as a monomer for polypropylene resins may be derived from biomass, and some or all of the ethylene or α-olefin used as a comonomer may be derived from biomass. .
 未使用のポリオレフィン系樹脂中のバイオマス由来のポリオレフィン系樹脂の含有量は、二酸化炭素ガスの排出量削減の観点からは、例えば5質量%以上であり、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上であることがさらに好ましい。延伸安定性の観点からは、上記バイオマス由来のポリオレフィンの含有量は、100質量%未満が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましい。 From the perspective of reducing carbon dioxide gas emissions, the content of biomass-derived polyolefin resin in unused polyolefin resin is, for example, 5% by mass or more, preferably 10% by mass or more, and 20% by mass or more. is more preferable, and even more preferably 30% by mass or more. From the viewpoint of stretching stability, the content of the biomass-derived polyolefin is preferably less than 100% by mass, more preferably 90% by mass or less, and even more preferably 80% by mass or less.
<<酸変性ポリオレフィン樹脂>>
 二軸延伸層中の熱可塑性樹脂は、酸変性ポリオレフィンを含むことができる。本発明のシートが後述する表面層を備えず、二軸延伸層がシートの最表面を構成する場合、酸変性ポリオレフィンによって、二軸延伸層が粒子を含有する場合に印刷時に発生する紙粉を減らしやすくなる。
<<Acid-modified polyolefin resin>>
The thermoplastic resin in the biaxially oriented layer can include acid-modified polyolefin. When the sheet of the present invention does not have the surface layer described below and the biaxially oriented layer constitutes the outermost surface of the sheet, the acid-modified polyolefin reduces paper dust generated during printing when the biaxially oriented layer contains particles. Easier to reduce.
 使用できる酸変性ポリオレフィンとしては、例えば無水マレイン酸をランダム共重合又はグラフト共重合した無水酸基含有ポリオレフィン;(メタ)アクリル酸のような不飽和カルボン酸をランダム共重合又はグラフト共重合したカルボン酸基含有ポリオレフィン;グリシジル(メタ)アクリレートをランダム共重合又はグラフト共重合したエポキシ基含有ポリオレフィン等が挙げられる。 Examples of acid-modified polyolefins that can be used include acid anhydride group-containing polyolefins obtained by random copolymerization or graft copolymerization of maleic anhydride; carboxylic acid group-containing polyolefins obtained by random copolymerization or graft copolymerization of unsaturated carboxylic acids such as (meth)acrylic acid; Containing polyolefin; epoxy group-containing polyolefin obtained by random copolymerization or graft copolymerization of glycidyl (meth)acrylate, and the like.
 さらに具体的には、無水マレイン酸変性ポリプロピレン、無水マレイン酸変性ポリエチレン、アクリル酸変性ポリプロピレン、エチレン・メタクリル酸ランダム共重合体、エチレン・グリシジルメタクリレートランダム共重合体、又はグリシジルメタクリレート変性ポリプロピレン等が挙げられる。これらの中でも、無水マレイン酸変性ポリプロピレン又は無水マレイン酸変性ポリエチレンが好ましい。 More specifically, examples include maleic anhydride-modified polypropylene, maleic anhydride-modified polyethylene, acrylic acid-modified polypropylene, ethylene/methacrylic acid random copolymer, ethylene/glycidyl methacrylate random copolymer, or glycidyl methacrylate-modified polypropylene. . Among these, maleic anhydride-modified polypropylene or maleic anhydride-modified polyethylene is preferred.
 酸変性ポリオレフィンの酸変性率は、0.01質量%以上が好ましく、0.05質量%以上がより好ましく、20質量%以下が好ましく、15質量%以下がより好ましい。
 上記酸変性率が0.01質量%以上であれば、紙粉の抑制効果が得られやすくなる。上記酸変性率が20質量%以下であれば、酸変性ポリオレフィンの軟化点が低くなりすぎず、熱可塑性樹脂との混練が比較的容易となる。
The acid modification rate of the acid-modified polyolefin is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, preferably 20% by mass or less, and more preferably 15% by mass or less.
If the acid modification rate is 0.01% by mass or more, the effect of suppressing paper dust can be easily obtained. If the acid modification rate is 20% by mass or less, the softening point of the acid-modified polyolefin will not become too low, and kneading with the thermoplastic resin will be relatively easy.
 酸変性ポリオレフィンを含有する場合の二軸延伸層中の酸変性ポリオレフィンの含有量は、粒子100質量部に対して、好ましくは0.5質量部以上が好ましく、1質量部以上がより好ましく、30質量部以下が好ましく、20質量部以下がより好ましい。
 上記酸変性ポリオレフィンの含有量が0.5質量部以上であれば、熱可塑性樹脂と粒子の接着力が高まるため紙粉の抑制効果が得られやすくなる。上記酸変性ポリオレフィンの含有量が30質量部以下であれば、延伸性が良好で成形時における延伸切れを抑えやすくなる。
The content of acid-modified polyolefin in the biaxially stretched layer when containing acid-modified polyolefin is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 30 parts by mass or more, based on 100 parts by mass of particles. It is preferably at most 20 parts by mass, more preferably at most 20 parts by mass.
When the content of the acid-modified polyolefin is 0.5 parts by mass or more, the adhesive force between the thermoplastic resin and the particles increases, so that the effect of suppressing paper dust can be easily obtained. When the content of the acid-modified polyolefin is 30 parts by mass or less, stretchability is good and it becomes easy to suppress stretching breakage during molding.
<<粒子>>
 本発明において、二軸延伸層は粒子をさらに含有することができる。環境負荷の低減の観点からは、二軸延伸層は粒子を含有する二軸延伸多孔質層であることが好ましい。結晶化度を所望の範囲とする熱可塑性樹脂に加えて粒子を含む樹脂フィルムを延伸した場合、粒子を起点として延伸方向に長い扁平形状の微細な空孔がフィルム内部に多数形成され、多孔質層となり得る。
<<particles>>
In the present invention, the biaxially stretched layer can further contain particles. From the viewpoint of reducing environmental load, the biaxially stretched layer is preferably a biaxially stretched porous layer containing particles. When a resin film containing particles in addition to a thermoplastic resin with a desired degree of crystallinity is stretched, a large number of flat fine pores are formed inside the film, starting from the particles and extending in the stretching direction, resulting in a porous state. It can be a layer.
 上記二軸延伸多孔質層では、粒子を中心に延伸軸方向(面方向)に長い扁平状の空孔が形成され得る。このような延伸多孔質層によれば、シートに強度を付与しつつ白色化、不透明化及び軽量化が容易である。二軸延伸層中の樹脂成分が、粒子又は空孔に置き換えられるため、二軸延伸層中の樹脂量をさらに削減できる。空孔の二酸化炭素ガスの排出係数は0であるため、製造段階における二酸化炭素ガスの排出量をも減らすことができ、環境負荷の低減に大きく貢献できる。二軸延伸層中の粒子とともに含有する熱可塑性樹脂の結晶化度を40%以上とすることにより、二軸延伸層を白色化、不透明化及び軽量化するのに十分な空孔が形成されやすくなる。 In the biaxially stretched porous layer, long flat pores may be formed in the stretching axis direction (plane direction) around the particles. According to such a stretched porous layer, it is easy to whiten the sheet, make it opaque, and reduce the weight while imparting strength to the sheet. Since the resin component in the biaxially stretched layer is replaced with particles or holes, the amount of resin in the biaxially stretched layer can be further reduced. Since the carbon dioxide gas emission coefficient of the pores is 0, the amount of carbon dioxide gas emitted during the manufacturing stage can also be reduced, which can greatly contribute to reducing the environmental load. By setting the crystallinity of the thermoplastic resin contained together with the particles in the biaxially stretched layer to 40% or more, sufficient pores are easily formed to make the biaxially stretched layer white, opaque, and lightweight. Become.
 使用できる粒子としては、例えば無機粒子又は有機粒子が挙げられる。なかでも、無機粒子は、二酸化炭素ガスの排出係数が樹脂より小さいため、環境負荷の低減の観点から好ましい。 Particles that can be used include, for example, inorganic particles or organic particles. Among these, inorganic particles are preferable from the viewpoint of reducing environmental load because they have a smaller carbon dioxide gas emission coefficient than resins.
 使用できる無機粒子としては、例えば炭酸カルシウム、焼成クレイ、タルク、珪藻土、白土、硫酸バリウム、酸化マグネシウム、酸化亜鉛、酸化チタン、チタン酸バリウム、シリカ、アルミナ、ゼオライト、マイカ、セリサイト、ベントナイト、セピオライト、バーミキュライト、ドロマイト、ワラストナイト、又はガラスファイバー等が挙げられる。延伸する際の空孔形成の安定性の観点からは、炭酸カルシウム、焼成クレイ、又はタルクが好ましく、炭酸カルシウムがより好ましい。無機粒子は表面を脂肪酸、高分子界面活性剤、又は帯電防止剤等で表面処理されていてもよい。 Inorganic particles that can be used include, for example, calcium carbonate, calcined clay, talc, diatomaceous earth, clay, barium sulfate, magnesium oxide, zinc oxide, titanium oxide, barium titanate, silica, alumina, zeolite, mica, sericite, bentonite, sepiolite. , vermiculite, dolomite, wollastonite, or glass fiber. From the viewpoint of stability of pore formation during stretching, calcium carbonate, calcined clay, or talc are preferred, and calcium carbonate is more preferred. The surface of the inorganic particles may be treated with a fatty acid, a polymeric surfactant, an antistatic agent, or the like.
 有機粒子としては、例えばポリエステル、ポリスチレン、ポリアミド、ポリカーボネート、ポリ環状オレフィン、ポリ(メタ)アクリレート、ポリエチレンスルフィド、ポリフェニレンスルフィド、ポリイミド、ポリエーテルケトン、又はポリエーテルエーテルケトン等が挙げられる。 Examples of the organic particles include polyester, polystyrene, polyamide, polycarbonate, polycyclic olefin, poly(meth)acrylate, polyethylene sulfide, polyphenylene sulfide, polyimide, polyether ketone, and polyether ether ketone.
 無機粒子及び有機粒子は、上記のなかから1種を選択して単独で使用してもよいし、2種以上を組み合わせて使用してもよい。2種以上を組合せる場合は無機粒子と有機粒子の組合せであってもよい。 One type of inorganic particles and organic particles may be selected from the above and used alone, or two or more types may be used in combination. When two or more types are combined, it may be a combination of inorganic particles and organic particles.
 粒子の平均粒子径は、熱可塑性樹脂との混合の容易さ又は空孔形成性の観点から、0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましい。粒子を起点とするシート表面の微小な破れを抑制する観点から、上記粒子の平均粒子径は、30μm以下が好ましく、15μm以下がより好ましく、5μm以下がさらに好ましい。 The average particle diameter of the particles is preferably 0.01 μm or more, more preferably 0.1 μm or more, and even more preferably 0.5 μm or more, from the viewpoint of ease of mixing with the thermoplastic resin or pore-forming property. From the viewpoint of suppressing minute tears on the sheet surface originating from the particles, the average particle diameter of the particles is preferably 30 μm or less, more preferably 15 μm or less, and even more preferably 5 μm or less.
 二軸延伸層中の粒子の平均粒子径は、二軸延伸層の断面を走査型電子顕微鏡(SEM)で観察することにより求めることができる。SEMにより取り込まれた画像から二軸延伸層中に含まれる粒子の外接円の直径を、任意に選択した粒子について10点測定を行い、個数累積で50%に当たる直径を平均粒子径として求めることができる。 The average particle diameter of the particles in the biaxially stretched layer can be determined by observing the cross section of the biaxially stretched layer with a scanning electron microscope (SEM). From the image captured by SEM, the diameter of the circumscribed circle of the particles contained in the biaxially stretched layer can be measured at 10 points for arbitrarily selected particles, and the diameter that corresponds to 50% of the cumulative number of particles can be determined as the average particle diameter. can.
 粒子を含む場合の二軸延伸層中の粒子の含有量は、空孔形成の観点から、5質量%以上が好ましく、15質量%以上がより好ましく、成形性の観点から、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましく、50質量%以下が特に好ましく、40質量%以下がより特に好ましく、30質量%以下がさらに特に好ましい。 The content of particles in the biaxially stretched layer when containing particles is preferably 5% by mass or more, more preferably 15% by mass or more from the viewpoint of pore formation, and 80% by mass or less from the viewpoint of formability. It is preferably 70% by mass or less, more preferably 60% by mass or less, particularly preferably 50% by mass or less, even more preferably 40% by mass or less, even more particularly preferably 30% by mass or less.
<<添加剤>>
 二軸延伸層は、添加剤をさらに含むことができる。使用できる添加剤としては、例えば熱安定剤(酸化防止剤)、中和剤、核剤、光安定剤、分散剤、滑剤、着色剤、可塑剤、離形剤、難燃剤、帯電防止剤、又は紫外線吸収剤等が挙げられる。
<<Additives>>
The biaxially stretched layer can further include additives. Examples of additives that can be used include heat stabilizers (antioxidants), neutralizers, nucleating agents, light stabilizers, dispersants, lubricants, colorants, plasticizers, mold release agents, flame retardants, antistatic agents, Alternatively, examples include ultraviolet absorbers.
 熱安定剤は熱可塑性樹脂の劣化を抑え、シートを長期にわたり安定的に使用する目的で添加され得る。熱安定剤としては、通常知られているヒンダードフェノール系、リン系、又はアミン系等の熱安定剤の中から1種類又は2種類以上を適宜使用することができる。
 二軸延伸層が熱安定剤を含有する場合は、熱安定剤の機能を発現する観点から、二軸延伸層中の熱安定剤の含有量は、例えば0.01質量%以上であり、好ましくは0.05質量%以上、さらに好ましくは0.1質量%以上であり、成形安定性又は外観を良好にする観点から、1.5質量%以下が好ましく、1質量%以下がより好ましい。
A heat stabilizer may be added for the purpose of suppressing deterioration of the thermoplastic resin and allowing the sheet to be used stably over a long period of time. As the heat stabilizer, one or more types can be appropriately used from among the commonly known hindered phenol type, phosphorus type, or amine type heat stabilizers.
When the biaxially stretched layer contains a heat stabilizer, the content of the heat stabilizer in the biaxially stretched layer is preferably 0.01% by mass or more, for example, from the viewpoint of expressing the function of the heat stabilizer. is 0.05% by mass or more, more preferably 0.1% by mass or more, and from the viewpoint of improving molding stability or appearance, is preferably 1.5% by mass or less, and more preferably 1% by mass or less.
 光安定剤としては、通常知られているヒンダードアミン系、ベンゾトリアゾール系、又はベンゾフェノン系等の光安定剤の中から1種類又は2種類以上を適宜使用することができる。光安定剤と上記熱安定剤を併用することも好ましい。
 二軸延伸層が光安定剤を含有する場合は、光安定剤の機能を発現する観点から、二軸延伸層中の光安定剤の含有量は0.01質量%以上が好ましく、成形安定性又は外観を良好にする観点からは、1.5質量%以下が好ましく、1質量%以下がより好ましい。
As the light stabilizer, one or more kinds of commonly known light stabilizers such as hindered amine type, benzotriazole type, or benzophenone type can be used as appropriate. It is also preferable to use a light stabilizer and the above heat stabilizer in combination.
When the biaxially stretched layer contains a light stabilizer, from the viewpoint of expressing the function of the light stabilizer, the content of the light stabilizer in the biaxially stretched layer is preferably 0.01% by mass or more, and the molding stability Alternatively, from the viewpoint of improving the appearance, the content is preferably 1.5% by mass or less, more preferably 1% by mass or less.
 分散剤及び滑剤としては、例えばシランカップリング剤;オレイン酸、ステアリン酸のような炭素数が8~24の脂肪酸、その金属塩、アミド、又は炭素数が1~6のアルコールとのエステル等;ポリ(メタ)アクリル酸又はその金属塩等が挙げられ、これらの中から1種類又は2種類以上を使用することができる。 Dispersants and lubricants include, for example, silane coupling agents; fatty acids having 8 to 24 carbon atoms such as oleic acid and stearic acid, metal salts thereof, amides thereof, or esters with alcohols having 1 to 6 carbon atoms; Examples include poly(meth)acrylic acid or metal salts thereof, and one type or two or more types thereof can be used.
<表面層>
 本発明のシートは、上記二軸延伸層上に表面層を備えることができる。表面層が二軸延伸層の表面を被覆することにより、二軸延伸層からの粒子の脱落を抑えて紙粉の発生を減らすことができる。紙粉を減らす観点からは、表面層は、二軸延伸層の一方の面だけでなく、両面に設けられることが好ましい。
<Surface layer>
The sheet of the present invention can include a surface layer on the biaxially stretched layer. By coating the surface of the biaxially stretched layer with the surface layer, it is possible to suppress the particles from falling off from the biaxially stretched layer and reduce the generation of paper dust. From the viewpoint of reducing paper dust, it is preferable that the surface layer is provided not only on one side but also on both sides of the biaxially stretched layer.
 図1は、表面層を備える場合のシート10の一例を示す。図1に例示するシート10は、二軸延伸層1と、その両面上に表面層2をそれぞれ備える。 FIG. 1 shows an example of a sheet 10 that includes a surface layer. The sheet 10 illustrated in FIG. 1 includes a biaxially stretched layer 1 and a surface layer 2 on both sides thereof.
 本発明において、表面層は、熱可塑性樹脂及び粒子を含有する一軸延伸多孔質層であることが好ましい。表面層が一軸延伸多孔質層であると、シートに紙の質感を付与しやすく、かつ紙粉の発生を低減できるが、表面層が二軸延伸層である場合に比べてシートの剛度及び一方向における引裂き耐性が低下する傾向にある。
 したがって、表面層が一軸延伸多孔質層であることによる効果を得つつも、シートの剛度及び引裂き耐性の低下を抑制するため、熱可塑性樹脂の結晶化度及び粒子の含有量等の設計を、二軸延伸層とは変えることが好ましい。なお、二軸延伸層の両面に表面層が設けられる場合、2つの表面層の材料又はその含有量等の設計は同じでも異なっていてもよい。
In the present invention, the surface layer is preferably a uniaxially stretched porous layer containing a thermoplastic resin and particles. If the surface layer is a uniaxially stretched porous layer, it will be easier to give the sheet a paper texture and reduce the generation of paper dust, but compared to the case where the surface layer is a biaxially stretched layer, the stiffness and uniformity of the sheet will be lower. The tear resistance in this direction tends to decrease.
Therefore, in order to suppress the decrease in stiffness and tear resistance of the sheet while obtaining the effects of the surface layer being a uniaxially stretched porous layer, the crystallinity and particle content of the thermoplastic resin are designed to It is preferable to change it from a biaxially stretched layer. In addition, when a surface layer is provided on both surfaces of a biaxially stretched layer, the design of the material of two surface layers, its content, etc. may be the same or different.
<<熱可塑性樹脂>>
 表面層に使用できる熱可塑性樹脂としては、<二軸延伸層>の項で述べた材料と同様の材料が挙げられる。
<<Thermoplastic resin>>
Examples of the thermoplastic resin that can be used for the surface layer include the same materials as those described in the section of <Biaxially Stretched Layer>.
 表面層中の熱可塑性樹脂の結晶化度は、シートの搬送性及び空孔形成性等の観点から、好ましくは45%以上であり、より好ましくは46%以上、さらに好ましくは47%以上であり、引裂き耐性の観点から、好ましくは50%以下である。 The crystallinity of the thermoplastic resin in the surface layer is preferably 45% or more, more preferably 46% or more, and still more preferably 47% or more, from the viewpoint of sheet conveyance properties and pore-forming properties. , from the viewpoint of tear resistance, preferably 50% or less.
 表面層中の熱可塑性樹脂の含有量は、成形性又は機械的強度の観点から、20質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上がさらに好ましく、60質量%以上が特に好ましい。様々な機能付与の観点からは、上記熱可塑性樹脂の含有量は、80質量%以下が好ましく、70質量%以下がより好ましく、60質量%以下がさらに好ましく、50質量%以下が特に好ましい。 From the viewpoint of moldability or mechanical strength, the content of the thermoplastic resin in the surface layer is preferably 20% by mass or more, more preferably 40% by mass or more, even more preferably 50% by mass or more, and 60% by mass or more. Particularly preferred. From the viewpoint of imparting various functions, the content of the thermoplastic resin is preferably 80% by mass or less, more preferably 70% by mass or less, further preferably 60% by mass or less, and particularly preferably 50% by mass or less.
<<ケミカルリサイクルポリオレフィン>>
 表面層中の熱可塑性樹脂は、ケミカルリサイクルポリオレフィンを含むことが好ましい。使用できるケミカルリサイクルポリオレフィンとしては、<二軸延伸層>の項で述べた材料と同様の材料が挙げられる。
<<Chemical recycled polyolefin>>
Preferably, the thermoplastic resin in the surface layer includes chemically recycled polyolefin. Examples of the chemically recycled polyolefin that can be used include the same materials as those described in the section of <Biaxially Stretched Layer>.
 表面層中のケミカルリサイクルポリオレフィンの結晶化度は、シートの搬送性及び表面層における空孔形成性等の観点から、40%以上が好ましく、42%以上がより好ましく、44%以上がさらに好ましく、46%以上が特に好ましく、引裂き耐性の観点から、52%以下が好ましく、51%以下がより好ましく、50%以下がさらに好ましい。 The degree of crystallinity of the chemically recycled polyolefin in the surface layer is preferably 40% or more, more preferably 42% or more, even more preferably 44% or more, from the viewpoint of sheet conveyance properties and pore formation properties in the surface layer. It is particularly preferably at least 46%, and from the viewpoint of tear resistance, it is preferably at most 52%, more preferably at most 51%, even more preferably at most 50%.
 表面層中の熱可塑性樹脂におけるケミカルリサイクルポリオレフィンの含有量は、環境負荷低減の観点から、3質量%以上が好ましく、10質量%以上がより好ましく、20質量%以上がさらに好ましく、30質量%以上が特に好ましく、40質量%以上がより特に好ましく、50質量%以上がさらに特に好ましい。上記ケミカルリサイクルポリオレフィンの含有量は、100質量%であってもよいが、結晶化度制御の観点から、100質量%未満が好ましく、90質量%以下がより好ましく、80質量%以下がさらに好ましく、70質量%以下が特に好ましい。 The content of chemically recycled polyolefin in the thermoplastic resin in the surface layer is preferably 3% by mass or more, more preferably 10% by mass or more, even more preferably 20% by mass or more, and 30% by mass or more from the viewpoint of reducing environmental load. is particularly preferred, 40% by mass or more is particularly preferred, and 50% by mass or more is even more particularly preferred. The content of the chemically recycled polyolefin may be 100% by mass, but from the viewpoint of crystallinity control, it is preferably less than 100% by mass, more preferably 90% by mass or less, even more preferably 80% by mass or less, Particularly preferred is 70% by mass or less.
<<酸変性ポリオレフィン>>
 表面層中の熱可塑性樹脂は、酸変性ポリオレフィンを含むことが好ましい。酸変性ポリオレフィンによって表面層中の熱可塑性樹脂が粒子と接着しやすくなり、シート最表面である表面層からの粒子の脱落を抑えて紙粉の発生を抑制することができる。表面層に使用できる酸変性ポリオレフィンとしては、<二軸延伸層>の項で述べた材料と同様の材料が挙げられる。
<<Acid-modified polyolefin>>
The thermoplastic resin in the surface layer preferably contains acid-modified polyolefin. The acid-modified polyolefin makes it easier for the thermoplastic resin in the surface layer to adhere to the particles, suppressing the particles from falling off from the surface layer, which is the outermost surface of the sheet, and suppressing the generation of paper dust. Examples of the acid-modified polyolefin that can be used for the surface layer include the same materials as those described in the section <Biaxially oriented layer>.
 表面層が酸変性ポリオレフィンを含有する場合の表面層中の酸変性ポリオレフィンの含有量は、100質量部の粒子に対して、0.5質量部以上が好ましく、1質量部以上がより好ましく、1.5質量部以上がさらに好ましく、は、30質量部以下が好ましく、20質量部以下がより好ましく、10質量部以下がさらに好ましく、5質量部以下がよりさらに好ましく、3質量部以下が特に好ましい。
 上記酸変性ポリオレフィンの含有量が0.5質量部以上であれば、熱可塑性樹脂と粒子の接着力が高まるため紙粉の抑制効果が得られやすくなる。上記酸変性ポリオレフィンの含有量が30質量部以下であれば、延伸性が良好で成形時における延伸切れを抑えやすくなる。
When the surface layer contains an acid-modified polyolefin, the content of the acid-modified polyolefin in the surface layer is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 1 part by mass or more, based on 100 parts by mass of particles. More preferably .5 parts by mass or more, preferably 30 parts by mass or less, more preferably 20 parts by mass or less, even more preferably 10 parts by mass or less, even more preferably 5 parts by mass or less, particularly preferably 3 parts by mass or less. .
When the content of the acid-modified polyolefin is 0.5 parts by mass or more, the adhesive force between the thermoplastic resin and the particles increases, so that the effect of suppressing paper dust can be easily obtained. When the content of the acid-modified polyolefin is 30 parts by mass or less, stretchability is good and it becomes easy to suppress stretching breakage during molding.
<<粒子>>
 表面層に使用できる粒子としては、<二軸延伸層>の項で述べた材料と同様の材料が挙げられ、好ましい材料、平均粒子径等も<二軸延伸層>の項で述べたとおりである。
<<particles>>
Particles that can be used in the surface layer include the same materials as those described in the <Biaxially oriented layer> section, and preferred materials, average particle diameters, etc. are also as described in the <Biaxially oriented layer> section. be.
 粒子を含有する場合の表面層中の粒子の含有量は、白色度等を高めてシート外観に紙の質感を付与する観点から、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上がさらに好ましく、シートの剛度及び引裂き耐性低下を抑制する観点から、65質量%以下が好ましく、60質量%以下がより好ましく、55質量%以下がさらに好ましい。 In the case of containing particles, the content of particles in the surface layer is preferably 30% by mass or more, more preferably 35% by mass or more, and 40% by mass or more, from the viewpoint of increasing whiteness etc. and imparting a paper texture to the sheet appearance. It is more preferably 65% by mass or less, more preferably 60% by mass or less, and even more preferably 55% by mass or less, from the viewpoint of suppressing a decrease in the stiffness and tear resistance of the sheet.
<シートの特性>
<<厚さ>>
 上記二軸延伸層の厚さは、機械的強度を付与する観点から、50μm以上が好ましく、60μm以上がより好ましく、70μm以上がさらに好ましく、軽量性を付与する観点から、500μm以下が好ましく、400μm以下がより好ましく、300μm以下がさらに好ましく、200μm以下が特に好ましい。
<Sheet properties>
<<Thickness>>
The thickness of the biaxially stretched layer is preferably 50 μm or more, more preferably 60 μm or more, even more preferably 70 μm or more, from the viewpoint of imparting mechanical strength, and preferably 500 μm or less, from the viewpoint of imparting lightness, and 400 μm or more. The thickness is more preferably below, further preferably 300 μm or less, particularly preferably 200 μm or less.
 上記表面層の厚さは、シートに機械的強度を付与する観点及び二軸延伸層からの特定成分のシート表面へのブリードアウトを抑制する観点から、1μm以上、1.5μm以上、2μm以上が好ましい。剛度及び引裂き耐性の低下を抑制する観点及び軽量性を付与する観点から、上記表面層の厚さは、100μm以下が好ましく、50μm以下がより好ましく、30μm以下がさらに好ましく、20μm以下が特に好ましい。
 二軸延伸層の両面に表面層が設けられる場合、各表面層の厚さは同じでも異なっていてもよい。
The thickness of the surface layer is preferably 1 μm or more, 1.5 μm or more, or 2 μm or more from the viewpoint of imparting mechanical strength to the sheet and suppressing bleed-out of specific components from the biaxially stretched layer to the sheet surface. preferable. From the viewpoint of suppressing a decrease in stiffness and tear resistance and from the viewpoint of imparting lightness, the thickness of the surface layer is preferably 100 μm or less, more preferably 50 μm or less, further preferably 30 μm or less, and particularly preferably 20 μm or less.
When surface layers are provided on both sides of the biaxially stretched layer, the thickness of each surface layer may be the same or different.
<<空孔率>>
 上記二軸延伸層が内部に空孔を有する場合、その空孔率は、白色度、不透明度、軽量化又は環境負荷の低減の観点から、10%以上であることが好ましく、15%以上であることがより好ましく、20%以上であることがさらに好ましい。機械的強度を維持する観点からは、同空孔率は、45%以下であることが好ましく、40%以下であることがより好ましく、35%以下であることがさらに好ましい。
<<Porosity>>
When the biaxially stretched layer has pores inside, the porosity is preferably 10% or more, and 15% or more from the viewpoint of whiteness, opacity, weight reduction, or reduction of environmental load. It is more preferable that the amount is at least 20%, and even more preferably 20% or more. From the viewpoint of maintaining mechanical strength, the porosity is preferably 45% or less, more preferably 40% or less, and even more preferably 35% or less.
 上記表面層が内部に空孔を有する場合、その空孔率は、白色度、不透明度、軽量化又は環境負荷の低減の観点から、7%以上であることが好ましく、10%以上であることがより好ましく、15%以上であることがさらに好ましい。機械的強度を維持する観点からは、同空孔率は、40%以下であることが好ましく、35%以下であることがより好ましく、30%以下であることがさらに好ましい。
 上記空孔率は、後述する実施例に記載の方法によって測定される。
When the surface layer has pores inside, the porosity is preferably 7% or more, and preferably 10% or more from the viewpoint of whiteness, opacity, weight reduction, or reduction of environmental load. is more preferable, and even more preferably 15% or more. From the viewpoint of maintaining mechanical strength, the porosity is preferably 40% or less, more preferably 35% or less, and even more preferably 30% or less.
The above-mentioned porosity is measured by the method described in Examples described later.
<<クラーク剛度>>
 本発明のシートのクラーク剛度(S値)のうち長手方向及び短手方向のいずれか小さい方が、15以上であることが好ましく、20以上がより好ましく、25以上がさらに好ましい。上記クラーク剛度は、50以下が好ましく、45以下がより好ましく、40以下がさらに好ましい。上記クラーク剛度が15以上であることにより、搬送の際のシートの撓みが発生しにくく、シートのシワ発生等を抑えられる傾向がある。上記クラーク剛度が50以下であることにより、シートが搬送ローラーの形状に追従しやすくなり、高速での搬送がしやすくなる傾向がある。上記クラーク剛度はJIS-P-8143に準拠して測定される。
<<Clark stiffness>>
The Clark stiffness (S value) of the sheet of the present invention, whichever is smaller in the longitudinal direction or the transverse direction, is preferably 15 or more, more preferably 20 or more, and even more preferably 25 or more. The Clark stiffness is preferably 50 or less, more preferably 45 or less, and even more preferably 40 or less. When the above-mentioned Clark stiffness is 15 or more, the sheet is less likely to bend during conveyance, and wrinkles and the like of the sheet tend to be suppressed. When the Clark stiffness is 50 or less, the sheet tends to easily follow the shape of the conveyance roller, making it easier to convey the sheet at high speed. The above Clark stiffness is measured in accordance with JIS-P-8143.
(シートの製造方法)
 本発明のシートの製造方法は特に限定されない。例えば、二軸延伸層からなる単層構造のシートは、上述の熱可塑性樹脂と他の成分を含む樹脂組成物をシート状に成形した後、これを二軸延伸することにより得ることができる。さらに表面層を備える多層構造のシートは、表面層のシートを形成し、二軸延伸層上に積層することによって得ることができる。
(Manufacturing method of sheet)
The method for manufacturing the sheet of the present invention is not particularly limited. For example, a sheet with a single layer structure consisting of biaxially stretched layers can be obtained by forming a resin composition containing the above-mentioned thermoplastic resin and other components into a sheet shape, and then biaxially stretching the resin composition. Further, a sheet having a multilayer structure including a surface layer can be obtained by forming a sheet of the surface layer and laminating it on a biaxially stretched layer.
 シートの成形方法としては、スクリュー型押出機に接続された単層又は多層のTダイ、Iダイ等により溶融樹脂をシート状に押し出すキャスト成形、カレンダー成形、圧延成形、インフレーション成形等が挙げられる。熱可塑性樹脂と有機溶媒又はオイルとの混合物を、キャスト成形又はカレンダー成形した後、溶媒又はオイルを除去する方法も使用できる。 Examples of the sheet forming method include cast molding, calendar molding, rolling molding, inflation molding, etc. in which molten resin is extruded into a sheet shape using a single-layer or multi-layer T-die, I-die, etc. connected to a screw extruder. A method can also be used in which a mixture of a thermoplastic resin and an organic solvent or oil is cast or calendered and then the solvent or oil is removed.
 多層構造のシートの成形方法としては、例えばフィードブロック、マルチマニホールドを使用した多層ダイス方式、複数のダイスを使用する押出しラミネーション方式等が挙げられ、各方法を組み合わせることもできる。 Examples of the method for forming a sheet with a multilayer structure include a multilayer die method using a feed block or multi-manifold, an extrusion lamination method using multiple dies, etc., and each method can be combined.
 延伸方法としては、例えばロール群の周速差を利用した縦延伸法、テンターオーブンを利用した横延伸法、これらを組み合わせた逐次二軸延伸法、圧延法、テンターオーブンとパンタグラフの組み合わせによる同時二軸延伸法、テンターオーブンとリニアモーターの組み合わせによる同時二軸延伸法等が挙げられる。また、スクリュー型押出機に接続された円形ダイを使用して溶融樹脂をチューブ状に押し出し成形した後、これに空気を吹き込む同時二軸延伸(インフレーション成形)法等も使用できる。 Stretching methods include, for example, a longitudinal stretching method using a difference in the peripheral speed of a group of rolls, a lateral stretching method using a tenter oven, a sequential biaxial stretching method that combines these, a rolling method, and a simultaneous biaxial stretching method that uses a combination of a tenter oven and a pantograph. Examples include an axial stretching method and a simultaneous biaxial stretching method using a combination of a tenter oven and a linear motor. Alternatively, a simultaneous biaxial stretching (inflation molding) method in which a molten resin is extruded into a tube shape using a circular die connected to a screw extruder and air is blown into the tube can also be used.
 複数層を延伸する場合は、各層を積層する前に個別に延伸しておいてもよいし、積層した後にまとめて延伸してもよい。また、延伸した層を積層後に再び延伸してもよい。 When stretching multiple layers, each layer may be stretched individually before being laminated, or may be stretched all at once after being laminated. Alternatively, the stretched layers may be stretched again after being laminated.
 延伸を実施するときの延伸温度は、使用する熱可塑性樹脂が、非結晶性樹脂の場合は当該熱可塑性樹脂のガラス転移点温度以上の範囲であることが好ましい。また、熱可塑性樹脂が結晶性樹脂の場合の延伸温度は、当該熱可塑性樹脂の非結晶部分のガラス転移点以上であって、かつ当該熱可塑性樹脂の結晶部分の融点以下の範囲内であることが好ましく、具体的には熱可塑性樹脂の融点よりも2~60℃低い温度が好ましい。延伸温度を上記範囲内とすることにより、樹脂フィルムが粒子を含む場合に、粒子を起点として延伸方向に長い扁平形状の微細な空孔が形成されやすくなる。 When the thermoplastic resin used is an amorphous resin, the stretching temperature during stretching is preferably in a range equal to or higher than the glass transition temperature of the thermoplastic resin. In addition, when the thermoplastic resin is a crystalline resin, the stretching temperature must be within a range that is above the glass transition point of the amorphous portion of the thermoplastic resin and below the melting point of the crystalline portion of the thermoplastic resin. The temperature is preferably 2 to 60°C lower than the melting point of the thermoplastic resin. By setting the stretching temperature within the above range, when the resin film contains particles, flat fine pores that are elongated in the stretching direction starting from the particles are likely to be formed.
 延伸速度は、特に限定されないが、安定した延伸成形の観点から、20~350m/分の範囲内であることが好ましい。
 延伸倍率についても、使用する熱可塑性樹脂の特性等を考慮して適宜決定することができる。例えば、プロピレンの単独重合体又はその共重合体を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、下限が通常は1.2倍以上、好ましくは2倍以上であり、上限が通常は12倍以下、好ましくは10倍以下である。一方、二軸延伸する場合の延伸倍率は、面積延伸倍率で下限が通常は1.5倍以上、好ましくは10倍以上であり、上限が通常は60倍以下、好ましくは50倍以下である。
The stretching speed is not particularly limited, but from the viewpoint of stable stretching and forming, it is preferably within the range of 20 to 350 m/min.
The stretching ratio can also be appropriately determined in consideration of the characteristics of the thermoplastic resin used. For example, when stretching a thermoplastic resin film containing a propylene homopolymer or its copolymer in one direction, the lower limit of the stretching ratio is usually 1.2 times or more, preferably 2 times or more, and the upper limit is 1.2 times or more, preferably 2 times or more. is usually 12 times or less, preferably 10 times or less. On the other hand, in the case of biaxial stretching, the lower limit of the area stretching ratio is usually 1.5 times or more, preferably 10 times or more, and the upper limit is usually 60 times or less, preferably 50 times or less.
 ポリエステル系樹脂を含む熱可塑性樹脂フィルムを一方向に延伸する場合、その延伸倍率は、上限が通常は1.2倍以上、好ましくは2倍以上であり、下限が通常は10倍以下、好ましくは5倍以下である。二軸延伸する場合の延伸倍率は、面積延伸倍率で、下限が通常は1.5倍以上、好ましくは4倍以上であり、上限が通常は20倍以下、好ましくは12倍以下である。
 上記延伸倍率の範囲内であれば、目的の空孔率が得られて不透明性が向上しやすい。また、シートの破断が起きにくく、安定した延伸成形ができる傾向がある。
When stretching a thermoplastic resin film containing a polyester resin in one direction, the upper limit of the stretching ratio is usually 1.2 times or more, preferably 2 times or more, and the lower limit is usually 10 times or less, preferably It is 5 times or less. The stretching ratio in the case of biaxial stretching is an area stretching ratio, and the lower limit is usually 1.5 times or more, preferably 4 times or more, and the upper limit is usually 20 times or less, preferably 12 times or less.
If the stretching ratio is within the above range, the desired porosity can be obtained and the opacity can be easily improved. In addition, the sheet is less likely to break, and stable stretch molding tends to be possible.
(印刷用紙)
 本発明の印刷用紙は、上記シートを備える。よって、上記シートと同様に、環境負荷の低減が可能であるだけでなく、印刷時の搬送性又は引裂き耐性にも優れた印刷用紙を提供することができる。
(printing paper)
The printing paper of the present invention includes the sheet described above. Therefore, like the sheet described above, it is possible to provide printing paper that not only reduces environmental impact but also has excellent transportability during printing and tear resistance.
 上記シートの最表面を構成する二軸延伸層又は表面層は、いずれもその表面に印刷が可能である。よって、印刷用紙は、上記シートからなるものでもよいが、インクとの密着性を高める観点からシート上にコート層等を備える等、他の層を備えることもできる。印刷方式は特に限定されず、油性インク又はUVインクを用いたオフセット印刷方式、UVフレキソ印刷方式等の一般的な印刷方式だけでなく、UVインクジェット印刷方式又は乾式電子写真印刷方式等も使用することができる。 Printing is possible on the surface of either the biaxially stretched layer or the surface layer that constitutes the outermost surface of the sheet. Therefore, the printing paper may be made of the above-mentioned sheet, but it may also be provided with other layers, such as a coating layer or the like, on the sheet from the viewpoint of improving adhesion with ink. The printing method is not particularly limited, and not only general printing methods such as offset printing method using oil-based ink or UV ink, UV flexo printing method, etc., but also UV inkjet printing method, dry electrophotographic printing method, etc. can be used. I can do it.
 以下、実施例をあげて本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。なお、実施例中の「部」、「%」等の記載は、断りのない限り、質量基準の記載を意味する。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples. In addition, descriptions such as "parts" and "%" in the examples mean descriptions based on mass unless otherwise specified.
 表1は、使用する材料の一覧である。
Figure JPOXMLDOC01-appb-T000001
 
Table 1 lists the materials used.
Figure JPOXMLDOC01-appb-T000001
(樹脂組成物(a1))
 バージンPP(未使用のプロピレン単独重合体(日本ポリプロ社製、商品名:ノバテックPP FY4、融点:162℃、MFR(230℃、2.16kg荷重):5.0g/10分))39質量部と、ケミカルリサイクルPP2(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:36%))40質量部と、炭酸カルシウム(重質炭酸カルシウム(備北粉化工業社製、商品名:ソフトン1800、平均粒子径:1.2μm))20質量部と、酸変性PP(マレイン酸変性ポリプロピレン(三菱ケミカル社製、商品名:モディックP908、軟化点:140℃))1質量部と、からなる樹脂組成物(a1)を調製した。
(Resin composition (a1))
Virgin PP (unused propylene homopolymer (manufactured by Nippon Polypro Co., Ltd., trade name: Novatec PP FY4, melting point: 162°C, MFR (230°C, 2.16 kg load): 5.0 g/10 min)) 39 parts by mass and 40 parts by mass of chemically recycled PP2 (polypropylene (crystallinity: 36%) obtained by extracting the propylene component from the monomer obtained by depolymerizing the recovered used polypropylene resin and polymerizing it) , 20 parts by mass of calcium carbonate (heavy calcium carbonate (manufactured by Bihoku Funka Kogyo Co., Ltd., trade name: Softon 1800, average particle size: 1.2 μm)), acid-modified PP (maleic acid-modified polypropylene (manufactured by Mitsubishi Chemical Corporation) , trade name: Modic P908, softening point: 140° C.)) 1 part by mass was prepared.
(樹脂組成物(a2)~(a4))
 ケミカルリサイクルPP2を、それぞれケミカルリサイクルPP3(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:42%))、ケミカルリサイクルPP4(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:48%、融点:161℃、MFR(230℃、2.16kg荷重):8.6g/10分))、ケミカルリサイクルPP5(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:54%))に変更した以外は、樹脂組成物(a1)と同様にして各樹脂組成物(a2)~(a4)を調製した。
(Resin compositions (a2) to (a4))
Chemical recycled PP2 and chemical recycled PP3 (polypropylene obtained by extracting a propylene component from a monomer obtained by depolymerizing collected used polypropylene resin and polymerizing it (crystallinity: 42%) ), chemically recycled PP4 (polypropylene obtained by extracting the propylene component from the monomer obtained by depolymerizing the recovered used polypropylene resin and polymerizing it (crystallinity: 48%, melting point: 161°C) , MFR (230°C, 2.16 kg load): 8.6 g/10 minutes), chemical recycling PP5 (propylene component is extracted from the monomer obtained by depolymerizing the recovered used polypropylene resin, and Resin compositions (a2) to (a4) were prepared in the same manner as resin composition (a1), except that polypropylene obtained by polymerization (crystallinity: 54%) was used.
(樹脂組成物(a5)~(a9)、(a11))
 樹脂組成物(a3)の各成分の配合量を表2に示すように変更した以外は、樹脂組成物(a3)と同様にして各樹脂組成物(a5)~(a9)及び(a11)を調製した。
(Resin compositions (a5) to (a9), (a11))
Each resin composition (a5) to (a9) and (a11) was prepared in the same manner as resin composition (a3) except that the blending amount of each component of resin composition (a3) was changed as shown in Table 2. Prepared.
(樹脂組成物(a10)及び(a14))
 バージンPP(未使用のプロピレン単独重合体(日本ポリプロ社製、商品名:ノバテックPP FY4))59質量部と、ケミカルリサイクルPP6(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:60%))20質量部と、炭酸カルシウム(重質炭酸カルシウム(備北粉化工業社製、商品名:ソフトン1800、平均粒子径:1.2μm))20質量部と、酸変性PP(マレイン酸変性ポリプロピレン(三菱ケミカル社製、商品名:モディックP908、軟化点:140℃))1質量部と、からなる樹脂組成物(a10)を調製した。
 樹脂組成物(a10)の各成分の配合量を表2に示すように変更した以外は、樹脂組成物(a10)と同様にして樹脂組成物(a14)を調製した。
(Resin compositions (a10) and (a14))
59 parts by mass of virgin PP (unused propylene homopolymer (manufactured by Nippon Polypropylene Co., Ltd., product name: Novatec PP FY4)) and chemically recycled PP6 (from monomers obtained by depolymerizing recovered used polypropylene resins) 20 parts by mass of polypropylene (crystallinity: 60%) obtained by extracting the propylene component and polymerizing it; A resin composition consisting of 20 parts by mass (average particle diameter: 1.2 μm)) and 1 part by mass of acid-modified PP (maleic acid-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Modic P908, softening point: 140°C)) Product (a10) was prepared.
A resin composition (a14) was prepared in the same manner as the resin composition (a10) except that the blending amounts of each component of the resin composition (a10) were changed as shown in Table 2.
(樹脂組成物(a12))
 ケミカルリサイクルPP2を配合せず、バージンPPの配合量を79質量部に変更した以外は、樹脂組成物(a1)と同様にして樹脂組成物(a12)を調製した。
(Resin composition (a12))
A resin composition (a12) was prepared in the same manner as resin composition (a1) except that chemically recycled PP2 was not blended and the blended amount of virgin PP was changed to 79 parts by mass.
(樹脂組成物(a13))
 バージンPP(未使用のプロピレン単独重合体(日本ポリプロ社製、商品名:ノバテックPP FY4))39質量部と、ケミカルリサイクルPP1(回収した使用済のポリプロピレン系樹脂を解重合して得たモノマーからプロピレン成分を抽出し、これを重合することにより得たポリプロピレン(結晶化度:30%))40質量部と、炭酸カルシウム(重質炭酸カルシウム(備北粉化工業社製、商品名:ソフトン1800、平均粒子径:1.2μm))20質量部と、酸変性PP(マレイン酸変性ポリプロピレン(三菱ケミカル社製、商品名:モディックP908、軟化点:140℃))1質量部と、からなる樹脂組成物(a13)を調製した。
(Resin composition (a13))
39 parts by mass of virgin PP (unused propylene homopolymer (manufactured by Nippon Polypropylene Co., Ltd., product name: Novatec PP FY4)) and chemically recycled PP1 (from monomers obtained by depolymerizing recovered used polypropylene resins) 40 parts by mass of polypropylene (crystallinity: 30%) obtained by extracting the propylene component and polymerizing it; A resin composition consisting of 20 parts by mass (average particle diameter: 1.2 μm)) and 1 part by mass of acid-modified PP (maleic acid-modified polypropylene (manufactured by Mitsubishi Chemical Corporation, trade name: Modic P908, softening point: 140°C)) Product (a13) was prepared.
(樹脂組成物(a15))
 樹脂組成物(a1)の各成分の配合量を表2に示すように変更した以外は、樹脂組成物(a1)と同様にして樹脂組成物(a15)を調製した。
(Resin composition (a15))
A resin composition (a15) was prepared in the same manner as the resin composition (a1) except that the blending amounts of each component of the resin composition (a1) were changed as shown in Table 2.
(樹脂組成物(a16)及び(a17))
 バージンPPの配合量を20質量部に変更し、さらにバイオマスPP(植物由来のプロピレン単独重合体(ボレアリス社製、商品名:HC101BF、融点:163℃、MFR(230℃、2.16kg荷重):5.0g/10分))19質量部を加えた以外は、樹脂組成物(a3)と同様にして各樹脂組成物(a16)を調製した。
 また樹脂組成物(a16)の各成分の配合量を表2に示すように変更し、樹脂組成物(a17)を調製した。
(Resin compositions (a16) and (a17))
The amount of virgin PP was changed to 20 parts by mass, and biomass PP (plant-derived propylene homopolymer (manufactured by Borealis, trade name: HC101BF, melting point: 163°C, MFR (230°C, 2.16 kg load): Each resin composition (a16) was prepared in the same manner as resin composition (a3) except that 19 parts by mass (5.0 g/10 min)) was added.
Further, the blending amounts of each component of the resin composition (a16) were changed as shown in Table 2, and a resin composition (a17) was prepared.
 表2は、各樹脂組成物の材料の配合量の一覧である。
Figure JPOXMLDOC01-appb-T000002
 
Table 2 is a list of the blending amounts of materials in each resin composition.
Figure JPOXMLDOC01-appb-T000002
 各樹脂組成物について下記物性を求め、表2に示した。
<融点>
 樹脂組成物の融点は、1種の熱可塑性樹脂を含む場合は当該熱可塑性樹脂の融点である。2種以上の熱可塑性樹脂を含む場合は、各熱可塑性樹脂の融点の重量平均を、熱可塑性樹脂全体の融点として算出した。
The following physical properties were determined for each resin composition and are shown in Table 2.
<Melting point>
When the resin composition contains one type of thermoplastic resin, the melting point of the resin composition is the melting point of the thermoplastic resin. When two or more types of thermoplastic resins were included, the weight average of the melting points of each thermoplastic resin was calculated as the melting point of the entire thermoplastic resin.
<メルトフローレート(MFR)>
 樹脂組成物のMFRは、JIS K7210:2014に準拠し、温度230℃、2.16kg荷重で測定した。
<Melt flow rate (MFR)>
The MFR of the resin composition was measured at a temperature of 230° C. and a load of 2.16 kg in accordance with JIS K7210:2014.
<結晶化度>
 樹脂組成物に用いた熱可塑性樹脂5mgを採取し、示差走査熱量分析計(日立ハイテクサイエンス社製、商品名:DSC7000X)を用いて、窒素中、10℃/分の速度で昇温し、60~180℃の間の融解熱量を測定した。そして、下記式により熱可塑性樹脂の結晶化度(%)を算出した。なお、ポリプロピレン及びポリエチレンの完全結晶融解熱量は、207J/g及び293J/gとして算出した。
  結晶化度(%)=融解熱量測定値/完全結晶体融解熱量×100
<Crystallinity>
5 mg of the thermoplastic resin used in the resin composition was collected, and heated at a rate of 10°C/min in nitrogen using a differential scanning calorimeter (manufactured by Hitachi High-Tech Science Co., Ltd., trade name: DSC7000X), and heated to 60°C. The heat of fusion was measured between ~180°C. Then, the crystallinity (%) of the thermoplastic resin was calculated using the following formula. The heat of complete crystal fusion of polypropylene and polyethylene was calculated as 207 J/g and 293 J/g.
Crystallinity (%) = Measured heat of fusion / Heat of fusion of perfectly crystalline body x 100
 樹脂組成物が2種以上の熱可塑性樹脂を含む場合、各熱可塑性樹脂の結晶化度の重量平均を、熱可塑性樹脂全体の結晶化度として算出した。 When the resin composition contained two or more types of thermoplastic resins, the weight average of the crystallinity of each thermoplastic resin was calculated as the crystallinity of the entire thermoplastic resin.
(実施例1)
 上記樹脂組成物(a1)を230℃に設定した押出機にて混練した後、250℃に設定したフィードブロック式ダイスに供給してシート状に押し出した。これを冷却装置により冷却して、得られた無延伸シートを135℃まで加熱し、縦方向に4倍延伸して4倍延伸フィルムを得た。次いで、4倍延伸フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に8倍延伸した。160℃に調整したオーブンによりアニーリング処理を行った後、60℃まで冷却し、耳部をスリットして、単層構造(二軸延伸層)を有する総厚80μmのシートを得た。
(Example 1)
The resin composition (a1) was kneaded in an extruder set at 230°C, then fed into a feed block die set at 250°C and extruded into a sheet. This was cooled with a cooling device, and the resulting unstretched sheet was heated to 135° C. and stretched 4 times in the longitudinal direction to obtain a 4 times stretched film. Next, the 4 times stretched film was cooled to 60° C., heated again to about 145° C. using a tenter oven, and stretched 8 times in the transverse direction. After performing an annealing treatment in an oven adjusted to 160°C, it was cooled to 60°C, and the edges were slit to obtain a sheet with a total thickness of 80 μm having a single layer structure (biaxially stretched layer).
(実施例2~12及び比較例1~4)
 樹脂組成物を表3に示すように変更して二軸延伸層を形成した以外は、実施例1と同様にして、実施例2~12及び比較例1~4のシートを得た。
(Examples 2 to 12 and Comparative Examples 1 to 4)
Sheets of Examples 2 to 12 and Comparative Examples 1 to 4 were obtained in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3 to form a biaxially stretched layer.
(実施例13)
 樹脂組成物(a3)を230℃に設定した押出機にて混練した後、250℃に設定した押出ダイスに供給してシート状に押し出した。これを冷却装置により冷却し、得られた無延伸シートを135℃に加熱し、周速差の異なる多数のロール群を用いて縦方向に4倍延伸して4倍延伸フィルムを得た。次いで、樹脂組成物(a11)を250℃に設定した2台の押出機で混練した。これを250℃に設定した押出ダイスに供給してシート状に押し出し、上記4倍延伸フィルムの両面にそれぞれ積層して、3層構造の積層フィルムを得た。
(Example 13)
After kneading the resin composition (a3) in an extruder set at 230°C, it was supplied to an extrusion die set at 250°C and extruded into a sheet. This was cooled with a cooling device, and the obtained unstretched sheet was heated to 135° C. and stretched 4 times in the longitudinal direction using a large number of roll groups having different circumferential speeds to obtain a 4 times stretched film. Next, the resin composition (a11) was kneaded using two extruders set at 250°C. This was supplied to an extrusion die set at 250° C., extruded into a sheet, and laminated on both sides of the 4-fold stretched film to obtain a 3-layer laminated film.
 上記積層フィルムを60℃まで冷却し、テンターオーブンを用いて再び約145℃に加熱し、横方向に8倍延伸した。次いで、160℃に調整したオーブンによりアニーリング処理を行い、60℃まで冷却した後、耳部をスリットして、実施例13のシートを得た。実施例13のシートは、樹脂組成物(a11)からなる表面層、樹脂組成物(a3)からなる二軸延伸層、及び樹脂組成物(a11)からなる表面層がこの順に積層された3層構造(組成:a11/a3/a11、厚さ:25μm/60μm/25μm、延伸軸数:一軸/二軸/一軸)を有し、総厚は110μmであった。 The laminated film was cooled to 60°C, heated again to about 145°C using a tenter oven, and stretched 8 times in the transverse direction. Next, an annealing treatment was performed in an oven adjusted to 160°C, and after cooling to 60°C, the edges were slit to obtain the sheet of Example 13. The sheet of Example 13 had three layers in which a surface layer made of a resin composition (a11), a biaxially stretched layer made of a resin composition (a3), and a surface layer made of a resin composition (a11) were laminated in this order. It had a structure (composition: a11/a3/a11, thickness: 25 μm/60 μm/25 μm, number of stretching axes: uniaxial/biaxial/uniaxial), and the total thickness was 110 μm.
(測定)
 各シートについて下記物性を測定した。
(measurement)
The following physical properties were measured for each sheet.
<空孔率>
 シートの任意の一部を切り取り、エポキシ樹脂で包埋して固化させた後、ミクロトームを用いてシートの面方向に垂直に切断し、その切断面が観察面となるように観察試料台に貼り付けた。観察面に金又は金-パラジウム等を蒸着し、観察しやすい任意の倍率(例えば、500倍~3000倍の拡大倍率)に調整して空孔を観察した。観察領域を画像データとして取り込み、画像解析装置にて画像処理を行い、空孔部分が占める面積率(%)を求めた。多層構造の場合、各層の境界をその外観の違いから判別し、各層内での空孔部分の面積率(%)を求めた。任意の10箇所以上における測定値を平均して、空孔率(%)とした。
<Porosity>
Cut out any part of the sheet, embed it in epoxy resin and let it solidify, then cut it perpendicular to the plane of the sheet using a microtome, and attach it to the observation sample stand so that the cut surface becomes the observation surface. I attached it. Gold or gold-palladium or the like was deposited on the observation surface, and the pores were observed at an arbitrary magnification that was easy to observe (for example, a magnification of 500 times to 3000 times). The observation area was captured as image data, image processing was performed using an image analysis device, and the area ratio (%) occupied by the void portion was determined. In the case of a multilayer structure, the boundaries between each layer were determined based on the differences in their appearance, and the area ratio (%) of pores within each layer was determined. The measured values at ten or more arbitrary locations were averaged to determine the porosity (%).
<白色度>
 白色度を、測定装置(スガ試験機(株)製:SM-5)を用いて、JIS L-1015に準拠して測定し、測定値を表3に示した。白色度が90以上であると適切な白色度を有すると評価できる。
<Whiteness>
The whiteness was measured in accordance with JIS L-1015 using a measuring device (manufactured by Suga Test Instruments Co., Ltd.: SM-5), and the measured values are shown in Table 3. A whiteness of 90 or higher can be evaluated as having an appropriate whiteness.
<クラーク剛度(S値)>
 シートの長手方向と短手方向のクラーク剛度(S値)をJIS-P8143:1996に準拠して測定し、小さい方の測定値を表3に示した。
<Clark stiffness (S value)>
The Clark stiffness (S value) in the longitudinal direction and the lateral direction of the sheet was measured in accordance with JIS-P8143:1996, and the smaller measured value is shown in Table 3.
(評価)
 各シートについて次の評価を行った。
(evaluation)
Each sheet was evaluated as follows.
<環境貢献>
 シート全体の熱可塑性樹脂中のケミカルリサイクルポリオレフィンの含有量を、下記基準に従って評価した。C以上が環境への貢献度が高いと評価できる。
 A:含有量が50質量%以上
 B:含有量が20質量%以上50質量%未満
 C:含有量が3質量%以上20質量%未満
 D:含有量が0質量%超3質量%未満
 E:含有量が0質量%
<Environmental contribution>
The content of chemically recycled polyolefin in the thermoplastic resin of the entire sheet was evaluated according to the following criteria. A grade of C or above can be evaluated as having a high degree of contribution to the environment.
A: Content is 50% by mass or more B: Content is 20% by mass or more and less than 50% by mass C: Content is 3% by mass or more and less than 20% by mass D: Content is more than 0% by mass and less than 3% by mass E: Content is 0% by mass
<搬送性>
 実施例及び比較例で得られたシートを印刷機に供し、シート上に印刷層を形成した。印刷層形成の際のシートの印刷機への搬送性を下記基準に従って評価した。
 A:通常条件から条件変更することなく、通常の風入れで印刷できる
 B:印刷時の爪の位置変更等の微調整や風入れ回数の増加により印刷できる
 C:印刷条件を変更し、風入れの回数を増やし、さらに印刷速度を下げることで、印刷ができる
 D:印刷条件を変更し、風入れの回数を増やし、さらに印刷速度を下げても、印刷時にシワが入ってしまうため、印刷不可
<Transportability>
The sheets obtained in Examples and Comparative Examples were subjected to a printing machine to form a printed layer on the sheets. The transportability of the sheet to the printing machine during printing layer formation was evaluated according to the following criteria.
A: It is possible to print with normal drafting without changing the conditions from normal conditions. B: It is possible to print by making minor adjustments such as changing the position of the claws during printing and increasing the number of drafting. C: Printing can be done by changing the printing conditions and drafting. Printing is possible by increasing the number of times and lowering the printing speed. D: Even if you change the printing conditions, increase the number of drafts, and further reduce the printing speed, printing is not possible because wrinkles appear during printing.
<引裂き耐性>
 JIS P-8116に準拠し、実施例及び比較例で得られたシートのTD方向(シートの短手方向)のエルメンドルフ引裂き強度を測定した。エルメンドルフ引裂き強度により、引裂き耐性を下記基準に従って評価した。
 A:引裂き強度が500gf以上
 B:引裂き強度が200gf以上500gf未満
 C:引裂き強度が200gf未満
<Tear resistance>
In accordance with JIS P-8116, the Elmendorf tear strength of the sheets obtained in Examples and Comparative Examples in the TD direction (transverse direction of the sheet) was measured. Tear resistance was evaluated by Elmendorf tear strength according to the following criteria.
A: Tear strength is 500 gf or more B: Tear strength is 200 gf or more and less than 500 gf C: Tear strength is less than 200 gf
<延伸安定性>
 シート延伸成形時の延伸ムラの有無により、延伸安定性を以下の基準で目視評価した。
 A:延伸ムラが無く、外観が良好であり問題なく使用可能なフィルムが得られた
 B:延伸ムラがあるが極めてわずかであり、外観に現れる問題はなく使用可能なフィルムが得られた
 C:延伸ムラがあるがわずかであり、実用上使用可能な外観のフィルムが得られた
 D:延伸ムラがあり、外観が不良なフィルムが得られた
<Stretching stability>
The stretching stability was visually evaluated based on the following criteria based on the presence or absence of stretching unevenness during sheet stretching.
A: A usable film was obtained with no stretching unevenness and a good appearance without any problems.B: There was stretching unevenness, but it was very slight, and a usable film was obtained without any problems that appeared in the appearance.C: A film with a practically usable appearance was obtained, although there was some stretching unevenness. D: A film with a poor appearance was obtained, with some stretching unevenness.
<紙粉>
 実施例及び比較例で得られたシートに、ハマダ印刷機械(株)社製612CD型印刷機を用いて印刷層を形成した。印刷層の形成には、T&KTOKA社製オフセット印刷インキ(商品名:ベストSP藍)を用いた。印刷機に残った紙粉を、ブランケット胴の白さにより、下記基準に従って評価した。
 A:印刷機に2,000枚通したときにブランケットがほとんど汚れず、紙粉がほとんどない
 B:印刷機に2,000枚通したときにブランケット上を粘着テープで取った汚れの白色度が1.3以上であり、若干紙粉が発生しているが、問題ない程度
 C:印刷機に2,000枚通したときに、ブランケット上を粘着テープで取った汚れの白色度が1.3未満であり、紙粉が多く発生
<Paper dust>
A printed layer was formed on the sheets obtained in the Examples and Comparative Examples using a 612CD type printing machine manufactured by Hamada Printing Machinery Co., Ltd. To form the printing layer, offset printing ink (trade name: Best SP Indigo) manufactured by T&KTOKA was used. The paper dust left on the printing press was evaluated by the whiteness of the blanket cylinder according to the following criteria.
A: When 2,000 sheets were passed through the printing press, the blanket was hardly stained and there was almost no paper dust. B: When 2,000 sheets were passed through the printing press, the whiteness of the stains removed with adhesive tape on the blanket was 1.3 or more, some paper dust is generated, but it is not a problem C: When 2,000 sheets are passed through the printing machine, the whiteness of the stain removed with adhesive tape on the blanket is 1.3 less than
 表3は、評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、実施例1~12のシートは、二軸延伸層の空孔率が10~45%の範囲にあり、適切な白色度を有している。実施例1~12のシートはいずれも二軸延伸層がケミカルリサイクルポリオレフィンを含有し、環境負荷の低減に貢献できている。また二軸延伸に使用した熱可塑性樹脂の結晶化度が40~52%の範囲内にある実施例1~12のシートは、印刷時の搬送性又は引裂き耐性にも優れている。 As shown in Table 3, the sheets of Examples 1 to 12 had porosity of the biaxially stretched layer in the range of 10 to 45%, and had appropriate whiteness. In all of the sheets of Examples 1 to 12, the biaxially stretched layer contains chemically recycled polyolefin, contributing to a reduction in environmental load. Further, the sheets of Examples 1 to 12, in which the crystallinity of the thermoplastic resin used for biaxial stretching is within the range of 40 to 52%, have excellent conveyance properties during printing and tear resistance.
 一方、比較例1のシートは、二軸延伸層の空孔率が0%であり、白色度が88と低くなっている。比較例2のシートは、ケミカルリサイクルポリオレフィンを使用しておらず環境負荷の低減に貢献できていない。比較例3~5のシートは、ケミカルリサイクルポリオレフィンを使用しているが、比較例3及び5は、二軸延伸層中の熱可塑性樹脂の結晶化度が40%より低く、所定の剛度が得られないために搬送性が低い。比較例4は、熱可塑性樹脂の結晶化度が52%を超えるため、引裂き耐性が低くなっている。 On the other hand, in the sheet of Comparative Example 1, the porosity of the biaxially stretched layer was 0%, and the whiteness was as low as 88. The sheet of Comparative Example 2 does not use chemically recycled polyolefin and cannot contribute to reducing environmental load. The sheets of Comparative Examples 3 to 5 use chemically recycled polyolefin, but in Comparative Examples 3 and 5, the degree of crystallinity of the thermoplastic resin in the biaxially stretched layer is lower than 40%, and the prescribed stiffness cannot be obtained. transportability is low because it cannot be transported. Comparative Example 4 has low tear resistance because the crystallinity of the thermoplastic resin exceeds 52%.
 本出願は、2022年3月16日に出願された日本特許出願である特願2022-041926号に基づく優先権を主張し、当該日本特許出願のすべての記載内容を援用する。 This application claims priority based on Japanese Patent Application No. 2022-041926, which is a Japanese patent application filed on March 16, 2022, and incorporates all the contents of the Japanese patent application.
10  シート
1  二軸延伸層
2  表面層

 
10 sheet 1 biaxially stretched layer 2 surface layer

Claims (8)

  1.  熱可塑性樹脂を含有する二軸延伸層を備えるシートであって、
     前記熱可塑性樹脂が、ケミカルリサイクルポリオレフィンを含み、
     前記二軸延伸層中の前記熱可塑性樹脂の結晶化度が、40~52%であり、
     前記二軸延伸層が、粒子を含有する二軸延伸多孔質層である
     シート。
    A sheet comprising a biaxially stretched layer containing a thermoplastic resin,
    The thermoplastic resin includes a chemically recycled polyolefin,
    The crystallinity of the thermoplastic resin in the biaxially stretched layer is 40 to 52%,
    A sheet in which the biaxially stretched layer is a biaxially stretched porous layer containing particles.
  2.  前記熱可塑性樹脂中の前記ケミカルリサイクルポリオレフィンの含有量が、3質量%以上である
     請求項1に記載のシート。
    The sheet according to claim 1, wherein the content of the chemically recycled polyolefin in the thermoplastic resin is 3% by mass or more.
  3.  前記ケミカルリサイクルポリオレフィンが、ケミカルリサイクルポリプロピレンを含む
     請求項1又は2に記載のシート。
    The sheet according to claim 1 or 2, wherein the chemically recycled polyolefin includes chemically recycled polypropylene.
  4.  前記二軸延伸層上に表面層を備える
     請求項1~3のいずれか一項に記載のシート。
    The sheet according to any one of claims 1 to 3, comprising a surface layer on the biaxially stretched layer.
  5.  前記表面層が、熱可塑性樹脂及び粒子を含有する一軸延伸多孔質層であり、
     前記表面層中の前記粒子の含有量が、30~80質量%である
     請求項4に記載のシート。
    The surface layer is a uniaxially stretched porous layer containing a thermoplastic resin and particles,
    The sheet according to claim 4, wherein the content of the particles in the surface layer is 30 to 80% by mass.
  6.  前記表面層中の前記熱可塑性樹脂が、ケミカルリサイクルポリオレフィンを含み、
     前記表面層中の前記熱可塑性樹脂の結晶化度が、45~50%である
     請求項5に記載のシート。
    The thermoplastic resin in the surface layer includes a chemically recycled polyolefin,
    The sheet according to claim 5, wherein the thermoplastic resin in the surface layer has a crystallinity of 45 to 50%.
  7.  前記表面層中の前記熱可塑性樹脂が、酸変性ポリオレフィンを含む
     請求項5又は6に記載のシート。
    The sheet according to claim 5 or 6, wherein the thermoplastic resin in the surface layer contains acid-modified polyolefin.
  8.  請求項1~7のいずれか一項に記載のシートを備える印刷用紙。

     
    Printing paper comprising the sheet according to any one of claims 1 to 7.

PCT/JP2023/008344 2022-03-16 2023-03-06 Sheet, and paper for printing WO2023176552A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041926 2022-03-16
JP2022-041926 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176552A1 true WO2023176552A1 (en) 2023-09-21

Family

ID=88023033

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008344 WO2023176552A1 (en) 2022-03-16 2023-03-06 Sheet, and paper for printing

Country Status (1)

Country Link
WO (1) WO2023176552A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477530A (en) * 1990-07-13 1992-03-11 Oji Yuka Synthetic Paper Co Ltd Resin-coated film having excellent offset printability
JPH11179800A (en) * 1997-12-25 1999-07-06 Tokuyama Corp Polypropylene film
JPH11302403A (en) * 1998-04-23 1999-11-02 Daicel Chem Ind Ltd Barrier film and its preparation
JP2000062111A (en) * 1998-08-13 2000-02-29 Daicel Chem Ind Ltd Polypropylene film and its manufacture
JP2002059636A (en) * 2000-08-17 2002-02-26 Yupo Corp Ink jet recording paper
WO2003072653A1 (en) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Resin composition and multi-layer structures
JP2004068017A (en) * 2002-07-25 2004-03-04 Yupo Corp Resin oriented film
WO2009028044A1 (en) * 2007-08-28 2009-03-05 Toyo Boseki Kabushiki Kaisha Polypropylene resin laminate film and process for producing the same
WO2017188298A1 (en) * 2016-04-28 2017-11-02 株式会社ユポ・コーポレーション Labeled resin molded article and method for manufacturing same
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film
WO2018147334A1 (en) * 2017-02-07 2018-08-16 東レ株式会社 Biaxially oriented polypropylene film
JP2018144472A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Laminated white film, and recording medium

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477530A (en) * 1990-07-13 1992-03-11 Oji Yuka Synthetic Paper Co Ltd Resin-coated film having excellent offset printability
JPH11179800A (en) * 1997-12-25 1999-07-06 Tokuyama Corp Polypropylene film
JPH11302403A (en) * 1998-04-23 1999-11-02 Daicel Chem Ind Ltd Barrier film and its preparation
JP2000062111A (en) * 1998-08-13 2000-02-29 Daicel Chem Ind Ltd Polypropylene film and its manufacture
JP2002059636A (en) * 2000-08-17 2002-02-26 Yupo Corp Ink jet recording paper
WO2003072653A1 (en) * 2002-02-26 2003-09-04 Kuraray Co., Ltd. Resin composition and multi-layer structures
JP2004068017A (en) * 2002-07-25 2004-03-04 Yupo Corp Resin oriented film
WO2009028044A1 (en) * 2007-08-28 2009-03-05 Toyo Boseki Kabushiki Kaisha Polypropylene resin laminate film and process for producing the same
WO2017188298A1 (en) * 2016-04-28 2017-11-02 株式会社ユポ・コーポレーション Labeled resin molded article and method for manufacturing same
WO2018147334A1 (en) * 2017-02-07 2018-08-16 東レ株式会社 Biaxially oriented polypropylene film
JP2018144472A (en) * 2017-03-02 2018-09-20 三菱ケミカル株式会社 Laminated white film, and recording medium
US20180043656A1 (en) * 2017-09-18 2018-02-15 LiSo Plastics, L.L.C. Oriented Multilayer Porous Film

Similar Documents

Publication Publication Date Title
JP5461614B2 (en) Manufacturing method of inorganic substance powder high-mixing thin film sheet
US9492962B2 (en) Biaxially oriented polylactic acid film with reduced noise level and improved moisture barrier
JP5625912B2 (en) Cavity-containing heat-shrinkable polyester film and method for producing the same
EP3786220A1 (en) Stretched porous film and film for printing
WO2015132812A1 (en) Film and plastic container with label
WO2006028221A1 (en) Printing paper
JP6702068B2 (en) Semi-transparent stretched film
JP5276984B2 (en) Porous film and substrate for printing
KR20070107427A (en) Biodegradable heat-shinkable film and production method therof
JP2006309175A (en) In-mold molding label and molded product using the same
WO2023176552A1 (en) Sheet, and paper for printing
JP2016138233A (en) Translucent stretched film
JP2010168117A (en) Labeled container and manufacturing method of the same
BRPI0701443B1 (en) synthetic paper compositions and environmentally-friendly writing and printing films, synthetic papers and films obtained from and use of such compositions
JP2005306932A (en) Biodegradable synthetic paper and its manufacturing process
JP7289011B2 (en) Thermal label and method for producing thermal label
WO2022210896A1 (en) Laminate and method for manufacturing laminate
JP2019072965A (en) Concrete curing sheet and method of curing concrete
JP7474091B2 (en) Printing paper
US20220372338A1 (en) Laminate and hot melt-type adhesive label
JP2023137280A (en) Laminate and packaging material
JP2023077619A (en) porous stretched film
JP4446671B2 (en) Electrophotographic label
JP4219265B2 (en) Electrophotographic film and recorded matter using the same
JP2023138365A (en) laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770508

Country of ref document: EP

Kind code of ref document: A1