WO2023176348A1 - Circuit protection device - Google Patents

Circuit protection device Download PDF

Info

Publication number
WO2023176348A1
WO2023176348A1 PCT/JP2023/006494 JP2023006494W WO2023176348A1 WO 2023176348 A1 WO2023176348 A1 WO 2023176348A1 JP 2023006494 W JP2023006494 W JP 2023006494W WO 2023176348 A1 WO2023176348 A1 WO 2023176348A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
protection element
circuit protection
overvoltage
power supply
Prior art date
Application number
PCT/JP2023/006494
Other languages
French (fr)
Japanese (ja)
Inventor
友廣 三輪
昌明 北川
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2023176348A1 publication Critical patent/WO2023176348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • It relates to a circuit protection device that protects a monitoring circuit that monitors the voltage of a power supply unit.
  • a hybrid vehicle or an electric vehicle is equipped with an assembled battery in which a large number of battery cells are connected in series as a power source, and a driving electric motor is driven by the voltage generated by the power source.
  • this type of power supply section is connected to a monitoring circuit that monitors the voltage in order to prevent heat generation, burnout, deterioration, etc. due to voltage abnormality, and a monitoring circuit is installed between the power supply section and the monitoring circuit.
  • a circuit protection device is provided to protect the circuit.
  • the power supply section and the monitoring circuit are electrically connected by multiple detection lines for voltage detection, and overvoltage may occur in the power supply section due to the influence of peripheral devices, or large current may flow in the detection line. Otherwise, the monitoring circuit may be destroyed. Therefore, it is necessary to provide a circuit protection device between the power supply section and the monitoring circuit to protect the monitoring circuit.
  • the circuit protection device of Patent Document 1 includes an overvoltage protection element (for example, a Zener diode), and a circuit protection element (e.g., fuse) that is installed in each of the plurality of detection lines and cuts off the electrical connection between the power supply and the monitoring circuit when a current exceeding a predetermined current value flows through the detection line. Equipped with.
  • an overvoltage protection element for example, a Zener diode
  • a circuit protection element e.g., fuse
  • a discharge current may flow due to arc discharge or the like at a location where the electrical connection between the power supply section and the monitoring circuit is interrupted by a circuit protection element such as a fuse.
  • an object of the present disclosure is to provide a circuit protection device that can suppress discharge current when a circuit protection element is cut off.
  • the present disclosure provides a circuit protection device that protects a monitoring circuit that monitors the voltage of a power supply unit.
  • This circuit protection device includes an overvoltage protection element that is connected between a plurality of detection lines for voltage detection that connects the power supply section and the monitoring circuit, and that causes a short-circuit failure when an overvoltage is applied; a circuit protection element that is provided in each of the detection lines and interrupts electrical connection between the power supply section and the monitoring circuit when a current of a predetermined current value or more flows through the detection line; and at least one of the detection lines. and an impedance disposed at a position between the power supply section and the circuit protection element.
  • the overvoltage protection element is configured to cause a short-circuit failure and maintain a short-circuit state between the plurality of detection lines when an overvoltage occurs in the power supply section.
  • the circuit protection element is configured to cut off electrical connection between the power supply unit and the monitoring circuit by a short circuit current flowing between the detection lines via the overvoltage protection element when an overvoltage occurs in the power supply unit. configured to do so.
  • the impedance is configured to suppress generation of discharge current when the circuit protection element interrupts electrical connection between the power supply section and the monitoring circuit due to the short circuit current.
  • the circuit protection device of the present disclosure includes impedance in at least one of the detection lines.
  • the impedance is arranged at a position between the power supply section and the circuit protection element.
  • Impedance is a concept that includes resistance and reactance (inductive reactance and capacitive reactance), and specific configurations include impedance elements such as resistors, inductors, and capacitors, and wiring that functions as impedance. .
  • the circuit protection element can reduce the electric field (i.e. potential difference) at the point where a discharge may occur due to the voltage drop in the impedance. Therefore, generation of discharge current can be suppressed. Since the possibility of the monitoring circuit being destroyed by the discharge current generated in the broken circuit protection element can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
  • FIG. 1 is an overall diagram of a power supply system including a circuit protection device according to a first embodiment
  • FIG. 2 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to the first embodiment
  • FIG. 3 is a diagram illustrating the functions of the circuit protection device according to the first embodiment
  • FIG. 4 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to a modification
  • FIG. 5 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to a second embodiment.
  • the circuit protection device of the present disclosure is applied to a power supply system installed in a hybrid vehicle or an electric vehicle.
  • the power supply system of this embodiment includes an assembled battery 1 and a battery monitoring device 2 as main components. Note that in each of the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings.
  • the assembled battery 1 mainly supplies power to a traveling electric motor (not shown) and various electric loads mounted on the vehicle, and constitutes a power supply section of the present disclosure.
  • the assembled battery 1 of the present embodiment has a plurality of battery cells 10 made of secondary batteries such as lithium ion batteries connected in series, and includes a plurality of battery blocks B1 grouped into a predetermined number of adjacent battery cells 10. It is configured as a series connection of ⁇ Bn.
  • the battery monitoring device 2 is a device that monitors the assembled battery 1 by detecting various states such as the voltage of the assembled battery 1, and monitors each battery cell 10 of the assembled battery 1 via a detection line M for voltage detection, etc. Connected to both terminals.
  • the battery monitoring device 2 of this embodiment includes a circuit protection section 20, a plurality of monitoring circuits 22, a control section 23, and an insulating section 24 as main components.
  • the circuit protection unit 20 is a circuit protection device that protects the monitoring circuit 22 from the assembled battery 1, and includes a circuit protection element 211, an overvoltage protection element 212, and an impedance element 25.
  • the circuit protection element 211 and the overvoltage protection element 212 are provided on the same circuit board 21, and the impedance element 25 is provided outside the circuit board 21. Note that, as described later, the impedance element 25 may be provided on the circuit board 21.
  • the circuit protection element 211 is provided in each detection line M, and is an element that interrupts electrical connection between the assembled battery 1 side and the monitoring circuit 22 when a current exceeding a predetermined current value flows through the detection line M.
  • the overvoltage protection element 212 is an element that is connected between each detection line M and maintains the voltage applied to the monitoring circuit 22 at a constant voltage.
  • the overvoltage protection element 212 is composed of an element that causes a short-circuit failure when an overvoltage is applied.
  • the impedance element 25 is provided on at least one of the detection lines M, and is arranged at a position between the power supply section and the circuit protection element 211.
  • each detection line M is provided with an impedance element 25, respectively.
  • circuit protection element 211 Details of the circuit protection element 211, overvoltage protection element 212, and impedance element 25 in the circuit protection section 20 will be described later.
  • a plurality of monitoring circuits 22 are provided corresponding to each of the battery blocks B1 to Bn of the assembled battery 1, and are circuits that monitor the block voltages of the battery blocks B1 to Bn and the cell voltages of the battery cells 10 in the assembled battery 1.
  • the monitoring circuit 22 of this embodiment is configured to output a signal indicating the voltage state of the assembled battery 1 and the like to the control section 23 via the insulating section 24.
  • the control unit 23 is composed of a microcomputer consisting of a CPU, ROM, RAM, EEPROM (registered trademark), etc., and its peripheral equipment, and performs control processing of each monitoring circuit 22 according to a control program stored in a storage means such as a ROM. It is configured to execute various processes such as a process for determining whether the voltage of the assembled battery 1 is abnormal.
  • the insulating section 24 is a signal transmitting means that transmits signals in both directions while insulating each monitoring circuit 22 and the control section 23, and is composed of, for example, a photocoupler.
  • FIG. 2 shows one battery block Bi among the plurality of battery blocks B1 to Bn, the monitoring circuit 22 that monitors the battery block Bi, and the circuit protection unit 20 that protects the monitoring circuit 22. Illustrated.
  • the overvoltage protection element 212 of this embodiment is an element that prevents overvoltage generated in the battery block Bi from being applied to the monitoring circuit 22, and is an element that prevents overvoltage generated in the battery block Bi from being applied to the monitoring circuit 22.
  • the detection lines connected to both terminals of the battery cell 10 are maintained in a short-circuited state (conductive state).
  • the overvoltage protection element 212 is composed of a Zener diode ZD, and as shown in FIG. 2, the Zener diodes ZD1 to ZDn are connected between each detection line M1 to Mn+1.
  • the Zener diode ZD of this embodiment has a breakdown voltage (for example, several times the full charge voltage of the battery cell 10) set in consideration of the voltage of the battery cell 10 and the withstand voltage of the monitoring circuit 22.
  • each of the Zener diodes ZD1 to ZDn has a cathode connected to a detection line connected to a high potential terminal of the battery cell 10 among a pair of detection lines connected to both terminals of the battery cell 10, and a low potential The anode is connected to the detection line connected to the side terminal.
  • this embodiment employs a Zener diode ZD that has a structure that causes a short-circuit failure when an overvoltage is applied.
  • the Zener diode ZD includes a PN junction type IC chip, a pair of lead frames that sandwich the IC chip at one end, and a resin exterior part that covers part of the IC chip and the lead frame. may be configured.
  • the Zener diode ZD has a structure in which the IC chip and the lead frame are bonded with a wire, there is a possibility that the wire will break and an open failure will occur when an overvoltage is applied. For this reason, it is preferable to employ a Zener diode ZD having a structure in which the IC chip is directly sandwiched between a pair of lead frames.
  • the circuit protection element 211 of this embodiment protects both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22 due to the short circuit current flowing between the detection line M via the overvoltage protection element 212. It is configured to interrupt electrical connection between. That is, the circuit protection element 211 uses an element that is broken by a short circuit current flowing between the detection lines M via the overvoltage protection element 212 when an overvoltage occurs.
  • the circuit protection element 211 is configured with a fuse F that ruptures when a current higher than the rated current flows, and as shown in FIG. 2, fuses F1 to Fn+1 are connected to each detection line. Provided at M1 to Mn+1.
  • the fuse F of this embodiment is configured to be ruptured by a large current flowing through the detection line M when the Zener diode ZD is short-circuited due to overvoltage.
  • the rated current of the fuse F is set based on the large current flowing through the detection line M when the Zener diode ZD is short-circuited due to overvoltage. Note that if the resistance component of the fuse F is large, it will affect the accuracy of voltage monitoring in the monitoring circuit 22, so it is desirable to select a fuse F with a small resistance value.
  • the impedance element 25 of this embodiment is provided on at least one of the detection lines M, and is arranged at a position between the assembled battery 1 and the circuit protection element 211.
  • the impedance element 25 is configured such that when an overvoltage occurs, a short circuit current flows between the detection line M via the overvoltage protection element 212, and the circuit protection element 211 is connected between both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22. It is configured to suppress generation of discharge current in the circuit protection element 211 when the electrical connection of the circuit protection element 211 is interrupted.
  • the impedance element 25 is configured such that when an overvoltage occurs, a short circuit current flows between the detection line M via the overvoltage protection element 212, and the circuit protection element 211 connects both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22.
  • the electrical characteristics such as resistance value and inductance are designed to suppress generation of discharge current in the circuit protection element 211 when the electrical connection between the elements is interrupted.
  • an inductor L is exemplarily used as the impedance element 25, and inductors L1 to Ln+1 are arranged in all of the detection lines M1 to Mn+1, respectively.
  • the inductors L1 to Ln+1 are designed to have inductances that suppress generation of discharge current in the ruptured fuses when the corresponding fuses F1 to Fn+1 are ruptured.
  • the inductances of the inductors L1 to Ln+1 are designed based on an experimental method, for example, by setting them based on inductances that do not allow arc current to flow, which were determined by actually rupturing one of the fuses F1 to Fn+1. be able to.
  • a discharge current may flow due to arc discharge or the like, as shown by the arrow in FIG. 3(d).
  • an electromotive force that obstructs the discharge current is generated in the inductor L2 as a back electromotive force.
  • the inductor L2 is designed to have an inductance that suppresses generation of discharge current in the fuse F2 when the corresponding fuse F2 is ruptured. Therefore, due to the back electromotive force generated in the inductor L2, the potential difference between the blown fuses F2 can be reduced, the electric field can be reduced, and the generation of discharge current can be suppressed.
  • the circuit protection unit 20 of this embodiment includes the overvoltage protection element 212, the circuit protection element 211, and the impedance element 25.
  • the overvoltage protection element 212 is constituted by an element that causes a short-circuit failure when an overvoltage is applied. When an overvoltage occurs in the assembled battery 1, the overvoltage protection element 212 causes a short-circuit failure and maintains a short-circuit state between each detection line M.
  • the circuit protection element 211 is broken by a short circuit current flowing between each detection line M via the overvoltage protection element 212 when an overvoltage occurs in the assembled battery 1 .
  • the overvoltage protection element 212 maintains the short circuit between each detection line M, and the circuit protection element 211 maintains the electrical connection between the assembled battery 1 and the monitoring circuit 22. Since the physical connection is cut off, the monitoring circuit 22 can be appropriately protected from overvoltage generated in the assembled battery 1.
  • the circuit protection element 211 interrupts the electrical connection between the assembled battery 1 and the monitoring circuit 22, the voltage drop of the impedance element 25 reduces the potential difference at the broken part of the broken circuit protection element 211. Since the electric field in the space between the broken parts can be reduced, generation of discharge current in the broken circuit protection element 211 can be suppressed. Since the possibility that the monitoring circuit 22 will be destroyed by the discharge current generated in the broken circuit protection element 211 can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
  • the impedance element 25 is an inductor L1 to Ln+1, and has an inductance that suppresses generation of discharge current when the circuit protection element 211 interrupts the electrical connection between the assembled battery 1 and the monitoring circuit 22. can be designed. Furthermore, the inductors L1 to Ln+1 are not provided on the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided, and are provided between the assembled battery 1 and the circuit board 21 outside the circuit board 21. It is set in. Therefore, the circuit protection unit 20 according to this embodiment can be realized by simply adding the inductor L to the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided as in the conventional case.
  • the overvoltage protection element 212 is configured with a Zener diode ZD that causes a short circuit failure when an overvoltage is applied, a short circuit that flows between each detection line M occurs when the Zener diode ZD causes a short circuit failure. Any circuit protection element 211 that interrupts each detection line M with current can be used. Therefore, the number of choices for the circuit protection element 211 increases, and selection of the circuit protection element 211 becomes easy.
  • the circuit protection element 211, the overvoltage protection element 212, and the inductor L may all be provided on the same circuit board 21. Even if the inductor L is provided on the circuit board 21 as in the circuit protection section 20 shown in FIG. 4, a discharge current will occur in the broken circuit protection element 211 as in the circuit protection section 20 shown in FIG. It is possible to provide the circuit protection unit 20 that can suppress the noise and protect the monitoring circuit 22 more reliably than before. By simply installing the circuit board 21 including the circuit protection element 211, the overvoltage protection element 212, and the inductor L in a power supply system including the monitoring circuit 22 and the power supply unit, a power supply system including the circuit protection device according to the present application can be created. realizable.
  • the inductor L may be provided at least on the highest detection line M1, which is the highest potential side of the detection lines M, and the lowest detection line Mn+1, which is the lowest potential side. That is, the circuit protection unit 20 only needs to include at least the inductor L1 and the inductor Ln+1 as the inductor L.
  • the overvoltage increases as the chain of fuse ruptures progresses.
  • the overvoltage generated in the highest detection line M1 becomes the largest, and the fuse F1 ruptures. Therefore, by providing the inductor L1 in the uppermost detection line M1, generation of discharge current can be suppressed.
  • the overvoltage generated in the lowest detection line Mn+1 eventually becomes the largest, and the fuse Fn+1 breaks. Therefore, by providing the inductor Ln+1 on the lowest detection line Mn+1, generation of discharge current can be suppressed.
  • inductor L1 and inductor Ln+1 are provided, for example, in the power supply system of a hybrid vehicle or an electric vehicle, the voltage charged in the smoothing capacitor connected in parallel to the battery pack 1 and the final By calculating the path current from the path resistance of the current path, the inductance of the inductor L1 and the inductor Ln+1 can be designed.
  • the impedance element 25 is configured with a resistor R instead of an inductor L. This is different from the circuit protection unit 20 according to the embodiment. Note that descriptions of parts similar to or equivalent to those in the first embodiment will be omitted or simplified.
  • a resistor R is exemplarily used as the impedance element 25, and resistors R1 to Rn+1 are arranged in all of the detection lines M1 to Mn+1, respectively.
  • the resistors R1 to Rn+1 are designed to have resistance values that suppress generation of discharge current in the ruptured fuses when the corresponding fuses F1 to Fn+1 are ruptured.
  • the resistance values of the resistors R1 to Rn+1 can be designed based on an experimental method, similar to the inductance of the inductors L1 to Ln+1 according to the first embodiment.
  • the Zener diode ZD2 when an overvoltage occurs in the battery cell 10 having the second highest potential of the battery block Bi shown in FIG. 5 and a voltage exceeding the breakdown voltage is applied to the Zener diode ZD2, the battery A short circuit current flows through the closed circuit formed by the cell 10, the detection lines M2, M3, and the Zener diode ZD2.
  • the Zener diodes ZD1 to ZDn are short-circuited and the fuse F2 is ruptured, the electrical connection between the battery cell 10 and the monitoring circuit 22 is cut off.
  • a discharge current may flow due to arc discharge or the like.
  • Resistor R2 is designed to have a resistance value that suppresses generation of discharge current in fuse F2. Therefore, the resistor R2 can reduce the potential difference between the blown fuses F2, reduce the electric field, and suppress the generation of discharge current.
  • the impedance element 25 is configured with a resistor R as in the present embodiment, the effect is that it is possible to suppress the generation of discharge current in the fuse F whose electrical connection is cut off, as in the first embodiment. play.
  • the resistors R1 to Rn+1 are not provided on the circuit board 21 where the circuit protection element 211 and the overvoltage protection element 212 are provided, and are provided between the assembled battery 1 and the circuit board 21 outside the circuit board 21. is provided in between. Therefore, the circuit protection unit 20 according to the present embodiment can be realized by simply adding the resistor R to the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided as in the conventional case.
  • the circuit protection element 211, the overvoltage protection element 212, and the resistor R may all be provided on the same circuit board 21. Even in this case, like the circuit protection unit 20 shown in FIG. 4, the circuit protection unit 20 can suppress generation of discharge current in the broken circuit protection element 211, and can protect the monitoring circuit 22 more reliably than before. can be provided.
  • a power supply system equipped with a circuit protection device according to the present application can be obtained by simply installing a circuit board 21 equipped with a circuit protection element 211, an overvoltage protection element 212, and a resistor R in a power supply system equipped with a monitoring circuit 22 and a power supply section. can be realized.
  • the resistor R may be provided at least on either the highest detection line M1 or the lowest detection line Mn+1. That is, the circuit protection unit 20 only needs to include at least one of the resistor R1 and the resistor Rn+1 as the resistor R.
  • the circuit protection element 211 is composed of the fuse F, but the circuit protection element 211 is not limited to the fuse F, and any element that can perform the same function as the fuse F can be used as the circuit protection element 211. It can be adopted as For example, a resistance element that is ruptured by a short circuit current flowing between the detection lines M via the overvoltage protection element 212 when an overvoltage occurs may be used as the circuit protection element 211.
  • the resistance element serving as the circuit protection element 211 is desirably configured with a low resistance element having a low resistance value in order to suppress the influence on the voltage detection performance in the monitoring circuit 22.
  • the overvoltage protection element 212 is formed of a Zener diode ZD.
  • the overvoltage protection element 212 is not limited to the Zener diode ZD. 212.
  • a circuit protection device using a resistor or an inductor is used as an impedance.
  • the present invention is not limited thereto.
  • an impedance element other than a resistor or an inductor for example, a capacitor
  • a wiring that functions as an impedance or the like may be used.
  • impedance illustrated above only the same type of impedance may be used, or a plurality of types may be used in combination.
  • the circuit protection device may include both an inductor and a resistor as impedance.
  • the circuit protection device of the present disclosure is applied to the monitoring circuit 22 related to the voltage of the assembled battery 1 mounted on a vehicle, but the circuit protection device is not limited to this, and may be used for other purposes. It can be applied to a monitoring circuit related to the voltage of a power supply section.
  • the power supply section is not limited to a battery, and may be any power source that can supply power to various electrical loads.
  • the circuit protection unit 20 functions as a circuit protection device that protects the monitoring circuit 22 that monitors the voltage of the power supply unit (for example, the assembled battery 1).
  • the circuit protection unit 20 is connected between a plurality of detection lines M for voltage detection connecting between the power supply unit and the monitoring circuit 22, and includes an overvoltage protection element 212, a circuit protection element 211, and an impedance element 25. Be prepared.
  • the overvoltage protection element 212 is an element that causes a short-circuit failure when an overvoltage is applied, and is configured to cause a short-circuit failure and maintain a short-circuited state between the plurality of detection lines M when an overvoltage occurs in the power supply section. Ru.
  • the circuit protection element 211 is provided in each of the plurality of detection lines M, and is an element that interrupts electrical connection between the power supply section and the monitoring circuit 22 when a current of a predetermined current value or more flows through the detection line M.
  • a short circuit current flows between the detection lines via the overvoltage protection element 212 to interrupt the electrical connection between the power supply section and the monitoring circuit 22.
  • the impedance element 25 is provided in at least one of the detection lines M, and is arranged at a position between the power supply section and the circuit protection element 211, so that the circuit protection element 211 is connected between the power supply section and the monitoring circuit 22 due to a short circuit current.
  • the structure is configured to suppress the generation of discharge current when the electrical connection is interrupted.
  • the impedance element 25 is an element that makes it difficult for current to flow, and specific examples include a resistor R and an inductor L.
  • a discharge occurs in the circuit protection element 211 that has cut off the electrical connection due to the voltage drop of the impedance element 25. Since it is possible to reduce the electric field (that is, potential difference) at a location where it is likely to occur, it is possible to suppress the occurrence of discharge current such as arc discharge. Since the possibility of the monitoring circuit 22 being destroyed by the discharge current can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
  • the impedance element 25 is an inductor L (more specifically, Inductors L1 to Ln+1) may also be used.
  • the inductor L is provided at least on the highest detection line M1, which is the highest potential side of the detection lines M, and the lowest detection line Mn+1, which is the lowest potential side.
  • the overvoltage protection element 212 and the circuit protection element 211 may be provided on the same circuit board 21, and the inductor L may be provided outside the circuit board 21.
  • This configuration can be easily realized by adding an inductor L to the conventional circuit board 21 including the overvoltage protection element 212 and the circuit protection element 211.
  • the overvoltage protection element 212, the circuit protection element 211, and the inductor L may be provided on the same circuit board 21.
  • the inductor L may be provided both on the circuit board 21 and outside the circuit board.
  • the impedance element 25 is a resistor R (more specifically may be resistors R1 to Rn+1).
  • the resistor R is provided at least on either the highest detection line M1 or the lowest detection line Mn+1.
  • the overvoltage protection element 212 and the circuit protection element 211 may be provided on the same circuit board 21, and the resistor R may be provided outside the circuit board 21.
  • This configuration can be easily realized by adding the resistor R to the conventional circuit board 21 including the overvoltage protection element 212 and the circuit protection element 211.
  • the overvoltage protection element 212, the circuit protection element 211, and the resistor R may be provided on the same circuit board 21.
  • the resistor R may be provided both on the circuit board 21 and outside the circuit board.
  • control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. may be done.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits.
  • the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.

Abstract

A circuit protection device (20) for protecting monitoring circuits (22) that monitor the voltage of a power source unit (1) is provided with: overvoltage protection elements (212) that are connected between a plurality of detection lines (M) connecting between the power source unit and the monitoring circuits and that undergo a short-circuit failure when an overvoltage has been applied; circuit protection elements (211) that are provided to each of the detection lines and cut off the electrical connection between the power source unit and the monitoring circuits when a current at or above a predetermined current value flows on the detection lines; and impedances (25) that are provided to at least one of the detection lines and are arranged at locations that are between the power source unit and the circuit protection elements. In the event of overvoltage, the overvoltage protection elements undergo a short-circuit failure and maintain a short-circuit state between detection lines, the circuit protection elements cut off the electrical connection between the power source unit and the monitoring circuits due to a short-circuit current flowing between the detection lines via the overvoltage protection elements; and the impedances suppress the generation of a discharge current when the short-circuit current causes the circuit protection elements to cut off the electrical connection between the power source unit and the monitoring circuits.

Description

回路保護装置circuit protection device 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月18日に出願された日本出願番号2022-043847号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2022-043847 filed on March 18, 2022, and the contents thereof are incorporated herein.
 電源部の電圧を監視する監視回路を保護する回路保護装置に関する。 It relates to a circuit protection device that protects a monitoring circuit that monitors the voltage of a power supply unit.
 例えば、ハイブリッド自動車や電気自動車では、多数の電池セルが直列に接続された組電池を電源部として備え、当該電源部で発生させた電圧により走行用電動モータを駆動させている。特許文献1のように、この種の電源部は、電圧異常に伴う発熱、焼損、劣化等を防止すべく、その電圧を監視する監視回路に接続され、電源部および監視回路間に、監視回路を保護する回路保護装置が設けられる。 For example, a hybrid vehicle or an electric vehicle is equipped with an assembled battery in which a large number of battery cells are connected in series as a power source, and a driving electric motor is driven by the voltage generated by the power source. As in Patent Document 1, this type of power supply section is connected to a monitoring circuit that monitors the voltage in order to prevent heat generation, burnout, deterioration, etc. due to voltage abnormality, and a monitoring circuit is installed between the power supply section and the monitoring circuit. A circuit protection device is provided to protect the circuit.
 ここで、電源部および監視回路間は、電圧検出用の複数の検出ラインによって電気的に接続されており、周辺機器等の影響によって電源部に過電圧が発生したり、検出ラインに大電流が流れたりすると、監視回路が破壊されてしまう虞がある。それ故、電源部および監視回路間に、監視回路を保護する回路保護装置を設ける必要がある。 Here, the power supply section and the monitoring circuit are electrically connected by multiple detection lines for voltage detection, and overvoltage may occur in the power supply section due to the influence of peripheral devices, or large current may flow in the detection line. Otherwise, the monitoring circuit may be destroyed. Therefore, it is necessary to provide a circuit protection device between the power supply section and the monitoring circuit to protect the monitoring circuit.
 特許文献1の回路保護装置は、電源部および監視回路との間を接続する電圧検出用の複数の検出ライン間に接続され、過電圧が印加された際に短絡故障する過電圧保護素子(例えば、ツェナーダイオード)と、複数の検出ラインそれぞれに設けられ、所定電流値以上の電流が検出ラインに流れた際に電源部と監視回路との間の電気的接続を遮断する回路保護素子(例えば、ヒューズ)とを備える。電源部に過電圧が発生した際、過電圧保護素子によって複数の検出ライン間が短絡状態に維持されると共に、回路保護素子によって電源部と監視回路との間の電気的接続を遮断されるので、電源部に発生した過電圧から監視回路を適切に保護することができる。 The circuit protection device of Patent Document 1 includes an overvoltage protection element (for example, a Zener diode), and a circuit protection element (e.g., fuse) that is installed in each of the plurality of detection lines and cuts off the electrical connection between the power supply and the monitoring circuit when a current exceeding a predetermined current value flows through the detection line. Equipped with. When an overvoltage occurs in the power supply, the overvoltage protection element maintains a short circuit between multiple detection lines, and the circuit protection element cuts off the electrical connection between the power supply and the monitoring circuit. The monitoring circuit can be appropriately protected from overvoltages generated in the parts.
特開2014-7883号公報Japanese Patent Application Publication No. 2014-7883
 特許文献1の回路保護装置において、ヒューズ等の回路保護素子によって電源部と監視回路との間の電気的接続が遮断された箇所において、アーク放電等により放電電流が流れる可能性がある。 In the circuit protection device of Patent Document 1, a discharge current may flow due to arc discharge or the like at a location where the electrical connection between the power supply section and the monitoring circuit is interrupted by a circuit protection element such as a fuse.
 上記を鑑み、本開示は、回路保護素子の遮断時における放電電流を抑制可能な回路保護装置を提供することを目的とする。 In view of the above, an object of the present disclosure is to provide a circuit protection device that can suppress discharge current when a circuit protection element is cut off.
 本開示は、電源部の電圧を監視する監視回路を保護する回路保護装置を提供する。この回路保護装置は、前記電源部および前記監視回路との間を接続する電圧検出用の複数の検出ライン間に接続され、過電圧が印加された際に短絡故障する過電圧保護素子と、前記複数の検出ラインそれぞれに設けられ、所定電流値以上の電流が検出ラインに流れた際に前記電源部と前記監視回路との間の電気的接続を遮断する回路保護素子と、前記検出ラインの少なくとも1つに設けられ、前記電源部と前記回路保護素子との間となる位置に配置されるインピーダンスと、を備える。前記過電圧保護素子は、前記電源部に過電圧が発生した際に、短絡故障して前記複数の検出ライン間を短絡状態に維持するように構成される。前記回路保護素子は、前記電源部に過電圧が発生した際に、前記過電圧保護素子を介して前記検出ライン間に流れる短絡電流によって、前記電源部と前記監視回路との間の電気的接続を遮断するように構成される。前記インピーダンスは、前記短絡電流によって前記回路保護素子が前記電源部と前記監視回路との間の電気的接続を遮断した際に、放電電流の発生を抑制するように構成される。 The present disclosure provides a circuit protection device that protects a monitoring circuit that monitors the voltage of a power supply unit. This circuit protection device includes an overvoltage protection element that is connected between a plurality of detection lines for voltage detection that connects the power supply section and the monitoring circuit, and that causes a short-circuit failure when an overvoltage is applied; a circuit protection element that is provided in each of the detection lines and interrupts electrical connection between the power supply section and the monitoring circuit when a current of a predetermined current value or more flows through the detection line; and at least one of the detection lines. and an impedance disposed at a position between the power supply section and the circuit protection element. The overvoltage protection element is configured to cause a short-circuit failure and maintain a short-circuit state between the plurality of detection lines when an overvoltage occurs in the power supply section. The circuit protection element is configured to cut off electrical connection between the power supply unit and the monitoring circuit by a short circuit current flowing between the detection lines via the overvoltage protection element when an overvoltage occurs in the power supply unit. configured to do so. The impedance is configured to suppress generation of discharge current when the circuit protection element interrupts electrical connection between the power supply section and the monitoring circuit due to the short circuit current.
 本開示の回路保護装置は、検出ラインの少なくとも1つにインピーダンスを備える。インピーダンスは、電源部と回路保護素子との間となる位置に配置される。インピーダンスは、抵抗(レジスタンス)およびリアクタンス(誘導性リアクタンスおよび容量性リアクタンス)を含む概念であり、具体的な構成としては抵抗器、インダクタ、キャパシタ等のインピーダンス素子や、インピーダンスとして機能する配線を例示できる。短絡電流によって回路保護素子が電源部と監視回路との間の電気的接続が遮断された際に、インピーダンスの電圧降下により、放電が発生するおそれのある箇所の電界(すなわち、電位差)を低減できるため、放電電流が発生することを抑制できる。破断した回路保護素子に発生する放電電流によって監視回路が破壊される可能性を低減できるため、従来よりも確実に監視回路22を保護し得る回路保護部20を提供することができる。 The circuit protection device of the present disclosure includes impedance in at least one of the detection lines. The impedance is arranged at a position between the power supply section and the circuit protection element. Impedance is a concept that includes resistance and reactance (inductive reactance and capacitive reactance), and specific configurations include impedance elements such as resistors, inductors, and capacitors, and wiring that functions as impedance. . When a short-circuit current interrupts the electrical connection between the power supply and the monitoring circuit, the circuit protection element can reduce the electric field (i.e. potential difference) at the point where a discharge may occur due to the voltage drop in the impedance. Therefore, generation of discharge current can be suppressed. Since the possibility of the monitoring circuit being destroyed by the discharge current generated in the broken circuit protection element can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る回路保護装置を含む電源システムの全体図であり、 図2は、第1実施形態に係る回路保護装置を含む電池監視装置の要部を示す図であり、 図3は、第1実施形態に係る回路保護装置の機能を説明する図であり、 図4は、変形例に係る回路保護装置を含む電池監視装置の要部を示す図であり、 図5は、第2実施形態に係る回路保護装置を含む電池監視装置の要部を示す図である。
The above objects and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is an overall diagram of a power supply system including a circuit protection device according to a first embodiment, FIG. 2 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to the first embodiment, FIG. 3 is a diagram illustrating the functions of the circuit protection device according to the first embodiment, FIG. 4 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to a modification, FIG. 5 is a diagram showing main parts of a battery monitoring device including a circuit protection device according to a second embodiment.
 (第1実施形態)
 第1実施形態では、ハイブリッド自動車や電気自動車に搭載される電源システムに、本開示の回路保護装置を適用している。図1に示すように、本実施形態の電源システムは、主たる構成要素として、組電池1、および電池監視装置2を備えている。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
(First embodiment)
In the first embodiment, the circuit protection device of the present disclosure is applied to a power supply system installed in a hybrid vehicle or an electric vehicle. As shown in FIG. 1, the power supply system of this embodiment includes an assembled battery 1 and a battery monitoring device 2 as main components. Note that in each of the following embodiments, parts that are the same or equivalent to each other are given the same reference numerals in the drawings.
 組電池1は、図示しない走行用電動モータを主として、車載された各種電気負荷に給電するものであり、本開示の電源部を構成している。本実施形態の組電池1は、リチウムイオン電池等の二次電池からなる電池セル10を複数直列に接続したもので、互いに隣接する所定数の電池セル10毎にグループ化した複数の電池ブロックB1~Bnの直列接続体として構成されている。 The assembled battery 1 mainly supplies power to a traveling electric motor (not shown) and various electric loads mounted on the vehicle, and constitutes a power supply section of the present disclosure. The assembled battery 1 of the present embodiment has a plurality of battery cells 10 made of secondary batteries such as lithium ion batteries connected in series, and includes a plurality of battery blocks B1 grouped into a predetermined number of adjacent battery cells 10. It is configured as a series connection of ~Bn.
 電池監視装置2は、組電池1の電圧等の各種状態を検出して、組電池1を監視する装置であり、電圧検出用の検出ラインM等を介して組電池1の各電池セル10の両端子に接続されている。 The battery monitoring device 2 is a device that monitors the assembled battery 1 by detecting various states such as the voltage of the assembled battery 1, and monitors each battery cell 10 of the assembled battery 1 via a detection line M for voltage detection, etc. Connected to both terminals.
 本実施形態の電池監視装置2は、主たる構成要素として、回路保護部20、複数の監視回路22、制御部23、絶縁部24を備えている。 The battery monitoring device 2 of this embodiment includes a circuit protection section 20, a plurality of monitoring circuits 22, a control section 23, and an insulating section 24 as main components.
 回路保護部20は、組電池1から監視回路22を保護する回路保護装置であり、回路保護素子211、過電圧保護素子212、およびインピーダンス素子25を備えている。回路保護素子211および過電圧保護素子212は、同一の回路基板21上に設けられており、インピーダンス素子25は、回路基板21の外に設けられている。なお、後述するように、インピーダンス素子25は、回路基板21上に設けられていてもよい。 The circuit protection unit 20 is a circuit protection device that protects the monitoring circuit 22 from the assembled battery 1, and includes a circuit protection element 211, an overvoltage protection element 212, and an impedance element 25. The circuit protection element 211 and the overvoltage protection element 212 are provided on the same circuit board 21, and the impedance element 25 is provided outside the circuit board 21. Note that, as described later, the impedance element 25 may be provided on the circuit board 21.
 回路保護素子211は、各検出ラインMに設けられ、所定電流値以上の電流が検出ラインMに流れた際に組電池1側と監視回路22との間の電気的接続を遮断する素子である。また、過電圧保護素子212は、各検出ラインM間に接続され、監視回路22に印加される電圧を一定電圧に保持する素子である。過電圧保護素子212は、過電圧が印加された際に短絡故障する素子によって構成されている。 The circuit protection element 211 is provided in each detection line M, and is an element that interrupts electrical connection between the assembled battery 1 side and the monitoring circuit 22 when a current exceeding a predetermined current value flows through the detection line M. . Further, the overvoltage protection element 212 is an element that is connected between each detection line M and maintains the voltage applied to the monitoring circuit 22 at a constant voltage. The overvoltage protection element 212 is composed of an element that causes a short-circuit failure when an overvoltage is applied.
 インピーダンス素子25は、検出ラインMの少なくとも1つに設けられ、電源部と回路保護素子211との間となる位置に配置される。本実施形態では、各検出ラインMにそれぞれインピーダンス素子25が設けられている。 The impedance element 25 is provided on at least one of the detection lines M, and is arranged at a position between the power supply section and the circuit protection element 211. In this embodiment, each detection line M is provided with an impedance element 25, respectively.
 回路保護部20における回路保護素子211、過電圧保護素子212、およびインピーダンス素子25の詳細については後述する。 Details of the circuit protection element 211, overvoltage protection element 212, and impedance element 25 in the circuit protection section 20 will be described later.
 監視回路22は、組電池1の電池ブロックB1~Bn毎に対応して複数設けられ、組電池1における電池ブロックB1~Bnのブロック電圧や電池セル10のセル電圧を監視する回路である。本実施形態の監視回路22は、絶縁部24を介して組電池1の電圧状態等を示す信号を制御部23に対して出力するように構成されている。 A plurality of monitoring circuits 22 are provided corresponding to each of the battery blocks B1 to Bn of the assembled battery 1, and are circuits that monitor the block voltages of the battery blocks B1 to Bn and the cell voltages of the battery cells 10 in the assembled battery 1. The monitoring circuit 22 of this embodiment is configured to output a signal indicating the voltage state of the assembled battery 1 and the like to the control section 23 via the insulating section 24.
 制御部23は、CPU、ROM、RAM、EEPROM(登録商標)等からなるマイクロコンピュータ、およびその周辺機器で構成され、ROM等の記憶手段に記憶された制御プログラムに従って各監視回路22の制御処理や組電池1の電圧異常の判定処理等といった各種処理を実行するように構成されている。 The control unit 23 is composed of a microcomputer consisting of a CPU, ROM, RAM, EEPROM (registered trademark), etc., and its peripheral equipment, and performs control processing of each monitoring circuit 22 according to a control program stored in a storage means such as a ROM. It is configured to execute various processes such as a process for determining whether the voltage of the assembled battery 1 is abnormal.
 絶縁部24は、各監視回路22および制御部23の間を絶縁した状態で、双方向に信号を伝達する信号伝達手段であり、例えば、フォトカプラ等で構成されている。 The insulating section 24 is a signal transmitting means that transmits signals in both directions while insulating each monitoring circuit 22 and the control section 23, and is composed of, for example, a photocoupler.
 続いて、本実施形態の回路保護部20の詳細ついて図2に示す要部構成図を用いて説明する。なお、説明の便宜上、図2では、複数の電池ブロックB1~Bnのうち、1つの電池ブロックBi、当該電池ブロックBiを監視する監視回路22、および当該監視回路22を保護する回路保護部20を図示している。 Next, details of the circuit protection unit 20 of this embodiment will be explained using the main part configuration diagram shown in FIG. 2. For convenience of explanation, FIG. 2 shows one battery block Bi among the plurality of battery blocks B1 to Bn, the monitoring circuit 22 that monitors the battery block Bi, and the circuit protection unit 20 that protects the monitoring circuit 22. Illustrated.
 本実施形態の過電圧保護素子212は、電池ブロックBiに発生した過電圧が監視回路22に印加されることを防止する素子であり、電池ブロックBiを構成する電池セル10の一部に過電圧が発生した際に、当該電池セル10の両端子に接続された検出ライン間を短絡状態(導通状態)に維持するように構成されている。 The overvoltage protection element 212 of this embodiment is an element that prevents overvoltage generated in the battery block Bi from being applied to the monitoring circuit 22, and is an element that prevents overvoltage generated in the battery block Bi from being applied to the monitoring circuit 22. At this time, the detection lines connected to both terminals of the battery cell 10 are maintained in a short-circuited state (conductive state).
 本実施形態では、過電圧保護素子212をツェナダイオードZDで構成しており、図2に示すように、ツェナダイオードZD1~ZDnが、各検出ラインM1~Mn+1間に接続されている。 In this embodiment, the overvoltage protection element 212 is composed of a Zener diode ZD, and as shown in FIG. 2, the Zener diodes ZD1 to ZDn are connected between each detection line M1 to Mn+1.
 本実施形態のツェナダイオードZDは、電池セル10の電圧、および監視回路22の耐電圧を考慮して降伏電圧(例えば、電池セル10の満充電電圧の数倍)が設定されている。なお、各ツェナダイオードZD1~ZDnは、電池セル10の両端子に接続された一対の検出ラインのうち、電池セル10の高電位側の端子に接続された検出ラインにカソードが接続され、低電位側の端子に接続された検出ラインにアノードが接続されている。 The Zener diode ZD of this embodiment has a breakdown voltage (for example, several times the full charge voltage of the battery cell 10) set in consideration of the voltage of the battery cell 10 and the withstand voltage of the monitoring circuit 22. Note that each of the Zener diodes ZD1 to ZDn has a cathode connected to a detection line connected to a high potential terminal of the battery cell 10 among a pair of detection lines connected to both terminals of the battery cell 10, and a low potential The anode is connected to the detection line connected to the side terminal.
 また、本実施形態では、過電圧が印加された際に、短絡故障(ショート故障)する構造のツェナダイオードZDを採用している。具体的には、例えば、ツェナダイオードZDは、PN接合型のICチップ、一端側にて当該ICチップを挟持する一対のリードフレーム、ICチップおよびリードフレームの一部を覆う樹脂性の外装部で構成されていてもよい。なお、ツェナダイオードZDが、ICチップとリードフレームとをワイヤでボンディングする構造であると、過電圧が印加された際に、ワイヤが破断してオープン故障してしまう可能性がある。このため、一対のリードフレームにてICチップを直接挟持する構造のツェナダイオードZDを採用することが好ましい。 Furthermore, this embodiment employs a Zener diode ZD that has a structure that causes a short-circuit failure when an overvoltage is applied. Specifically, for example, the Zener diode ZD includes a PN junction type IC chip, a pair of lead frames that sandwich the IC chip at one end, and a resin exterior part that covers part of the IC chip and the lead frame. may be configured. Note that if the Zener diode ZD has a structure in which the IC chip and the lead frame are bonded with a wire, there is a possibility that the wire will break and an open failure will occur when an overvoltage is applied. For this reason, it is preferable to employ a Zener diode ZD having a structure in which the IC chip is directly sandwiched between a pair of lead frames.
 続いて、本実施形態の回路保護素子211は、過電圧発生時に、過電圧保護素子212を介して検出ラインM間に流れる短絡電流によって、過電流が発生した電池セル10の両端子と監視回路22との間の電気的接続を遮断するように構成されている。つまり、回路保護素子211は、過電圧発生時に、過電圧保護素子212を介して検出ラインM間に流れる短絡電流によって破断する素子を用いている。 Subsequently, when an overvoltage occurs, the circuit protection element 211 of this embodiment protects both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22 due to the short circuit current flowing between the detection line M via the overvoltage protection element 212. It is configured to interrupt electrical connection between. That is, the circuit protection element 211 uses an element that is broken by a short circuit current flowing between the detection lines M via the overvoltage protection element 212 when an overvoltage occurs.
 具体的には、本実施形態では、回路保護素子211を定格電流以上の電流が流れた際に破断するヒューズFで構成しており、図2に示すように、ヒューズF1~Fn+1が各検出ラインM1~Mn+1に設けられている。 Specifically, in this embodiment, the circuit protection element 211 is configured with a fuse F that ruptures when a current higher than the rated current flows, and as shown in FIG. 2, fuses F1 to Fn+1 are connected to each detection line. Provided at M1 to Mn+1.
 本実施形態のヒューズFは、過電圧にてツェナダイオードZDが短絡故障した際に、検出ラインMに流れる大電流によって破断するように構成されている。つまり、ヒューズFの定格電流が、過電圧にてツェナダイオードZDが短絡故障した際の検出ラインMに流れる大電流を基準に設定している。なお、ヒューズFにおける抵抗成分が大きいと、監視回路22における電圧監視の精度等に影響があるため、小さい抵抗値となるヒューズFを選定することが望ましい。 The fuse F of this embodiment is configured to be ruptured by a large current flowing through the detection line M when the Zener diode ZD is short-circuited due to overvoltage. In other words, the rated current of the fuse F is set based on the large current flowing through the detection line M when the Zener diode ZD is short-circuited due to overvoltage. Note that if the resistance component of the fuse F is large, it will affect the accuracy of voltage monitoring in the monitoring circuit 22, so it is desirable to select a fuse F with a small resistance value.
 本実施形態のインピーダンス素子25は、検出ラインMの少なくとも1つに設けられ、組電池1と回路保護素子211との間となる位置に配置される。インピーダンス素子25は、過電圧発生時に、過電圧保護素子212を介して検出ラインM間に流れる短絡電流によって、回路保護素子211が、過電流が発生した電池セル10の両端子と監視回路22との間の電気的接続を遮断した際に、回路保護素子211において放電電流が発生することを抑制するように構成されている。例えば、インピーダンス素子25は、過電圧発生時に、過電圧保護素子212を介して検出ラインM間に流れる短絡電流によって、回路保護素子211が、過電流が発生した電池セル10の両端子と監視回路22との間の電気的接続を遮断した際に、回路保護素子211において放電電流が発生することを抑制するように、その抵抗値やインダクタンス等の電気特性が設計されている。 The impedance element 25 of this embodiment is provided on at least one of the detection lines M, and is arranged at a position between the assembled battery 1 and the circuit protection element 211. The impedance element 25 is configured such that when an overvoltage occurs, a short circuit current flows between the detection line M via the overvoltage protection element 212, and the circuit protection element 211 is connected between both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22. It is configured to suppress generation of discharge current in the circuit protection element 211 when the electrical connection of the circuit protection element 211 is interrupted. For example, the impedance element 25 is configured such that when an overvoltage occurs, a short circuit current flows between the detection line M via the overvoltage protection element 212, and the circuit protection element 211 connects both terminals of the battery cell 10 where the overcurrent has occurred and the monitoring circuit 22. The electrical characteristics such as resistance value and inductance are designed to suppress generation of discharge current in the circuit protection element 211 when the electrical connection between the elements is interrupted.
 図2に示すように、本実施形態では、例示的に、インピーダンス素子25としてインダクタLを用い、検出ラインM1~Mn+1の全てにそれぞれインダクタL1~Ln+1を配置している。具体的には、インダクタL1~Ln+1は、それぞれ対応するヒューズF1~Fn+1が破断した際に、その破断したヒューズにおける放電電流の発生を抑制するインダクタンスを有するように設計されている。インダクタL1~Ln+1のインダクタンスは、例えば、実際にヒューズF1~Fn+1のいずれかを破断させて求めたアーク電流が流れないようなインダクタンスに基づいて設定する等により、実験的な手法に基づいて設計することができる。 As shown in FIG. 2, in this embodiment, an inductor L is exemplarily used as the impedance element 25, and inductors L1 to Ln+1 are arranged in all of the detection lines M1 to Mn+1, respectively. Specifically, the inductors L1 to Ln+1 are designed to have inductances that suppress generation of discharge current in the ruptured fuses when the corresponding fuses F1 to Fn+1 are ruptured. The inductances of the inductors L1 to Ln+1 are designed based on an experimental method, for example, by setting them based on inductances that do not allow arc current to flow, which were determined by actually rupturing one of the fuses F1 to Fn+1. be able to.
 次に、組電池1に過電圧が発生した際の回路保護部20の作用について説明する。組電池1に過電圧が発生し、ツェナダイオードZD1~ZDnに降伏電圧を超える電圧が印加されると、組電池1およびツェナダイオードZD1~ZDn間に形成される閉回路に大電流(短絡電流)が流れる。 Next, the action of the circuit protection section 20 when an overvoltage occurs in the assembled battery 1 will be explained. When an overvoltage occurs in the assembled battery 1 and a voltage exceeding the breakdown voltage is applied to the Zener diodes ZD1 to ZDn, a large current (short circuit current) is generated in the closed circuit formed between the assembled battery 1 and the Zener diodes ZD1 to ZDn. flows.
 この際、ツェナダイオードZD1~ZDnが短絡故障すると、組電池1およびツェナダイオードZD1~ZDn間に形成される閉回路に大電流(短絡電流)が流れ続け、組電池1と監視回路22との間の電気的接続が遮断される。これによれば、監視回路22側に過電圧が印加されないので、組電池1にて発生した過電圧から監視回路22が適切に保護される。 At this time, if the Zener diodes ZD1 to ZDn are short-circuited, a large current (short circuit current) continues to flow through the closed circuit formed between the assembled battery 1 and the Zener diodes ZD1 to ZDn, and the electrical connection is interrupted. According to this, since no overvoltage is applied to the monitoring circuit 22 side, the monitoring circuit 22 is appropriately protected from the overvoltage generated in the assembled battery 1.
 例えば、図2に示す電池ブロックBiの2番目に高電位となる電池セル10に過電圧が発生し、ツェナダイオードZD2に降伏電圧を超える電圧が印加されると、図2に矢印で示すように、電池セル10、検出ラインM2、M3、およびツェナダイオードZD2で形成される閉回路に大電流(短絡電流)が流れる。 For example, if an overvoltage occurs in the battery cell 10 having the second highest potential in the battery block Bi shown in FIG. 2, and a voltage exceeding the breakdown voltage is applied to the Zener diode ZD2, as shown by the arrow in FIG. A large current (short circuit current) flows through a closed circuit formed by the battery cell 10, the detection lines M2 and M3, and the Zener diode ZD2.
 この際、図3(a)に示すように、ツェナダイオードZD1~ZDnが短絡故障すると、電池セル101およびツェナダイオードZD2間に形成される閉回路に大電流(短絡電流)が流れ続ける。この際、インダクタL2には、逆起電力として、短絡電流を妨げる向きの起電力が発生する。図3(b)に示すように、ヒューズF2に短絡電流が流れることにより、図3(c)に示すように、ヒューズF2が破断すると、電池セル10と監視回路22との間の電気的接続が遮断される。この際、インダクタL2には、逆起電力として、短絡電流を流し続けようとする向きの起電力が発生する。また、溶断したヒューズF2間における電位差は大きくなり、電界も大きくなる。 At this time, as shown in FIG. 3(a), if the Zener diodes ZD1 to ZDn are short-circuited, a large current (short-circuit current) continues to flow through the closed circuit formed between the battery cell 101 and the Zener diode ZD2. At this time, an electromotive force is generated in the inductor L2 as a counter electromotive force in a direction that prevents the short circuit current. As shown in FIG. 3(b), when a short circuit current flows through fuse F2, as shown in FIG. 3(c), when fuse F2 is ruptured, electrical connection between battery cell 10 and monitoring circuit 22 is established. is blocked. At this time, an electromotive force is generated in the inductor L2 as a back electromotive force in a direction that causes the short circuit current to continue flowing. Furthermore, the potential difference between the blown fuses F2 increases, and the electric field also increases.
 破断により電気的接続が遮断されたヒューズF2において、図3(d)に矢印で示すように、アーク放電等により放電電流が流れる可能性がある。この際、インダクタL2には、逆起電力として、放電電流を妨げる向きの起電力が発生する。インダクタL2は、対応するヒューズF2が破断した際に、ヒューズF2における放電電流の発生を抑制するインダクタンスを有するように設計されている。このため、インダクタL2において生じる逆起電力により、溶断したヒューズF2間の電位差を小さくし、電界を小さくすることができ、放電電流の発生を抑制できる。 In the fuse F2 whose electrical connection is cut off due to rupture, a discharge current may flow due to arc discharge or the like, as shown by the arrow in FIG. 3(d). At this time, an electromotive force that obstructs the discharge current is generated in the inductor L2 as a back electromotive force. The inductor L2 is designed to have an inductance that suppresses generation of discharge current in the fuse F2 when the corresponding fuse F2 is ruptured. Therefore, due to the back electromotive force generated in the inductor L2, the potential difference between the blown fuses F2 can be reduced, the electric field can be reduced, and the generation of discharge current can be suppressed.
 以上説明したように、本実施形態の回路保護部20は、過電圧保護素子212と、回路保護素子211と、インピーダンス素子25とを備えている。過電圧保護素子212は、過電圧が印加された際に短絡故障する素子によって構成され、組電池1に過電圧が発生した際に、短絡故障して各検出ラインM間が短絡状態に維持する。回路保護素子211は、組電池1に過電圧が発生した際に過電圧保護素子212を介して各検出ラインM間に流れる短絡電流によって破断する。これにより、組電池1に過電圧が発生した際に、過電圧保護素子212によって各検出ラインM間が短絡状態に維持されると共に、回路保護素子211によって組電池1と監視回路22との間の電気的接続を遮断されるので、組電池1に発生した過電圧から監視回路22を適切に保護することができる。 As explained above, the circuit protection unit 20 of this embodiment includes the overvoltage protection element 212, the circuit protection element 211, and the impedance element 25. The overvoltage protection element 212 is constituted by an element that causes a short-circuit failure when an overvoltage is applied. When an overvoltage occurs in the assembled battery 1, the overvoltage protection element 212 causes a short-circuit failure and maintains a short-circuit state between each detection line M. The circuit protection element 211 is broken by a short circuit current flowing between each detection line M via the overvoltage protection element 212 when an overvoltage occurs in the assembled battery 1 . As a result, when overvoltage occurs in the assembled battery 1, the overvoltage protection element 212 maintains the short circuit between each detection line M, and the circuit protection element 211 maintains the electrical connection between the assembled battery 1 and the monitoring circuit 22. Since the physical connection is cut off, the monitoring circuit 22 can be appropriately protected from overvoltage generated in the assembled battery 1.
 また、回路保護素子211が組電池1と監視回路22との間の電気的接続を遮断した際に、インピーダンス素子25の電圧降下により、破断した回路保護素子211の破断部における電位差を低減して、破断部間の空間における電界を低減できるため、破断した回路保護素子211に放電電流が発生することを抑制できる。破断した回路保護素子211に発生する放電電流によって監視回路22が破壊される可能性を低減できるため、従来よりも確実に監視回路22を保護し得る回路保護部20を提供することができる。 Furthermore, when the circuit protection element 211 interrupts the electrical connection between the assembled battery 1 and the monitoring circuit 22, the voltage drop of the impedance element 25 reduces the potential difference at the broken part of the broken circuit protection element 211. Since the electric field in the space between the broken parts can be reduced, generation of discharge current in the broken circuit protection element 211 can be suppressed. Since the possibility that the monitoring circuit 22 will be destroyed by the discharge current generated in the broken circuit protection element 211 can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
 また、インピーダンス素子25は、インダクタL1~Ln+1であり、回路保護素子211が組電池1と監視回路22との間の電気的接続を遮断した際に、放電電流の発生を抑制するインダクタンスを有するように設計することができる。また、インダクタL1~Ln+1は、回路保護素子211および過電圧保護素子212が設けられている回路基板21には設けられておらず、回路基板21の外において、組電池1と回路基板21との間に設けられている。このため、従来のように回路保護素子211および過電圧保護素子212が設けられている回路基板21に対して、インダクタLを追加するだけで本実施形態にかかる回路保護部20を実現できる。 Further, the impedance element 25 is an inductor L1 to Ln+1, and has an inductance that suppresses generation of discharge current when the circuit protection element 211 interrupts the electrical connection between the assembled battery 1 and the monitoring circuit 22. can be designed. Furthermore, the inductors L1 to Ln+1 are not provided on the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided, and are provided between the assembled battery 1 and the circuit board 21 outside the circuit board 21. It is set in. Therefore, the circuit protection unit 20 according to this embodiment can be realized by simply adding the inductor L to the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided as in the conventional case.
 なお、本実施形態では、過電圧保護素子212を過電圧が印加された際に短絡故障するツェナダイオードZDで構成しているため、ツェナダイオードZDが短絡故障した際に、各検出ラインM間に流れる短絡電流によって各検出ラインMを遮断する回路保護素子211であれば使用することができる。このため、回路保護素子211の選択肢が増え、回路保護素子211の選定が容易となる。 In this embodiment, since the overvoltage protection element 212 is configured with a Zener diode ZD that causes a short circuit failure when an overvoltage is applied, a short circuit that flows between each detection line M occurs when the Zener diode ZD causes a short circuit failure. Any circuit protection element 211 that interrupts each detection line M with current can be used. Therefore, the number of choices for the circuit protection element 211 increases, and selection of the circuit protection element 211 becomes easy.
 (変形例)
 図4に示すように、回路保護素子211、過電圧保護素子212、およびインダクタLの全てが同一の回路基板21上に設けられていてもよい。図4に示す回路保護部20のようにインダクタLが回路基板21上に設けられていても、図2に示す回路保護部20と同様に、破断した回路保護素子211に放電電流が発生することを抑制でき、従来よりも確実に監視回路22を保護し得る回路保護部20を提供することができる。監視回路22と電源部とを備える電源システムに対して、回路保護素子211、過電圧保護素子212、およびインダクタLを備える回路基板21を設置するだけで、本願に係る回路保護装置を備える電源システムを実現できる。
(Modified example)
As shown in FIG. 4, the circuit protection element 211, the overvoltage protection element 212, and the inductor L may all be provided on the same circuit board 21. Even if the inductor L is provided on the circuit board 21 as in the circuit protection section 20 shown in FIG. 4, a discharge current will occur in the broken circuit protection element 211 as in the circuit protection section 20 shown in FIG. It is possible to provide the circuit protection unit 20 that can suppress the noise and protect the monitoring circuit 22 more reliably than before. By simply installing the circuit board 21 including the circuit protection element 211, the overvoltage protection element 212, and the inductor L in a power supply system including the monitoring circuit 22 and the power supply unit, a power supply system including the circuit protection device according to the present application can be created. realizable.
 また、インダクタLは、少なくとも、検出ラインMの最も高電位側である最上位検出ラインM1および最も低電位側である最下位検出ラインMn+1に設けられていればよい。すなわち、回路保護部20は、インダクタLとして、インダクタL1およびインダクタLn+1を少なくとも備えていればよい。 Further, the inductor L may be provided at least on the highest detection line M1, which is the highest potential side of the detection lines M, and the lowest detection line Mn+1, which is the lowest potential side. That is, the circuit protection unit 20 only needs to include at least the inductor L1 and the inductor Ln+1 as the inductor L.
 例えば、図1において、電池ブロックB1~Bnのそれぞれを互いに接続する結線部材が外れる等した場合に、外れた箇所において過電圧が発生し、その検出ラインに設けられたヒューズが破断する。例えば、電池ブロックB1と電池ブロックB2とを接続する結線部材が外れると、電池ブロックB1の最下位検出ラインMn+1に設けられたヒューズFn+1と、電池ブロックB2の最上位検出ラインM1に設けられたヒューズF1が破断する。すると、電池ブロックB1では、最下位検出ラインMn+1から最上位検出ラインM1に向かって、ヒューズが連鎖的に破断していく。電池ブロックB2では、最上位検出ラインM1から最下位検出ラインMn+1に向かって、ヒューズが連鎖的に破断していく。ヒューズの連鎖的な破断が進行するに従って、過電圧は大きくなる。最終的には、電池ブロックB1では、最上位検出ラインM1に発生する過電圧が最も大きくなり、ヒューズF1が破断する。このため、最上位検出ラインM1にインダクタL1を設けることにより、放電電流が発生することを抑制できる。また、最終的には、電池ブロックB2では、最下位検出ラインMn+1に発生する過電圧が最も大きくなり、ヒューズFn+1が破断する。このため、最下位検出ラインMn+1にインダクタLn+1を設けることにより、放電電流が発生することを抑制できる。インダクタL1およびインダクタLn+1のみが備えられる場合、例えば、ハイブリッド自動車や電気自動車の電源システムにおいて、組電池1に並列接続された平滑コンデンサに充電された電圧と、ヒューズが連鎖的に破断した後の最終的な電流経路の経路抵抗から、その経路電流を計算することにより、インダクタL1およびインダクタLn+1のインダクタンスを設計できる。 For example, in FIG. 1, if the wiring members connecting each of the battery blocks B1 to Bn to each other become disconnected, an overvoltage is generated at the disconnected location, and the fuse provided in the detection line is ruptured. For example, if the connection member connecting battery block B1 and battery block B2 comes off, fuse Fn+1 provided on the lowest detection line Mn+1 of battery block B1 and the fuse provided on the highest detection line M1 of battery block B2 F1 breaks. Then, in the battery block B1, the fuses are ruptured in a chain from the lowest detection line Mn+1 to the highest detection line M1. In the battery block B2, the fuses are ruptured in a chain from the highest detection line M1 to the lowest detection line Mn+1. The overvoltage increases as the chain of fuse ruptures progresses. Eventually, in the battery block B1, the overvoltage generated in the highest detection line M1 becomes the largest, and the fuse F1 ruptures. Therefore, by providing the inductor L1 in the uppermost detection line M1, generation of discharge current can be suppressed. Furthermore, in the battery block B2, the overvoltage generated in the lowest detection line Mn+1 eventually becomes the largest, and the fuse Fn+1 breaks. Therefore, by providing the inductor Ln+1 on the lowest detection line Mn+1, generation of discharge current can be suppressed. When only inductor L1 and inductor Ln+1 are provided, for example, in the power supply system of a hybrid vehicle or an electric vehicle, the voltage charged in the smoothing capacitor connected in parallel to the battery pack 1 and the final By calculating the path current from the path resistance of the current path, the inductance of the inductor L1 and the inductor Ln+1 can be designed.
 (第2実施形態)
 図5の構成図に示すように、第2実施形態に係る回路保護部20では、インピーダンス素子25を、インダクタLに替えて、抵抗器Rで構成している点において、図2に示す第1実施形態に係る回路保護部20と相違している。なお、第1実施形態と同様または均等な部分についての説明を省略、または簡略化して説明する。
(Second embodiment)
As shown in the configuration diagram of FIG. 5, in the circuit protection unit 20 according to the second embodiment, the impedance element 25 is configured with a resistor R instead of an inductor L. This is different from the circuit protection unit 20 according to the embodiment. Note that descriptions of parts similar to or equivalent to those in the first embodiment will be omitted or simplified.
 図5に示すように、本実施形態では、例示的に、インピーダンス素子25として抵抗器Rを用い、検出ラインM1~Mn+1の全てにそれぞれ抵抗器R1~Rn+1を配置している。具体的には、抵抗器R1~Rn+1は、それぞれ対応するヒューズF1~Fn+1が破断した際に、その破断したヒューズにおける放電電流の発生を抑制する抵抗値を有するように設計されている。抵抗器R1~Rn+1の抵抗値は、第1実施形態に係るインダクタL1~Ln+1のインダクタンスと同様に、実験的な手法に基づいて設計することができる。 As shown in FIG. 5, in this embodiment, a resistor R is exemplarily used as the impedance element 25, and resistors R1 to Rn+1 are arranged in all of the detection lines M1 to Mn+1, respectively. Specifically, the resistors R1 to Rn+1 are designed to have resistance values that suppress generation of discharge current in the ruptured fuses when the corresponding fuses F1 to Fn+1 are ruptured. The resistance values of the resistors R1 to Rn+1 can be designed based on an experimental method, similar to the inductance of the inductors L1 to Ln+1 according to the first embodiment.
 第1実施形態と同様に、例えば、図5に示す電池ブロックBiの2番目に高電位となる電池セル10に過電圧が発生し、ツェナダイオードZD2に降伏電圧を超える電圧が印加されると、電池セル10、検出ラインM2、M3、およびツェナダイオードZD2で形成される閉回路に短絡電流が流れる。ツェナダイオードZD1~ZDnが短絡故障し、ヒューズF2が破断すると、電池セル10と監視回路22との間の電気的接続が遮断される。電気的接続が遮断されたヒューズF2において、アーク放電等により放電電流が流れる可能性がある。抵抗器R2は、ヒューズF2における放電電流の発生を抑制する抵抗値を有するように設計されている。このため、抵抗器R2により、溶断したヒューズF2間の電位差を小さくし、電界を小さくすることができ、放電電流の発生を抑制できる。 Similarly to the first embodiment, for example, when an overvoltage occurs in the battery cell 10 having the second highest potential of the battery block Bi shown in FIG. 5 and a voltage exceeding the breakdown voltage is applied to the Zener diode ZD2, the battery A short circuit current flows through the closed circuit formed by the cell 10, the detection lines M2, M3, and the Zener diode ZD2. When the Zener diodes ZD1 to ZDn are short-circuited and the fuse F2 is ruptured, the electrical connection between the battery cell 10 and the monitoring circuit 22 is cut off. In the fuse F2 where the electrical connection is cut off, a discharge current may flow due to arc discharge or the like. Resistor R2 is designed to have a resistance value that suppresses generation of discharge current in fuse F2. Therefore, the resistor R2 can reduce the potential difference between the blown fuses F2, reduce the electric field, and suppress the generation of discharge current.
 本実施形態のように、インピーダンス素子25を抵抗器Rで構成しても、第1実施形態と同様に、電気的接続が遮断されたヒューズFにおいて放電電流が発生することを抑制できるという作用効果を奏する。また、抵抗器R1~Rn+1は、回路保護素子211および過電圧保護素子212が設けられている回路基板21には設けられておらず、回路基板21の外において、組電池1と回路基板21との間に設けられている。このため、従来のように回路保護素子211および過電圧保護素子212が設けられている回路基板21に対して、抵抗器Rを追加するだけで本実施形態にかかる回路保護部20を実現できる。 Even if the impedance element 25 is configured with a resistor R as in the present embodiment, the effect is that it is possible to suppress the generation of discharge current in the fuse F whose electrical connection is cut off, as in the first embodiment. play. Furthermore, the resistors R1 to Rn+1 are not provided on the circuit board 21 where the circuit protection element 211 and the overvoltage protection element 212 are provided, and are provided between the assembled battery 1 and the circuit board 21 outside the circuit board 21. is provided in between. Therefore, the circuit protection unit 20 according to the present embodiment can be realized by simply adding the resistor R to the circuit board 21 on which the circuit protection element 211 and the overvoltage protection element 212 are provided as in the conventional case.
 なお、図4に示す回路保護部20と同様に、回路保護素子211、過電圧保護素子212、および抵抗器Rの全てが同一の回路基板21上に設けられていてもよい。この場合でも、図4に示す回路保護部20と同様に、破断した回路保護素子211に放電電流が発生することを抑制でき、従来よりも確実に監視回路22を保護し得る回路保護部20を提供することができる。監視回路22と電源部とを備える電源システムに対して、回路保護素子211、過電圧保護素子212、および抵抗器Rを備える回路基板21を設置するだけで、本願に係る回路保護装置を備える電源システムを実現できる。 Note that, similar to the circuit protection unit 20 shown in FIG. 4, the circuit protection element 211, the overvoltage protection element 212, and the resistor R may all be provided on the same circuit board 21. Even in this case, like the circuit protection unit 20 shown in FIG. 4, the circuit protection unit 20 can suppress generation of discharge current in the broken circuit protection element 211, and can protect the monitoring circuit 22 more reliably than before. can be provided. A power supply system equipped with a circuit protection device according to the present application can be obtained by simply installing a circuit board 21 equipped with a circuit protection element 211, an overvoltage protection element 212, and a resistor R in a power supply system equipped with a monitoring circuit 22 and a power supply section. can be realized.
 また、抵抗器Rは、少なくとも、最上位検出ラインM1または最下位検出ラインMn+1のうちのいずれか一方に設けられていればよい。すなわち、回路保護部20は、抵抗器Rとして、抵抗器R1もしくは抵抗器Rn+1のいずれか一方を少なくとも備えていればよい。 Further, the resistor R may be provided at least on either the highest detection line M1 or the lowest detection line Mn+1. That is, the circuit protection unit 20 only needs to include at least one of the resistor R1 and the resistor Rn+1 as the resistor R.
 例えば、図1において、例えば、電池ブロックB1と電池ブロックB2とを接続する結線部材が外れると、上述したとおり、最終的には、電池ブロックB1では、最上位検出ラインM1に発生する過電圧が最も大きくなり、ヒューズF1が破断する。電池ブロックB2では、最下位検出ラインMn+1に発生する過電圧が最も大きくなり、ヒューズFn+1が破断する。このため、抵抗器R1もしくは抵抗器Rn+1のいずれか一方を少なくとも備えていることにより、放電電流の発生を抑制できる。抵抗器R1もしくは抵抗器Rn+1のいずれか一方のみが備えられる場合、例えば、ハイブリッド自動車や電気自動車の電源システムにおいて、組電池1に並列接続された平滑コンデンサに充電された電圧と、ヒューズが連鎖的に破断した後の最終的な電流経路の経路抵抗から、その経路電流を計算することにより、抵抗器R1もしくは抵抗器Rn+1の抵抗値を設計できる。 For example, in FIG. 1, if the wiring member connecting battery block B1 and battery block B2 comes off, as described above, in battery block B1, the overvoltage generated in the highest detection line M1 will eventually become the highest. becomes larger, and the fuse F1 is ruptured. In battery block B2, the overvoltage generated on the lowest detection line Mn+1 becomes the largest, and fuse Fn+1 breaks. Therefore, by providing at least one of the resistor R1 and the resistor Rn+1, the generation of discharge current can be suppressed. When only one of the resistor R1 and the resistor Rn+1 is provided, for example, in the power supply system of a hybrid vehicle or electric vehicle, the voltage charged in the smoothing capacitor connected in parallel to the assembled battery 1 and the fuse are connected in a chain. The resistance value of resistor R1 or resistor Rn+1 can be designed by calculating the path current from the path resistance of the final current path after the current path is broken.
 また、上記の各実施形態では、回路保護素子211をヒューズFで構成する例を説明したが、ヒューズFに限らず、ヒューズFと同等の機能を発揮可能な素子であれば、回路保護素子211として採用することができる。例えば、過電圧発生時に、過電圧保護素子212を介して検出ラインM間に流れる短絡電流によって破断する抵抗素子を回路保護素子211として用いてもよい。なお、回路保護素子211としての抵抗素子は、監視回路22における電圧検出性能への影響を抑えるために、低い抵抗値を有する低抵抗素子により構成することが望ましい。 Further, in each of the above embodiments, an example was explained in which the circuit protection element 211 is composed of the fuse F, but the circuit protection element 211 is not limited to the fuse F, and any element that can perform the same function as the fuse F can be used as the circuit protection element 211. It can be adopted as For example, a resistance element that is ruptured by a short circuit current flowing between the detection lines M via the overvoltage protection element 212 when an overvoltage occurs may be used as the circuit protection element 211. Note that the resistance element serving as the circuit protection element 211 is desirably configured with a low resistance element having a low resistance value in order to suppress the influence on the voltage detection performance in the monitoring circuit 22.
 上記の各実施形態では、過電圧保護素子212をツェナダイオードZDで構成する例を説明したが、ツェナダイオードZDに限らず、ツェナダイオードZDと同等の機能を発揮可能な素子であれば、過電圧保護素子212として採用することができる。 In each of the above embodiments, an example in which the overvoltage protection element 212 is formed of a Zener diode ZD has been described. However, the overvoltage protection element 212 is not limited to the Zener diode ZD. 212.
 上記の各実施形態では、インピーダンスとして、抵抗器またはインダクタを用いた回路保護装置を例示して説明したが、これに限定されない。インピーダンスとしては、抵抗器、インダクタ以外のインピーダンス素子(例えば、キャパシタ)を用いてもよいし、インピーダンスとして機能する配線等を用いてもよい。また、上記に例示したインピーダンスの具体例は、同じ種類のもののみを用いてもよいし、複数の種類を併せて用いてもよい。例えば、インピーダンスとして、インダクタおよび抵抗器の双方を備えた回路保護装置であってもよい。 In each of the above embodiments, a circuit protection device using a resistor or an inductor is used as an impedance. However, the present invention is not limited thereto. As the impedance, an impedance element other than a resistor or an inductor (for example, a capacitor) may be used, or a wiring that functions as an impedance or the like may be used. In addition, as for the specific examples of impedance illustrated above, only the same type of impedance may be used, or a plurality of types may be used in combination. For example, the circuit protection device may include both an inductor and a resistor as impedance.
 上記の各実施形態では、本開示の回路保護装置を、車両に搭載される組電池1の電圧を関する監視回路22に適用する例を説明したが、これに限らず、他の用途に用いられる電源部の電圧を関する監視回路に適用することができる。なお、電源部は電池に限らず、各種電気負荷に給電可能な電源であればよい。 In each of the above embodiments, an example has been described in which the circuit protection device of the present disclosure is applied to the monitoring circuit 22 related to the voltage of the assembled battery 1 mounted on a vehicle, but the circuit protection device is not limited to this, and may be used for other purposes. It can be applied to a monitoring circuit related to the voltage of a power supply section. Note that the power supply section is not limited to a battery, and may be any power source that can supply power to various electrical loads.
 上記の各実施形態によれば、下記の効果を得ることができる。 According to each of the above embodiments, the following effects can be obtained.
 回路保護部20は、電源部(例えば、組電池1)の電圧を監視する監視回路22を保護する回路保護装置として機能する。回路保護部20は、電源部および監視回路22との間を接続する電圧検出用の複数の検出ラインM間に接続され、過電圧保護素子212と、回路保護素子211と、インピーダンス素子25と、を備える。過電圧保護素子212は、過電圧が印加された際に短絡故障する素子であり、電源部に過電圧が発生した際に、短絡故障して複数の検出ラインM間を短絡状態に維持するように構成される。回路保護素子211は、複数の検出ラインMそれぞれに設けられ、所定電流値以上の電流が検出ラインMに流れた際に電源部と監視回路22との間の電気的接続を遮断する素子であり、電源部に過電圧が発生した際に、過電圧保護素子212を介して検出ライン間に流れる短絡電流によって、電源部と監視回路22との間の電気的接続を遮断するように構成されている。 The circuit protection unit 20 functions as a circuit protection device that protects the monitoring circuit 22 that monitors the voltage of the power supply unit (for example, the assembled battery 1). The circuit protection unit 20 is connected between a plurality of detection lines M for voltage detection connecting between the power supply unit and the monitoring circuit 22, and includes an overvoltage protection element 212, a circuit protection element 211, and an impedance element 25. Be prepared. The overvoltage protection element 212 is an element that causes a short-circuit failure when an overvoltage is applied, and is configured to cause a short-circuit failure and maintain a short-circuited state between the plurality of detection lines M when an overvoltage occurs in the power supply section. Ru. The circuit protection element 211 is provided in each of the plurality of detection lines M, and is an element that interrupts electrical connection between the power supply section and the monitoring circuit 22 when a current of a predetermined current value or more flows through the detection line M. When an overvoltage occurs in the power supply section, a short circuit current flows between the detection lines via the overvoltage protection element 212 to interrupt the electrical connection between the power supply section and the monitoring circuit 22.
 インピーダンス素子25は、検出ラインMの少なくとも1つに設けられ、電源部と回路保護素子211との間となる位置に配置され、短絡電流によって回路保護素子211が電源部と監視回路22との間の電気的接続を遮断した際に、放電電流の発生を抑制するように構成される。 The impedance element 25 is provided in at least one of the detection lines M, and is arranged at a position between the power supply section and the circuit protection element 211, so that the circuit protection element 211 is connected between the power supply section and the monitoring circuit 22 due to a short circuit current. The structure is configured to suppress the generation of discharge current when the electrical connection is interrupted.
 インピーダンス素子25は、電流を流れにくくする要素であり、具体的には抵抗器RやインダクタLを例示できる。短絡電流によって回路保護素子211が電源部と監視回路22との間の電気的接続が遮断された際に、インピーダンス素子25の電圧降下により、電気的接続を遮断した回路保護素子211において、放電が発生するおそれのある箇所の電界(すなわち、電位差)を低減できるため、アーク放電等の放電電流が発生することを抑制できる。放電電流によって監視回路22が破壊される可能性を低減できるため、従来よりも確実に監視回路22を保護し得る回路保護部20を提供することができる。 The impedance element 25 is an element that makes it difficult for current to flow, and specific examples include a resistor R and an inductor L. When the circuit protection element 211 interrupts the electrical connection between the power supply section and the monitoring circuit 22 due to a short circuit current, a discharge occurs in the circuit protection element 211 that has cut off the electrical connection due to the voltage drop of the impedance element 25. Since it is possible to reduce the electric field (that is, potential difference) at a location where it is likely to occur, it is possible to suppress the occurrence of discharge current such as arc discharge. Since the possibility of the monitoring circuit 22 being destroyed by the discharge current can be reduced, it is possible to provide the circuit protection unit 20 that can protect the monitoring circuit 22 more reliably than before.
 インピーダンス素子25は、放電電流によって回路保護素子211が電源部と監視回路22との間の電気的接続を遮断した際に、放電電流の発生を抑制するインダクタンスを有するインダクタL(より具体的にはインダクタL1~Ln+1)であってもよい。 The impedance element 25 is an inductor L (more specifically, Inductors L1 to Ln+1) may also be used.
 インダクタLは、少なくとも、検出ラインMの最も高電位側である最上位検出ラインM1および最も低電位側である最下位検出ラインMn+1に設けられることが好ましい。 It is preferable that the inductor L is provided at least on the highest detection line M1, which is the highest potential side of the detection lines M, and the lowest detection line Mn+1, which is the lowest potential side.
 過電圧保護素子212および回路保護素子211は、同一の回路基板21上に設けられ、インダクタLは、回路基板21の外に設けられていてもよい。過電圧保護素子212および回路保護素子211を備える従来の回路基板21に対してインダクタLを追加することにより、簡易に、この構成を実現できる。また、過電圧保護素子212と、回路保護素子211と、インダクタLとは、同一の回路基板21上に設けられていてもよい。監視回路22と電源部とを備える電源システムに回路基板21を設置するだけで、本願に係る回路保護装置を備える電源システムを実現できる。さらには、インダクタLは、回路基板21上および回路基板外の双方に設けられていてもよい。 The overvoltage protection element 212 and the circuit protection element 211 may be provided on the same circuit board 21, and the inductor L may be provided outside the circuit board 21. This configuration can be easily realized by adding an inductor L to the conventional circuit board 21 including the overvoltage protection element 212 and the circuit protection element 211. Further, the overvoltage protection element 212, the circuit protection element 211, and the inductor L may be provided on the same circuit board 21. By simply installing the circuit board 21 in a power supply system that includes the monitoring circuit 22 and the power supply unit, a power supply system that includes the circuit protection device according to the present application can be realized. Furthermore, the inductor L may be provided both on the circuit board 21 and outside the circuit board.
 インピーダンス素子25は、放電電流によって回路保護素子211が電源部と監視回路22との間の電気的接続を遮断した際に、放電電流の発生を抑制する抵抗値を有する抵抗器R(より具体的には抵抗器R1~Rn+1)であってもよい。 The impedance element 25 is a resistor R (more specifically may be resistors R1 to Rn+1).
 抵抗器Rは、少なくとも、最上位検出ラインM1または最下位検出ラインMn+1のうちのいずれか一方に設けられることが好ましい。 It is preferable that the resistor R is provided at least on either the highest detection line M1 or the lowest detection line Mn+1.
 過電圧保護素子212および回路保護素子211は、同一の回路基板21上に設けられ、抵抗器Rは、回路基板21外に設けられていてもよい。過電圧保護素子212および回路保護素子211を備える従来の回路基板21に対して抵抗器Rを追加することにより、簡易に、この構成を実現できる。また、過電圧保護素子212と、回路保護素子211と、抵抗器Rとは、同一の回路基板21上に設けられていてもよい。監視回路22と電源部とを備える電源システムに回路基板21を設置するだけで、本願に係る回路保護装置を備える電源システムを実現できる。さらには、抵抗器Rは、回路基板21上および回路基板外の双方に設けられていてもよい。 The overvoltage protection element 212 and the circuit protection element 211 may be provided on the same circuit board 21, and the resistor R may be provided outside the circuit board 21. This configuration can be easily realized by adding the resistor R to the conventional circuit board 21 including the overvoltage protection element 212 and the circuit protection element 211. Further, the overvoltage protection element 212, the circuit protection element 211, and the resistor R may be provided on the same circuit board 21. By simply installing the circuit board 21 in a power supply system that includes the monitoring circuit 22 and the power supply unit, a power supply system that includes the circuit protection device according to the present application can be realized. Furthermore, the resistor R may be provided both on the circuit board 21 and outside the circuit board.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the method described in the present disclosure are implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. may be done. Alternatively, the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by a processor configured with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be implemented using a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may be implemented by one or more dedicated computers configured. The computer program may also be stored as instructions executed by a computer on a computer-readable non-transitory tangible storage medium.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on examples, it is understood that the present disclosure is not limited to the examples or structures. The present disclosure also includes various modifications and equivalent modifications. In addition, various combinations and configurations, as well as other combinations and configurations that include only one, more, or fewer elements, are within the scope and scope of the present disclosure.

Claims (5)

  1.  電源部(1)の電圧を監視する監視回路(22)を保護する回路保護装置であって、
     前記電源部および前記監視回路との間を接続する電圧検出用の複数の検出ライン(M)間に接続され、過電圧が印加された際に短絡故障する過電圧保護素子(212)と、
     前記複数の検出ラインそれぞれに設けられ、所定電流値以上の電流が検出ラインに流れた際に前記電源部と前記監視回路との間の電気的接続を遮断する回路保護素子(211)と、
     前記検出ラインの少なくとも1つに設けられ、前記電源部と前記回路保護素子との間となる位置に配置されるインピーダンス(25)と、を備え、
     前記過電圧保護素子は、前記電源部に過電圧が発生した際に、短絡故障して前記複数の検出ライン間を短絡状態に維持するように構成され、
     前記回路保護素子は、前記電源部に過電圧が発生した際に、前記過電圧保護素子を介して前記検出ライン間に流れる短絡電流によって、前記電源部と前記監視回路との間の電気的接続を遮断するように構成され、
     前記インピーダンスは、前記短絡電流によって前記回路保護素子が前記電源部と前記監視回路との間の電気的接続を遮断した際に、放電電流の発生を抑制するように構成される回路保護装置(20)。
    A circuit protection device that protects a monitoring circuit (22) that monitors the voltage of a power supply unit (1),
    an overvoltage protection element (212) connected between a plurality of detection lines (M) for voltage detection connecting the power supply unit and the monitoring circuit, and causing a short-circuit failure when an overvoltage is applied;
    a circuit protection element (211) provided in each of the plurality of detection lines, which interrupts electrical connection between the power supply section and the monitoring circuit when a current of a predetermined current value or more flows through the detection line;
    an impedance (25) provided in at least one of the detection lines and located at a position between the power supply unit and the circuit protection element;
    The overvoltage protection element is configured to cause a short-circuit failure and maintain a short-circuit state between the plurality of detection lines when an overvoltage occurs in the power supply section,
    The circuit protection element is configured to cut off electrical connection between the power supply unit and the monitoring circuit by a short circuit current flowing between the detection lines via the overvoltage protection element when an overvoltage occurs in the power supply unit. configured to
    The impedance is a circuit protection device (20 ).
  2.  前記インピーダンスは、前記短絡電流によって前記回路保護素子が前記電源部と前記監視回路との間の電気的接続を遮断した際に、放電電流の発生を抑制するインダクタンスを有するインダクタ(L1~Ln+1)である請求項1に記載の回路保護装置。 The impedance is an inductor (L1 to Ln+1) having an inductance that suppresses generation of discharge current when the circuit protection element interrupts the electrical connection between the power supply section and the monitoring circuit due to the short circuit current. A circuit protection device according to claim 1.
  3.  前記過電圧保護素子および前記回路保護素子は、同一の回路基板(21)上に設けられ、
     前記インダクタは、前記回路基板の外または前記回路基板上に設けられ、少なくとも、前記検出ラインの最も高電位側である最上位検出ライン(M1)および最も低電位側である最下位検出ライン(Mn+1)に設けられる請求項2に記載の回路保護装置。
    The overvoltage protection element and the circuit protection element are provided on the same circuit board (21),
    The inductor is provided outside the circuit board or on the circuit board, and is connected to at least the highest detection line (M1) which is the highest potential side of the detection lines and the lowest detection line (Mn+1) which is the lowest potential side of the detection lines. ) The circuit protection device according to claim 2.
  4.  前記インピーダンスは、前記短絡電流によって前記回路保護素子が前記電源部と前記監視回路との間の電気的接続を遮断した際に、放電電流の発生を抑制する抵抗値を有する抵抗器(R1~Rn+1)である請求項1に記載の回路保護装置。 The impedance is a resistor (R1 to Rn+1) having a resistance value that suppresses generation of a discharge current when the circuit protection element interrupts the electrical connection between the power supply section and the monitoring circuit due to the short circuit current. ) The circuit protection device according to claim 1.
  5.  前記過電圧保護素子および前記回路保護素子は、同一の回路基板(21)上に設けられ、
     前記抵抗器は、前記回路基板の外または前記回路基板上に設けられ、少なくとも、前記検出ラインの最も高電位側である最上位検出ライン(M1)または最も低電位側である最下位検出ライン(Mn+1)のうちのいずれか一方に設けられる請求項4に記載の回路保護装置。
    The overvoltage protection element and the circuit protection element are provided on the same circuit board (21),
    The resistor is provided outside the circuit board or on the circuit board, and is connected to at least the highest detection line (M1) which is the highest potential side of the detection lines or the lowest detection line (M1) which is the lowest potential side of the detection lines. 5. The circuit protection device according to claim 4, wherein the circuit protection device is provided on either one of Mn+1).
PCT/JP2023/006494 2022-03-18 2023-02-22 Circuit protection device WO2023176348A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043847A JP2023137585A (en) 2022-03-18 2022-03-18 circuit protection device
JP2022-043847 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176348A1 true WO2023176348A1 (en) 2023-09-21

Family

ID=88023330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006494 WO2023176348A1 (en) 2022-03-18 2023-02-22 Circuit protection device

Country Status (2)

Country Link
JP (1) JP2023137585A (en)
WO (1) WO2023176348A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095249A1 (en) * 1998-08-19 2004-05-20 Robert Zaccaria Method and apparatus for the continuous performance monitoring of a lead acid battery system
JP2008151682A (en) * 2006-12-19 2008-07-03 Honda Motor Co Ltd Voltage monitoring circuit
WO2009110244A1 (en) * 2008-03-07 2009-09-11 株式会社 東芝 Battery system
US20120127619A1 (en) * 2010-11-23 2012-05-24 Adrian Mikolajczak Input power port protection component
JP2014007883A (en) * 2012-06-26 2014-01-16 Denso Corp Circuit protection device
JP2015228741A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Power storage system
US20170338648A1 (en) * 2016-05-20 2017-11-23 Infineon Technologies Ag Device overvoltage detector
WO2022074985A1 (en) * 2020-10-09 2022-04-14 株式会社デンソー Monitoring device for assembled battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040095249A1 (en) * 1998-08-19 2004-05-20 Robert Zaccaria Method and apparatus for the continuous performance monitoring of a lead acid battery system
JP2008151682A (en) * 2006-12-19 2008-07-03 Honda Motor Co Ltd Voltage monitoring circuit
WO2009110244A1 (en) * 2008-03-07 2009-09-11 株式会社 東芝 Battery system
US20120127619A1 (en) * 2010-11-23 2012-05-24 Adrian Mikolajczak Input power port protection component
JP2014007883A (en) * 2012-06-26 2014-01-16 Denso Corp Circuit protection device
JP2015228741A (en) * 2014-05-30 2015-12-17 トヨタ自動車株式会社 Power storage system
US20170338648A1 (en) * 2016-05-20 2017-11-23 Infineon Technologies Ag Device overvoltage detector
WO2022074985A1 (en) * 2020-10-09 2022-04-14 株式会社デンソー Monitoring device for assembled battery

Also Published As

Publication number Publication date
JP2023137585A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
JP5585616B2 (en) Circuit protection device
CN108604809B (en) Relay device and power supply device
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
US11223193B2 (en) Circuit protection device and voltage detection device
US20160254686A1 (en) Method and device for the voltage-controlled self-deactivation of electronic components or battery cells
CN108604515B (en) Relay device
US11491877B2 (en) Protection circuit for in-vehicle battery
JP5503430B2 (en) Battery pack with output stop switch
CN110549967B (en) Motor vehicle electrical system, method for operating same and safety device for same
CN111130206A (en) Electronic circuit for redundantly supplying electrical loads
JP2014180185A (en) Battery module
EP3751693B1 (en) Battery protective circuit and battery pack comprising same
US20220018885A1 (en) Electrical control device detection circuit, detection method, and electric vehicle
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
WO2023176348A1 (en) Circuit protection device
JP2010220377A (en) Electric storage device
WO2022074985A1 (en) Monitoring device for assembled battery
JP6789768B2 (en) Circuit protection device and power supply monitoring device
JP2019135820A (en) Power semiconductor device, and vehicle power supplying system comprising the same
JPWO2015015549A1 (en) Battery system monitoring device
JP2019161702A (en) Circuit protection device and power supply monitoring device
JP2020010562A (en) Battery monitoring device
WO2016208132A1 (en) Battery pack
WO2022230459A1 (en) Protective device
JP2021090235A (en) Power storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770307

Country of ref document: EP

Kind code of ref document: A1