JPWO2015015549A1 - Battery system monitoring device - Google Patents

Battery system monitoring device Download PDF

Info

Publication number
JPWO2015015549A1
JPWO2015015549A1 JP2015529237A JP2015529237A JPWO2015015549A1 JP WO2015015549 A1 JPWO2015015549 A1 JP WO2015015549A1 JP 2015529237 A JP2015529237 A JP 2015529237A JP 2015529237 A JP2015529237 A JP 2015529237A JP WO2015015549 A1 JPWO2015015549 A1 JP WO2015015549A1
Authority
JP
Japan
Prior art keywords
battery
system monitoring
line
battery system
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529237A
Other languages
Japanese (ja)
Other versions
JP6014764B2 (en
Inventor
隼二 太田
隼二 太田
彰彦 工藤
彰彦 工藤
光敏 中根
光敏 中根
光夫 野田
光夫 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Application granted granted Critical
Publication of JP6014764B2 publication Critical patent/JP6014764B2/en
Publication of JPWO2015015549A1 publication Critical patent/JPWO2015015549A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

電池システム監視装置は、電池セルとそれぞれ接続される複数の電圧計測ラインと、電圧計測ラインを介して各電池セルの電圧を検出する集積回路と、組電池において最上位の電池セルの正極側に接続される主電源ラインと、組電池において最下位の電池セルの負極側に接続されるグランドラインと、組電池から集積回路に電源を供給するために主電源ラインとグランドラインの間に接続された電源部と、主電源ラインおよびグランドラインのいずれか少なくとも一方に設けられた電流制限素子とを備える。The battery system monitoring device includes a plurality of voltage measurement lines connected to each battery cell, an integrated circuit that detects the voltage of each battery cell via the voltage measurement line, and a positive electrode side of the uppermost battery cell in the assembled battery. Connected between the main power line and the ground line to supply power from the assembled battery to the integrated circuit, the main power line to be connected, the ground line connected to the negative electrode side of the lowest battery cell in the assembled battery And a current limiting element provided on at least one of the main power line and the ground line.

Description

本発明は、電池システム監視装置に関する。   The present invention relates to a battery system monitoring device.

従来、直列に接続された複数のセル電池で構成された組電池と、各セル電池のセル電圧を検出する回路とが複数の電圧計測ラインを介して接続されており、各電圧計測ラインに過電流保護用のヒューズが設けられた装置が知られている(特許文献1)。   Conventionally, an assembled battery composed of a plurality of cell batteries connected in series and a circuit for detecting the cell voltage of each cell battery are connected via a plurality of voltage measurement lines. An apparatus provided with a current protection fuse is known (Patent Document 1).

日本国特開2011−75504号公報Japanese Unexamined Patent Publication No. 2011-75504

特許文献1に記載された装置は、各電圧計測ラインにヒューズが設けられているため、組電池を構成するセル電池の数が増えるほど、必要なヒューズの数も増大する。したがって、たとえば電気自動車に搭載される車両駆動用バッテリのように、多数の電池セルを用いて高電圧を発生する組電池の場合は、多数のヒューズが必要となり、装置の大型化やコストの増加を招いてしまうという課題がある。   Since the apparatus described in Patent Document 1 is provided with a fuse in each voltage measurement line, the number of necessary fuses increases as the number of cell batteries constituting the assembled battery increases. Therefore, in the case of an assembled battery that generates a high voltage using a large number of battery cells, such as a vehicle driving battery mounted on an electric vehicle, a large number of fuses are required, which increases the size and cost of the device. There is a problem of inviting.

本発明による電池システム監視装置は、複数の電池セルを直列に接続した組電池と接続されて各電池セルの状態を監視するものであって、電池セルとそれぞれ接続される複数の電圧計測ラインと、電圧計測ラインと接続され、電圧計測ラインを介して各電池セルの電圧を検出する集積回路と、組電池において最上位の電池セルの正極側に接続される主電源ラインと、組電池において最下位の電池セルの負極側に接続されるグランドラインと、組電池から集積回路に電源を供給するために主電源ラインとグランドラインの間に接続された電源部と、主電源ラインおよびグランドラインのいずれか少なくとも一方に設けられた電流制限素子と、を備える。   A battery system monitoring apparatus according to the present invention is connected to an assembled battery in which a plurality of battery cells are connected in series to monitor the state of each battery cell, and includes a plurality of voltage measurement lines respectively connected to the battery cells, An integrated circuit that is connected to the voltage measurement line and detects the voltage of each battery cell via the voltage measurement line, a main power supply line that is connected to the positive electrode side of the uppermost battery cell in the assembled battery, and the highest in the assembled battery. A ground line connected to the negative side of the lower battery cell, a power supply connected between the main power line and the ground line to supply power from the assembled battery to the integrated circuit, and a main power line and a ground line. A current limiting element provided on at least one of them.

本発明によれば、多数のヒューズを設けることなく、組電池と電圧検出を行う回路との間に過電流が流れるのを防止することができる。   According to the present invention, it is possible to prevent an overcurrent from flowing between the assembled battery and a circuit that performs voltage detection without providing a large number of fuses.

比較例による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by a comparative example. 本発明の第1の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 1st Embodiment of this invention. 本発明の第2の実施形態による電池システム監視装置の構成を示す図である。It is a figure which shows the structure of the battery system monitoring apparatus by the 2nd Embodiment of this invention.

以下、本発明の一実施形態について図面を参照して説明する。以下の実施形態では、ハイブリッド自動車(HEV)などに用いられる電池システムを監視する電池システム監視装置に対して、本発明を適用した場合の例を説明する。なお、本発明による電池システム監視装置の適用範囲は、HEVに搭載される電池システムを監視するものに限らない。たとえば、プラグインハイブリッド自動車(PHEV)や電気自動車(EV)、鉄道車両などに搭載される電池システムを監視する装置に対しても、幅広く適用可能である。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In the following embodiments, an example in which the present invention is applied to a battery system monitoring device that monitors a battery system used in a hybrid vehicle (HEV) or the like will be described. The application range of the battery system monitoring device according to the present invention is not limited to monitoring the battery system mounted on the HEV. For example, the present invention can be widely applied to devices that monitor battery systems mounted on plug-in hybrid vehicles (PHEV), electric vehicles (EV), railway vehicles, and the like.

以下の実施形態では、本発明に係る電池システム監視装置が接続されて制御および監視の対象とする電池システム(組電池)の最小単位として、所定の出力電圧範囲、たとえば3.0〜4.2V(平均出力電圧:3.6V)の出力電圧範囲を有するリチウムイオン電池を想定している。しかし、本発明に係る電池システム監視装置は、リチウムイオン電池以外の蓄電・放電デバイスを用いて構成された電池システムを制御および監視の対象としてもよい。すなわち、SOC(State Of Charge)が高すぎる場合(過充電)や低すぎる場合(過放電)にその使用を制限する必要があれば、どのような蓄電・放電デバイスを用いて電池システムを構成してもよい。以下の説明では、こうした電池システムの構成要素としての蓄電・放電デバイスを、電池セルと総称する。   In the following embodiments, a predetermined output voltage range, for example, 3.0 to 4.2 V is used as a minimum unit of a battery system (assembled battery) to be controlled and monitored by being connected to the battery system monitoring apparatus according to the present invention. A lithium ion battery having an output voltage range of (average output voltage: 3.6 V) is assumed. However, the battery system monitoring apparatus according to the present invention may control and monitor a battery system configured using a power storage / discharge device other than a lithium ion battery. In other words, if the SOC (State Of Charge) is too high (overcharge) or too low (overdischarge), it is necessary to limit its use, and any battery storage / discharge device is used to configure the battery system. May be. In the following description, the power storage / discharge device as a component of such a battery system is generically referred to as a battery cell.

以下の説明では、本発明との比較例として、従来の電池システム監視装置の一例を最初に説明する。図1は、比較例による電池システム監視装置の構成を示す図である。図1に示す電池システム監視装置は、組電池であるバッテリ部1と接続されており、集積回路2、電源部3、RCフィルタ4、放電抵抗5、ノイズ対策コンデンサ6およびヒューズ7を有している。   In the following description, an example of a conventional battery system monitoring device will be described first as a comparative example with the present invention. FIG. 1 is a diagram illustrating a configuration of a battery system monitoring apparatus according to a comparative example. The battery system monitoring apparatus shown in FIG. 1 is connected to a battery unit 1 that is an assembled battery, and includes an integrated circuit 2, a power supply unit 3, an RC filter 4, a discharge resistor 5, a noise countermeasure capacitor 6, and a fuse 7. Yes.

バッテリ部1は、n−1個の電池セルが直列に接続された組電池であり、図1の電池監視システム監視装置が制御および監視の対象とする電池システムとして機能する。バッテリ部1の各電池セルは、n個の電圧計測ラインSL1〜SLnと、電圧計測ラインSL1〜SLnからそれぞれ分岐して設けられたn個のバランシングラインBL1〜BLnにそれぞれ接続されている。また、バッテリ部1において最上位、すなわち最も高電位側に配置されている電池セルの正極側には、主電源ラインMBが抵抗を介して接続されており、バッテリ部1において最下位、すなわち最も低電位側に配置されている電池セルの負極側には、グランドラインGNDが接続されている。なお、図1では、バッテリ部1においてn−1個の電池セルが直列に接続されている例を示しているが、バッテリ部1を構成する電池セルの個数はこれに限定されない。   The battery unit 1 is an assembled battery in which n−1 battery cells are connected in series, and functions as a battery system that is controlled and monitored by the battery monitoring system monitoring device in FIG. 1. Each battery cell of the battery unit 1 is connected to n voltage measurement lines SL1 to SLn and n balancing lines BL1 to BLn that are branched from the voltage measurement lines SL1 to SLn, respectively. Further, the main power line MB is connected via a resistor to the positive electrode side of the battery cell arranged at the highest level, that is, the highest potential side in the battery unit 1, and the lowest level, that is, the highest level in the battery unit 1. A ground line GND is connected to the negative electrode side of the battery cell arranged on the low potential side. 1 shows an example in which n-1 battery cells are connected in series in the battery unit 1, but the number of battery cells constituting the battery unit 1 is not limited to this.

集積回路2は、電圧計測ラインSL1〜SLn、バランシングラインBL1〜BLn、主電源ラインMBおよびグランドラインGNDと接続されており、電圧計測ラインSL1〜SLnを介してバッテリ部1の各電池セルの電圧を検出する。この集積回路2による各電池セルの電圧検出結果に基づいて、図1の電池監視システム監視装置は、バッテリ部1を制御および監視するための所定の動作を実行する。たとえば、各電池セルの充電状態(SOC)を推定し、電池セル間で充電状態にばらつきが生じている場合は、バランシングラインBL1〜BLnのうち、放電対象の電池セルに対応するバランシングラインを介して放電電流を流すことにより、各電池セルの充電状態を均一化するためのバランシングを行う。これ以外にも、集積回路2により検出された各電池セルの電圧に基づいて、電池監視システム監視装置は様々な処理や制御を行うことができる。   The integrated circuit 2 is connected to the voltage measurement lines SL1 to SLn, the balancing lines BL1 to BLn, the main power supply line MB, and the ground line GND, and the voltage of each battery cell of the battery unit 1 via the voltage measurement lines SL1 to SLn. Is detected. Based on the voltage detection result of each battery cell by the integrated circuit 2, the battery monitoring system monitoring device in FIG. 1 executes a predetermined operation for controlling and monitoring the battery unit 1. For example, when the state of charge (SOC) of each battery cell is estimated and the state of charge varies between the battery cells, the balancing line BL1 to BLn is routed through the balancing line corresponding to the battery cell to be discharged. By balancing the discharge current, balancing for equalizing the state of charge of each battery cell is performed. In addition to this, based on the voltage of each battery cell detected by the integrated circuit 2, the battery monitoring system monitoring device can perform various processes and controls.

なお、バランシングラインBL1〜BLnのうち互いに隣接するバランシングライン同士の間には、放電電流を安定させるためのコンデンサがそれぞれ接続されている。また、集積回路2の内部において、各電圧計測ラインSL1〜SLnおよび各バランシングラインBL1〜BLnは、ESD保護ダイオードを介して、主電源ラインMBおよびグランドラインGNDとそれぞれ接続されている。   A capacitor for stabilizing the discharge current is connected between the balancing lines BL1 to BLn adjacent to each other. In the integrated circuit 2, the voltage measurement lines SL1 to SLn and the balancing lines BL1 to BLn are connected to the main power supply line MB and the ground line GND through ESD protection diodes, respectively.

電源部3は、バッテリ部1から集積回路2に電源を供給するためのものであり、主電源ラインMBとグランドラインGNDの間に接続されている。この電源部3は、ツェナーダイオードとコンデンサを有しており、これらを用いて、主電源ラインMBに接続されている集積回路2の電源入力端子を過電圧や過電流から保護する。   The power supply unit 3 is for supplying power from the battery unit 1 to the integrated circuit 2 and is connected between the main power supply line MB and the ground line GND. The power supply unit 3 includes a Zener diode and a capacitor, and uses them to protect the power input terminal of the integrated circuit 2 connected to the main power supply line MB from overvoltage and overcurrent.

RCフィルタ4は、電圧計測ラインSL1〜SLnから集積回路2に入力される各電池セルの電圧信号に重畳された高周波ノイズを除去するためのフィルタ回路であり、電圧計測ラインSL1〜SLnの各々に対して設けられた抵抗とコンデンサにより構成されている。このRCフィルタ4は、電圧計測ラインSL1〜SLnにおいて、バランシングラインBL1〜BLnへの分岐点と集積回路2の間にそれぞれ設けられている。   The RC filter 4 is a filter circuit for removing high-frequency noise superimposed on the voltage signal of each battery cell input to the integrated circuit 2 from the voltage measurement lines SL1 to SLn, and is applied to each of the voltage measurement lines SL1 to SLn. It consists of a resistor and a capacitor provided. The RC filter 4 is provided between the branch points to the balancing lines BL1 to BLn and the integrated circuit 2 in the voltage measurement lines SL1 to SLn.

放電抵抗5は、バランシング時にバランシングラインBL1〜BLnに流れる放電電流を調整するための抵抗素子であり、バランシングラインBL1〜BLnにそれぞれ設けられている。   The discharge resistor 5 is a resistance element for adjusting the discharge current flowing through the balancing lines BL1 to BLn during balancing, and is provided in each of the balancing lines BL1 to BLn.

ノイズ対策コンデンサ6は、電圧計測ラインSL1〜SLnのうち互いに隣接する電圧計測ライン同士の間に生じるノイズを低減するためのものである。このノイズ対策コンデンサ6は、電圧計測ラインSL1〜SLnにおいて、バランシングラインBL1〜BLnへの分岐点とバッテリ部1の各電池セルの間に設けられている。なお、図1の例では、各電圧計測ラインSL1〜SLnの間にノイズ対策コンデンサ6を2個ずつ直列に設けることで、そのうち1つが短絡しても隣接する電圧計測ラインの間に大電流が流れないようにしているが、ノイズ対策コンデンサ6の個数はこれに限定されるものではない。   The noise countermeasure capacitor 6 is for reducing noise generated between the voltage measurement lines adjacent to each other among the voltage measurement lines SL1 to SLn. The noise countermeasure capacitor 6 is provided between the branch points to the balancing lines BL1 to BLn and the battery cells of the battery unit 1 in the voltage measurement lines SL1 to SLn. In the example of FIG. 1, by providing two noise suppression capacitors 6 in series between the voltage measurement lines SL1 to SLn, even if one of them is short-circuited, a large current is generated between adjacent voltage measurement lines. However, the number of noise countermeasure capacitors 6 is not limited to this.

ヒューズ7は、電圧計測ラインSL1〜SLnに過電流が流れるのを防止するための電流制限素子であり、電圧計測ラインSL1〜SLnの各々とバッテリ部1の各電池セルの間に設けられている。   The fuse 7 is a current limiting element for preventing an overcurrent from flowing through the voltage measurement lines SL1 to SLn, and is provided between each of the voltage measurement lines SL1 to SLn and each battery cell of the battery unit 1. .

以上説明した比較例による電池システム監視装置では、電圧計測ラインSL1〜SLnの各々に対してヒューズ7が設けられている。そのため、バッテリ部1が多数の電池セルによって構成されている場合は、それに応じて電圧計測ラインの本数も多くなるため、数多くのヒューズ7が必要であり、装置の大型化やコストの増加につながってしまう。   In the battery system monitoring apparatus according to the comparative example described above, the fuse 7 is provided for each of the voltage measurement lines SL1 to SLn. For this reason, when the battery unit 1 is composed of a large number of battery cells, the number of voltage measurement lines increases accordingly, and thus a large number of fuses 7 are necessary, leading to an increase in the size and cost of the device. End up.

そこで、本発明では、以下の第1、第2の各実施形態で説明するような構成を採用することにより、上記のような問題点を解消するようにしている。   Therefore, in the present invention, the above-described problems are solved by adopting a configuration as described in the following first and second embodiments.

(第1の実施形態)
図2は、本発明の第1の実施形態による電池システム監視装置の構成を示す図である。図2に示す電池システム監視装置において、図1に示した比較例との違いは、ノイズ対策コンデンサ6が設けられていない点と、ヒューズ7に替えてヒューズ7Aおよび7Bを有している点である。
(First embodiment)
FIG. 2 is a diagram showing a configuration of the battery system monitoring apparatus according to the first embodiment of the present invention. The battery system monitoring device shown in FIG. 2 differs from the comparative example shown in FIG. 1 in that the noise countermeasure capacitor 6 is not provided and that the fuse 7 is replaced with fuses 7A and 7B. is there.

ヒューズ7A、7Bは、図1のヒューズ7と同様の過電流を防止するための電流制限素子であり、主電源ラインMBとグランドラインGNDにそれぞれ設けられている。   The fuses 7A and 7B are current limiting elements for preventing overcurrent similar to the fuse 7 of FIG. 1, and are provided on the main power supply line MB and the ground line GND, respectively.

このように、図2の電池システム監視装置では、電圧計測ラインSL1〜SLnの各々に対してヒューズを設けずに、主電源ラインMBとグランドラインGNDに対してのみ、ヒューズ7A、7Bが設けられている。したがって、バッテリ部1を構成する電池セルの個数に関わらず、ヒューズ7A、7Bを搭載するためのスペースが一定で済むため、比較例のように装置の大型化を招くことはない。また、ヒューズ7A、7Bの個数は一定であるため、比較例のようにコストの増加につながることもない。   As described above, in the battery system monitoring apparatus of FIG. 2, the fuses 7A and 7B are provided only for the main power supply line MB and the ground line GND without providing a fuse for each of the voltage measurement lines SL1 to SLn. ing. Therefore, the space for mounting the fuses 7A and 7B is constant regardless of the number of battery cells constituting the battery unit 1, and thus the size of the apparatus is not increased as in the comparative example. Further, since the number of fuses 7A and 7B is constant, the cost does not increase as in the comparative example.

加えて、図2の電池システム監視装置では、図1のようなノイズ対策コンデンサ6が設けられていないため、比較例と比べてさらなるコスト低減が可能である。なお、本実施形態では、RCフィルタ4により十分にノイズを除去できるものとして、ノイズ対策コンデンサ6を設けないこととしている。しかし、RCフィルタ4だけではノイズ除去が不十分な場合などは、図1のようにノイズ対策コンデンサ6を設けてもよい。   In addition, since the noise countermeasure capacitor 6 as shown in FIG. 1 is not provided in the battery system monitoring device of FIG. 2, the cost can be further reduced as compared with the comparative example. In the present embodiment, the noise countermeasure capacitor 6 is not provided because the RC filter 4 can sufficiently remove noise. However, when the RC filter 4 alone is not sufficient for noise removal, a noise countermeasure capacitor 6 may be provided as shown in FIG.

ここで、図2の電池システム監視装置において短絡故障が生じた場合を考える。図2の電池システム監視装置において生じ得る最も危険な短絡故障は、電源部3が短絡することで、バッテリ部1の全電池セルの総電圧が主電源ラインMBとグランドラインGNDの間に印加されてしまい、これらを経由して大電流が流れる故障である。しかし、このような短絡故障が生じた場合、ヒューズ7Aまたは7Bのいずれか少なくとも一方が溶断するため、大電流が流れ続けて発熱や発火が生じるのを防ぐことができる。   Here, consider a case where a short-circuit failure occurs in the battery system monitoring apparatus of FIG. The most dangerous short-circuit failure that can occur in the battery system monitoring device of FIG. 2 is that the power supply unit 3 is short-circuited, so that the total voltage of all battery cells of the battery unit 1 is applied between the main power supply line MB and the ground line GND. Therefore, it is a fault that a large current flows through these. However, when such a short-circuit failure occurs, at least one of the fuses 7A and 7B is melted, so that it is possible to prevent a large current from continuing to flow and generate heat and fire.

また、集積回路2の内部に設けられているESD保護ダイオードのいずれかが短絡故障した場合、当該ESD保護ダイオードに対応する電圧計測ラインまたはバランシングラインと、主電源ラインMBまたはグランドラインGNDとを経由して、大電流が流れる可能性がある。しかし、このような短絡故障が生じた場合にも、ヒューズ7Aまたは7Bのいずれか一方が溶断するため、大電流が流れ続けて発熱や発火が生じるのを防ぐことができる。   Further, when one of the ESD protection diodes provided in the integrated circuit 2 is short-circuited, the voltage measurement line or balancing line corresponding to the ESD protection diode and the main power supply line MB or the ground line GND are passed. As a result, a large current may flow. However, even when such a short-circuit failure occurs, since either one of the fuses 7A or 7B is melted, it is possible to prevent a large current from continuing to flow and generate heat or fire.

なお、バランシングラインBL1〜BLnのうち互いに隣接するバランシングライン同士の間に設けられたコンデンサが短絡故障した場合、当該バランシングラインを経由して電流が流れる。しかし、この電流は、前述のバランシング時に流れる放電電流と同じであるため、発熱や発火が生じるようなことはない。   In addition, when the capacitor provided between the balancing lines adjacent to each other among the balancing lines BL1 to BLn fails, a current flows through the balancing line. However, since this current is the same as the discharge current flowing during the above-described balancing, no heat generation or ignition occurs.

以上説明したように、本発明の第1の実施形態による電池システム監視装置によれば、比較例のような問題点を解消しつつ、短絡故障による発熱や発火を効果的に防止することができる。   As described above, according to the battery system monitoring apparatus of the first embodiment of the present invention, it is possible to effectively prevent heat generation and ignition due to a short circuit failure while solving the problems as in the comparative example. .

なお、以上説明した第1の実施形態では、主電源ラインMBとグランドラインGNDにヒューズ7A、7Bをそれぞれ設けることとしたが、これらのうちいずれか一方のみを設けてもよい。その場合、前述したような電源部3の短絡故障による大電流については確実に防止できるが、ESD保護ダイオードの短絡故障による大電流については防止できない場合がある。しかし、このようにしても、比較例のような問題点を解消しつつ、短絡故障による発熱や発火の発生をある程度は防止することができる。すなわち、本発明による電池システム監視装置では、主電源ラインMBおよびグランドラインGNDのいずれか少なくとも一方に、電流制限素子としてのヒューズ7A、7Bを設けることができる。   In the first embodiment described above, the fuses 7A and 7B are provided on the main power supply line MB and the ground line GND, respectively, but only one of them may be provided. In such a case, a large current due to a short circuit failure of the power supply unit 3 as described above can be reliably prevented, but a large current due to a short circuit failure of the ESD protection diode may not be prevented. However, even if it does in this way, generation | occurrence | production of the heat_generation | fever and ignition by a short circuit failure can be prevented to some extent, eliminating the problem like a comparative example. That is, in the battery system monitoring apparatus according to the present invention, fuses 7A and 7B as current limiting elements can be provided in at least one of main power supply line MB and ground line GND.

以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。   According to the 1st Embodiment of this invention demonstrated above, there exist the following effects.

(1)電池システム監視装置は、複数の電池セルを直列に接続した組電池であるバッテリ部1と接続されて各電池セルの状態を監視する。この電池システム監視装置は、電池セルとそれぞれ接続される電圧計測ラインSL1〜SLnと、電圧計測ラインSL1〜SLnと接続され、電圧計測ラインSL1〜SLnを介して各電池セルの電圧を検出する集積回路2と、バッテリ部1において最上位の電池セルの正極側に接続される主電源ラインMBと、バッテリ部1において最下位の電池セルの負極側に接続されるグランドラインGNDと、バッテリ部1から集積回路2に電源を供給するために主電源ラインMBとグランドラインGNDの間に接続された電源部3と、主電源ラインMBおよびグランドラインGNDのいずれか少なくとも一方に設けられた電流制限素子としてのヒューズ7A、7Bとを備える。このようにしたので、多数のヒューズを設けることなく、バッテリ部1と電圧検出を行う集積回路2との間に過電流が流れるのを防止することができる。 (1) The battery system monitoring device is connected to the battery unit 1 which is an assembled battery in which a plurality of battery cells are connected in series, and monitors the state of each battery cell. This battery system monitoring apparatus is integrated with voltage measurement lines SL1 to SLn connected to battery cells and voltage measurement lines SL1 to SLn, respectively, and detects the voltage of each battery cell via the voltage measurement lines SL1 to SLn. The circuit 2, the main power supply line MB connected to the positive electrode side of the uppermost battery cell in the battery unit 1, the ground line GND connected to the negative electrode side of the lowermost battery cell in the battery unit 1, and the battery unit 1 A power supply unit 3 connected between the main power supply line MB and the ground line GND for supplying power to the integrated circuit 2, and a current limiting element provided on at least one of the main power supply line MB and the ground line GND Fuses 7A and 7B. Since it did in this way, it can prevent that an overcurrent flows between the battery part 1 and the integrated circuit 2 which performs voltage detection, without providing many fuses.

(2)電池システム監視装置では、主電源ラインMBおよびグランドラインGNDの両方にヒューズ7A、7Bを設けることができる。このようにすれば、電源部3の短絡故障や集積回路2の内部に設けられたESD保護ダイオードの短絡故障により大電流が流れることで、発熱や発火が生じるのを効果的に防止することができる。 (2) In the battery system monitoring apparatus, fuses 7A and 7B can be provided in both the main power supply line MB and the ground line GND. In this way, it is possible to effectively prevent the generation of heat and fire due to a large current flowing due to a short circuit failure in the power supply unit 3 or a short circuit failure in the ESD protection diode provided in the integrated circuit 2. it can.

(3)電池システム監視装置は、電圧計測ラインSL1〜SLnからそれぞれ分岐して設けられたバランシングラインBL1〜BLnと、抵抗とコンデンサにより構成され、電圧計測ラインSL1〜SLnにおいてバランシングラインBL1〜BLnへの分岐点と集積回路2の間にそれぞれ設けられたRCフィルタ4と、バランシングラインBL1〜BLnにそれぞれ設けられた放電抵抗5とをさらに備える。この電池システム監視装置には、電圧計測ラインSL1〜SLnの上記分岐点と電池セルの間において、互いに隣接する電圧計測ラインSL1〜SLn同士の間に生じるノイズを低減するためのノイズ対策コンデンサ6が設けられていない。そのため、さらなるコスト低減を実現することができる。 (3) The battery system monitoring device includes balancing lines BL1 to BLn that are branched from the voltage measurement lines SL1 to SLn, resistors, and capacitors, and to the balancing lines BL1 to BLn in the voltage measurement lines SL1 to SLn. RC filter 4 provided between each branch point and integrated circuit 2 and discharge resistor 5 provided on each of balancing lines BL1 to BLn. This battery system monitoring device includes a noise countermeasure capacitor 6 for reducing noise generated between the voltage measurement lines SL1 to SLn adjacent to each other between the branch points of the voltage measurement lines SL1 to SLn and the battery cells. Not provided. Therefore, further cost reduction can be realized.

(第2の実施形態)
次に、本発明の第2の実施形態について説明する。図3は、本発明の第2の実施形態による電池システム監視装置の構成を示す図である。図3に示す電池システム監視装置において、図2に示した第1の実施形態との違いは、ヒューズ7Aが設けられていない点と、ヒューズ7Bの溶断を検出するための溶断検出回路8が設けられている点である。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. FIG. 3 is a diagram showing a configuration of a battery system monitoring apparatus according to the second embodiment of the present invention. In the battery system monitoring apparatus shown in FIG. 3, the difference from the first embodiment shown in FIG. 2 is that a fuse 7A is not provided, and a fusing detection circuit 8 for detecting fusing of the fuse 7B is provided. This is the point.

溶断検出回路8は、一端が所定の基準電圧を出力する電圧源に接続されていると共に、中間点がヒューズ7Bおよび電源部3に接続されたプルアップ抵抗を有している。このプルアップ抵抗の他端は、プルアップ抵抗の電圧値を測定するための集積回路2の入力端子に接続されている。すなわち、溶断検出回路8は、プルアップ抵抗と集積回路2により構成されている。   The fusing detection circuit 8 has a pull-up resistor having one end connected to a voltage source that outputs a predetermined reference voltage and an intermediate point connected to the fuse 7 </ b> B and the power supply unit 3. The other end of this pull-up resistor is connected to the input terminal of the integrated circuit 2 for measuring the voltage value of the pull-up resistor. That is, the fusing detection circuit 8 includes a pull-up resistor and the integrated circuit 2.

ヒューズ7Bが溶断されていない場合、集積回路2には、ヒューズ7Bを介して接続されたグランド電位が入力される。一方、ヒューズ7Bが溶断されると、グランド電位とは異なる電圧が集積回路2に入力される。この電圧は、電源部3が短絡故障されている場合とされていない場合とで、以下のように変化する。   When the fuse 7B is not blown, the integrated circuit 2 receives the ground potential connected via the fuse 7B. On the other hand, when the fuse 7B is blown, a voltage different from the ground potential is input to the integrated circuit 2. This voltage changes as follows depending on whether the power supply unit 3 is short-circuited or not.

電源部3が短絡故障されずにヒューズ7Bが溶断された場合、プルアップ抵抗の中間点はいずれの電位からも断絶された状態となるため、電圧源からの基準電圧がプルアップ抵抗を介して集積回路2に入力される。したがって、この電圧源からの基準電圧を集積回路2で検出することにより、溶断検出回路8においてヒューズ7Bの溶断を検出することができる。   When the fuse 7B is blown without the power supply unit 3 being short-circuited, the intermediate point of the pull-up resistor is disconnected from any potential, so that the reference voltage from the voltage source is passed through the pull-up resistor. Input to the integrated circuit 2. Therefore, by detecting the reference voltage from the voltage source by the integrated circuit 2, the fusing detection circuit 8 can detect the fusing of the fuse 7B.

電源部3が短絡故障されてヒューズ7Bが溶断された場合、プルアップ抵抗の中間点には、電源部3および主電源ラインMBを介して、バッテリ部1の最上位の電池セルからの電圧が印加される。この中間点への印加電圧がプルアップ抵抗により分圧された基準電圧を上回る場合、当該印加電圧がプルアップ抵抗を介して集積回路2に入力される。したがって、この中間点への印加電圧を集積回路2で検出することにより、溶断検出回路8においてヒューズ7Bの溶断を検出することができる。   When the power supply unit 3 is short-circuited and the fuse 7B is blown, the voltage from the uppermost battery cell of the battery unit 1 is connected to the middle point of the pull-up resistor via the power supply unit 3 and the main power supply line MB. Applied. When the applied voltage to the intermediate point exceeds the reference voltage divided by the pull-up resistor, the applied voltage is input to the integrated circuit 2 via the pull-up resistor. Therefore, by detecting the voltage applied to the intermediate point by the integrated circuit 2, the fusing detection circuit 8 can detect the fusing of the fuse 7B.

以上説明した本発明の第2の実施形態によれば、電池システム監視装置は、電流制限素子であるヒューズ7Bの溶断を検出する溶断検出回路8をさらに備える。そのため、過電流が流れてヒューズ7Bが溶断した場合に、これを確実に検知することができる。   According to the second embodiment of the present invention described above, the battery system monitoring apparatus further includes the blow detection circuit 8 that detects the blow of the fuse 7B that is a current limiting element. Therefore, when an overcurrent flows and the fuse 7B is blown, this can be reliably detected.

上記の溶断検出回路8は、所定の基準電圧を出力する電圧源に接続されると共に、ヒューズ7Bおよび電源部3に接続されたプルアップ抵抗を有している。この溶断検出回路8は、電源部3が短絡されていない場合は、プルアップ抵抗を介して基準電圧を検出することにより、ヒューズ7Bの溶断を検出する。また、電源部3が短絡された場合は、電源部3およびプルアップ抵抗を介して最上位の電池セルの電圧を検出することにより、ヒューズ7Bの溶断を検出する。このようにしたので、電源部3が短絡されていない場合と短絡された場合とで、それぞれ確実にヒューズ7Bの溶断を検出することができる。   The fusing detection circuit 8 is connected to a voltage source that outputs a predetermined reference voltage, and has a pull-up resistor connected to the fuse 7 </ b> B and the power supply unit 3. When the power supply unit 3 is not short-circuited, the fusing detection circuit 8 detects the fusing of the fuse 7B by detecting a reference voltage via a pull-up resistor. Further, when the power supply unit 3 is short-circuited, the fuse 7B is detected by detecting the voltage of the uppermost battery cell via the power supply unit 3 and the pull-up resistor. Since it did in this way, fusing of the fuse 7B can be reliably detected by the case where the power supply part 3 is not short-circuited and the case where it is short-circuited, respectively.

なお、以上説明した第2の実施形態では、グランドラインGNDのみにヒューズ7Bを設けて、このヒューズ7Bの溶断を溶断検出回路8により検出することとした。しかし、前述の第1の実施形態と同様に、主電源ラインMBにもヒューズ7Aを設けて、このヒューズ7Bの溶断を検出するための溶断検出回路をさらに設けてもよい。その場合、当該溶断検出回路は、図3の溶断検出回路8と同様に、プルアップ抵抗と集積回路2を用いて構成することができる。具体的には、電源部3が短絡故障されずにヒューズ7Aが溶断された場合は、プルアップ抵抗を介して電圧源からの基準電圧を集積回路2で検出することにより、ヒューズ7Aの溶断を検出する。一方、電源部3が短絡故障されてヒューズ7Aが溶断された場合は、バッテリ部1の最下位の電池セルから電源部3およびグランドラインGNDを介してプルアップ抵抗の中間点に印加される電圧を、プルアップ抵抗を介して集積回路2で検出することにより、ヒューズ7Aの溶断を検出する。このようにすれば、主電源ラインMBおよびグランドラインGNDの両方にヒューズ7A、7Bを設けた場合においても、それぞれの溶断を確実に検出することができる。   In the second embodiment described above, the fuse 7B is provided only on the ground line GND, and the fusing detection circuit 8 detects the fusing of the fuse 7B. However, as in the first embodiment, a fuse 7A may be provided in the main power supply line MB, and a blow detection circuit for detecting blow of the fuse 7B may be further provided. In that case, the fusing detection circuit can be configured using a pull-up resistor and the integrated circuit 2, similarly to the fusing detection circuit 8 of FIG. Specifically, when the fuse 7A is blown without a short circuit failure in the power supply unit 3, the fuse 7A is blown by detecting the reference voltage from the voltage source via the pull-up resistor by the integrated circuit 2. To detect. On the other hand, when the power supply unit 3 is short-circuited and the fuse 7A is blown, the voltage applied to the middle point of the pull-up resistor from the lowest battery cell of the battery unit 1 via the power supply unit 3 and the ground line GND Is detected by the integrated circuit 2 via a pull-up resistor, thereby detecting the blow of the fuse 7A. In this way, even when the fuses 7A and 7B are provided in both the main power supply line MB and the ground line GND, it is possible to reliably detect each fusing.

以上説明した各実施形態や変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。   Each embodiment and modification described above are merely examples, and the present invention is not limited to these contents as long as the features of the invention are not impaired.

1…バッテリ部、2…集積回路、3…電源部、4…RCフィルタ、5…放電抵抗、
6…ノイズ対策コンデンサ、7,7A,7B…ヒューズ、8…溶断検出回路、
SL1〜SLn…電圧計測ライン、BL1〜BLn…バランシングライン、
MB…主電源ライン、GND…グランドライン
DESCRIPTION OF SYMBOLS 1 ... Battery part, 2 ... Integrated circuit, 3 ... Power supply part, 4 ... RC filter, 5 ... Discharge resistance,
6 ... Noise suppression capacitor, 7, 7A, 7B ... Fuse, 8 ... Fusing detection circuit,
SL1-SLn ... voltage measurement line, BL1-BLn ... balancing line,
MB ... Main power line, GND ... Ground line

Claims (5)

複数の電池セルを直列に接続した組電池と接続されて各電池セルの状態を監視する電池システム監視装置であって、
前記電池セルとそれぞれ接続される複数の電圧計測ラインと、
前記電圧計測ラインと接続され、前記電圧計測ラインを介して各電池セルの電圧を検出する集積回路と、
前記組電池において最上位の電池セルの正極側に接続される主電源ラインと、
前記組電池において最下位の電池セルの負極側に接続されるグランドラインと、
前記組電池から前記集積回路に電源を供給するために前記主電源ラインと前記グランドラインの間に接続された電源部と、
前記主電源ラインおよび前記グランドラインのいずれか少なくとも一方に設けられた電流制限素子と、を備える電池システム監視装置。
A battery system monitoring device connected to an assembled battery in which a plurality of battery cells are connected in series to monitor the state of each battery cell,
A plurality of voltage measurement lines respectively connected to the battery cells;
An integrated circuit connected to the voltage measurement line and detecting the voltage of each battery cell via the voltage measurement line;
A main power line connected to the positive electrode side of the uppermost battery cell in the assembled battery;
A ground line connected to the negative electrode side of the lowest battery cell in the assembled battery;
A power source connected between the main power line and the ground line for supplying power from the assembled battery to the integrated circuit;
A battery system monitoring device comprising: a current limiting element provided on at least one of the main power supply line and the ground line.
請求項1に記載の電池システム監視装置において、
前記主電源ラインおよび前記グランドラインの両方に前記電流制限素子が設けられている電池システム監視装置。
The battery system monitoring device according to claim 1,
A battery system monitoring device in which the current limiting element is provided in both the main power supply line and the ground line.
請求項1または2に記載の電池システム監視装置において、
前記電圧計測ラインからそれぞれ分岐して設けられた複数のバランシングラインと、
抵抗とコンデンサにより構成され、前記電圧計測ラインにおいて前記バランシングラインへの分岐点と前記集積回路の間にそれぞれ設けられたRCフィルタと、
前記バランシングラインにそれぞれ設けられた放電抵抗と、をさらに備え、
前記電圧計測ラインの前記分岐点と前記電池セルの間において、互いに隣接する電圧計測ライン同士の間に生じるノイズを低減するためのコンデンサが設けられていない電池システム監視装置。
The battery system monitoring device according to claim 1 or 2,
A plurality of balancing lines each branched from the voltage measurement line;
RC filters each comprising a resistor and a capacitor, and provided between the branch point to the balancing line and the integrated circuit in the voltage measurement line,
A discharge resistor provided in each of the balancing lines;
A battery system monitoring apparatus in which a capacitor for reducing noise generated between adjacent voltage measurement lines is not provided between the branch point of the voltage measurement line and the battery cell.
請求項1または2に記載の電池システム監視装置において、
前記電流制限素子はヒューズであり、
前記ヒューズの溶断を検出する溶断検出回路をさらに備える電池システム監視装置。
The battery system monitoring device according to claim 1 or 2,
The current limiting element is a fuse;
A battery system monitoring device further comprising a fusing detection circuit for detecting fusing of the fuse.
請求項4に記載の電池システム監視装置において、
前記溶断検出回路は、所定の基準電圧を出力する電圧源に接続されると共に、前記ヒューズおよび前記電源部に接続されたプルアップ抵抗を有しており、
前記電源部が短絡されていない場合は、前記プルアップ抵抗を介して前記基準電圧を検出することにより、前記ヒューズの溶断を検出し、
前記電源部が短絡された場合は、前記電源部および前記プルアップ抵抗を介して前記最上位または前記最下位の電池セルの電圧を検出することにより、前記ヒューズの溶断を検出する電池システム監視装置。
The battery system monitoring device according to claim 4,
The fusing detection circuit is connected to a voltage source that outputs a predetermined reference voltage, and has a pull-up resistor connected to the fuse and the power supply unit,
If the power supply is not short-circuited, by detecting the reference voltage via the pull-up resistor, to detect the blow of the fuse,
A battery system monitoring device that detects the blow of the fuse by detecting the voltage of the uppermost or lowermost battery cell via the power supply unit and the pull-up resistor when the power supply unit is short-circuited. .
JP2015529237A 2013-07-29 2013-07-29 Battery system monitoring device Active JP6014764B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/070451 WO2015015549A1 (en) 2013-07-29 2013-07-29 Battery system monitoring device

Publications (2)

Publication Number Publication Date
JP6014764B2 JP6014764B2 (en) 2016-10-25
JPWO2015015549A1 true JPWO2015015549A1 (en) 2017-03-02

Family

ID=52431131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529237A Active JP6014764B2 (en) 2013-07-29 2013-07-29 Battery system monitoring device

Country Status (2)

Country Link
JP (1) JP6014764B2 (en)
WO (1) WO2015015549A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6459087B2 (en) 2017-03-17 2019-01-30 株式会社ケーヒン Circuit protection device and voltage detection device
CN109633411B (en) * 2018-12-21 2021-04-30 中国北方车辆研究所 High-voltage distribution circuit state detection system for special vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5582678B2 (en) * 2007-12-25 2014-09-03 矢崎総業株式会社 Voltage detector
JP5188370B2 (en) * 2008-11-21 2013-04-24 三洋電機株式会社 Battery system
JP5753764B2 (en) * 2011-10-27 2015-07-22 日立オートモティブシステムズ株式会社 Battery system monitoring device and power storage device including the same

Also Published As

Publication number Publication date
JP6014764B2 (en) 2016-10-25
WO2015015549A1 (en) 2015-02-05

Similar Documents

Publication Publication Date Title
JP5486822B2 (en) Battery system
CN104935026B (en) Battery cell arrangement with battery cells and current limiting circuit and corresponding method
JP6260716B2 (en) Power supply device, protection device, and protection method
JP6459087B2 (en) Circuit protection device and voltage detection device
JP5926143B2 (en) Battery monitoring system and semiconductor device
JP6081251B2 (en) Power system
JPWO2018074394A1 (en) Ground fault detection device and power storage system
JP6877912B2 (en) Battery monitoring system
TWI787216B (en) Control device, balance correction system, and power storage system
JP5503430B2 (en) Battery pack with output stop switch
US10830830B2 (en) Battery monitoring device for vehicle-mounted battery
JP2008182883A (en) On-vehicle electric power supply network
JP6014764B2 (en) Battery system monitoring device
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
CN109247036B (en) Management device and power supply system
JP6187142B2 (en) Battery monitoring device
JP5884683B2 (en) Battery monitoring device
JP2016134962A (en) Power storage system
JP6155854B2 (en) Battery system
JP6789768B2 (en) Circuit protection device and power supply monitoring device
JP6831362B2 (en) Leakage detector, earth leakage detection system, and diagnostic method
JP2018021880A (en) Voltage monitoring device and assembled battery monitoring system
JP6348925B2 (en) Semiconductor device and battery monitoring system
JP2020010562A (en) Battery monitoring device
JP7200915B2 (en) storage system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160926

R150 Certificate of patent or registration of utility model

Ref document number: 6014764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350