WO2022074985A1 - Monitoring device for assembled battery - Google Patents

Monitoring device for assembled battery Download PDF

Info

Publication number
WO2022074985A1
WO2022074985A1 PCT/JP2021/032663 JP2021032663W WO2022074985A1 WO 2022074985 A1 WO2022074985 A1 WO 2022074985A1 JP 2021032663 W JP2021032663 W JP 2021032663W WO 2022074985 A1 WO2022074985 A1 WO 2022074985A1
Authority
WO
WIPO (PCT)
Prior art keywords
power fuse
assembled battery
voltage detection
detection line
fuse
Prior art date
Application number
PCT/JP2021/032663
Other languages
French (fr)
Japanese (ja)
Inventor
高広 村上
裕宣 川島
大海 足立
健 本多
亮 山川
日出光 渡邉
雅大 榊原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202180068368.XA priority Critical patent/CN116349101A/en
Publication of WO2022074985A1 publication Critical patent/WO2022074985A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/20Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a battery monitoring device.
  • an assembled battery in which a plurality of single batteries (battery cells) are connected in series is used as a power source, and a traveling drive motor is driven by using the power supplied from the power source. are doing.
  • the voltage of each cell is monitored by a monitoring circuit.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2014-7883
  • both terminals of each battery cell (cell) of an assembled battery are connected to a monitoring circuit using a detection line for voltage detection, and the voltage of each cell is connected. Is being monitored.
  • the detection line for voltage detection is provided with a fuse that cuts off the electrical connection between the assembled battery and the monitoring circuit when a current exceeding a predetermined current value flows.
  • the monitoring circuit is protected from the overvoltage generated in the assembled battery by providing a fuse in the detection line (voltage detection line) for voltage detection.
  • a fuse in the detection line (voltage detection line) for voltage detection.
  • a high voltage may be applied to the blown fuse terminal.
  • an arc discharge occurs between the fuse terminals, and the arc current may be input to the monitoring circuit.
  • the voltage detection line on the assembled battery side and the voltage detection line on the monitoring circuit side may be connected via a connector.
  • the distance between the connectors is often relatively small in order to improve the mountability on the electric vehicle. Then, the insulation distance between the adjacent connector terminals becomes relatively small. Therefore, if the potential difference between the adjacent connector terminals becomes large, an arc discharge may occur between the connector terminals.
  • the present disclosure has been made to solve the above problems, and an object thereof is to protect the monitoring circuit from the arc current generated after the fuse is blown and to suppress the generation of arc discharge between adjacent connector terminals. It is to provide a monitoring device for assembled batteries that can be used.
  • the assembled battery monitoring device of the present disclosure is a monitoring device that monitors the state of the assembled battery by connecting the first connector provided on the assembled battery side and the second connector provided on the monitoring circuit side. It is provided with a first power fuse provided on the first voltage detection line connecting the first connector and a second power fuse provided on the second voltage detection line connecting the monitoring circuit and the second connector.
  • the rated current of the first power fuse is set to be smaller than the rated current of the second power fuse.
  • the rated current of the first power fuse is set to be smaller than the rated current of the second power fuse. Therefore, when an overvoltage is generated in the assembled battery and a large current flows in the first voltage detection line and the second voltage detection line, the first power fuse is blown before the second power fuse, and the assembled battery and the first connector are used. The electrical connection with is cut off. Therefore, since the electrical connection between the assembled battery and the monitoring circuit is also cut off, the monitoring circuit can be protected from the overvoltage generated in the assembled battery.
  • a high voltage is applied to the terminals of the blown first power fuse after the first power fuse is blown, an arc discharge may occur between the terminals of the blown first power fuse. Then, a large current (arc current) flows in the second voltage detection line connecting the monitoring circuit and the second connector. In such a case, the arc current blows the second power fuse, and the electrical connection between the second connector and the monitoring circuit is cut off. Therefore, the monitoring circuit can be protected from the arc current.
  • the first power fuse provided in the first voltage detection line connecting the assembled battery and the first connector is blown first, and the electrical connection between the assembled battery and the first connector is performed. Is cut off, so even if the insulation distance between adjacent first connector terminals is small (even if it is short), arc discharge between adjacent first connectors can be suppressed.
  • a battery assembly monitoring device that can protect the monitoring circuit from the arc current generated after the fuse is blown and suppress the generation of arc discharge between adjacent connector terminals.
  • FIG. 1 It is an overall block diagram of the monitoring device of the assembled battery which concerns on embodiment. It is a figure which shows the case which the 1st power fuse of the uppermost stage remains without being blown in the monitoring device of the assembled battery when the overvoltage occurs in the assembled battery. It is a figure which shows the case which the arc discharge occurred in the 1st power fuse of the lowermost stage in the monitoring device of the assembled battery when the overvoltage occurred in the assembled battery. It is a figure which shows the state which all the 1st power fuses were blown in the monitoring device of the assembled battery when the overvoltage occurred in the assembled battery.
  • FIG. 1 It is a figure which shows the state which the 2nd power fuse of the lowermost stage was blown in the monitoring device of the assembled battery when the overvoltage is generated in the assembled battery. It is an overall block diagram of the monitoring device of the assembled battery which concerns on modification 1. FIG. It is an overall block diagram of the monitoring device of the assembled battery which concerns on modification 2. FIG.
  • FIG. 1 is an overall configuration diagram of the assembled battery monitoring device 1 according to the present embodiment.
  • the assembled battery monitoring device 1 includes a power storage device 1A and a battery ECU (Electronic Control Unit) 1B.
  • the power storage device 1A includes, for example, an assembled battery 2, a first connector 21, and a first power fuse 22.
  • the battery ECU 1B includes, for example, a monitoring circuit 3, a second connector 31, a second power fuse 32, a Zener diode 33, a capacitor 34, and an inductor 35.
  • the assembled battery 2 is a power source for driving a driving drive motor of an electric vehicle such as a hybrid vehicle and an electric vehicle, and supplies power to the driving drive motor via a PCU (Power Control Unit) (not shown). ..
  • the assembled battery 2 is formed by electrically connecting a plurality of cell cells (battery cells) 20 in series.
  • the cell (battery cell) 20 is composed of a secondary battery such as a lithium ion battery and a nickel hydrogen battery, for example.
  • the monitoring circuit 3 is a circuit that monitors the voltage of the cell 20.
  • the battery ECU includes, for example, a CPU (Central Processing Unit), a memory, and the like (none of them are shown).
  • the monitoring circuit 3 detects the voltage state of the cell 20 and outputs a signal indicating the detected voltage state of the cell 20 to the CPU.
  • the voltage detection line L1 is connected to the output terminal of each cell 20 constituting the assembled battery 2.
  • the first connector 21 is connected to the other end of the voltage detection line L1.
  • the voltage detection line L1 is provided with a first power fuse 22. That is, a first power fuse 22 is provided between the cell 20 and the first connector 21.
  • the first power fuse 22 is blown when an overcurrent is generated in the assembled battery 2 (cell 20) and a current (overcurrent) equal to or higher than the first predetermined value flows through the voltage detection line L1.
  • the electrical connection between the output terminal and the first connector 21 is cut off.
  • the voltage detection line L1, the first connector 21, and the first power fuse 22 are mounted on a flexible printed circuit board (FPC) 40.
  • the FPC 40 is connected to the assembled battery 2 (cell 20).
  • the first power fuse 22 may be formed in the FPC 40 as a pattern fuse, for example.
  • the voltage detection line L2 is connected to the second connector 31, and the other end of the voltage detection line L2 is connected to the monitoring circuit 3.
  • the voltage detection line L2 is provided with a second power fuse 32.
  • the second power fuse 32 blows when a current (overcurrent) equal to or higher than the second predetermined value flows through the voltage detection line L2, and cuts off the electrical connection between the second connector 31 and the monitoring circuit 3.
  • the second power fuse 32 may also be formed on a substrate or the like as a pattern fuse, for example.
  • the rated current of the first power fuse 22 provided on the voltage detection line L1 is set to be smaller than the rated current of the second power fuse 32 provided on the voltage detection line L2. That is, the magnitude of the current of the first predetermined value or more that the first electric power fuse 22 can blow is smaller than the magnitude of the current of the second predetermined value or more that the second electric power fuse 32 can blow.
  • a Zener diode 33 is provided between the adjacent voltage detection lines L2.
  • the cathode of the Zener diode 33 is connected to the voltage detection line L2 connected to the positive electrode terminal side of the cell 20, and the voltage on the negative electrode terminal side of the cell 20 is connected.
  • the anode of the Zener diode 33 is connected to the detection line L2.
  • the pair of detection lines are a voltage detection line L1 and a voltage detection line L2 connected to the positive electrode terminal of the cell 20 and a voltage detection line L1 and a voltage detection line L2 connected to the negative electrode terminal of the cell 20. be.
  • the breakdown voltage of the Zener diode 33 is set to be smaller than the voltage when an overvoltage occurs in the assembled battery 2 (cell 20), and is set to several times the voltage when the cell 20 is fully charged, for example. ..
  • the voltage detection line L2 is provided with an inductor 35.
  • the inductor 35 is provided between the second power fuse 32 and the monitoring circuit 3.
  • the inductor 35 constitutes an LC circuit together with a capacitor 34 connected between adjacent voltage detection lines L2, and cuts high frequency noise.
  • the capacitor 34 and the inductor 35 can be omitted.
  • the voltage detection line L1 corresponds to an example of the "first voltage detection line” according to the present disclosure.
  • the voltage detection line L2 corresponds to an example of the "second voltage detection line” according to the present disclosure.
  • the bus bar connecting the cells 20 to each other may come off.
  • the PCU is provided with a capacitor that smoothes the voltage VB from the assembled battery 2 and supplies it to the buck-boost converter.
  • VL the voltage detection lines of both terminals of the cell 20 from which the bus bar is removed
  • An overvoltage of "PCU capacitor voltage VL-voltage Vb of the cell" is generated between L1.
  • FIGS. 2A, 2B, 3A and 3B are diagrams showing the operation of the battery assembly monitoring device 1 when an overvoltage is generated in the assembled battery 2.
  • FIG. 2A it is assumed that the connection between the cell 20-1 and the cell 20-2 is cut off at the position S due to the bus bar coming off or the like.
  • the voltage detection line L1-1 connected to the negative electrode terminal of the cell 20-1 is connected to the negative electrode terminal of the cell 20-2.
  • An overvoltage of "PCU capacitor voltage VL-voltage Vb2 of cell 20-2" is applied between the voltage detection line L1-2.
  • an overcurrent flows between the voltage detection line L1-1 connected to the negative electrode terminal of the cell 20-1 and the voltage detection line L1-2 connected to the negative electrode terminal of the cell 20-2.
  • the first power fuse 22 is blown before the second power fuse 32, and the cell 20 and the cell 20 are blown.
  • the electrical connection with the first connector 21 is cut off. Therefore, it is suppressed that an overcurrent flows through the monitoring circuit 3 via the voltage detection line L1-1 and the voltage detection line L1-2. By blowing the first power fuse 22, the monitoring circuit 3 can be protected from overvoltage.
  • the first power fuse 22 provided on the voltage detection line L1-1 connected to the negative terminal of the cell 20-1 and the voltage detection line L1-2 connected to the negative terminal of the cell 20-2.
  • the unit is between the cell 20-1 and the adjacent cell 20 (the cell on the positive electrode side of the cell 20-1) and adjacent to the cell 20-2.
  • An overvoltage is generated between the battery 20 (the battery on the negative side of the cell 20-2) and the first power fuse 22 is sequentially blown as shown by the arrow AR1 in FIG. 2A.
  • FIG. 2A shows a case where the first power fuse 22 in the uppermost stage remains without being blown.
  • the voltage VB of the assembled battery 2 and the capacitor voltage VL of the PCU depend on the mode of the load (for example, PCU) connected to the assembled battery 2.
  • a high voltage such as the system voltage VH of the PCU is applied to the voltage detection line L1 and the voltage detection line L2 via the first power fuse 22 in the uppermost stage, and exceeds the breakdown voltage of the Zener diode 33.
  • FIG. 2B shows a case where an arc discharge occurs between the terminals of the first power fuse 22 in the lowermost stage that has been blown.
  • FIG. 3A shows a state after all of the first power fuses 22 provided on the voltage detection line L1 connected to the assembled battery 2 are blown and the monitoring circuit 3 is protected from overvoltage. Even in this state, depending on the mode of the load connected to the assembled battery 2, a high voltage such as the voltage VB of the assembled battery 2, the capacitor voltage VL of the PCU, or the system voltage VH of the PCU is blown by the first power fuse 22. It may be applied to the terminal of. When a high voltage is applied to the terminals of the blown first power fuse 22, an arc discharge may occur between the terminals where the distance between the terminals of the blown first power fuse is short.
  • the distance between the terminal of the blown first power fuse 22 and the terminal of the blown second power fuse 32 becomes the insulation distance.
  • the first power fuse 22 and the second power fuse 32 in the detection line (voltage detection line L1 and voltage detection line L2), it is possible to secure a large insulation distance when the fuse is blown. can. By ensuring a large insulation distance, it is possible to prevent the occurrence of arc discharge.
  • the first connector is passed through the first power fuse 22 which is not blown.
  • a high voltage may be applied to 21.
  • the insulation distance between the terminals of the adjacent first connectors 21 is small (short)
  • an arc discharge may occur between the adjacent first connectors 21.
  • the first power fuse 22 provided on the voltage detection line L1 between the assembled battery 2 and the first connector 21 is blown before the second power fuse 32. As a result, the electrical connection between the assembled battery 2 (cell 20) and the first connector 21 is cut off.
  • the first power fuse 22 is mounted on the FPC 40 connected to the assembled battery 2. Further, the second power fuse 32 is provided on the voltage detection line L2 connecting the second connector 31 and the monitoring circuit 3. If the second power fuse 32 is mounted on the FPC 40 in addition to the first power fuse 22, an area for mounting the second power fuse 32 is required, so that the physique of the FPC 40 needs to be increased. Further, it is necessary to perform the potting process of the second power fuse 32 for the waterproof process, which causes an increase in cost. In the present embodiment, since the second power fuse 32 is provided on the voltage detection line L2 and the first power fuse 22 is provided on the FPC 40, it is possible to reduce the size of the FPC 40 and suppress the cost increase.
  • a battery pack 2 (battery block) is included in the power storage device 1A
  • a plurality of battery packs 2 may be included in the power storage device 1A.
  • a monitoring circuit 3 may be provided for each set of batteries 2 (battery blocks) connected in series.
  • FIG. 4 is an overall configuration diagram of the assembled battery monitoring device 10 according to the first modification.
  • the voltage detection line L2 is provided with a third power fuse 36 in series with the second power fuse 32.
  • the third power fuse 36 is provided between the second power fuse 32 and the inductor 35. Since the configuration of the assembled battery monitoring device 10 other than the addition of the third power fuse 36 to the voltage detection line L2 is the same as that of the assembled battery monitoring device 1 according to the embodiment, the description thereof will not be repeated.
  • the rated current of the third power fuse 36 is set to be the same as the rated current of the second power fuse 32.
  • the rated current of the first power fuse 22 is set to be smaller than the rated current of the second power fuse 32 and the third power fuse 36.
  • the rated current of the first power fuse 22 is the rating of the second power fuse 32 and the third power fuse 36, as in the embodiment. Since it is set to be smaller than the current, the first power fuse 22 is blown before the second power fuse 32 and the third power fuse 36. As a result, the electrical connection between the cell 20 and the first connector 21 is cut off. Therefore, the electrical connection between the cell 20 and the monitoring circuit 3 is also cut off. By blowing the first power fuse 22, the monitoring circuit 3 can be protected from overvoltage.
  • the rated current of the third power fuse 36 is the same as the rated current of the second power fuse 32, but if the rated current of the third power fuse 36 is larger than the rated current of the first power fuse 22 It may be different from the second power fuse 32. Further, three or more power fuses having a rated current larger than that of the first power fuse 22 may be provided in series on the voltage detection line L2. As a result, the distance between the terminals between the blown power fuses can be further increased, and a larger insulation distance can be secured.
  • FIG. 5 is an overall configuration diagram of the assembled battery monitoring device 11 according to the modified example 2.
  • the voltage detection line L1 is provided with a fourth power fuse 23 in series with the first power fuse 22.
  • the fourth power fuse 23 is provided on the voltage detection line L1 and is provided between the first power fuse 22 and the first connector 21.
  • the voltage detection line L1, the first connector 21, the first power fuse 22, and the fourth power fuse 23 are mounted on the FPC 40.
  • the first power fuse 22 and the fourth power fuse 23 may be formed in the FPC 40 as a pattern fuse. Since the configuration of the assembled battery monitoring device 11 other than the addition of the fourth power fuse 23 to the voltage detection line L1 is the same as that of the assembled battery monitoring device 1 according to the embodiment, the description thereof will not be repeated.
  • the rated current of the 4th power fuse 23 is set to be the same as the rated current of the 1st power fuse 22 or smaller than the rated current of the 1st power fuse 22. Also in this modification 2, when an overvoltage occurs in the assembled battery 2 (cell 20), the rated current of the first power fuse 22 and the rated current of the fourth power fuse 23 become the second power fuse, as in the embodiment. Since the current is set to be smaller than the rated current of 32, the first power fuse 22 and the fourth power fuse 23 are blown before the second power fuse 32. As a result, the electrical connection between the cell 20 and the first connector 21 is cut off. Therefore, the electrical connection between the cell 20 and the monitoring circuit 3 is also cut off. The monitoring circuit 3 can be protected from overvoltage by blowing the first power fuse 22 and / or the fourth power fuse 23.
  • three or more power fuses having a rated current smaller than that of the second power fuse 32 may be provided in series on the voltage detection line L1. As a result, the distance between the terminals between the blown power fuses can be further increased, and a larger insulation distance can be secured.
  • the first power fuse 22 is provided in each of the voltage detection lines L1 in each of the voltage detection lines L1 in each of the voltage detection lines L1 in one voltage detection line L1, the first power fuse 22 may be omitted. Even in this case as well, it is possible to prevent an overcurrent from flowing in the monitoring circuit 3 by blowing the first power fuse 22 provided in the voltage detection line L1 other than the one voltage detection line L1. As a result, the number of first power fuses 22 used can be reduced.
  • a plurality of first power fuses 22 may be provided in parallel on the voltage detection line L1 on the condition that the rated current thereof is smaller than the rated current of the second power fuse 32.
  • the first connector (21) provided on the assembled battery (2) side and the second connector (31) provided on the monitoring circuit (3) side are connected to monitor the state of the assembled battery (2).
  • a second power fuse (32) provided on the second voltage detection line (L2) connecting the circuit (3) and the second connector (31) is provided, and the rated current of the first power fuse (22) is the first.
  • the monitoring device (1) of the assembled battery (2) which is set to be smaller than the rated current of the power fuse (32).
  • the first voltage detection line (L1) and the first power fuse (22) are mounted on the flexible printed substrate (40) connected to the assembled battery (2).
  • the first power fuse is mounted on the FPC and the second power fuse is provided on the second voltage detection line.
  • the physique (mounting area) of the FPC can be made relatively small as compared with the case where the first power fuse and the second power fuse are mounted on the FC.
  • the second voltage detection line (L2) is provided with a third power fuse (36) in series with the second power fuse (32), and the rated current of the third power fuse (36) is provided. Is larger than the rated current of the first power fuse (22).
  • the distance between the terminals of the blown power fuse can be lengthened, and the insulation distance between the power fuse terminals can be increased, so that arc discharge between the terminals of the blown power fuse can be suppressed. And the monitoring circuit can be protected from arc current.
  • the assembled battery (2) is obtained by electrically connecting a plurality of cell cells (20) in series, and the first voltage detection line (L1) is each cell cell (20). It is connected to the output terminal of.

Abstract

This monitoring device (1) for an assembled battery connects a first connector (21) provided on an assembled battery (2) side and a second connector (31) provided on a monitoring circuit (3) side and monitors a state of the assembled battery (2). The monitoring device (1) comprises: a first power fuse (22) provided on a first voltage detection line (L1) that connects the assembled battery (2) and the first connector (21) and a second power fuse (32) provided on a second voltage detection line (L2) that connects the monitoring circuit (3) and the second connector (31). A rated current of the first power fuse (22) is set to be smaller than a rated current of the second power fuse (32).

Description

組電池の監視装置Battery monitoring device 関連出願の相互参照Cross-reference of related applications
 この出願は、2020年10月9日に日本に出願された特許出願第2020-171059号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。 This application is based on Patent Application No. 2020-171059 filed in Japan on October 9, 2020, and the contents of the basic application are incorporated by reference as a whole.
 本開示は、組電池の監視装置に関する。 This disclosure relates to a battery monitoring device.
 ハイブリッド自動車および電気自動車等の電動車両では、例えば、複数の単電池(電池セル)を直列に接続した組電池を電力源とし、当該電力源から供給される電力を用いて走行駆動用モータを駆動している。組電池において、各単電池の電圧は、監視回路によって監視されている。たとえば、特開2014-7883号公報(特許文献1)では、組電池の各電池セル(単電池)の両端子を電圧検出用の検出ラインを用いて監視回路に接続し、各単電池の電圧を監視している。電圧検出用の検出ラインには、所定電流値以上の電流が流れた際に組電池と監視回路との間の電気的接続を遮断するヒューズが設けられている。 In electric vehicles such as hybrid vehicles and electric vehicles, for example, an assembled battery in which a plurality of single batteries (battery cells) are connected in series is used as a power source, and a traveling drive motor is driven by using the power supplied from the power source. are doing. In the assembled battery, the voltage of each cell is monitored by a monitoring circuit. For example, in Japanese Patent Application Laid-Open No. 2014-7883 (Patent Document 1), both terminals of each battery cell (cell) of an assembled battery are connected to a monitoring circuit using a detection line for voltage detection, and the voltage of each cell is connected. Is being monitored. The detection line for voltage detection is provided with a fuse that cuts off the electrical connection between the assembled battery and the monitoring circuit when a current exceeding a predetermined current value flows.
特開2014-7883号公報Japanese Unexamined Patent Publication No. 2014-7883
 特許文献1では、電圧検出用の検出ライン(電圧検出線)にヒューズを設けることにより、組電池に発生した過電圧から監視回路を保護している。しかし、電圧検出線に所定電流値以上の大電流が流れヒューズが溶断したあと、溶断後のヒューズ端子に高電圧が印加される場合がある。溶断後のヒューズ端子に高電圧が印加されると、ヒューズ端子間にアーク放電が生じ、アーク電流が監視回路に入力される可能性がある。 In Patent Document 1, the monitoring circuit is protected from the overvoltage generated in the assembled battery by providing a fuse in the detection line (voltage detection line) for voltage detection. However, after a large current of a predetermined current value or more flows through the voltage detection line and the fuse is blown, a high voltage may be applied to the blown fuse terminal. When a high voltage is applied to the blown fuse terminal, an arc discharge occurs between the fuse terminals, and the arc current may be input to the monitoring circuit.
 また、監視回路の搭載を容易にするため、組電池側の電圧検出線と監視回路側の電圧検出線とをコネクタを介して接続する場合がある。この場合、電動車両への搭載性を向上させるために、コネクタ同士の距離が比較的小さくされる場合が多い。そうすると、隣り合うコネクタ端子間の絶縁距離が比較的小さくなる。このため、隣り合うコネクタ端子間の電位差が大きくなると、コネクタ端子間でアーク放電が生じる可能性がある。 Also, in order to facilitate the mounting of the monitoring circuit, the voltage detection line on the assembled battery side and the voltage detection line on the monitoring circuit side may be connected via a connector. In this case, the distance between the connectors is often relatively small in order to improve the mountability on the electric vehicle. Then, the insulation distance between the adjacent connector terminals becomes relatively small. Therefore, if the potential difference between the adjacent connector terminals becomes large, an arc discharge may occur between the connector terminals.
 本開示は、上記課題を解決するためになされたものであり、その目的は、ヒューズ溶断後に発生したアーク電流から監視回路を保護するとともに、隣り合うコネクタ端子間のアーク放電の発生を抑制することができる組電池の監視装置を提供することである。 The present disclosure has been made to solve the above problems, and an object thereof is to protect the monitoring circuit from the arc current generated after the fuse is blown and to suppress the generation of arc discharge between adjacent connector terminals. It is to provide a monitoring device for assembled batteries that can be used.
 本開示の組電池の監視装置は、組電池側に設けた第1コネクタと、監視回路側に設けた第2コネクタとを接続し、組電池の状態を監視する監視装置であって、組電池と第1コネクタとを接続する第1電圧検出線に設けられた第1電力ヒューズと、監視回路と第2コネクタとを接続する第2電圧検出線に設けられた第2電力ヒューズとを備える。第1電力ヒューズの定格電流は、第2電力ヒューズの定格電流よりも小さく設定される。 The assembled battery monitoring device of the present disclosure is a monitoring device that monitors the state of the assembled battery by connecting the first connector provided on the assembled battery side and the second connector provided on the monitoring circuit side. It is provided with a first power fuse provided on the first voltage detection line connecting the first connector and a second power fuse provided on the second voltage detection line connecting the monitoring circuit and the second connector. The rated current of the first power fuse is set to be smaller than the rated current of the second power fuse.
 この構成によれば、第1電力ヒューズの定格電流が、第2電力ヒューズの定格電流よりも小さく設定されている。そのため、組電池に過電圧が発生し第1電圧検出線および第2電圧検出線に大きな電流が流れると、第2電力ヒューズよりも第1電力ヒューズが先に溶断して、組電池と第1コネクタとの電気的接続が遮断される。ゆえに、組電池と監視回路との電気的接続も遮断されるので、組電池に発生した過電圧から監視回路を保護することができる。 According to this configuration, the rated current of the first power fuse is set to be smaller than the rated current of the second power fuse. Therefore, when an overvoltage is generated in the assembled battery and a large current flows in the first voltage detection line and the second voltage detection line, the first power fuse is blown before the second power fuse, and the assembled battery and the first connector are used. The electrical connection with is cut off. Therefore, since the electrical connection between the assembled battery and the monitoring circuit is also cut off, the monitoring circuit can be protected from the overvoltage generated in the assembled battery.
 第1電力ヒューズが溶断した後において、溶断後の第1電力ヒューズの端子に高電圧が印加されると、溶断した第1電力ヒューズの端子間にアーク放電が生じ得る。そうすると、監視回路と第2コネクタとを接続する第2電圧検出線に大きな電流(アーク電流)が流れる。このような場合には、アーク電流により、第2電力ヒューズが溶断し、第2コネクタと監視回路との電気的接続が遮断される。よって、アーク電流から監視回路を保護することができる。 If a high voltage is applied to the terminals of the blown first power fuse after the first power fuse is blown, an arc discharge may occur between the terminals of the blown first power fuse. Then, a large current (arc current) flows in the second voltage detection line connecting the monitoring circuit and the second connector. In such a case, the arc current blows the second power fuse, and the electrical connection between the second connector and the monitoring circuit is cut off. Therefore, the monitoring circuit can be protected from the arc current.
 また、組電池に生じた過電圧により、組電池と第1コネクタとを接続する第1電圧検出線に設けられた第1電力ヒューズが最初に溶断し、組電池と第1コネクタとの電気的接続が遮断されるので、隣り合う第1コネクタ端子間の絶縁距離が小さくても(短くても)、隣り合う第1コネクタ間のアーク放電を抑止できる。 Further, due to the overvoltage generated in the assembled battery, the first power fuse provided in the first voltage detection line connecting the assembled battery and the first connector is blown first, and the electrical connection between the assembled battery and the first connector is performed. Is cut off, so even if the insulation distance between adjacent first connector terminals is small (even if it is short), arc discharge between adjacent first connectors can be suppressed.
 本開示によれば、ヒューズ溶断後に発生したアーク電流から監視回路を保護するとともに、隣り合うコネクタ端子間のアーク放電の発生を抑制することができる組電池の監視装置を提供することができる。 According to the present disclosure, it is possible to provide a battery assembly monitoring device that can protect the monitoring circuit from the arc current generated after the fuse is blown and suppress the generation of arc discharge between adjacent connector terminals.
実施の形態に係る組電池の監視装置の全体構成図である。It is an overall block diagram of the monitoring device of the assembled battery which concerns on embodiment. 組電池に過電圧が発生した場合に、組電池の監視装置において最上段の第1電力ヒューズが溶断せずに残ったケースを示す図である。It is a figure which shows the case which the 1st power fuse of the uppermost stage remains without being blown in the monitoring device of the assembled battery when the overvoltage occurs in the assembled battery. 組電池に過電圧が発生した場合に、組電池の監視装置において最下段の第1電力ヒューズでアーク放電が発生したケースを示す図である。It is a figure which shows the case which the arc discharge occurred in the 1st power fuse of the lowermost stage in the monitoring device of the assembled battery when the overvoltage occurred in the assembled battery. 組電池に過電圧が発生した場合に、組電池の監視装置において第1電力ヒューズのすべてが溶断した状態を示す図である。It is a figure which shows the state which all the 1st power fuses were blown in the monitoring device of the assembled battery when the overvoltage occurred in the assembled battery. 組電池に過電圧が発生した場合に、組電池の監視装置において最下段の第2電力ヒューズが溶断した状態を示す図である。It is a figure which shows the state which the 2nd power fuse of the lowermost stage was blown in the monitoring device of the assembled battery when the overvoltage is generated in the assembled battery. 変形例1に係る組電池の監視装置の全体構成図である。It is an overall block diagram of the monitoring device of the assembled battery which concerns on modification 1. FIG. 変形例2に係る組電池の監視装置の全体構成図である。It is an overall block diagram of the monitoring device of the assembled battery which concerns on modification 2. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 図1は、本実施の形態に係る組電池の監視装置1の全体構成図である。組電池の監視装置1は、蓄電装置1Aと、電池ECU(Electronic Control Unit)1Bとを含む。蓄電装置1Aには、たとえば、組電池2と、第1コネクタ21と、第1電力ヒューズ22とが含まれる。電池ECU1Bには、たとえば、監視回路3と、第2コネクタ31と、第2電力ヒューズ32と、ツェナーダイオード33と、コンデンサ34と、インダクタ35とが含まれる。 FIG. 1 is an overall configuration diagram of the assembled battery monitoring device 1 according to the present embodiment. The assembled battery monitoring device 1 includes a power storage device 1A and a battery ECU (Electronic Control Unit) 1B. The power storage device 1A includes, for example, an assembled battery 2, a first connector 21, and a first power fuse 22. The battery ECU 1B includes, for example, a monitoring circuit 3, a second connector 31, a second power fuse 32, a Zener diode 33, a capacitor 34, and an inductor 35.
 組電池2は、たとえば、ハイブリッド自動車および電気自動車等の電動車両の走行用駆動モータを駆動する電力源であり、図示しないPCU(Power Control Unit)を介して、走行用駆動モータに電力を供給する。組電池2は、複数の単電池(電池セル)20を、電気的に直列に接続したものである。単電池(電池セル)20は、たとえば、リチウムイオン電池およびニッケル水素電池等の二次電池から構成される。 The assembled battery 2 is a power source for driving a driving drive motor of an electric vehicle such as a hybrid vehicle and an electric vehicle, and supplies power to the driving drive motor via a PCU (Power Control Unit) (not shown). .. The assembled battery 2 is formed by electrically connecting a plurality of cell cells (battery cells) 20 in series. The cell (battery cell) 20 is composed of a secondary battery such as a lithium ion battery and a nickel hydrogen battery, for example.
 監視回路3は、単電池20の電圧を監視する回路である。電池ECUには、監視回路3の他に、たとえば、CPU(Central Processing Unit)およびメモリ等が含まれる(いずれも図示せず)。監視回路3は、単電池20の電圧状態等を検出し、検出した単電池20の電圧状態等を示す信号を、CPUに出力する。 The monitoring circuit 3 is a circuit that monitors the voltage of the cell 20. In addition to the monitoring circuit 3, the battery ECU includes, for example, a CPU (Central Processing Unit), a memory, and the like (none of them are shown). The monitoring circuit 3 detects the voltage state of the cell 20 and outputs a signal indicating the detected voltage state of the cell 20 to the CPU.
 組電池2を構成する各単電池20の出力端子には、電圧検出線L1の一端が接続されている。電圧検出線L1の他端には第1コネクタ21が接続されている。電圧検出線L1には、第1電力ヒューズ22が設けられている。すなわち、単電池20と第1コネクタ21との間には、第1電力ヒューズ22が設けられている。第1電力ヒューズ22は、組電池2(単電池20)に過電流が発生し、電圧検出線L1に第1所定値以上の電流(過電流)が流れた場合に溶断し、単電池20の出力端子と第1コネクタ21との電気的接続を遮断する。電圧検出線L1、第1コネクタ21、および、第1電力ヒューズ22は、フレキシブルプリント基板(FPC:Flexible Printed Circuits)40に実装されている。FPC40は、組電池2(単電池20)に接続されている。なお、第1電力ヒューズ22は、たとえば、パターンヒューズとしてFPC40に形成されてもよい。 One end of the voltage detection line L1 is connected to the output terminal of each cell 20 constituting the assembled battery 2. The first connector 21 is connected to the other end of the voltage detection line L1. The voltage detection line L1 is provided with a first power fuse 22. That is, a first power fuse 22 is provided between the cell 20 and the first connector 21. The first power fuse 22 is blown when an overcurrent is generated in the assembled battery 2 (cell 20) and a current (overcurrent) equal to or higher than the first predetermined value flows through the voltage detection line L1. The electrical connection between the output terminal and the first connector 21 is cut off. The voltage detection line L1, the first connector 21, and the first power fuse 22 are mounted on a flexible printed circuit board (FPC) 40. The FPC 40 is connected to the assembled battery 2 (cell 20). The first power fuse 22 may be formed in the FPC 40 as a pattern fuse, for example.
 電圧検出線L2の一端は、第2コネクタ31に接続され、電圧検出線L2の他端は、監視回路3に接続される。第2コネクタ31と第1コネクタ21とが接続されることにより、電圧検出線L1と電圧検出線L2とが結線される。電圧検出線L2には、第2電力ヒューズ32が設けられている。第2電力ヒューズ32は、電圧検出線L2に第2所定値以上の電流(過電流)が流れた場合に溶断し、第2コネクタ31と監視回路3との電気的接続を遮断する。なお、第2電力ヒューズ32も、たとえば、パターンヒューズとして基板等に形成されてもよい。 One end of the voltage detection line L2 is connected to the second connector 31, and the other end of the voltage detection line L2 is connected to the monitoring circuit 3. By connecting the second connector 31 and the first connector 21, the voltage detection line L1 and the voltage detection line L2 are connected. The voltage detection line L2 is provided with a second power fuse 32. The second power fuse 32 blows when a current (overcurrent) equal to or higher than the second predetermined value flows through the voltage detection line L2, and cuts off the electrical connection between the second connector 31 and the monitoring circuit 3. The second power fuse 32 may also be formed on a substrate or the like as a pattern fuse, for example.
 電圧検出線L1に設けられた第1電力ヒューズ22の定格電流は、電圧検出線L2に設けられた第2電力ヒューズ32の定格電流より小さく設定されている。すなわち、上述した第1電力ヒューズ22が溶断し得る第1所定値以上の電流の大きさは、第2電力ヒューズ32が溶断し得る第2所定値以上の電流の大きさよりも小さい。 The rated current of the first power fuse 22 provided on the voltage detection line L1 is set to be smaller than the rated current of the second power fuse 32 provided on the voltage detection line L2. That is, the magnitude of the current of the first predetermined value or more that the first electric power fuse 22 can blow is smaller than the magnitude of the current of the second predetermined value or more that the second electric power fuse 32 can blow.
 隣接する電圧検出線L2間には、ツェナーダイオード33が設けられている。単電池20の両端子に接続された一対の検出ラインにおいて、単電池20の正極端子側に接続された電圧検出線L2にツェナーダイオード33のカソードが接続され、単電池20の負極端子側の電圧検出線L2にツェナーダイオード33のアノードが接続される。一対の検出ラインは、単電池20の正極端子に接続された電圧検出線L1および電圧検出線L2、ならびに、上記ある単電池20の負極端子に接続された電圧検出線L1および電圧検出線L2である。ツェナーダイオード33の降伏電圧は、組電池2(単電池20)に過電圧が発生したときの電圧より小さく設定されており、たとえば、単電池20の満充電時の電圧の数倍に設定されている。また、電圧検出線L2には、インダクタ35が設けられている。本実施の形態においては、インダクタ35は、第2電力ヒューズ32と監視回路3との間に設けられている。インダクタ35は、隣接する電圧検出線L2間に接続されたコンデンサ34とともにLC回路を構成し、高周波ノイズをカットする。なお、コンデンサ34およびインダクタ35は、省略することも可能である。なお、電圧検出線L1は、本開示に係る「第1電圧検出線」の一例に相当する。電圧検出線L2は、本開示に係る「第2電圧検出線」の一例に相当する。 A Zener diode 33 is provided between the adjacent voltage detection lines L2. In a pair of detection lines connected to both terminals of the cell 20, the cathode of the Zener diode 33 is connected to the voltage detection line L2 connected to the positive electrode terminal side of the cell 20, and the voltage on the negative electrode terminal side of the cell 20 is connected. The anode of the Zener diode 33 is connected to the detection line L2. The pair of detection lines are a voltage detection line L1 and a voltage detection line L2 connected to the positive electrode terminal of the cell 20 and a voltage detection line L1 and a voltage detection line L2 connected to the negative electrode terminal of the cell 20. be. The breakdown voltage of the Zener diode 33 is set to be smaller than the voltage when an overvoltage occurs in the assembled battery 2 (cell 20), and is set to several times the voltage when the cell 20 is fully charged, for example. .. Further, the voltage detection line L2 is provided with an inductor 35. In the present embodiment, the inductor 35 is provided between the second power fuse 32 and the monitoring circuit 3. The inductor 35 constitutes an LC circuit together with a capacitor 34 connected between adjacent voltage detection lines L2, and cuts high frequency noise. The capacitor 34 and the inductor 35 can be omitted. The voltage detection line L1 corresponds to an example of the "first voltage detection line" according to the present disclosure. The voltage detection line L2 corresponds to an example of the "second voltage detection line" according to the present disclosure.
 以上のように構成された、本実施の形態の組電池の監視装置1において、たとえば、単電池20同士を接続するバスバーが外れる場合がある。PCUは、組電池2からの電圧VBを平滑化して昇降圧コンバータに供給するコンデンサを備えており、このコンデンサの電圧をVLと表わすと、バスバーが外れた単電池20の両端子の電圧検出線L1間には、「PCUのコンデンサ電圧VL-当該単電池の電圧Vb」の過電圧が発生する。 In the assembled battery monitoring device 1 of the present embodiment configured as described above, for example, the bus bar connecting the cells 20 to each other may come off. The PCU is provided with a capacitor that smoothes the voltage VB from the assembled battery 2 and supplies it to the buck-boost converter. When the voltage of this capacitor is expressed as VL, the voltage detection lines of both terminals of the cell 20 from which the bus bar is removed An overvoltage of "PCU capacitor voltage VL-voltage Vb of the cell" is generated between L1.
 図2A、図2B、図3Aおよび図3Bは、組電池2に過電圧が発生した場合における、組電池の監視装置1の動作を示す図である。図2Aにおいて、位置Sにおいてバスバー外れ等により単電池20-1と単電池20-2との接続が遮断されたことを想定する。単電池20-1と単電池20-2との接続が遮断されると、単電池20-1の負極端子に接続された電圧検出線L1-1と、単電池20-2の負極端子に接続された電圧検出線L1-2との間に「PCUのコンデンサ電圧VL-単電池20-2の電圧Vb2」の過電圧が印加される。このため、単電池20-1の負極端子に接続された電圧検出線L1-1と単電池20-2の負極端子に接続された電圧検出線L1-2とに過電流が流れる。この際、第1電力ヒューズ22の定格電流は第2電力ヒューズ32の定格電流よりも小さくされているので、第2電力ヒューズ32よりも第1電力ヒューズ22が先に溶断し、単電池20と第1コネクタ21との電気的接続が遮断される。ゆえに、電圧検出線L1-1および電圧検出線L1-2を介して監視回路3に過電流が流れることが抑制される。第1電力ヒューズ22が溶断することにより、監視回路3を過電圧から保護することができる。 2A, 2B, 3A and 3B are diagrams showing the operation of the battery assembly monitoring device 1 when an overvoltage is generated in the assembled battery 2. In FIG. 2A, it is assumed that the connection between the cell 20-1 and the cell 20-2 is cut off at the position S due to the bus bar coming off or the like. When the connection between the cell 20-1 and the cell 20-2 is cut off, the voltage detection line L1-1 connected to the negative electrode terminal of the cell 20-1 is connected to the negative electrode terminal of the cell 20-2. An overvoltage of "PCU capacitor voltage VL-voltage Vb2 of cell 20-2" is applied between the voltage detection line L1-2. Therefore, an overcurrent flows between the voltage detection line L1-1 connected to the negative electrode terminal of the cell 20-1 and the voltage detection line L1-2 connected to the negative electrode terminal of the cell 20-2. At this time, since the rated current of the first power fuse 22 is smaller than the rated current of the second power fuse 32, the first power fuse 22 is blown before the second power fuse 32, and the cell 20 and the cell 20 are blown. The electrical connection with the first connector 21 is cut off. Therefore, it is suppressed that an overcurrent flows through the monitoring circuit 3 via the voltage detection line L1-1 and the voltage detection line L1-2. By blowing the first power fuse 22, the monitoring circuit 3 can be protected from overvoltage.
 単電池20-1の負極端子に接続された電圧検出線L1-1に設けられた第1電力ヒューズ22と、単電池20-2の負極端子に接続された電圧検出線L1-2に設けられた第1電力ヒューズ22とが溶断すると、単電池20-1と隣り合う単電池20(単電池20-1の正極側の単電池)との間、および、単電池20-2と隣り合う単電池20(単電池20-2の負極側の単電池)との間に過電圧が発生し、図2Aの矢印AR1で示すように、第1電力ヒューズ22が順次溶断する。この場合において、第1電力ヒューズ22の特性ばらつきに起因して、最上段あるいは最下段の何れかの第1電力ヒューズ22が溶断せずに残る頻度が高い。図2Aにおいては、最上段の第1電力ヒューズ22が溶断せずに残っているケースを示している。 The first power fuse 22 provided on the voltage detection line L1-1 connected to the negative terminal of the cell 20-1 and the voltage detection line L1-2 connected to the negative terminal of the cell 20-2. When the first power fuse 22 is blown, the unit is between the cell 20-1 and the adjacent cell 20 (the cell on the positive electrode side of the cell 20-1) and adjacent to the cell 20-2. An overvoltage is generated between the battery 20 (the battery on the negative side of the cell 20-2) and the first power fuse 22 is sequentially blown as shown by the arrow AR1 in FIG. 2A. In this case, due to the variation in the characteristics of the first electric power fuse 22, the first electric power fuse 22 at either the uppermost stage or the lowermost stage often remains without being blown. FIG. 2A shows a case where the first power fuse 22 in the uppermost stage remains without being blown.
 図2Aに示すように、最上段の第1電力ヒューズ22が残った場合、組電池2に接続される負荷(たとえばPCU)の態様に応じて、組電池2の電圧VB、PCUのコンデンサ電圧VLあるいはPCUのシステム電圧VH等の高電圧が、最上段の第1電力ヒューズ22を介して電圧検出線L1および電圧検出線L2に印加され、ツェナーダイオード33の降伏電圧を超える。このとき、溶断した第1電力ヒューズの端子間距離(エレメント間距離)が短いと、溶断した第1電力ヒューズ22の端子間(エレメント間)でアーク放電が生じる場合がある。図2Bでは、溶断した最下段の第1電力ヒューズ22の端子間でアーク放電が発生したケースを示している。 As shown in FIG. 2A, when the first power fuse 22 in the uppermost stage remains, the voltage VB of the assembled battery 2 and the capacitor voltage VL of the PCU depend on the mode of the load (for example, PCU) connected to the assembled battery 2. Alternatively, a high voltage such as the system voltage VH of the PCU is applied to the voltage detection line L1 and the voltage detection line L2 via the first power fuse 22 in the uppermost stage, and exceeds the breakdown voltage of the Zener diode 33. At this time, if the distance between the terminals of the blown first power fuse (distance between elements) is short, an arc discharge may occur between the terminals of the blown first power fuse 22 (between the elements). FIG. 2B shows a case where an arc discharge occurs between the terminals of the first power fuse 22 in the lowermost stage that has been blown.
 図2Bに示すように、最下段の第1電力ヒューズ22の端子間でアーク放電が生じると、矢印AR2のようにアーク電流が流れ、第2電力ヒューズ32より定格電流の小さい最上段の第1電力ヒューズ22が溶断する。これにより、組電池2と監視回路3との電気的接続が遮断され、監視回路3が過電圧から保護される。なお、ツェナーダイオード33は、過電圧が印加された際に、短絡故障(ショート故障)するように構成されている。 As shown in FIG. 2B, when an arc discharge occurs between the terminals of the first power fuse 22 in the lowermost stage, an arc current flows as shown by arrow AR2, and the first power fuse in the uppermost stage having a smaller rated current than the second power fuse 32. The power fuse 22 blows. As a result, the electrical connection between the assembled battery 2 and the monitoring circuit 3 is cut off, and the monitoring circuit 3 is protected from overvoltage. The Zener diode 33 is configured to cause a short-circuit failure (short-circuit failure) when an overvoltage is applied.
 図3Aは、組電池2に接続された電圧検出線L1に設けられた第1電力ヒューズ22のすべてが溶断し、監視回路3を過電圧から保護したあとの状態を示している。この状態においても、組電池2に接続される負荷の態様に応じて、組電池2の電圧VB、PCUのコンデンサ電圧VLあるいはPCUのシステム電圧VH等の高電圧が、溶断した第1電力ヒューズ22の端子に印加される場合がある。溶断した第1電力ヒューズ22の端子に高電圧が印加されると、溶断した第1電力ヒューズの端子間距離が短い箇所の端子間でアーク放電が生じる場合がある。たとえば、最下段の第1電力ヒューズ22の端子間距離が短い場合、図3Bに示すように、当該第1電力ヒューズ22の端子間にアーク放電が生じてアーク電流が電圧検出線L2に流れる(矢印AR3)。アーク電流が流れると、最下段の電圧検出線L2に設けられた第2電力ヒューズ32が溶断し、第2コネクタ31と監視回路3との電気的接続が遮断される。これにより、監視回路3にアーク電流が流れることが抑制される。 FIG. 3A shows a state after all of the first power fuses 22 provided on the voltage detection line L1 connected to the assembled battery 2 are blown and the monitoring circuit 3 is protected from overvoltage. Even in this state, depending on the mode of the load connected to the assembled battery 2, a high voltage such as the voltage VB of the assembled battery 2, the capacitor voltage VL of the PCU, or the system voltage VH of the PCU is blown by the first power fuse 22. It may be applied to the terminal of. When a high voltage is applied to the terminals of the blown first power fuse 22, an arc discharge may occur between the terminals where the distance between the terminals of the blown first power fuse is short. For example, when the distance between the terminals of the first power fuse 22 in the lowermost stage is short, as shown in FIG. 3B, an arc discharge occurs between the terminals of the first power fuse 22 and an arc current flows through the voltage detection line L2 ( Arrow AR3). When the arc current flows, the second power fuse 32 provided in the lowermost voltage detection line L2 is blown, and the electrical connection between the second connector 31 and the monitoring circuit 3 is cut off. As a result, the arc current is suppressed from flowing through the monitoring circuit 3.
 続いて、たとえば上段から2段目の第1電力ヒューズ22の端子間距離が短い場合は、図3Bに示すように、当該第1電力ヒューズ22の端子間にアーク放電が生じて電圧検出線L2にアーク電流が流れる(矢印AR4)。アーク電流が流れると、2段目の電圧検出線L2に設けられた第2電力ヒューズ32が溶断し、第2コネクタ31と監視回路3との電気的接続が遮断される。これにより、監視回路3にアーク電流が流れることが抑制される。 Subsequently, for example, when the distance between the terminals of the first power fuse 22 in the second stage from the upper stage is short, as shown in FIG. 3B, an arc discharge occurs between the terminals of the first power fuse 22 and the voltage detection line L2. An arc current flows through (arrow AR4). When the arc current flows, the second power fuse 32 provided in the second stage voltage detection line L2 is blown, and the electrical connection between the second connector 31 and the monitoring circuit 3 is cut off. As a result, the arc current is suppressed from flowing through the monitoring circuit 3.
 このように、溶断した第1電力ヒューズ22の端子間距離と、当該第1電力ヒューズ22の端子に印加される高電圧との関係から、第1電力ヒューズ22の端子間にアーク放電が生じると、対応する第2電力ヒューズ32が順次溶断して、第2コネクタ31と監視回路3との電気的接続が遮断され、アーク電流から監視回路3が保護される。 As described above, due to the relationship between the distance between the terminals of the blown first power fuse 22 and the high voltage applied to the terminals of the first power fuse 22, an arc discharge occurs between the terminals of the first power fuse 22. The corresponding second power fuse 32 is sequentially blown, the electrical connection between the second connector 31 and the monitoring circuit 3 is cut off, and the monitoring circuit 3 is protected from the arc current.
 第1電力ヒューズ22および第2電力ヒューズ32の両方が溶断すると、溶断した第1電力ヒューズ22の端子と溶断した第2電力ヒューズ32の端子との距離が絶縁距離となる。検出ライン(電圧検出線L1および電圧検出線L2)において、第1電力ヒューズ22および第2電力ヒューズ32という2つのヒューズが設けられることにより、ヒューズが溶断した際の絶縁距離を大きく確保することができる。大きな絶縁距離を確保することにより、アーク放電が発生することを抑止できる。 When both the first power fuse 22 and the second power fuse 32 are blown, the distance between the terminal of the blown first power fuse 22 and the terminal of the blown second power fuse 32 becomes the insulation distance. By providing two fuses, the first power fuse 22 and the second power fuse 32, in the detection line (voltage detection line L1 and voltage detection line L2), it is possible to secure a large insulation distance when the fuse is blown. can. By ensuring a large insulation distance, it is possible to prevent the occurrence of arc discharge.
 組電池2(単電池20)に生じた過電圧により、仮に、電圧検出線L2に設けた第2電力ヒューズ32が最初に溶断すると、溶断していない第1電力ヒューズ22を介して、第1コネクタ21に高電圧が印加される場合がある。そうすると、隣り合う第1コネクタ21の端子間の絶縁距離が小さい場合(短い場合)、隣り合う第1コネクタ21間でアーク放電が生じる可能性がある。本実施の形態では、組電池2と第1コネクタ21の間の電圧検出線L1に設けられた第1電力ヒューズ22が第2電力ヒューズ32よりも先に溶断する。これにより、組電池2(単電池20)と第1コネクタ21との電気的接続が遮断される。組電池2(単電池20)と第1コネクタ21との電気的接続を遮断することにより、隣り合う第1コネクタ21の端子間の絶縁距離が小さくても(短くても)、隣り合う第1コネクタ21間でアーク放電が発生することを抑制することができる。 If the second power fuse 32 provided in the voltage detection line L2 is first blown due to the overvoltage generated in the assembled battery 2 (cell 20), the first connector is passed through the first power fuse 22 which is not blown. A high voltage may be applied to 21. Then, if the insulation distance between the terminals of the adjacent first connectors 21 is small (short), an arc discharge may occur between the adjacent first connectors 21. In the present embodiment, the first power fuse 22 provided on the voltage detection line L1 between the assembled battery 2 and the first connector 21 is blown before the second power fuse 32. As a result, the electrical connection between the assembled battery 2 (cell 20) and the first connector 21 is cut off. By cutting off the electrical connection between the assembled battery 2 (cell 20) and the first connector 21, even if the insulation distance between the terminals of the adjacent first connectors 21 is small (even if it is short), the adjacent first ones. It is possible to suppress the generation of arc discharge between the connectors 21.
 本実施の形態では、第1電力ヒューズ22は、組電池2に接続されるFPC40に実装されている。また、第2電力ヒューズ32は、第2コネクタ31と監視回路3とを接続する電圧検出線L2に設けられている。FPC40に、第1電力ヒューズ22に加えて第2電力ヒューズ32を実装すると、第2電力ヒューズ32を実装する面積が必要になるので、FPC40の体格を大きくする必要がある。また、防水処理のため第2電力ヒューズ32のポッティング処理を行なう必要があり、コスト増加を招く。本実施の形態では、第2電力ヒューズ32を電圧検出線L2に設けると共に、FPC40に第1電力ヒューズ22を設けているので、FPC40の小型化およびコスト増加の抑制を図ることができる。 In the present embodiment, the first power fuse 22 is mounted on the FPC 40 connected to the assembled battery 2. Further, the second power fuse 32 is provided on the voltage detection line L2 connecting the second connector 31 and the monitoring circuit 3. If the second power fuse 32 is mounted on the FPC 40 in addition to the first power fuse 22, an area for mounting the second power fuse 32 is required, so that the physique of the FPC 40 needs to be increased. Further, it is necessary to perform the potting process of the second power fuse 32 for the waterproof process, which causes an increase in cost. In the present embodiment, since the second power fuse 32 is provided on the voltage detection line L2 and the first power fuse 22 is provided on the FPC 40, it is possible to reduce the size of the FPC 40 and suppress the cost increase.
 なお、本実施の形態の説明において、組電池2の過電圧発生時、図2Aに示すように、最上段の第1電力ヒューズ22が溶断せずに残るケースを説明したが、組電池2の過電圧発生時、全ての第1電力ヒューズ22が溶断し、図3Aに示す状態になる場合もある。 In the description of the present embodiment, when an overvoltage of the assembled battery 2 occurs, as shown in FIG. 2A, a case where the first power fuse 22 in the uppermost stage remains without being blown has been described. However, the overvoltage of the assembled battery 2 has been described. At the time of occurrence, all the first power fuses 22 may be blown, resulting in the state shown in FIG. 3A.
 なお、本実施の形態においては、蓄電装置1Aに1つの組電池2(電池ブロック)が含まれる例について説明したが、蓄電装置1Aに複数の組電池2(電池ブロック)が含まれてもよい。この場合には、たとえば、直列に接続された各組電池2(電池ブロック)毎に、監視回路3を設ければよい。 In the present embodiment, an example in which one battery pack 2 (battery block) is included in the power storage device 1A has been described, but a plurality of battery packs 2 (battery block) may be included in the power storage device 1A. .. In this case, for example, a monitoring circuit 3 may be provided for each set of batteries 2 (battery blocks) connected in series.
 (変形例1)
 図4は、変形例1に係る組電池の監視装置10の全体構成図である。この変形例1では、電圧検出線L2に、第2電力ヒューズ32と直列に第3電力ヒューズ36が設けられている。第3電力ヒューズ36は、第2電力ヒューズ32とインダクタ35との間に設けられる。電圧検出線L2に第3電力ヒューズ36を追加した以外の組電池の監視装置10の構成は、実施の形態に係る組電池の監視装置1と同様であるため、その説明は繰り返さない。
(Modification 1)
FIG. 4 is an overall configuration diagram of the assembled battery monitoring device 10 according to the first modification. In this modification 1, the voltage detection line L2 is provided with a third power fuse 36 in series with the second power fuse 32. The third power fuse 36 is provided between the second power fuse 32 and the inductor 35. Since the configuration of the assembled battery monitoring device 10 other than the addition of the third power fuse 36 to the voltage detection line L2 is the same as that of the assembled battery monitoring device 1 according to the embodiment, the description thereof will not be repeated.
 第3電力ヒューズ36の定格電流は、第2電力ヒューズ32の定格電流と同一に設定されている。第1電力ヒューズ22の定格電流は、第2電力ヒューズ32および第3電力ヒューズ36の定格電流より小さく設定されている。この変形例1においても、実施の形態と同様に、組電池2(単電池20)に過電圧が生じると、第1電力ヒューズ22の定格電流が第2電力ヒューズ32および第3電力ヒューズ36の定格電流よりも小さく設定されていることにより、第2電力ヒューズ32および第3電力ヒューズ36よりも第1電力ヒューズ22が先に溶断する。これにより、単電池20と第1コネクタ21との間の電気的接続が遮断される。よって、単電池20と監視回路3との電気的接続も遮断される。第1電力ヒューズ22が溶断することにより、監視回路3を過電圧から保護することができる。 The rated current of the third power fuse 36 is set to be the same as the rated current of the second power fuse 32. The rated current of the first power fuse 22 is set to be smaller than the rated current of the second power fuse 32 and the third power fuse 36. Also in this modification 1, when an overvoltage occurs in the assembled battery 2 (cell 20), the rated current of the first power fuse 22 is the rating of the second power fuse 32 and the third power fuse 36, as in the embodiment. Since it is set to be smaller than the current, the first power fuse 22 is blown before the second power fuse 32 and the third power fuse 36. As a result, the electrical connection between the cell 20 and the first connector 21 is cut off. Therefore, the electrical connection between the cell 20 and the monitoring circuit 3 is also cut off. By blowing the first power fuse 22, the monitoring circuit 3 can be protected from overvoltage.
 溶断した第1電力ヒューズ22の端子に高電圧が印加されると、端子間距離が短い第1電力ヒューズにおいて、端子間でアーク放電が生じ得る。溶断した第1電力ヒューズ22の端子間でアーク放電が生じると、電圧検出線L2にアーク電流が流れる。そうすると、第2電力ヒューズ32および第3電力ヒューズ36が順次溶断して、第2コネクタ31と監視回路3との電気的接続が遮断される。これにより、アーク電流から監視回路3が保護される。この変形例1では、第1電力ヒューズ22、第2電力ヒューズ32および第3電力ヒューズ36が溶断すると、実施の形態に対して第3電力ヒューズ36の分だけ、溶断した電力ヒューズ間の端子間距離を長くすることができる。すなわち、電力ヒューズ端子間の絶縁距離を大きくすることができる。ゆえに、溶断した電力ヒューズの端子間でアーク放電が発生することを抑制することができ、監視回路3をアーク電流から保護することができる。 When a high voltage is applied to the terminals of the blown first power fuse 22, an arc discharge may occur between the terminals in the first power fuse having a short distance between the terminals. When an arc discharge occurs between the terminals of the blown first power fuse 22, an arc current flows through the voltage detection line L2. Then, the second power fuse 32 and the third power fuse 36 are sequentially blown, and the electrical connection between the second connector 31 and the monitoring circuit 3 is cut off. This protects the monitoring circuit 3 from the arc current. In this modification 1, when the first power fuse 22, the second power fuse 32, and the third power fuse 36 are blown, between the terminals between the blown power fuses by the amount of the third power fuse 36 with respect to the embodiment. The distance can be increased. That is, the insulation distance between the power fuse terminals can be increased. Therefore, it is possible to suppress the occurrence of arc discharge between the terminals of the blown power fuse, and it is possible to protect the monitoring circuit 3 from the arc current.
 変形例1では、第3電力ヒューズ36の定格電流を第2電力ヒューズ32の定格電流と同一としているが、第3電力ヒューズ36の定格電流は、第1電力ヒューズ22の定格電流より大きければ、第2電力ヒューズ32と異なっていてもよい。また、第1電力ヒューズ22より定格電流の大きな電力ヒューズを、電圧検出線L2に3個以上直列に設けるようにしてもよい。これにより、溶断した電力ヒューズ間の端子間距離をさらに長くすることができ、さらに大きな絶縁距離を確保することができる。 In the first modification, the rated current of the third power fuse 36 is the same as the rated current of the second power fuse 32, but if the rated current of the third power fuse 36 is larger than the rated current of the first power fuse 22 It may be different from the second power fuse 32. Further, three or more power fuses having a rated current larger than that of the first power fuse 22 may be provided in series on the voltage detection line L2. As a result, the distance between the terminals between the blown power fuses can be further increased, and a larger insulation distance can be secured.
 (変形例2)
 図5は、変形例2に係る組電池の監視装置11の全体構成図である。この変形例2では、電圧検出線L1に、第1電力ヒューズ22と直列に第4電力ヒューズ23が設けられている。第4電力ヒューズ23は、電圧検出線L1に設けられ、第1電力ヒューズ22と第1コネクタ21との間に設けられる。電圧検出線L1、第1コネクタ21、第1電力ヒューズ22、および第4電力ヒューズ23は、FPC40に実装されている。第1電力ヒューズ22および第4電力ヒューズ23は、パターンヒューズとしてFPC40に形成されてもよい。電圧検出線L1に第4電力ヒューズ23を追加した以外の組電池の監視装置11の構成は、実施の形態に係る組電池の監視装置1と同様であるため、その説明は繰り返さない。
(Modification 2)
FIG. 5 is an overall configuration diagram of the assembled battery monitoring device 11 according to the modified example 2. In the second modification, the voltage detection line L1 is provided with a fourth power fuse 23 in series with the first power fuse 22. The fourth power fuse 23 is provided on the voltage detection line L1 and is provided between the first power fuse 22 and the first connector 21. The voltage detection line L1, the first connector 21, the first power fuse 22, and the fourth power fuse 23 are mounted on the FPC 40. The first power fuse 22 and the fourth power fuse 23 may be formed in the FPC 40 as a pattern fuse. Since the configuration of the assembled battery monitoring device 11 other than the addition of the fourth power fuse 23 to the voltage detection line L1 is the same as that of the assembled battery monitoring device 1 according to the embodiment, the description thereof will not be repeated.
 第4電力ヒューズ23の定格電流は、第1電力ヒューズ22の定格電流と同一、または、第1電力ヒューズ22の定格電流よりも小さく設定されている。この変形例2においても、実施の形態と同様に、組電池2(単電池20)に過電圧が生じると、第1電力ヒューズ22の定格電流および第4電力ヒューズ23の定格電流が第2電力ヒューズ32の定格電流よりも小さく設定されていることにより、第2電力ヒューズ32よりも第1電力ヒューズ22および第4電力ヒューズ23が先に溶断する。これにより、単電池20と第1コネクタ21との間の電気的接続が遮断される。よって、単電池20と監視回路3との電気的接続も遮断される。第1電力ヒューズ22および/または第4電力ヒューズ23が溶断することにより、監視回路3を過電圧から保護することができる。 The rated current of the 4th power fuse 23 is set to be the same as the rated current of the 1st power fuse 22 or smaller than the rated current of the 1st power fuse 22. Also in this modification 2, when an overvoltage occurs in the assembled battery 2 (cell 20), the rated current of the first power fuse 22 and the rated current of the fourth power fuse 23 become the second power fuse, as in the embodiment. Since the current is set to be smaller than the rated current of 32, the first power fuse 22 and the fourth power fuse 23 are blown before the second power fuse 32. As a result, the electrical connection between the cell 20 and the first connector 21 is cut off. Therefore, the electrical connection between the cell 20 and the monitoring circuit 3 is also cut off. The monitoring circuit 3 can be protected from overvoltage by blowing the first power fuse 22 and / or the fourth power fuse 23.
 さらに、第2電力ヒューズ32より定格電流の小さな電力ヒューズを、電圧検出線L1に3個以上直列に設けるようにしてもよい。これにより、溶断した電力ヒューズ間の端子間距離をさらに長くすることができ、さらに大きな絶縁距離を確保することができる。 Further, three or more power fuses having a rated current smaller than that of the second power fuse 32 may be provided in series on the voltage detection line L1. As a result, the distance between the terminals between the blown power fuses can be further increased, and a larger insulation distance can be secured.
 (他の変形例)
 実施の形態においては、電圧検出線L1のそれぞれに第1電力ヒューズ22が設けられる例について説明した。たとえば、ある1つの電圧検出線L1においては、第1電力ヒューズ22を省略してもよい。この場合においても、上記ある1つの電圧検出線L1以外の電圧検出線L1に設けられた第1電力ヒューズ22が溶断することにより、監視回路3に過電流が流れることを抑制することができる。上記により、第1電力ヒューズ22の使用個数を減らすことができる。
(Other variants)
In the embodiment, an example in which the first power fuse 22 is provided in each of the voltage detection lines L1 has been described. For example, in one voltage detection line L1, the first power fuse 22 may be omitted. Even in this case as well, it is possible to prevent an overcurrent from flowing in the monitoring circuit 3 by blowing the first power fuse 22 provided in the voltage detection line L1 other than the one voltage detection line L1. As a result, the number of first power fuses 22 used can be reduced.
 また、電圧検出線L1には、その定格電流が、第2電力ヒューズ32の定格電流よりも小さくなることを条件として、複数の第1電力ヒューズ22が並列に設けられてもよい。 Further, a plurality of first power fuses 22 may be provided in parallel on the voltage detection line L1 on the condition that the rated current thereof is smaller than the rated current of the second power fuse 32.
 本開示における実施態様を例示すると、次のような態様を例示できる。
 (I)組電池(2)側に設けた第1コネクタ(21)と、監視回路(3)側に設けた第2コネクタ(31)とを接続し、組電池(2)の状態を監視する組電池の監視装置(1)であって、組電池(2)と第1コネクタ(21)とを接続する第1電圧検出線(L1)に設けられた第1電力ヒューズ(22)と、監視回路(3)と第2コネクタ(31)を接続する第2電圧検出線(L2)に設けられた第2電力ヒューズ(32)とを備え、第1電力ヒューズ(22)の定格電流は、第2電力ヒューズ(32)の定格電流よりも小さく設定される、組電池(2)の監視装置(1)。
By exemplifying the embodiments in the present disclosure, the following embodiments can be exemplified.
(I) The first connector (21) provided on the assembled battery (2) side and the second connector (31) provided on the monitoring circuit (3) side are connected to monitor the state of the assembled battery (2). A first power fuse (22) provided in the first voltage detection line (L1) connecting the assembled battery (2) and the first connector (21), which is a monitoring device (1) for the assembled battery, and monitoring. A second power fuse (32) provided on the second voltage detection line (L2) connecting the circuit (3) and the second connector (31) is provided, and the rated current of the first power fuse (22) is the first. 2 The monitoring device (1) of the assembled battery (2), which is set to be smaller than the rated current of the power fuse (32).
 (II)上記Iにおいて、第1電圧検出線(L1)および第1電力ヒューズ(22)は、組電池(2)に接続されるフレキシブルプリント基板(40)に実装されている。 (II) In the above I, the first voltage detection line (L1) and the first power fuse (22) are mounted on the flexible printed substrate (40) connected to the assembled battery (2).
 この構成によれば、第1電力ヒューズがFPCに実装され、第2電力ヒューズは第2電圧検出線に設けられる。第1電力ヒューズおよび第2電力ヒューズをFCに実装する場合に比べ、FPCの体格(実装面積)を比較的小さくできる。 According to this configuration, the first power fuse is mounted on the FPC and the second power fuse is provided on the second voltage detection line. The physique (mounting area) of the FPC can be made relatively small as compared with the case where the first power fuse and the second power fuse are mounted on the FC.
 (III)上記IまたはIIにおいて、第2電圧検出線(L2)に、第2電力ヒューズ(32)と直列に第3電力ヒューズ(36)が設けられ、第3電力ヒューズ(36)の定格電流は第1電力ヒューズ(22)の定格電流より大きい。 (III) In the above I or II, the second voltage detection line (L2) is provided with a third power fuse (36) in series with the second power fuse (32), and the rated current of the third power fuse (36) is provided. Is larger than the rated current of the first power fuse (22).
 この構成によれば、溶断した電力ヒューズ間の端子間距離を長くすることができ、電力ヒューズ端子間の絶縁距離を大きくできるので、溶断した電力ヒューズの端子間でアーク放電が発生することを抑制することができ、監視回路をアーク電流から保護することができる。 According to this configuration, the distance between the terminals of the blown power fuse can be lengthened, and the insulation distance between the power fuse terminals can be increased, so that arc discharge between the terminals of the blown power fuse can be suppressed. And the monitoring circuit can be protected from arc current.
 (IV)上記I~IIIにおいて、組電池(2)は複数の単電池(20)を電気的に直列に接続したものであり、第1電圧検出線(L1)は、各単電池(20)の出力端子に接続される。 (IV) In the above I to III, the assembled battery (2) is obtained by electrically connecting a plurality of cell cells (20) in series, and the first voltage detection line (L1) is each cell cell (20). It is connected to the output terminal of.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.

Claims (1)

  1.  組電池側に設けた第1コネクタと、監視回路側に設けた第2コネクタとを接続し、前記組電池の状態を監視する、組電池の監視装置であって、
     前記組電池と前記第1コネクタとを接続する第1電圧検出線に設けられた第1電力ヒューズと、
     前記監視回路と前記第2コネクタとを接続する第2電圧検出線に設けられた第2電力ヒューズとを備え、
     前記第1電力ヒューズの定格電流は、前記第2電力ヒューズの定格電流よりも小さく設定される、組電池の監視装置。
    A battery assembly monitoring device that connects a first connector provided on the assembled battery side and a second connector provided on the monitoring circuit side to monitor the state of the assembled battery.
    A first power fuse provided on the first voltage detection line connecting the assembled battery and the first connector, and
    A second power fuse provided on the second voltage detection line connecting the monitoring circuit and the second connector is provided.
    A battery monitoring device in which the rated current of the first power fuse is set to be smaller than the rated current of the second power fuse.
PCT/JP2021/032663 2020-10-09 2021-09-06 Monitoring device for assembled battery WO2022074985A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180068368.XA CN116349101A (en) 2020-10-09 2021-09-06 Monitoring device for battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-171059 2020-10-09
JP2020171059A JP2022062882A (en) 2020-10-09 2020-10-09 Monitoring device for battery pack

Publications (1)

Publication Number Publication Date
WO2022074985A1 true WO2022074985A1 (en) 2022-04-14

Family

ID=81126455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032663 WO2022074985A1 (en) 2020-10-09 2021-09-06 Monitoring device for assembled battery

Country Status (3)

Country Link
JP (1) JP2022062882A (en)
CN (1) CN116349101A (en)
WO (1) WO2022074985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176348A1 (en) * 2022-03-18 2023-09-21 株式会社デンソー Circuit protection device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043822A (en) * 2005-08-03 2007-02-15 Yokogawa Electric Corp Overvoltage protection circuit
JP2016134962A (en) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 Power storage system
JP2017077053A (en) * 2015-10-13 2017-04-20 株式会社デンソー Circuit protection device
JP2018190677A (en) * 2017-05-11 2018-11-29 株式会社ケーヒン Circuit protection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043822A (en) * 2005-08-03 2007-02-15 Yokogawa Electric Corp Overvoltage protection circuit
JP2016134962A (en) * 2015-01-16 2016-07-25 トヨタ自動車株式会社 Power storage system
JP2017077053A (en) * 2015-10-13 2017-04-20 株式会社デンソー Circuit protection device
JP2018190677A (en) * 2017-05-11 2018-11-29 株式会社ケーヒン Circuit protection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023176348A1 (en) * 2022-03-18 2023-09-21 株式会社デンソー Circuit protection device

Also Published As

Publication number Publication date
JP2022062882A (en) 2022-04-21
CN116349101A (en) 2023-06-27

Similar Documents

Publication Publication Date Title
US7671565B2 (en) Battery pack and method for protecting batteries
US10816608B2 (en) Monitoring device
EP2930771B1 (en) Rechargeable battery
US11506718B2 (en) Battery monitoring device
CN108604515B (en) Relay device
KR101273114B1 (en) Battery cell protection device of eco-friendly vehicle
US20060132090A1 (en) Battery module
US11121411B2 (en) Battery pack and method for detecting whether or not busbar is opened using the battery pack
WO2022074985A1 (en) Monitoring device for assembled battery
US20230238807A1 (en) Power distribution module
US10615615B2 (en) Monitoring device
US9117735B2 (en) Hybrid circuit
JP6229668B2 (en) Power storage system
WO2018105342A1 (en) Battery monitoring device protection circuit and battery monitoring device
KR20130021801A (en) Secondary battery module
US9529054B2 (en) Detecting disconnection fault in device monitoring circuit connected in multiple stages for battery cells connected in series
WO2023176348A1 (en) Circuit protection device
JP2019161702A (en) Circuit protection device and power supply monitoring device
WO2013108786A1 (en) Power supply device, vehicle provided with same, electrical storage device, and circuit board for power supply device
JP2020010562A (en) Battery monitoring device
JP4697100B2 (en) Battery module
WO2022224667A1 (en) Power control device
US20220320601A1 (en) Battery pack comprising cell stack structure using flexible printed circuit board
US20230395928A1 (en) Storage battery connection module, wire harness, and power storage system
WO2020004325A1 (en) Power storage device, power supply device, moving body, capacitor, and method for protecting power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877288

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21877288

Country of ref document: EP

Kind code of ref document: A1