WO2023176320A1 - 繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品 - Google Patents

繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品 Download PDF

Info

Publication number
WO2023176320A1
WO2023176320A1 PCT/JP2023/006004 JP2023006004W WO2023176320A1 WO 2023176320 A1 WO2023176320 A1 WO 2023176320A1 JP 2023006004 W JP2023006004 W JP 2023006004W WO 2023176320 A1 WO2023176320 A1 WO 2023176320A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite resin
fiber composite
resin molded
molded product
movable pin
Prior art date
Application number
PCT/JP2023/006004
Other languages
English (en)
French (fr)
Inventor
彰馬 西野
拓也 丹治
友紀 三田
Original Assignee
パナソニックホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックホールディングス株式会社 filed Critical パナソニックホールディングス株式会社
Publication of WO2023176320A1 publication Critical patent/WO2023176320A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/12Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat
    • B29C70/14Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of short length, e.g. in the form of a mat oriented

Definitions

  • the present invention relates to a method for manufacturing a fiber composite resin molded product and a fiber composite resin molded product.
  • patent No. 6545145 regarding cellulose fiber composite resin, and with the further acceleration of carbon neutrality and carbon offset in the future, we have obtained patent No. 6545145 regarding cellulose fiber composite resin, and with the acceleration of carbon neutrality and carbon offset in the future, we have obtained patent No. 6545145 for cellulose fiber composite resin developed in-house with a high concentration of cellulose fiber / high biomass We are proceeding with the development of new technology.
  • the present disclosure aims to provide a fiber composite resin molded product that can simultaneously achieve high flow, high quality, and high strength, and is environmentally friendly.
  • a fiber composite resin molded article according to the present disclosure is a fiber composite resin molded article containing a fiber composite resin, and is provided with The fiber orientation direction of the fibers in the plate thickness direction is different between the second region and the second region.
  • the method for manufacturing a fiber composite resin molded product provides a method for manufacturing a fiber composite resin molded product that can be operated independently and installed at any distance within the cavity from a gate that communicates the cavity defined between a cavity mold and a core mold with the outside.
  • fiber composite resin containing fibers is injected from the gate into the cavity, and when the movable pin is retracted, a desired amount of molten fiber composite resin has accumulated in the preliminary space, and the movable pin is removed.
  • the method includes a step of taking out a fiber composite resin molded product.
  • An apparatus for manufacturing a fiber composite resin molded product according to the present disclosure includes an injection mold including a cavity mold and a core mold, and a cavity defined between the cavity mold and the core mold that communicates with the outside. It has a movable pin installed in either the cavity mold or the core mold at an arbitrary distance within the cavity from the gate to which the mold is applied, and a control device that can independently operate the movable pin.
  • the fiber composite resin molded product according to the present disclosure it is possible to provide a material with a high fiber concentration and a high biomass content that is environmentally friendly to various shapes and products.
  • FIG. 3 is a schematic cross-sectional view showing a cross-sectional shape including the inflow direction of cellulose-based fiber composite resin in the molding process.
  • (a) is a schematic perspective view showing the appearance of a cellulose fiber composite resin molded product according to Example 1 of the first embodiment, and (b) is a cellulose fiber composite resin molded product according to Comparative Example 1.
  • FIG. 1 is a schematic perspective view showing the appearance of a cellulose fiber composite resin molded product according to Example 1 of the first embodiment
  • (b) is a cellulose fiber composite resin molded product according to Comparative Example 1.
  • FIG. Fiber orientation at a location subjected to partial compression molding using a movable pin of the cellulose fiber composite resin molded product according to Example 1 of Embodiment 1, and due to the movable pin of the cellulose fiber composite resin molded product according to Comparative Example 1
  • Table 1 shows fiber orientation in areas that did not undergo partial compression molding.
  • Table 2 shows the high fluidization effect and appropriate clearance depending on the presence or absence of partial compression molding at each cellulose fiber concentration contained in the cellulose fiber composite resin.
  • FIG. 2 is a schematic cross-sectional view showing a cross-sectional shape including the inflow direction of cellulose-based fiber composite resin in an injection molding process in which a part of the cellulose-based fiber composite resin is partially compression-molded.
  • (a) is a schematic perspective view showing the appearance of a cellulose fiber composite resin molded product according to Example 2 of Embodiment 3, and
  • (b) is a cellulose fiber composite resin molded product according to Comparative Example 2.
  • FIG. 7 is a schematic diagram schematically showing the positions and quantities of movable pins in the manufacturing apparatus for a cellulose-based fiber composite resin molded product according to the fourth embodiment.
  • the fiber composite resin molded product according to the first aspect is a fiber composite resin molded product containing a fiber composite resin, and includes an arbitrary first region in the fiber composite resin molded product and a second region separated from the first region.
  • the fiber orientation direction of the fibers in the plate thickness direction is different between the two.
  • the boundary between the first region and the second region of the fiber composite resin molded article has a width of 0.5 mm on the cavity surface and/or the core surface.
  • the first region of the fiber composite resin molded product is located inside the secant line, and is 90 ⁇ 20 degrees with respect to the compression direction of the movable pin.
  • the fibers may be oriented in a direction forming an angle.
  • the second region of the fiber composite resin molded article may be located outside the dividing line and have no fiber orientation and be random. good.
  • the cellulose fibers in the fiber composite resin have an aspect ratio of 3 or more and a fiber concentration of 10% by weight. % to 95% by weight.
  • the first region is located inside a closed system composed of secant lines existing in the fiber composite resin molded article.
  • the first region may have a higher concentration of cellulosic fibers per unit volume than the second region.
  • the first region is located inside a closed system composed of secant lines in the fiber composite resin molded article.
  • a boss or rib shape may be provided in the vicinity of the first region so as to be in contact with the dividing line.
  • the fiber composite resin molded article according to the eighth aspect is any one of the first to seventh aspects, and the fiber composite resin may be a cellulose-based fiber composite resin.
  • the method for manufacturing a fiber composite resin molded product according to the ninth aspect provides a method for manufacturing a fiber composite resin molded product, in which an independent A process of retracting the operable movable pin to provide a preliminary space for expanding the cavity, leaving the movable pin on standby in the retracted state, and clamping the cavity mold and the core mold; A process of injecting fiber composite resin containing fibers from the gate into the cavity with the mold clamped, and pouring the molten fiber composite resin into the preliminary space with the movable pin retracted, and injecting the fibers into the preliminary space.
  • a process in which a movable pin is advanced with a desired amount of composite resin accumulated to apply compressive force to the fiber composite resin accumulated in the preliminary space and extrude it into the cavity, and after the fiber composite resin has hardened, the cavity metal is The method includes a step of opening the mold and the core mold to take out the fiber composite resin molded product.
  • the area of the movable pin that contacts the fiber composite resin may be made lower in temperature than other cavity molds and core molds.
  • the area of the movable pin is larger than the area projected on a plane perpendicular to the compression direction of the preliminary space.
  • the projected area may be small.
  • the fiber composite resin may be a cellulose fiber composite resin.
  • a manufacturing apparatus for a fiber composite resin molded product according to a thirteenth aspect includes an injection molding mold including a cavity mold and a core mold, and a cavity defined between the cavity mold and the core mold and an external part. It has a movable pin installed in either the cavity mold or the core mold at an arbitrary distance within the cavity from the gate communicating with the mold, and a control device that can independently operate the movable pin.
  • the temperature of the movable pin does not need to be adjusted in the thirteenth aspect.
  • the movable pin has a mechanism that can adjust the temperature at a lower temperature than the other cavity mold or the core mold. It's okay.
  • the apparatus for manufacturing a fiber composite resin molded product according to the sixteenth aspect may further include a mechanism for holding the movable pin in a state in which it is moved to a predetermined position in any one of the thirteenth to fifteenth aspects. .
  • FIG. 2 is a schematic cross-sectional view showing a cross-sectional shape including the inflow direction of cellulose-based fiber composite resin 108 in an injection molding process that is compression-molded.
  • FIG. 2(a) is a schematic perspective view showing the appearance of the cellulose fiber composite resin molded product according to Example 1 of Embodiment 1
  • FIG. 2(b) is a schematic perspective view showing the appearance of the cellulose fiber composite resin molded product according to Comparative Example 1.
  • FIG. 2 is a schematic perspective view showing the appearance of a molded product.
  • FIG. 3(a) is a schematic cross-sectional view showing the movable pin and the surrounding preliminary space in the manufacturing apparatus for cellulosic fiber composite resin molded products according to the first embodiment
  • FIG. 3(b) is a schematic cross-sectional view showing the movable pin and the surrounding preliminary space.
  • FIG. 3 is an enlarged sectional view showing the relationship in an enlarged manner.
  • FIG. 4 shows the fiber orientation of the cellulose-based fiber composite resin molded product according to Example 2 of Embodiment 1 at a portion subjected to partial compression molding with a movable pin, and the cellulose-based fiber composite resin molded product according to Comparative Example 2. Table 1 shows the fiber orientation of the portions that were not subjected to partial compression molding using a movable pin.
  • the cavity mold 101 and the core mold 102 are clamped together with the movable pin 104 retracted to form a preliminary space 105.
  • the cavity mold 101 and the core mold 102 may be set to 60° C. using a temperature controller (not shown), for example.
  • the temperature of the movable pin 104 does not need to be controlled, for example.
  • the temperature of the tip end surface of the movable pin 104 which is confirmed after the molding is stabilized, is stable within the range of 53 to 55° C. in actual measurement, for example.
  • the movable pin 104 may be placed at a position 2 mm from the gate, for example, and may be operated using a hydraulic cylinder, for example, at a pressure of 10 MPa.
  • the position and number of the movable pins 104 and the size of the spare space 105 formed by retracting the movable pins 104 can be freely set as long as the arrangement does not pose a problem in terms of the mold structure, and are not particularly limited.
  • the molten cellulose fiber composite resin 108 flows into the product part (cavity) 103 through the sprue 106 and gate 107 due to the injection operation of the molding machine (not shown), and the preliminary space 105 is filled with melted cellulose fiber composite resin 108.
  • the cellulose-based fiber composite resin 108 is prepared by crushing pulp extracted from wood to a fiber average particle size of 50 ⁇ 10 ⁇ m and a fiber length of 200 ⁇ 10 ⁇ m or more, and then grinding the pulp into powder using a kneading machine. It is obtained by mixing it with the base material polypropylene and making it into a composite.
  • a cellulose fiber composite resin may be used in which 70 wt % of cellulose fiber is added to polypropylene as a base material (hereinafter, PP-cellulose fiber 70 wt %).
  • the type of cellulose fiber is not particularly limited, and any material from which cellulose fiber can be extracted may be used, such as softwood, hardwood, bamboo, etc.
  • the fibers are not particularly limited as long as they have an average aspect ratio of 3 or more, and the diameter can be freely selected within the range of the ⁇ m order to the nm order. If the average aspect ratio is 3 or more, fiber orientation is likely to occur due to secondary pressure during partial compression molding.
  • the cellulose fiber concentration may be in the range of 10% by weight to 95% by weight based on the base resin serving as the base material. Furthermore, for example, the concentration is preferably 40% by weight or more based on the base resin serving as the base material.
  • the cylinder temperature of the molding machine is set at 190° C. to melt the cellulose-based fiber composite resin.
  • the molten cellulose fiber composite resin 108 is preferably molded at a temperature of 180° C. or higher and 260° C. or lower in order to melt the polypropylene base material and prevent complete carbonization of the cellulose fibers. , preferably at a temperature in the range of 180°C to 230°C.
  • 230° C. which is the upper limit of the recommended molding temperature range, filling will be insufficient (as shown in FIG. 2(b) described later). Comparative example 1).
  • a predetermined amount of resin is flowed into the product section 103 while forming a preliminary space resin 109 filled with the molten cellulose fiber composite resin 108 in the preliminary space 105.
  • the amount of the molten cellulose-based fiber composite resin 108 injected into the product section 103 is preferably set in consideration of a predetermined amount of the resin 109 being discharged from the preliminary space 105.
  • the movable pin 104 is advanced against the resin 109 in the preliminary space, and the molten cellulose fiber composite resin 108 is extruded while applying a compressive force 110.
  • the movable pin 104 may be in a state of 55° C., which is, for example, 5° C. lower than other non-movable mold parts.
  • the movable pin 104 is not provided with any temperature control measures such as a temperature control circuit, and instead of having no temperature control, it is possible to make the movable pin 104 movable by controlling the temperature of other non-movable mold parts. A temperature difference is provided between the pin and other parts.
  • the temperature difference between the movable pin 104 and other non-movable mold parts is, for example, 5° C. or more and 90° C. or less.
  • the resin 109 in the preliminary space pushed by the moving movable pin 104 is pushed out of the preliminary space 105 and flows into the product section (cavity) 103.
  • FIG. 1(f) After cooling and solidifying the final molded product 111 made of the cellulose-based fiber composite resin 108, the cavity mold and the core mold are opened, and the final molded product 111 is taken out. 112 is removed to obtain a product 113 which is a cellulose fiber composite resin molded product.
  • a mark (bushing line) 114 from the tip of the movable pin 104 remains on the product 113, which is a cellulose fiber composite resin molded product.
  • the trace (bushing line) 114 has a polygonal shape, such as a circle or a square, depending on the shape of the tip of the movable pin 104, for example.
  • the cellulose fiber composite resin which is heated and melted at a lower temperature than before and injected, is temporarily applied to the preliminary space 105 created when the movable pin 104 buried at an arbitrary position in the mold is retracted.
  • compressive force can be applied to the resin in the preliminary space 105 and the resin can be pushed out to the product section.
  • secondary pressure is applied at a position closer to the flow end of the molded product than the gate, improving fluidity and applying sufficient pressure to the flow end of the molded product.
  • the shearing rate can be increased before fiber aggregation occurs due to hydrogen bonds specific to cellulosic fibers, and fluidity can be maintained.
  • FIG. 2(a) is a schematic perspective view showing the appearance of a cellulose fiber composite resin molded product according to Example 1 obtained by the method for manufacturing a cellulose fiber composite resin molded product according to Embodiment 1.
  • FIG. 2(b) shows the cellulose according to Comparative Example 1 obtained by a normal injection molding method that does not perform partial compression molding using a movable pin in the method for manufacturing a cellulose-based fiber composite resin molded article according to Embodiment 1.
  • FIG. 2 is a schematic perspective view showing the appearance of a fiber composite resin molded product.
  • the cellulose fiber composite resin molded product according to Comparative Example 1 shown in Figure 2(b) was molded at 230°C, which is the upper limit of the recommended molding temperature range, so even though the molded product had a browned appearance, it The resin does not reach the center and is interrupted near the middle, resulting in insufficient filling. As mentioned above, this is due to the decrease in fluidity, which is one of the problems during injection molding of cellulose-based fiber composite resin.
  • the cellulose-based fiber composite resin molded product according to Example 1 shown in FIG. 2(a) was molded at 210°C, and the browning of the molded product was reduced compared to FIG. 2(b).
  • the resin is filled up to the flow end.
  • the resin is filled up to the flow end.
  • the cellulose-based fiber composite resin molded article according to the first embodiment there is no need to use a special molding machine, complicated auxiliary equipment, or a material with a low biomass content that is harmful to the environment.
  • the apparatus for manufacturing a cellulose fiber composite resin molded product according to the first embodiment includes injection molds 101 and 102, a movable pin 104, and a control device (not shown) that can independently operate the movable pin 104.
  • the injection mold includes a cavity mold 101 and a core mold 102.
  • the movable pin 104 is attached to the cavity mold 101 or the core mold 102 at an arbitrary distance within the cavity 103 from a gate 107 that communicates the cavity 103 defined between the cavity mold 101 and the core mold 102 with the outside. installed in either.
  • the movable pin 104 does not need to be temperature-controlled.
  • the movable pin 104 may have a mechanism that can adjust the temperature at a lower temperature than other cavity molds 101 or core molds 102.
  • another cavity mold 101 or core mold 102 may be heated to a higher temperature than the movable pin using a temperature control circuit or the like. The method is not limited to the above, as long as the tip of the movable pin 104 can be made lower temperature than other non-movable mold parts.
  • the resin surface that comes into contact with the tip of the movable pin 104 is It cools faster than plastic surfaces that are in contact with other non-moving parts. This forms a thick skin layer (solidified layer) on the resin surface and suppresses sink marks due to resin contraction after compression. Furthermore, by applying an external force in a direction different from the flow direction, the orientation direction of the cellulose fibers in the cellulose fiber composite resin molded product can be partially controlled in an arbitrary direction, and the strength of the cellulose fiber composite resin molded product can be partially controlled. can be changed accordingly.
  • a mechanism for holding the movable pin 104 in a state in which it is moved to a predetermined position may be further provided.
  • FIG. 3(a) is a schematic cross-sectional view showing the movable pin 104 and the preliminary space 105 around it in the apparatus for manufacturing a cellulose-based fiber composite resin molded product according to the first embodiment.
  • FIG. 3(b) is an enlarged sectional view showing the clearance 302 between the movable pin 104 and the non-movable part 301 of the cavity mold or core mold in which the movable pin 104 is provided.
  • the clearance 302 is provided in accordance with the concentration of cellulose fibers to exhaust gas modified by cellulose fibers contained in the cellulose fiber composite resin.
  • the clearance 302 is set to, for example, 20 ⁇ m, and the configuration is such that gas is actively exhausted to the outside of the mold.
  • Common general-purpose resins have low viscosity, so although they have high moldability, there is a high risk of forming burrs even with clearances of about 5 ⁇ m or gas vents, but when cellulose fibers are added to increase the viscosity, burrs do not form.
  • FIG. 4 shows the fiber orientation of the cellulose-based fiber composite resin molded product according to Example 1 of Embodiment 1 at a portion subjected to partial compression molding with a movable pin, and the cellulose-based fiber composite resin molded product according to Comparative Example 1.
  • Table 1 shows the fiber orientation of the portions that were not subjected to partial compression molding using a movable pin.
  • the AA' cross section shows the cross section along the plate thickness direction (advance direction of the movable pin: compression direction) of the partially compression molded part, and when the left frame is not partially compressed ( Comparative Example 1) and the case with partial compression (Example 1) are shown in the right frame.
  • the SEM observation positions are two rectangular boxes (1) and (2), the location where the movable pin was pushed in in the case of partial compression (Example 1), and the location away from there.
  • the SEM images are SEM images taken at the above two SEM observation positions (1) and (2).
  • Fiber orientation indicates the orientation direction of fibers observed from each SEM image.
  • the fiber orientation schematic diagram is a schematic diagram showing the fiber orientation observed from the SEM image.
  • the shape of the cellulose fiber composite resin molded product was the shape of a dumbbell test piece described in the JIS standard, and the plate thickness was set to 1.3 mm for evaluation.
  • the cellulose fiber composite resin molded product, the manufacturing method and the manufacturing apparatus for the cellulose fiber composite resin molded product according to Embodiment 1 can be used to produce a cellulose fiber composite resin that has poor fluidity and is prone to various molding defects. , a cellulose-based fiber composite resin molded product having high fluidity, high quality, and high strength can be obtained.
  • Table 2 in FIG. 5 is a table showing the high fluidization effect and appropriate clearance depending on the presence or absence of partial compression molding at each cellulose fiber concentration contained in the cellulose fiber composite resin.
  • This high fluidization rate (%) is determined by assuming that the filling ratio of the product without partial compression is the weightless weight (g) of the product without partial compression, and the filling ratio of the product with partial compression is the weight of the product with partial compression molding.
  • the weight (g) is calculated using the following formula.
  • High fluidization rate (%) (Partial compression molded weight (g) / Partial compression molded non-weight (g)) x 100
  • the clearance is determined by assuming that the filling ratio of the product without partial compression is the weightless weight (g) of the product without partial compression, and the filling ratio of the product with partial compression is the weight of the product with partial compression molding.
  • the weight (g) is calculated using the following formula.
  • High fluidization rate (%) (Partial compression molded weight (g) / Partial compression molded non-weight (g)) x 100
  • the clearance As the cellulose fiber concentration increases, the amount of gas caused by cellulose also increases, so the clearance is also increased for gas exhaust. For example, when the
  • FIGS. 6(a) to 6(f) show that in the method for manufacturing a cellulose-based fiber composite resin molded product according to the third embodiment, when the bottom surface of the preliminary space is larger than the tip surface of the movable pin, the movable pin is used.
  • FIG. 2 is a schematic cross-sectional view showing a cross-sectional shape including the inflow direction of cellulose-based fiber composite resin in an injection molding process in which a part of the preliminary space is partially compression-molded.
  • FIG. 7(a) is a schematic perspective view showing the appearance of the cellulose fiber composite resin molded product according to Example 2 of Embodiment 3, and FIG.
  • FIG. 7(b) is a schematic perspective view showing the appearance of the cellulose fiber composite resin molded product according to Comparative Example 2.
  • FIG. 2 is a schematic perspective view showing the appearance of a molded product.
  • FIG. 8 shows the fiber orientation of the part (2) of the cellulose fiber composite resin molded product according to Example 2 of Embodiment 3, which underwent partial compression molding with a movable pin, and the cellulose fiber composite resin molded product according to Comparative Example 2.
  • Table 3 shows the fiber orientation of a portion (2) of the resin molded product that was not subjected to partial compression molding using a movable pin.
  • FIG. 9 is a schematic diagram showing the remaining shape (non-extruded portion) of the resin in the preliminary space when the movable pin is set to be small in various shapes with respect to the bottom surface of the preliminary space in the third embodiment.
  • the cavity mold 401 and the core mold 402 are clamped together with the movable pin 104 retracted to form a preliminary space 405.
  • the cavity mold 401 and the core mold 402 may be set at 60° C. using a temperature controller (not shown), for example.
  • the temperature of the movable pin 104 does not need to be controlled, for example.
  • the temperature of the tip end surface of the movable pin 104 which is confirmed after the molding is stabilized, is stable within the range of 53 to 55° C. in actual measurement, for example.
  • the movable pin 104 may be placed at a position 2 mm from the gate, for example, and may be operated using a hydraulic cylinder, for example, at a pressure of 10 MPa.
  • the molten cellulose fiber composite resin 108 flows into the product part (cavity) 403 through the sprue 106 and gate 107 due to the injection operation of the molding machine (not shown), and the preliminary space 404 is filled with melted cellulose fiber composite resin 108.
  • the cellulose-based fiber composite resin 108 is prepared by crushing pulp extracted from wood to a fiber average particle size of 50 ⁇ 10 ⁇ m and a fiber length of 200 ⁇ 10 ⁇ m or more, and then grinding the pulp into powder using a kneading machine. It is obtained by mixing it with the base material polypropylene and making it into a composite.
  • a cellulose fiber composite resin may be used in which 70 wt % of cellulose fiber is added to polypropylene as a base material (hereinafter, PP-cellulose fiber 70 wt %).
  • the cylinder temperature of the molding machine is set to 190° C. to melt the cellulose fiber composite resin.
  • a predetermined amount of resin is flowed into the product section 403 while forming a preliminary space resin 406 filled with the molten cellulose fiber composite resin 108 in the preliminary space 404.
  • the movable pin 104 is advanced with respect to the resin 406 in the preliminary space, and the molten cellulose-based fiber composite resin 108 is extruded while applying a compressive force 110.
  • the bottom surface 405 of the preliminary space 404 is larger than the tip end surface of the movable pin 104, and moves while forming a non-extruded portion 407 that is not extruded even if the movable pin 104 moves forward.
  • FIG. 7A is a schematic perspective view showing the appearance of a cellulose fiber composite resin molded product according to Example 2 of Embodiment 3.
  • FIG. 7(b) is a schematic perspective view showing the appearance of a cellulose-based fiber composite resin molded product according to Comparative Example 2.
  • the cellulose-based fiber composite resin molded product according to Comparative Example 2 shown in Figure 7(b) was molded at 230°C, which is the upper limit of the recommended molding temperature range, so even though the molded product had a browned appearance, it reached the end. The resin does not reach the center and is interrupted near the middle, resulting in insufficient filling.
  • FIG. 8 shows the fiber orientation of the part (2) of the cellulose fiber composite resin molded product according to Example 2 of Embodiment 3, which underwent partial compression molding with a movable pin, and the cellulose fiber composite resin molded product according to Comparative Example 2.
  • Table 3 shows the fiber orientation of a portion (2) of the resin molded product that was not subjected to partial compression molding using a movable pin.
  • the AA' cross section shows the cross section along the plate thickness direction (advance direction of the movable pin: compression direction) of the partial compression molded part, and when there is no partial compression in the left frame ( Comparative Example 2) and the case with partial compression (Example 2) are shown in the right frame.
  • Example 2 differs from Example 2 in that the movable pin is advanced from the beginning.
  • the SEM observation position is the location of the non-extruded portion 407 that is not pushed out even when the movable pin is pushed in with partial compression (Example 2), and the intersection of the extension line of the non-extruded portion 407 and the product portion 403. These are the two rectangular boxes (1) and (2).
  • the SEM images are SEM images taken at the above two SEM observation positions (1) and (2).
  • Fiber orientation indicates the orientation direction of fibers observed from each SEM image.
  • the fiber orientation schematic diagram is a schematic diagram showing the fiber orientation observed from the SEM image.
  • the shape of the cellulose fiber composite resin molded product was the shape of a dumbbell test piece described in the JIS standard, and the plate thickness was set to 1.3 mm for evaluation.
  • the orientation direction of the fibers is different at each position, and on the surface where the movable pin slides (the surface where the boss is formed), the direction of compression of the movable pin is While the fibers are oriented in a substantially horizontal direction (in the range of 0 ⁇ 20 degrees), on the main surface where the boss shape is in contact, the resin flow from the boss part due to the movement of the movable pin causes the fibers to be oriented in the right direction. It was confirmed that the fibers were oriented obliquely upward (45 ⁇ 20 degrees with respect to the compression direction of the movable pin).
  • the strength is improved in the oriented direction.
  • the fibers are oriented in the longitudinal direction of the boss shape, and the strength of the boss part is increased. Strength can be improved in tension and compression.
  • FIGS. 9A to 9F are diagrams showing various remaining shapes of the non-extruded portion 407, such as a perfect circular remaining shape 601, an elliptical remaining shape 602, a rectangular remaining shape 603, and an L-shaped remaining shape. 604, a T-shaped residual shape 605, and a cross-shaped residual shape 606, respectively.
  • the remaining shape of the non-extruded portion 407 may be called, for example, a boss, a rib, or the like.
  • the remaining shape 410 can be designed into any shape by changing the shape and size of the movable pin, and bosses and ribs can be added.
  • the manufacturing method and the manufacturing apparatus for the cellulose fiber composite resin molded product according to Embodiment 3 the range compressed by the movable pin in the preliminary space is perpendicular to the compression direction of the preliminary space. By making it smaller than the cross-sectional area, a non-extruded portion that is not pushed out by the movable pin can be provided. Thereby, an arbitrary protrusion shape (boss or rib) can be formed as a residual shape based on the non-extruded portion.
  • FIG. 10 is a schematic diagram schematically showing the positions and numbers of movable pins in the manufacturing apparatus for a cellulose-based fiber composite resin molded product according to the fourth embodiment.
  • FIG. 10(a) shows a pattern in which the movable pin 104 is arranged on the cavity mold 101 side
  • FIG. 10(b) shows a pattern in which the movable pin 104 is arranged coaxially in both the cavity mold 101 and the core mold 102.
  • 10(c) is a pattern in which a plurality of movable pins 104 are arranged on the same side
  • FIG. 10(a) shows a pattern in which the movable pin 104 is arranged on the cavity mold 101 side
  • FIG. 10(b) shows a pattern in which the movable pin 104 is arranged coaxially in both the cavity mold 101 and the core mold 102.
  • 10(c) is a pattern in which a plurality of movable pins 104 are arranged on the same side
  • FIG. 10(d) is a pattern in which movable pins 104 are arranged in the cavity mold 101 and the core mold 102 with their axes shifted. This shows the pattern.
  • the position and number of the movable pins 104 are not particularly limited as long as they can be placed at positions that can be placed on the mold structure.
  • the molded product is difficult to mold without using expensive molding equipment. Applicable to biomass materials. Therefore, it can be replaced with talc composite resin, glass fiber composite resin, etc., which are generally employed as filler-reinforced resins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

高流動、高品位、高強度を同時に実現でき、環境に配慮した、繊維複合樹脂成形品を提供する。繊維複合樹脂成形品は、繊維複合樹脂を含む繊維複合樹脂成形品であって、繊維複合樹脂成形品中の任意の第一領域と第一領域から離れた第二領域とにおいて、板厚方向における繊維の繊維配向方向が異なる。

Description

繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品
 本発明は、繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品に関する。
 近年のカーボンニュートラルやカーボンオフセットに代表されるように環境に配慮した樹脂素材の開発・適用が盛んに進められている。本出願人においてもセルロース系繊維複合樹脂に関する特許第6545145号を得ており、今後の更なるカーボンニュートラル・カーボンオフセットの加速に伴い、自社開発セルロース系繊維複合樹脂のセルロース繊維高濃度化/高バイオマス化の開発を進めている。
 一方で、上記開発の中で下記に記載の種々の問題点が生じている。
(1)流動性の低下
 セルロース系繊維の直径を数ナノメートルから数十マイクロメートルに解繊することにより複合一体化後に樹脂と接触する繊維表面積が増加し、流動性が低下する。また、セルロース系繊維特有の水素結合により、流動時のせん断速度低下による繊維凝集で更に流動抵抗が増加する。
(2)せん断発熱による褐色化
 セルロース系繊維濃度が増加することにより比例的に樹脂粘度が増加する。そのため、圧力損失が生じるタイミングでせん断発熱が発生し、木質由来のセルロース系繊維が変性し茶褐色に変色する、または、暗色化することで、着色品の色調ムラや色調ズレが生じる。
(3)部分的な低密度化による強度低下
 上記(1)の流動性の低下及び上記(2)の褐色化回避により樹脂温度を低温に設定する必要があり、流動末端や薄肉部、ボスやリブ等で十分な圧力が付加されず、密度ムラや密度・強度低下が生じる。
特許第6545145号公報
 上記3件の問題点に対し、(I)流動性向上、(II)せん断発熱による褐色化抑制、(III)流動末端圧力向上、の3つをセルロース系繊維複合樹脂射出成形時の課題と設定し解決を図る。
 本開示は、高流動、高品位、高強度を同時に実現でき、環境に配慮した、繊維複合樹脂成形品を提供することを目的とする。
 上記目的を達成するために、本開示に係る繊維複合樹脂成形品は、繊維複合樹脂を含む繊維複合樹脂成形品であって、繊維複合樹脂成形品中の任意の第一領域と第一領域から離れた第二領域とにおいて、板厚方向における繊維の繊維配向方向が異なる。
 本開示に係る繊維複合樹脂成形品の製造方法は、キャビティ金型とコア金型との間に画成するキャビティと外部とを連通するゲートからキャビティ内の任意の距離に設置された独立操作可能な可動ピンを後退させてキャビティを拡張させる予備空間を設け、可動ピンを後退させた状態で待機させて、キャビティ金型とコア金型とを型締めする工程と、キャビティ金型とコア金型とを型締めした状態で、ゲートからキャビティ内に繊維を含む繊維複合樹脂を射出し、可動ピンを後退させた状態の予備空間へ溶融した繊維複合樹脂が任意の量だけ溜まった状態で可動ピンを前進させて、予備空間内に溜まった繊維複合樹脂に圧縮力を加えてキャビティ内に押し出す工程と、繊維複合樹脂が硬化した後、キャビティ金型と前記コア金型とを型開きして、繊維複合樹脂成形品を取り出す工程と、を含む。
 本開示に係る繊維複合樹脂成形品の製造装置は、キャビティ金型とコア金型とを含む射出成形金型と、キャビティ金型とコア金型との間に画成するキャビティと外部とを連通するゲートからキャビティ内の任意の距離に、キャビティ金型又はコア金型のいずれかに設置された可動ピンと、可動ピンを独立操作可能な制御装置と、を有する。
 以上のように、本開示に係る繊維複合樹脂成形品によれば、繊維濃度が高く、地球環境に配慮した高バイオマス度な素材を様々な形状・製品に提供することが可能になる。
(a)乃至(f)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法において、可動ピンを用いて予備空間の軸方向についての断面積の全面を部分圧縮成形した射出成形プロセスのセルロース系繊維複合樹脂の流入方向を含む断面形状を示す概略断面図である。 (a)は、本実施の形態1の実施例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図であり、(b)は、比較例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。 (a)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造装置における可動ピンとその周囲の予備空間とを示す概略断面図であり、(b)は、可動ピンとクリアランスとの関係を拡大して示す拡大断面図である。 本実施の形態1の実施例1に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所の繊維配向と、比較例1に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所の繊維配向を示す表1である。 セルロース系繊維複合樹脂に含まれる各セルロース系繊維濃度における部分圧縮成形有無による高流動化効果及び適切なクリアランスを示す表2である。 (a)乃至(f)は、本実施の形態3に係るセルロース系繊維複合樹脂成形品の製造方法において、予備空間の底面が可動ピンの先端面より大きい場合に、可動ピンを用いて予備空間の一部を部分圧縮成形した射出成形プロセスのセルロース系繊維複合樹脂の流入方向を含む断面形状を示す概略断面図である。 (a)は、本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図であり、(b)は、比較例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。 本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所の繊維配向と、比較例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所の繊維配向を示す表3である。 (a)乃至(f)は、本実施の形態3における予備空間の底面に対し可動ピンを様々な形状で小さく設定した場合の予備空間内樹脂の残形状を示す概略図である。 本実施の形態4に係るセルロース系繊維複合樹脂成形品の製造装置における可動ピンの位置や数量を模式的に示す概略図である。
 第1の態様に係る繊維複合樹脂成形品は、繊維複合樹脂を含む繊維複合樹脂成形品であって、繊維複合樹脂成形品の中の任意の第一領域と第一領域から離れた第二領域とにおいて、板厚方向における繊維の繊維配向方向が異なる。
 第2の態様に係る繊維複合樹脂成形品は、上記第1の態様において、繊維複合樹脂成形品の第一領域と第二領域との境界には、キャビティ面及び/又はコア面に幅0.1mm以下の割線(ブッシングライン)で構成された閉じた系が存在してもよい。
 第3の態様に係る繊維複合樹脂成形品は、上記第2の態様において、繊維複合樹脂成形品の第一領域は、割線の内側に位置し、可動ピンの圧縮方向に対し(90±20度)の角度をなす方向に繊維配向していてもよい。
 第4の態様に係る繊維複合樹脂成形品は、上記第2又は第3の態様において、繊維複合樹脂成形品の第二領域は、割線の外側に位置し、繊維配向がなくランダムであってもよい。
 第5の態様に係る繊維複合樹脂成形品は、上記第1から第4のいずれかの態様において、繊維複合樹脂の中のセルロース系繊維は、アスペクト比が3以上、且つ、繊維濃度が10重量%から95重量%の範囲で含有されていてもよい。
 第6の態様に係る繊維複合樹脂成形品は、上記第2から第4のいずれかの態様において、第一領域は、繊維複合樹脂成形品に存在する割線で構成された閉じた系の内側に存在し、第一領域は、第二領域に比べて単位体積あたりのセルロース系繊維濃度が高くてもよい。
 第7の態様に係る繊維複合樹脂成形品は、上記第2から第4のいずれかの態様において、第一領域は、繊維複合樹脂成形品の中の割線で構成された閉じた系の内側に存在し、第一領域の近傍には、割線に接するようにボス又はリブの形状が設けられていてもよい。
 第8の態様に係る繊維複合樹脂成形品は、上記第1から第7のいずれかの態様であって、繊維複合樹脂は、セルロース系繊維複合樹脂であってもよい。
 第9の態様に係る繊維複合樹脂成形品の製造方法は、キャビティ金型とコア金型との間に画成するキャビティと外部とを連通するゲートからキャビティ内の任意の距離に設置された独立操作可能な可動ピンを後退させてキャビティを拡張する予備空間を設け、可動ピンを後退させた状態で待機させて、キャビティ金型とコア金型とを型締めする工程と、キャビティ金型とコア金型とを型締めした状態で、ゲートからキャビティ内に繊維を含む繊維複合樹脂を射出し、可動ピンを後退させた状態の予備空間へ溶融した繊維複合樹脂を流し込む工程と、予備空間に繊維複合樹脂が任意の量だけ溜まった状態で可動ピンを前進させて、予備空間内に溜まった繊維複合樹脂に圧縮力を加えてキャビティ内に押し出す工程と、繊維複合樹脂が硬化した後、キャビティ金型とコア金型とを型開きして、繊維複合樹脂成形品を取り出す工程と、を含む。
 第10の態様に係る繊維複合樹脂成形品の製造方法は、上記第9の態様において、可動ピンの繊維複合樹脂と接触する領域を他のキャビティ金型及びコア金型よりも低温にしてもよい。
 第11の態様に係る繊維複合樹脂成形品の製造方法は、上記第9又は第10の態様において、予備空間において、前記予備空間の圧縮方向に垂直な面に投影した面積よりも前記可動ピンの投影面積が小さくてもよい。
 第12の態様に係る繊維複合樹脂成形品の製造方法は、上記第9から第11のいずれかの態様において、繊維複合樹脂は、セルロース系繊維複合樹脂であってもよい。
 第13の態様に係る繊維複合樹脂成形品の製造装置は、キャビティ金型とコア金型とを含む射出成形金型と、キャビティ金型とコア金型との間に画成するキャビティと外部とを連通するゲートからキャビティ内の任意の距離に、キャビティ金型又はコア金型のいずれかに設置された可動ピンと、可動ピンを独立操作可能な制御装置と、を有する。
 第14の態様に係る繊維複合樹脂成形品の製造装置は、上記第13の態様において、可動ピンは、温度調整していなくてもよい。
 第15の態様に係る繊維複合樹脂成形品の製造装置は、上記第13の態様において、可動ピンは、他の前記キャビティ金型又は前記コア金型よりも低温で温度調整可能な機構を有してもよい。
 第16の態様に係る繊維複合樹脂成形品の製造装置は、上記第13から第15のいずれかの態様において、可動ピンを所定の位置まで可動させた状態で保持する機構をさらに備えてもよい。
 以下、本開示の実施の形態に係る繊維複合樹脂成形品の製造方法、製造装置、及び、繊維複合樹脂成形品について、図面を参照しながら説明する。
(実施の形態1)
 図1(a)乃至(f)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法において、可動ピン104を用いて予備空間105の軸方向についての断面積の全面を部分圧縮成形した射出成形プロセスのセルロース系繊維複合樹脂108の流入方向を含む断面形状を示す概略断面図である。図2(a)は、本実施の形態1の実施例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図であり、(b)は、比較例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。図3(a)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造装置における可動ピンと周囲の予備空間とを示す概略断面図であり、(b)は、可動ピンとクリアランスとの関係を拡大して示す拡大断面図である。図4は、本実施の形態1の実施例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所の繊維配向と、比較例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所の繊維配向を示す表1である。
<セルロース系繊維複合樹脂成形品の製造方法>
 図1(a)乃至(f)を用いて、実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法を説明する。
(1)図1(a)において、可動ピン104を後退させて予備空間105を形成した状態でキャビティ金型101とコア金型102とを型締めする。
 キャビティ金型101及びコア金型102は、例えば、温調器(図示略)によって60℃に設定してもよい。また、可動ピン104は、例えば、温調しなくてもよい。温調しない場合、成形安定後に確認した可動ピン104の先端面温度は、例えば、実測で53~55℃の範囲で安定している。また、可動ピン104は、例えば、ゲートから2mmの位置に配置し、油圧シリンダを用いて動作させてもよく、例えば、圧力10MPaで可動させてもよい。
 また、可動ピン104の位置や数量及び可動ピン104を後退させて構成する予備空間105の大きさは、金型構造上配置が問題にならなければ自由に設定でき、特に限定されない。
(2)図1(b)において、成形機(図示せず)の射出動作によりスプルー106及びゲート107を通って製品部(キャビティ)103に溶融したセルロース系繊維複合樹脂108が流入し、予備空間105が溶融したセルロース系繊維複合樹脂108で満たされていく。
 なお、セルロース系繊維複合樹脂108としては、木材から抽出されたパルプを繊維平均粒径50±10μm、繊維長さ200±10μm以上になるよう事前に粉砕し、粉末状になったパルプを混練機で母材となるポリプロピレンと混ぜ合わせて複合一体化させて得ている。例えば、セルロース系繊維が母材となるポリプロピレンに対し、70wt%添加(以下、PP-セルロースファイバー70wt%)されたセルロース系繊維複合樹脂を用いてもよい。
 セルロース系繊維の種類は特に限定されず、針葉樹、広葉樹、竹等、セルロース繊維が抽出できる素材であればよい。さらに、繊維は、平均アスペクト比が3以上であればよく、直径がμmオーダーからnmオーダーの範囲で自由に選定でき、特に限定されない。平均アスペクト比が3以上であれば、部分圧縮成形時の二次圧力で繊維配向を生じやすくなる。また、セルロース系繊維濃度は、母材となるベース樹脂に対して10重量%から95重量%の範囲で含有していればよい。さらに、例えば、母材となるベース樹脂に対して40重量%以上が高濃度であって、好ましい。
 本実施の形態1では、例えば、成形機のシリンダ温度を190℃に設定し、セルロース系繊維複合樹脂を溶融させている。一般的に、溶融したセルロース系繊維複合樹脂108は、母材であるポリプロピレンを溶融し、且つ、セルロース系繊維の完全な炭化を防ぐため、180℃以上260℃以下の範囲で成形するのがよく、好ましくは180℃から230℃の範囲で成形するのがよい。
 なお、本実施の形態1に係る成形方法を用いない通常の射出成形の場合は、推奨成形温度範囲上限である230℃で成形しても充填不足となる(後述する図2(b)に示す比較例1)。
(3)図1(c)において、予備空間105が溶融したセルロース系繊維複合樹脂108で満たされた予備空間内樹脂109を形成しながら、所定量の樹脂が製品部103に流入される。
 この場合、製品部103内に射出される溶融したセルロース系繊維複合樹脂108は、予備空間105から予備空間内樹脂109が所定量放出されることを考慮した量に設定するのが好ましい。
(4)図1(d)において、予備空間内樹脂109に対し、可動ピン104を前進させ、圧縮力110を加えながら溶融したセルロース系繊維複合樹脂108を押出す。このとき、可動ピン104は、非可動の他の金型部品に比べ、例えば、5℃温度が低い55℃の状態であってもよい。本実施の形態1では、可動ピン104には温調回路等の温度制御可能な施策は講じず、無温調とする代わりに、非可動の他の金型部品を温調することで、可動ピンとそれ以外の部品との間に温度差を設けている。可動ピン104と非可動の他の金型部品(キャビティ金型101、コア金型102)との温度差は、例えば、5℃以上90℃以下である。
 この場合、前進する可動ピン104に押された予備空間内樹脂109は、予備空間105から押し出されて製品部(キャビティ)103に流入する。
(5)図1(e)において、可動ピン104を所定の位置まで前進させることで、予備空間内樹脂109を予備空間105から押出し、溶融したセルロース系繊維複合樹脂108を流動末端まで充填させ、最終成形品111を得る。この場合、予備空間105は、ゲートよりも流動末端に近く、可動ピン104により予備空間内樹脂109を押し出すことによって、セルロース系繊維複合樹脂108の流動性を向上させることができ、流動末端まで充填させることができる。
(6)図1(f)において、セルロース系繊維複合樹脂108で構成される最終成形品111の冷却固化後、キャビティ金型及びコア金型を型開きして、取り出した最終成形品111からランナー112を除去し、セルロース系繊維複合樹脂成形品である製品113を得る。
 なお、セルロース系繊維複合樹脂成形品である製品113には、可動ピン104の先端の跡(ブッシングライン)114が残る。跡(ブッシングライン)114は、例えば、可動ピン104の先端の形状に応じて、円形、四角形等の多角形を呈する。
 以上の工程によって、金型内の任意の位置に埋設した可動ピン104が後退した状態で生じる予備空間105に、従来よりも低い温度で加熱・溶融され射出されたセルロース系繊維複合樹脂を一時的に溜め、可動ピン104を前進させることで予備空間105内の樹脂に圧縮力を加えて製品部に押し出すことができる。これにより、ゲートよりも成形品流動末端に近い位置で二次圧力を加え、流動性を向上させるとともに成形品の流動末端まで十分な圧力を付加する。この場合、二次圧力の付加によって、セルロース系繊維特有の水素結合による繊維凝集が生じる前にせん断速度を上げることができ、流動性を維持できる。そこで、可動ピンによる部分的な圧縮力の付加によるセルロース系繊維複合樹脂の高流動化を実現でき、流動末端まで充填できる。また、セルロース系繊維複合樹脂を用いることにより、繊維配向による強度分布設計による高強度化を実現することができる。
 また、実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法によれば、従来、充填不良が発生するような長尺、薄厚等の難成形形状でも、充填性・強度・外観に不具合のない良品を得ることができる。
<セルロース系繊維複合樹脂成形品>
 図2(a)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法で得られた実施例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。また、図2(b)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造方法における可動ピンによる部分圧縮成形を行わない通常の射出成形方法で得た比較例1に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。
 図2(b)に示す比較例1に係るセルロース系繊維複合樹脂成形品は、推奨成形温度範囲上限である230℃で成形したため、成形品の外観が褐色化しているにも関わらず、末端まで樹脂が届かず、中間付近で途切れており、充填不足が生じている。これは、上述のように、セルロース系繊維複合樹脂の射出成形時の課題の一つの流動性の低下に起因するものである。
 これに対し、図2(a)に示す実施例1に係るセルロース系繊維複合樹脂成形品は、210℃で成形しており、成形品の褐色化が図2(b)よりも低減できており、且つ、可動ピンによる部分圧縮成形の効果により流動末端まで樹脂が充填している。
 また、本実施の形態1に係るセルロース系繊維複合樹脂成形品によれば、特殊な成形機や煩雑な付帯設備、また、バイオマス度が低く環境に悪影響な素材を使用する必要がない。
<セルロース系繊維複合樹脂成形品の製造装置>
 実施の形態1に係るセルロース系繊維複合樹脂成形品の製造装置は、射出成形金型101、102と、可動ピン104と、可動ピン104を独立操作可能な制御装置(図示せず)と、を有する。射出成形金型は、キャビティ金型101とコア金型102とを含む。可動ピン104は、キャビティ金型101とコア金型102との間に画成するキャビティ103と外部とを連通するゲート107からキャビティ103内の任意の距離に、キャビティ金型101又はコア金型102のいずれかに設置されている。
 可動ピン104は、温度調整していなくてもよい。あるいは、可動ピン104は、他のキャビティ金型101又はコア金型102よりも低温で温度調整可能な機構を有してもよい。あるいは、他のキャビティ金型101又はコア金型102を温調回路等で可動ピンよりも高温にしてもよい。可動ピン104の先端を他の非可動金型部品よりも低温にできればよく、その手法は上記に限定されない。
 可動ピン104の先端(樹脂と接する面)を非可動の他の金型部品よりも低温(5℃以上90℃以下)に保持しておくことで、可動ピン104の先端に接触する樹脂表面が他の非可動部品に接触している樹脂表面よりも早く冷却される。これによって、樹脂表面に厚いスキン層(固化層)を形成し、圧縮後の樹脂収縮によるヒケを抑制する。更に、流動方向と異なる方向で外力が加わることでセルロース系繊維複合樹脂成形品中のセルロース系繊維の配向方向を部分的に任意の方向に制御し、セルロース系繊維複合樹脂成形品の強度を部分的に変えることができる。
 さらに、可動ピン104を所定の位置まで可動させた状態で保持する機構をさらに備えてもよい。
 図3(a)は、本実施の形態1に係るセルロース系繊維複合樹脂成形品の製造装置における可動ピン104とその周囲の予備空間105とを示す概略断面図である。図3(b)は、可動ピン104と可動ピン104が設けられたキャビティ金型又はコア金型の非可動部品301との間のクリアランス302を示す拡大断面図である。
 クリアランス302は、セルロース系繊維複合樹脂に含まれるセルロース系繊維が変性したガス排気のためにセルロース系繊維の濃度に応じて設けられている。
 まず、木質由来であるセルロースの特徴から、加熱時にセルロースが変性したガスが通常の汎用樹脂に比べて多く発生することが知られており、流動末端でガス焼けや充填不足を引き起こす要因となっている。
 本実施の形態1では、クリアランス302を、例えば、20μmに設定し、金型外へのガス排気を積極的に行う構成とした。一般的な汎用樹脂では粘性が低いため、成形性は高いものの5μm程度のクリアランスやガスベントでもバリを生じるリスクが高いものの、セルロース系繊維を添加し増粘した状態では、バリが生じない。
 図4は、本実施の形態1の実施例1に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所の繊維配向と、比較例1に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所の繊維配向を示す表1である。
 図4の表1において、A-A’断面は、部分圧縮成形部の板厚方向(可動ピンの前進方向:圧縮方向)に沿った断面を示しており、左枠に部分圧縮なしの場合(比較例1)、右枠に部分圧縮ありの場合(実施例1)をそれぞれ示している。SEM観察位置は、部分圧縮ありの場合(実施例1)の可動ピンを押し込んだ箇所と、そこから離れた箇所との2箇所の四角囲み(1)及び(2)である。SEM画像は、上記2箇所(1)及び(2)のSEM観察位置でのSEM画像である。繊維配向は、それぞれのSEM画像から観察された繊維の配向方向を示すものである。繊維配向概略図は、SEM画像から観察された繊維の配向を模式図で示したものである。
 なお、セルロース系繊維複合樹脂成形品の形状は、JIS規格記載のダンベル試験片形状とし、板厚は1.3mmに設定して、評価した。
 図4の表1に示すように、部分圧縮成形ありの場合(実施例1)において、可動ピンの圧縮範囲とそれ以外の範囲とで繊維(セルロース系繊維)の状態に差が生じている。まず、可動ピンの圧縮範囲外(可動ピン先端面積外)では、部分圧縮成形なしの場合(比較例1)と同様に、繊維に配向は見られず、ランダム(様々な方向)に繊維が存在している。
 一方、可動ピンの圧縮範囲内(可動ピン先端面積内)では、圧縮の影響で繊維が可動ピンの圧縮方向に垂直な方向で配向しており、90±20度の範囲(ほぼ水平方向)に配向していた。これは、ゲートからの樹脂の流動方向と異なる方向に可動ピンからの圧縮力が加わることで繊維の配向方向を制御できたものと思われる。
 なお、繊維を配向させることにより、配向した方向に強度が向上することが知られており、流動性の向上や褐色化抑制以外に、強度向上効果も確認できた。つまり、可動ピンによる圧縮力によって、部分的に強度の強い方向を変えることができる。
 上記の通り、実施の形態1に係るセルロース系繊維複合樹脂成形品、セルロース系繊維複合樹脂成形品の製造方法及び製造装置によって、流動性が悪く種々の成形不良を生じやすいセルロース系繊維複合樹脂において、高流動・高品位・高強度を有するセルロース系繊維複合樹脂成形品を得ることができる。
(実施の形態2)
 本実施の形態2では、セルロース系繊維複合樹脂に含まれる各セルロース系繊維濃度における部分圧縮成形の有無における流動性の向上効果の確認及び設定した可動ピン104と非可動部品301とで構成されるクリアランス302の適切な設定量について評価している。
 図5の表2は、セルロース系繊維複合樹脂に含まれる各セルロース系繊維濃度における部分圧縮成形有無による高流動化効果及び適切なクリアランスを示す表である。
 図5の表2の(1)及び(2)は、比較的セルロース系繊維濃度の低い領域であるため、部分圧縮成形の有無に依らず100%充填している。一方、セルロース系繊維濃度が40wt%以上である(3)、(4)、(5)、(6)においては、部分圧縮成形無し(通常射出成形)では製品部(キャビティ)充填割合が100%を下回っており、充填不足が生じている。これに対し、部分圧縮成形あり(実施の形態2)の場合には、流動末端まで100%充填している。また、セルロース系繊維濃度が増加するにつれて高流動化効果が向上している。
 なお、高流動化効果は、図5の表2において「高流動化率(%)」として表示している。この高流動化率(%)は、同じセルロース系繊維濃度の場合の部分圧縮無しの製品部充填割合を部分圧縮成形無重量(g)とし、部分圧縮ありの製品部充填割合を部分圧縮成形有重量(g)とし、下記式で算出している。
高流動化率(%)=(部分圧縮成形有重量(g)/部分圧縮成形無重量(g))×100
 また、クリアランスについては、セルロース系繊維濃度が増加するとともに、セルロースに起因するガスも増えるので、ガス排気のためにクリアランスも増加させている。例えば、セルロース系繊維濃度が55wt%の場合にはクリアランスは20mmであるが、セルロース系繊維濃度が85wt%の場合にはクリアランスは30mmとしている。これにより、適切なガス排気ができておりガス焼けや流動末端での充填不足も発生しなかった。また、クリアランスが増加したことによるバリの発生もなかった。
(実施の形態3)
 図6(a)乃至(f)は、本実施の形態3に係るセルロース系繊維複合樹脂成形品の製造方法において、予備空間の底面が可動ピンの先端面より大きい場合に、可動ピンを用いて予備空間の一部を部分圧縮成形した射出成形プロセスのセルロース系繊維複合樹脂の流入方向を含む断面形状を示す概略断面図である。図7(a)は、本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図であり、(b)は、比較例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。図8は、本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所(2)の繊維配向と、比較例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所(2)の繊維配向を示す表3である。図9は、本実施の形態3における予備空間の底面に対し可動ピンを様々な形状で小さく設定した場合の予備空間内樹脂の残形状(非押出部)を示す概略図である。
<セルロース系繊維複合樹脂成形品の製造方法>
 図6(a)乃至(f)を用いて、実施の形態3に係るセルロース系繊維複合樹脂成形品の製造方法を説明する。
(1)図6(a)において、可動ピン104を後退させて予備空間405を形成した状態でキャビティ金型401とコア金型402とを型締めする。
 キャビティ金型401及びコア金型402は、例えば、温調器(図示略)によって60℃に設定してもよい。また、可動ピン104は、例えば、温調しなくてもよい。温調しない場合、成形安定後に確認した可動ピン104の先端面温度は、例えば、実測で53~55℃の範囲で安定している。また、可動ピン104は、例えば、ゲートから2mmの位置に配置し、油圧シリンダを用いて動作させてもよく、例えば、圧力10MPaで可動させてもよい。
(2)図6(b)において、成形機(図示せず)の射出動作によりスプルー106及びゲート107を通って製品部(キャビティ)403に溶融したセルロース系繊維複合樹脂108が流入し、予備空間404が溶融したセルロース系繊維複合樹脂108で満たされていく。
 なお、セルロース系繊維複合樹脂108としては、木材から抽出されたパルプを繊維平均粒径50±10μm、繊維長さ200±10μm以上になるよう事前に粉砕し、粉末状になったパルプを混練機で母材となるポリプロピレンと混ぜ合わせて複合一体化させて得ている。例えば、セルロース系繊維が母材となるポリプロピレンに対し、70wt%添加(以下、PP-セルロースファイバー70wt%)されたセルロース系繊維複合樹脂を用いてもよい。
 本実施の形態3では、例えば、成形機のシリンダ温度を190℃に設定し、セルロース系繊維複合樹脂を溶融させている。
(3)図6(c)において、予備空間404が溶融したセルロース系繊維複合樹脂108で満たされた予備空間内樹脂406を形成しながら、所定量の樹脂が製品部403に流入される。
(4)図6(d)において、予備空間内樹脂406に対し、可動ピン104を前進させ、圧縮力110を加えながら溶融したセルロース系繊維複合樹脂108を押出す。このとき、予備空間404の底面405は、可動ピン104の先端面よりも大きく、可動ピン104が前進しても押出されない非押出部407を形成しながら可動する。
(5)図6(e)において、可動ピン104を所定の位置まで前進させることで、予備空間内樹脂406を予備空間105から製品部403に押出し、溶融したセルロース系繊維複合樹脂108を流動末端まで充填させ、最終成形品408を得る。
(6)図6(f)において、セルロース系繊維複合樹脂108で構成される最終成形品408の冷却固化後、キャビティ金型及びコア金型を型開きして、取り出した最終成形品408からランナー112を除去し、セルロース系繊維複合樹脂成形品である製品409を得る。このとき、非押出部407は、形状として残り、製品409に残形状410として現れる。
<セルロース系繊維複合樹脂成形品>
 図7(a)は、本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。図7(b)は、比較例2に係るセルロース系繊維複合樹脂成形品の外観を示す概略斜視図である。
 図7(b)に示す比較例2に係るセルロース系繊維複合樹脂成形品は、推奨成形温度範囲上限である230℃で成形したため、成形品の外観が褐色化しているにも関わらず、末端まで樹脂が届かず、中間付近で途切れており、充填不足が生じている。これは、上述のように、セルロース系繊維複合樹脂射出成形時の課題の一つの流動性の低下に起因するものである。
 これに対し、図7(a)に示す実施例2に係るセルロース系繊維複合樹脂成形品は、210℃で成形しており、成形品の褐色化が図7(b)よりも低減できており、且つ、可動ピンによる部分圧縮成形の効果により流動末端まで樹脂が充填している。
 図8は、本実施の形態3の実施例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けた箇所(2)の繊維配向と、比較例2に係るセルロース系繊維複合樹脂成形品の可動ピンによる部分圧縮成形を受けなかった箇所(2)の繊維配向を示す表3である。
 図8の表3において、A-A’断面は、部分圧縮成形部の板厚方向(可動ピンの前進方向:圧縮方向)に沿った断面を示しており、左枠に部分圧縮なしの場合(比較例2)、右枠に部分圧縮ありの場合(実施例2)をそれぞれ示している。なお、部分圧縮なしの場合(比較例2)は、最初から可動ピンを前進させている点で実施例2と相違する。SEM観察位置は、部分圧縮ありの場合(実施例2)の可動ピンを押し込んだ際にも押し出されない非押出部407の箇所と、非押出部407の延長線と製品部403との交差する箇所との2箇所の四角囲み(1)及び(2)である。SEM画像は、上記2箇所(1)及び(2)のSEM観察位置でのSEM画像である。繊維配向は、それぞれのSEM画像から観察された繊維の配向方向を示すものである。繊維配向概略図は、SEM画像から観察された繊維の配向を模式図で示したものである。
 なお、セルロース系繊維複合樹脂成形品の形状は、JIS規格記載のダンベル試験片形状とし、板厚は1.3mmに設定して、評価した。
 図8の表3に示すように、部分圧縮成形なしの場合(比較例2)、可動ピンではなく、固定の部品で残形状(今回はボス形状)を付与した場合、いずれの断面にも配向は確認できず、ランダムな方向に繊維(セルロース系繊維)が配置されていた。
 一方、部分圧縮成形ありの場合(実施例2)において、それぞれの位置で繊維の配向方向が異なっており、可動ピンが摺動する面(ボスを形成する面)では、可動ピンの圧縮方向に実質的に水平な方向(0±20度の範囲)で繊維が配向しているのに対し、ボス形状が接触している主面では、可動ピンの可動によるボス部からの樹脂流動により、右斜め上方向(可動ピンの圧縮方向に対し45±20度)に繊維が配向していることを確認した。
 なお、繊維を配向させることにより、配向した方向に強度が向上することが知られており、特にボス形状を形成している面ではボス形状の長手方向に繊維が配向しており、ボス部の引張や圧縮に対して強度向上が可能である。
 図9(a)乃至(f)は、非押出部407の様々な残形状を示す図であり、例えば、真円状残形状601、楕円状残形状602、四角形残形状603、L字残形状604、T字残形状605、十字残形状606、をそれぞれ示している。非押出部407の残形状は、例えば、ボス、リブ等の名称で呼ばれることがある。上記601~606以外にも可動ピンの形状やサイズを変えることで残形状410を任意の形状に設計することができ、ボスやリブを付与することができる。
 実施の形態3に係るセルロース系繊維複合樹脂成形品、セルロース系繊維複合樹脂成形品の製造方法及び製造装置によって、予備空間のうち、可動ピンで圧縮される範囲を予備空間の圧縮方向に垂直な断面積よりも小さくすることで、可動ピンによって押し出されない非押出部を設けることができる。これにより、非押出部に基づく残形状としての任意の突起形状(ボスやリブ)を形成することができる。
(実施の形態4)
 本実施の形態4では、セルロース系繊維複合樹脂成形品の製造装置における可動ピンの位置や数量について検討している。
 図10は、本実施の形態4に係るセルロース系繊維複合樹脂成形品の製造装置における可動ピンの位置や数量を模式的に示す概略図である。
 図10(a)は、キャビティ金型101側に可動ピン104を配置するパターン、図10(b)は、同軸上にキャビティ金型101とコア金型102との両方に可動ピン104を配置するパターン、図10(c)は、同一面側に複数の可動ピン104を配置するパターン、図10(d)は、軸をずらしてキャビティ金型101とコア金型102とに可動ピン104を配置したパターンを示す。
 前記の通り、金型構造上で配置可能な位置であれば、可動ピン104の位置や数量は特に限定されない。
 本発明に係るセルロース系繊維複合樹脂成形品の製造方法及びセルロース系繊維複合樹脂成形品の製造装置及びセルロース系繊維複合樹脂成形品によれば、高価な成形設備を用いずに成形が困難な高バイオマス素材に適用できる。このため、一般的にフィラー強化樹脂として採用されている、タルク複合樹脂やガラス繊維複合樹脂等と置換えが可能である。
101 キャビティ金型
102 コア金型
103 製品部(キャビティ)
104 可動ピン
105 予備空間
106 スプルー
107 ゲート
108 溶融したセルロース系繊維複合樹脂
109 予備空間内樹脂
110 圧縮力
111 最終成形品
112 ランナー
113 製品
114 ブッシングライン
301 非可動部品
302 クリアランス
401 キャビティ金型
402 コア金型
403 製品部
404 予備空間
405 予備空間底面
406 予備空間内樹脂
407 非押出部
408 最終成形品
409 製品
410 残形状
601 真円状残形状
602 楕円状残形状
603 四角形残形状
604 L字残形状
605 T字残形状
606 十字残形状

Claims (16)

  1.  繊維複合樹脂を含む繊維複合樹脂成形品であって、前記繊維複合樹脂成形品の中の任意の第一領域と前記第一領域から離れた第二領域とにおいて、板厚方向における繊維の繊維配向方向が異なる、繊維複合樹脂成形品。
  2.  前記繊維複合樹脂成形品の前記第一領域と前記第二領域との境界には、キャビティ面及び/又はコア面に幅0.1mm以下の割線(ブッシングライン)で構成された閉じた系が存在する、請求項1に記載の繊維複合樹脂成形品。
  3.  前記繊維複合樹脂成形品の第一領域は、前記割線の内側に位置し、可動ピンの圧縮方向に対し(90±20度)の角度をなす方向に繊維配向している、請求項2に記載の繊維複合樹脂成形品。
  4.  前記繊維複合樹脂成形品の前記第二領域は、前記割線の外側に位置し、繊維配向がなくランダムである、請求項2又は3に記載の繊維複合樹脂成形品。
  5.  前記繊維複合樹脂の中の繊維は、アスペクト比が3以上、且つ、繊維濃度が10重量%から95重量%の範囲で含有されている、請求項1から4のいずれか一項に記載の繊維複合樹脂成形品。
  6.  前記第一領域は、前記繊維複合樹脂成形品に存在する前記割線で構成された閉じた系の内側に存在し、
     前記第一領域は、前記第二領域に比べて単位体積あたりの繊維濃度が高い、請求項2から4のいずれか一項に記載の繊維複合樹脂成形品。
  7.  前記第一領域は、前記繊維複合樹脂成形品の中の前記割線で構成された閉じた系の内側に存在し、
     前記第一領域の近傍には、前記割線に接するようにボス又はリブの形状が設けられている、請求項2から4のいずれか一項に記載の繊維複合樹脂成形品。
  8.  前記繊維複合樹脂は、セルロース系繊維複合樹脂である、請求項1から7のいずれか一項に記載の繊維複合樹脂成形品。
  9.  キャビティ金型とコア金型との間に画成するキャビティと外部とを連通するゲートから前記キャビティ内の任意の距離に設置された独立操作可能な可動ピンを後退させて前記キャビティを拡張する予備空間を設け、前記可動ピンを後退させた状態で待機させて、前記キャビティ金型と前記コア金型とを型締めする工程と、
     前記キャビティ金型と前記コア金型とを型締めした状態で、前記ゲートから前記キャビティ内に繊維を含む繊維複合樹脂を射出し、前記可動ピンを後退させた状態の前記予備空間へ溶融した繊維複合樹脂を流し込む工程と、
     前記予備空間に前記繊維複合樹脂が任意の量だけ溜まった状態で前記可動ピンを前進させて、前記予備空間内に溜まった前記繊維複合樹脂に圧縮力を加えて前記キャビティ内に押し出す工程と、
     前記繊維複合樹脂が硬化した後、前記キャビティ金型と前記コア金型とを型開きして、繊維複合樹脂成形品を取り出す工程と、
    を含む、繊維複合樹脂成形品の製造方法。
  10.  前記可動ピンの前記繊維複合樹脂と接触する領域を他の前記キャビティ金型及び前記コア金型よりも低温にする、請求項9に記載の繊維複合樹脂成形品の製造方法。
  11.  前記予備空間において、前記予備空間の圧縮方向に垂直な面に投影した面積よりも前記可動ピンの投影面積が小さい、請求項9又は10に記載の繊維複合樹脂成形品の製造方法。
  12.  前記繊維複合樹脂は、セルロース系繊維複合樹脂である、請求項9から11のいずれか一項に記載の繊維複合樹脂成形品の製造方法。
  13.  キャビティ金型とコア金型とを含む射出成形金型と、
     前記キャビティ金型と前記コア金型との間に画成するキャビティと外部とを連通するゲートから前記キャビティ内の任意の距離に、前記キャビティ金型又は前記コア金型のいずれかに設置された可動ピンと、
     前記可動ピンを独立操作可能な制御装置と、
    を有する、繊維複合樹脂成形品の製造装置。
  14.  前記可動ピンは、温度調整していない、請求項13に記載の繊維複合樹脂成形品の製造装置。
  15.  前記可動ピンは、他の前記キャビティ金型又は前記コア金型よりも低温で温度調整可能な機構を有する、請求項13に記載の繊維複合樹脂成形品の製造装置。
  16.  前記可動ピンを所定の位置まで可動させた状態で保持する機構をさらに備えた、請求項13から15のいずれか一項に記載の繊維複合樹脂成形品の製造装置。
PCT/JP2023/006004 2022-03-16 2023-02-20 繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品 WO2023176320A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022041485 2022-03-16
JP2022-041485 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176320A1 true WO2023176320A1 (ja) 2023-09-21

Family

ID=88023395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006004 WO2023176320A1 (ja) 2022-03-16 2023-02-20 繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品

Country Status (1)

Country Link
WO (1) WO2023176320A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316234A (ja) * 1988-06-15 1989-12-21 Mitsubishi Motors Corp 複合材成形方法
JP2002316347A (ja) * 2001-02-13 2002-10-29 Sanraito Kasei Kk 金型装置および射出成形方法
JP2004216724A (ja) * 2003-01-15 2004-08-05 Ono Sangyo Kk 金型装置および成形方法
JP2009078519A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 樹脂ケースの製造方法及び電子制御装置
JP2016165878A (ja) * 2015-03-10 2016-09-15 睦月電機株式会社 ガス透過成形体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01316234A (ja) * 1988-06-15 1989-12-21 Mitsubishi Motors Corp 複合材成形方法
JP2002316347A (ja) * 2001-02-13 2002-10-29 Sanraito Kasei Kk 金型装置および射出成形方法
JP2004216724A (ja) * 2003-01-15 2004-08-05 Ono Sangyo Kk 金型装置および成形方法
JP2009078519A (ja) * 2007-09-27 2009-04-16 Hitachi Ltd 樹脂ケースの製造方法及び電子制御装置
JP2016165878A (ja) * 2015-03-10 2016-09-15 睦月電機株式会社 ガス透過成形体

Similar Documents

Publication Publication Date Title
EP2393644B1 (en) Microcellular injection molding processes for personal and consumer care products
JP5152430B2 (ja) 射出成形方法
KR101275053B1 (ko) 열가소성 수지의 다층성형 방법, 및 다층성형 장치
CA1234466A (en) Stabilized core injection molding
WO2023176320A1 (ja) 繊維複合樹脂成形品の製造方法及び繊維複合樹脂成形品
CN107756733A (zh) 一种塑料注射压缩精密成型模具及工艺
JP4557485B2 (ja) 成形可能材料の成形
CN103826777A (zh) 蜡模射出成型机用夹具装置
CN201240043Y (zh) 一种防止注塑产品缩水的模具
CN104105584B (zh) 纤维增强树脂的制备方法
JP6189371B2 (ja) 中空成形品の成形方法
JP2013078913A (ja) 樹脂射出圧縮成形方法、および、射出圧縮成形装置
CN206048675U (zh) 一种注塑机射胶装置
CN205130282U (zh) 一种注塑模具浇注系统
CN106182630B (zh) 一种皮肤吻合器中粘贴板的生产方法
KR101594801B1 (ko) 웰드라인이 없는 제품의 성형 금형 및 방법
JP2005193634A (ja) 射出成形体の製造方法とその金型装置
CN211616433U (zh) 一种注塑模具
CN209063421U (zh) 光缆交接箱的注塑机
CN206416485U (zh) 一种压力均衡的双螺杆挤出机口模条
JP5099894B2 (ja) 中空成形体の製造装置及び製造方法
JP2015120177A (ja) 1又は2以上の射出による低速低圧ダイカストで用いる砂中子の製法、1又は2以上の射出による低速低圧ダイカストで用いる砂中子及び該砂中子を用いたダイカスト方法
JP2024027043A (ja) 成形品の製造方法
CN106541543B (zh) 一种注塑模具浇注系统
JP2021142712A (ja) 射出成形品の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770279

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507635

Country of ref document: JP

Kind code of ref document: A