WO2023176168A1 - 圧縮機及び圧縮機の制御方法 - Google Patents
圧縮機及び圧縮機の制御方法 Download PDFInfo
- Publication number
- WO2023176168A1 WO2023176168A1 PCT/JP2023/002630 JP2023002630W WO2023176168A1 WO 2023176168 A1 WO2023176168 A1 WO 2023176168A1 JP 2023002630 W JP2023002630 W JP 2023002630W WO 2023176168 A1 WO2023176168 A1 WO 2023176168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- bearing
- alarm
- increase
- pattern
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 239000004519 grease Substances 0.000 claims abstract description 78
- 230000005856 abnormality Effects 0.000 claims description 27
- 230000032683 aging Effects 0.000 claims description 5
- 230000006866 deterioration Effects 0.000 claims description 4
- 238000001514 detection method Methods 0.000 claims 3
- 230000000630 rising effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 9
- 230000002159 abnormal effect Effects 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 6
- 239000000498 cooling water Substances 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 230000003584 silencer Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/30—Parts of ball or roller bearings
- F16C33/66—Special parts or details in view of lubrication
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C41/00—Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/62—Controlling or determining the temperature of the motor or of the drive for raising the temperature of the motor
Definitions
- the present invention relates to a compressor and a compressor control method.
- Electric motors used in air compressors generally use rolling bearings.
- Grease is used to lubricate the bearings, which must be filled with grease at regular intervals after operation. At this time, the temperature of the bearing filled with grease temporarily increases due to the heat of stirring (see, for example, Patent Document 1).
- the purpose of the present invention is to improve the accuracy of monitoring the temperature of a compressor motor bearing.
- a compressor includes an electric motor having a grease-supplied bearing, a control unit that controls the electric motor, a temperature sensor that detects the temperature of the bearing, and a notification unit that issues an alarm.
- the control unit grasps the bearing temperature rise of the bearing in advance and stores it as a first bearing temperature rise pattern, and calculates the actual bearing temperature rise detected by the temperature sensor.
- the bearing temperature increase pattern is compared with the first bearing temperature increase pattern stored in advance, and as a result of the comparison, if it is determined that the increase in the bearing temperature is due to grease filling, the notification section sends the Control so that the alarm does not go off.
- FIG. 3 is a diagram showing a graph of changes in motor bearing temperature during grease filling.
- FIG. 3 is a diagram showing a graph of changes in motor bearing temperature due to aging.
- FIG. 3 is a diagram showing a graph of changes in motor bearing temperature due to bearing abnormality.
- FIG. 7 is a graph showing a graph in which the temperature of the motor bearing increases during grease filling, and the alarm temperature is raised to prevent alarm generation and tripping beyond the alarm generation temperature.
- FIG. 2 is a diagram showing a flowchart for determining a bearing temperature rise in Example 1;
- FIG. 6 is a diagram showing the difference in temperature rise amount when grease is filled during loading and unloading.
- FIG. 3 is a diagram showing the difference in temperature rise amount during grease filling between a 2P motor and a 4P motor.
- FIG. 3 is a diagram showing differences in temperature rise due to differences in the amount of grease filled at one time.
- FIG. 7 is a diagram showing a graph for disabling the alarm temperature so that the temperature of the motor bearing increases during grease filling and the alarm temperature is not triggered when the temperature exceeds the alarm temperature.
- FIG. 7 is a diagram showing a flowchart for determining a bearing temperature rise when disabling an alarm temperature according to the second embodiment. It is a figure showing the whole composition of a compressor.
- the compressor 100 has a compressor body including an electric motor 103 having a grease (lubricant)-supplied bearing 101 and a motor shaft 102, and a gear case 104.
- a temperature sensor T that detects the temperature of the bearing 101 and an inverter board are connected to the electric motor 103.
- Compressor 100 includes a control unit 105 that controls electric motor 103 via an inverter board based on the temperature detected by temperature sensor T.
- the control unit 105 is connected to the notification unit via a bearing temperature monitoring unit placed outside the compressor 100.
- a filter 106 and a valve 107 are connected to the compressor body, and air sucked from the air suction port is sent to the compressor body via the filter 106 and valve 107.
- a cooler 108 and a silencer 109 are connected to the compressor main body, and cooling water is supplied to the cooler 108 from a cooling water inlet. Air is then sent from the cooler 108 to the air outlet. Further, cooling water is supplied from the cooler 108 to the cooling water outlet. Further, air is sent from the cooler 108 to an air outlet (used during unloading) via a silencer 109.
- the control unit 105 grasps the temperature rise of the bearing 101 in advance and stores it as a first bearing temperature rise pattern, and controls the temperature rise of the actual bearing 101 detected by the temperature sensor T.
- the temperature increase pattern is compared with a first bearing temperature increase pattern stored in advance. Then, as a result of the comparison, if it is determined that the increase in bearing temperature is due to grease filling, the control unit 105 controls the notification unit to not issue an alarm.
- FIG. 1 is an example of fluctuations in motor bearing temperature during grease filling. After several minutes to several tens of minutes have passed since the grease was filled, the temperature of the bearing 101 rises due to the heat of stirring, and even though there is no abnormality in the bearing, the bearing temperature exceeds the alarm value and an alarm is issued. As a result, it is not known whether the alarm was triggered due to an actual bearing abnormality that exceeded the alarm value, or whether the problem was due to grease filling, leading to operation with doubts about the motor's health, and it is necessary to monitor the bearing temperature even after filling.
- Figure 2 shows an example of changes in motor bearing temperature due to aging.
- the load increases due to aging and the bearing temperature tends to gradually rise over a long period of time.
- Figure 3 shows an example of fluctuations in motor bearing temperature due to bearing abnormality.
- a bearing abnormality occurs, more load is applied to the bearing 101, which causes the bearing temperature to rise. It is unstable compared to the temperature change during grease filling or aging as shown in Figs. 1 and 2.
- the bearing 101 breaks at a certain point, an excessive load will occur and the temperature will rise rapidly. Therefore, the time from when the bearing 101 is damaged until the temperature rises is short and the temperature fluctuates rapidly.
- FIG. 4 shows a variation pattern of bearing temperature in Example 1 of the present invention.
- the temperature of the bearing 101 rises and reaches the alarm triggering temperature, but based on the amount of temperature increase per unit time and the pattern of temperature stability, it is determined that grease filling is the cause of the temperature rise, and automatically Avoid triggering an alarm by increasing the alarm value. If the temperature subsequently decreases and becomes below the initial alarm triggering temperature, the alarm triggering temperature is lowered to the initial value.
- a temperature rise is detected.
- the temperature change from the start of temperature rise until the alarm triggering temperature is reached is recorded.
- the bearing temperature rises rapidly in a short period of time (several minutes or so).
- the bearing temperature gradually increases over a long period of time (several months to several years).
- pattern discrimination is performed to determine whether it is grease filling or bearing abnormality.
- the alarm triggering temperature is lowered to the alarm triggering temperature (1).
- an increase in bearing temperature is detected (step 500). While the electric motor is operating, the temperature sensor detects a temperature rise within a predetermined time ⁇ t (see FIG. 4).
- step 501 it is determined whether the alarm temperature is exceeded.
- step 501 If the alarm temperature is exceeded (Yes in step 501), proceed to step 502. On the other hand, if the alarm temperature has not been exceeded (No in step 501), the process advances to step 506 and operation continues.
- step 502 pattern discrimination is performed and compared with the recorded pattern.
- a pattern of temperature rise within a predetermined time ⁇ t is determined.
- the temperature rise pattern is determined in advance by the control unit 105 as a pattern of grease filling if the temperature rise occurs in a short period of time, and as a pattern of bearing abnormality if it is caused by a gradual temperature rise over a long period of time or a sudden, sudden and unstable temperature rise. Record it and compare it to determine whether it is grease filling or bearing abnormality.
- the threshold alarm temperature is increased to prevent alarm generation and continue operation (step 503).
- the threshold value of the alarm triggering temperature is raised (below the trip temperature) to continue the operation in order to prevent alarm triggering due to temperature rise due to grease filling.
- step 504 it is determined whether the bearing temperature has decreased and is below the initial alarm triggering temperature (step 504).
- the alarm triggering temperature is returned to the initial value (step 505) and operation is continued (step 509).
- the trip temperature 95° C.
- step 508 if it is determined that the initial alarm triggering temperature is exceeded, the operation is continued and the process returns to step 504 (step 508).
- Patterns are memorized in advance, and a pattern that approximates the slope of temperature rise, initial temperature, and waveform stability is automatically selected. If there is an abnormality in the bearing, an alarm will be issued and the operation will be stopped. If it is determined that the temperature rise is due to grease filling, the alarm value is raised to prevent the alarm from being issued and continue operation.
- Figure 6 shows the difference in temperature rise when filling with grease during loading and unloading.
- the upper curve is when loading, and the lower curve is when unloading.
- the heat of stirring is greater during loading and the current value of the motor is also greater than during unloading, so the amount of rise in bearing temperature is greater.
- the base temperature of the bearing is higher during loading than when unloading, so if grease is filled during loading, it is likely to exceed the alarm triggering temperature.
- the amount of temperature rise is greater during grease filling and loading. Also, the base temperature is higher when loading than when unloading.
- Figure 7 shows the difference in temperature rise between a 2-pole motor and a 4-pole motor.
- the upper curve is a 2-pole motor, and the lower curve is a 4-pole motor.
- the 2-pole motor has a faster rotation speed, the heat of stirring during grease filling increases, resulting in a larger temperature rise than the 4-pole motor. Since the base temperature of the bearing 101 in a 2-pole motor is higher than that in a 4-pole motor, the temperature easily exceeds the alarm triggering temperature.
- the 2P motor which has a faster rotation speed, generates more heat of stirring, and the amount of temperature rise becomes larger than that of the 4P motor. Furthermore, the base temperature is higher at 2P than at 4P.
- Figure 8 shows the difference in temperature rise depending on the amount of grease filled.
- the upper curve represents filling all at once
- the middle curve represents filling little by little
- the lower curve represents filling only a small amount once.
- the temperature rises differently depending on whether it is filled 1g at a time or when 50g is filled all at once.
- the bearing temperature is filled little by little, it will increase step by step and will not exceed the alarm value, but if it is filled all at once, the temperature will rise rapidly and exceed the alarm value. Furthermore, if the grease is filled all at once, it takes time for the temperature to drop.
- the pattern of bearing temperature rise can be used to distinguish between temperature rise due to grease filling and temperature rise due to bearing abnormality such as motor deterioration or damage, thereby improving monitoring accuracy.
- Example 1 the changes in bearing temperature before grease filling, the amount of bearing temperature change for each grease filling amount and filling speed, and the amount of change in bearing temperature increase/decrease over time are patterned, and the bearing temperature increases based on the pattern. Predict the cause of Then, the bearing temperature increase pattern is grasped in advance and the threshold value for the alarm triggering value is automatically raised.
- the first embodiment it is possible to detect whether the motor is overfilled, underfilled, or filled with the appropriate amount of grease, and the phenomenon that actually occurs when the bearing temperature rises is grasped and appropriate measures are taken.
- the conventional work of stopping and inspecting the compressor when the bearing temperature rises even if there is no abnormality in the motor can be eliminated, which has the effect of reducing unnecessary inspection costs.
- raising the threshold for detecting an abnormality in bearing temperature rise can prevent erroneous alarms from being issued.
- Example 2 will be described with reference to FIGS. 9 and 10.
- FIG. 9 shows the details of how to avoid alarming when filling with grease. After filling with grease, the bearing temperature rises and reaches the alarm triggering temperature, but as in Figure 4 of Embodiment 1, it is checked against the pre-recorded temperature rise pattern to determine whether it is due to grease filling or a bearing abnormality. Discern.
- the alarm temperature is disabled and no alarm is issued. After that, if the temperature drops and becomes lower than the initial alarm temperature, the alarm temperature is re-enabled and normal operation resumes.
- a temperature rise is detected.
- the temperature change from the start of temperature rise until the alarm triggering temperature is reached is recorded.
- the bearing temperature rises rapidly in a short period of time (several minutes or so).
- the bearing temperature gradually increases over a long period of time (several months to several years).
- pattern discrimination is performed to determine whether it is grease filling or bearing abnormality.
- For grease filling disable alarm temperature.
- the alarm triggering temperature is enabled and normal operation is resumed.
- a rise in bearing temperature is detected (step 500). While the electric motor 103 is operating, the temperature sensor T detects a temperature rise within a predetermined time ⁇ t.
- step 501 it is determined whether the alarm temperature is exceeded.
- step 501 If the alarm temperature is exceeded (Yes in step 501), proceed to step 502. On the other hand, if the alarm temperature has not been exceeded (No in step 501), the process advances to step 506 and operation continues.
- step 502 pattern discrimination is performed and the recorded patterns are compared.
- a pattern of temperature rise within a predetermined time ⁇ t is determined.
- the temperature rise pattern is determined in advance by the control unit 105 as a pattern of grease filling if the temperature rise occurs in a short period of time, and as a pattern of bearing abnormality if it is caused by a gradual temperature rise over a long period of time or a sudden, sudden and unstable temperature rise. Record it and compare it to determine whether it is grease filling or bearing abnormality.
- step 510 in order to prevent an alarm from being triggered due to a rise in temperature due to grease filling, the alarm triggering temperature is disabled and operation is continued.
- step 511 it is determined whether the bearing temperature has decreased and the bearing temperature has become lower than the alarm triggering temperature (step 511).
- step 511 if the bearing temperature drops and the bearing temperature becomes lower than the alarm triggering temperature (Yes in step 511), the alarm triggering temperature is enabled (step 512) and operation is continued (step 509). .
- the alarm triggering temperature is enabled (step 512) and operation is continued (step 509).
- the trip temperature 95° C.
- step 511 if the bearing temperature decreases and the bearing temperature does not become lower than the alarm triggering temperature (No in step 511), the operation is continued and the process returns to step 511 (step 508).
- Patterns are memorized in advance, and a pattern that approximates the slope of temperature rise, initial temperature, and waveform stability is automatically selected. If there is an abnormality in the bearing, an alarm will be issued and the operation will be stopped. If it is determined that the temperature rise is due to grease filling, the alarm temperature is disabled to prevent the alarm from being issued and continue operation.
- Example 2 the changes in bearing temperature before grease filling, the amount of bearing temperature change for each grease filling amount and filling speed, and the amount of change in bearing temperature rise/fall over time are patterned, and the bearing temperature increases based on the pattern. Predict the cause of Understand the bearing temperature rise pattern in advance and disable the alarm when the alarm triggering temperature is reached.
- the second embodiment it is possible to detect whether the electric motor is overfilled with grease, underfilled with grease, or filled with the appropriate amount of grease, and the phenomenon that actually occurs when the bearing temperature rises is grasped and appropriate measures are taken.
- the conventional work of stopping and inspecting the compressor when the bearing temperature rises even if there is no abnormality in the motor can be eliminated, which has the effect of reducing unnecessary inspection costs.
- disabling the alarm temperature when filling with grease it is possible to prevent an alarm from being erroneously triggered.
- the pattern of bearing temperature rise can be used to distinguish between temperature rise due to grease filling and temperature rise due to bearing abnormality such as motor deterioration or damage, thereby improving monitoring accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
Abstract
予め軸受の軸受温度上昇を把握して第1の軸受温度上昇パターンとして記憶しておき、温度センサで検知された実際の前記軸受の第2の軸受温度上昇パターンと予め記憶された第1の軸受温度上昇パターンとを比較し、軸受温度の上昇がグリース充填による温度上昇と判定された場合アラームを発報しないように制御する。
Description
本発明は、圧縮機及び圧縮機の制御方法に関する。
空気圧縮機で使用される電動機は一般的にころがり軸受を使用している。その軸受の潤滑にはグリースを使用しており、稼働後に定期間隔でグリースを充填する必要がある。その際にグリースを充填された軸受は撹拌熱により一時的に軸受温度が上昇する(例えば、特許文献1参照)。
空気圧縮機においては圧縮機の保護を目的として電動機軸受温度を監視することは一般的な方法である。しかしながら、定期的にグリースを充填する際、撹拌熱によって軸受温度が上昇する。
このため、特に稼働期間の長い電動機において、電動機劣化、損傷等の軸受異常による温度上昇なのかグリース充填時の軸受温度上昇でアラーム・トリップに達して圧縮機を停止させるのかを区別することができない。このため、圧縮機の電動機軸受温度の監視精度が低下してしまう。
本発明は、圧縮機の電動機軸受温度の監視精度を向上させることにある。
本発明の一態様の圧縮機は、グリース給油式の軸受を有する電動機と、前記電動機を制御する制御部と、前記軸受の温度を検知する温度センサと、アラームを発報する報知部とを有する圧縮機であって、前記制御部は、予め前記軸受の軸受温度上昇を把握して第1の軸受温度上昇パターンとして記憶しておき、前記温度センサで検知された実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、前記比較の結果、前記軸受温度の上昇がグリース充填による温度上昇と判定された場合、前記報知部から前記アラームを発報しないように制御する。
本発明の一態様によれば、圧縮機の電動機軸受温度の監視精度を向上させることができる。
以下、実施例について図面を用いて説明する。
最初に、図11を参照して、圧縮機の全体構成について説明する。
図11に示すように、圧縮機100は、グリース(潤滑剤)給油式の軸受101とモータシャフト102を有する電動機(モータ)103と、ギヤケース104を備えた圧縮機本体を有する。電動機103には、軸受101の温度を検知する温度センサTとインバータ盤が接続されている。圧縮機100は、温度センサTにより検知された温度に基づいてインバータ盤を介して電動機103を制御する制御部105を有する。制御部105は、圧縮機100の外部に配置された軸受温度監視部を介して報知部に接続されている。
図11に示すように、圧縮機100は、グリース(潤滑剤)給油式の軸受101とモータシャフト102を有する電動機(モータ)103と、ギヤケース104を備えた圧縮機本体を有する。電動機103には、軸受101の温度を検知する温度センサTとインバータ盤が接続されている。圧縮機100は、温度センサTにより検知された温度に基づいてインバータ盤を介して電動機103を制御する制御部105を有する。制御部105は、圧縮機100の外部に配置された軸受温度監視部を介して報知部に接続されている。
圧縮機本体には、フィルター106とバルブ107が接続されており、空気吸込口から吸込まれた空気がフィルター106とバルブ107を経由して圧縮機本体に送られる。
圧縮機本体には、クーラ108とサイレンサ109が接続されており、冷却水流入口から冷却水がクーラ108に供給される。そして、クーラ108から空気が空気吐出口に送られる。また、クーラ108から冷却水が冷却水流出口に供給される。また、クーラ108から空気がサイレンサ109を経由して、空気放風口(アンロード時使用)に送られる。
本発明では、制御部105は、予め軸受の軸受101の温度上昇を把握して第1の軸受温度上昇パターンとして記憶しておき、温度センサTで検知された実際の軸受101の第2の軸受温度上昇パターンと、予め記憶された第1の軸受温度上昇パターンとを比較する。そして、制御部105は、比較の結果、軸受温度の上昇がグリース充填による温度上昇と判定された場合、報知部からアラームを発報しないように制御する。
次に、電動機軸受温度上昇のパターンを用いた異常値監視について、図1~図3に沿って説明する。
図1はグリース充填時の電動機軸受温度の変動の例である。
グリースを充填してから数分から数十分経過すると、撹拌熱によって軸受101の温度が上昇し、軸受異常でないにもかかわらず軸受温度がアラーム値を超えアラームを発報する。その為、実際に軸受異常でアラーム値を超え発報したのか、グリース充填が原因なのか分からず電動機健全性を疑いながら運転することとなり充填後も軸受温度の監視を行う必要がある。
グリースを充填してから数分から数十分経過すると、撹拌熱によって軸受101の温度が上昇し、軸受異常でないにもかかわらず軸受温度がアラーム値を超えアラームを発報する。その為、実際に軸受異常でアラーム値を超え発報したのか、グリース充填が原因なのか分からず電動機健全性を疑いながら運転することとなり充填後も軸受温度の監視を行う必要がある。
図2に経年劣化による電動機軸受温度の変動の例を示す。
長期間電動機103を運転していると、経年劣化により負荷が大きくなり軸受温度が長時間かけて徐々に上昇していく傾向がある。
長期間電動機103を運転していると、経年劣化により負荷が大きくなり軸受温度が長時間かけて徐々に上昇していく傾向がある。
ある程度軸受温度が高くなった際、通常運転ではアラームを発報しない温度であるが、グリース充填時の温度上昇により軸受101の温度がアラーム値を超えやすくなる。その為、図1と同様に電動機健全性を疑いながら運転することとなり、定期的に軸受温度を確認する必要がある。
図3に軸受異常による電動機軸受温度の変動の例を示す。
軸受異常が発生すると、より負荷が軸受101にかかるため、軸受温度が上昇する。図1や図2のグリース充填時や経年劣化での温度変化と比べ不安定である。また、ある時点で軸受101が破損すると過大な負荷が発生し急激に温度が上昇する。その為、軸受101が破損してから温度上昇までの時間が短く、急激に変動する。
軸受異常が発生すると、より負荷が軸受101にかかるため、軸受温度が上昇する。図1や図2のグリース充填時や経年劣化での温度変化と比べ不安定である。また、ある時点で軸受101が破損すると過大な負荷が発生し急激に温度が上昇する。その為、軸受101が破損してから温度上昇までの時間が短く、急激に変動する。
図4に本発明の実施例1の軸受温度の変動パターンを示す。
グリース充填後に軸受101の温度が上昇し、アラーム発報温度まで到達するが、単位時間当たりの温度増加量や、温度の安定性のパターンからグリース充填が温度上昇の原因であると判別し、自動的にアラーム値を上げることでアラームが発報されることを回避する。その後温度が降下し、初期のアラーム発報温度以下になった場合、アラーム発報温度を初期値に下げる。
グリース充填後に軸受101の温度が上昇し、アラーム発報温度まで到達するが、単位時間当たりの温度増加量や、温度の安定性のパターンからグリース充填が温度上昇の原因であると判別し、自動的にアラーム値を上げることでアラームが発報されることを回避する。その後温度が降下し、初期のアラーム発報温度以下になった場合、アラーム発報温度を初期値に下げる。
具体的には、最初に、温度上昇を検知する。次に、パターン判別の為に温度上昇開始からアラーム発報温度到達までの温度変化を記録する。グリース充填時の場合は、軸受温度が短時間(数分~程度)で急激に上昇する。一方、軸受異常時の場合は、長期間(数ヶ月~数年程度)で軸受温度が緩やかに上昇する。
次に、パターン判別を行い、グリース充填か軸受異常かを判別する。グリース充填の場合、アラーム発報温度をアラーム発報温度(2)に上げる。
次に、軸受温度がアラーム発報温度(1)より低くなるとアラーム発報温度をアラーム発報温度(1)に下げる。
図5のフローチャートを参照して、実施例1のパターン判定処理について詳細に説明する。
最初に、軸受温度上昇を検知する(ステップ500)。電動機が運転中、温度センサが所定時間Δt内(図4参照)で温度上昇を検知する。
最初に、軸受温度上昇を検知する(ステップ500)。電動機が運転中、温度センサが所定時間Δt内(図4参照)で温度上昇を検知する。
次に、アラーム発報温度を超過しているかどうかを判定する(ステップ501)。
アラーム発報温度を超過した場合(ステップ501でYes)は、ステップ502に進む。一方、アラーム発報温度を超えていない場合(ステップ501でNo)、ステップ506に進み運転を継続する。
ステップ502では、パターン判別を行い、記録したパターンと比較する。所定時間Δt内での温度上昇のパターンを判別する。温度上昇のパターンは短時間での温度上昇であればグリース充填のパターン、長期間の緩やかな温度上昇によるものや突発的で急激且つ不安定な温度上昇は軸受異常のパターンとして予め制御部105に記録しておき、グリース充填か軸受異常かを照合して判別する。
パターン判別の結果、グリース充填と判定された場合は、閾値であるアラーム発報温度を上げ、アラーム発報を防ぎ運転を続行する(ステップ503)。このように、ステップ503では、グリース充填による温度上昇によるアラーム発報を防ぐためにアラーム発報温度の閾値を上げ(トリップ温度以下とする)運転を継続する。
パターン判別の結果、軸受異常と判定された場合は、軸受異常アラームを発報して運転を停止する(ステップ507)。
次に、軸受温度が降下して、初期アラーム発報温度以下かを判定する(ステップ504)。
判定の結果、初期アラーム発報温度以下と判定された場合は、アラーム発報温度を初期値に戻して(ステップ505)、運転を継続する(ステップ509)。このように、アラーム発報温度を初期値に戻すことでグリース充填が完了したとし運転を継続する。但し、トリップ温度(95℃)を超えた場合はいかなる状態であっても圧縮機100の運転を停止させることとする。
判定の結果、初期アラーム発報温度超過と判定された場合は、運転を継続してステップ504に戻る(ステップ508)。
このように、軸受温度がアラーム発報温度(85℃)に到達した際にパターン判別を行い、軸受異常かグリース充填による温度上昇か判別する。
パターンは予め記憶させておき、温度上昇の傾きや初期温度、波形の安定性が近似するものを自動で選定する。軸受異常である場合、アラーム発報及び運転停止を行う。グリース充填による温度上昇であると判別した場合、アラーム値を上げアラーム発報を防ぎ運転を継続する。
ここで、グリース充填時、圧縮機の運転状態やモータの種類によって温度上昇量が異なる。
図6にロード・アンロード時にグリースを充填した場合の温度上昇の違いを示す。上方の曲線がロード時であり、下方の曲線がアンロード時である。
ロード時の方が撹拌熱が大きく、電動機の電流値もアンロード時と比べ大きい為、軸受温度の上昇量が大きくなる。また、ロード時はアンロード時よりも軸受のベース温度が高くなる為、ロード時にグリース充填を行った場合、アラーム発報温度を超えやすい。
このように、グリース充填時、ロード時の方が温度上昇量が大きくなる。また、ロード時はアンロード時よりもベース温度が高い。
図7に2ポールモータと4ポールモータの温度上昇の違いを示す。上方の曲線が2ポールモータであり、下方の曲線が4ポールモータである。
2ポールモータの方が回転数が速い為、グリース充填時の撹拌熱が大きくなり、温度上昇量が4ポールモータよりも大きくなる。2ポールモータは4ポールモータよりも軸受101のベース温度が高くなるため、アラーム発報温度を超えやすい。
このように、回転数が速い2Pモータの方が撹拌熱が大きくなり、温度上昇量が4Pよりも大きくなる。また、2P時は4P時よりもベース温度が高くなる。
図8にグリース充填量による温度上昇の違いを示す。上方の曲線が一気に充填であり、中方の曲線が少量ずつ充填であり、下方の曲線が少量一回のみの充填である。グリース充填時、グリースを一気に充填した場合、温度上昇量が大きくなる。また、温度低下に時間を要する。
例えば、グリースを50g充填する場合、1gずつ充填する場合と、50g一気に充填する場合で温度上昇の仕方が異なる。
少量ずつ充填した場合、軸受温度は少しずつ段階的に増加し、アラーム値を超えることは無いが、一気に充填した場合、急激に温度上昇する為アラーム値を超える。また、グリースを一気に充填した場合、温度低下に時間がかかる。
上記実施例1では、軸受温度上昇のパターンを用いてグリース充填による温度上昇と電動機劣化、損傷等の軸受異常による温度上昇を区別し、監視精度を向上させることができる。
上記実施例1では、グリース充填前の軸受温度の変化とグリース充填量と充填スピード毎の軸受温度変化量や時間経過による軸受温度上昇・下降の変化量などをパターン化し、そのパターンから軸受温度上昇の原因を予測する。そして、軸受温度上昇パターンを事前に把握しアラーム発報値の閾値を自動で上げる。
上記実施例1では、電動機へのグリース過充填・充填量不足・適量充填の検知が可能となり、軸受温度上昇時に実際に起こっている現象を把握し適切な対処を行う。これにより、従来では電動機異常でなくても軸受温度が上昇した際は圧縮機を停止させ点検していた作業を廃止でき、余分な点検費用を抑える効果がある。また、グリース充填の際は軸受温度上昇の異常を検知する閾値を上げることで誤ってアラームを発報することを防ぐことができる。
図9及び図10を参照して、実施例2について説明する。
図9にグリース充填時のアラーム発報回避の内容を示す。
グリース充填後に軸受温度が上昇しアラーム発報温度まで到達するが、実施例1の図4と同様に、予め記録させた温度上昇のパターンと照合してグリース充填によるものか、軸受異常によるものに判別する。
グリース充填後に軸受温度が上昇しアラーム発報温度まで到達するが、実施例1の図4と同様に、予め記録させた温度上昇のパターンと照合してグリース充填によるものか、軸受異常によるものに判別する。
グリース充填と判別された際はアラーム発報温度を無効にしてアラームの発報を行わない。その後温度が降下し、初期のアラーム発報温度より低くなった場合、アラーム発報温度を再度有効化し通常運転に移行する。
具体的には、最初に、温度上昇を検知する。次に、パターン判別の為に温度上昇開始からアラーム発報温度到達までの温度変化を記録する。グリース充填時の場合は、軸受温度が短時間(数分~程度)で急激に上昇する。一方、軸受異常時の場合は、長期間(数ヶ月~数年程度)で軸受温度が緩やかに上昇する。
次に、パターン判別を行い、グリース充填か軸受異常かを判別する。グリース充填の場合、アラーム発報温度を無効にする。次に、軸受温度がアラーム発報温度より低くなるとアラーム発報温度を有効にして通常運転にする。
図10のフローチャートを参照して、実施例2のパターン判定処理について詳細に説明する。
最初に、軸受温度上昇を検知する(ステップ500)。電動機103が運転中に、温度センサTが所定時間Δt内で温度上昇を検知する。
次に、アラーム発報温度を超過しているかどうかを判定する(ステップ501)。
アラーム発報温度を超過した場合(ステップ501でYes)は、ステップ502に進む。一方、アラーム発報温度を超えていない場合(ステップ501でNo)、ステップ506に進み運転を継続する。
ステップ502では、パターン判別を行い、記録したパターン比較する。所定時間Δt内での温度上昇のパターンを判別する。温度上昇のパターンは短時間での温度上昇であればグリース充填のパターン、長期間の緩やかな温度上昇によるものや突発的で急激且つ不安定な温度上昇は軸受異常のパターンとして予め制御部105に記録しておき、グリース充填か軸受異常かを照合して判別する。
パターン判別の結果、グリース充填と判定された場合は、アラーム発報温度を無効して、アラーム発報を行わないようにする(ステップ510)。このように、ステップ510では、グリース充填による温度上昇によるアラーム発報を防ぐため、アラーム発報温度を無効にして運転を継続する。
パターン判別の結果、軸受異常と判定された場合は、軸受異常アラームを発報して運転を停止する(ステップ507)。
次に、軸受温度が降下し、軸受温度がアラーム発報温度より低くなったかどうかを判定する(ステップ511)。
判定の結果、軸受温度が降下し、軸受温度がアラーム発報温度より低くなった場合(ステップ511でYes)、アラーム発報温度を有効にして(ステップ512)、運転を継続する(ステップ509)。アラーム発報温度を初期値に戻すことでグリース充填が完了したとし運転を継続する。但し、トリップ温度(95℃)を超えた場合はいかなる状態であっても圧縮機100の運転を停止させることとする。
判定の結果、軸受温度が降下し、軸受温度がアラーム発報温度より低くならない場合(ステップ511でNo)、運転を継続してステップ511に戻る(ステップ508)。
このように、軸受温度がアラーム発報温度(85℃)に到達した際にパターン判別を行い、軸受異常かグリース充填による温度上昇か判別する。
パターンは予め記憶させておき、温度上昇の傾きや初期温度、波形の安定性が近似するものを自動で選定する。軸受異常である場合、アラーム発報及び運転停止を行う。グリース充填による温度上昇であると判別した場合、アラーム発報温度を無効にしてアラーム発報を防ぎ運転を継続する。
上記実施例2では、グリース充填前の軸受温度の変化とグリース充填量と充填スピード毎の軸受温度変化量や時間経過による軸受温度上昇・下降の変化量などをパターン化し、そのパターンから軸受温度上昇の原因を予測する。軸受温度上昇パターンを事前に把握し、アラーム発報温度到達時にアラームを無効にする。
上記実施例2により、電動機へのグリース過充填・充填量不足・適量充填の検知が可能となり、軸受温度上昇時に実際に起こっている現象を把握し適切な対処を行う。これにより、従来では電動機異常でなくても軸受温度が上昇した際は圧縮機を停止させ点検していた作業を廃止でき、余分な点検費用を抑える効果がある。また、グリース充填の際はアラーム発報温度を無効にすることで誤ってアラームが発報することを防ぐことができる。
このように、上記実施例では、軸受温度上昇のパターンを用いてグリース充填による温度上昇と電動機劣化、損傷等の軸受異常による温度上昇を区別し、監視精度を向上させることができる。
100 圧縮機
101 軸受
102 モータシャフト
103 電動機
104 ギヤケース
105 制御部
106 フィルター
107 バルブ
108 クーラ
109 サイレンサ
101 軸受
102 モータシャフト
103 電動機
104 ギヤケース
105 制御部
106 フィルター
107 バルブ
108 クーラ
109 サイレンサ
Claims (11)
- グリース給油式の軸受を有する電動機と、
前記電動機を制御する制御部と、
前記軸受の温度を検知する温度センサと、
アラームを発報する報知部と、を有する圧縮機であって、
前記制御部は、
予め前記軸受の軸受温度上昇を把握して第1の軸受温度上昇パターンとして記憶しておき、
前記温度センサで検知された実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、
前記比較の結果、前記軸受温度の上昇がグリース充填による温度上昇と判定された場合、前記報知部から前記アラームを発報しないように制御することを特徴とする圧縮機。 - 前記制御部は、
前記温度センサにより前記軸受温度の上昇を検知した場合、
前記軸受温度が初期値である第1のアラーム発報温度を超過したか否かを判定し、
前記判定の結果、前記軸受温度が前記第1のアラーム発報温度を超過した場合、
前記温度センサで検知された実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、
前記比較の結果、前記軸受温度の上昇が前記グリース充填による温度上昇と判定された場合、前記第1のアラーム発報温度を前記第1のアラーム発報温度より高い第2のアラーム発報温度まで上げて前記報知部から前記アラームを発報しないように制御して前記電動機の運転を継続し、
前記比較の結果、前記軸受温度の上昇が前記電動機の前記軸受の異常による温度上昇と判定された場合、前記第1のアラーム発報温度に基づいて前記報知部から前記アラームを発報して前記電動機の運転を停止するように制御することを特徴とする請求項1に記載の圧縮機。 - 前記制御部は、
前記軸受の温度が前記第1のアラーム発報温度まで降下した場合、前記初期値である前記第1のアラーム発報温度に戻すように制御することを特徴とする請求項2に記載の圧縮機。 - 前記制御部は、
前記温度センサにより前記軸受温度の上昇を検知した場合、
前記軸受温度が初期値であるアラーム発報温度を超過したか否かを判定し、
前記判定の結果、前記軸受温度が前記アラーム発報温度を超過した場合、前記温度センサで検知された実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、
前記比較の結果、前記軸受温度の上昇が前記グリース充填による温度上昇と判定された場合、前記アラーム発報温度を無効にして前記報知部から前記アラームを発報しないように制御して前記電動機の運転を継続し、
前記比較の結果、前記軸受温度の上昇が前記電動機の前記軸受の異常による温度上昇と判定された場合、前記アラーム発報温度に基づいて前記報知部から前記アラームを発報して前記電動機の運転を停止するように制御することを特徴とする請求項1に記載の圧縮機。 - 前記制御部は、
前記軸受温度が降下し前記アラーム発報温度より低くなった場合、前記アラーム発報温度を有効にして前記電動機の運転を継続するように制御することを特徴とする請求項4に記載の圧縮機。 - 前記制御部は、
前記第1の軸受温度上昇パターンとして、
グリース充填時に前記電動機の前記軸受温度が変動するパターン、経年劣化による前記電動機の前記軸受温度が変動するパターン及び軸受異常による前記電動機の前記軸受温度が変動するパターンを記憶しておくことを特徴とする請求項1に記載の圧縮機。 - 前記制御部は、
前記第1の軸受温度上昇パターンとして、
前記グリース充填時の前記圧縮機の運転状態に対応したパターン、前記電動機のモータの種類に対応したパターン又はグリース充填量に対応したパターンを記憶しておくことを特徴とする請求項1に記載の圧縮機。 - 前記制御部は、
前記比較の際に、実際の前記軸受の第2の軸受温度上昇パターンと、温度上昇の傾き、初期温度又は波形の安定性が近似する前記第1の軸受温度上昇パターンを選定することを特徴とする請求項1に記載の圧縮機。 - グリース給油式の軸受を有する電動機が搭載された圧縮機の制御方法であって、
前記軸受の温度を検知する温度検知ステップと、
予め前記軸受の軸受温度上昇を把握して第1の軸受温度上昇パターンとして記憶しておく記憶ステップと、
実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較する比較ステップと、
前記比較の結果、前記軸受温度の上昇がグリース充填による温度上昇と判定された場合、前記アラームを発報しないように制御する制御ステップと、
を有することを特徴とする圧縮機の制御方法。 - 前記温度検知ステップにおいて前記軸受温度の上昇を検知した場合、前記軸受温度が初期値である第1のアラーム発報温度を超過したか否かを判定する判定ステップと、
前記判定ステップにおける判定の結果、前記軸受温度が前記第1のアラーム発報温度を超過した場合、
前記比較ステップにおいて実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、
前記比較の結果、前記軸受温度の上昇が前記グリース充填による温度上昇と判定された場合、
前記制御ステップにおいて、前記第1のアラーム発報温度を前記第1のアラーム発報温度より高い第2のアラーム発報温度まで上げて、前記アラームを発報しないように制御して前記電動機の運転を継続し、
前記比較の結果、前記軸受温度の上昇が前記電動機の前記軸受の異常による温度上昇と判定された場合、
前記制御ステップにおいて、前記第1のアラーム発報温度に基づいて前記アラームを発報して前記電動機の運転を停止するように制御することを特徴とする請求項9に記載の圧縮機の制御方法。 - 前記温度検知ステップにおいて前記軸受温度の上昇を検知した場合、前記軸受温度が初期値であるアラーム発報温度を超過したか否かを判定する判定ステップと、
前記判定ステップにおける判定の結果、前記軸受温度が前記アラーム発報温度を超過した場合、
前記比較ステップにおいて実際の前記軸受の第2の軸受温度上昇パターンと、予め記憶された前記第1の軸受温度上昇パターンとを比較し、
前記比較の結果、前記軸受温度の上昇が前記グリース充填による温度上昇と判定された場合、
前記制御ステップにおいて、前記アラーム発報温度を無効にして前記アラームを発報しないように制御して前記電動機の運転を継続し、
前記比較の結果、前記軸受温度の上昇が前記電動機の前記軸受の異常による温度上昇と判定された場合、
前記制御ステップにおいて、前記アラーム発報温度に基づいて前記アラームを発報して前記電動機の運転を停止するように制御することを特徴とする請求項9に記載の圧縮機の制御方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380015306.1A CN118414781A (zh) | 2022-03-14 | 2023-01-27 | 压缩机和压缩机的控制方法 |
JP2024507552A JPWO2023176168A1 (ja) | 2022-03-14 | 2023-01-27 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-039764 | 2022-03-14 | ||
JP2022039764 | 2022-03-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023176168A1 true WO2023176168A1 (ja) | 2023-09-21 |
Family
ID=88022768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/002630 WO2023176168A1 (ja) | 2022-03-14 | 2023-01-27 | 圧縮機及び圧縮機の制御方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023176168A1 (ja) |
CN (1) | CN118414781A (ja) |
WO (1) | WO2023176168A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04187802A (ja) * | 1990-11-21 | 1992-07-06 | Toshiba Corp | 軸受メタル温度監視装置 |
JP2010076057A (ja) * | 2008-09-26 | 2010-04-08 | Nsk Ltd | 主軸装置用異常検出装置、主軸装置用異常検出方法、及び主軸装置、並びに工作機械 |
JP2019158149A (ja) * | 2019-06-06 | 2019-09-19 | 株式会社日立産機システム | 潤滑剤注入監視方法、潤滑剤注入監視装置、及び潤滑剤注入監視システム |
WO2020144725A1 (ja) * | 2019-01-07 | 2020-07-16 | 三菱電機株式会社 | 診断システム及び冷凍サイクル装置 |
-
2023
- 2023-01-27 CN CN202380015306.1A patent/CN118414781A/zh active Pending
- 2023-01-27 JP JP2024507552A patent/JPWO2023176168A1/ja active Pending
- 2023-01-27 WO PCT/JP2023/002630 patent/WO2023176168A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04187802A (ja) * | 1990-11-21 | 1992-07-06 | Toshiba Corp | 軸受メタル温度監視装置 |
JP2010076057A (ja) * | 2008-09-26 | 2010-04-08 | Nsk Ltd | 主軸装置用異常検出装置、主軸装置用異常検出方法、及び主軸装置、並びに工作機械 |
WO2020144725A1 (ja) * | 2019-01-07 | 2020-07-16 | 三菱電機株式会社 | 診断システム及び冷凍サイクル装置 |
JP2019158149A (ja) * | 2019-06-06 | 2019-09-19 | 株式会社日立産機システム | 潤滑剤注入監視方法、潤滑剤注入監視装置、及び潤滑剤注入監視システム |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023176168A1 (ja) | 2023-09-21 |
CN118414781A (zh) | 2024-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101458438B1 (ko) | 컴프레서 및 냉동 시스템 | |
EP2881582A1 (en) | Pump condition monitoring and recording | |
JP2007286904A (ja) | 電動機の制御装置及び制御方法 | |
US9512851B2 (en) | Electronic apparatus with fan motor | |
JP2007518036A (ja) | 自動変速機の油温センサ欠陥検出方法 | |
JP2007137586A (ja) | ボールねじ式エレベータの制御構造 | |
US9745979B2 (en) | Method for rotary positive displacement pump protection | |
JP2000205140A (ja) | 圧縮機の予防保全方法及び装置 | |
WO2023176168A1 (ja) | 圧縮機及び圧縮機の制御方法 | |
CN112761932A (zh) | 一种水泵的保护方法 | |
JP2009159750A (ja) | モータの異常検出装置 | |
US9753456B2 (en) | Device for detecting decrease in rotational speed of cooling fan of machine tool | |
US7296978B2 (en) | Compressed air system utilizing a motor slip parameter | |
JP6847216B2 (ja) | 冷凍サイクル装置 | |
JPH0847211A (ja) | モータの試験装置 | |
JPH0816563B2 (ja) | ターボ冷凍機のサージ検出装置 | |
US10495084B2 (en) | Method for twin screw positive displacement pump protection | |
JP4395700B2 (ja) | 高圧クーラント供給装置 | |
KR101073081B1 (ko) | 모터의 과열 방지 장치 | |
JPH05263607A (ja) | 蒸気タービン異常検出装置 | |
US10090797B2 (en) | Motor control apparatus | |
JPS6056853A (ja) | 工具異常監視装置 | |
US20220196024A1 (en) | Surge control systems and methods for dynamic compressors | |
EP3334939A1 (en) | Method for twin screw positive displacement pump protection | |
CN115111163A (zh) | 压缩机保护模块及保护方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23770130 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024507552 Country of ref document: JP Kind code of ref document: A |