WO2023175874A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2023175874A1
WO2023175874A1 PCT/JP2022/012501 JP2022012501W WO2023175874A1 WO 2023175874 A1 WO2023175874 A1 WO 2023175874A1 JP 2022012501 W JP2022012501 W JP 2022012501W WO 2023175874 A1 WO2023175874 A1 WO 2023175874A1
Authority
WO
WIPO (PCT)
Prior art keywords
blower
air conditioner
ventilation device
operating state
rotation speed
Prior art date
Application number
PCT/JP2022/012501
Other languages
French (fr)
Japanese (ja)
Inventor
優人 浦辺
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/012501 priority Critical patent/WO2023175874A1/en
Publication of WO2023175874A1 publication Critical patent/WO2023175874A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content

Definitions

  • the present disclosure relates to an air conditioner.
  • a ventilation device When air conditioning spaces where moisture tends to accumulate, such as bathrooms, a ventilation device may be required in addition to an air conditioner.
  • air conditioners equipped with ventilation devices For example, in an air conditioner equipped with a ventilation device, when the ventilation fan is driven, the air conditioning fan is controlled in relation to the ventilation fan to prevent fluctuations in air conditioning performance. Disclosed. (For example, Patent Document 1).
  • the air conditioner becomes large-sized, resulting in deterioration of workability, limitations on installation locations, and the capacity of the ventilation device provided in the air conditioner.
  • the exhaust route shape, length, pressure drop.
  • the air conditioner and ventilation system will not be bulky, and you will have more flexibility in where they can be installed, which will reduce the impact on workability. It can be suppressed.
  • each is controlled independently by a different operation system, so it is not possible to determine the operating status of the ventilation system from the air conditioner. There is a problem.
  • the present disclosure has been made in view of the above circumstances, and provides an air conditioner that can easily determine the operating state of a ventilation device that is independently controlled by an operation system different from that of the air conditioner. This is one of the purposes.
  • An air conditioner includes an inlet for sucking air from an air-conditioned space, an air blower, a heat exchanger, and an outlet for blowing air into the air-conditioned space, a ventilation duct hole for connecting via a duct to a ventilation system that is independently controlled by an operation system different from the operation system of the air conditioner; and a control unit that determines the operating state of the ventilation device based on the control state of the blower in a state where the ventilation device is connected to the ventilation duct hole via the duct.
  • FIG. 1 is a system diagram showing an example of an air conditioning system according to a first embodiment.
  • FIG. 1 is a perspective view showing an example of the appearance of the indoor unit according to the first embodiment.
  • FIG. 2 is a perspective view showing an example of the internal configuration of the cabinet of the indoor unit according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing an example of the internal configuration of the indoor unit according to the first embodiment.
  • 1 is a cross-sectional view showing an example of the structure of a fan motor according to a first embodiment.
  • FIG. 1 is a perspective view showing an example of the appearance of the ventilation device according to the first embodiment.
  • FIG. 1 is a cross-sectional view showing an example of the internal configuration of the ventilation device according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of an air conditioning control section and a fan motor drive section according to the first embodiment.
  • FIG. 3 is a diagram showing the correlation between speed command voltage and rotation speed in the case of the centrifugal fan according to the first embodiment.
  • FIG. 3 is a diagram showing the correlation between speed command voltage and rotation speed in the case of the axial fan according to the first embodiment.
  • 5 is a flowchart showing an example of a driving state determination process according to the first embodiment.
  • FIG. 7 is a block diagram showing an example of the configuration of an air conditioning control section and a fan motor drive section according to a second embodiment.
  • FIG. 7 is a diagram showing the correlation between current value and rotation speed in the case of a centrifugal fan according to a second embodiment.
  • FIG. 7 is a diagram showing the correlation between current value and rotation speed
  • FIG. 1 is a system diagram showing an example of an air conditioning system according to this embodiment.
  • the illustrated air conditioning system SYS includes an air conditioner 1 and a ventilation device 40.
  • the air conditioner 1 includes an indoor unit 10, an outdoor unit 20, a liquid extension pipe 2 and a gas extension pipe 3 that connect the indoor unit 10 and the outdoor unit 20, and a remote control 30.
  • the indoor unit 10 is installed in a closed space in a building (hereinafter referred to as "indoor"), which is an air-conditioned space.
  • the indoor unit 10 includes an indoor heat exchanger (not shown) that executes a part of the refrigeration cycle.
  • the outdoor unit 20 is installed outdoors and includes a compressor that executes part of a refrigeration cycle, an outdoor heat exchanger, an expansion valve (all not shown), and the like.
  • the compressor, outdoor heat exchanger, and expansion valve of the outdoor unit 20 and the indoor heat exchanger of the indoor unit 10 are connected to refrigerant pipes (liquid extension pipe 2, gas extension pipe 3, and connected by pipes (not included).
  • a ventilation duct 6 for exhausting indoor air to the outdoors is connected to the indoor unit 10, and the other end of the ventilation duct 6 is connected to a ventilation device 40.
  • the ventilation device 40 is further connected to the other end of a ventilation duct 7, one end of which is piped to the outside. Air discharged from the indoor unit 10 passes through the ventilation duct 6, the ventilation device 40, and the ventilation duct 7, and is exhausted to the outside.
  • the remote controller 30 is a remote controller that accepts user operations regarding ON/OFF (start/stop) of cooling or heating operation of the air conditioner 1, temperature settings during operation, and the like.
  • the remote control 30 is connected to the indoor unit 10 via a wired signal line 4.
  • the remote controller 30 outputs an operation signal based on a user's operation on the remote controller 30.
  • the operation signal output from the remote controller 30 is transmitted via the signal line 4 to the air conditioning control section 150 provided in the indoor unit 10.
  • the air conditioning control unit 150 is configured by a board including electronic components and circuits for controlling each part of the air conditioner 1.
  • the remote controller 50 is a remote controller that accepts user operations for turning on/off (starting/stopping) the operation of the ventilation system 40, setting air volume during operation, and the like.
  • the remote control 50 is connected to the ventilation device 40 via a wired signal line 5.
  • the remote controller 50 outputs an operation signal based on a user's operation on the remote controller 50.
  • the operation signal output from the remote control 50 is transmitted to the ventilation device control unit 450 of the ventilation device 40 via the signal line 5.
  • the ventilator control unit 450 is configured by a board including electronic components and circuits for controlling each part of the ventilator 40.
  • the operation system of the air conditioner 1 (the operation system in which the operation signal is sent from the remote control 30 to the indoor unit 10 via the signal line 4) and the operation system of the ventilation device 40 (the operation system in which the operation signal is sent from the remote control 50 to the indoor unit 10 via the signal line 5)
  • the air conditioner 1 is independently controlled by the operation system of the air conditioner 1.
  • the ventilation device 40 is independently controlled by the operation system of the ventilation device 40. In other words, the air conditioner 1 and the ventilation device 40 are connected to the indoor unit 10 and the ventilation device 40 by the ventilation duct 6, but are not electrically connected and are controlled separately by operating separate remote controllers. will be held.
  • the specifications of the ventilation device 40 are selected depending on the volume of the room to be ventilated. Further, when selecting the specifications, the specifications are selected by taking into consideration the pressure loss of the air conditioner 1 and the duct pressure loss of the ventilation duct, which varies depending on each building. Since the route and length of the ventilation duct differ depending on each building, the specifications of the ventilation system 40 suitable for each building are selected.
  • FIG. 2 is a perspective view showing an example of the appearance of the indoor unit according to the present embodiment.
  • the indoor unit 10 covers a cabinet 11 that is a substantially rectangular box (a bottomed housing with a square cross section) with an open bottom side when installed indoors (on the ceiling), and the open side (bottom side) of the cabinet 11.
  • a rectangular decorative panel 12 is provided.
  • the decorative panel 12 has an inlet 13 (opening) and an outlet 14 formed therein.
  • the cabinet 11 is provided with a ventilation duct hole 15 to which the ventilation duct 6 is connected.
  • FIG. 3 is a perspective view showing an example of the internal configuration of the cabinet of the indoor unit according to the present embodiment. Note that this FIG. 3 shows a state in which the decorative panel 12 has been removed from FIG. 2, and the side to which the decorative panel 12 is attached is the upper side in the illustration. Moreover, FIG. 4 is a sectional view showing an example of the internal configuration of the indoor unit according to the present embodiment.
  • a blower 110 is installed on the blower room 16 side of the cabinet 11.
  • the blower 110 includes a fan motor 111, fans 112 and 113, and a fan casing 114.
  • Fan motor 111 is a motor for rotating fans 112 and 113.
  • Fans 112 and 113 are attached to a rotating shaft of a fan motor 111.
  • two sirocco type fans 112 and 113 are installed on both sides of the fan motor 111 on both shafts.
  • the illustrated configuration of the blower 110 is an example, and the type of fan, number of fans, number of fan motors, etc. may vary depending on the size and cost of the indoor unit 10 (unit), and the capacity required of the air conditioner 1. Set.
  • An indoor heat exchanger 120 is arranged on the wind blowing side of the blower 110.
  • the piping component 125 is provided with refrigerant piping and the like connected to the indoor heat exchanger 120.
  • An air passage 17 is configured on the downstream side of the indoor heat exchanger 120 (downstream side of the air from the blower 110), and an inner cover is provided to insulate the air heat exchanged in the indoor heat exchanger 120 from the outside of the indoor unit 10. , are arranged inside the top and side surfaces of the cabinet 11 so as to surround the indoor heat exchanger 120.
  • a drain pan 19 that receives condensed water generated during heat exchange and serves as one of the elements constituting the air passage 17 is arranged at the lower part of the indoor heat exchanger 120 (on the decorative panel 12 side).
  • a decorative panel 12 is attached to the lower part of the drain pan 19.
  • a filter 121 is provided at the suction port 13 (opening) communicating with the blower chamber 16 of the cabinet 11 to prevent dust and the like from entering the interior of the indoor unit 10.
  • the filter 121 is supported by a grill 131 provided at the suction port 13 or by the decorative panel itself.
  • the grill 131 has a mesh structure that functions as a blindfold.
  • the air outlet 14 formed in the decorative panel 12 communicates with an air passage 17 formed by an inner cover 18 and a drain pan 19.
  • the fan casing 114 includes a bell mouth for smoothly introducing air sucked in from the suction port 13 into the fans 112, 113, and is arranged so as to surround the fans 112, 113.
  • Air sucked in from the suction port 13 flows toward the indoor heat exchanger 120 by rotating the fans 112 and 113, undergoes heat exchange in the indoor heat exchanger 120, passes through the air path 17, and is blown out from the blowout port 14.
  • a wind direction vane 141 that can control the blowing direction in the vertical direction is installed at the blower outlet 14 .
  • the air outlet 14 may be provided with a wind direction flap that can control the air blowing direction in the left and right directions.
  • a ventilation duct hole 15 is provided on the side surface of the blower room 16 to connect the ventilation duct 6.
  • the diameter of the ventilation duct hole 15 is selected depending on the diameter of the ventilation duct 6, or the size and shape are designed in accordance with the pressure loss design within the air conditioner 1. Note that the ventilation duct hole 15 does not need to be circular, and may be oval or square. For example, the specifications of the ventilation duct hole 15 are determined from those specified by industrial standards.
  • a pressure loss design may be made such as providing an obstacle (not shown) between the ventilation duct hole 15 and the blower 110. Thereby, when the air is exhausted through the ventilation device 40, it is also possible to suppress the deterioration of the performance of the air conditioner 1 to some extent.
  • FIG. 5 is a cross-sectional view showing an example of the structure of the fan motor according to this embodiment.
  • the illustrated fan motor 111 is a brushless DC motor.
  • the fan motor 111 mainly includes a rotor 161 and a stator 162.
  • the rotor 161 is arranged inside the stator 162 and has a magnet 165 made of a permanent magnet arranged on the outer circumferential side of the rotating shaft 164 facing the stator core 163.
  • the magnet 165 is fastened to the rotating shaft 164.
  • resin, rubber, or the like may be interposed between the magnet 165 and the rotating shaft 164.
  • the rotating shaft 164 is held by a bearing (not shown) and rotates in the rotational direction.
  • the stator 162 includes a stator core 163 configured by laminating electromagnetic steel plates, an insulator 167 for insulating the winding 166, and a stator core 163 that is wound around each slot of the stator core 163 that is integrated with the insulator 167.
  • the winding 166 is configured to include a winding 166.
  • the fan motor 111 includes a fan motor drive unit 200 that includes a board on which a circuit for driving the fan motor 111 is mounted.
  • the fan motor drive unit 200 may not be built into the fan motor 111 but may be provided in a higher-level system (for example, on the air conditioner 1 side). In this embodiment, an example of a configuration in which the fan motor drive section 200 is built into the fan motor 111 will be described.
  • FIG. 6 is a perspective view showing an example of the appearance of the ventilation device according to the present embodiment.
  • FIG. 7 is a sectional view showing an example of the internal configuration of the ventilation device according to the present embodiment.
  • the casing of the ventilation device 40 is provided with duct connection ports 41 and 42, a power line connection portion 43, and a ceiling mount fitting 44.
  • the duct connection port 41 is a duct hole on the suction side (upstream side) to which the ventilation duct 6 is connected.
  • the duct connection port 42 is a duct hole on the outlet side (downstream side) to which the ventilation duct 7 is connected.
  • a power line that supplies power to the ventilation device 40 is connected to the power line connection portion 43 .
  • a plurality of ceiling mount fittings 44 are provided and are used as a support part when installing the ventilation device 40.
  • the blower 45 includes a ventilation fan 46, a fan motor (not shown) for rotating the ventilation fan 46, a fan casing 47 for allowing air to flow smoothly through the ventilation device 40, and the like.
  • the ventilation device control unit 450 is connected to the signal line 5 from the remote controller 50, and controls the operating state according to the user's operation on the remote controller 50. For example, in the ON state (operating state), the ventilation system control unit 450 drives the blower 45 of the ventilation system 40 to control the air taken in from the duct connection port 41 (the air sent from the indoor unit 10). The indoor air) is blown out from the duct connection port 42 through the ventilation duct 7 to the outside. On the other hand, in the operation OFF state (operation stopped state), the ventilation device control unit 450 stops the blower 45 of the ventilation device 40, so that the ventilation function is stopped.
  • ON state operating state
  • the ventilation system control unit 450 drives the blower 45 of the ventilation system 40 to control the air taken in from the duct connection port 41 (the air sent from the indoor unit 10). The indoor air) is blown out from the duct connection port 42 through the ventilation duct 7 to the outside.
  • the ventilation device control unit 450 stops the blower 45 of the ventilation device 40, so that the ventilation
  • the air conditioning control unit 150 controls the execution of the refrigeration cycle (compressor of the outdoor unit 20) and the operation of the blower 110 based on the operation signal from the remote controller 30.
  • the air conditioning control unit 150 is installed in the indoor unit 10 as shown in FIG.
  • the indoor unit 10 and the outdoor unit 20 may be provided separately.
  • the air conditioning control unit 150 determines the operating state of the ventilation device 40 connected via the ventilation duct 6. For example, the air conditioning control unit 150 determines the operating state of the ventilation device 40 based on the control state of the blower 110.
  • the air conditioning control unit 150 determines the operating state of the ventilation device 40 based on the control state of the blower 110.
  • FIG. 8 a configuration for determining the operating state of the ventilation device 40 based on the control state of the blower 110 will be described in detail.
  • FIG. 8 is a block diagram showing an example of the configuration of the air conditioning control section and fan motor drive section according to the present embodiment.
  • the blower 110 includes a circuit including a fan motor drive unit 200 including a board on which a power IC 201 and a control IC 202 are mounted, and a magnetic sensor 210 (for example, a Hall IC) that detects the position of the rotor 161 of the fan motor 111. It is equipped with Power IC 201 and winding 166 of stator 162 are connected via winding terminals.
  • the board of the fan motor drive section 200 is connected to the board of the air conditioning control section 150 via lead wires.
  • control IC 202 may be composed of, for example, a microcomputer. Further, the control IC 202 and the power IC 201 may be configured as one IC.
  • the power IC 201 switches at appropriate timing depending on the magnetic pole position of the magnet 165 of the rotor 161. As a result, the fan motor 111, which is a brushless DC motor, obtains rotational power. This switching signal is generated by the control IC 202.
  • the control IC 202 outputs a switching signal according to the speed command voltage (Vsp) output from the air conditioning control unit 150 to the power IC 201.
  • Power IC 201 applies voltage to winding 166 of stator 162 in response to this switching signal. This generates a magnetic field in the stator 162, and the rotor 161 is drawn in, causing the fan motor 111 to rotate or change its rotational speed. That is, the speed command voltage (Vsp) from the air conditioning control unit 150 determines the rotation speed of the blower 110 (fan motor 111). Note that the "number of rotations" refers to the number of rotations per unit time. Further, the control IC 202 outputs a rotation speed signal indicating the rotation speed of the blower 110 to the air conditioning control unit 150 based on the detection result of the magnetic sensor 210.
  • the air conditioning control unit 150 is configured to include a CPU (Central Processing Unit) or a microcomputer, a memory (storage unit), various devices, and the like.
  • the illustrated air conditioning control unit 150 includes a voltage control unit 151, a rotation speed detection unit 152, an operating state determination unit 153, and an output control unit 154 as functional configurations realized by, for example, a CPU executing a program. We are prepared.
  • the air conditioning control unit 150 also includes a storage unit 155 that stores various data.
  • the voltage control unit 151 outputs a bus voltage (Vdc) for rotating the fan motor 111 and a control voltage (Vcc) for driving the control IC 202 to the fan motor drive unit 200. Further, the voltage control section 151 controls a speed command voltage (Vsp) for driving the blower 110 so that the rotation speed becomes a desired rotation speed, and outputs the speed command voltage (Vsp) to the fan motor drive section 200 (control IC 202).
  • Vdc bus voltage
  • Vcc control voltage
  • the rotation speed detection section 152 detects the rotation speed of the blower 110 by acquiring the rotation speed signal output from the fan motor drive section 200 (control IC 202). As a result, information on the rotation speed of the blower 110 is transmitted (feedback) from the fan motor drive section 200 to the air conditioning control section 150.
  • the voltage control unit 151 performs feedback control of the rotation speed of the fan 110 based on information on the rotation speed of the fan motor 111 detected by the rotation speed detection unit 152.
  • the voltage control unit 151 controls the speed command voltage (Vsp) based on the detected rotation speed of the fan motor 111 so that the blower 110 has a predetermined rotation speed.
  • the fan motor 111 is driven by the fan motor drive section 200 according to its speed command voltage (Vsp), and the rotation speed is determined.
  • the relationship between the rotational speed of the indoor unit 10 due to the load and the speed command voltage (Vsp) differs depending on the type of fan of the blower 110.
  • centrifugal fans spind fans, turbo fans, cross flow fans, etc.
  • the force of the blades bending the wind is small, so the torque is small. Therefore, the larger the pressure loss, the smaller the torque load, and the smaller the speed command voltage (Vsp) for producing the desired rotation speed.
  • the operating state determination unit 153 uses the fact that the relationship between the rotation speed of the blower 110 and the speed command voltage (Vsp) changes depending on the load on the indoor unit 10 to determine whether the ventilation device 40 connected via the ventilation duct 6 Determine driving status.
  • FIG. 9 is a diagram showing the correlation between the speed command voltage (Vsp) and the rotation speed in the case of a centrifugal fan.
  • the horizontal axis is the rotation speed of the blower 110
  • the vertical axis is the speed command voltage (Vsp).
  • (A) in FIG. 9 shows conditions for determining that the ventilation device 40 is in the ON state.
  • (B) of FIG. 9 shows conditions for determining that the ventilation device 40 is in an OFF state.
  • the speed command voltage threshold (Vspm) is a threshold for determining whether the ventilation device 40 is in an ON state or in an OFF state.
  • the speed command voltage threshold (Vspm) is the actual speed command voltage (Vsp) when the ventilation device 40 is in an ON state, and the actual speed command voltage (Vsp) when the ventilation device 40 is in an OFF state. This is a design value set in advance based on the following.
  • the conditions for determining that the ventilation device 40 is in the operation ON state are such that the speed command voltage (Vsp) is the speed command voltage threshold when compared under the same rotation speed condition. (Vspm) (Vsp ⁇ Vspm).
  • the conditions for determining that the ventilation device 40 is in the OFF state are such that when compared under the same rotation speed condition, the speed command voltage (Vsp) is The voltage is equal to or higher than the voltage threshold (Vspm) (Vsp ⁇ Vspm).
  • the operating state determination unit 153 determines whether the ventilation device 40 is operating based on the speed command voltage (Vsp) controlled by the voltage control unit 151, the rotation speed of the blower 110 detected by the rotation speed detection unit 152, and the above-mentioned determination condition information. Determine driving status.
  • Vsp speed command voltage
  • the operating state determination unit 153 compares the speed command voltage (Vsp) and the speed command voltage threshold (Vspm) under the same condition when the rotation speed of the blower 110 is the same, and the speed command voltage (Vsp) is compared with the speed command voltage threshold (Vspm). If it is less than the threshold value (Vspm) (Vsp ⁇ Vspm), it is determined that the operating state of the ventilation device 40 is in the ON state. On the other hand, when the speed command voltage (Vsp) is equal to or higher than the speed command voltage threshold (Vspm) (Vsp ⁇ Vspm), the operating state determining unit 153 determines that the operating state of the ventilation device 40 is the operating OFF state. do.
  • the determination conditions are different from those for the above-mentioned centrifugal fan.
  • an axial fan when the pressure drop increases, the force that pushes the wind forward (in the axial direction) decreases, so the wind flows in the centrifugal direction of the blades. Since a larger torque is required to blow air in the centrifugal direction, a larger torque is generated. Therefore, the larger the pressure loss, the larger the torque load, and the larger the speed command voltage (Vsp) for producing the desired rotation speed.
  • Vsp speed command voltage
  • FIG. 10 is a diagram showing the correlation between the speed command voltage (Vsp) and the rotation speed in the case of an axial fan.
  • the horizontal axis is the rotation speed of the blower 110
  • the vertical axis is the speed command voltage (Vsp).
  • (A) of FIG. 10 shows the conditions for determining that the ventilation device 40 is in the ON state.
  • (B) of FIG. 10 shows conditions for determining that the ventilation device 40 is in an OFF state.
  • the conditions for determining that the ventilation device 40 is in the ON state are such that the speed command voltage (Vsp) is the speed command voltage threshold when compared under the same rotation speed condition. (Vspm) or more (Vsp ⁇ Vspm).
  • the conditions for determining that the ventilation device 40 is in the OFF state are such that when compared under the same rotation speed condition, the speed command voltage (Vsp) is It is less than the voltage threshold (Vspm) (Vsp ⁇ Vspm).
  • the determination condition information shown in FIG. 10 is stored in the storage unit 155.
  • the operating state determination unit 153 compares the speed command voltage (Vsp) and the speed command voltage threshold (Vspm) under the same condition when the rotation speed of the blower 110 is the same, and the speed command voltage (Vsp) is compared with the speed command voltage threshold (Vspm). If the threshold value (Vspm) or more (Vsp ⁇ Vspm), it is determined that the operating state of the ventilation device 40 is in the ON state.
  • the operating state determining unit 153 determines that the operating state of the ventilation device 40 is in the OFF state. do.
  • the magnitude relationship between the speed command voltage (Vspc) and the speed command voltage threshold (Vspm) differs depending on the type of fan used. Therefore, in the control for determining the operating state of the ventilation device 40, the magnitude relationship between the speed command voltage (Vspc) and the speed command voltage threshold (Vspm), which are the determination conditions, is changed depending on the type of fan.
  • the output control unit 154 outputs information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153 to the remote controller 30. Further, the output control unit 154 may output information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153 to the mobile terminal 70.
  • FIG. 11 is a diagram illustrating a configuration example regarding output of information based on the operating state of the ventilation device according to the present embodiment.
  • the indoor unit 10 and the remote controller 30 are connected by a wired signal line 4.
  • the indoor unit 10 and the remote controller 30 may be connected by wireless communication.
  • the remote controller 30 can be operated by the user to command the start or stop of the refrigeration cycle, set air conditioning operation modes such as cooling, heating, and drying, set the temperature of the blown air, and control the direction and speed of the blown air. Operation signals for setting air conditioning conditions such as the above are transmitted to the indoor unit 10 via the signal line 4.
  • the output control unit 154 of the indoor unit 10 transmits information based on the operating state of the ventilation device 40 to the remote controller 30 via this signal line 4.
  • the remote controller 30 includes a display section 31 and displays information based on the operating state of the ventilation device 40 transmitted from the indoor unit 10 on the display section 31.
  • the display section 31 includes a display device such as a liquid crystal display.
  • the output control unit 154 may transmit information based on the operating state of the ventilation device 40 to the remote control 30 or the mobile terminal 70 only when it is determined that the ventilation device 40 is in the ON state.
  • the information based on the operating state of the ventilation device 40 is information indicating the operating state of the ventilation device 40, for example.
  • the information indicating the operating state is, for example, "operating ON”, “running”, “driving”, “operating OFF”, “stopped”, etc.
  • the information based on the operating state of the ventilation device 40 may be information that presents appropriate operation details to the user based on the operating state of the ventilation device 40.
  • the air conditioner 1 sucks in room air, exchanges heat with it, and blows out cold air.
  • the ventilation device 40 is in the ON state, the amount of air taken in decreases, so the desired amount of air cannot be secured, and the maximum capacity may not be secured. Also, unnecessary power is consumed.
  • ⁇ It is more efficient to cool down the air conditioner by stopping the ventilation system during cooling operation.Why don't you stop the ventilation system?'', the optimal operating state can be suggested to the user. I can do it.
  • the mobile terminal 70 used by the user may be used instead of or in addition to the remote control 30.
  • the indoor unit 10 may be connectable to the mobile terminal 70 via wireless communication.
  • the mobile terminal 70 is an electronic device used by a user, such as a smartphone or a tablet-type PC (Personal Computer).
  • the output control unit 154 includes a communication device compatible with wireless communication such as Wi-Fi (registered trademark), and transmits information based on the operating state of the ventilation device 40 to the mobile terminal 70.
  • the mobile terminal 70 includes a display section 71 and displays information based on the operating state of the ventilation device 40 transmitted from the indoor unit 10 on the display section 71.
  • the display section 71 includes a display device such as a liquid crystal display. Similar to the remote control 30, the mobile terminal 70 obtains similar effects by displaying information based on the operating state of the ventilation device 40.
  • FIG. 12 is a flowchart illustrating an example of the driving state determination process according to the present embodiment. Here, the processing operation when the fan of the blower 110 is a centrifugal fan will be described.
  • the air conditioning control unit 150 acquires an operation signal for operation ON from the remote controller 30 (step S101).
  • the air conditioning control unit 150 uses the air conditioning conditions set in advance, such as the blowing air temperature, blowing air direction, and wind speed, or based on the new settings set by the user by operating the remote control 30. Cooling operation or heating operation is started based on air conditioning conditions such as a set temperature, and the compressor (not shown) of the outdoor unit 20 is operated and the fan motor 111 is rotated at a target rotation speed. Specifically, the air conditioning control unit 150 transmits a speed command voltage (Vspc) for achieving the target rotation speed to the fan motor drive unit 200, so that the fan motor 111 rotates and the blower 110 is operated. will be started. (Step S103)
  • Vspc speed command voltage
  • step S105 when the blower 110 starts operating, information on the actual rotational speed (actual rotational speed) of the blower 110 is fed back from the fan motor drive section 200 to the air conditioning control section 150.
  • the air conditioning control unit 150 acquires information on the actual rotation speed of the blower 110 from the fan motor drive unit 200 (step S105).
  • the air conditioning control unit 150 calculates a speed command voltage (Vspc) based on the information on the actual rotation speed of the blower 110 so as to reach the target rotation speed, and controls the speed command voltage (Vspc) to the calculated speed command voltage (Vspc) (step S107). .
  • the air conditioning control unit 150 reads the determination condition based on the correlation between the speed command voltage (Vsp) and the rotation speed (see FIG. 9) from the storage unit 155, and sets the speed command voltage (Vsp) and the speed command voltage threshold (Vspm). are compared when the rotational speed of the blower 110 is the same (step S109).
  • step S109 if the speed command voltage (Vsp) is less than the speed command voltage threshold (Vspm) (Vsp ⁇ Vspm), the air conditioning control unit 150 determines that the ventilation device 40 is in the ON state (operating). state) (step S111).
  • the air conditioning control unit 150 determines in step S111 that the ventilation device 40 is in the ON state, it transmits information indicating that the ventilation device 40 is in the ON state to the remote controller 30. As a result, the remote control 30 displays information indicating that the ventilation device 40 is in the ON state. Note that instead of or in addition to the information indicating that the ventilation system 40 is in the ON state, information indicating appropriate operation details based on the operating state of the ventilation system 40 (for example, "In cooling operation, the ventilation system is turned off.” "How about turning off the ventilation system?").
  • the air conditioning control unit 150 determines whether or not the operation of the air conditioner 1 is turned off using the remote controller 30, based on the operation signal transmitted from the remote controller 30 (step S115). If the air conditioning control unit 150 determines that the operation OFF operation has not been performed using the remote controller 30 (NO), the process returns to step S105. On the other hand, if the air conditioning control unit 150 determines that the operation to turn off the operation has been performed using the remote controller 30 (YES), the air conditioner control unit 150 stops the operation of the air conditioner 1 (step S117), and ends the process.
  • step S109 determines that the ventilation device 40 is in an OFF state (not in operation).
  • step S121 If the air conditioning control unit 150 determines in step S121 that the ventilation device 40 is in the OFF state, the air conditioner 1 is turned OFF using the remote controller 30 based on the operation signal transmitted from the remote controller 30. It is determined whether or not it has been performed (step S123). If the air conditioning control unit 150 determines that the operation OFF operation has not been performed using the remote controller 30 (NO), the process returns to step S105. On the other hand, if the air conditioning control unit 150 determines that the operation to turn off the operation has been performed using the remote controller 30 (YES), the air conditioner control unit 150 stops the operation of the air conditioner 1 (step S125), and ends the process.
  • the "relationship between the rotation speed and the speed command voltage" at the time of normal load is memorized, and the speed command voltage at the time of normal load and the relationship controlled by the voltage control unit 151 are A method may also be used in which the difference from the speed command voltage (Vspc) is measured, and when the difference exceeds a certain threshold, it is determined that the ventilation device 40 is in an OFF state.
  • Vspc speed command voltage
  • the operation state determination process shown in FIG. 12 is an example of the process when the fan of the blower 110 is a centrifugal fan, but in the case of an axial fan, the process in step S109 may be changed.
  • the air conditioning control unit 150 turns on the ventilation device 40 when the speed command voltage (Vsp) is equal to or higher than the speed command voltage threshold (Vspm) (Vsp ⁇ Vspm). It is determined that the vehicle is in the state (driving state) (step S111).
  • the air conditioning control unit 150 determines that the ventilation device 40 is in an OFF state (not in operation). Determination is made (step S121).
  • whether or not to perform the operating state determination process for determining the operating state of the ventilation device 40 according to the present embodiment can be set at the time of construction of the air conditioner 1, etc. For example, when the air conditioner 1 and the ventilation device 40 are not connected, the operation state determination process may not be performed. Furthermore, even if the air conditioner 1 and the ventilation device 40 are connected, if there is an intention not to perform the process of determining the operating state of the ventilation device 40, it is possible to leave the operation state determination process unimplemented. It is.
  • the pressure loss of the indoor unit 10 increases over time due to the accumulation of dust on the filter 121 and the like. Therefore, due to the accumulation of dust on the filter 121, etc., the speed command voltage gradually changes over time (decreases in the case of a centrifugal fan and increases in the case of an axial fan). If the increase or decrease in the speed command voltage over time straddles the speed command voltage threshold (Vspm) of the determination conditions (see FIGS. 9 and 10) stored in the storage unit 155, the operating state of the ventilation device 40 is changed to "operation". Even if it is OFF, it may be mistakenly determined that the operation is ON. Therefore, when the cumulative operating time of the air conditioner 1 has reached a predetermined cumulative time, the operating state determination process may be disabled.
  • Vspm speed command voltage threshold
  • the cumulative operating time of the air conditioner 1 is measured by the air conditioning control unit 150 and stored in the storage unit 155.
  • the air conditioning control unit 150 may have a function of displaying a "filter cleaning sign" on the remote control 30 or the mobile terminal 70 when the cumulative operating time reaches a predetermined cumulative time.
  • the air conditioning control unit 150 may use this cumulative driving time to invalidate the driving state determination process when the cumulative driving time has reached a predetermined cumulative time as described above.
  • the air conditioner 1 includes the suction port 13 that sucks air from the air-conditioned space (for example, indoors), the blower 110, and the indoor heat exchanger 120 (an example of a heat exchanger). ) and an air outlet 14 that blows out air into the air-conditioned space.
  • the air conditioner 1 also has a ventilation duct for connecting via a ventilation duct 6 (an example of a duct) to a ventilation device 40 that is independently controlled by an operation system different from the operation system of the air conditioner 1.
  • a hole 15 is provided.
  • the air conditioner 1 controls the blower 110 according to the control by the operation system of the air conditioner 1, and in a state where the ventilation device 40 is connected to the ventilation duct hole 15 via the ventilation duct 6,
  • the operating state of the ventilation device 40 is determined based on the control state of the blower 110.
  • the air conditioner 1 can support the user in optimal air conditioning operation in the air-conditioned space, taking into consideration the ventilation operation of the ventilation device 40.
  • the air conditioner 1 controls a speed command voltage (an example of a voltage) for driving the blower 110 so that the rotation speed of the blower 110 becomes a desired rotation speed (for example, a target rotation speed). Furthermore, the air conditioner 1 detects the rotation speed of the blower 110 driven by the speed command voltage (Vspc). The air conditioner 1 also stores in the storage unit 155 determination condition information (first information, see FIG. 9 or 10) based on the correlation between the rotation speed of the blower 110 and the speed command voltage (Vspc). . Then, the air conditioner 1 determines the operating state of the ventilation device 40 based on the speed command voltage (Vspc), the rotation speed of the blower 110, and the determination condition information.
  • a speed command voltage an example of a voltage
  • Vspc speed command voltage
  • the air conditioner 1 utilizes the fact that the relationship between the voltage that drives the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6.
  • the operating state of the device 40 can be easily determined.
  • the determination condition information includes information on a speed command voltage threshold (Vspm) indicating a threshold of the speed command voltage with respect to the rotation speed of the blower 110.
  • Vspm speed command voltage threshold
  • the air conditioner 1 determines the operating state of the ventilation device 40 based on the result of comparing the speed command voltage (Vspc) and the speed command voltage threshold (Vspm) under the condition that the rotation speed of the blower 110 is the same.
  • the air conditioner 1 utilizes the fact that the relationship between the voltage that drives the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6.
  • the operating state of the device 40 can be easily determined.
  • the operation system of the air conditioner 1 includes a remote control 30 that commands and sets the operation of the air conditioner 1.
  • the air conditioner 1 outputs information based on the determined operating state of the ventilation device 40 to the remote controller 30.
  • the air conditioner 1 can display the operating state of the ventilation device 40 on the remote control 30, so that the operating state of the ventilation device 40 can be easily communicated to the user.
  • the air conditioner 1 includes a communication device (communication unit) that can communicate with a mobile terminal 70 (an example of a terminal device) using wireless communication.
  • the air conditioner 1 outputs information based on the determined operating state of the ventilation device 40 to the mobile terminal 70 via the communication device.
  • the air conditioner 1 can display the operating state of the ventilation device 40 on the mobile terminal 70 carried by the user, so that the operating state of the ventilation device 40 can be easily communicated to the user.
  • the air conditioner 1 may transmit the operating state to the user through a buzzer, voice, or the like.
  • the air conditioner 1 may output, as information based on the operating state of the ventilation device 40, information that presents the user with appropriate operation details based on the operating state of the ventilation device 40. For example, based on the operating status of the ventilation system 40, the air conditioner 1 sends a message to the remote control 30 or mobile terminal 70 saying, "During cooling operation, it will be more efficient to turn off the ventilation system to cool the room. Why not stop the ventilation system?" ” may be displayed.
  • the air conditioner 1 can suggest to the user an optimal operating state that also takes into consideration the ventilation operation of the ventilation device 40, depending on the operating state of the ventilation device 40.
  • the operating state of the ventilator 40 was determined by setting a threshold value for the speed command voltage (Vspc), but in this embodiment, the current value flowing through the fan motor 111 is replaced with the speed command voltage. Make a judgment using .
  • This determination method is effective, for example, in the case of a configuration in which a circuit for driving the fan motor 111 is provided on a board on the indoor unit 10 side.
  • FIG. 13 is a block diagram showing an example of the configuration of the air conditioning control section and fan motor drive section according to the present embodiment.
  • the fan motor drive unit 200A is mounted on a board on the air conditioner 1 (here, the indoor unit 10) side.
  • the configuration corresponding to the air conditioning control section 150 in the first embodiment is an air conditioning control section 150A, and the air conditioning control section 150A includes a fan motor drive section 200A.
  • the blower 110A according to the present embodiment differs from the blower 110 according to the first embodiment in that it does not include a fan motor drive section.
  • the fan motor drive unit 200A includes a power IC 201A, a control IC 202A, and a current detection unit 203A.
  • the current detection unit 203A can measure the value of the current flowing through the windings of the fan motor 111. Since this current value has a correlation with the torque generated by the fan motor 111, the pressure loss load of the indoor unit 10 can be predicted from the current value. Therefore, it becomes possible to determine the operating state of the ventilation device 40 from information on this current value.
  • the power IC 201A and the control IC 202A correspond to the power IC 201A and the control IC 202A in FIG. 8, respectively.
  • the air conditioning control section 150A includes a rotation speed instruction section 151A, an operating state determination section 153A, an output control section 154A, and a storage section 155A.
  • Requested rotation speed information for rotating the fan motor 111 at a target rotation speed is input from the rotation speed instruction section 151A to the control IC 202A of the fan motor drive section 220A.
  • the control IC 202A generates a drive signal according to the input required rotation speed information and outputs it to the power IC 201A.
  • Power IC 201 and winding 166 of stator 162 are connected via winding terminals.
  • the power IC 201A generates pulses according to the drive signal input from the control IC 202A, and applies voltage to the winding 166 of the stator 162 of the fan motor 111. As a result, the fan motor 111 rotates at the target rotation speed.
  • the load fluctuation of the indoor unit 10 is correlated with the magnitude of the phase current flowing through the fan motor 111.
  • the rotation speed of the fan motor 111 is controlled by changing the voltage applied to the winding 166 according to the magnitude of the phase current. The voltage is changed depending on the ON time of the pulse, and the longer the average ON time, the higher the voltage (that is, the rotation speed increases).
  • the operating state determination unit 153A determines the operation of the ventilation device 40 connected via the ventilation duct 6 by utilizing the fact that the current value flowing through the winding of the fan motor 111 is correlated with the torque generated by the fan motor 111. Determine the condition.
  • FIG. 14 is a diagram showing the correlation between the current value (Ic) and the rotation speed in the case of a centrifugal fan.
  • the horizontal axis represents the rotational speed of the blower 110A
  • the vertical axis represents the current value (Ic) flowing through the winding of the fan motor 111.
  • (A) of FIG. 14 shows conditions for determining that the ventilation device 40 is in the ON state.
  • (B) of FIG. 14 shows conditions for determining that the ventilation device 40 is in an OFF state.
  • the current threshold value (Im) is a threshold value for determining whether the ventilation device 40 is in an ON state or in an OFF state.
  • the current threshold (Im) is based on the actual current threshold (Im) when the ventilation device 40 is in the ON state and the actual current threshold (Im) when the ventilation device 40 is in the OFF state. This is a preset design value.
  • the conditions for determining that the ventilation device 40 is in the ON state are such that the current value (Ic) is equal to the current threshold value (Im) when compared under the same rotation speed condition. (Ic ⁇ Im).
  • the conditions for determining that the ventilation device 40 is in the OFF state are such that the current value (Ic) is the current threshold ( Im) or more (Ic ⁇ Im).
  • the determination condition information shown in FIG. 14 is stored in the storage unit 155A.
  • the operating state determination unit 153A determines the operating state of the ventilation device 40 based on the current value (Ic) flowing through the winding of the fan motor 111, the rotational speed of the blower 110A, and the above-mentioned determination condition information.
  • the operating state determination unit 153A compares the current value (Ic) and the current threshold value (Im) when the rotation speed of the blower 110A is the same condition, and determines that the current value (Ic) is less than the current threshold value (Im) ( If Ic ⁇ Im), it is determined that the operating state of the ventilation device 40 is ON. On the other hand, when the current value (Ic) is greater than or equal to the current threshold value (Im) (Ic ⁇ Im), the operating state determination unit 153A determines that the operating state of the ventilation device 40 is in the OFF state.
  • FIG. 15 is a diagram showing the correlation between the current value (Ic) and the rotation speed in the case of an axial fan.
  • the horizontal axis represents the rotational speed of the blower 110A
  • the vertical axis represents the current value (Ic) flowing through the winding of the fan motor 111.
  • (A) of FIG. 15 shows the conditions for determining that the ventilation device 40 is in the ON state.
  • (B) of FIG. 15 shows conditions for determining that the ventilation device 40 is in an OFF state.
  • the conditions for determining that the ventilation device 40 is in the ON state are such that the current value (Ic) is equal to the current threshold value (Im) when compared under the same rotation speed condition. or more (Ic ⁇ Im).
  • the conditions for determining that the ventilation device 40 is in the OFF state are such that the current value (Ic) is the current threshold ( Im) (Ic ⁇ Im).
  • the determination condition information shown in FIG. 15 is stored in the storage unit 155A.
  • the operating state determination unit 153A compares the current value (Ic) and the current threshold value (Im) when the rotation speed of the blower 110A is the same condition, and determines that the current value (Ic) is equal to or higher than the current threshold value (Im) ( If Ic ⁇ Im), it is determined that the operating state of the ventilation device 40 is ON. On the other hand, when the current value (Ic) is less than the current threshold value (Im) (Ic ⁇ Im), the operating state determination unit 153A determines that the operating state of the ventilator 40 is OFF.
  • the output control unit 154A outputs information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153A to the remote controller 30. Further, the output control unit 154A may output information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153A to the mobile terminal 70.
  • the air conditioner 1 detects the current value (Ic) flowing through the blower 110A (winding of the fan motor 111). In addition, the air conditioner 1 stores judgment condition information (second information, see FIG. 14 or 15) based on the correlation between the rotation speed of the blower 110A and the current value (Ic) flowing through the blower 110A in the storage unit 155A. are doing. Then, the air conditioner 1 determines the operating state of the ventilation device 40 based on the detected current value (Ic) flowing through the blower 110A, the rotation speed of the blower 110A, and the determination condition information.
  • judgment condition information second information, see FIG. 14 or 15
  • the air conditioner 1 utilizes the fact that the relationship between the current value flowing through the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6.
  • the operating state of the device 40 can be easily determined.
  • the determination condition information includes information on a current threshold value (Im) indicating a threshold value of a current value with respect to the rotation speed of the blower 110A.
  • the air conditioner 1 determines the operating state of the ventilation device 40 based on the result of comparing the detected current value (Ic) and the current threshold value (Im) under the condition that the rotation speed of the blower 110A is the same.
  • the air conditioner 1 utilizes the fact that the relationship between the current value flowing through the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6.
  • the operating state of the device 40 can be easily determined.
  • the program for realizing the functions of the air conditioning control unit 150 (150A) is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed, thereby controlling the air conditioning.
  • the processing of section 150 (150A) may also be performed.
  • the "computer system” herein includes hardware such as an OS and peripheral devices.
  • computer-readable recording medium refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • a “computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. This includes things that retain programs for a certain period of time, such as volatile memory inside a computer system that serves as a server or client.
  • the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • the above program may be stored in a predetermined server, and the program may be distributed (downloaded, etc.) via a communication line in response to a request from another device.
  • part or all of the functions of the air conditioning control unit 150 may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each function may be implemented as an individual processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, but may be implemented using a dedicated circuit or a general-purpose processor. Further, if an integrated circuit technology that replaces LSI emerges due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
  • LSI Large Scale Integration
  • Air conditioner 2 Liquid extension pipe 3 Gas extension pipe 4,5 Signal line 6,7 Ventilation duct 7 Ventilation duct 11 Cabinet 12 Decorative panel 13 Inlet 14 Outlet 15 Ventilation duct hole 20 Outdoor unit 30 Remote control 31 Display section 40 Ventilation device 41, 42 Duct connection port 46 Ventilation fan 50 Remote control 110, 110A Blower 111 Fan motor 112, 113 Fan 120 Indoor heat exchanger 150, 150A Air conditioning control section 151 Voltage control section 151A Rotation speed indicator 152, Rotation speed detection Section 153, 153A Operating state determination section 154, 154A Output control section 155, 155A Storage section 161 Rotor 162 Stator 166 Winding 200, 200A Fan motor drive section 201, 201A Power IC 202, 202A control IC 203A Current detection unit 210 Magnetic sensor 450 Ventilator control unit

Abstract

This air conditioner comprises a suction port for sucking in air from a space to be air conditioned, a blower, a heat exchanger, and a blowout port for blowing air into the space to be air conditioned. Further, the air conditioner comprises: a ventilation duct hole for connection via a duct to a ventilating device which is controlled independently by means of an operating system different from an operating system of the air conditioner; and a control unit for controlling the blower in accordance with control by the operating system of the air conditioner, and, in a state in which the ventilating device is connected to the ventilation duct hole via the duct, determining a driving state of the ventilating device on the basis of a control state of the blower.

Description

空気調和機air conditioner
 本開示は、空気調和機に関する。 The present disclosure relates to an air conditioner.
 浴室など湿気がたまりやすい空間を空調する際に、空気調和機に加えて換気装置が必要な場合がある。そのような環境に対応するために、換気装置を備える空気調和機がある。例えば、換気装置を備える空気調和機において、換気用ファンの駆動時に、空調用ファンを換気用ファンに関連させて駆動制御することによって、空調性能の変動を防止するように制御する空気調和機が開示されている。(例えば、特許文献1)。 When air conditioning spaces where moisture tends to accumulate, such as bathrooms, a ventilation device may be required in addition to an air conditioner. To cope with such environments, there are air conditioners equipped with ventilation devices. For example, in an air conditioner equipped with a ventilation device, when the ventilation fan is driven, the air conditioning fan is controlled in relation to the ventilation fan to prevent fluctuations in air conditioning performance. Disclosed. (For example, Patent Document 1).
特開2001-304661号公報Japanese Patent Application Publication No. 2001-304661
 特許文献1のように空気調和機が換気装置を備える構成では、空気調和機が大型になるため、施工性の悪化、施工先の限定、また、空気調和機に備えられている換気装置の能力によって排気経路(形状、長さ、圧損)に制限がある。例えば、別々の製品の空気調和機と換気装置とを使用すれば、空気調和機と換気装置とのそれぞれが大型化することはなく設置する場所の自由度も上がるため、施工性への影響を抑えられる。しかしながら、別々の製品の空気調和機と換気装置とを使用する場合には、各々が異なる操作系統により独立して制御が行われるため、空気調和機から換気装置の運転状態を判別することができないという課題がある。 In the configuration in which the air conditioner is equipped with a ventilation device as in Patent Document 1, the air conditioner becomes large-sized, resulting in deterioration of workability, limitations on installation locations, and the capacity of the ventilation device provided in the air conditioner. There are restrictions on the exhaust route (shape, length, pressure drop). For example, if you use separate products for an air conditioner and a ventilation system, the air conditioner and ventilation system will not be bulky, and you will have more flexibility in where they can be installed, which will reduce the impact on workability. It can be suppressed. However, when using separate products such as an air conditioner and a ventilation system, each is controlled independently by a different operation system, so it is not possible to determine the operating status of the ventilation system from the air conditioner. There is a problem.
 本開示は、上記した事情に鑑みてなされたもので、空気調和機の操作系統とは異なる操作系統により独立して制御が行われる換気装置の運転状態を容易に判別できる空気調和機を提供することを目的の一つとする。 The present disclosure has been made in view of the above circumstances, and provides an air conditioner that can easily determine the operating state of a ventilation device that is independently controlled by an operation system different from that of the air conditioner. This is one of the purposes.
 本開示に係る空気調和機は、空調対象空間から空気を吸い込む吸込口と、送風機と、熱交換器と、前記空調対象空間へ空気を吹出す吹出口とを備える空気調和機であって、前記空気調和機の操作系統とは異なる操作系統により独立して制御が行われる換気装置とダクトを介して接続するための換気用ダクト孔と、前記空気調和機の操作系統による制御に応じて前記送風機を制御するとともに、前記換気装置が前記換気用ダクト孔に前記ダクトを介して接続されている状態において、前記送風機の制御状態に基づいて前記換気装置の運転状態を判定する制御部と、を備える。 An air conditioner according to the present disclosure includes an inlet for sucking air from an air-conditioned space, an air blower, a heat exchanger, and an outlet for blowing air into the air-conditioned space, a ventilation duct hole for connecting via a duct to a ventilation system that is independently controlled by an operation system different from the operation system of the air conditioner; and a control unit that determines the operating state of the ventilation device based on the control state of the blower in a state where the ventilation device is connected to the ventilation duct hole via the duct. .
 本開示によれば、空気調和機の操作系統とは異なる操作系統により独立して制御が行われる換気装置の運転状態を容易に判別することができる。 According to the present disclosure, it is possible to easily determine the operating state of a ventilation device that is independently controlled by an operation system different from the operation system of the air conditioner.
第1の実施形態に係る空調システムの一例を示すシステム図。FIG. 1 is a system diagram showing an example of an air conditioning system according to a first embodiment. 第1の実施形態に係る室内機の外観の一例を示す斜視図。FIG. 1 is a perspective view showing an example of the appearance of the indoor unit according to the first embodiment. 第1の実施形態に係る室内機のキャビネット内部の構成例を示す斜視図。FIG. 2 is a perspective view showing an example of the internal configuration of the cabinet of the indoor unit according to the first embodiment. 第1の実施形態に係る室内機の内部構成の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of the internal configuration of the indoor unit according to the first embodiment. 第1の実施形態に係るファンモータの構造の一例を示す断面図。1 is a cross-sectional view showing an example of the structure of a fan motor according to a first embodiment. 第1の実施形態に係る換気装置の外観の一例を示す斜視図。FIG. 1 is a perspective view showing an example of the appearance of the ventilation device according to the first embodiment. 第1の実施形態に係る換気装置の内部構成の一例を示す断面図。FIG. 1 is a cross-sectional view showing an example of the internal configuration of the ventilation device according to the first embodiment. 第1の実施形態に係る空調制御部及びファンモータ駆動部の構成の一例を示すブロック図。FIG. 2 is a block diagram showing an example of the configuration of an air conditioning control section and a fan motor drive section according to the first embodiment. 第1の実施形態に係る遠心ファンの場合の速度指令電圧と回転数との相関関係を示す図。FIG. 3 is a diagram showing the correlation between speed command voltage and rotation speed in the case of the centrifugal fan according to the first embodiment. 第1の実施形態に係る軸流ファンの場合の速度指令電圧と回転数との相関関係を示す図。FIG. 3 is a diagram showing the correlation between speed command voltage and rotation speed in the case of the axial fan according to the first embodiment. 第1の実施形態に係る換気装置の運転状態に基づく情報の出力に関する構成例を示す図。The figure which shows the example of a structure regarding the output of the information based on the operating state of the ventilation device based on 1st Embodiment. 第1の実施形態に係る運転状態判定処理の一例を示すフローチャート。5 is a flowchart showing an example of a driving state determination process according to the first embodiment. 第2の実施形態に係る空調制御部およびファンモータ駆動部の構成の一例を示すブロック図。FIG. 7 is a block diagram showing an example of the configuration of an air conditioning control section and a fan motor drive section according to a second embodiment. 第2の実施形態に係る遠心ファンの場合の電流値と回転数との相関関係を示す図。FIG. 7 is a diagram showing the correlation between current value and rotation speed in the case of a centrifugal fan according to a second embodiment. 第2の実施形態に係る軸流ファンの場合の電流値と回転数との相関関係を示す図。FIG. 7 is a diagram showing the correlation between current value and rotation speed in the case of the axial fan according to the second embodiment.
 以下、図面を参照しながら実施形態について説明する。
[第1の実施形態]
 まず、第1の実施形について説明する。
Embodiments will be described below with reference to the drawings.
[First embodiment]
First, a first embodiment will be described.
 図1は、本実施形態に係る空調システムの一例を示すシステム図である。
 図示する空調システムSYSは、空気調和機1と、換気装置40とを備えている。
FIG. 1 is a system diagram showing an example of an air conditioning system according to this embodiment.
The illustrated air conditioning system SYS includes an air conditioner 1 and a ventilation device 40.
 空気調和機1は、室内機10と、室外機20と、室内機10と室外機20とを接続する液延長配管2およびガス延長配管3と、リモコン30とを備えている。 The air conditioner 1 includes an indoor unit 10, an outdoor unit 20, a liquid extension pipe 2 and a gas extension pipe 3 that connect the indoor unit 10 and the outdoor unit 20, and a remote control 30.
 室内機10は、空調対象空間である建物内の閉空間(以下「室内」と称す)などに設置されている。室内機10は、冷凍サイクルの一部を実行する室内熱交換器(不図示)などを備えている。室外機20は、室外に設置されており、冷凍サイクルの一部を実行する圧縮機、室外熱交換器および膨張弁(何れも不図示)などを備えている。そして、室外機20の圧縮機、室外熱交換器、膨張弁および室内機10の室内熱交換器は、冷媒を循環することができるように冷媒配管(液延長配管2、ガス延長配管3および図示しない配管)によって連通されている。 The indoor unit 10 is installed in a closed space in a building (hereinafter referred to as "indoor"), which is an air-conditioned space. The indoor unit 10 includes an indoor heat exchanger (not shown) that executes a part of the refrigeration cycle. The outdoor unit 20 is installed outdoors and includes a compressor that executes part of a refrigeration cycle, an outdoor heat exchanger, an expansion valve (all not shown), and the like. The compressor, outdoor heat exchanger, and expansion valve of the outdoor unit 20 and the indoor heat exchanger of the indoor unit 10 are connected to refrigerant pipes (liquid extension pipe 2, gas extension pipe 3, and connected by pipes (not included).
 また、室内機10には室内の空気を室外に排気するための換気ダクト6の一端が接続され、換気ダクト6の他端は換気装置40に接続されている。換気装置40には一端が室外へと配管されている換気ダクト7の他端がさらに接続されている。室内機10から排出された空気は、換気ダクト6、換気装置40および換気ダクト7を通って室外へ排気される。 Furthermore, one end of a ventilation duct 6 for exhausting indoor air to the outdoors is connected to the indoor unit 10, and the other end of the ventilation duct 6 is connected to a ventilation device 40. The ventilation device 40 is further connected to the other end of a ventilation duct 7, one end of which is piped to the outside. Air discharged from the indoor unit 10 passes through the ventilation duct 6, the ventilation device 40, and the ventilation duct 7, and is exhausted to the outside.
 リモコン30は、空気調和機1の冷房運転または暖房運転などのON・OFF(運転開始・停止)、運転時の温度設定などについてのユーザの操作を受け付けるリモートコントローラである。リモコン30は、有線の信号線4で、室内機10に接続されている。リモコン30は、リモコン30に対するユーザの操作に基づく操作信号を出力する。リモコン30から出力された操作信号は、信号線4を介して室内機10に備えられている空調制御部150へ送信される。空調制御部150は、空気調和機1の各部を制御するための電子部品および回路を含む基板により構成されている。 The remote controller 30 is a remote controller that accepts user operations regarding ON/OFF (start/stop) of cooling or heating operation of the air conditioner 1, temperature settings during operation, and the like. The remote control 30 is connected to the indoor unit 10 via a wired signal line 4. The remote controller 30 outputs an operation signal based on a user's operation on the remote controller 30. The operation signal output from the remote controller 30 is transmitted via the signal line 4 to the air conditioning control section 150 provided in the indoor unit 10. The air conditioning control unit 150 is configured by a board including electronic components and circuits for controlling each part of the air conditioner 1.
 リモコン50は、換気装置40の運転のON・OFF(運転開始・停止)、運転時の風量設定などについてのユーザの操作を受け付けるリモートコントローラである。リモコン50は、有線の信号線5で、換気装置40に接続されている。リモコン50は、リモコン50に対するユーザの操作に基づく操作信号を出力する。リモコン50から出力された操作信号は、信号線5を介して換気装置40の換気装置制御部450へ送信される。換気装置制御部450は、換気装置40の各部を制御するための電子部品および回路を含む基板により構成されている。 The remote controller 50 is a remote controller that accepts user operations for turning on/off (starting/stopping) the operation of the ventilation system 40, setting air volume during operation, and the like. The remote control 50 is connected to the ventilation device 40 via a wired signal line 5. The remote controller 50 outputs an operation signal based on a user's operation on the remote controller 50. The operation signal output from the remote control 50 is transmitted to the ventilation device control unit 450 of the ventilation device 40 via the signal line 5. The ventilator control unit 450 is configured by a board including electronic components and circuits for controlling each part of the ventilator 40.
 このように、空気調和機1の操作系統(リモコン30から信号線4を介して室内機10へ操作信号が送られる操作系統)と、換気装置40の操作系統(リモコン50から信号線5を介して換気装置40へ操作信号が送られる操作系統)とは、異なる操作系統である。空気調和機1は、空気調和機1の操作系統により独立して制御が行われる。換気装置40は、換気装置40の操作系統により独立して制御が行われる。つまり、空気調和機1と換気装置40とは、換気ダクト6によって室内機10と換気装置40とが接続されているが電気的には接続されておらず、別々のリモコンの操作によって別々に制御が行われる。 In this way, the operation system of the air conditioner 1 (the operation system in which the operation signal is sent from the remote control 30 to the indoor unit 10 via the signal line 4) and the operation system of the ventilation device 40 (the operation system in which the operation signal is sent from the remote control 50 to the indoor unit 10 via the signal line 5) This is a different operation system from the operation system in which the operation signal is sent to the ventilation device 40. The air conditioner 1 is independently controlled by the operation system of the air conditioner 1. The ventilation device 40 is independently controlled by the operation system of the ventilation device 40. In other words, the air conditioner 1 and the ventilation device 40 are connected to the indoor unit 10 and the ventilation device 40 by the ventilation duct 6, but are not electrically connected and are controlled separately by operating separate remote controllers. will be held.
 なお、換気装置40は、換気対象の室内の体積により仕様が選定される。また、仕様の選定の際には空気調和機1の圧力損失、各建物によって異なる換気ダクトのダクト圧損を加味して仕様の選定がなされる。各建物によって換気ダクトの経路、長さが異なるため、各建物によって適した換気装置40の仕様が選定される。 Note that the specifications of the ventilation device 40 are selected depending on the volume of the room to be ventilated. Further, when selecting the specifications, the specifications are selected by taking into consideration the pressure loss of the air conditioner 1 and the duct pressure loss of the ventilation duct, which varies depending on each building. Since the route and length of the ventilation duct differ depending on each building, the specifications of the ventilation system 40 suitable for each building are selected.
 (室内機の構成)
 次に、図2~図4を参照して、室内機10の構成について詳しく説明する。
 図2は、本実施形態に係る室内機の外観の一例を示す斜視図である。室内機10は、室内(天井)に設置された状態で下面となる側が開口した略直方体の箱体(断面正方形の底付き筐体)のキャビネット11と、キャビネット11の開口側(下面)を覆う矩形状の化粧パネル12とを備えている。化粧パネル12には、吸込口13(開口部)と、吹出口14が形成されている。キャビネット11には、換気ダクト6が接続される換気用ダクト孔15が設けられている。
(Indoor unit configuration)
Next, the configuration of the indoor unit 10 will be described in detail with reference to FIGS. 2 to 4.
FIG. 2 is a perspective view showing an example of the appearance of the indoor unit according to the present embodiment. The indoor unit 10 covers a cabinet 11 that is a substantially rectangular box (a bottomed housing with a square cross section) with an open bottom side when installed indoors (on the ceiling), and the open side (bottom side) of the cabinet 11. A rectangular decorative panel 12 is provided. The decorative panel 12 has an inlet 13 (opening) and an outlet 14 formed therein. The cabinet 11 is provided with a ventilation duct hole 15 to which the ventilation duct 6 is connected.
 図3は、本実施形態に係る室内機のキャビネット内部の構成例を示す斜視図である。なお、この図3は、図2から化粧パネル12を取り外した状態であり、また、化粧パネル12が取り付く側が図示の上側である。また、図4は、本実施形態に係る室内機の内部構成の一例を示す断面図である。 FIG. 3 is a perspective view showing an example of the internal configuration of the cabinet of the indoor unit according to the present embodiment. Note that this FIG. 3 shows a state in which the decorative panel 12 has been removed from FIG. 2, and the side to which the decorative panel 12 is attached is the upper side in the illustration. Moreover, FIG. 4 is a sectional view showing an example of the internal configuration of the indoor unit according to the present embodiment.
 キャビネット11の送風機室16側には送風機110が設置されている。送風機110は、ファンモータ111、ファン112,113、ファンケーシング114を含んで構成される。ファンモータ111は、ファン112,113を回転させるためのモータである。ファンモータ111の回転軸にファン112,113が取り付けられている。図3に示す例では、シロッコタイプの2個のファン112,113が、両軸のファンモータ111の両側に設置されている例を示している。なお、図示する送風機110の構成は一例であって、ファンの種類、ファンの個数、ファンモータの個数などは、室内機10(ユニット)のサイズ、コスト、空気調和機1に要求される能力によって設定される。 A blower 110 is installed on the blower room 16 side of the cabinet 11. The blower 110 includes a fan motor 111, fans 112 and 113, and a fan casing 114. Fan motor 111 is a motor for rotating fans 112 and 113. Fans 112 and 113 are attached to a rotating shaft of a fan motor 111. In the example shown in FIG. 3, two sirocco type fans 112 and 113 are installed on both sides of the fan motor 111 on both shafts. The illustrated configuration of the blower 110 is an example, and the type of fan, number of fans, number of fan motors, etc. may vary depending on the size and cost of the indoor unit 10 (unit), and the capacity required of the air conditioner 1. Set.
 送風機110の風の吹出し側には、室内熱交換器120が配置されている。配管部品125には、室内熱交換器120に接続する冷媒配管などが設けられている。室内熱交換器120の下流側(送風機110からの風の下流側)に風路17が構成され、室内熱交換器120において熱交換された空気と室内機10の外側とを断熱するインナーカバーが、室内熱交換器120を囲むようにキャビネット11の天面および側面の内側に配置されている。また、室内熱交換器120の下部(化粧パネル12側)には、熱交換の際に発生する凝縮水を受けると共に、風路17を構成する要素の一つとなるドレンパン19が配置されている。ドレンパン19の下部には化粧パネル12が取り付けられている。 An indoor heat exchanger 120 is arranged on the wind blowing side of the blower 110. The piping component 125 is provided with refrigerant piping and the like connected to the indoor heat exchanger 120. An air passage 17 is configured on the downstream side of the indoor heat exchanger 120 (downstream side of the air from the blower 110), and an inner cover is provided to insulate the air heat exchanged in the indoor heat exchanger 120 from the outside of the indoor unit 10. , are arranged inside the top and side surfaces of the cabinet 11 so as to surround the indoor heat exchanger 120. Further, a drain pan 19 that receives condensed water generated during heat exchange and serves as one of the elements constituting the air passage 17 is arranged at the lower part of the indoor heat exchanger 120 (on the decorative panel 12 side). A decorative panel 12 is attached to the lower part of the drain pan 19.
 化粧パネル12において、キャビネット11の送風機室16に連通する吸込口13(開口部)には、室内機10の内部に塵埃等が侵入するのを防止するフィルタ121が設けられている。フィルタ121は、吸込口13に設けられているグリル131、または化粧パネル自体によって支持されている。グリル131は、目隠しとして機能する網目構造を有する。また、化粧パネル12に形成された吹出口14は、インナーカバー18およびドレンパン19により構成される風路17に連通している。ファンケーシング114は、吸込口13から吸込んだ空気をファン112,113にスムーズに導入するためのベルマウスを備えており、ファン112,113を囲むように配置されている。 In the decorative panel 12, a filter 121 is provided at the suction port 13 (opening) communicating with the blower chamber 16 of the cabinet 11 to prevent dust and the like from entering the interior of the indoor unit 10. The filter 121 is supported by a grill 131 provided at the suction port 13 or by the decorative panel itself. The grill 131 has a mesh structure that functions as a blindfold. Further, the air outlet 14 formed in the decorative panel 12 communicates with an air passage 17 formed by an inner cover 18 and a drain pan 19. The fan casing 114 includes a bell mouth for smoothly introducing air sucked in from the suction port 13 into the fans 112, 113, and is arranged so as to surround the fans 112, 113.
 吸込口13から吸込んだ空気は、ファン112,113を回転させることにより室内熱交換器120側へ流れ、室内熱交換器120で熱交換されて風路17を通り、吹出口14から吹き出す。吹出口14には上下方向の吹出方向を制御可能な風向ベーン141が設置されている。なお、吹出口14には左右方向の吹出し方向を制御可能な風向フラップが備えられてもよい。 Air sucked in from the suction port 13 flows toward the indoor heat exchanger 120 by rotating the fans 112 and 113, undergoes heat exchange in the indoor heat exchanger 120, passes through the air path 17, and is blown out from the blowout port 14. A wind direction vane 141 that can control the blowing direction in the vertical direction is installed at the blower outlet 14 . Note that the air outlet 14 may be provided with a wind direction flap that can control the air blowing direction in the left and right directions.
 換気用ダクト孔15は、換気ダクト6を接続するために送風機室16の側面に設けられている。換気用ダクト孔15の径は換気ダクト6の径により選定されたり、空気調和機1内の圧損設計に合わせた寸法、形状に設計されたりする。なお、換気用ダクト孔15は、円形でなくでもよく、楕円形や四角形でもよい。例えば、換気用ダクト孔15の仕様は、工業規格で規定されているものから決定される。 A ventilation duct hole 15 is provided on the side surface of the blower room 16 to connect the ventilation duct 6. The diameter of the ventilation duct hole 15 is selected depending on the diameter of the ventilation duct 6, or the size and shape are designed in accordance with the pressure loss design within the air conditioner 1. Note that the ventilation duct hole 15 does not need to be circular, and may be oval or square. For example, the specifications of the ventilation duct hole 15 are determined from those specified by industrial standards.
 なお、空気調和機1内の圧損設計のために換気用ダクト孔15と送風機110との間に障害物(不図示)を設けるなどの圧損設計がなされる場合もある。これにより換気装置40を介して空気が排気されたときに空気調和機1の性能の低下をある程度抑制することもできる。 Note that in order to design the pressure loss inside the air conditioner 1, a pressure loss design may be made such as providing an obstacle (not shown) between the ventilation duct hole 15 and the blower 110. Thereby, when the air is exhausted through the ventilation device 40, it is also possible to suppress the deterioration of the performance of the air conditioner 1 to some extent.
 (ファンモータの構成)
 図5は、本実施形態に係るファンモータの構造の一例を示す断面図である。図示するファンモータ111は、ブラシレスDCモータである。ファンモータ111は、主に、回転子161と、固定子162とを備えている。
(Fan motor configuration)
FIG. 5 is a cross-sectional view showing an example of the structure of the fan motor according to this embodiment. The illustrated fan motor 111 is a brushless DC motor. The fan motor 111 mainly includes a rotor 161 and a stator 162.
 回転子161は、固定子162の内側に配置され、固定子鉄心163と対向して回転軸164の外周側に配置された永久磁石で構成されるマグネット165を有する。マグネット165は、回転軸164と締結されている。なお、マグネット165と回転軸164との間に樹脂、ゴムなどが介在している場合もある。回転軸164は、不図示の軸受けにより保持され、回転方向に回転する。固定子162は、電磁鋼板が積層されて構成された固定子鉄心163と、巻線166を絶縁するためのインシュレータ167と、インシュレータ167と一体となった固定子鉄心163の各スロットに巻き付けられた巻線166とを含んで構成される。 The rotor 161 is arranged inside the stator 162 and has a magnet 165 made of a permanent magnet arranged on the outer circumferential side of the rotating shaft 164 facing the stator core 163. The magnet 165 is fastened to the rotating shaft 164. Note that resin, rubber, or the like may be interposed between the magnet 165 and the rotating shaft 164. The rotating shaft 164 is held by a bearing (not shown) and rotates in the rotational direction. The stator 162 includes a stator core 163 configured by laminating electromagnetic steel plates, an insulator 167 for insulating the winding 166, and a stator core 163 that is wound around each slot of the stator core 163 that is integrated with the insulator 167. The winding 166 is configured to include a winding 166.
 また、ファンモータ111は、ファンモータ111を駆動するための回路が実装された基板を含むファンモータ駆動部200を備えている。なお、ファンモータ駆動部200は、ファンモータ111に内蔵されず、上位システム(例えば、空気調和機1側)に設けられる場合もある。本実施形態では、ファンモータ駆動部200がファンモータ111に内蔵されている構成の例を説明する。 Further, the fan motor 111 includes a fan motor drive unit 200 that includes a board on which a circuit for driving the fan motor 111 is mounted. Note that the fan motor drive unit 200 may not be built into the fan motor 111 but may be provided in a higher-level system (for example, on the air conditioner 1 side). In this embodiment, an example of a configuration in which the fan motor drive section 200 is built into the fan motor 111 will be described.
 (換気装置の構成)
 次に、図6および図7を参照して、換気装置40の構成について詳しく説明する。図6は、本実施形態に係る換気装置の外観の一例を示す斜視図である。また、図7は、本実施形態に係る換気装置の内部構成の一例を示す断面図である。
(Configuration of ventilation system)
Next, the configuration of the ventilation device 40 will be described in detail with reference to FIGS. 6 and 7. FIG. 6 is a perspective view showing an example of the appearance of the ventilation device according to the present embodiment. Moreover, FIG. 7 is a sectional view showing an example of the internal configuration of the ventilation device according to the present embodiment.
 換気装置40の筐体には、ダクト接続口41,42と、電源線の結線部43と、天吊り金具44とが設けられている。ダクト接続口41は、換気ダクト6が接続される吸込み側(上流側)のダクト孔である。ダクト接続口42は、換気ダクト7が接続される吹出し側(下流側)のダクト孔である。電源線の結線部43には、換気装置40へ給電する電源線が接続される。天吊り金具44は、複数の設けられており、換気装置40を設置する際の支持部として使用される。 The casing of the ventilation device 40 is provided with duct connection ports 41 and 42, a power line connection portion 43, and a ceiling mount fitting 44. The duct connection port 41 is a duct hole on the suction side (upstream side) to which the ventilation duct 6 is connected. The duct connection port 42 is a duct hole on the outlet side (downstream side) to which the ventilation duct 7 is connected. A power line that supplies power to the ventilation device 40 is connected to the power line connection portion 43 . A plurality of ceiling mount fittings 44 are provided and are used as a support part when installing the ventilation device 40.
 また、換気装置40の内部には、送風機45と、送風機45の駆動を制御する換気装置制御部450とが設けられている。送風機45は、換気用ファン46、換気用ファン46を回転させるためのファンモータ(不図示)、換気装置40内を空気がスムーズに流れるようにするためのファンケーシング47などを備えている。 Further, inside the ventilation device 40, a blower 45 and a ventilation device control section 450 that controls the drive of the blower 45 are provided. The blower 45 includes a ventilation fan 46, a fan motor (not shown) for rotating the ventilation fan 46, a fan casing 47 for allowing air to flow smoothly through the ventilation device 40, and the like.
 換気装置制御部450は、リモコン50からの信号線5が接続されており、リモコン50に対するユーザの操作に応じて、運転状態を制御する。例えば、換気装置制御部450は、運転ONの状態(運転している状態)では、換気装置40の送風機45を駆動することにより、ダクト接続口41から吸込んだ空気(室内機10から送られてきた室内の空気)をダクト接続口42から換気ダクト7を介して室外へと吹き出す。一方、換気装置制御部450は、運転OFFの状態(運転停止の状態)では、換気装置40の送風機45を停止させるため、換気機能が停止する。 The ventilation device control unit 450 is connected to the signal line 5 from the remote controller 50, and controls the operating state according to the user's operation on the remote controller 50. For example, in the ON state (operating state), the ventilation system control unit 450 drives the blower 45 of the ventilation system 40 to control the air taken in from the duct connection port 41 (the air sent from the indoor unit 10). The indoor air) is blown out from the duct connection port 42 through the ventilation duct 7 to the outside. On the other hand, in the operation OFF state (operation stopped state), the ventilation device control unit 450 stops the blower 45 of the ventilation device 40, so that the ventilation function is stopped.
 (制御について)
 次に、本実施形態に係る空気調和機1の制御について説明する。空調制御部150は、リモコン30からの操作信号に基づいて、冷凍サイクル(室外機20の圧縮機)の実行を制御したり、送風機110の運転を制御したりする。なお、本実施形態では、図1などに示すように空調制御部150が室内機10に備えられている例を示しているが、これに限定されるものではなく、室外機20に搭載されてもよいし、室内機10と室外機20とに分けて備えられてもよい。
(About control)
Next, control of the air conditioner 1 according to this embodiment will be explained. The air conditioning control unit 150 controls the execution of the refrigeration cycle (compressor of the outdoor unit 20) and the operation of the blower 110 based on the operation signal from the remote controller 30. In this embodiment, an example is shown in which the air conditioning control unit 150 is installed in the indoor unit 10 as shown in FIG. Alternatively, the indoor unit 10 and the outdoor unit 20 may be provided separately.
 また、空調制御部150は、換気ダクト6を介して接続されている換気装置40の運転状態を判定する。例えば、空調制御部150は、送風機110の制御状態に基づいて換気装置40の運転状態を判定する。以下、図8を参照して、送風機110の制御状態に基づいて換気装置40の運転状態を判定する構成について、詳しく説明する。 Additionally, the air conditioning control unit 150 determines the operating state of the ventilation device 40 connected via the ventilation duct 6. For example, the air conditioning control unit 150 determines the operating state of the ventilation device 40 based on the control state of the blower 110. Hereinafter, with reference to FIG. 8, a configuration for determining the operating state of the ventilation device 40 based on the control state of the blower 110 will be described in detail.
 図8は、本実施形態に係る空調制御部及びファンモータ駆動部の構成の一例を示すブロック図である。送風機110は、パワーIC201と制御IC202とが実装された基板を含むファンモータ駆動部200と、ファンモータ111の回転子161の位置を検知する磁気センサ210(例えば、ホールICなど)とを含む回路を備えている。パワーIC201と固定子162の巻線166とは、巻線端子を介して接続される。ファンモータ駆動部200の基板は、空調制御部150の基板とリード線を介して接続される。 FIG. 8 is a block diagram showing an example of the configuration of the air conditioning control section and fan motor drive section according to the present embodiment. The blower 110 includes a circuit including a fan motor drive unit 200 including a board on which a power IC 201 and a control IC 202 are mounted, and a magnetic sensor 210 (for example, a Hall IC) that detects the position of the rotor 161 of the fan motor 111. It is equipped with Power IC 201 and winding 166 of stator 162 are connected via winding terminals. The board of the fan motor drive section 200 is connected to the board of the air conditioning control section 150 via lead wires.
 なお、制御IC202は、例えばマイクロコンピュータで構成されてもよい。また、制御IC202とパワーIC201が一つのICとなって構成されてもよい。回転子161のマグネット165の磁極位置に応じてパワーIC201が適切なタイミングでスイッチングする。これにより、ブラシレスDCモータであるファンモータ111は、回転動力を得る。このスイッチング信号は、制御IC202が生成する。 Note that the control IC 202 may be composed of, for example, a microcomputer. Further, the control IC 202 and the power IC 201 may be configured as one IC. The power IC 201 switches at appropriate timing depending on the magnetic pole position of the magnet 165 of the rotor 161. As a result, the fan motor 111, which is a brushless DC motor, obtains rotational power. This switching signal is generated by the control IC 202.
 制御IC202は、空調制御部150から出力される速度指令電圧(Vsp)に応じたスイッチング信号をパワーIC201に出力する。パワーIC201は、このスイッチング信号に応じて固定子162の巻線166に電圧を印加する。これにより固定子162に磁界が発生し、回転子161が引き込まれることよりファンモータ111が回転する、または回転数が変化する。つまり、空調制御部150からの速度指令電圧(Vsp)により送風機110(ファンモータ111)の回転数が決定する。なお、「回転数」とは、単位時間あたりに回転する回数のことを意味している。また、制御IC202は、磁気センサ210の検知結果に基づいて送風機110の回転数を示す回転数信号を空調制御部150へ出力する。 The control IC 202 outputs a switching signal according to the speed command voltage (Vsp) output from the air conditioning control unit 150 to the power IC 201. Power IC 201 applies voltage to winding 166 of stator 162 in response to this switching signal. This generates a magnetic field in the stator 162, and the rotor 161 is drawn in, causing the fan motor 111 to rotate or change its rotational speed. That is, the speed command voltage (Vsp) from the air conditioning control unit 150 determines the rotation speed of the blower 110 (fan motor 111). Note that the "number of rotations" refers to the number of rotations per unit time. Further, the control IC 202 outputs a rotation speed signal indicating the rotation speed of the blower 110 to the air conditioning control unit 150 based on the detection result of the magnetic sensor 210.
 空調制御部150は、CPU(Central Processing Unit)またはマイクロコンピュータ、メモリ(記憶部)、各種のデバイスなどを含んで構成される。図示する空調制御部150は、例えばCPUがプログラムを実行することにより実現される機能構成として、電圧制御部151と、回転数検出部152と、運転状態判定部153と、出力制御部154とを備えている。また、空調制御部150は、各種のデータなどを記憶する記憶部155を備えている。 The air conditioning control unit 150 is configured to include a CPU (Central Processing Unit) or a microcomputer, a memory (storage unit), various devices, and the like. The illustrated air conditioning control unit 150 includes a voltage control unit 151, a rotation speed detection unit 152, an operating state determination unit 153, and an output control unit 154 as functional configurations realized by, for example, a CPU executing a program. We are prepared. The air conditioning control unit 150 also includes a storage unit 155 that stores various data.
 電圧制御部151は、ファンモータ111を回転させるための母線電圧(Vdc)と、制御IC202を駆動するための制御電圧(Vcc)とをファンモータ駆動部200へ出力する。また、電圧制御部151は、送風機110の回転数が所望の回転数になるように駆動するための速度指令電圧(Vsp)を制御してファンモータ駆動部200(制御IC202)へ出力する。 The voltage control unit 151 outputs a bus voltage (Vdc) for rotating the fan motor 111 and a control voltage (Vcc) for driving the control IC 202 to the fan motor drive unit 200. Further, the voltage control section 151 controls a speed command voltage (Vsp) for driving the blower 110 so that the rotation speed becomes a desired rotation speed, and outputs the speed command voltage (Vsp) to the fan motor drive section 200 (control IC 202).
 回転数検出部152は、ファンモータ駆動部200(制御IC202)から出力された回転数信号を取得することにより、送風機110の回転数を検出する。これにより、ファンモータ駆動部200から空調制御部150へ送風機110の回転数の情報が伝達(フィードバック)される。 The rotation speed detection section 152 detects the rotation speed of the blower 110 by acquiring the rotation speed signal output from the fan motor drive section 200 (control IC 202). As a result, information on the rotation speed of the blower 110 is transmitted (feedback) from the fan motor drive section 200 to the air conditioning control section 150.
 電圧制御部151は、送風機110の回転数の制御としては、回転数検出部152により検出されたファンモータ111の回転数の情報に基づいてフィードバック制御を行う。電圧制御部151は、検出されたファンモータ111の回転数に基づいて送風機110が所定の回転数になるように速度指令電圧(Vsp)を制御する。ファンモータ111は、その速度指令電圧(Vsp)に応じてファンモータ駆動部200により駆動され、回転数が決定する。 The voltage control unit 151 performs feedback control of the rotation speed of the fan 110 based on information on the rotation speed of the fan motor 111 detected by the rotation speed detection unit 152. The voltage control unit 151 controls the speed command voltage (Vsp) based on the detected rotation speed of the fan motor 111 so that the blower 110 has a predetermined rotation speed. The fan motor 111 is driven by the fan motor drive section 200 according to its speed command voltage (Vsp), and the rotation speed is determined.
 室内機10の風路17上の圧力損失(以後、「圧損」と称する)、または空気の温度変化(密度変化)などにより回転数と風量の関係が変化するが、ファンモータ111からみると回転数とトルクの関係が変化することを意味する。 The relationship between the rotation speed and air volume changes due to pressure loss (hereinafter referred to as "pressure loss") in the air passage 17 of the indoor unit 10 or temperature change (density change) of the air, but from the perspective of the fan motor 111, the rotation This means that the relationship between number and torque changes.
 ここで通常負荷の状態では、送風機110の回転数と速度指令電圧(Vsp)とは一定の相関関係がある。しかし、風路17上の圧損が悪化するなどの変化が発生すると、回転数と風量(=トルク)との関係が変動し、所望の回転数を回すために必要な速度指令電圧(Vsp)が変動することになる。つまり、室内機10の圧損変化により回転数と速度指令電圧(Vsp)との関係か変化することになる。 Here, in a normal load state, there is a certain correlation between the rotation speed of the blower 110 and the speed command voltage (Vsp). However, if a change occurs such as worsening of the pressure drop on the air passage 17, the relationship between the rotation speed and the air volume (=torque) changes, and the speed command voltage (Vsp) required to rotate the desired rotation speed changes. It will change. In other words, the relationship between the rotation speed and the speed command voltage (Vsp) changes due to a change in the pressure loss of the indoor unit 10.
 この室内機10の負荷による回転数と速度指令電圧(Vsp)の関係は、送風機110のファンの種類によって異なる。例えば、図3に示すファン112,113のような遠心ファン(シロッコファン、ターボファン、クロスフローファンなど)の場合には、羽根のPQ特性の関係から、圧損がかかるような状態(締切側)では羽根が風を曲げる力が小さくて済むためトルクが小さくなる。よって、圧損が大きいほどトルク負荷としては小さくなり、所望の回転数を出すための速度指令電圧(Vsp)は小さくなる。 The relationship between the rotational speed of the indoor unit 10 due to the load and the speed command voltage (Vsp) differs depending on the type of fan of the blower 110. For example, in the case of centrifugal fans (sirocco fans, turbo fans, cross flow fans, etc.) such as the fans 112 and 113 shown in FIG. In this case, the force of the blades bending the wind is small, so the torque is small. Therefore, the larger the pressure loss, the smaller the torque load, and the smaller the speed command voltage (Vsp) for producing the desired rotation speed.
 換気装置40が運転ONの状態では、ファンに対して圧損がかかる状態となるため、トルク負荷としては小さくなり、所望の回転数を出すための速度指令電圧(Vsp)は小さくなる。一方、換気装置40が運転OFFの状態では、換気装置40が接続されていない室内機10単体のトルク負荷となる。 When the ventilation device 40 is in the ON state, pressure loss is applied to the fan, so the torque load becomes small and the speed command voltage (Vsp) for producing the desired rotation speed becomes small. On the other hand, when the ventilation device 40 is in an OFF state, the torque load is applied to the indoor unit 10 alone to which the ventilation device 40 is not connected.
 運転状態判定部153は、室内機10の負荷によって送風機110の回転数と速度指令電圧(Vsp)の関係が変化することを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を判定する。 The operating state determination unit 153 uses the fact that the relationship between the rotation speed of the blower 110 and the speed command voltage (Vsp) changes depending on the load on the indoor unit 10 to determine whether the ventilation device 40 connected via the ventilation duct 6 Determine driving status.
 図9は、遠心ファンの場合の速度指令電圧(Vsp)と回転数との相関関係を示す図である。この図において、横軸が送風機110の回転数、縦軸が速度指令電圧(Vsp)である。図9の(A)は、換気装置40が運転ONの状態であると判定する条件を示している。一方、図9の(B)は、換気装置40が運転OFFの状態であると判定する条件を示している。 FIG. 9 is a diagram showing the correlation between the speed command voltage (Vsp) and the rotation speed in the case of a centrifugal fan. In this figure, the horizontal axis is the rotation speed of the blower 110, and the vertical axis is the speed command voltage (Vsp). (A) in FIG. 9 shows conditions for determining that the ventilation device 40 is in the ON state. On the other hand, (B) of FIG. 9 shows conditions for determining that the ventilation device 40 is in an OFF state.
 速度指令電圧閾値(Vspm)は、換気装置40が運転ONの状態であるか、運転OFFであるかを判定するための閾値である。例えば、速度指令電圧閾値(Vspm)は、換気装置40が運転ONの状態のときの実際の速度指令電圧(Vsp)と、換気装置40が運転OFFであるときの実際の速度指令電圧(Vsp)とに基づいて予め設定された設計値である。 The speed command voltage threshold (Vspm) is a threshold for determining whether the ventilation device 40 is in an ON state or in an OFF state. For example, the speed command voltage threshold (Vspm) is the actual speed command voltage (Vsp) when the ventilation device 40 is in an ON state, and the actual speed command voltage (Vsp) when the ventilation device 40 is in an OFF state. This is a design value set in advance based on the following.
 図9の(A)に示すように、換気装置40が運転ONの状態であると判定する条件は、同一の回転数の条件で比較したときに、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満(Vsp<Vspm)であることである。一方、図9の(B)に示すように、換気装置40が運転OFFの状態であると判定する条件は、同一の回転数の条件で比較したときに、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上(Vsp≧Vspm)であることである。 As shown in (A) of FIG. 9, the conditions for determining that the ventilation device 40 is in the operation ON state are such that the speed command voltage (Vsp) is the speed command voltage threshold when compared under the same rotation speed condition. (Vspm) (Vsp<Vspm). On the other hand, as shown in FIG. 9B, the conditions for determining that the ventilation device 40 is in the OFF state are such that when compared under the same rotation speed condition, the speed command voltage (Vsp) is The voltage is equal to or higher than the voltage threshold (Vspm) (Vsp≧Vspm).
 この図9に示す判定条件を示す情報(判定条件情報)は、記憶部155に記憶されている。運転状態判定部153は、電圧制御部151の制御による速度指令電圧(Vsp)と回転数検出部152により検出された送風機110の回転数と上記の判定条件情報とに基づいて、換気装置40の運転状態を判定する。 Information indicating the determination conditions shown in FIG. 9 (determination condition information) is stored in the storage unit 155. The operating state determination unit 153 determines whether the ventilation device 40 is operating based on the speed command voltage (Vsp) controlled by the voltage control unit 151, the rotation speed of the blower 110 detected by the rotation speed detection unit 152, and the above-mentioned determination condition information. Determine driving status.
 例えば、運転状態判定部153は、速度指令電圧(Vsp)と速度指令電圧閾値(Vspm)とを送風機110の回転数が同一の条件のときで比較し、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満(Vsp<Vspm)である場合には、換気装置40の運転状態が運転ONの状態であると判定する。一方、運転状態判定部153は、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上(Vsp≧Vspm)である場合には、換気装置40の運転状態が運転OFFの状態であると判定する。 For example, the operating state determination unit 153 compares the speed command voltage (Vsp) and the speed command voltage threshold (Vspm) under the same condition when the rotation speed of the blower 110 is the same, and the speed command voltage (Vsp) is compared with the speed command voltage threshold (Vspm). If it is less than the threshold value (Vspm) (Vsp<Vspm), it is determined that the operating state of the ventilation device 40 is in the ON state. On the other hand, when the speed command voltage (Vsp) is equal to or higher than the speed command voltage threshold (Vspm) (Vsp≧Vspm), the operating state determining unit 153 determines that the operating state of the ventilation device 40 is the operating OFF state. do.
 なお、送風機110のファンの種類が軸流ファン(プロペラファン)の場合には、上述した遠心ファンの場合とは異なる判定条件となる。軸流ファンの場合には、圧損が高くなると風を前方(軸流方向)に押し出す力が減少してしまうことから羽根の遠心方向に風が流れるようになる。遠心方向に風を出すほうがより大きなトルクが必要になることから大きなトルクが発生することになる。よって、圧損が大きいほどトルク負荷としては大きくなり、所望の回転数を出すための速度指令電圧(Vsp)は大きくなる。 Note that when the type of fan of the blower 110 is an axial fan (propeller fan), the determination conditions are different from those for the above-mentioned centrifugal fan. In the case of an axial fan, when the pressure drop increases, the force that pushes the wind forward (in the axial direction) decreases, so the wind flows in the centrifugal direction of the blades. Since a larger torque is required to blow air in the centrifugal direction, a larger torque is generated. Therefore, the larger the pressure loss, the larger the torque load, and the larger the speed command voltage (Vsp) for producing the desired rotation speed.
 換気装置40が運転ONの状態では、ファンに対して圧損がかかる状態となるため、トルク負荷としては大きくなり、所望の回転数を出すための速度指令電圧(Vsp)は大きくなる。一方、換気装置40が運転OFFの状態では、換気装置40が接続されていない室内機10単体のトルク負荷となる。 When the ventilation device 40 is in the ON state, pressure loss is applied to the fan, so the torque load becomes large and the speed command voltage (Vsp) for producing the desired rotation speed becomes large. On the other hand, when the ventilation device 40 is in an OFF state, the torque load is applied to the indoor unit 10 alone to which the ventilation device 40 is not connected.
 図10は、軸流ファンの場合の速度指令電圧(Vsp)と回転数との相関関係を示す図である。この図において、横軸が送風機110の回転数、縦軸が速度指令電圧(Vsp)である。図10の(A)は、換気装置40が運転ONの状態であると判定する条件を示している。一方、図10の(B)は、換気装置40が運転OFFの状態であると判定する条件を示している。 FIG. 10 is a diagram showing the correlation between the speed command voltage (Vsp) and the rotation speed in the case of an axial fan. In this figure, the horizontal axis is the rotation speed of the blower 110, and the vertical axis is the speed command voltage (Vsp). (A) of FIG. 10 shows the conditions for determining that the ventilation device 40 is in the ON state. On the other hand, (B) of FIG. 10 shows conditions for determining that the ventilation device 40 is in an OFF state.
 図10の(A)に示すように、換気装置40が運転ONの状態であると判定する条件は、同一の回転数の条件で比較したときに、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上(Vsp≧Vspm)であることである。一方、図10の(B)に示すように、換気装置40が運転OFFの状態であると判定する条件は、同一の回転数の条件で比較したときに、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満(Vsp<Vspm)であることである。 As shown in (A) of FIG. 10, the conditions for determining that the ventilation device 40 is in the ON state are such that the speed command voltage (Vsp) is the speed command voltage threshold when compared under the same rotation speed condition. (Vspm) or more (Vsp≧Vspm). On the other hand, as shown in FIG. 10 (B), the conditions for determining that the ventilation device 40 is in the OFF state are such that when compared under the same rotation speed condition, the speed command voltage (Vsp) is It is less than the voltage threshold (Vspm) (Vsp<Vspm).
 軸流ファンの場合には、この図10に示す判定条件情報が、記憶部155に記憶されている。例えば、運転状態判定部153は、速度指令電圧(Vsp)と速度指令電圧閾値(Vspm)とを送風機110の回転数が同一の条件のときで比較し、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上(Vsp≧Vspm)である場合には、換気装置40の運転状態が運転ONの状態であると判定する。一方、運転状態判定部153は、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満(Vsp<Vspm)である場合には、換気装置40の運転状態が運転OFFの状態であると判定する。 In the case of an axial fan, the determination condition information shown in FIG. 10 is stored in the storage unit 155. For example, the operating state determination unit 153 compares the speed command voltage (Vsp) and the speed command voltage threshold (Vspm) under the same condition when the rotation speed of the blower 110 is the same, and the speed command voltage (Vsp) is compared with the speed command voltage threshold (Vspm). If the threshold value (Vspm) or more (Vsp≧Vspm), it is determined that the operating state of the ventilation device 40 is in the ON state. On the other hand, when the speed command voltage (Vsp) is less than the speed command voltage threshold (Vspm) (Vsp<Vspm), the operating state determining unit 153 determines that the operating state of the ventilation device 40 is in the OFF state. do.
 このように、速度指令電圧(Vspc)と速度指令電圧閾値(Vspm)との符号の大小関係は使用するファンの種類によって異なる。そのため、換気装置40の運転状態を判定する制御において、判定条件となる速度指令電圧(Vspc)と速度指令電圧閾値(Vspm)との符号の大小関係については、ファンの種類によって変更される。 In this way, the magnitude relationship between the speed command voltage (Vspc) and the speed command voltage threshold (Vspm) differs depending on the type of fan used. Therefore, in the control for determining the operating state of the ventilation device 40, the magnitude relationship between the speed command voltage (Vspc) and the speed command voltage threshold (Vspm), which are the determination conditions, is changed depending on the type of fan.
 図8に戻り、出力制御部154は、運転状態判定部153により判定された換気装置40の運転状態に基づく情報をリモコン30へ出力する。また、出力制御部154は、運転状態判定部153により判定された換気装置40の運転状態に基づく情報を携帯端末70へ出力してもよい。 Returning to FIG. 8, the output control unit 154 outputs information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153 to the remote controller 30. Further, the output control unit 154 may output information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153 to the mobile terminal 70.
 図11は、本実施形態に係る換気装置の運転状態に基づく情報の出力に関する構成例を示す図である。図1でも説明したように、室内機10とリモコン30とは、有線の信号線4で接続されている。なお、室内機10とリモコン30との接続は、無線通信によるものであってもよい。 FIG. 11 is a diagram illustrating a configuration example regarding output of information based on the operating state of the ventilation device according to the present embodiment. As explained in FIG. 1, the indoor unit 10 and the remote controller 30 are connected by a wired signal line 4. Note that the indoor unit 10 and the remote controller 30 may be connected by wireless communication.
 リモコン30は、ユーザの操作により、冷凍サイクルの起動または停止を指令したり、冷房、暖房、乾燥などの空調の運転モードを設定したり、吹出空気温度を設定したり、吹出空気の方向および風速などの空調条件を設定したりする操作信号を、室内機10へ信号線4を介して送信する。 The remote controller 30 can be operated by the user to command the start or stop of the refrigeration cycle, set air conditioning operation modes such as cooling, heating, and drying, set the temperature of the blown air, and control the direction and speed of the blown air. Operation signals for setting air conditioning conditions such as the above are transmitted to the indoor unit 10 via the signal line 4.
 また、室内機10の出力制御部154は、この信号線4を介して、換気装置40の運転状態に基づく情報をリモコン30へ送信する。リモコン30は、表示部31を備えており、室内機10から送信された換気装置40の運転状態に基づく情報を表示部31に表示する。表示部31は、液晶ディスプレイなどの表示デバイスを含んで構成されている。リモコン30が換気装置40の運転状態を表示することにより、ユーザがリモコン30の表示画面で換気装置40の運転状況を確認することができる。 Furthermore, the output control unit 154 of the indoor unit 10 transmits information based on the operating state of the ventilation device 40 to the remote controller 30 via this signal line 4. The remote controller 30 includes a display section 31 and displays information based on the operating state of the ventilation device 40 transmitted from the indoor unit 10 on the display section 31. The display section 31 includes a display device such as a liquid crystal display. By displaying the operating status of the ventilation device 40 by the remote controller 30, the user can check the operating status of the ventilation device 40 on the display screen of the remote controller 30.
 なお、出力制御部154は、換気装置40が運転ONの状態であると判定された場合のみ、換気装置40の運転状態に基づく情報をリモコン30または携帯端末70へ送信してもよい。 Note that the output control unit 154 may transmit information based on the operating state of the ventilation device 40 to the remote control 30 or the mobile terminal 70 only when it is determined that the ventilation device 40 is in the ON state.
 ここで、換気装置40の運転状態に基づく情報とは、例えば換気装置40の運転状態を示す情報である。運転状態を示す情報とは、例えば「運転ON」、「運転中」、「運転しています」、「運転OFF」、「停止」などである。 Here, the information based on the operating state of the ventilation device 40 is information indicating the operating state of the ventilation device 40, for example. The information indicating the operating state is, for example, "operating ON", "running", "driving", "operating OFF", "stopped", etc.
 また、換気装置40の運転状態に基づく情報とは、換気装置40の運転状態に基づく適切な操作内容をユーザに提示する情報であってもよい。例えば、現在の空気調和機1の運転モードに対して最適な状態となるようにリモコン30に表示することもできる。一例として、空気調和機1の運転モードが「冷房」の場合、空気調和機1は、部屋の空気を吸込み、熱交換をして冷たい空気を吹出す。この際に、換気装置40が運転ONの状態になっていると、吸込む空気量が低下するため、所望の風量を確保できず、最大限の能力を確保できない場合がある。また、余計な電力を消費してしまう。そこで、リモコン30に「冷房運転では換気装置を停止したほうが効率よく涼しくなります。換気装置を停止してはどうでしょうか」というような表示をさせることにより、ユーザに最適な運転状態を提案することができる。 Furthermore, the information based on the operating state of the ventilation device 40 may be information that presents appropriate operation details to the user based on the operating state of the ventilation device 40. For example, it is also possible to display on the remote control 30 the optimum state for the current operating mode of the air conditioner 1. As an example, when the operation mode of the air conditioner 1 is "cooling", the air conditioner 1 sucks in room air, exchanges heat with it, and blows out cold air. At this time, if the ventilation device 40 is in the ON state, the amount of air taken in decreases, so the desired amount of air cannot be secured, and the maximum capacity may not be secured. Also, unnecessary power is consumed. Therefore, by displaying on the remote controller 30 a message such as ``It is more efficient to cool down the air conditioner by stopping the ventilation system during cooling operation.Why don't you stop the ventilation system?'', the optimal operating state can be suggested to the user. I can do it.
 なお、空気調和機1の運転操作についてはリモコン30を主に用いるが、リモコン30に代えてまたは加えて、ユーザが使用する携帯端末70を用いてもよい。例えば、室内機10は、携帯端末70と無線通信により接続可能であってもよい。携帯端末70は、スマートフォン、タブレット型のPC(Personal Computer)など、ユーザが使用する電子機器である。例えば、出力制御部154は、Wi-Fi(登録商標)などの無線通信に対応した通信デバイスを備え、換気装置40の運転状態に基づく情報を携帯端末70へ送信する。携帯端末70は、表示部71を備えており、室内機10から送信された換気装置40の運転状態に基づく情報を表示部71に表示する。表示部71は、液晶ディスプレイなどの表示デバイスを含んで構成されている。携帯端末70は、リモコン30と同様に、換気装置40の運転状態に基づく情報を表示することにより、同様の効果を得る。 Although the remote control 30 is mainly used to operate the air conditioner 1, the mobile terminal 70 used by the user may be used instead of or in addition to the remote control 30. For example, the indoor unit 10 may be connectable to the mobile terminal 70 via wireless communication. The mobile terminal 70 is an electronic device used by a user, such as a smartphone or a tablet-type PC (Personal Computer). For example, the output control unit 154 includes a communication device compatible with wireless communication such as Wi-Fi (registered trademark), and transmits information based on the operating state of the ventilation device 40 to the mobile terminal 70. The mobile terminal 70 includes a display section 71 and displays information based on the operating state of the ventilation device 40 transmitted from the indoor unit 10 on the display section 71. The display section 71 includes a display device such as a liquid crystal display. Similar to the remote control 30, the mobile terminal 70 obtains similar effects by displaying information based on the operating state of the ventilation device 40.
 (換気装置の運転状態判定処理の動作)
 次に、図12を参照して、空調制御部150が換気装置40の運転状態を判定する運転状態判定処理の動作について説明する。
 図12は、本実施形態に係る運転状態判定処理の一例を示すフローチャートである。ここでは、送風機110のファンが遠心ファンの場合の処理の動作について説明する。
(Operation of ventilation system operating state determination processing)
Next, with reference to FIG. 12, the operation of the operating state determination process in which the air conditioning control unit 150 determines the operating state of the ventilation device 40 will be described.
FIG. 12 is a flowchart illustrating an example of the driving state determination process according to the present embodiment. Here, the processing operation when the fan of the blower 110 is a centrifugal fan will be described.
 停止状態において、リモコン30にて、冷房運転または暖房運転の開始(運転ON)の操作が行われると、空調制御部150は、運転ONの操作信号をリモコン30から取得する(ステップS101)。 In the stopped state, when an operation to start a cooling operation or a heating operation (operation ON) is performed using the remote control 30, the air conditioning control unit 150 acquires an operation signal for operation ON from the remote controller 30 (step S101).
 空調制御部150は、運転ONの操作信号を取得すると、予め設定されていた吹出空気温度、吹出空気の方向および風速などの空調条件に基づいて、あるいは、リモコン30の操作によって ユーザが設定した新たな設定温度などの空調条件に基づいて冷房運転または暖房運転を開始し、室外機20の圧縮機(不図示)の運転およびファンモータ111を目標の回転数で回転させる。具体的には、空調制御部150は、目標の回転数とするための速度指令電圧(Vspc)を、ファンモータ駆動部200へ伝達することにより、ファンモータ111が回転し、送風機110の運転が開始される。(ステップS103) When the air conditioning control unit 150 receives the operation signal to turn on the operation, the air conditioning control unit 150 uses the air conditioning conditions set in advance, such as the blowing air temperature, blowing air direction, and wind speed, or based on the new settings set by the user by operating the remote control 30. Cooling operation or heating operation is started based on air conditioning conditions such as a set temperature, and the compressor (not shown) of the outdoor unit 20 is operated and the fan motor 111 is rotated at a target rotation speed. Specifically, the air conditioning control unit 150 transmits a speed command voltage (Vspc) for achieving the target rotation speed to the fan motor drive unit 200, so that the fan motor 111 rotates and the blower 110 is operated. will be started. (Step S103)
 次に、送風機110の運転が開始されると、送風機110の実回転数(実際の回転数)の情報がファンモータ駆動部200から空調制御部150へフィードバックされる。空調制御部150は、ファンモータ駆動部200から送風機110の実回転数の情報を取得する(ステップS105)。 Next, when the blower 110 starts operating, information on the actual rotational speed (actual rotational speed) of the blower 110 is fed back from the fan motor drive section 200 to the air conditioning control section 150. The air conditioning control unit 150 acquires information on the actual rotation speed of the blower 110 from the fan motor drive unit 200 (step S105).
 空調制御部150は、送風機110の実回転数の情報に基づいて目標の回転数となるように速度指令電圧(Vspc)を算出し、算出した速度指令電圧(Vspc)に制御する(ステップS107)。 The air conditioning control unit 150 calculates a speed command voltage (Vspc) based on the information on the actual rotation speed of the blower 110 so as to reach the target rotation speed, and controls the speed command voltage (Vspc) to the calculated speed command voltage (Vspc) (step S107). .
 空調制御部150は、速度指令電圧(Vsp)と回転数との相関関係(図9参照)に基づく判定条件を記憶部155から読み出し、速度指令電圧(Vsp)と速度指令電圧閾値(Vspm)とを送風機110の回転数が同一の条件のときで比較する(ステップS109)。 The air conditioning control unit 150 reads the determination condition based on the correlation between the speed command voltage (Vsp) and the rotation speed (see FIG. 9) from the storage unit 155, and sets the speed command voltage (Vsp) and the speed command voltage threshold (Vspm). are compared when the rotational speed of the blower 110 is the same (step S109).
 空調制御部150は、ステップS109において比較した結果、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満である場合(Vsp<Vspm)、換気装置40が運転ONの状態(運転している状態)であると判定する(ステップS111)。 As a result of the comparison in step S109, if the speed command voltage (Vsp) is less than the speed command voltage threshold (Vspm) (Vsp<Vspm), the air conditioning control unit 150 determines that the ventilation device 40 is in the ON state (operating). state) (step S111).
 空調制御部150は、ステップS111において換気装置40が運転ONの状態であると判定した場合、換気装置40が運転ONの状態であることを示す情報をリモコン30へ送信する。これにより、リモコン30は、換気装置40が運転ONの状態であることを示す情報を表示する。なお、換気装置40が運転ONの状態であることを示す情報に代えて又は加えて、換気装置40の運転状態に基づく適切な操作内容を示す情報(例えば、「冷房運転では換気装置を停止したほうが効率よく涼しくなります。換気装置を停止してはどうでしょうか」)であってもよい。 If the air conditioning control unit 150 determines in step S111 that the ventilation device 40 is in the ON state, it transmits information indicating that the ventilation device 40 is in the ON state to the remote controller 30. As a result, the remote control 30 displays information indicating that the ventilation device 40 is in the ON state. Note that instead of or in addition to the information indicating that the ventilation system 40 is in the ON state, information indicating appropriate operation details based on the operating state of the ventilation system 40 (for example, "In cooling operation, the ventilation system is turned off." "How about turning off the ventilation system?").
 また、空調制御部150は、リモコン30から送信される操作信号に基づいて、リモコン30にて空気調和機1の運転OFFの操作がされたか否かを判定する(ステップS115)。空調制御部150は、リモコン30にて運転OFFの操作がされていないと判定した場合(NO)、ステップS105の処理へ戻る。一方、空調制御部150は、リモコン30にて運転OFFの操作がされたと判定した場合(YES)、空気調和機1の運転を停止させ(ステップS117)、処理を終了する。 Furthermore, the air conditioning control unit 150 determines whether or not the operation of the air conditioner 1 is turned off using the remote controller 30, based on the operation signal transmitted from the remote controller 30 (step S115). If the air conditioning control unit 150 determines that the operation OFF operation has not been performed using the remote controller 30 (NO), the process returns to step S105. On the other hand, if the air conditioning control unit 150 determines that the operation to turn off the operation has been performed using the remote controller 30 (YES), the air conditioner control unit 150 stops the operation of the air conditioner 1 (step S117), and ends the process.
 一方、空調制御部150は、ステップS109において比較した結果、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上である場合(Vsp≧Vspm)、換気装置40が運転OFFの状態(運転していない状態)であると判定する(ステップS121)。 On the other hand, if the speed command voltage (Vsp) is equal to or higher than the speed command voltage threshold (Vspm) (Vsp≧Vspm) as a result of the comparison in step S109, the air conditioning control unit 150 determines that the ventilation device 40 is in an OFF state (not in operation). (step S121).
 空調制御部150は、ステップS121において換気装置40が運転OFFの状態であると判定した場合、リモコン30から送信される操作信号に基づいて、リモコン30にて空気調和機1の運転OFFの操作がされたか否かを判定する(ステップS123)。空調制御部150は、リモコン30にて運転OFFの操作がされていないと判定した場合(NO)、ステップS105の処理へ戻る。一方、空調制御部150は、リモコン30にて運転OFFの操作がされたと判定した場合(YES)、空気調和機1の運転を停止させ(ステップS125)、処理を終了する。 If the air conditioning control unit 150 determines in step S121 that the ventilation device 40 is in the OFF state, the air conditioner 1 is turned OFF using the remote controller 30 based on the operation signal transmitted from the remote controller 30. It is determined whether or not it has been performed (step S123). If the air conditioning control unit 150 determines that the operation OFF operation has not been performed using the remote controller 30 (NO), the process returns to step S105. On the other hand, if the air conditioning control unit 150 determines that the operation to turn off the operation has been performed using the remote controller 30 (YES), the air conditioner control unit 150 stops the operation of the air conditioner 1 (step S125), and ends the process.
 なお、この速度指令電圧閾値の考え方については、通常負荷時の「回転数と速度指令電圧の関係」を記憶しておき、その通常負荷時の速度指令電圧と、電圧制御部151により制御された速度指令電圧(Vspc)との差分を計測し、その差分がある閾値を超えた場合に換気装置40が運転OFFの状態であると判定する方式でもよい。 Regarding the concept of this speed command voltage threshold, the "relationship between the rotation speed and the speed command voltage" at the time of normal load is memorized, and the speed command voltage at the time of normal load and the relationship controlled by the voltage control unit 151 are A method may also be used in which the difference from the speed command voltage (Vspc) is measured, and when the difference exceeds a certain threshold, it is determined that the ventilation device 40 is in an OFF state.
 なお、図12に示す運転状態判定処理は、送風機110のファンが遠心ファンの場合の処理の例であるが、軸流ファンの場合には、ステップS109の処理を変更すればよい。例えば、軸流ファンの場合の運転状態判定処理では、空調制御部150は、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)以上である場合(Vsp≧Vspm)、換気装置40が運転ONの状態(運転している状態)であると判定する(ステップS111)。また、空調制御部150は、速度指令電圧(Vsp)が速度指令電圧閾値(Vspm)未満である場合(Vsp<Vspm)、換気装置40が運転OFFの状態(運転していない状態)であると判定する(ステップS121)。 Note that the operation state determination process shown in FIG. 12 is an example of the process when the fan of the blower 110 is a centrifugal fan, but in the case of an axial fan, the process in step S109 may be changed. For example, in the operation state determination process for an axial fan, the air conditioning control unit 150 turns on the ventilation device 40 when the speed command voltage (Vsp) is equal to or higher than the speed command voltage threshold (Vspm) (Vsp≧Vspm). It is determined that the vehicle is in the state (driving state) (step S111). Furthermore, when the speed command voltage (Vsp) is less than the speed command voltage threshold (Vspm) (Vsp<Vspm), the air conditioning control unit 150 determines that the ventilation device 40 is in an OFF state (not in operation). Determination is made (step S121).
 また、本実施形態に係る換気装置40の運転状態を判定する運転状態判定処理を実施するか否かは、空気調和機1の施工時等に設定することが可能である。例えば、空気調和機1と換気装置40とを接続しない場合には、運転状態判定処理を未実施にすることが可能である。また、空気調和機1と換気装置40とを接続した場合でも、換気装置40の運転状態を判定する処理を実施しないという意思がある場合には、運転状態判定処理を未実施にすることが可能である。 Furthermore, whether or not to perform the operating state determination process for determining the operating state of the ventilation device 40 according to the present embodiment can be set at the time of construction of the air conditioner 1, etc. For example, when the air conditioner 1 and the ventilation device 40 are not connected, the operation state determination process may not be performed. Furthermore, even if the air conditioner 1 and the ventilation device 40 are connected, if there is an intention not to perform the process of determining the operating state of the ventilation device 40, it is possible to leave the operation state determination process unimplemented. It is.
 また、室内機10の圧損はフィルタ121へのほこりの蓄積等により経年的に増加していく。よって、フィルタ121へのほこりの蓄積等により経年的に速度指令電圧についても徐々に変化(遠心ファンでは低下、軸流ファンでは増加)していくことになる。経年的な速度指令電圧の増減が、記憶部155に記憶されている判定条件(図9、10参照)の速度指令電圧閾値(Vspm)をまたがった場合には、換気装置40の運転状態が運転OFFであっても運転ONと誤判断をしてしまうことになる。そこで、空気調和機1の累積運転時間が所定の累積時間に達している場合には、運転状態判定処理を無効化してもよい。 Furthermore, the pressure loss of the indoor unit 10 increases over time due to the accumulation of dust on the filter 121 and the like. Therefore, due to the accumulation of dust on the filter 121, etc., the speed command voltage gradually changes over time (decreases in the case of a centrifugal fan and increases in the case of an axial fan). If the increase or decrease in the speed command voltage over time straddles the speed command voltage threshold (Vspm) of the determination conditions (see FIGS. 9 and 10) stored in the storage unit 155, the operating state of the ventilation device 40 is changed to "operation". Even if it is OFF, it may be mistakenly determined that the operation is ON. Therefore, when the cumulative operating time of the air conditioner 1 has reached a predetermined cumulative time, the operating state determination process may be disabled.
 例えば、空気調和機1の累積運転時間は、空調制御部150が計時して記憶部155に記憶している。空調制御部150は、累積運転時間が所定の累積時間となった場合にはリモコン30または携帯端末70に「フィルタお掃除サイン」などを表示させる機能を有しているものがある。空調制御部150は、この累積運転時間を利用して、上述したように累積運転時間が所定の累積時間に達している場合には、運転状態判定処理を無効化してもよい。 For example, the cumulative operating time of the air conditioner 1 is measured by the air conditioning control unit 150 and stored in the storage unit 155. The air conditioning control unit 150 may have a function of displaying a "filter cleaning sign" on the remote control 30 or the mobile terminal 70 when the cumulative operating time reaches a predetermined cumulative time. The air conditioning control unit 150 may use this cumulative driving time to invalidate the driving state determination process when the cumulative driving time has reached a predetermined cumulative time as described above.
 以上説明してきたように、本実施形態に係る空気調和機1は、空調対象空間(例えば、室内)から空気を吸い込む吸込口13と、送風機110と、室内熱交換器120(熱交換器の一例)と、空調対象空間へ空気を吹出す吹出口14とを備えている。また、空気調和機1は、空気調和機1の操作系統とは異なる操作系統により独立して制御が行われる換気装置40と換気ダクト6(ダクトの一例)を介して接続するための換気用ダクト孔15を備えている。そして、空気調和機1は、空気調和機1の操作系統による制御に応じて送風機110を制御するとともに、換気装置40が換気用ダクト孔15に換気ダクト6を介して接続されている状態において、送風機110の制御状態に基づいて換気装置40の運転状態を判定する。 As described above, the air conditioner 1 according to the present embodiment includes the suction port 13 that sucks air from the air-conditioned space (for example, indoors), the blower 110, and the indoor heat exchanger 120 (an example of a heat exchanger). ) and an air outlet 14 that blows out air into the air-conditioned space. The air conditioner 1 also has a ventilation duct for connecting via a ventilation duct 6 (an example of a duct) to a ventilation device 40 that is independently controlled by an operation system different from the operation system of the air conditioner 1. A hole 15 is provided. Then, the air conditioner 1 controls the blower 110 according to the control by the operation system of the air conditioner 1, and in a state where the ventilation device 40 is connected to the ventilation duct hole 15 via the ventilation duct 6, The operating state of the ventilation device 40 is determined based on the control state of the blower 110.
 これにより、空気調和機1は、空気調和機1の操作系統とは異なる操作系統により独立して制御が行われる換気装置40が換気ダクト6を介して接続されている状態であっても、空気調和機1内の情報を用いて換気装置40の運転状態を容易に判別することができる。よって、空気調和機1は、空調対象空間内で、換気装置40の換気運転も考慮した最適な空調運転をユーザに支援することができる。 As a result, even if the air conditioner 1 is connected via the ventilation duct 6 to the ventilation device 40, which is independently controlled by an operation system different from that of the air conditioner 1, the air conditioner 1 can The operating state of the ventilation device 40 can be easily determined using the information in the conditioner 1. Therefore, the air conditioner 1 can support the user in optimal air conditioning operation in the air-conditioned space, taking into consideration the ventilation operation of the ventilation device 40.
 例えば、空気調和機1は、送風機110の回転数が所望の回転数(例えば、目標の回転数)になるように送風機110を駆動するための速度指令電圧(電圧の一例)を制御する。また、空気調和機1は、速度指令電圧(Vspc)で駆動された送風機110の回転数を検出する。また、空気調和機1は、送風機110の回転数と速度指令電圧(Vspc)との相関関係に基づく判定条件情報(第1情報、図9または図10参照)を記憶部155に記憶している。そして、空気調和機1は、速度指令電圧(Vspc)と送風機110の回転数と判定条件情報とに基づいて、換気装置40の運転状態を判定する。 For example, the air conditioner 1 controls a speed command voltage (an example of a voltage) for driving the blower 110 so that the rotation speed of the blower 110 becomes a desired rotation speed (for example, a target rotation speed). Furthermore, the air conditioner 1 detects the rotation speed of the blower 110 driven by the speed command voltage (Vspc). The air conditioner 1 also stores in the storage unit 155 determination condition information (first information, see FIG. 9 or 10) based on the correlation between the rotation speed of the blower 110 and the speed command voltage (Vspc). . Then, the air conditioner 1 determines the operating state of the ventilation device 40 based on the speed command voltage (Vspc), the rotation speed of the blower 110, and the determination condition information.
 これにより、空気調和機1は、室内機10の負荷によって送風機110を駆動する電圧と送風機110の回転数との関係が変化することを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を、容易に判別することができる。 As a result, the air conditioner 1 utilizes the fact that the relationship between the voltage that drives the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6. The operating state of the device 40 can be easily determined.
 具体的には、上記判定条件情報には、送風機110の回転数に対する速度指令電圧の閾値を示す速度指令電圧閾値(Vspm)の情報が含まれている。空気調和機1は、速度指令電圧(Vspc)と速度指令電圧閾値(Vspm)とを送風機110の回転数が同一の条件で比較した結果に基づいて、換気装置40の運転状態を判定する。 Specifically, the determination condition information includes information on a speed command voltage threshold (Vspm) indicating a threshold of the speed command voltage with respect to the rotation speed of the blower 110. The air conditioner 1 determines the operating state of the ventilation device 40 based on the result of comparing the speed command voltage (Vspc) and the speed command voltage threshold (Vspm) under the condition that the rotation speed of the blower 110 is the same.
 これにより、空気調和機1は、室内機10の負荷によって送風機110を駆動する電圧と送風機110の回転数との関係が変化することを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を、容易に判別することができる。 As a result, the air conditioner 1 utilizes the fact that the relationship between the voltage that drives the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6. The operating state of the device 40 can be easily determined.
 また、空気調和機1の操作系統には、空気調和機1は、の運転の指令及び設定を行うリモコン30が含まれている。空気調和機1は、判定した換気装置40の運転状態に基づく情報をリモコン30へ出力する。 Furthermore, the operation system of the air conditioner 1 includes a remote control 30 that commands and sets the operation of the air conditioner 1. The air conditioner 1 outputs information based on the determined operating state of the ventilation device 40 to the remote controller 30.
 これにより、空気調和機1は、換気装置40の運転状態をリモコン30に表示させることができるため、換気装置40の運転状態をユーザに容易に伝達することができる。 Thereby, the air conditioner 1 can display the operating state of the ventilation device 40 on the remote control 30, so that the operating state of the ventilation device 40 can be easily communicated to the user.
 また、空気調和機1は、無線通信を用いて携帯端末70(端末装置の一例)と通信可能な通信デバイス(通信部)を備えている。空気調和機1は、判定した換気装置40の運転状態に基づく情報を、通信デバイスを介して携帯端末70へ出力する。 Additionally, the air conditioner 1 includes a communication device (communication unit) that can communicate with a mobile terminal 70 (an example of a terminal device) using wireless communication. The air conditioner 1 outputs information based on the determined operating state of the ventilation device 40 to the mobile terminal 70 via the communication device.
 これにより、空気調和機1は、換気装置40の運転状態をユーザが所持する携帯端末70に表示させることができるため、換気装置40の運転状態をユーザに容易に伝達することができる。 Thereby, the air conditioner 1 can display the operating state of the ventilation device 40 on the mobile terminal 70 carried by the user, so that the operating state of the ventilation device 40 can be easily communicated to the user.
 なお、空気調和機1は、表示により換気装置40の運転状態をユーザに伝達するのに代えてまたは加えて、ブザーまたは音声などでユーザに伝達してもよい。 Note that instead of or in addition to transmitting the operating state of the ventilation device 40 to the user through a display, the air conditioner 1 may transmit the operating state to the user through a buzzer, voice, or the like.
 例えば、空気調和機1は、換気装置40の運転状態に基づく情報として、換気装置40の運転状態に基づく適切な操作内容をユーザに提示する情報を出力してもよい。例えば、空気調和機1は、換気装置40の運転状態に基づいて、リモコン30または携帯端末70に「冷房運転では換気装置を停止したほうが効率よく涼しくなります。換気装置を停止してはどうでしょうか」というような表示をさせてもよい。 For example, the air conditioner 1 may output, as information based on the operating state of the ventilation device 40, information that presents the user with appropriate operation details based on the operating state of the ventilation device 40. For example, based on the operating status of the ventilation system 40, the air conditioner 1 sends a message to the remote control 30 or mobile terminal 70 saying, "During cooling operation, it will be more efficient to turn off the ventilation system to cool the room. Why not stop the ventilation system?" ” may be displayed.
 これにより、空気調和機1は、換気装置40の運転状態によって、換気装置40の換気運転も考慮した最適な運転状態をユーザに提案することができる。 Thereby, the air conditioner 1 can suggest to the user an optimal operating state that also takes into consideration the ventilation operation of the ventilation device 40, depending on the operating state of the ventilation device 40.
[第2の実施形態]
 次に、第2の実施形について説明する。
 第1の実施形態では、速度指令電圧(Vspc)に閾値設定して、換気装置40の運転状態の判定を行ったが、本実施形態では、速度指令電圧に代えてファンモータ111に流れる電流値を使用して判定を行う。この判定方法は、例えば、ファンモータ111を駆動する回路が室内機10側の基板に備えられている構成の場合に有効となる。
[Second embodiment]
Next, a second embodiment will be described.
In the first embodiment, the operating state of the ventilator 40 was determined by setting a threshold value for the speed command voltage (Vspc), but in this embodiment, the current value flowing through the fan motor 111 is replaced with the speed command voltage. Make a judgment using . This determination method is effective, for example, in the case of a configuration in which a circuit for driving the fan motor 111 is provided on a board on the indoor unit 10 side.
 図13は、本実施形態に係る空調制御部およびファンモータ駆動部の構成の一例を示すブロック図である。本実施形態では、ファンモータ駆動部200Aが空気調和機1(ここでは、室内機10)側の基板に実装される。本実施形態では、第1の実施形態における空調制御部150に対応する構成を空調制御部150Aとし、空調制御部150Aがファンモータ駆動部200Aを備える。また、本実施形態に係る送風機110Aは、ファンモータ駆動部を備えていない点が、第1の実施形態に係る送風機110と異なる。 FIG. 13 is a block diagram showing an example of the configuration of the air conditioning control section and fan motor drive section according to the present embodiment. In this embodiment, the fan motor drive unit 200A is mounted on a board on the air conditioner 1 (here, the indoor unit 10) side. In this embodiment, the configuration corresponding to the air conditioning control section 150 in the first embodiment is an air conditioning control section 150A, and the air conditioning control section 150A includes a fan motor drive section 200A. Further, the blower 110A according to the present embodiment differs from the blower 110 according to the first embodiment in that it does not include a fan motor drive section.
 ファンモータ駆動部200Aは、パワーIC201Aと、制御IC202Aと、電流検出部203Aとを備える。電流検出部203Aは、ファンモータ111の巻線に流れる電流値を計測することができる。この電流値はファンモータ111が発生するトルクと相関があるため、電流値から室内機10の圧損の負荷を予測することができる。よって、この電流値の情報から換気装置40の運転状態を判定することが可能となる。 The fan motor drive unit 200A includes a power IC 201A, a control IC 202A, and a current detection unit 203A. The current detection unit 203A can measure the value of the current flowing through the windings of the fan motor 111. Since this current value has a correlation with the torque generated by the fan motor 111, the pressure loss load of the indoor unit 10 can be predicted from the current value. Therefore, it becomes possible to determine the operating state of the ventilation device 40 from information on this current value.
 パワーIC201Aと制御IC202Aとは、それぞれ、図8のパワーIC201Aと制御IC202Aとに対応する。また、空調制御部150Aは、ファンモータ駆動部200Aの他に、回転数指示部151Aと、運転状態判定部153Aと、出力制御部154Aと、記憶部155Aとを備える。 The power IC 201A and the control IC 202A correspond to the power IC 201A and the control IC 202A in FIG. 8, respectively. In addition to the fan motor drive section 200A, the air conditioning control section 150A includes a rotation speed instruction section 151A, an operating state determination section 153A, an output control section 154A, and a storage section 155A.
 ファンモータ111を目標の回転数で回転させるための要求回転数情報が、回転数指示部151Aからファンモータ駆動部220Aの制御IC202Aへ入力される。制御IC202Aは、入力された要求回転数情報に従って駆動信号を生成してパワーIC201Aへ出力する。パワーIC201と固定子162の巻線166とは、巻線端子を介して接続されている。パワーIC201Aは、制御IC202Aから入力された駆動信号に従ってパルスを生成し、ファンモータ111の固定子162の巻線166に電圧を印加する。これにより、ファンモータ111が目標の回転数で回転する。 Requested rotation speed information for rotating the fan motor 111 at a target rotation speed is input from the rotation speed instruction section 151A to the control IC 202A of the fan motor drive section 220A. The control IC 202A generates a drive signal according to the input required rotation speed information and outputs it to the power IC 201A. Power IC 201 and winding 166 of stator 162 are connected via winding terminals. The power IC 201A generates pulses according to the drive signal input from the control IC 202A, and applies voltage to the winding 166 of the stator 162 of the fan motor 111. As a result, the fan motor 111 rotates at the target rotation speed.
 ここで、室内機10の負荷変動はファンモータ111に流れる相電流の大きさと相関がある。室内機10の負荷が大きいほど各相電流に流れる電流も大きくなる。ファンモータ111の回転数の制御としては、相電流の大きさに応じて巻線166に印加する電圧を変化させることにより、回転数を制御する。パルスのON時間により電圧を変化させ、ONしている時間の平均が多いほど電圧が大きくなる(即ち、回転数がUPする)。 Here, the load fluctuation of the indoor unit 10 is correlated with the magnitude of the phase current flowing through the fan motor 111. The larger the load on the indoor unit 10, the larger the current flowing through each phase current. The rotation speed of the fan motor 111 is controlled by changing the voltage applied to the winding 166 according to the magnitude of the phase current. The voltage is changed depending on the ON time of the pulse, and the longer the average ON time, the higher the voltage (that is, the rotation speed increases).
 運転状態判定部153Aは、ファンモータ111の巻線に流れる電流値がファンモータ111の発生するトルクと相関があることを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を判定する。 The operating state determination unit 153A determines the operation of the ventilation device 40 connected via the ventilation duct 6 by utilizing the fact that the current value flowing through the winding of the fan motor 111 is correlated with the torque generated by the fan motor 111. Determine the condition.
 図14および図15を参照して、本実施形態に係る換気装置40の運転状態の判定条件について説明する。 With reference to FIGS. 14 and 15, conditions for determining the operating state of the ventilation device 40 according to the present embodiment will be described.
 図14は、遠心ファンの場合の電流値(Ic)と回転数との相関関係を示す図である。この図において、横軸が送風機110Aの回転数、縦軸がファンモータ111の巻線に流れる電流値(Ic)である。図14の(A)は、換気装置40が運転ONの状態であると判定する条件を示している。一方、図14の(B)は、換気装置40が運転OFFの状態であると判定する条件を示している。 FIG. 14 is a diagram showing the correlation between the current value (Ic) and the rotation speed in the case of a centrifugal fan. In this figure, the horizontal axis represents the rotational speed of the blower 110A, and the vertical axis represents the current value (Ic) flowing through the winding of the fan motor 111. (A) of FIG. 14 shows conditions for determining that the ventilation device 40 is in the ON state. On the other hand, (B) of FIG. 14 shows conditions for determining that the ventilation device 40 is in an OFF state.
 電流閾値(Im)は、換気装置40が運転ONの状態であるか、運転OFFであるかを判定するための閾値である。例えば、電流閾値(Im)は、換気装置40が運転ONの状態のときの実際の電流閾値(Im)と、換気装置40が運転OFFであるときの実際の電流閾値(Im)とに基づいて予め設定された設計値である。 The current threshold value (Im) is a threshold value for determining whether the ventilation device 40 is in an ON state or in an OFF state. For example, the current threshold (Im) is based on the actual current threshold (Im) when the ventilation device 40 is in the ON state and the actual current threshold (Im) when the ventilation device 40 is in the OFF state. This is a preset design value.
 図14の(A)に示すように、換気装置40が運転ONの状態であると判定する条件は、同一の回転数の条件で比較したときに、電流値(Ic)が電流閾値(Im)未満(Ic<Im)であることである。一方、図14の(B)に示すように、換気装置40が運転OFFの状態であると判定する条件は、同一の回転数の条件で比較したときに、電流値(Ic)が電流閾値(Im)以上(Ic≧Im)であることである。 As shown in (A) of FIG. 14, the conditions for determining that the ventilation device 40 is in the ON state are such that the current value (Ic) is equal to the current threshold value (Im) when compared under the same rotation speed condition. (Ic<Im). On the other hand, as shown in FIG. 14(B), the conditions for determining that the ventilation device 40 is in the OFF state are such that the current value (Ic) is the current threshold ( Im) or more (Ic≧Im).
 この図14に示す判定条件情報が、記憶部155Aに記憶されている。運転状態判定部153Aは、ファンモータ111の巻線に流れる電流値(Ic)と送風機110Aの回転数と上記の判定条件情報とに基づいて、換気装置40の運転状態を判定する。 The determination condition information shown in FIG. 14 is stored in the storage unit 155A. The operating state determination unit 153A determines the operating state of the ventilation device 40 based on the current value (Ic) flowing through the winding of the fan motor 111, the rotational speed of the blower 110A, and the above-mentioned determination condition information.
 例えば、運転状態判定部153Aは、電流値(Ic)と電流閾値(Im)とを送風機110Aの回転数が同一の条件のときで比較し、電流値(Ic)が電流閾値(Im)未満(Ic<Im)である場合には、換気装置40の運転状態が運転ONの状態であると判定する。一方、運転状態判定部153Aは、電流値(Ic)が電流閾値(Im)以上(Ic≧Im)である場合には、換気装置40の運転状態が運転OFFの状態であると判定する。 For example, the operating state determination unit 153A compares the current value (Ic) and the current threshold value (Im) when the rotation speed of the blower 110A is the same condition, and determines that the current value (Ic) is less than the current threshold value (Im) ( If Ic<Im), it is determined that the operating state of the ventilation device 40 is ON. On the other hand, when the current value (Ic) is greater than or equal to the current threshold value (Im) (Ic≧Im), the operating state determination unit 153A determines that the operating state of the ventilation device 40 is in the OFF state.
 図15は、軸流ファンの場合の電流値(Ic)と回転数との相関関係を示す図である。この図において、横軸が送風機110Aの回転数、縦軸がファンモータ111の巻線に流れる電流値(Ic)である。図15の(A)は、換気装置40が運転ONの状態であると判定する条件を示している。一方、図15の(B)は、換気装置40が運転OFFの状態であると判定する条件を示している。 FIG. 15 is a diagram showing the correlation between the current value (Ic) and the rotation speed in the case of an axial fan. In this figure, the horizontal axis represents the rotational speed of the blower 110A, and the vertical axis represents the current value (Ic) flowing through the winding of the fan motor 111. (A) of FIG. 15 shows the conditions for determining that the ventilation device 40 is in the ON state. On the other hand, (B) of FIG. 15 shows conditions for determining that the ventilation device 40 is in an OFF state.
 図15の(A)に示すように、換気装置40が運転ONの状態であると判定する条件は、同一の回転数の条件で比較したときに、電流値(Ic)が電流閾値(Im)以上(Ic≧Im)であることである。一方、図15の(B)に示すように、換気装置40が運転OFFの状態であると判定する条件は、同一の回転数の条件で比較したときに、電流値(Ic)が電流閾値(Im)未満(Ic<Im)であることである。 As shown in (A) of FIG. 15, the conditions for determining that the ventilation device 40 is in the ON state are such that the current value (Ic) is equal to the current threshold value (Im) when compared under the same rotation speed condition. or more (Ic≧Im). On the other hand, as shown in FIG. 15(B), the conditions for determining that the ventilation device 40 is in the OFF state are such that the current value (Ic) is the current threshold ( Im) (Ic<Im).
 軸流ファンの場合には、この図15に示す判定条件情報が、記憶部155Aに記憶されている。例えば、運転状態判定部153Aは、電流値(Ic)と電流閾値(Im)とを送風機110Aの回転数が同一の条件のときで比較し、電流値(Ic)が電流閾値(Im)以上(Ic≧Im)である場合には、換気装置40の運転状態が運転ONの状態であると判定する。一方、運転状態判定部153Aは、電流値(Ic)が電流閾値(Im)未満(Ic<Im)である場合には、換気装置40の運転状態が運転OFFの状態であると判定する。 In the case of an axial fan, the determination condition information shown in FIG. 15 is stored in the storage unit 155A. For example, the operating state determination unit 153A compares the current value (Ic) and the current threshold value (Im) when the rotation speed of the blower 110A is the same condition, and determines that the current value (Ic) is equal to or higher than the current threshold value (Im) ( If Ic≧Im), it is determined that the operating state of the ventilation device 40 is ON. On the other hand, when the current value (Ic) is less than the current threshold value (Im) (Ic<Im), the operating state determination unit 153A determines that the operating state of the ventilator 40 is OFF.
 出力制御部154Aは、運転状態判定部153Aにより判定された換気装置40の運転状態に基づく情報をリモコン30へ出力する。また、出力制御部154Aは、運転状態判定部153Aにより判定された換気装置40の運転状態に基づく情報を携帯端末70へ出力してもよい。 The output control unit 154A outputs information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153A to the remote controller 30. Further, the output control unit 154A may output information based on the operating state of the ventilation device 40 determined by the operating state determining unit 153A to the mobile terminal 70.
 以上説明したように、本実施形態に係る空気調和機1は、送風機110A(ファンモータ111の巻線)に流れる電流値(Ic)を検出する。また、空気調和機1は、送風機110Aの回転数と送風機110Aに流れる電流値(Ic)との相関関係に基づく判定条件情報(第2情報、図14または図15参照)を記憶部155Aに記憶している。そして、空気調和機1は、検出した送風機110Aに流れる電流値(Ic)と送風機110Aの回転数と判定条件情報とに基づいて、換気装置40の運転状態を判定する。 As explained above, the air conditioner 1 according to the present embodiment detects the current value (Ic) flowing through the blower 110A (winding of the fan motor 111). In addition, the air conditioner 1 stores judgment condition information (second information, see FIG. 14 or 15) based on the correlation between the rotation speed of the blower 110A and the current value (Ic) flowing through the blower 110A in the storage unit 155A. are doing. Then, the air conditioner 1 determines the operating state of the ventilation device 40 based on the detected current value (Ic) flowing through the blower 110A, the rotation speed of the blower 110A, and the determination condition information.
 これにより、空気調和機1は、室内機10の負荷によって送風機110に流れる電流値と送風機110の回転数との関係が変化することを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を、容易に判別することができる。 As a result, the air conditioner 1 utilizes the fact that the relationship between the current value flowing through the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6. The operating state of the device 40 can be easily determined.
 具体的には、上記判定条件情報には、送風機110Aの回転数に対する電流値の閾値を示す電流閾値(Im)の情報が含まれている。空気調和機1は、検出した電流値(Ic)と電流閾値(Im)とを送風機110Aの回転数が同一の条件で比較した結果に基づいて、換気装置40の運転状態を判定する。 Specifically, the determination condition information includes information on a current threshold value (Im) indicating a threshold value of a current value with respect to the rotation speed of the blower 110A. The air conditioner 1 determines the operating state of the ventilation device 40 based on the result of comparing the detected current value (Ic) and the current threshold value (Im) under the condition that the rotation speed of the blower 110A is the same.
 これにより、空気調和機1は、室内機10の負荷によって送風機110に流れる電流値と送風機110の回転数との関係が変化することを利用して、換気ダクト6を介して接続されている換気装置40の運転状態を、容易に判別することができる。 As a result, the air conditioner 1 utilizes the fact that the relationship between the current value flowing through the blower 110 and the rotational speed of the blower 110 changes depending on the load of the indoor unit 10 to provide ventilation to the air conditioner connected via the ventilation duct 6. The operating state of the device 40 can be easily determined.
 なお、空調制御部150(150A)の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより空調制御部150(150A)の処理を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。 Note that the program for realizing the functions of the air conditioning control unit 150 (150A) is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed, thereby controlling the air conditioning. The processing of section 150 (150A) may also be performed. Note that the "computer system" herein includes hardware such as an OS and peripheral devices.
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものを含むものとする。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよい。また、上記のプログラムを所定のサーバに記憶させておき、他の装置からの要求に応じて、当該プログラムを通信回線を介して配信(ダウンロード等)させるようにしてもよい。 Furthermore, the term "computer-readable recording medium" refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems. Furthermore, a "computer-readable recording medium" refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. This includes things that retain programs for a certain period of time, such as volatile memory inside a computer system that serves as a server or client. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. Alternatively, the above program may be stored in a predetermined server, and the program may be distributed (downloaded, etc.) via a communication line in response to a request from another device.
 また、空調制御部150(150A)の機能の一部、または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。各機能は個別にプロセッサ化してもよいし、一部、又は全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, part or all of the functions of the air conditioning control unit 150 (150A) may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each function may be implemented as an individual processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, but may be implemented using a dedicated circuit or a general-purpose processor. Further, if an integrated circuit technology that replaces LSI emerges due to advances in semiconductor technology, an integrated circuit based on this technology may be used.
 1 空気調和機
 2 液延長配管
 3 ガス延長配管
 4,5 信号線
 6,7 換気ダクト
 7 換気ダクト
 11 キャビネット
 12 化粧パネル
 13 吸込口
 14 吹出口
 15 換気用ダクト孔
 20 室外機
 30 リモコン
 31 表示部
 40 換気装置
 41,42 ダクト接続口
 46 換気用ファン
 50 リモコン
 110,110A 送風機
 111 ファンモータ
 112,113 ファン
 120 室内熱交換器
 150,150A 空調制御部
 151 電圧制御部
 151A 回転数指示部
 152, 回転数検出部
 153,153A 運転状態判定部
 154,154A 出力制御部
 155,155A 記憶部
 161 回転子
 162 固定子
 166 巻線
 200,200A ファンモータ駆動部
 201,201A パワーIC
 202,202A 制御IC
 203A 電流検出部
 210 磁気センサ
 450 換気装置制御部
1 Air conditioner 2 Liquid extension pipe 3 Gas extension pipe 4,5 Signal line 6,7 Ventilation duct 7 Ventilation duct 11 Cabinet 12 Decorative panel 13 Inlet 14 Outlet 15 Ventilation duct hole 20 Outdoor unit 30 Remote control 31 Display section 40 Ventilation device 41, 42 Duct connection port 46 Ventilation fan 50 Remote control 110, 110A Blower 111 Fan motor 112, 113 Fan 120 Indoor heat exchanger 150, 150A Air conditioning control section 151 Voltage control section 151A Rotation speed indicator 152, Rotation speed detection Section 153, 153A Operating state determination section 154, 154A Output control section 155, 155A Storage section 161 Rotor 162 Stator 166 Winding 200, 200A Fan motor drive section 201, 201A Power IC
202, 202A control IC
203A Current detection unit 210 Magnetic sensor 450 Ventilator control unit

Claims (8)

  1.  空調対象空間から空気を吸い込む吸込口と、送風機と、熱交換器と、前記空調対象空間へ空気を吹出す吹出口とを備える空気調和機であって、
     前記空気調和機の操作系統とは異なる操作系統により独立して制御が行われる換気装置とダクトを介して接続するための換気用ダクト孔と、
     前記空気調和機の操作系統による制御に応じて前記送風機を制御するとともに、前記換気装置が前記換気用ダクト孔に前記ダクトを介して接続されている状態において、前記送風機の制御状態に基づいて前記換気装置の運転状態を判定する制御部と、
     を備える空気調和機。
    An air conditioner comprising an inlet that sucks air from an air-conditioned space, a blower, a heat exchanger, and an outlet that blows air into the air-conditioned space,
    a ventilation duct hole for connecting via a duct to a ventilation device that is independently controlled by an operation system different from the operation system of the air conditioner;
    The blower is controlled in accordance with the control by the operation system of the air conditioner, and in a state where the ventilation device is connected to the ventilation duct hole via the duct, the blower is controlled based on the control state of the blower. a control unit that determines the operating state of the ventilation system;
    Air conditioner equipped with.
  2.  前記制御部は、
     前記送風機の回転数が所望の回転数になるように前記送風機を駆動するための電圧を制御する電圧制御部と、
     前記電圧制御部が制御する前記電圧で駆動された前記送風機の回転数を検出する回転数検出部と、
     前記送風機の回転数と前記電圧との相関関係に基づく第1情報が記憶された記憶部と、
     前記電圧制御部の制御による前記電圧と前記回転数検出部により検出された前記送風機の回転数と前記第1情報とに基づいて、前記換気装置の運転状態を判定する運転状態判定部と、
     を備える請求項1に記載の空気調和機。
    The control unit includes:
    a voltage control unit that controls a voltage for driving the blower so that the rotation speed of the blower becomes a desired rotation speed;
    a rotation speed detection section that detects the rotation speed of the blower driven by the voltage controlled by the voltage control section;
    a storage unit storing first information based on a correlation between the rotation speed of the blower and the voltage;
    an operating state determination unit that determines an operating state of the ventilation device based on the voltage controlled by the voltage control unit, the rotational speed of the blower detected by the rotational speed detection unit, and the first information;
    The air conditioner according to claim 1, comprising:
  3.  前記第1情報には、前記送風機の回転数に対する前記電圧の閾値を示す電圧閾値の情報が含まれており、
     前記運転状態判定部は、
     前記電圧制御部の制御による前記電圧と前記電圧閾値とを前記送風機の回転数が同一の条件で比較した結果に基づいて、前記換気装置の運転状態を判定する、
     請求項2に記載の空気調和機。
    The first information includes information on a voltage threshold indicating a threshold of the voltage with respect to the rotation speed of the blower,
    The driving state determination section includes:
    determining the operating state of the ventilator based on the result of comparing the voltage controlled by the voltage control unit and the voltage threshold under the condition that the rotation speed of the blower is the same;
    The air conditioner according to claim 2.
  4.  前記制御部は、
     前記送風機に流れる電流値を検出する電流検出部と、
     前記送風機の回転数と前記電流値との相関関係に基づく第2情報が記憶された記憶部と、
     前記電流検出部により検出された前記電流値と前記送風機の回転数と前記第2情報とに基づいて、前記換気装置の運転状態を判定する運転状態判定部と、
     を備える請求項1に記載の空気調和機。
    The control unit includes:
    a current detection unit that detects a current value flowing through the blower;
    a storage unit storing second information based on a correlation between the rotation speed of the blower and the current value;
    an operating state determining unit that determines an operating state of the ventilation device based on the current value detected by the current detecting unit, the rotation speed of the blower, and the second information;
    The air conditioner according to claim 1, comprising:
  5.  前記第2情報には、前記送風機の回転数に対する前記電流値の閾値を示す電流閾値の情報が含まれており、
     前記運転状態判定部は、
     前記電流検出部により検出された前記電流値と前記電流閾値とを前記送風機の回転数が同一の条件で比較した結果に基づいて、前記換気装置の運転状態を判定する、
     請求項4に記載の空気調和機。
    The second information includes information on a current threshold value indicating a threshold value of the current value with respect to the rotation speed of the blower,
    The driving state determination section includes:
    Determining the operating state of the ventilation device based on the result of comparing the current value detected by the current detection unit and the current threshold value under the condition that the rotation speed of the blower is the same;
    The air conditioner according to claim 4.
  6.  前記空気調和機の操作系統には、前記空気調和機の運転の指令及び設定を行うリモートコントローラが含まれ、
     前記制御部は、
     判定した前記換気装置の運転状態に基づく情報を前記リモートコントローラへ出力する出力制御部、
     を備える請求項1から請求項5のいずれか一項に記載の空気調和機。
    The operation system of the air conditioner includes a remote controller that commands and sets the operation of the air conditioner,
    The control unit includes:
    an output control unit that outputs information based on the determined operating state of the ventilation device to the remote controller;
    The air conditioner according to any one of claims 1 to 5, comprising:
  7.  無線通信を用いて端末装置と通信可能な通信部を備え、
     前記制御部は、
     判定した前記換気装置の運転状態に基づく情報を、前記通信部を介して前記端末装置へ出力する出力制御部、
     を備える請求項1から請求項5のいずれか一項に記載の空気調和機。
    Equipped with a communication unit capable of communicating with a terminal device using wireless communication,
    The control unit includes:
    an output control unit that outputs information based on the determined operating state of the ventilation device to the terminal device via the communication unit;
    The air conditioner according to any one of claims 1 to 5, comprising:
  8.  前記出力制御部は、
     前記換気装置の運転状態に基づく情報として、前記換気装置の運転状態に基づく適切な操作内容をユーザに提示する情報を出力する、
     請求項6または請求項7に記載の空気調和機。
    The output control section includes:
    outputting, as information based on the operating state of the ventilation device, information that presents appropriate operation details to the user based on the operating state of the ventilation device;
    The air conditioner according to claim 6 or 7.
PCT/JP2022/012501 2022-03-18 2022-03-18 Air conditioner WO2023175874A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012501 WO2023175874A1 (en) 2022-03-18 2022-03-18 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012501 WO2023175874A1 (en) 2022-03-18 2022-03-18 Air conditioner

Publications (1)

Publication Number Publication Date
WO2023175874A1 true WO2023175874A1 (en) 2023-09-21

Family

ID=88022665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012501 WO2023175874A1 (en) 2022-03-18 2022-03-18 Air conditioner

Country Status (1)

Country Link
WO (1) WO2023175874A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312377A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Controller for air conditioner
JP2005048975A (en) * 2003-07-29 2005-02-24 Sanyo Air Conditioners Kk Air conditioner
JP2005337634A (en) * 2004-05-28 2005-12-08 Fujitsu General Ltd Air conditioning device
JP2013164191A (en) * 2012-02-10 2013-08-22 Rinnai Corp Bathroom heater/dryer
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
JP2015117879A (en) * 2013-12-18 2015-06-25 株式会社ハーマン Air amount control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05312377A (en) * 1992-05-12 1993-11-22 Mitsubishi Electric Corp Controller for air conditioner
JP2005048975A (en) * 2003-07-29 2005-02-24 Sanyo Air Conditioners Kk Air conditioner
JP2005337634A (en) * 2004-05-28 2005-12-08 Fujitsu General Ltd Air conditioning device
JP2013164191A (en) * 2012-02-10 2013-08-22 Rinnai Corp Bathroom heater/dryer
JP2014134343A (en) * 2013-01-10 2014-07-24 Daikin Ind Ltd Air conditioning system
JP2015117879A (en) * 2013-12-18 2015-06-25 株式会社ハーマン Air amount control device

Similar Documents

Publication Publication Date Title
JP5312055B2 (en) Air conditioning system
KR100981859B1 (en) Outdoor unit for split type air-conditioner
KR20050099352A (en) Front suction/discharge type outdoor unit for air conditioner
JP3521323B2 (en) In-ceiling indoor unit
WO2010116824A1 (en) Heat-exchange ventilation device
JP5077099B2 (en) Air conditioner
JP2002005472A (en) Ventilation device and air conditioner having it
JP2012159270A (en) Control device, and heat pump device
WO2023175874A1 (en) Air conditioner
JPH0432634A (en) Air conditioner
JP4710637B2 (en) Fan drive device and air conditioner
JP7313587B1 (en) Air conditioners and air conditioning systems
WO2020012525A1 (en) Indoor unit for air conditioners
JP4133100B2 (en) Air conditioner and control method of air conditioner
JP2007198636A (en) Integrated air conditioner
JPH09280604A (en) Air conditioning unit
JP2008157503A (en) Air conditioning device
JP4430258B2 (en) Air conditioner
JP2001082785A (en) Duct type ventilator
JP6784161B2 (en) Air conditioning system
JP2002228234A (en) Air conditioner and its control method
JP2001254985A (en) Air conditioner
JP2004116808A (en) Air conditioning indoor unit and air conditioner having this unit
CN115183427B (en) Air conditioner and air outlet control method
JP2004003837A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932147

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024507380

Country of ref document: JP