WO2020012525A1 - Indoor unit for air conditioners - Google Patents

Indoor unit for air conditioners Download PDF

Info

Publication number
WO2020012525A1
WO2020012525A1 PCT/JP2018/025851 JP2018025851W WO2020012525A1 WO 2020012525 A1 WO2020012525 A1 WO 2020012525A1 JP 2018025851 W JP2018025851 W JP 2018025851W WO 2020012525 A1 WO2020012525 A1 WO 2020012525A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
air
rotation
shaft
indoor unit
Prior art date
Application number
PCT/JP2018/025851
Other languages
French (fr)
Japanese (ja)
Inventor
治翔 佐野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2018/025851 priority Critical patent/WO2020012525A1/en
Priority to JP2020529851A priority patent/JP6873331B2/en
Publication of WO2020012525A1 publication Critical patent/WO2020012525A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control

Definitions

  • the present invention relates to an indoor unit of an air conditioner that air-conditions a space to be air-conditioned.
  • the air conditioner adjusts the angle of the wind direction plate to determine the direction of the airflow, and adjusts the rotation speed of the fan to determine the speed of the airflow.
  • the direction of the airflow in the indoor unit is generally constant because an airflow from the suction port to the outlet is generated inside the indoor unit.
  • Patent Documents 1 and 2 disclose advantages obtained by enabling the direction of the airflow to be reversed. However, simply rotating the cross flow fan in the reverse direction cannot reverse the direction of the airflow. On the other hand, a device capable of reversing the airflow direction has been proposed (for example, see Patent Documents 3 and 4).
  • Patent Document 3 discloses an air blowing device that switches the direction of airflow by providing two types of air paths in one cross flow fan. In this blower, since it is necessary to provide a dedicated air path for each of the normal rotation and the reverse rotation of the cross flow fan, each dedicated air path becomes narrow.
  • Patent Document 4 discloses a circulating device having a cross flow fan in which an outer rotor and an inner rotor smaller than the outer rotor are provided inside the outer rotor. The directions of the blades of the outer rotor and the blades of the inner rotor are different, and the inner rotor is slightly smaller than the outer rotor.
  • the cross flow fan has a double cylinder configuration in which an outer rotor and an inner rotor are provided coaxially. In this crossflow fan, the direction of the airflow can be switched by rotating the outer rotor when the motor rotates forward and rotating the inner rotor when the motor rotates reversely.
  • the circulation device disclosed in Patent Document 4 has a common wind path for forward rotation and reverse rotation, but cannot obtain an appropriate air volume due to the structure of the cross flow fan. The details will be described below. Since the airflow of the cross flow fan passes through the inside of the cylinder, it is conceivable that when the outer rotor rotates forward, the inner rotor in the cylinder becomes an obstacle to the airflow, and the airflow is obstructed and the airflow decreases. Also, since the inner rotor is surrounded by the blades of the outer rotor, it is considered that the airflow is hindered at the time of reverse rotation, and the air flow is reduced. Therefore, in order to obtain a required air volume, it is necessary to rotate the motor at a higher rotation speed than that of a normal crossflow fan, and the power consumption increases.
  • the present invention has been made to solve the above-described problem, and an object of the present invention is to provide an indoor unit of an air conditioner that efficiently generates an airflow even when the direction of the airflow is reversed.
  • An indoor unit of an air conditioner includes a casing having an inlet and an outlet formed therein, a load-side heat exchanger that exchanges air sucked from a space to be air-conditioned with a refrigerant, and sucks air from the space to be air-conditioned.
  • a cross flow fan that supplies air to the load-side heat exchanger; and a motor that drives the cross flow fan, wherein the cross flow fan is formed in a shaft connected to the motor and in the casing.
  • a first impeller that sucks air from the space to be air-conditioned through the suction port when the shaft is rotated forward and the shaft is arranged in the wind path and the shaft is rotated forward.
  • a second impeller that sucks air from the air-conditioned space through the air outlet and the first impeller are provided and rotate forward.
  • a first clutch that transmits the rotational force of the shaft to the first impeller, and idles when the shaft rotates in the reverse direction; and a rotation of the shaft that is provided in the second impeller and rotates in the reverse direction.
  • a second clutch that transmits force to the second impeller and idles when the shaft rotates forward.
  • turbulence of the air flow is suppressed, and the direction of the air flow can be reversed without impairing the air flow.
  • FIG. 2 is an external perspective view illustrating a configuration example of an indoor unit of the air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view of the inside of the indoor unit shown in FIG. 1 when viewed from a side.
  • FIG. 2 is a block diagram of the indoor unit shown in FIG. 1 and a remote controller operated by a user.
  • FIG. 4 is a functional block diagram illustrating a configuration example of a control device illustrated in FIG. 3.
  • FIG. 6 is an external perspective view illustrating a configuration example of an impeller of Comparative Example 1. It is an enlarged view which shows the structure of the support disk shown in FIG.
  • FIG. 9 is an external perspective view illustrating a configuration example of an impeller of Comparative Example 2.
  • FIG. 3 is an external perspective view illustrating a configuration example of an impeller illustrated in FIG. 2.
  • FIG. 10 is an enlarged view illustrating a configuration example of a forward rotation impeller and a reverse rotation impeller illustrated in FIG. 9. It is an enlarged view which shows the structure of the support disk of the forward rotation impeller shown in FIG. It is an enlarged view which shows the structure of the support disk of the reverse rotation impeller shown in FIG.
  • FIG. 11 is an enlarged view illustrating a configuration of a first clutch illustrated in FIG. 10.
  • FIG. 11 is an enlarged view illustrating a configuration of a second clutch illustrated in FIG. 10.
  • FIG. 10 is an external perspective view illustrating a case where the impeller shown in FIG. 9 rotates forward.
  • FIG. 10 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates in the reverse direction.
  • 5 is a flowchart showing an operation procedure of the control device shown in FIG.
  • FIG. 1 is an external perspective view illustrating a configuration example of an indoor unit of an air conditioner according to Embodiment 1 of the present invention.
  • FIG. 2 is an enlarged perspective view of the inside of the indoor unit shown in FIG. 1 when viewed from the side. 1 and 2 schematically show an example of an indoor unit of an air conditioner, and the indoor unit of the first embodiment is not limited to the configuration shown in FIGS.
  • the indoor unit of the air conditioner is a wall-mounted type that is attached to a wall
  • the indoor unit may be a ceiling-hanging type that is hung from a ceiling.
  • the indoor unit 1 has a casing 4 in which an air inlet 2 and an air outlet 3 are formed.
  • the suction port 2 is provided above the casing 4 (in the direction of the Z-axis), and the outlet 3 is provided below the casing 4 (in the direction opposite to the direction of the Z-axis).
  • a casing 4 of the indoor unit 1 includes a load-side heat exchanger 6 for exchanging heat between air and refrigerant sucked from the room to be air-conditioned, and air sucked from the room.
  • a cross-flow fan 7 for supplying the heat exchanger 6 to the load-side heat exchanger 6.
  • the cross flow fan 7 has an impeller 8.
  • the air outlet 3 is provided with a wind direction plate 5 for adjusting the wind direction of the air blown by the cross flow fan 7.
  • FIG. 2 shows a state in which the wind direction plate 5 closes the air outlet 3, but when the air conditioner starts operating, the wind direction plate 5 is opened and the air outlet 3 is opened.
  • a load-side heat exchanger 6 and a cross-flow fan 7 are arranged in order along an air path 9 from the suction port 2 to the air outlet 3.
  • a dashed arrow indicated by the air path 9 in FIG. 2 indicates a direction of an airflow generated when the impeller 8 rotates forward.
  • the air conditioner of the first embodiment has an outdoor unit to which the load-side heat exchanger 6 shown in FIG. 1 is connected via a refrigerant pipe, but does not show the outdoor unit in the drawing. are doing.
  • Embodiment 1 a detailed description of the configuration of the outdoor unit is omitted.
  • the outdoor unit has a compressor that compresses and discharges the refrigerant, a heat source-side heat exchanger that exchanges heat with the outside air of the refrigerant, and an expansion valve that decompresses and expands the refrigerant.
  • An expansion valve not shown may be provided in the indoor unit 1.
  • FIG. 3 is a block diagram of the indoor unit shown in FIG. 1 and a remote controller operated by a user.
  • the air conditioner of the first embodiment has a remote controller 70 for a user to operate the air conditioner.
  • the remote controller 70 includes an operation unit 71 for a user to input an operation instruction and a set temperature to the air conditioner, a display unit 72, a transmission unit 73 that transmits an instruction signal to the indoor unit 1, and a control unit. 74.
  • the control unit 74 includes a memory 75 that stores a program, and a CPU (Central Processing Unit) 76 that executes processing according to the program.
  • the display unit 72 displays operation modes such as a heating operation and a cooling operation, and a set temperature.
  • the remote controller 70 may be provided with a temperature sensor (not shown). In this case, the display unit 72 may display the room temperature detected by the temperature sensor.
  • the instruction signal is, for example, a signal indicating an operation mode instruction, a start instruction, a wind direction instruction, a set temperature,
  • the indoor unit 1 includes a receiving unit 61 that receives an instruction signal from the remote controller 70, a motor 32 that drives the impeller 8, and a control device 60 that controls the motor 32 and the wind direction plate 5 according to the instruction signal.
  • the control device 60 includes a memory 62 that stores a program, and a CPU 63 that executes processing according to the program.
  • the transmitting unit 73 and the receiving unit 61 transmit and receive signals by wireless communication.
  • the wireless communication is, for example, infrared communication.
  • FIG. 4 is a functional block diagram showing one configuration example of the control device shown in FIG.
  • the wind direction control unit 64 adjusts the direction of the wind direction plate 5 according to the instruction signal received by the receiving unit 61 from the transmitting unit 73.
  • the timer 66 measures time according to an instruction from the motor control unit 65.
  • the motor control unit 65 controls the rotation direction and the number of rotations of the motor 32 according to the instruction signal received by the receiving unit 61 from the transmitting unit 73.
  • the remote controller 70 and the control device 60 communicate wirelessly, but communication may be performed by wire.
  • FIG. 5 is an external perspective view illustrating an example of a configuration of the impeller of Comparative Example 1.
  • FIG. 6 is an enlarged view showing the configuration of the support disk shown in FIG.
  • the impeller 100 of Comparative Example 1 has a configuration in which a plurality of unit impellers 110 are arranged along the rotation axis 300.
  • the unit impeller 110 has a support disk 113 and a plurality of blades 115.
  • the plurality of blades 115 are attached along the outer periphery of the support disk 113 such that the surface of the blade 115 is inclined at a fixed angle with respect to the tangent of the outer circumference circle.
  • FIG. 6 shows a case where the guide walls 311 and 312 are provided around the plurality of blades 115 in order to explain the direction of the airflow generated when the impeller 100 rotates.
  • the support disk 113 rotates in the direction of the solid arrow shown in FIG.
  • an air flow is generated from the upper side (in the direction of the Z-axis arrow) to the lower side (in the direction opposite to the Z-axis arrow) of the support disk 113, as shown by the broken line arrow in FIG.
  • FIG. 7 is an external perspective view showing an example of the configuration of the impeller of Comparative Example 2.
  • FIG. 8 is an enlarged view showing the configuration of the support disk shown in FIG. FIG. 8 also shows a case where guide walls 311 and 312 are provided, as in FIG.
  • the impeller 200 of Comparative Example 2 has a configuration in which a plurality of unit impellers 210 are arranged along the rotation axis 300.
  • the unit impeller 210 has a support disk 213 and a plurality of blades 215.
  • the plurality of blades 215 are attached along the outer circumference of the support disk 213 in a state where the surface of the blade 215 is inclined at a fixed angle with respect to the tangent of the outer circumference circle.
  • FIG. 8 and FIG. 6 are compared, the inclination direction of the slat 215 shown in FIG. 8 is opposite to the inclination direction of the slat 115 shown in FIG.
  • the direction of the circulation flow between the room and the indoor unit 1 is determined by the direction and position of the circulation vortex generated by the airflow of the cross flow fan 7.
  • the formation of this circulation vortex is determined by the blade shape of the cross flow fan 7 and the shape around the cross flow fan 7.
  • FIG. 9 is an external perspective view illustrating an example of a configuration of the impeller illustrated in FIG. 2.
  • the impeller 8 has a first impeller 10, a second impeller 20, and a shaft 30 connected to a motor 32.
  • the illustration of the shaft 30 inside the impeller 8 is omitted.
  • the first impeller 10 has a plurality of forward rotation impellers 10a to 10d.
  • the second impeller 20 has a plurality of counter-rotating impellers 20a to 20c.
  • the forward rotation impellers 10a to 10d function as the forward rotation impeller described with reference to FIG.
  • the reverse rotation impellers 20a to 20c function as the reverse rotation impeller described with reference to FIG.
  • the plurality of forward rotation impellers 10a to 10d and the plurality of reverse rotation impellers 20a to 20c are arranged alternately with the forward rotation impeller and the reverse rotation impeller along the direction parallel to the shaft 30 (the direction of the X-axis). Have been.
  • LB1 4 ⁇ L1
  • LB2 3 ⁇ L2. It is desirable that LB1> LB2.
  • FIG. 10 is an enlarged view showing an example of the configuration of the forward rotation impeller and the reverse rotation impeller shown in FIG.
  • each impeller of the forward rotation impellers 10a to 10d has a support disk 11, a first clutch 12, and a plurality of impellers 13.
  • Each impeller of the counter-rotating impellers 20a to 20c has a support disk 21, a second clutch 22, and a plurality of impellers 23.
  • FIG. 11 is an enlarged view showing a configuration of a support disk of the forward rotation impeller shown in FIG.
  • FIG. 11 shows a case where the guide walls 35 and 36 are provided around the plurality of blade plates 13 in order to explain the direction of the airflow generated by the rotation of the forward rotation impeller 10a.
  • the support disk 11 rotates in the direction of the solid arrow shown in FIG. 11, as shown by the broken arrow in FIG. 11, the support disk 11 is moved from the upper side (the Z-axis arrow direction) to the lower side (the direction opposite to the Z-axis arrow). An air flow is generated.
  • FIG. 12 is an enlarged view showing the configuration of the support disk of the counter-rotating impeller shown in FIG. FIG. 12 also shows a case where guide walls 35 and 36 are provided as in FIG.
  • the support disk 21 rotates in the direction of the solid arrow shown in FIG. 12, as shown by the dashed arrow in FIG. 12, the support disk 21 moves from the lower side (the direction opposite to the Z-axis arrow) to the upper side (the Z-axis arrow direction). An air flow is generated.
  • a motor 32 capable of changing the rotation direction is connected to a series of crossflow fans 7 including forward rotation impellers 10a to 10d and reverse rotation impellers 20a to 20c. By doing so, the direction of the airflow in the casing 4 is reversed. With the blade shape of the cross flow fan 7, an airflow in the direction corresponding to the blade shape can be generated in the casing 4 regardless of the direction of rotation.
  • the forward rotation impellers 10a to 10d rotate forward to generate airflow
  • the reverse rotation impellers 20a to 20c do not affect the generation of airflow even if they rotate forward.
  • the reverse rotation impellers 20a to 20c rotate in the reverse direction to generate airflow.
  • the normal rotation impellers 10a to 10d rotate in the reverse direction, it does not affect the airflow generation.
  • the impeller that is not involved in the generation of the airflow also rotates, the airflow in the casing may be disturbed, and the airflow may be obstructed. Therefore, it is desirable not to operate the impeller which is not involved in the generation of airflow.
  • the first clutch 12 is provided on the first impeller 10
  • the second clutch 22 is provided on the second impeller 10. It is provided on the impeller 20.
  • the first clutch 12 is a one-way clutch that meshes with the teeth to transmit the rotational force of the shaft 30 to the first impeller 10 when rotating forward, and idles when rotating backward.
  • the second clutch 22 is a one-way clutch that engages with the teeth to transmit the rotational force of the shaft 30 to the second impeller 20 when rotating in the reverse direction, and idle when rotating in the forward direction.
  • FIG. 13 is an enlarged view showing the configuration of the first clutch shown in FIG.
  • the first clutch 12 has a disk shape, a cam plate 83a in which a plurality of gaps 82 are formed between the first clutch 12 and the inner ring 81 of the outer shell 90a, a plurality of rollers 84, And a spring 85.
  • the plurality of blades 13 shown in FIG. 11 are connected to the outer shell 90a.
  • a roller 84 and a spring 85 are provided in each of the plurality of gaps 82.
  • One end of the spring 85 is connected to the cam plate 83a, and the other end is connected to the roller 84.
  • a shaft hole 86 to which the shaft 30 shown in FIG. 10 is connected is provided in the center of the cam plate 83a.
  • the operation of the first clutch 12 shown in FIG. 13 will be briefly described.
  • the cam plate 83a rotates in the arrow direction shown in FIG.
  • the spring 85 contracts, generating an elastic force.
  • the elastic force of the spring 85 presses the roller 84 against the gap 82.
  • the roller 84 having no place to go pushes the cam plate 83a and the inner ring 81.
  • a rotational force is generated in the first clutch 12, and the first clutch 12 rotates in the direction of the arrow shown in FIG. I do.
  • FIG. 14 is an enlarged view showing the configuration of the second clutch shown in FIG.
  • the second clutch 22 has a disk shape, a cam plate 83b having a plurality of gaps 82 formed between the inner clutch 81 and the outer ring 90b, a plurality of rollers 84, and a plurality of rollers 84.
  • a spring 85 The plurality of blades 23 shown in FIG. 12 are connected to the outer shell 90b.
  • a roller 84 and a spring 85 are provided in each of the plurality of gaps 82.
  • One end of the spring 85 is connected to the cam plate 83b, and the other end is connected to the roller 84.
  • a shaft hole 86 to which the shaft 30 shown in FIG. 10 is connected is provided at the center of the cam plate 83b.
  • the operation of the second clutch 22 shown in FIG. 14 is the same except that the first clutch 12 rotates in the direction opposite to the rotation direction of the first clutch 12 described with reference to FIG. Omitted.
  • the second clutch 22 transmits the rotational force of the shaft 30 to the reverse rotation impeller 20a, thereby causing the reverse rotation impeller 20a to rotate in the reverse direction.
  • the second clutch 22 does not transmit the rotational force of the shaft 30 to the reverse rotation impeller 20a, and thus does not rotate the reverse rotation impeller 20a.
  • the first clutch 12 and the second clutch 22 function as one-way clutches regardless of whether the shaft 30 rotates in the forward rotation or the reverse rotation. Therefore, the impeller does not rotate regardless of the airflow. Therefore, disturbance of the airflow in the casing can be suppressed, and the target airflow can be efficiently generated.
  • FIG. 15 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates forward.
  • the forward rotating impellers 10a to 10d rotate forward as indicated by solid arrows, but the reverse rotating impellers 20a to 20c do not rotate.
  • the idle rotation of the counter-rotating impellers 20a to 20c suppresses the turbulence of the airflow, and efficiently generates the airflow indicated by the dashed arrow in FIG.
  • FIG. 16 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates in the reverse direction.
  • the reverse rotation impellers 20a to 20c rotate in the reverse direction as indicated by solid arrows, but the normal rotation impellers 10a to 10d do not rotate.
  • the idle rotation of the forward rotation impellers 10a to 10d suppresses the turbulence of the airflow, and efficiently generates the airflow indicated by the dashed arrow in FIG. Even if the direction of the airflow is reversed, it is possible to suppress the loss of the air volume.
  • a plurality of forward rotation impellers 10a to 10d and a plurality of reverse rotation impellers 20a to 20c are arranged along a direction parallel to the shaft 30 (X-axis arrow direction). Counter-rotating impellers are alternately arranged.
  • the cross flow fan 7 can more evenly suck the air in the room from the suction port 2 and blow out the air more evenly from the air outlet 3 into the room.
  • the cross flow fan 7 can suck the air in the room more evenly from the outlet 3 and blow out the air more evenly from the inlet 2 into the room.
  • the cross flow fan 7 causes more air to exchange heat with the refrigerant at the time of forward rotation than at the time of reverse rotation, The air after the heat exchange can be supplied to the room.
  • FIG. 17 is a flowchart showing an operation procedure of the control device shown in FIG.
  • the motor control means 65 determines whether or not a signal for instructing operation to be started is received from the receiving unit 61 (step S101). When the motor control unit 65 receives the signal for starting the heating operation from the receiving unit 61, the motor control unit 65 starts the motor 32 to rotate the cross flow fan 7 in the reverse direction (step S102). The motor control means 65 starts the timer 66 and measures the elapsed time t from the start of the air conditioner. The motor control unit 65 determines whether the elapsed time t has reached the set time tset (Step S103). When the elapsed time t reaches the set time tset, the rotation direction of the cross flow fan 7 is switched from reverse rotation to forward rotation by switching the rotation direction of the motor 32 (step S104).
  • the indoor unit 1 can suppress blowing out hot air from the outlet 3 and supply more cooled air from the outlet 3 to the room.
  • the motor control unit 65 switches the rotation direction of the motor 32 when the condition that the elapsed time t reaches the set time tset is satisfied. It is not limited to the time t.
  • a suction air temperature sensor (not shown) may be provided in the suction port 2.
  • the motor control means 65 may switch the rotation direction of the motor 32 if the condition that the detection value of the suction air temperature sensor matches the determined temperature is satisfied. For example, in the case of the heating operation, after the temperature of the air in the vicinity of the suction port 2 rises to a predetermined temperature, by switching the direction of the airflow, it is possible to suppress blowing out cold air into the room at the time of startup, and Can be supplied to
  • the motor control unit 65 performs control for switching the rotation direction of the motor 32, but the user may operate the remote controller 70 to switch the rotation direction of the motor 32.
  • the control unit 74 of the remote controller 70 transmits the rotation direction instruction signal to the indoor unit 1 via the transmission unit 73 when the rotation direction instruction signal for instructing the rotation direction of the motor 32 is input via the operation unit 71. I do.
  • the reception unit 61 transmits the rotation direction instruction signal to the control device 60.
  • the motor control means 65 of the control device 60 switches the rotation direction of the motor 32 according to the rotation direction instruction signal.
  • the user when the air conditioner starts the heating operation of the air conditioner, the user inputs an instruction to reverse the rotation direction of the motor 32 to the operation unit 71, and after a certain period of time, changes the rotation direction of the motor 32 to the normal rotation. It is conceivable to input an instruction to the operation unit 71.
  • the certain time is, for example, 1 to 5 minutes. In this case, since the cross flow fan 7 switches from the reverse rotation to the normal rotation after the air in the vicinity of the suction port 2 is warmed, warm air is supplied to the user.
  • the first impeller 10 has a plurality of forward rotation impellers 10a to 10d
  • the second impeller 20 has a plurality of reverse rotation impellers 20a to 20c.
  • one forward rotation impeller and one reverse rotation impeller may be provided.
  • the first impeller 10 has a configuration in which forward rotating impellers 10a to 10d are stacked along a shaft 30, and the second impeller 20 has a configuration in which reverse rotating impellers 20a to 20c are stacked along a shaft 30.
  • a configuration may be adopted.
  • the ratio of the ratio of the length of the first impeller 10 and the second impeller 20 in the direction of the shaft 30 is 4 to 3
  • the ratio of the ratio of the length is not limited to 4 to 3. Absent.
  • the ratio of the ratio of the length of the first impeller 10 and the second impeller 20 in the shaft 30 direction may be, for example, 10: 1.
  • the forward rotation impeller and the reverse rotation impeller are arranged alternately is shown, the arrangement does not have to be alternating.
  • the cross flow fan 7 of the indoor unit 1 includes a first impeller 10 that sucks air from the suction port 2 during normal rotation and a second impeller 20 that sucks air from the outlet 3 during reverse rotation. And two clutches that idle one of the two impellers according to the direction of rotation.
  • One of the two clutches, the first clutch 12, is provided on the first impeller 10, transmits the rotational force of the normally rotating shaft 30 to the first impeller 10, and rotates the shaft 30 in the reverse direction.
  • the other second clutch 22 is provided on the second impeller 20, transmits the rotational force of the shaft 30 that rotates in the reverse direction to the second impeller 20, and rotates the shaft 30 forward. When idling.
  • the first impeller 10 for forward rotation rotates, and the second impeller 20 for reverse rotation idles.
  • the shaft 30 rotates in the reverse direction
  • the second impeller 20 for reverse rotation rotates, and the first impeller 10 for normal rotation idles. Therefore, in a single air path formed between one suction port 2 and one air outlet 3, turbulence of the air flow can be suppressed, and the direction of the air flow can be reversed without impairing the air volume. As a result, airflows having different directions can be efficiently generated.
  • the airflow direction can be reversed by a single airflow path, it is not necessary to provide a dedicated airflow path for each airflow having a different direction.
  • the first impeller 10 has a plurality of forward rotation impellers 10a to 10d
  • the second impeller 20 has a plurality of reverse rotation impellers 20a to 20c
  • the wheels and the counter-rotating impeller may be arranged alternately along the shaft 30.
  • the cross flow fan 7 can suck air evenly from the room and blow air after heat exchange into the room more evenly. it can.
  • the total length LB1 of the plurality of forward rotation impellers 10a to 10d in the direction parallel to the shaft 30 is equal to the length of the plurality of reverse rotation impellers 20a to 20c in the direction parallel to the shaft 30. It may be longer than the total LB2.
  • the cross flow fan 7 allows more air to exchange heat with the refrigerant at the time of forward rotation than at the time of reverse rotation, and can supply the air after the heat exchange to the room.
  • the indoor unit 1 includes a remote controller 70 that switches the rotation direction of the motor 32 according to the rotation direction instruction signal when a rotation direction instruction signal that indicates the rotation direction of the motor 32 is input. Is also good. For example, if the user feels that a cold wind is blowing at the start of the heating operation, the user operates the remote controller 70 to rotate the cross flow fan 7 in the reverse direction. Thereafter, after a certain time has elapsed, the user operates the remote controller 70 to rotate the cross flow fan 7 forward. The certain time is, for example, 1 to 5 minutes. After the air in the vicinity of the suction port 2 is warmed, the cross flow fan 7 switches from the reverse rotation to the normal rotation, so that warm air is supplied to the user. Switching of the rotation direction of the motor 32 by the user is not limited to the heating operation, and may be a cooling operation.
  • the indoor unit 1 When the motor control unit 65 receives an instruction to start the air conditioner, the indoor unit 1 according to the first embodiment rotates the motor 32 in the reverse direction, and then changes the rotation direction of the motor 32 from the reverse rotation to the forward rotation. You may switch. For example, when the air conditioner starts the heating operation, the cross flow fan 7 automatically switches from reverse rotation to normal rotation after the air near the suction port 2 has warmed. Even if the user does not operate the remote controller 70 to switch the rotation direction of the motor 32, the indoor unit 1 can prevent a cold wind from being supplied to the room when the air conditioner is started. Switching of the rotation direction of the motor 32 by the motor control means 65 is not limited to the heating operation, and may be a cooling operation.

Abstract

This indoor unit for air conditioners has: a casing (4) in which an intake port (2) and a blow-out port (3) are formed; a load-side heat exchanger (6) in which air suctioned from an air-conditioning target space exchanges heat with a refrigerant; a cross-flow fan (7) that supplies the load-side heat exchanger with the air suctioned from the air-conditioning target space; and a motor (32). The cross-flow fan has: a shaft connected to the motor; a first impeller (10) that suctions air from the air-conditioning target space through the intake port when the shaft rotates in the forward direction; a second impeller (20) that suctions air from the air-conditioning target space through the blow-out port when the shaft rotates in the reverse direction; a first clutch (12) that transmits the torque of the forward-rotating shaft to the first impeller and idly rotates when the shaft rotates in the reverse direction; and a second clutch (22) that transmits the torque of the reverse-rotating shaft to the second impeller and idly rotates when the shaft rotates in the forward direction.

Description

空気調和機の室内機Air conditioner indoor unit
 本発明は、空調対象空間を空気調和する空気調和機の室内機に関する。 The present invention relates to an indoor unit of an air conditioner that air-conditions a space to be air-conditioned.
 従来、空気調和機は、風向板の角度を調節して気流の方向を決定し、ファンの回転速度を調節して気流の速度を決定する。このような空気調和機は、通常、吸込口から吹出口に向かう気流を室内機の内部に発生させるため、室内機内の気流の方向は一定である。 Conventionally, the air conditioner adjusts the angle of the wind direction plate to determine the direction of the airflow, and adjusts the rotation speed of the fan to determine the speed of the airflow. In such an air conditioner, the direction of the airflow in the indoor unit is generally constant because an airflow from the suction port to the outlet is generated inside the indoor unit.
 冷房運転における設定温度付近および除湿運転において、冷風が下降する性質を利用して、気流の方向を逆転させることで、冷風が直接使用者の身体に当たることを防ぎ、室内の上方の空気から冷却する空気調和機が提案されている(例えば、特許文献1参照)。また、気流の方向を逆転させることで、フィルタ掃除中に室内熱交換器に塵埃が付着することを防ぐ空気調和機が知られている(例えば、特許文献2参照)。 By using the property of the cool air to descend in the vicinity of the set temperature in the cooling operation and in the dehumidifying operation, the direction of the air flow is reversed to prevent the cool air from directly hitting the user's body and cool from the air above the room. An air conditioner has been proposed (for example, see Patent Document 1). There is also known an air conditioner that reverses the direction of airflow to prevent dust from adhering to an indoor heat exchanger during filter cleaning (for example, see Patent Document 2).
 特許文献1および2は、気流の方向を逆転できるようにすることで得られる利点を開示している。しかし、単にクロスフローファンを逆回転しても、気流の方向を逆転させることはできない。これに対し、気流方向を逆転できる装置が提案されている(例えば、特許文献3および4参照)。 Patent Documents 1 and 2 disclose advantages obtained by enabling the direction of the airflow to be reversed. However, simply rotating the cross flow fan in the reverse direction cannot reverse the direction of the airflow. On the other hand, a device capable of reversing the airflow direction has been proposed (for example, see Patent Documents 3 and 4).
 特許文献3には、1つのクロスフローファンに2種類の風路を設けることにより、気流の方向を切り替える送風装置が開示されている。この送風装置は、クロスフローファンの正回転および逆回転のそれぞれの専用風路を設ける必要があるため、各専用風路が狭くなってしまう。 Patent Document 3 discloses an air blowing device that switches the direction of airflow by providing two types of air paths in one cross flow fan. In this blower, since it is necessary to provide a dedicated air path for each of the normal rotation and the reverse rotation of the cross flow fan, each dedicated air path becomes narrow.
 特許文献4には、アウタロータとアウタロータの内部にアウタロータよりも小さいインナロータとが設けられたクロスフローファンを有する循環装置が開示されている。アウタロータの羽根とインナロータの羽根とは向きが異なり、インナロータはアウタロータより一回り小さい。クロスフローファンは、アウタロータおよびインナロータが同軸に設けられた二重円筒の構成である。このクロスフローファンは、モータが正回転時にアウタロータが回転し、モータが逆回転時にインナロータが回転することで、気流の方向を切り替えることができる。 Patent Document 4 discloses a circulating device having a cross flow fan in which an outer rotor and an inner rotor smaller than the outer rotor are provided inside the outer rotor. The directions of the blades of the outer rotor and the blades of the inner rotor are different, and the inner rotor is slightly smaller than the outer rotor. The cross flow fan has a double cylinder configuration in which an outer rotor and an inner rotor are provided coaxially. In this crossflow fan, the direction of the airflow can be switched by rotating the outer rotor when the motor rotates forward and rotating the inner rotor when the motor rotates reversely.
特開2002-181344号公報JP-A-2002-181344 特開2017-48949号公報JP-A-2017-48949 特開2016-168863号公報JP 2016-168863 A 特開平9-282546号公報JP-A-9-282546
 特許文献4に開示された循環装置は、正回転および逆回転の風路は共通であるが、クロスフローファンの構造に起因して、適切な風量を得ることができない。以下に、具体的に説明する。クロスフローファンの気流は円筒内部を通過するため、アウタロータが正回転する際、円筒内のインナロータが気流の障害物となり、気流が阻害され風量が低下することが考えられる。また、インナロータは、周囲がアウタロータの羽根に囲われているため、逆回転時に気流が阻害され、風量が低下すると考えられる。そのため、必要な風量を得ようとすると、通常のクロスフローファンよりも高い回転数でモータを回転させる必要があり、消費電力量が高くなってしまう。 循環 The circulation device disclosed in Patent Document 4 has a common wind path for forward rotation and reverse rotation, but cannot obtain an appropriate air volume due to the structure of the cross flow fan. The details will be described below. Since the airflow of the cross flow fan passes through the inside of the cylinder, it is conceivable that when the outer rotor rotates forward, the inner rotor in the cylinder becomes an obstacle to the airflow, and the airflow is obstructed and the airflow decreases. Also, since the inner rotor is surrounded by the blades of the outer rotor, it is considered that the airflow is hindered at the time of reverse rotation, and the air flow is reduced. Therefore, in order to obtain a required air volume, it is necessary to rotate the motor at a higher rotation speed than that of a normal crossflow fan, and the power consumption increases.
 本発明は、上記のような課題を解決するためになされたもので、気流の方向を逆転しても効率よく気流を発生させる空気調和機の室内機を提供するものである。 The present invention has been made to solve the above-described problem, and an object of the present invention is to provide an indoor unit of an air conditioner that efficiently generates an airflow even when the direction of the airflow is reversed.
 本発明に係る空気調和機の室内機は、吸込口および吹出口が形成されたケーシングと、空調対象空間から吸い込まれる空気が冷媒と熱交換する負荷側熱交換器と、前記空調対象空間から吸い込む空気を前記負荷側熱交換器に供給するクロスフローファンと、前記クロスフローファンを駆動するモータと、を有し、前記クロスフローファンは、前記モータと接続されるシャフトと、前記ケーシング内に形成された風路に配置され、前記シャフトが正回転するとき、前記空調対象空間から前記吸込口を介して空気を吸い込む第1の羽根車と、前記風路に配置され、前記シャフトが前記正回転とは反対の逆回転をするとき、前記空調対象空間から前記吹出口を介して空気を吸い込む第2の羽根車と、前記第1の羽根車に設けられ、前記正回転する前記シャフトの回転力を前記第1の羽根車に伝達し、前記シャフトが前記逆回転するとき空転する第1のクラッチと、前記第2の羽根車に設けられ、前記逆回転する前記シャフトの回転力を前記第2の羽根車に伝達し、前記シャフトが前記正回転するとき空転する第2のクラッチと、を有するものである。 An indoor unit of an air conditioner according to the present invention includes a casing having an inlet and an outlet formed therein, a load-side heat exchanger that exchanges air sucked from a space to be air-conditioned with a refrigerant, and sucks air from the space to be air-conditioned. A cross flow fan that supplies air to the load-side heat exchanger; and a motor that drives the cross flow fan, wherein the cross flow fan is formed in a shaft connected to the motor and in the casing. A first impeller that sucks air from the space to be air-conditioned through the suction port when the shaft is rotated forward and the shaft is arranged in the wind path and the shaft is rotated forward. When the reverse rotation is performed in the opposite direction, a second impeller that sucks air from the air-conditioned space through the air outlet and the first impeller are provided and rotate forward. A first clutch that transmits the rotational force of the shaft to the first impeller, and idles when the shaft rotates in the reverse direction; and a rotation of the shaft that is provided in the second impeller and rotates in the reverse direction. A second clutch that transmits force to the second impeller and idles when the shaft rotates forward.
 本発明によれば、単一の風路において、気流の乱れが抑制され、風量を損なうことなく気流の方向を逆転させることができる。 According to the present invention, in a single air path, turbulence of the air flow is suppressed, and the direction of the air flow can be reversed without impairing the air flow.
本発明の実施の形態1に係る空気調和機の室内機の一構成例を示す外観斜視図である。FIG. 2 is an external perspective view illustrating a configuration example of an indoor unit of the air conditioner according to Embodiment 1 of the present invention. 図1に示した室内機の内部を側面から見たときの拡大透視図である。FIG. 2 is an enlarged perspective view of the inside of the indoor unit shown in FIG. 1 when viewed from a side. 図1に示した室内機およびユーザが操作するリモートコントローラのブロック図である。FIG. 2 is a block diagram of the indoor unit shown in FIG. 1 and a remote controller operated by a user. 図3に示した制御装置の一構成例を示す機能ブロック図である。FIG. 4 is a functional block diagram illustrating a configuration example of a control device illustrated in FIG. 3. 比較例1の羽根車の一構成例を示す外観斜視図である。FIG. 6 is an external perspective view illustrating a configuration example of an impeller of Comparative Example 1. 図5に示す支持円板の構成を示す拡大図である。It is an enlarged view which shows the structure of the support disk shown in FIG. 比較例2の羽根車の一構成例を示す外観斜視図である。FIG. 9 is an external perspective view illustrating a configuration example of an impeller of Comparative Example 2. 図7に示す支持円板の構成を示す拡大図である。It is an enlarged view which shows the structure of the support disk shown in FIG. 図2に示した羽根車の一構成例を示す外観斜視図である。FIG. 3 is an external perspective view illustrating a configuration example of an impeller illustrated in FIG. 2. 図9に示した正回転羽根車および逆回転羽根車の一構成例を示す拡大図である。FIG. 10 is an enlarged view illustrating a configuration example of a forward rotation impeller and a reverse rotation impeller illustrated in FIG. 9. 図10に示した正回転羽根車の支持円板の構成を示す拡大図である。It is an enlarged view which shows the structure of the support disk of the forward rotation impeller shown in FIG. 図10に示した逆回転羽根車の支持円板の構成を示す拡大図である。It is an enlarged view which shows the structure of the support disk of the reverse rotation impeller shown in FIG. 図10に示した第1のクラッチの構成を示す拡大図である。FIG. 11 is an enlarged view illustrating a configuration of a first clutch illustrated in FIG. 10. 図10に示した第2のクラッチの構成を示す拡大図である。FIG. 11 is an enlarged view illustrating a configuration of a second clutch illustrated in FIG. 10. 図9に示した羽根車が正回転した場合を説明するための外観斜視図である。FIG. 10 is an external perspective view illustrating a case where the impeller shown in FIG. 9 rotates forward. 図9に示した羽根車が逆回転した場合を説明するための外観斜視図である。FIG. 10 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates in the reverse direction. 図4に示した制御装置の動作手順を示すフローチャートである。5 is a flowchart showing an operation procedure of the control device shown in FIG.
実施の形態1.
 本実施の形態1の空気調和機の室内機の構成を説明する。図1は、本発明の実施の形態1に係る空気調和機の室内機の一構成例を示す外観斜視図である。図2は、図1に示した室内機の内部を側面から見たときの拡大透視図である。図1および図2では、空調調和機の室内機の一例を模式的に示しており、本実施の形態1の室内機は図1および図2に示す構成に限定されない。本実施の形態1では、空気調和機の室内機が壁に取り付けられる壁掛形の場合で説明するが、室内機は天井から吊り下げられる天井吊下形であってもよい。
Embodiment 1 FIG.
The configuration of the indoor unit of the air conditioner according to Embodiment 1 will be described. FIG. 1 is an external perspective view illustrating a configuration example of an indoor unit of an air conditioner according to Embodiment 1 of the present invention. FIG. 2 is an enlarged perspective view of the inside of the indoor unit shown in FIG. 1 when viewed from the side. 1 and 2 schematically show an example of an indoor unit of an air conditioner, and the indoor unit of the first embodiment is not limited to the configuration shown in FIGS. In the first embodiment, the case where the indoor unit of the air conditioner is a wall-mounted type that is attached to a wall will be described, but the indoor unit may be a ceiling-hanging type that is hung from a ceiling.
 図1に示すように、室内機1は、空気の吸込口2および空気の吹出口3が形成されたケーシング4を有する。図1に示す構成例では、ケーシング4の上側(Z軸矢印方向)に吸込口2が設けられ、ケーシング4の下側(Z軸矢印方向と反対側)に吹出口3が設けられている。図2に示すように、室内機1のケーシング4には、空調対象空間となる室内から吸い込まれる空気と冷媒が熱交換する負荷側熱交換器6と、室内から空気を吸い込んで、吸い込んだ空気を負荷側熱交換器6に供給するクロスフローファン7とが設けられている。クロスフローファン7は羽根車8を有する。また、図1に示すように、吹出口3には、クロスフローファン7が吹き出す空気の風向を調節する風向板5が設けられている。 室内 As shown in FIG. 1, the indoor unit 1 has a casing 4 in which an air inlet 2 and an air outlet 3 are formed. In the configuration example shown in FIG. 1, the suction port 2 is provided above the casing 4 (in the direction of the Z-axis), and the outlet 3 is provided below the casing 4 (in the direction opposite to the direction of the Z-axis). As shown in FIG. 2, a casing 4 of the indoor unit 1 includes a load-side heat exchanger 6 for exchanging heat between air and refrigerant sucked from the room to be air-conditioned, and air sucked from the room. And a cross-flow fan 7 for supplying the heat exchanger 6 to the load-side heat exchanger 6. The cross flow fan 7 has an impeller 8. Further, as shown in FIG. 1, the air outlet 3 is provided with a wind direction plate 5 for adjusting the wind direction of the air blown by the cross flow fan 7.
 図2に示すように、ケーシング4内には、吸込口2から吹出口3に至る風路9が形成されている。図2では風向板5が吹出口3を塞いでいる状態を示しているが、空気調和機の運転開始時に風向板5が開いて、吹出口3が開放される。吸込口2から吹出口3に至る風路9に沿って、負荷側熱交換器6およびクロスフローファン7が順に配置されている。図2の風路9が示す破線矢印は、羽根車8が正回転した場合に発生する気流の方向を示す。空気調和機の運転中、羽根車8が正回転で駆動することで、吸込口2から負荷側熱交換器6および羽根車8を経由して吹出口3へと空気の流れが作られる。 風 As shown in FIG. 2, an air passage 9 is formed in the casing 4 from the inlet 2 to the outlet 3. FIG. 2 shows a state in which the wind direction plate 5 closes the air outlet 3, but when the air conditioner starts operating, the wind direction plate 5 is opened and the air outlet 3 is opened. A load-side heat exchanger 6 and a cross-flow fan 7 are arranged in order along an air path 9 from the suction port 2 to the air outlet 3. A dashed arrow indicated by the air path 9 in FIG. 2 indicates a direction of an airflow generated when the impeller 8 rotates forward. During operation of the air conditioner, when the impeller 8 is driven in a forward rotation, an air flow is created from the suction port 2 to the outlet 3 via the load-side heat exchanger 6 and the impeller 8.
 なお、本実施の形態1の空気調和機は、図1に示す負荷側熱交換器6が冷媒配管を介して接続される室外機を有しているが、室外機を図に示すことを省略している。また、本実施の形態1では、室外機の構成についての詳細な説明を省略する。室外機は、図に示さないが、冷媒を圧縮して吐出する圧縮機と、冷媒が外気と熱交換する熱源側熱交換器と、冷媒を減圧して膨張される膨張弁とを有する。図に示さない膨張弁は、室内機1に設けられていてもよい。 Note that the air conditioner of the first embodiment has an outdoor unit to which the load-side heat exchanger 6 shown in FIG. 1 is connected via a refrigerant pipe, but does not show the outdoor unit in the drawing. are doing. In Embodiment 1, a detailed description of the configuration of the outdoor unit is omitted. Although not shown, the outdoor unit has a compressor that compresses and discharges the refrigerant, a heat source-side heat exchanger that exchanges heat with the outside air of the refrigerant, and an expansion valve that decompresses and expands the refrigerant. An expansion valve not shown may be provided in the indoor unit 1.
 図3は、図1に示した室内機およびユーザが操作するリモートコントローラのブロック図である。本実施の形態1の空気調和機は、ユーザが空気調和機を操作するためのリモートコントローラ70を有する。リモートコントローラ70は、ユーザが空気調和機に対して運転の指示および設定温度を入力するための操作部71と、表示部72と、室内機1に指示信号を送信する送信部73と、制御部74とを有する。制御部74は、プログラムを記憶するメモリ75と、プログラムにしたがって処理を実行するCPU(Central Processing Unit)76とを有する。表示部72は、暖房運転および冷房運転等の運転モードと、設定温度とを表示する。リモートコントローラ70に図に示さない温度センサが設けられていてもよい。この場合、表示部72は、温度センサが検出する室温を表示してもよい。指示信号は、例えば、運転モードの指示、起動の指示、風向の指示、および設定温度などを示す信号である。 FIG. 3 is a block diagram of the indoor unit shown in FIG. 1 and a remote controller operated by a user. The air conditioner of the first embodiment has a remote controller 70 for a user to operate the air conditioner. The remote controller 70 includes an operation unit 71 for a user to input an operation instruction and a set temperature to the air conditioner, a display unit 72, a transmission unit 73 that transmits an instruction signal to the indoor unit 1, and a control unit. 74. The control unit 74 includes a memory 75 that stores a program, and a CPU (Central Processing Unit) 76 that executes processing according to the program. The display unit 72 displays operation modes such as a heating operation and a cooling operation, and a set temperature. The remote controller 70 may be provided with a temperature sensor (not shown). In this case, the display unit 72 may display the room temperature detected by the temperature sensor. The instruction signal is, for example, a signal indicating an operation mode instruction, a start instruction, a wind direction instruction, a set temperature, and the like.
 室内機1は、リモートコントローラ70から指示信号を受信する受信部61と、羽根車8を駆動させるモータ32と、指示信号にしたがってモータ32および風向板5を制御する制御装置60とを有する。制御装置60は、プログラムを記憶するメモリ62と、プログラムにしたがって処理を実行するCPU63とを有する。送信部73と受信部61は無線通信で信号を送受信する。無線通信は、例えば、赤外線通信である。 The indoor unit 1 includes a receiving unit 61 that receives an instruction signal from the remote controller 70, a motor 32 that drives the impeller 8, and a control device 60 that controls the motor 32 and the wind direction plate 5 according to the instruction signal. The control device 60 includes a memory 62 that stores a program, and a CPU 63 that executes processing according to the program. The transmitting unit 73 and the receiving unit 61 transmit and receive signals by wireless communication. The wireless communication is, for example, infrared communication.
 図4は、図3に示した制御装置の一構成例を示す機能ブロック図である。図3に示したCPU63がプログラムを実行することで、図4に示す風向制御手段64、モータ制御手段65およびタイマー66が室内機1に構成される。風向制御手段64は、受信部61が送信部73から受信する指示信号にしたがって、風向板5の向きを調節する。タイマー66は、モータ制御手段65の指示にしたがって時間を計測する。モータ制御手段65は、受信部61が送信部73から受信する指示信号にしたがってモータ32の回転方向および回転数等を制御する。なお、本実施の形態1では、リモートコントローラ70と制御装置60とが無線で通信する場合で説明するが、有線で通信してもよい。 FIG. 4 is a functional block diagram showing one configuration example of the control device shown in FIG. When the CPU 63 shown in FIG. 3 executes the program, the wind direction control means 64, the motor control means 65, and the timer 66 shown in FIG. The wind direction control unit 64 adjusts the direction of the wind direction plate 5 according to the instruction signal received by the receiving unit 61 from the transmitting unit 73. The timer 66 measures time according to an instruction from the motor control unit 65. The motor control unit 65 controls the rotation direction and the number of rotations of the motor 32 according to the instruction signal received by the receiving unit 61 from the transmitting unit 73. In the first embodiment, a case will be described where the remote controller 70 and the control device 60 communicate wirelessly, but communication may be performed by wire.
 次に、本実施の形態1におけるクロスフローファン7の羽根車8の構成を説明する前に、比較例1および2の羽根車の構成を説明する。 Next, before describing the configuration of the impeller 8 of the cross flow fan 7 in the first embodiment, the configuration of the impeller of Comparative Examples 1 and 2 will be described.
 図5は、比較例1の羽根車の一構成例を示す外観斜視図である。図6は、図5に示す支持円板の構成を示す拡大図である。図5に示すように、比較例1の羽根車100は、複数の単位羽根車110が回転軸300に沿って配置された構成である。単位羽根車110は、支持円板113と、複数の羽根板115とを有する。図6に示すように、複数の羽根板115は、支持円板113の外周に沿って、羽根板115の面が外周円の接線を基準に一定の角度で傾いた状態で取り付けられている。 FIG. 5 is an external perspective view illustrating an example of a configuration of the impeller of Comparative Example 1. FIG. 6 is an enlarged view showing the configuration of the support disk shown in FIG. As shown in FIG. 5, the impeller 100 of Comparative Example 1 has a configuration in which a plurality of unit impellers 110 are arranged along the rotation axis 300. The unit impeller 110 has a support disk 113 and a plurality of blades 115. As shown in FIG. 6, the plurality of blades 115 are attached along the outer periphery of the support disk 113 such that the surface of the blade 115 is inclined at a fixed angle with respect to the tangent of the outer circumference circle.
 図6では、羽根車100が回転することで発生する気流の方向を説明するために、ガイドウォール311および312が複数の羽根板115の周囲に設けられている場合を示す。図5の実線矢印で示すように羽根車100が回転軸300を中心に正回転すると、図6に示す実線矢印の方向に支持円板113が回転する。支持円板113が回転すると、図6の破線矢印に示すように、支持円板113の上側(Z軸矢印方向)から下側(Z軸矢印と反対方向)に空気の流れが発生する。 FIG. 6 shows a case where the guide walls 311 and 312 are provided around the plurality of blades 115 in order to explain the direction of the airflow generated when the impeller 100 rotates. When the impeller 100 rotates forward about the rotation axis 300 as shown by the solid arrow in FIG. 5, the support disk 113 rotates in the direction of the solid arrow shown in FIG. When the support disk 113 rotates, an air flow is generated from the upper side (in the direction of the Z-axis arrow) to the lower side (in the direction opposite to the Z-axis arrow) of the support disk 113, as shown by the broken line arrow in FIG.
 図7は、比較例2の羽根車の一構成例を示す外観斜視図である。図8は、図7に示す支持円板の構成を示す拡大図である。図8も、図6と同様に、ガイドウォール311および312が設けられている場合を示す。図7に示すように、比較例2の羽根車200は、複数の単位羽根車210が回転軸300に沿って配置された構成である。単位羽根車210は、支持円板213と、複数の羽根板215とを有する。図8に示すように、複数の羽根板215は、支持円板213の外周に沿って、羽根板215の面が外周円の接線を基準に一定の角度で傾いた状態で取り付けられている。図8および図6を対比すると、図8に示す羽根板215の傾斜方向は、図6に示した羽根板115の傾斜方向とは反対方向である。 FIG. 7 is an external perspective view showing an example of the configuration of the impeller of Comparative Example 2. FIG. 8 is an enlarged view showing the configuration of the support disk shown in FIG. FIG. 8 also shows a case where guide walls 311 and 312 are provided, as in FIG. As shown in FIG. 7, the impeller 200 of Comparative Example 2 has a configuration in which a plurality of unit impellers 210 are arranged along the rotation axis 300. The unit impeller 210 has a support disk 213 and a plurality of blades 215. As shown in FIG. 8, the plurality of blades 215 are attached along the outer circumference of the support disk 213 in a state where the surface of the blade 215 is inclined at a fixed angle with respect to the tangent of the outer circumference circle. When FIG. 8 and FIG. 6 are compared, the inclination direction of the slat 215 shown in FIG. 8 is opposite to the inclination direction of the slat 115 shown in FIG.
 図7の実線矢印で示すように羽根車100が回転軸300を中心に正回転とは反対の逆回転をすると、図8に示す実線矢印の方向に支持円板213が回転する。支持円板213が回転すると、図8の破線矢印に示すように、支持円板213の下側(Z軸矢印と反対方向)から上側(Z軸矢印方向)に空気の流れが発生する。 When the impeller 100 rotates in the reverse direction opposite to the normal rotation about the rotation axis 300 as shown by the solid arrow in FIG. 7, the support disk 213 rotates in the direction of the solid arrow shown in FIG. When the support disk 213 rotates, air flows from below the support disk 213 (in the direction opposite to the Z-axis arrow) to above (in the Z-axis arrow direction), as indicated by the dashed arrow in FIG.
 図1に示した構成において、室内と室内機1との循環流れの向きは、クロスフローファン7の気流で発生する循環渦の向きと位置とによって決まる。この循環渦の形成はクロスフローファン7の羽根形状と、クロスフローファン7の周囲の形状によって決定される。図5に示した羽根車100を逆回転させても、循環渦が発生せず気流自体が発生しない。そのため、羽根車100とは羽根板の傾斜方向を反対向きにした羽根車200を逆回転させる。これにより、室内機1に発生させる循環渦の向きを変更させ、羽根車100が生成する気流と反対方向の気流を発生させることができる。図5に示した羽根車100が正回転用の羽根車として機能し、図7に示した羽根車200が逆回転用の羽根車として機能する。 In the configuration shown in FIG. 1, the direction of the circulation flow between the room and the indoor unit 1 is determined by the direction and position of the circulation vortex generated by the airflow of the cross flow fan 7. The formation of this circulation vortex is determined by the blade shape of the cross flow fan 7 and the shape around the cross flow fan 7. Even if the impeller 100 shown in FIG. 5 is rotated in the reverse direction, no circulation vortex is generated and no airflow itself is generated. For this reason, the impeller 200 in which the inclination direction of the impeller is opposite to that of the impeller 100 is reversely rotated. Thereby, the direction of the circulation vortex generated in the indoor unit 1 can be changed, and an airflow in a direction opposite to the airflow generated by the impeller 100 can be generated. The impeller 100 shown in FIG. 5 functions as a forward rotation impeller, and the impeller 200 shown in FIG. 7 functions as a reverse rotation impeller.
 次に、本実施の形態1のクロスフローファン7の羽根車8の構成を説明する。図9は、図2に示した羽根車の一構成例を示す外観斜視図である。羽根車8は、第1の羽根車10と、第2の羽根車20と、モータ32に接続されるシャフト30とを有する。図9では、羽根車8の内部にシャフト30を示すことを省略している。 Next, the configuration of the impeller 8 of the cross flow fan 7 according to the first embodiment will be described. FIG. 9 is an external perspective view illustrating an example of a configuration of the impeller illustrated in FIG. 2. The impeller 8 has a first impeller 10, a second impeller 20, and a shaft 30 connected to a motor 32. In FIG. 9, the illustration of the shaft 30 inside the impeller 8 is omitted.
 図9に示すように、第1の羽根車10は複数の正回転羽根車10a~10dを有する。第2の羽根車20は複数の逆回転羽根車20a~20cを有する。正回転羽根車10a~10dは、図5を参照して説明した正回転用の羽根車として機能する。逆回転羽根車20a~20cは、図7を参照して説明した逆回転用の羽根車として機能する。複数の正回転羽根車10a~10dと複数の逆回転羽根車20a~20cはシャフト30の平行な方向(X軸矢印方向)に沿って、正回転羽根車と逆回転羽根車とが交互に配置されている。 As shown in FIG. 9, the first impeller 10 has a plurality of forward rotation impellers 10a to 10d. The second impeller 20 has a plurality of counter-rotating impellers 20a to 20c. The forward rotation impellers 10a to 10d function as the forward rotation impeller described with reference to FIG. The reverse rotation impellers 20a to 20c function as the reverse rotation impeller described with reference to FIG. The plurality of forward rotation impellers 10a to 10d and the plurality of reverse rotation impellers 20a to 20c are arranged alternately with the forward rotation impeller and the reverse rotation impeller along the direction parallel to the shaft 30 (the direction of the X-axis). Have been.
 正回転羽根車10a~10dの各羽根車について、シャフト30と平行な方向(X軸矢印方向)の長さをL1とする。逆回転羽根車20a~20cの各羽根車について、シャフト30と平行な方向の長さをL2とする。正回転羽根車10a~10dの各羽根車の長さL1の合計LB1は、LB1=4×L1で表される。また、逆回転羽根車20a~20cの各羽根車の長さL2の合計LB2は、LB2=3×L2で表される。LB1>LB2の関係であることが望ましい。 に つ い て L1 of each of the forward rotation impellers 10a to 10d in the direction parallel to the shaft 30 (the X-axis arrow direction). For each of the impellers 20a to 20c, the length in the direction parallel to the shaft 30 is L2. The total LB1 of the lengths L1 of the impellers 10a to 10d is represented by LB1 = 4 × L1. The total LB2 of the lengths L2 of the impellers 20a to 20c is represented by LB2 = 3 × L2. It is desirable that LB1> LB2.
 図10は、図9に示した正回転羽根車および逆回転羽根車の一構成例を示す拡大図である。図9および図10に示すように、正回転羽根車10a~10dの各羽根車は、支持円板11と、第1のクラッチ12と、複数の羽根板13とを有する。逆回転羽根車20a~20cの各羽根車は、支持円板21と、第2のクラッチ22と、複数の羽根板23とを有する。 FIG. 10 is an enlarged view showing an example of the configuration of the forward rotation impeller and the reverse rotation impeller shown in FIG. As shown in FIGS. 9 and 10, each impeller of the forward rotation impellers 10a to 10d has a support disk 11, a first clutch 12, and a plurality of impellers 13. Each impeller of the counter-rotating impellers 20a to 20c has a support disk 21, a second clutch 22, and a plurality of impellers 23.
 図11は、図10に示した正回転羽根車の支持円板の構成を示す拡大図である。図11では、正回転羽根車10aが回転することで発生する気流の方向を説明するために、ガイドウォール35および36が複数の羽根板13の周囲に設けられている場合を示す。図11に示す実線矢印の方向に支持円板11が回転すると、図11の破線矢印に示すように、支持円板11の上側(Z軸矢印方向)から下側(Z軸矢印と反対方向)に空気の流れが発生する。 FIG. 11 is an enlarged view showing a configuration of a support disk of the forward rotation impeller shown in FIG. FIG. 11 shows a case where the guide walls 35 and 36 are provided around the plurality of blade plates 13 in order to explain the direction of the airflow generated by the rotation of the forward rotation impeller 10a. When the support disk 11 rotates in the direction of the solid arrow shown in FIG. 11, as shown by the broken arrow in FIG. 11, the support disk 11 is moved from the upper side (the Z-axis arrow direction) to the lower side (the direction opposite to the Z-axis arrow). An air flow is generated.
 図12は、図10に示した逆回転羽根車の支持円板の構成を示す拡大図である。図12も、図11と同様に、ガイドウォール35および36が設けられている場合を示す。図12に示す実線矢印の方向に支持円板21が回転すると、図12の破線矢印に示すように、支持円板21の下側(Z軸矢印と反対方向)から上側(Z軸矢印方向)に空気の流れが発生する。 FIG. 12 is an enlarged view showing the configuration of the support disk of the counter-rotating impeller shown in FIG. FIG. 12 also shows a case where guide walls 35 and 36 are provided as in FIG. When the support disk 21 rotates in the direction of the solid arrow shown in FIG. 12, as shown by the dashed arrow in FIG. 12, the support disk 21 moves from the lower side (the direction opposite to the Z-axis arrow) to the upper side (the Z-axis arrow direction). An air flow is generated.
 本実施の形態1の空気調和機の室内機1は、正回転羽根車10a~10dおよび逆回転羽根車20a~20cを備えた一連のクロスフローファン7に、回転方向を変更できるモータ32を接続することで、ケーシング4内で気流の方向を逆転する。クロスフローファン7の羽根形状であれば、どちらの向きに回転させた場合でも、ケーシング4内に、羽根形状に応じた向きの気流を発生させることができる。 In the indoor unit 1 of the air conditioner according to the first embodiment, a motor 32 capable of changing the rotation direction is connected to a series of crossflow fans 7 including forward rotation impellers 10a to 10d and reverse rotation impellers 20a to 20c. By doing so, the direction of the airflow in the casing 4 is reversed. With the blade shape of the cross flow fan 7, an airflow in the direction corresponding to the blade shape can be generated in the casing 4 regardless of the direction of rotation.
 ただし、シャフト30が正回転する場合、正回転羽根車10a~10dが正回転して気流を発生するが、逆回転羽根車20a~20cは正回転しても気流発生に関わらない。また、シャフト30が逆回転する場合、逆回転羽根車20a~20cが逆回転して気流を発生するが、正回転羽根車10a~10dは逆回転しても気流発生に関わらない。このように、気流発生に関わらない羽根車も回転すると、ケーシング内の気流を乱し、気流を阻害してしまうおそれがある。そのため、気流発生に関わらない羽根車は、動作させない方が望ましい。 However, when the shaft 30 rotates forward, the forward rotation impellers 10a to 10d rotate forward to generate airflow, but the reverse rotation impellers 20a to 20c do not affect the generation of airflow even if they rotate forward. When the shaft 30 rotates in the reverse direction, the reverse rotation impellers 20a to 20c rotate in the reverse direction to generate airflow. However, even when the normal rotation impellers 10a to 10d rotate in the reverse direction, it does not affect the airflow generation. As described above, when the impeller that is not involved in the generation of the airflow also rotates, the airflow in the casing may be disturbed, and the airflow may be obstructed. Therefore, it is desirable not to operate the impeller which is not involved in the generation of airflow.
 そこで、本実施の形態1のクロスフローファン7では、図9および図10に示したように、第1のクラッチ12が第1の羽根車10に設けられ、第2のクラッチ22が第2の羽根車20に設けられている。第1のクラッチ12は、正回転する場合に歯がかみ合ってシャフト30の回転力を第1の羽根車10に伝達し、逆回転する場合は空転する一方向クラッチである。第2のクラッチ22は、逆回転する場合に歯がかみ合ってシャフト30の回転力を第2の羽根車20に伝達し、正回転する場合は空転する一方向クラッチである。図13は、図10に示した第1のクラッチの構成を示す拡大図である。 Therefore, in the cross flow fan 7 according to the first embodiment, as shown in FIGS. 9 and 10, the first clutch 12 is provided on the first impeller 10, and the second clutch 22 is provided on the second impeller 10. It is provided on the impeller 20. The first clutch 12 is a one-way clutch that meshes with the teeth to transmit the rotational force of the shaft 30 to the first impeller 10 when rotating forward, and idles when rotating backward. The second clutch 22 is a one-way clutch that engages with the teeth to transmit the rotational force of the shaft 30 to the second impeller 20 when rotating in the reverse direction, and idle when rotating in the forward direction. FIG. 13 is an enlarged view showing the configuration of the first clutch shown in FIG.
 図13に示すように、第1のクラッチ12は、円板形状であり、外郭部90aの内輪81との間に複数の隙間82が形成されたカム板83aと、複数のローラ84と、複数のバネ85とを有する。外郭部90aには、図11に示した複数の羽根板13が接続されている。複数の隙間82の各隙間82には、ローラ84およびバネ85が設けられている。バネ85の一方の端部はカム板83aに接続され、他方の端部はローラ84に接続されている。カム板83aの中央には、図10に示したシャフト30が接続されるシャフト穴86が設けられている。 As shown in FIG. 13, the first clutch 12 has a disk shape, a cam plate 83a in which a plurality of gaps 82 are formed between the first clutch 12 and the inner ring 81 of the outer shell 90a, a plurality of rollers 84, And a spring 85. The plurality of blades 13 shown in FIG. 11 are connected to the outer shell 90a. A roller 84 and a spring 85 are provided in each of the plurality of gaps 82. One end of the spring 85 is connected to the cam plate 83a, and the other end is connected to the roller 84. A shaft hole 86 to which the shaft 30 shown in FIG. 10 is connected is provided in the center of the cam plate 83a.
 図13に示す第1のクラッチ12の動作を簡単に説明する。図10に示したシャフト30が正回転すると、カム板83aが図13に示す矢印方向に回転する。カム板83aが回転するとバネ85が縮んで弾性力が発生する。バネ85の弾性力がローラ84を隙間82に押しつける。行き場のなくなったローラ84はカム板83aおよび内輪81を押す。その結果、複数のローラ84の各ローラ84が内輪81を介して外郭部90aを押すことで、第1のクラッチ12に回転力が生じ、第1のクラッチ12は図13に示す矢印方向に回転する。第1のクラッチ12の回転に伴って、図10に示した正回転羽根車10aが正回転する。このようにして、第1のクラッチ12は、シャフト30が正回転する場合、シャフト30の回転力を正回転羽根車10aに伝達することで、正回転羽根車10aを正回転させる。 The operation of the first clutch 12 shown in FIG. 13 will be briefly described. When the shaft 30 shown in FIG. 10 rotates forward, the cam plate 83a rotates in the arrow direction shown in FIG. When the cam plate 83a rotates, the spring 85 contracts, generating an elastic force. The elastic force of the spring 85 presses the roller 84 against the gap 82. The roller 84 having no place to go pushes the cam plate 83a and the inner ring 81. As a result, when each roller 84 of the plurality of rollers 84 presses the outer shell 90a via the inner ring 81, a rotational force is generated in the first clutch 12, and the first clutch 12 rotates in the direction of the arrow shown in FIG. I do. With the rotation of the first clutch 12, the forward rotation impeller 10a shown in FIG. In this manner, when the shaft 30 rotates forward, the first clutch 12 transmits the rotational force of the shaft 30 to the forward rotating impeller 10a, thereby rotating the forward rotating impeller 10a forward.
 一方、図10に示したシャフト30が逆回転(矢印と反対方向に回転)すると、バネ85が伸び、ローラ84に対して弾性力が働かない。その結果、カム板83aだけがシャフト30と一緒に回転し、第1のクラッチ12の外郭部90aは回転しない。このようにして、第1のクラッチ12は、シャフト30が逆回転する場合、シャフト30の回転力を正回転羽根車10aに伝達しないので、正回転羽根車10aを回転させない。 On the other hand, when the shaft 30 shown in FIG. 10 rotates in the reverse direction (rotates in the direction opposite to the arrow), the spring 85 expands, and no elastic force acts on the roller 84. As a result, only the cam plate 83a rotates together with the shaft 30, and the shell 90a of the first clutch 12 does not rotate. In this manner, when the shaft 30 rotates in the reverse direction, the first clutch 12 does not transmit the rotational force of the shaft 30 to the forward rotating impeller 10a, and thus does not rotate the forward rotating impeller 10a.
 図14は、図10に示した第2のクラッチの構成を示す拡大図である。図14に示すように、第2のクラッチ22は、円板形状であり、外郭部90bの内輪81との間に複数の隙間82が形成されたカム板83bと、複数のローラ84と、複数のバネ85とを有する。外郭部90bには、図12に示した複数の羽根板23が接続されている。複数の隙間82の各隙間82には、ローラ84およびバネ85が設けられている。バネ85の一方の端部はカム板83bに接続され、他方の端部はローラ84に接続されている。カム板83bの中央には、図10に示したシャフト30が接続されるシャフト穴86が設けられている。 FIG. 14 is an enlarged view showing the configuration of the second clutch shown in FIG. As shown in FIG. 14, the second clutch 22 has a disk shape, a cam plate 83b having a plurality of gaps 82 formed between the inner clutch 81 and the outer ring 90b, a plurality of rollers 84, and a plurality of rollers 84. And a spring 85. The plurality of blades 23 shown in FIG. 12 are connected to the outer shell 90b. A roller 84 and a spring 85 are provided in each of the plurality of gaps 82. One end of the spring 85 is connected to the cam plate 83b, and the other end is connected to the roller 84. A shaft hole 86 to which the shaft 30 shown in FIG. 10 is connected is provided at the center of the cam plate 83b.
 図14に示す第2のクラッチ22の動作については、図13を参照して説明した第1のクラッチ12の回転方向と反対方向に回転することを除いて同様になるため、その詳細な説明を省略する。第2のクラッチ22は、シャフト30が逆回転する場合、シャフト30の回転力を逆回転羽根車20aに伝達することで、逆回転羽根車20aを逆回転させる。一方、第2のクラッチ22は、シャフト30が正回転する場合、シャフト30の回転力を逆回転羽根車20aに伝達しないので、逆回転羽根車20aを回転させない。 The operation of the second clutch 22 shown in FIG. 14 is the same except that the first clutch 12 rotates in the direction opposite to the rotation direction of the first clutch 12 described with reference to FIG. Omitted. When the shaft 30 rotates in the reverse direction, the second clutch 22 transmits the rotational force of the shaft 30 to the reverse rotation impeller 20a, thereby causing the reverse rotation impeller 20a to rotate in the reverse direction. On the other hand, when the shaft 30 rotates forward, the second clutch 22 does not transmit the rotational force of the shaft 30 to the reverse rotation impeller 20a, and thus does not rotate the reverse rotation impeller 20a.
 図13および図14を参照して説明したように、シャフト30が正回転および逆回転のいずれの方向に回転しても、第1のクラッチ12および第2のクラッチ22が一方向クラッチとして機能するため、気流発生に関わらない羽根車が回転しない。そのため、ケーシング内の気流を乱すことを抑制し、効率よく目的の気流を発生させることができる。 As described with reference to FIGS. 13 and 14, the first clutch 12 and the second clutch 22 function as one-way clutches regardless of whether the shaft 30 rotates in the forward rotation or the reverse rotation. Therefore, the impeller does not rotate regardless of the airflow. Therefore, disturbance of the airflow in the casing can be suppressed, and the target airflow can be efficiently generated.
 次に、図7に示したクロスフローファン7の羽根車8の動作を説明する。図15は、図9に示した羽根車が正回転した場合を説明するための外観斜視図である。図15に示すように、シャフト30が正回転すると、正回転羽根車10a~10dが実線矢印に示すように正回転するが、逆回転羽根車20a~20cは回転しない。逆回転羽根車20a~20cが空転することで、気流の乱れが抑制され、図11の破線矢印に示した気流が効率よく発生する。 Next, the operation of the impeller 8 of the cross flow fan 7 shown in FIG. 7 will be described. FIG. 15 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates forward. As shown in FIG. 15, when the shaft 30 rotates forward, the forward rotating impellers 10a to 10d rotate forward as indicated by solid arrows, but the reverse rotating impellers 20a to 20c do not rotate. The idle rotation of the counter-rotating impellers 20a to 20c suppresses the turbulence of the airflow, and efficiently generates the airflow indicated by the dashed arrow in FIG.
 図16は、図9に示した羽根車が逆回転した場合を説明するための外観斜視図である。図16に示すように、シャフト30が逆回転すると、逆回転羽根車20a~20cが実線矢印に示すように逆回転するが、正回転羽根車10a~10dは回転しない。正回転羽根車10a~10dが空転することで、気流の乱れが抑制され、図12の破線矢印に示した気流が効率よく発生する。気流の方向を逆転しても、風量が損なうことを抑制できる。 FIG. 16 is an external perspective view for explaining a case where the impeller shown in FIG. 9 rotates in the reverse direction. As shown in FIG. 16, when the shaft 30 rotates in the reverse direction, the reverse rotation impellers 20a to 20c rotate in the reverse direction as indicated by solid arrows, but the normal rotation impellers 10a to 10d do not rotate. The idle rotation of the forward rotation impellers 10a to 10d suppresses the turbulence of the airflow, and efficiently generates the airflow indicated by the dashed arrow in FIG. Even if the direction of the airflow is reversed, it is possible to suppress the loss of the air volume.
 図15および図16を参照すると、複数の正回転羽根車10a~10dと複数の逆回転羽根車20a~20cはシャフト30の平行な方向(X軸矢印方向)に沿って、正回転羽根車と逆回転羽根車とが交互に配置されている。この場合、シャフト30が正回転する場合、クロスフローファン7は、吸込口2からより均等に室内の空気を吸い込み、吹出口3からより均等に空気を室内に吹き出すことができる。また、シャフト30が逆回転する場合、クロスフローファン7は、吹出口3からより均等に室内の空気を吸い込み、吸込口2からより均等に空気を室内に吹き出すことができる。 Referring to FIG. 15 and FIG. 16, a plurality of forward rotation impellers 10a to 10d and a plurality of reverse rotation impellers 20a to 20c are arranged along a direction parallel to the shaft 30 (X-axis arrow direction). Counter-rotating impellers are alternately arranged. In this case, when the shaft 30 rotates forward, the cross flow fan 7 can more evenly suck the air in the room from the suction port 2 and blow out the air more evenly from the air outlet 3 into the room. Further, when the shaft 30 rotates in the reverse direction, the cross flow fan 7 can suck the air in the room more evenly from the outlet 3 and blow out the air more evenly from the inlet 2 into the room.
 また、図9を参照して説明したように、LB1>LB2の関係である場合、クロスフローファン7は、正回転のときに、逆回転のときよりも多くの空気を冷媒と熱交換させ、熱交換後の空気を室内に供給できる。 Further, as described with reference to FIG. 9, when the relationship LB1> LB2 is satisfied, the cross flow fan 7 causes more air to exchange heat with the refrigerant at the time of forward rotation than at the time of reverse rotation, The air after the heat exchange can be supplied to the room.
 次に、本実施の形態1において、室内機1が気流の方向を切り替える制御を説明する。ここでは、空気調和機が暖房運転を行う場合で説明する。また、モータ32の回転方向の切り替えの設定時間tsetをメモリ62が記憶している。設定時間tsetは、例えば、3分である。図17は、図4に示した制御装置の動作手順を示すフローチャートである。 Next, in the first embodiment, the control in which the indoor unit 1 switches the direction of the airflow will be described. Here, the case where the air conditioner performs the heating operation will be described. The memory 62 stores a set time tset for switching the rotation direction of the motor 32. The set time tset is, for example, 3 minutes. FIG. 17 is a flowchart showing an operation procedure of the control device shown in FIG.
 モータ制御手段65は、運転起動の指示の信号を受信部61から受信するか否かを判定する(ステップS101)。モータ制御手段65は、暖房運転起動の指示の信号を受信部61から受信すると、モータ32を起動してクロスフローファン7を逆回転させる(ステップS102)。モータ制御手段65は、タイマー66を起動し、空気調和機の起動からの経過時間tを計測させる。モータ制御手段65は、経過時間tが設定時間tsetに到達したか否かを判定する(ステップS103)。経過時間tが設定時間tsetに到達すると、モータ32の回転方向を切り替えることで、クロスフローファン7の回転方向を逆回転から正回転に切り替える(ステップS104)。 (4) The motor control means 65 determines whether or not a signal for instructing operation to be started is received from the receiving unit 61 (step S101). When the motor control unit 65 receives the signal for starting the heating operation from the receiving unit 61, the motor control unit 65 starts the motor 32 to rotate the cross flow fan 7 in the reverse direction (step S102). The motor control means 65 starts the timer 66 and measures the elapsed time t from the start of the air conditioner. The motor control unit 65 determines whether the elapsed time t has reached the set time tset (Step S103). When the elapsed time t reaches the set time tset, the rotation direction of the cross flow fan 7 is switched from reverse rotation to forward rotation by switching the rotation direction of the motor 32 (step S104).
 図17に示した手順によれば、空気調和機が起動した後、設定時間tsetまでは吹出口3から負荷側熱交換器6を経由して吸込口2に流れる気流が発生するので、吸込口2付近の空気が暖められる。経過時間tが設定時間tsetに到達すると、吸込口2から負荷側熱交換器6を経由して吹出口3に流れる気流に切り替わるので、吸込口2付近で暖められた空気が負荷側熱交換器6で冷媒から吸熱してさらに温度が上昇する。その結果、室内機1は、冷たい空気を吹出口3から吹き出すことを抑制するだけでなく、より暖かい空気を吹出口3から室内に供給することができる。 According to the procedure shown in FIG. 17, after the air conditioner is started, an airflow flowing from the outlet 3 to the inlet 2 via the load side heat exchanger 6 is generated until the set time tset, so that the inlet The air near 2 is warmed. When the elapsed time t reaches the set time tset, the air flow is switched from the suction port 2 to the air outlet 3 via the load-side heat exchanger 6, so that the air warmed near the suction port 2 loses the load-side heat exchanger. In step 6, heat is absorbed from the refrigerant, and the temperature further rises. As a result, the indoor unit 1 can not only suppress the blowing of cold air from the outlet 3 but also supply warmer air from the outlet 3 to the room.
 図17を参照して、暖房運転の場合を説明したが、冷房運転の場合にも暖房運転の場合と同様な効果が得られる。具体的には、室内機1は、暑い空気を吹出口3から吹き出すことを抑制し、より冷却された空気を吹出口3から室内に供給することができる。 暖房 The case of the heating operation has been described with reference to FIG. 17, but the same effect as in the case of the heating operation can be obtained also in the case of the cooling operation. Specifically, the indoor unit 1 can suppress blowing out hot air from the outlet 3 and supply more cooled air from the outlet 3 to the room.
 図17を参照して、経過時間tが設定時間tsetに到達する条件を満たすと、モータ制御手段65がモータ32の回転方向を切り替える場合を説明したが、モータ32の回転方向を切り替える条件は経過時間tの場合に限らない。例えば、吸込口2に図に示さない吸込空気温度センサが設けられていてもよい。この場合、モータ制御手段65は、吸込空気温度センサの検出値が決められた温度と一致する条件を満たすと、モータ32の回転方向を切り替えてもよい。例えば、暖房運転の場合、吸込口2付近の空気の温度が決められた温度まで上昇した後、気流の方向を切り替えることで、起動時に冷たい空気を室内に吹き出すことを抑制し、暖かい空気を室内に供給することができる。 With reference to FIG. 17, a case has been described where the motor control unit 65 switches the rotation direction of the motor 32 when the condition that the elapsed time t reaches the set time tset is satisfied. It is not limited to the time t. For example, a suction air temperature sensor (not shown) may be provided in the suction port 2. In this case, the motor control means 65 may switch the rotation direction of the motor 32 if the condition that the detection value of the suction air temperature sensor matches the determined temperature is satisfied. For example, in the case of the heating operation, after the temperature of the air in the vicinity of the suction port 2 rises to a predetermined temperature, by switching the direction of the airflow, it is possible to suppress blowing out cold air into the room at the time of startup, and Can be supplied to
 また、図17を参照して、モータ制御手段65がモータ32の回転方向を切り替える制御を行う場合を説明したが、ユーザがリモートコントローラ70を操作して、モータ32の回転方向を切り替えてもよい。リモートコントローラ70の制御部74は、操作部71を介してモータ32の回転方向を指示する回転方向指示信号が入力されると、回転方向指示信号を、送信部73を介して室内機1に送信する。受信部61は回転方向指示信号をリモートコントローラ70から受信すると、回転方向指示信号を制御装置60に送信する。制御装置60のモータ制御手段65は、受信部61から回転方向指示信号を受信すると、回転方向指示信号にしたがってモータ32の回転方向を切り替える。 Also, with reference to FIG. 17, a case has been described in which the motor control unit 65 performs control for switching the rotation direction of the motor 32, but the user may operate the remote controller 70 to switch the rotation direction of the motor 32. . The control unit 74 of the remote controller 70 transmits the rotation direction instruction signal to the indoor unit 1 via the transmission unit 73 when the rotation direction instruction signal for instructing the rotation direction of the motor 32 is input via the operation unit 71. I do. When receiving the rotation direction instruction signal from the remote controller 70, the reception unit 61 transmits the rotation direction instruction signal to the control device 60. When receiving the rotation direction instruction signal from the receiving unit 61, the motor control means 65 of the control device 60 switches the rotation direction of the motor 32 according to the rotation direction instruction signal.
 例えば、ユーザは、空気調和機に暖房運転を開始させたとき、モータ32の回転方向を逆回転にする指示を操作部71に入力し、一定時間経過後に、モータ32の回転方向を正回転にする指示を操作部71に入力することが考えられる。一定時間は、例えば、1~5分である。この場合、吸込口2付近の空気が暖まってからクロスフローファン7が逆回転から正回転に切り替わるので、ユーザに暖かい空気が供給される。 For example, when the air conditioner starts the heating operation of the air conditioner, the user inputs an instruction to reverse the rotation direction of the motor 32 to the operation unit 71, and after a certain period of time, changes the rotation direction of the motor 32 to the normal rotation. It is conceivable to input an instruction to the operation unit 71. The certain time is, for example, 1 to 5 minutes. In this case, since the cross flow fan 7 switches from the reverse rotation to the normal rotation after the air in the vicinity of the suction port 2 is warmed, warm air is supplied to the user.
 なお、本実施の形態1では、第1の羽根車10が複数の正回転羽根車10a~10dを有し、第2の羽根車20が複数の逆回転羽根車20a~20cを有する場合で説明したが、正回転羽根車および逆回転羽根車がそれぞれ1つであってもよい。例えば、第1の羽根車10は正回転羽根車10a~10dがシャフト30に沿って積層された構成であり、第2の羽根車20は逆回転羽根車20a~20cがシャフト30に沿って積層された構成であってもよい。 In the first embodiment, the first impeller 10 has a plurality of forward rotation impellers 10a to 10d, and the second impeller 20 has a plurality of reverse rotation impellers 20a to 20c. However, one forward rotation impeller and one reverse rotation impeller may be provided. For example, the first impeller 10 has a configuration in which forward rotating impellers 10a to 10d are stacked along a shaft 30, and the second impeller 20 has a configuration in which reverse rotating impellers 20a to 20c are stacked along a shaft 30. A configuration may be adopted.
 また、第1の羽根車10および第2の羽根車20のシャフト30方向の長さの割合の比が、4対3の場合で説明したが、長さの割合の比は4対3に限らない。第1の羽根車10および第2の羽根車20のシャフト30方向の長さの割合の比が、例えば、10対1であってもよい。また、正回転羽根車と逆回転羽根車とが交互に配置される場合を示しているが、交互でなくてもよい。 Also, the case where the ratio of the ratio of the length of the first impeller 10 and the second impeller 20 in the direction of the shaft 30 is 4 to 3 has been described, but the ratio of the ratio of the length is not limited to 4 to 3. Absent. The ratio of the ratio of the length of the first impeller 10 and the second impeller 20 in the shaft 30 direction may be, for example, 10: 1. Moreover, although the case where the forward rotation impeller and the reverse rotation impeller are arranged alternately is shown, the arrangement does not have to be alternating.
 本実施の形態1の室内機1のクロスフローファン7は、正回転時に吸込口2から空気を吸い込む第1の羽根車10と、逆回転時に吹出口3から空気を吸い込む第2の羽根車20と、上記2つの羽根車の一方を回転方向に応じて空転させる2つのクラッチを有する。2つのクラッチのうち、一方の第1のクラッチ12は、第1の羽根車10に設けられ、正回転するシャフト30の回転力を第1の羽根車10に伝達し、シャフト30が逆回転するとき空転する。2つのクラッチのうち、他方の第2のクラッチ22は、第2の羽根車20に設けられ、逆回転するシャフト30の回転力を第2の羽根車20に伝達し、シャフト30が正回転するとき空転する。 The cross flow fan 7 of the indoor unit 1 according to the first embodiment includes a first impeller 10 that sucks air from the suction port 2 during normal rotation and a second impeller 20 that sucks air from the outlet 3 during reverse rotation. And two clutches that idle one of the two impellers according to the direction of rotation. One of the two clutches, the first clutch 12, is provided on the first impeller 10, transmits the rotational force of the normally rotating shaft 30 to the first impeller 10, and rotates the shaft 30 in the reverse direction. When idling. Of the two clutches, the other second clutch 22 is provided on the second impeller 20, transmits the rotational force of the shaft 30 that rotates in the reverse direction to the second impeller 20, and rotates the shaft 30 forward. When idling.
 本実施の形態1によれば、シャフト30の正回転時には正回転用の第1の羽根車10が回転し、逆回転用の第2の羽根車20は空転する。一方、シャフト30の逆回転時には逆回転用の第2の羽根車20が回転し、正回転用の第1の羽根車10は空転する。そのため、1つの吸込口2と1つの吹出口3との間に形成される単一の風路において、気流の乱れを抑制し、風量を損なうことなく気流の方向を逆転させることができる。その結果、方向の異なる気流を効率よく発生させることができる。 According to the first embodiment, at the time of forward rotation of the shaft 30, the first impeller 10 for forward rotation rotates, and the second impeller 20 for reverse rotation idles. On the other hand, when the shaft 30 rotates in the reverse direction, the second impeller 20 for reverse rotation rotates, and the first impeller 10 for normal rotation idles. Therefore, in a single air path formed between one suction port 2 and one air outlet 3, turbulence of the air flow can be suppressed, and the direction of the air flow can be reversed without impairing the air volume. As a result, airflows having different directions can be efficiently generated.
 また、本実施の形態1では、羽根車8の内部および外部に気流の障害物となるものが設けられていないので、風量を損なう要因を取り除くことができ、モータ32の回転方向を切り替えるだけで、風量を損なうことなく気流の向きを変更することができる。さらに、本実施の形態1では、単一の風路で気流方向を逆転できるので、方向の異なる気流毎に専用風路を設ける必要がない。 Further, in the first embodiment, since no obstacle to the airflow is provided inside and outside the impeller 8, it is possible to remove a factor that impairs the airflow, and only by switching the rotation direction of the motor 32. In addition, the direction of the air flow can be changed without impairing the air volume. Furthermore, in the first embodiment, since the airflow direction can be reversed by a single airflow path, it is not necessary to provide a dedicated airflow path for each airflow having a different direction.
 本実施の形態1において、第1の羽根車10は複数の正回転羽根車10a~10dを有し、第2の羽根車20は複数の逆回転羽根車20a~20cを有し、正回転羽根車および逆回転羽根車はシャフト30に沿って交互に配置されていてもよい。この場合、クロスフローファン7は、羽根車8が正回転および逆回転のどちらの方向に回転しても、空気を室内より均等に吸い込み、熱交換後の空気をより均等に室内に吹き出すことができる。 In the first embodiment, the first impeller 10 has a plurality of forward rotation impellers 10a to 10d, the second impeller 20 has a plurality of reverse rotation impellers 20a to 20c, and The wheels and the counter-rotating impeller may be arranged alternately along the shaft 30. In this case, regardless of whether the impeller 8 rotates in the normal rotation direction or the reverse rotation direction, the cross flow fan 7 can suck air evenly from the room and blow air after heat exchange into the room more evenly. it can.
 本実施の形態1において、複数の正回転羽根車10a~10dのシャフト30に平行な方向の長さの合計LB1は複数の逆回転羽根車20a~20cのシャフト30に平行な方向の長さの合計LB2よりも長くてもよい。この場合、クロスフローファン7は、正回転のときに、逆回転のときよりも多くの空気を冷媒と熱交換させ、熱交換後の空気を室内に供給できる。 In the first embodiment, the total length LB1 of the plurality of forward rotation impellers 10a to 10d in the direction parallel to the shaft 30 is equal to the length of the plurality of reverse rotation impellers 20a to 20c in the direction parallel to the shaft 30. It may be longer than the total LB2. In this case, the cross flow fan 7 allows more air to exchange heat with the refrigerant at the time of forward rotation than at the time of reverse rotation, and can supply the air after the heat exchange to the room.
 本実施の形態1の室内機1は、モータ32の回転方向を指示する回転方向指示信号が入力されると、回転方向指示信号にしたがってモータ32の回転方向を切り替えるリモートコントローラ70を有していてもよい。ユーザは、例えば、暖房運転開始時に冷たい風があたると感じたら、リモートコントローラ70を操作してクロスフローファン7を逆回転させる。その後、一定時間が経過したら、ユーザはリモートコントローラ70を操作してクロスフローファン7を正回転させる。一定時間は、例えば、1~5分である。吸込口2付近の空気が暖まってからクロスフローファン7が逆回転から正回転に切り替わるので、ユーザに暖かい空気が供給される。ユーザによる、モータ32の回転方向の切り替えは、暖房運転に限らず、冷房運転の場合であってもよい。 The indoor unit 1 according to the first embodiment includes a remote controller 70 that switches the rotation direction of the motor 32 according to the rotation direction instruction signal when a rotation direction instruction signal that indicates the rotation direction of the motor 32 is input. Is also good. For example, if the user feels that a cold wind is blowing at the start of the heating operation, the user operates the remote controller 70 to rotate the cross flow fan 7 in the reverse direction. Thereafter, after a certain time has elapsed, the user operates the remote controller 70 to rotate the cross flow fan 7 forward. The certain time is, for example, 1 to 5 minutes. After the air in the vicinity of the suction port 2 is warmed, the cross flow fan 7 switches from the reverse rotation to the normal rotation, so that warm air is supplied to the user. Switching of the rotation direction of the motor 32 by the user is not limited to the heating operation, and may be a cooling operation.
 本実施の形態1の室内機1は、モータ制御手段65が空気調和機の起動の指示が入力されると、モータ32を逆回転させた後、モータ32の回転方向を逆回転から正回転に切り替えてもよい。例えば、空気調和機が暖房運転を開始する際、吸込口2付近の空気が暖まってからクロスフローファン7が逆回転から正回転に自動的に切り替わる。ユーザがリモートコントローラ70を操作してモータ32の回転方向を切り替えなくても、室内機1は、空気調和機の起動時に冷たい風を室内に供給することを防ぐことができる。モータ制御手段65による、モータ32の回転方向の切り替えは、暖房運転に限らず、冷房運転の場合であってもよい。 When the motor control unit 65 receives an instruction to start the air conditioner, the indoor unit 1 according to the first embodiment rotates the motor 32 in the reverse direction, and then changes the rotation direction of the motor 32 from the reverse rotation to the forward rotation. You may switch. For example, when the air conditioner starts the heating operation, the cross flow fan 7 automatically switches from reverse rotation to normal rotation after the air near the suction port 2 has warmed. Even if the user does not operate the remote controller 70 to switch the rotation direction of the motor 32, the indoor unit 1 can prevent a cold wind from being supplied to the room when the air conditioner is started. Switching of the rotation direction of the motor 32 by the motor control means 65 is not limited to the heating operation, and may be a cooling operation.
 1 室内機、2 吸込口、3 吹出口、4 ケーシング、5 風向板、6 負荷側熱交換器、7 クロスフローファン、8 羽根車、9 風路、10 第1の羽根車、10a~10d 正回転羽根車、11 支持円板、12 第1のクラッチ、13 羽根板、20 第2の羽根車、20a~20c 逆回転羽根車、21 支持円板、22 第2のクラッチ、23 羽根板、30 シャフト、32 モータ、35、36 ガイドウォール、60 制御装置、61 受信部、62 メモリ、63 CPU、64 風向制御手段、65 モータ制御手段、66 タイマー、70 リモートコントローラ、71 操作部、72 表示部、73 送信部、74 制御部、75 メモリ、76 CPU、81 内輪、82 隙間、83a、83b カム板、84 ローラ、85 バネ、86 シャフト穴、90a、90b 外郭部、100 羽根車、110 単位羽根車、113 支持円板、115 羽根板、200 羽根車、210 単位羽根車、213 支持円板、215 羽根板、300 回転軸、311、312 ガイドウォール。 1 indoor unit, 2 inlet, 3 outlet, 4 casing, 5 wind direction board, 6 load side heat exchanger, 7 cross flow fan, 8 impeller, 9 air path, 10 first impeller, 10a to 10d positive Rotating impeller, 11 ° supporting disk, 12 ° first clutch, 13 ° impeller, 20 ° second impeller, 20a to 20c reverse rotating impeller, 21 ° supporting disk, 22 ° second clutch, 23 ° impeller, 30 Shaft, 32 motor, 35, 36 guide wall, 60 control device, 61 receiving unit, 62 memory, 63 CPU, 64 wind direction control means, 65 motor control means, 66 timer, 70 remote controller, 71 operation unit, 72 display unit, 73 transmission unit, 74 control unit, 75 memory, 76 CPU, 81 inner ring, 82 clearance, 83a, 83b cam , 84 roller, 85 spring, 86 shaft hole, 90a, 90b outer shell, 100 impeller, 110 unit impeller, 113 support disc, 115 impeller, 200 impeller, 210 unit impeller, 213 support disc, 215 Blades, 300 ° rotating shaft, 311, 312 ° guide wall.

Claims (7)

  1.  吸込口および吹出口が形成されたケーシングと、
     空調対象空間から吸い込まれる空気が冷媒と熱交換する負荷側熱交換器と、
     前記空調対象空間から吸い込む空気を前記負荷側熱交換器に供給するクロスフローファンと、
     前記クロスフローファンを駆動するモータと、を有し、
     前記クロスフローファンは、
     前記モータと接続されるシャフトと、
     前記ケーシング内に形成された風路に配置され、前記シャフトが正回転するとき、前記空調対象空間から前記吸込口を介して空気を吸い込む第1の羽根車と、
     前記風路に配置され、前記シャフトが前記正回転とは反対の逆回転をするとき、前記空調対象空間から前記吹出口を介して空気を吸い込む第2の羽根車と、
     前記第1の羽根車に設けられ、前記正回転する前記シャフトの回転力を前記第1の羽根車に伝達し、前記シャフトが前記逆回転するとき空転する第1のクラッチと、
     前記第2の羽根車に設けられ、前記逆回転する前記シャフトの回転力を前記第2の羽根車に伝達し、前記シャフトが前記正回転するとき空転する第2のクラッチと、
     を有する空気調和機の室内機。
    A casing in which an inlet and an outlet are formed,
    A load-side heat exchanger in which air sucked from the air-conditioned space exchanges heat with the refrigerant;
    A cross-flow fan that supplies air sucked from the air-conditioned space to the load-side heat exchanger,
    And a motor for driving the cross flow fan,
    The cross flow fan,
    A shaft connected to the motor;
    A first impeller that is disposed in an air passage formed in the casing and that sucks air from the air-conditioned space through the suction port when the shaft rotates forward;
    A second impeller that is disposed in the air passage, and that sucks air from the air-conditioned space through the air outlet when the shaft performs reverse rotation opposite to the normal rotation;
    A first clutch that is provided on the first impeller and transmits a rotational force of the shaft that rotates forward to the first impeller, and that idles when the shaft rotates reversely;
    A second clutch that is provided on the second impeller and transmits the torque of the shaft that rotates in the reverse direction to the second impeller, and that idles when the shaft rotates in the forward direction;
    An indoor unit of an air conditioner having a.
  2.  前記第1の羽根車は複数の正回転羽根車を有し、
     前記第2の羽根車は複数の逆回転羽根車を有し、
     前記正回転羽根車および前記逆回転羽根車は前記シャフトに沿って交互に配置されている、請求項1に記載の空気調和機の室内機。
    The first impeller has a plurality of forward rotation impellers,
    The second impeller has a plurality of counter-rotating impellers,
    The indoor unit of an air conditioner according to claim 1, wherein the forward rotation impeller and the reverse rotation impeller are alternately arranged along the shaft.
  3.  前記複数の正回転羽根車の前記シャフトに平行な方向の長さの合計は、前記複数の逆回転羽根車の前記シャフトに平行な方向の長さの合計よりも長い、請求項2に記載の空気調和機の室内機。 3. The sum of the lengths of the plurality of forward rotation impellers in a direction parallel to the shaft is longer than the sum of the lengths of the plurality of counter rotation impellers in a direction parallel to the shaft. 4. Indoor unit of air conditioner.
  4.  前記モータの回転方向を指示する回転方向指示信号が入力されると、前記回転方向指示信号にしたがって前記モータの回転方向を切り替えるリモートコントローラをさらに有する、請求項1~3のいずれか1項に記載の空気調和機の室内機。 The remote controller according to any one of claims 1 to 3, further comprising: a remote controller that switches a rotation direction of the motor according to the rotation direction instruction signal when a rotation direction instruction signal that indicates a rotation direction of the motor is input. Air conditioner indoor unit.
  5.  前記モータを制御するモータ制御手段をさらに有し、
     前記モータ制御手段は、
     前記空気調和機の起動の指示が入力されると、前記モータを前記逆回転させた後、決められた条件にしたがって前記モータの回転方向を前記逆回転から前記正回転に切り替える、請求項1~3のいずれか1項に記載の空気調和機の室内機。
    Further comprising motor control means for controlling the motor,
    The motor control means,
    The rotation direction of the motor is switched from the reverse rotation to the normal rotation according to a predetermined condition after the motor is rotated in the reverse direction when an instruction to start the air conditioner is input. 4. The indoor unit of the air conditioner according to any one of 3.
  6.  前記室内機は壁に取り付けられる壁掛形である、請求項1~5のいずれか1項に記載の空気調和機の室内機。 The indoor unit of an air conditioner according to any one of claims 1 to 5, wherein the indoor unit is a wall-mounted type mounted on a wall.
  7.  前記室内機は天井から吊り下げられる天井吊下形である、請求項1~5のいずれか1項に記載の空気調和機の室内機。 The indoor unit of an air conditioner according to any one of claims 1 to 5, wherein the indoor unit is of a ceiling-suspended type suspended from a ceiling.
PCT/JP2018/025851 2018-07-09 2018-07-09 Indoor unit for air conditioners WO2020012525A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/025851 WO2020012525A1 (en) 2018-07-09 2018-07-09 Indoor unit for air conditioners
JP2020529851A JP6873331B2 (en) 2018-07-09 2018-07-09 Indoor unit of air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/025851 WO2020012525A1 (en) 2018-07-09 2018-07-09 Indoor unit for air conditioners

Publications (1)

Publication Number Publication Date
WO2020012525A1 true WO2020012525A1 (en) 2020-01-16

Family

ID=69141672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025851 WO2020012525A1 (en) 2018-07-09 2018-07-09 Indoor unit for air conditioners

Country Status (2)

Country Link
JP (1) JP6873331B2 (en)
WO (1) WO2020012525A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022001043A1 (en) * 2020-06-28 2022-01-06 珠海格力电器股份有限公司 Air blowing device and tower fan
JP7402754B2 (en) 2020-06-15 2023-12-21 日立ジョンソンコントロールズ空調株式会社 air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233232A (en) * 1990-02-08 1991-10-17 Toshiba Corp Indoor unit of air conditioner
JPH03124142U (en) * 1990-03-28 1991-12-17
CN104676748A (en) * 2013-11-29 2015-06-03 海尔集团公司 Indoor unit of air conditioner
CN105240937A (en) * 2015-10-12 2016-01-13 珠海格力电器股份有限公司 Air-conditioner indoor unit and air conditioner
JP2016168863A (en) * 2015-03-11 2016-09-23 カルソニックカンセイ株式会社 Blower device
JP2018031577A (en) * 2016-08-26 2018-03-01 シャープ株式会社 Air conditioner, method for drying inside of air conditioner and program for controlling air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147259A (en) * 1985-12-20 1987-07-01 Matsushita Electric Ind Co Ltd Air-conditioning machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03233232A (en) * 1990-02-08 1991-10-17 Toshiba Corp Indoor unit of air conditioner
JPH03124142U (en) * 1990-03-28 1991-12-17
CN104676748A (en) * 2013-11-29 2015-06-03 海尔集团公司 Indoor unit of air conditioner
JP2016168863A (en) * 2015-03-11 2016-09-23 カルソニックカンセイ株式会社 Blower device
CN105240937A (en) * 2015-10-12 2016-01-13 珠海格力电器股份有限公司 Air-conditioner indoor unit and air conditioner
JP2018031577A (en) * 2016-08-26 2018-03-01 シャープ株式会社 Air conditioner, method for drying inside of air conditioner and program for controlling air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7402754B2 (en) 2020-06-15 2023-12-21 日立ジョンソンコントロールズ空調株式会社 air conditioner
WO2022001043A1 (en) * 2020-06-28 2022-01-06 珠海格力电器股份有限公司 Air blowing device and tower fan

Also Published As

Publication number Publication date
JPWO2020012525A1 (en) 2020-12-17
JP6873331B2 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
AU2011211125B2 (en) Ceiling-mounted indoor unit for air conditioning apparatus
JP6932009B2 (en) Indoor unit of air conditioner
JP5312055B2 (en) Air conditioning system
JP6463478B2 (en) Air conditioner
KR101298816B1 (en) Ventilation device
JP2008101894A (en) Air conditioner and control method therefor
JP2004012060A (en) Indoor unit for air conditioner and air conditioner
WO2020012525A1 (en) Indoor unit for air conditioners
JP2002005472A (en) Ventilation device and air conditioner having it
JP6075088B2 (en) Air conditioner
JP2010243081A (en) Indoor unit of air conditioner
JP4170676B2 (en) Vane control device for ceiling type air conditioner and control method therefor
JP2009287833A (en) Air conditioner
KR100714591B1 (en) Inner-door unit of air-conditioner
JP5950897B2 (en) Air conditioner
JP6418147B2 (en) air conditioner
JP2008157503A (en) Air conditioning device
JP2004263922A (en) Air conditioner indoor unit
KR100267549B1 (en) Air exit device of airconditioner
JP4302962B2 (en) Air conditioner
KR100442393B1 (en) Ceiling mounted type air conditioner for heating and cooling
WO2023175874A1 (en) Air conditioner
KR100741209B1 (en) Flow generating apparatus and air conditioner equipped with the same
JP5874908B2 (en) Air conditioner
KR20070000896A (en) Indoor unit of air-conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18926034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020529851

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18926034

Country of ref document: EP

Kind code of ref document: A1