WO2023175745A1 - 制御装置、制御方法、プログラムおよび記憶媒体 - Google Patents
制御装置、制御方法、プログラムおよび記憶媒体 Download PDFInfo
- Publication number
- WO2023175745A1 WO2023175745A1 PCT/JP2022/011725 JP2022011725W WO2023175745A1 WO 2023175745 A1 WO2023175745 A1 WO 2023175745A1 JP 2022011725 W JP2022011725 W JP 2022011725W WO 2023175745 A1 WO2023175745 A1 WO 2023175745A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- distributed power
- acquisition means
- power
- distributed
- power source
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
Definitions
- the present invention relates to a control device, a control method, a program, and a storage medium that supply power to consumers using distributed power sources.
- a power relay device 1 receives power specification information from a power device 40, freely connects power devices 40 having different power specifications, etc. to the husband and wife of a device connection unit 10, and connects the power devices 40 with different power specifications etc. It is described that power can be appropriately transferred to and from the husband's power device 40.
- An object of the present invention is to provide a control device, a control method, a program, and a storage medium that flexibly select a distributed power source to be operated from a plurality of distributed power sources according to operation criteria.
- a control device is a control device capable of communicating with a plurality of distributed power sources in a power supply system that supplies power to consumers, and acquires information regarding performance and operation from each of the plurality of distributed power sources.
- a first acquisition means a first acquisition means; a second acquisition means for acquiring power demand amounts from a plurality of consumers to which the plurality of distributed power sources supply power; third acquisition means for acquiring selection criteria used when selecting a distributed power source from among the plurality of distributed power sources; the information acquired by the first acquisition means; and the information acquired by the second acquisition means.
- a selection means for selecting a distributed power source to be operated from among the plurality of distributed power sources based on the electricity demand obtained by the third acquisition means and the selection criterion acquired by the third acquisition means; and a control means for controlling the operation of each of the distributed power sources selected by the selection means based on the operation plan created by the creation means. It is characterized by
- the control method is a control method executed in a control device capable of communicating with a plurality of distributed power sources in an electric power supply system that supplies power to consumers, and in which performance and a first acquisition step of acquiring information regarding operation; a second acquisition step of acquiring power demand from a plurality of consumers to whom the plurality of distributed power sources supply electricity; a third acquisition step of acquiring selection criteria used when selecting a distributed power source to be operated at the time of supply from the plurality of distributed power sources, the information acquired in the first acquisition step, and the third acquisition step; a selection step of selecting a distributed power source to be operated from the plurality of distributed power sources based on the power demand acquired in the second acquisition step and the selection criteria acquired in the third acquisition step; , a creation step of creating an operation plan for the distributed power sources selected in the selection step, and controlling the operation of each of the distributed power sources selected in the selection step based on the operation plan created in the creation step.
- the method is characterized by having a control step.
- a program according to the present invention causes a computer of a control device capable of communicating with a plurality of distributed power sources in a power supply system that supplies power to consumers to obtain information regarding performance and operation from each of the plurality of distributed power sources.
- selection means for selecting a distributed power source to be operated from among the plurality of distributed power sources based on the quantity and the selection criteria acquired by the third acquisition means; a distributed power source selected by the selection means; and a control means that controls the operation of each of the distributed power sources selected by the selection means based on the operation plan created by the creation means.
- a computer-readable storage medium allows a computer of a control device capable of communicating with a plurality of distributed power sources in an electric power supply system that supplies electric power to consumers to perform information related to performance and operation from each of the plurality of distributed power sources.
- a first acquisition means for acquiring information
- a second acquisition means for acquiring power demand from a plurality of consumers to which the plurality of distributed power sources supply electricity
- a third acquisition means for acquiring selection criteria used when selecting a distributed power source to be operated from among the plurality of distributed power sources, the information acquired by the first acquisition means and the information acquired by the second acquisition means; a selection means for selecting a distributed power source to be operated from among the plurality of distributed power sources based on the electricity demand obtained by the third acquisition means and the selection criteria acquired by the third acquisition means; and a control means for controlling the operation of each of the distributed power sources selected by the selection means based on the operation plan created by the creation means.
- a distributed power source to be operated can be flexibly selected from a plurality of distributed power sources according to operation criteria.
- FIG. 1 is a diagram showing the overall configuration of a power control system.
- FIG. 2 is a block diagram showing the configuration of a control device.
- FIG. 2 is a block diagram showing the configuration of a distributed power source.
- FIG. 3 is a diagram showing the flow of processing between a control device and a distributed power source. 3 is a flowchart showing processing executed in the control device. 3 is a flowchart showing processing executed in the control device. 3 is a flowchart showing processing executed in the operation planning section. It is a flowchart which shows the process of S205. It is a flowchart which shows the process of S205.
- FIG. 3 is a diagram showing a database.
- FIG. 3 is a diagram showing a database.
- FIG. 1 is a diagram showing the overall configuration of a power supply system 100 that supplies power to consumers in this embodiment.
- the power supply system 100 in this embodiment includes a control device 101, distributed power sources 102a, 102b, and 102c, a base power source 103, and consumers 104a and 104b.
- the consumers 104a and 104b refer to facilities such as homes, factories, and buildings, and are supplied with power from a power source configured in the power supply system 100. If the consumers 104a and 104b are home facilities, they may have a home energy management system (HEMS) for managing electrical energy used in the home.
- HEMS home energy management system
- the consumers 104a and 104b are commercial facilities, they may have a building energy management system (BEMS) for managing the electrical energy used within the facility.
- BEMS building energy management system
- the number of consumers is illustrated as two in FIG. 1, the number is not limited to two.
- the consumers 104a and 104b will be collectively referred to as the consumers 104 unless they are distinguished from each other.
- the distributed power sources 102a, 102b, and 102c are operated when supplying power to the consumer 104.
- Distributed power sources 102a, 102b, and 102c are movable (portable) power generation devices, unlike stationary power generation devices. Although three distributed power sources are illustrated in FIG. 1, the number is not limited to three.
- the distributed power sources 102a, 102b, and 102c will be collectively referred to as the distributed power source 102 unless otherwise distinguished.
- the distributed power source 102 includes devices using various power generation methods, such as a power generation device using a diesel engine, a power generation device using sunlight, a power generation device using wind power, and a power generation device using a fuel cell.
- the power supply system 100 includes a plurality of distributed power sources, not all of them are used to supply power to the consumers 104. Further, power is supplied to the consumer 104 via the power supply network 105, but since the distributed power source has a portable nature, it can be connected to/disconnected from the power supply network 105 as appropriate. That is, depending on the timing of power supply to the consumer 104, the operated distributed power source may change.
- the base power source 103 is a stationary power generation device with relatively low running cost. Like the distributed power source 102, the base power source 103 is used to supply power to the consumer 104, and may include devices of the various power generation methods described above.
- the area where the power supply system 100 is constructed is assumed to be an area that is not connected to the main power system from an electric utility company, such as a remote island. That is, the distributed power source 102 and the base power source 103 are used as power supply sources to the consumer 104.
- the base power supply 103 is not essential and may not be configured. That is, only the distributed power source 102 may be used as a power supply source to the consumer 104.
- the description will be made on the assumption that the device is not connected to a main power system from an electric power company such as a retail electricity company or a power transmission/distribution company, it may be configured to be connected to a main power system. At that time, the base power supply 103 may or may not be configured.
- the control device 101 is a device that controls the distributed power source 102 so as to appropriately supply power in accordance with the power demand of the consumer 104. As will be described later, the control device 101 selects the distributed power source 102 to be operated according to the purpose of power supply control input by the administrator of the control device 101.
- the power supply network 105 is a power supply network through which each power supply source supplies power to the consumer 104. Distributed power source 102 has a state of being either connected or disconnected from power supply network 105 . In this embodiment, the control device 101 can control the distributed power source 102 to be connected to the power supply network 105 or disconnected from the power supply network 105.
- the communication network 106 is a communication network that enables mutual communication between the devices shown in FIG. The communication network 106 may be wired, wireless, or a combination thereof.
- FIG. 2 is a block diagram showing an example of the configuration of the control device 101.
- the configuration of FIG. 2 can be a computer that can execute the invention related to a program stored in a computer-readable storage medium.
- the blocks shown in FIG. 2 are communicably connected to each other via a system bus.
- the processor 201 centrally controls the control device 101 by, for example, reading a program stored in the storage unit 203 into the memory 202 and executing it, thereby realizing the operation of the control device 101 in the present embodiment, for example.
- the storage unit 203 controls the state of connection/disconnection of the distributed power source 102 to the power supply network 105, and controls the power storage operation/power generation of the distributed power source 102. Stores programs, data, etc. for controlling operations.
- the storage unit 203 has a database that stores information regarding each of the consumers 104 and the distributed power sources 102.
- the operation planning unit 204 plans the operation of each distributed power source 102 configured in the power supply system 100 based on the purpose of power supply control input by the administrator. The operational plan will be discussed later.
- the system status monitoring unit 205 periodically acquires information from each distributed power source 102 configured in the power control system 100. As will be described later, the acquired information includes performance information and operation information of each distributed power source 102.
- the load amount detection unit 206 periodically acquires information from the consumer 104 included in the power control system 100. As will be described later, the acquired information includes the power demand amount (power load amount) of each consumer 104.
- the communication interface (I/F) 207 is an interface for enabling communication with the consumer 104, and has a configuration depending on the medium of the communication network 106.
- Communication I/F 108 is an interface for enabling communication with distributed power source 102, and has a configuration depending on the medium of communication network 106.
- the operation reception unit 209 includes, for example, a keyboard and a pointing device that can accept user operations. Further, the operation reception unit 209 includes a display unit such as a display or a touch panel. The display unit can display various user interface screens, and for example, a screen for allowing the user to input information regarding the purpose of power supply control is displayed. Note that the user is, for example, an administrator of the power supply system 100.
- the control device 101 is not limited to the configuration shown in FIG. 2, and has appropriate functional blocks that can be executed by a general-purpose information processing device. Although not shown, it also has a power supply interface for supplying power from the power supply network 105.
- FIG. 3 is a block diagram showing an example of the configuration of the distributed power source 102.
- the configuration of FIG. 3 can be a computer that can execute the invention related to a program stored in a computer-readable storage medium.
- the blocks shown in FIG. 3 are communicably connected to each other via a system bus.
- the processor 301 centrally controls the distributed power source 102 by, for example, reading a program stored in the storage unit 303 into the memory 302 and executing it, thereby realizing the operation of the distributed power source 102 in this embodiment, for example. .
- the operation control unit 304 controls the power storage operation, power generation operation, and connection/disconnection operation with the power supply network 105 of the distributed power source 102 .
- the operation control unit 304 controls the above operations based on instructions from the control device 101.
- the device information monitoring unit 305 monitors the state of the distributed power source 102 based on signals from sensors (not shown) provided in each part of the distributed power source 102.
- the sensors include, for example, a sensor that detects the connection state of the distributed power source 102 to the power supply network 105 (for example, an open/closed state of a switch), and a sensor that detects the remaining amount of energy stored in the power storage unit 309.
- the power supply unit 306 is a block for supplying power generated by the power generation unit 308 to the power supply network 105.
- the power generation unit 308 has a power generation configuration according to the power generation method of the distributed power source 102.
- the power conversion unit 307 includes an inverter that performs DC-AC conversion, and performs power conversion so that power can be supplied to the power supply network 105.
- Power storage unit 309 has a storage battery and can store a portion of the power generated by power generation unit 308.
- the connection unit 310 has a switch that connects and disconnects from the power supply network 105.
- the communication I/F 311 is an interface for enabling communication with the control device 101, and has a configuration depending on the medium of the communication network 106.
- the distributed power source 102 is not limited to the configuration shown in FIG. 3, and has appropriate functional blocks that can be executed by distributed power sources employing each power generation method.
- FIG. 4 is a diagram showing the flow of processing between the control device 101 and the distributed power source 102.
- the operation planning unit 204 receives purpose information for power supply control from the administrator 401.
- Information reception may be performed, for example, by inputting on an interface screen displayed on the display unit, or by receiving information stored in another terminal via the communication network 106. good.
- the load amount detection unit 206 periodically acquires the total power demand in the area managed by the control device 101 or the administrator 401, and transmits it to the system status monitoring unit 205.
- the system state monitoring unit 205 periodically acquires performance information and operation information from the distributed power source 102. Through the processes in S2 and S3, the system state monitoring unit 205 acquires the total power demand of the area it manages, and the performance information and operation information of each distributed power source 102 existing in the area.
- FIG. 5A is a flowchart showing the process of acquiring the power demand amount executed by the load amount detection unit 206.
- the process in FIG. 5A is realized, for example, by the processor 201 reading out a program stored in the storage unit 203 into the memory 202 and executing it. Further, the process in FIG. 5A is repeatedly executed at predetermined time intervals.
- the load amount detection unit 206 acquires the power demand amount from each consumer 104 .
- the consumer 104 has an electrical energy management system such as HEMS or BEMS, for example.
- the load amount detection unit 206 receives, for example, the total power of the consumer 104 in a predetermined period such as a month from an EMS (Energy Management System) control unit that controls the operation of power equipment installed in the consumer 104. Get the demand quantity.
- the load amount detection unit 206 adds up the amount of power demand acquired from each consumer 104 in the area managed by the control device 101.
- the load amount detection unit 206 stores the power demand obtained in S101 and the total power demand obtained in S102 in a database configured in the storage unit 203. After S103, the process in FIG. 5A ends.
- FIG. 9A is a diagram showing an example of a database of power demand of each customer 104 stored in the storage unit 203. As shown in FIG. 9A, the power demand amount is stored in association with the identification information of each consumer 104. Also stored is the sum of the power demands of each customer 104 (total power demand) during the predetermined period. In other words, the total electricity demand in the area for a predetermined period is managed. The database in FIG. 9A is updated every time the process in FIG. 5A is executed.
- FIG. 5B is a flowchart showing the process of acquiring performance information and operation information of the distributed power source 102, which is executed by the system status monitoring unit 205.
- the processing in FIG. 5B is realized, for example, by the processor 201 reading out a program stored in the storage unit 203 into the memory 202 and executing it. Further, the process in FIG. 5B is repeatedly executed at predetermined time intervals.
- the system state monitoring unit 205 acquires performance information and operation information from each distributed power source 102.
- the system state monitoring unit 205 stores the performance information and operation information acquired in S111 in a database configured in the storage unit 203 in association with the distributed power source 102. After S112, the process in FIG. 5B ends.
- FIG. 9B is a diagram showing an example of a database of performance information and operation information of each distributed power source 102 stored in the storage unit 203.
- the performance information is information indicating the performance of the distributed power source 102, and includes, for example, information regarding the power generation method and information on the load exerted on the surrounding environment when operating.
- the performance information includes, for example, information regarding the power generation method, power generation unit price, gas emission amount, and noise generation amount.
- the operating information is information indicating the operating state of the distributed power source 102, and includes, for example, the connection state (connection/disconnection) to the power supply network 105, operating time, power generation amount, and the amount of electricity stored in the power storage unit 309 (remaining energy amount). ), including operating status (normal, abnormal).
- the system state monitoring unit 205 may acquire the above information by acquiring specification information stored in advance in the storage unit 303 of the distributed power source 102.
- the device status monitoring unit 305 of the distributed power source 102 collects operating information as appropriate using sensors and the like provided in each unit.
- the system status monitoring unit 205 may acquire the operating information by transmitting an information acquisition request to the device information monitoring unit 305.
- the database in FIG. 9B is updated every time the process in FIG. 5B is executed.
- the system state monitoring unit 205 transmits the total power demand of the region obtained in S2 and S3, and the performance information and operation information of each distributed power source 102 to the operation planning unit 204.
- the system status monitoring unit 205 acquires each piece of information from the load amount detection unit 206 and the device status monitoring unit 305 at a predetermined timing. In other words, information is acquired so that there is no noticeable difference between the timing of acquiring the total power demand and the timing of acquiring performance information and operation information.
- the operation planning unit 204 determines the area based on the total power demand acquired from the system status monitoring unit 205, the performance information and operation information of each distributed power source 102, and the purpose information of power supply control input in S1.
- the distributed power source 102 to be operated is selected from the distributed power sources 102 existing within the system.
- the operation planning unit 204 creates an operation plan for the selected distributed power source 102, and in S5 transmits instructions to start operation, generate electricity, store electricity, and stop operation to the operation control unit 304 based on the operation plan.
- the operation control unit 304 receives an instruction regarding operation from the operation planning unit 204, the operation control unit 304 controls the operation start, power generation, power storage, and operation stop of the power conversion unit 307 according to the received instruction in S6.
- S7 power is supplied from the power conversion unit 307 to the power supply network 105.
- S8 if the device status monitoring unit 305 detects an abnormality such as an error within the distributed power source 102, it notifies the operation control unit 304.
- the operation control unit 304 transmits notification information indicating the occurrence of the abnormality to the operation planning unit 204.
- step numbers the flow of processing is explained using step numbers, but the order is not limited to the time series of S1 to S8, and the order may be reversed between some processes. Further, the processes may be performed in parallel.
- FIG. 6 is a flowchart showing the processing executed by the operation planning unit 204.
- the processing in FIG. 6 is realized, for example, by the processor 201 reading a program stored in the storage unit 203 into the memory 202 and executing it.
- the process in FIG. 6 is started, for example, when the administrator 401 instructs the start of operation.
- the instruction to start operation may be received via a user interface screen displayed on the display unit of the control device 101, for example.
- the operation planning unit 204 acquires the purpose information of power supply control input from the administrator 401. This process corresponds to S1 in FIG.
- the operation planning unit 204 acquires the total power demand of the region from the system status monitoring unit 205. This process corresponds to S4 in FIG. Note that the operation planning unit 204 may obtain the power demand of each customer 104 and calculate the total power demand of the region.
- the operation planning unit 204 acquires the performance information and operating status of each distributed power source 102 from the system status monitoring unit 205. This process corresponds to S4 in FIG.
- the operation planning unit 204 compares the total power demand of the region and the total power supply of each distributed power source existing in the region, and determines whether to start operation of the distributed power source 102. .
- the regional total power demand is the total power demand acquired in S202.
- the operation planning unit 204 adds up the power generation amounts included in the operation information of each distributed power source 102 acquired in S203, and uses the summed value as the total power supply amount.
- the total power demand in the region is compared with the amount of power that can be supplied when all distributed power sources in the region are operated. In this embodiment, the comparison is performed as follows.
- the operation planning unit 204 calculates the total power demand for determination by virtually increasing the total power demand.
- the total power demand for determination is calculated using the following equation (1).
- Total power demand for determination total power demand acquired in S202 x ⁇ (1)
- ⁇ in equation (1) is a coefficient for increasing the total power demand for determination, and a value of 1 or more, for example 1.2, is used.
- the coefficient is a predetermined value, and may be settable by the administrator 401.
- Total power demand for judgment ⁇ Total power supply ... (2) That is, in S204, it is determined whether the total power supply amount of each distributed power source 102 existing in the region exceeds the virtually increased total power demand for determination. Here, if the condition of formula (2) is satisfied, it means that the total power supply amount of each distributed power source 102 has a sufficient margin with respect to the total power demand obtained in S202, and the operation is started. It is determined that it is possible to do so. On the other hand, if the condition of equation (2) is not satisfied, it is assumed that the total power demand obtained in S202 and the total power supply are balanced, and if operation starts, some distributed power sources will be used. Since there is a risk of a power outage if the power supply network 102 is disconnected from the power supply network 105, it is determined that the operation should not be started.
- the operation planning unit 204 creates an operation plan for each distributed power source 102 in S205.
- the operational plan will be discussed later.
- the operation planning unit 204 controls the operation of the distributed power source 102 to be operated, based on the timing planned in the operation plan created in S205. For example, the operation control starts the operation of the solar power generation type distributed power source 102 at 10:00 on November 20th, and stops the operation of the distributed power source 102 at 17:00 on November 20th. This is done according to the operating schedule.
- the operation planning unit 204 controls each distributed power source 102 to prohibit disconnection of each distributed power source 102 from the power supply network 105. Thereby, it is possible to prevent the risk of a power outage that may occur because the total power demand obtained in S202 and the total power supply obtained in S203 conflict with each other.
- the operation planning unit 204 determines the purpose information of power supply control acquired in S201. For example, the determination in S301 may be made based on the objective item selected on the user interface screen displayed on the display unit of the control device 101. For example, a plurality of selection items may be displayed on the user interface screen along with a message such as "Please select the purpose of operating the distributed power source.” In this embodiment, the following selection items can be selected by the administrator.
- the operation planning unit 204 determines whether "uninterrupted power outage" has been selected as the objective item. "Uninterruptible” may be selected when the base power supply 103 is configured in the power supply system 100 of FIG. 1. If it is determined that "uninterrupted" has been selected, the process in FIG. 7 is ended and the process proceeds to S206 in FIG. 6. Then, in S206, the operation planning unit 204 controls the operation of each distributed power source 102 so that the power supply from the base power source 103 is stabilized.
- the operation planning unit 204 controls the distributed power source 102 that can compensate for the decreased power to select and start operating. Furthermore, when the power supply from the base power source 103 becomes excessive, the operation planning unit 204 selects a distributed power source 102 that can store the excess power and performs control to store the excess power. .
- the process advances to S306.
- the operation planning unit 204 determines whether "securing remaining energy” has been selected as the objective item. "Securing remaining energy” means always securing a predetermined amount of energy or more as surplus power, for example, in case of an emergency. If it is determined in S306 that "securing remaining energy" has been selected as the objective item, the process advances to S307.
- the operation planning unit 204 calculates the daily power demand from the total power demand obtained in S202, and selects a distributed power source 102 that can supply power for the power demand. At this time, there may be multiple combinations of distributed power sources 102 selected.
- Combination 1 Distributed power supply A+C+D
- Combination 2 Distributed power supply A+E
- Combination 3 Distributed power supply A+B+F+G
- Combination 1 is an example of a combination of distributed power sources A, C, and D with a medium power generation amount.
- Combination 2 is an example of a combination of distributed power source A with a medium power generation amount and distributed power source E with a large power generation amount.
- Combination 3 is an example of a combination of distributed power source A with a medium power generation amount and distributed power sources B, F, and G with small power generation amounts.
- the amount of electricity stored in the distributed power source E is greater than that of the distributed power sources A, B, C, D, F, and G.
- the operation planning unit 204 determines the priority order of the combinations of the distributed power sources 102 based on the amount of power stored in the operation information. For example, in the case of the above example, the priority order is determined in descending order of the total amount of stored electricity, such as combination 2>combination 1>combination 3.
- the operation planning unit 204 selects the combination of distributed power sources 102 with the highest priority.
- the description will be made assuming that the distributed power source 102 to be operated is selected in S307, but disconnection from the power supply network 105 is permitted in S308 in the subsequent stage, that is, the distributed power source 102 that is not to be operated is selected. You may also do this.
- the operation planning unit 204 controls the distributed power sources 102 to permit disconnection of the distributed power sources 102 other than the distributed power sources 102 selected in S307 from the power supply network 105.
- the operation planning unit 204 creates an operation plan for the distributed power source 102 based on the operation information of the distributed power source 102 to be operated. For example, the operation planning unit 204 schedules the start of operation, power generation, power storage, and stoppage of operation of the distributed power source 102 based on the operation time of the operation information.
- the process in FIG. 7 is ended and the process proceeds to S206 in FIG. Note that if an abnormality is detected in the distributed power source 102 after the operation is controlled in S206, the distributed power sources 102 of the next and subsequent priority combinations that do not include the distributed power source 102 in which the abnormality was detected are The processing from S307 is repeated.
- the process advances to S310.
- the operation planning unit 204 determines whether "economical efficiency" has been selected as the objective item. "Economy” means keeping power generation costs low. If it is determined in S310 that "economic efficiency" has been selected as the objective item, the process advances to S311.
- the operation planning unit 204 selects a distributed power source 102 that can supply power based on the total power demand acquired in S202. At this time, there may be a plurality of combinations of distributed power sources 102 selected.
- Combination 1 Distributed power supply A+C+D
- Combination 2 Distributed power supply A+E
- Combination 3 Distributed power supply A+B+F+G
- Combination 1 is an example of a combination of distributed power sources A, C, and D with a medium power generation amount.
- Combination 2 is an example of a combination of distributed power source A with a medium power generation amount and distributed power source E with a large power generation amount.
- Combination 3 is an example of a combination of distributed power source A with a medium power generation amount and distributed power sources B, F, and G with small power generation amounts.
- the power generation unit price of the distributed power source E is higher than that of the distributed power sources A, B, C, D, F, and G.
- the operation planning unit 204 determines the priority order of combinations of the distributed power sources 102 based on the power generation unit price of the operation information. For example, in the case of the above example, the priority order is determined in descending order of total power generation unit price, such as combination 3>combination 1>combination 2.
- the operation planning unit 204 selects the combination of distributed power sources 102 with the highest priority. Note that in this embodiment, the description will be made assuming that the distributed power source 102 to be operated is selected in S311, but in S312 in the later stage, disconnection from the power supply network 105 is permitted, that is, the distributed power source 102 that is not to be operated is selected. You may also do this.
- the operation planning unit 204 controls the distributed power sources 102 to permit disconnection of distributed power sources 102 other than the distributed power sources 102 selected in S311 from the power supply network 105.
- the operation planning unit 204 creates an operation plan for the distributed power source 102 to be operated, based on the operation information of the distributed power source 102 to be operated. For example, the operation planning unit 204 schedules the start of operation, power generation, power storage, and stoppage of operation of the distributed power source 102 based on the operation time of the operation information.
- the process in FIG. 7 ends, and the process advances to S206 in FIG. Note that if an abnormality is detected in the distributed power source 102 after the operation is controlled in S206, the distributed power sources 102 of the next and subsequent priority combinations that do not include the distributed power source 102 in which the abnormality was detected are The processing from S311 is repeated.
- the process advances to S401 in FIG.
- the operation planning unit 204 determines whether "environmental friendliness" has been selected as an objective item. "Environmental” means reducing exhaust gas. If it is determined in S401 that "environmental friendliness" has been selected as the objective item, the process advances to S402.
- the operation planning unit 204 selects a distributed power source 102 that can supply power based on the total power demand acquired in S202. At this time, there may be a plurality of combinations of distributed power sources 102 selected.
- Combination 1 Distributed power supply A+C+D
- Combination 2 Distributed power supply A+E
- Combination 3 Distributed power supply A+B+F+G
- Combination 1 is an example of a combination of distributed power sources A, C, and D with a medium power generation amount.
- Combination 2 is an example of a combination of distributed power source A with a medium power generation amount and distributed power source E with a large power generation amount.
- Combination 3 is an example of a combination of distributed power source A with a medium power generation amount and distributed power sources B, F, and G with small power generation amounts.
- the amount of gas discharged from distributed power source E is larger than that of distributed power sources A, B, C, D, F, and G.
- the operation planning unit 204 determines the priority order of combinations of the distributed power sources 102 based on the gas emission amount in the operation information. For example, in the case of the above example, the priority order is determined in descending order of the total amount of gas discharge, such as combination 3>combination 1>combination 2.
- the operation planning unit 204 selects the combination of distributed power sources 102 with the highest priority.
- the description will be made assuming that the distributed power source 102 to be operated is selected in S402, but disconnection from the power supply network 105 is permitted in the subsequent step S403, that is, the distributed power source 102 that is not to be operated is selected. You may also do this.
- the operation planning unit 204 controls the distributed power sources 102 to permit disconnection of distributed power sources 102 other than the distributed power sources 102 selected in S402 from the power supply network 105.
- the operation planning unit 204 creates an operation plan for the distributed power source 102, based on the operation information of the distributed power source 102 to be operated. For example, the operation planning unit 204 schedules the start of operation, power generation, power storage, and stoppage of operation of the distributed power source 102 based on the operation time of the operation information.
- the process in FIG. 8 is ended and the process proceeds to S206 in FIG. Note that if an abnormality is detected in the distributed power source 102 after the operation is controlled in S206, the distributed power sources 102 of the next and subsequent priority combinations that do not include the distributed power source 102 in which the abnormality was detected are The processing from S402 is repeated.
- the process advances to S405 in FIG. 8.
- the operation planning unit 204 determines whether "low noise” has been selected as the objective item. "Low noise” means that the noise generated is small. If it is determined in S405 that "low noise" has been selected as the target item, the process advances to S406.
- the operation planning unit 204 calculates the daily power demand from the total power demand obtained in S202, and selects a distributed power source 102 that can supply power for the power demand. At this time, a plurality of combinations of distributed power sources 102 may be selected.
- Combination 1 Distributed power supply A+C+D
- Combination 2 Distributed power supply A+E
- Combination 3 Distributed power supply A+B+F+G
- Combination 1 is an example of a combination of distributed power sources A, C, and D with a medium power generation amount.
- Combination 2 is an example of a combination of distributed power source A with a medium power generation amount and distributed power source E with a large power generation amount.
- Combination 3 is an example of a combination of distributed power source A with a medium power generation amount and distributed power sources B, F, and G with small power generation amounts.
- the amount of noise generated by distributed power source E is greater than that of distributed power sources A, B, C, D, F, and G.
- the operation planning unit 204 determines the priority order of combinations of the distributed power sources 102 based on the amount of noise generated in the operation information. For example, in the case of the above example, the priority order is determined in descending order of the total amount of noise generation, such as combination 3>combination 1>combination 2.
- the operation planning unit 204 selects the combination of distributed power sources 102 with the highest priority.
- the explanation will be given assuming that the distributed power source 102 to be operated is selected in S406, but disconnection from the power supply network 105 is permitted in S407 in the subsequent stage, that is, the distributed power source 102 that is not to be operated is selected. You may also do this.
- the operation planning unit 204 controls the distributed power sources 102 to permit disconnection of the distributed power sources 102 other than the distributed power sources 102 selected in S406 from the power supply network 105.
- the operation planning unit 204 creates an operation plan for the distributed power source 102 based on the operation information of the distributed power source 102 to be operated. For example, the operation planning unit 204 schedules the start of operation, power generation, power storage, and stoppage of operation of the distributed power source 102 based on the operation time of the operation information.
- the process in FIG. 8 is ended and the process proceeds to S206 in FIG. Note that if an abnormality is detected in the distributed power source 102 after the operation is controlled in S206, the distributed power sources 102 of the next and subsequent priority combinations that do not include the distributed power source 102 in which the abnormality was detected are The processing from S406 is repeated.
- the selected distributed power source 102 may differ depending on the purpose information of power supply control.
- the power supply control purpose information is used as a selection criterion for selecting the distributed power source 102 to be operated.
- each distributed power source existing in the managed area is Power sources can be selected and operated flexibly.
- the purpose information and parameters such as the amount of stored electricity and the unit price of power generation described above
- a plurality of parameters may be set for one piece of objective information, or each of the plurality of parameters may be weighted.
- the control device of the above embodiment is a control device (101) capable of communicating with a plurality of distributed power sources (102) in a power supply system (100) that supplies electric power to a consumer (104), and is capable of communicating with a plurality of distributed power sources (102).
- a first acquisition means (S111) that acquires information regarding performance and operation from each of the distributed power sources; and a second acquisition means (S111) that acquires power demand from a plurality of consumers to whom power is supplied by the plurality of distributed power sources.
- S101, S102), and a third acquisition means (S201) for acquiring selection criteria used when selecting a distributed power source to be operated when supplying power to the plurality of consumers from among the plurality of distributed power sources.
- the plurality of a selection means (S307, S311, S402, S406) for selecting a distributed power source to be operated from the distributed power sources; and a creation means (S309, S313) for creating an operation plan for the distributed power source selected by the selection means.
- S404, S408), and a control means (S206) for controlling the operation of each distributed power source selected by the selection means based on the operation plan created by the creation means.
- each distributed power source existing in the managed area can be flexibly selected based on the purpose information of power supply control, the performance information and operation information of the distributed power source, and the total power demand of customers. It can be operated.
- the storage device further includes storage means for storing a second database in which each database is associated with the other (203, FIG. 9A, FIG. 9B).
- the first acquisition means acquires the information at predetermined time intervals and updates the first database with the acquired information.
- the second acquisition means acquires the power demand amount at predetermined time intervals, and updates the second database with the acquired information.
- the selection means acquires a combination of distributed power sources that can be operated for the power demand acquired by the second acquisition means, based on the information acquired by the first acquisition means, and If there are a plurality of combinations, the priority order of the plurality of combinations is determined based on the selection criteria acquired by the third acquisition means, and the distributed power source included in the combination with the highest priority is selected.
- the selection criteria are criteria aimed at at least one of remaining energy, economic efficiency, environmental friendliness, and low noise.
- the selection means determines the amount of stored electricity included in the information acquired by the first acquisition means. select the distributed power source included in the combination with the highest priority.
- the selection means selects the highest priority determined based on the power generation unit price included in the information acquired by the first acquisition means. Select a distributed power source included in a combination with a high ranking.
- the selection means selects the most selected criteria based on the gas emissions included in the information acquired by the first acquisition means.
- the selection means is determined based on the amount of noise generated included in the information acquired by the first acquisition means. Select the distributed power source included in the highest priority combination.
- the third acquisition means acquires the selection criteria through input by the user via the user interface screen.
- the administrator of the power supply system 100 can input selection criteria.
- the power demand amount is the power demand amount obtained by adding up the power demand amounts of the plurality of consumers.
- the distributed power source 102 to be operated can be selected based on the total power demand of the consumers 104 existing in the power supply system 100.
- the distributed power source includes at least one of a diesel engine power generation device, a solar power generation device, a wind power generation device, and a fuel cell power generation device.
- the power supply system is a system that does not receive power supply from the main power system.
- this embodiment can be applied to the power supply system 100 constructed in an off-grid area.
- 100 Power supply system 101 Control device: 102a, 102b, 102c Distributed power supply: 103 Base power supply: 104a, 104b Consumer: 201, 301 Processor: 202, 302 Memory
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
制御装置は、複数の分散型電源それぞれから性能および稼動に関する情報を取得し、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得し、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する。制御装置は、取得された前記情報と前記電力需要量と前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択し、選択された分散型電源の運用計画を作成する。制御装置は、作成された前記運用計画に基づいて、選択された分散型電源それぞれの稼動を制御する。
Description
本発明は、分散型電源を用いて需要家に電力を供給する制御装置、制御方法、プログラムおよび記憶媒体に関する。
特許文献1には、電力中継装置1は、電力機器40から電力仕様情報を受信し、機器接続部10の夫夫に対して電力仕様等が異なる電力機器40を自由に接続し、それら接続された夫夫の電力機器40との間で適切に電力の授受を行うことができると記載されている。
需要家に電力を供給する電源として、電力供給ラインに接続/接続が可能な複数の分散型電源が存在する場合、その複数の分散型電源から、運用対象となる分散型電源を選択基準に応じて柔軟に選択して運用する構成が求められる。
本発明は、複数の分散型電源から、運用対象となる分散型電源を運用の基準に応じて柔軟に選択する制御装置、制御方法、プログラムおよび記憶媒体を提供することを目的とする。
本発明に係る制御装置は、需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置であって、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段と、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段と、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段と、前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段と、前記選択手段により選択された分散型電源の運用計画を作成する作成手段と、前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段とを備えることを特徴とする。
本発明に係る制御方法は、需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置において実行される制御方法であって、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得工程と、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得工程と、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得工程と、前記第1取得工程において取得された前記情報と、前記第2取得工程において取得された前記電力需要量と、前記第3取得工程において取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択工程と、前記選択工程において選択された分散型電源の運用計画を作成する作成工程と、前記作成工程において作成された前記運用計画に基づいて、前記選択工程において選択された分散型電源それぞれの稼動を制御する制御工程とを有することを特徴とする。
本発明に係るプログラムは、需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータを、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段、前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段、前記選択手段により選択された分散型電源の運用計画を作成する作成手段、前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段、として機能させる。
本発明に係るコンピュータ読取可能な記憶媒体は、需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータを、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段、前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段、前記選択手段により選択された分散型電源の運用計画を作成する作成手段、前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段、として機能させるためのプログラムを記憶する。
本発明によれば、複数の分散型電源から、運用対象となる分散型電源を運用の基準に応じて柔軟に選択することができる。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
電力制御システムの全体構成を示す図である。
制御装置の構成を示すブロック図である。
分散型電源の構成を示すブロック図である。
制御装置と分散型電源との間における処理の流れを示す図である。
制御装置において実行される処理を示すフローチャートである。
制御装置において実行される処理を示すフローチャートである。
運用計画部において実行される処理を示すフローチャートである。
S205の処理を示すフローチャートである。
S205の処理を示すフローチャートである。
データベースを示す図である。
データベースを示す図である。
以下、添付図面を参照して実施形態を詳しく説明する。なお、以下の実施形態は特許請求の範囲に係る発明を限定するものではなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴は任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。
図1は、本実施形態における、需要家に電力を供給する電力供給システム100の全体構成を示す図である。図1に示すように、本実施形態における電力供給システム100は、制御装置101、分散型電源102a、102b、102c、ベース電源103、需要家104a、104bを含む。需要家104a、104bは、家庭や工場、ビル等の施設自体を意味し、電力供給システム100に構成された電源から電力を供給される。需要家104a、104bが家庭施設であれば、家庭内で使用する電気エネルギーを管理するシステム(HEMS:Home Energy Management System)を有していても良い。また、需要家104a、104bが商業施設であれば、施設内で使用する電気エネルギーを管理するシステム(BEMS:Building Energy Management System)を有していても良い。図1では、需要家は2つとして例示されているが、2つに限られるものではない。以下、需要者104a、104bを、区別する場合を除き、需要者104と総称する。
分散型電源102a、102b、102cは、需要家104に対して電力を供給する際に運用される。分散型電源102a、102b、102cは、定置型の発電装置と異なり、移動させることが可能な(可搬型の)発電装置である。図1では、分散型電源は3つとして例示されているが、3つに限られるものではない。以下、分散型電源102a、102b、102cを、区別する場合を除き、分散型電源102と総称する。分散型電源102は、種々の発電方式の装置を含み、例えば、ディーゼルエンジンによる発電装置、太陽光による発電装置、風力による発電装置、燃料電池による発電装置がある。電力供給システム100では、複数の分散型電源が構成されているものの、そのすべてが需要家104に対して電力を供給するために用いられるわけではない。また、需要家104に対する電力の供給は電力供給ネットワーク105を介して行われるが、分散型電源は、可搬型という性質を有することから、電力供給ネットワーク105への接続/切断が適宜可能である。つまり、需要家104への電力供給のタイミングによっては、運用される分散型電源は変化し得る。ベース電源103は、ランニングコストが比較的安価な定置型の発電装置である。ベース電源103は、分散型電源102と同様、需要家104に対して電力を供給するために用いられ、上記の種々の発電方式の装置を含み得る。
本実施形態では、電力供給システム100が構築されるエリアは、離島など、電気事業者からの基幹電力系統に接続されていないエリアを想定している。即ち、分散型電源102、ベース電源103が、需要家104への電力供給源として用いられる。なお、本実施形態では、ベース電源103は必須ではなく、構成されていなくても良い。即ち、分散型電源102のみが需要家104への電力供給源として用いられても良い。また、小売電気事業者や送配電事業者等の電気事業者からの基幹電力系統に接続されていないことを前提として説明するが、基幹電力系統に接続されるように構成されていても良い。その際、ベース電源103は構成されていても良いし、構成されていなくても良い。
制御装置101は、需要家104の電力需要量に対して電力を適切に供給するよう分散型電源102を制御する装置である。後述するが、制御装置101は、制御装置101の管理者から入力された電力供給制御の目的に応じて、運用対象となる分散型電源102を選択する。電力供給ネットワーク105は、各電力供給源が需要家104に対して電力を供給するための電力供給ネットワークである。分散型電源102は、電力供給ネットワーク105に対して接続もしくは切断のいずれかの状態を有する。本実施形態では、制御装置101は、電力供給ネットワーク105への接続、電力供給ネットワーク105からの切断のいずれかの状態となるよう分散型電源102を制御することが可能である。通信ネットワーク106は、図1の各装置間での相互の通信を可能とするための通信ネットワークである。通信ネットワーク106は、有線、無線のいずれの形態、あるいはそれらが組み合わされた形態でも良い。
図2は、制御装置101の構成の一例を示すブロック図である。図2の構成は、コンピュータ読取可能な記憶媒体に記憶されたプログラムに係る発明を実行可能なコンピュータとなり得る。図2に示す各ブロックは、システムバスを介して相互に通信可能に接続されている。プロセッサ201は、例えば記憶部203に記憶されたプログラムをメモリ202に読み出して実行することにより、制御装置101を統括的に制御し、例えば本実施形態における制御装置101の動作が実現される。記憶部203は、制御装置101が動作するための基本的なプログラムやデータ等の他に、分散型電源102の電力供給ネットワーク105に対する接続/切断の状態制御、分散型電源102の蓄電動作/発電動作の制御を行うためのプログラムやデータ等を記憶する。また、記憶部203は、需要家104と分散型電源102それぞれに関する情報を記憶するデータベースを有する。
運用計画部204は、管理者から入力された電力供給制御の目的に基づいて、電力供給システム100に構成されている各分散型電源102の運用を計画する。運用の計画については後述する。システム状態監視部205は、電力制御システム100に構成されている各分散型電源102から情報を定期的に取得する。後述するが、取得される情報には、各分散型電源102の性能情報、稼動情報が含まれている。負荷量検知部206は、電力制御システム100に構成されている需要家104から情報を定期的に取得する。後述するが、取得される情報には、各需要家104の電力需要量(電力負荷量)が含まれている。通信インタフェース(I/F)207は、需要家104との通信を可能にするためのインタフェースであり、通信ネットワーク106の媒体に応じた構成を有する。通信I/F108は、分散型電源102との通信を可能にするためのインタフェースであり、通信ネットワーク106の媒体に応じた構成を有する。
操作受付部209は、例えば、ユーザ操作を受付可能なキーボードやポインティングデバイスを含む。また、操作受付部209は、ディスプレイやタッチパネル等の表示部を含む。表示部には、種々のユーザインタフェース画面を表示可能であり、例えば、電力供給制御の目的に関する情報をユーザに入力させるための画面が表示される。なお、ユーザとは、例えば、電力供給システム100の管理者である。
制御装置101は、図2に示す構成に限られず、汎用的な情報処理装置が実行可能な機能ブロックを適宜有する。また、不図示であるが、電力供給ネットワーク105から電力を供給するための電源インタフェースを有する。
図3は、分散型電源102の構成の一例を示すブロック図である。図3の構成は、コンピュータ読取可能な記憶媒体に記憶されたプログラムに係る発明を実行可能なコンピュータとなり得る。図3に示す各ブロックは、システムバスを介して相互に通信可能に接続されている。プロセッサ301は、例えば記憶部303に記憶されたプログラムをメモリ302に読み出して実行することにより、分散型電源102を統括的に制御し、例えば本実施形態における分散型電源102の動作が実現される。
稼動制御部304は、分散型電源102の蓄電動作、発電動作、電力供給ネットワーク105との間の接続/切断の動作を制御する。本実施形態では、稼動制御部304は、制御装置101からの指示に基づいて、上記動作を制御する。機器情報監視部305は、分散型電源102の各部に設けられたセンサ(不図示)からの信号に基づいて、分散型電源102の状態を監視する。センサは、例えば、分散型電源102の電力供給ネットワーク105への接続状態(例えばスイッチの開閉状態)を検知するセンサ、蓄電部309に蓄電されたエネルギー残量を検知するセンサ、を含む。
給電部306は、発電部308により発電された電力を電力供給ネットワーク105に給電するためのブロックである。発電部308は、分散型電源102の発電方式に応じた発電構成を有する。電力変換部307は、直流-交流変換するインバータを含み、電力供給ネットワーク105に給電可能なように電力変換を行う。蓄電部309は、蓄電池を有し、発電部308により発電された電力の一部を蓄電することが可能である。接続部310は、電力供給ネットワーク105との接続・切断を切り替えるスイッチを有する。通信I/F311は、制御装置101との通信を可能にするためのインタフェースであり、通信ネットワーク106の媒体に応じた構成を有する。
分散型電源102は、図3に示す構成に限られず、各発電方式が採用された分散型電源が実行可能な機能ブロックを適宜有する。
図4は、制御装置101と分散型電源102との間における処理の流れを示す図である。
S1において、運用計画部204は、管理者401から電力供給制御の目的情報を受け付ける。情報の受付は、例えば、表示部に表示されたインタフェース画面上での入力により行われても良いし、他の端末に記憶された情報を通信ネットワーク106を介して受信することにより行われても良い。
S2において、負荷量検知部206は、制御装置101もしくは管理者401が管理する地域における総電力需要量を定期的に取得し、システム状態監視部205に送信する。S3において、システム状態監視部205は、分散型電源102から性能情報及び稼動情報を定期的に取得する。S2及びS3の処理により、システム状態監視部205は、管理する地域の総電力需要量と、地域に存在する各分散型電源102の性能情報及び稼動情報とを随時取得することになる。
図5Aは、負荷量検知部206において実行される電力需要量を取得する処理を示すフローチャートである。図5Aの処理は、例えば、プロセッサ201が記憶部203に記憶されたプログラムをメモリ202に読み出して実行することにより実現される。また、図5Aの処理は、所定の時間間隔で繰り返し実行される。
S101において、負荷量検知部206は、各需要家104から電力需要量を取得する。上述したように、需要家104は、例えば、HEMSやBEMS等の電気エネルギー管理システムを有する。その場合、負荷量検知部206は、例えば、需要家104内に設置されている電力機器の稼動を制御するEMS(Energy Management System)制御部から、月間等の所定期間における需要家104の総電力需要量を取得する。S102において、負荷量検知部206は、制御装置101が管理する地域内の各需要家104から取得した電力需要量を合算する。S103において、負荷量検知部206は、S101で取得した電力需要量と、S102で取得した総電力需要量を記憶部203に構成されたデータベースに格納する。S103の後、図5Aの処理を終了する。
図9Aは、記憶部203内に格納された各需要家104の電力需要量のデータベースの一例を示す図である。図9Aに示すように、各需要者104の識別情報と対応付けられて電力需要量が格納される。また、その所定期間における各需要者104の電力需要量の合算値(総電力需要量)も格納される。言い換えれば、所定期間における地域の総電力需要量が管理される。図9Aのデータベースは、図5Aの処理が実行される度に更新される。
図5Bは、システム状態監視部205において実行される分散型電源102の性能情報及び稼動情報を取得する処理を示すフローチャートである。図5Bの処理は、例えば、プロセッサ201が記憶部203に記憶されたプログラムをメモリ202に読み出して実行することにより実現される。また、図5Bの処理は、所定の時間間隔で繰り返し実行される。
S111において、システム状態監視部205は、各分散型電源102から性能情報及び稼動情報を取得する。S112において、システム状態監視部205は、S111で取得した性能情報及び稼動情報を分散型電源102と対応付けて記憶部203に構成されたデータベースに格納する。S112の後、図5Bの処理を終了する。
図9Bは、記憶部203内に格納された各分散型電源102の性能情報及び稼動情報のデータベースの一例を示す図である。性能情報とは、分散型電源102の性能を示す情報であり、例えば、発電方式に関する情報、稼動した際に周辺環境に及ぼす負荷情報を含む。性能情報としては、例えば、発電方式、発電単価、ガス排出量、ノイズ発生量、に関する情報が含まれる。稼動情報とは、分散型電源102の稼動状態を示す情報であり、例えば、電力供給ネットワーク105への接続状態(接続/切断)、運転時間、発電量、蓄電部309の蓄電量(エネルギー残量)、動作状態(正常、異常)を含む。システム状態監視部205は、分散型電源102の記憶部303に予め記憶されている仕様情報を取得して上記の情報を取得するようにしても良い。分散型電源102の機器状態監視部305は、各部に設けられたセンサ等を用いて、稼動情報を適宜収集している。システム状態監視部205は、機器情報監視部305に情報の取得要求を送信することにより稼動情報を取得しても良い。図9Bのデータベースは、図5Bの処理が実行される度に更新される。
再び、図4を参照する。S4において、システム状態監視部205は、S2及びS3により取得した地域の総電力需要量と、各分散型電源102の性能情報及び稼動情報を運用計画部204に送信する。システム状態監視部205は、所定のタイミングにおいて、負荷量検知部206と機器状態監視部305から各情報を取得する。即ち、総電力需要量の取得タイミングと、性能情報及び稼動情報の取得タイミングとの間に顕著なずれがないように情報の取得が行われる。
運用計画部204は、システム状態監視部205から取得した総電力需要量と、各分散型電源102の性能情報及び稼動情報と、S1で入力された電力供給制御の目的情報とに基づいて、地域内に存在する分散型電源102から運用対象の分散型電源102を選択する。運用計画部204は、選択された分散型電源102の運用計画を作成し、S5において、運用計画に基づいて稼動制御部304に稼動開始、発電、蓄電、稼動停止の指示を送信する。そして、稼動制御部304は、運用計画部204から稼動に関する指示を受信すると、S6において、受信した指示に従って、電力変換部307の稼動開始、発電、蓄電、稼動停止の各動作を制御する。S7において、電力変換部307から電力供給ネットワーク105に対して電力が供給される。一方、S8において、機器状態監視部305は、分散型電源102内でエラー等の異常を検知した場合には稼動制御部304に通知する。稼動制御部304は、該異常の発生を示す通知情報を運用計画部204に送信する。
図4では、ステップ番号を用いて処理の流れを説明したが、S1~S8の時系列に限られるものではなく、一部の処理間で順序が逆となっても良い。また、処理間で並行して行われる場合もあり得る。
図6は、運用計画部204において実行される処理を示すフローチャートである。図6の処理は、例えば、プロセッサ201が記憶部203に記憶されたプログラムをメモリ202に読み出して実行することにより実現される。図6の処理は、例えば、管理者401から運用の開始を指示されたことにより開始される。運用開始の指示は、例えば、制御装置101の表示部に表示されたユーザインタフェース画面を介して受け付けても良い。
S201において、運用計画部204は、管理者401から入力された電力供給制御の目的情報を取得する。この処理は、図4のS1に対応する。S202において、運用計画部204は、システム状態監視部205から地域の総電力需要量を取得する。この処理は、図4のS4に対応する。なお、運用計画部204は、各需要家104の電力需要量を取得して地域の総電力需要量を算出するようにしても良い。S203において、運用計画部204は、システム状態監視部205から各分散型電源102の性能情報及び稼動状態を取得する。この処理は、図4のS4に対応する。
S204において、運用計画部204は、地域の総電力需要量と、地域に存在する各分散型電源の総電力供給量とを比較し、分散型電源102の運用を開始するか否かを判定する。ここで、地域の総電力需要量は、S202で取得された総電力需要量である。運用計画部204は、S203で取得された各分散型電源102の稼動情報に含まれる発電量を合算し、その合算した値を総電力供給量として用いる。言い換えれば、S204では、地域の総電力需要量と、地域に存在する各分散型電源すべてを稼動した場合に可能な電力供給量とを比較している。本実施形態において、比較は以下のように行われる。
まず、運用計画部204は、総電力需要量を仮想的に増量させた判定用総電力需要量を算出する。例えば、判定用総電力需要量は、以下の式(1)により算出される。
判定用総電力需要量=S202で取得された総電力需要量×α ・・・(1)
式(1)でのαは、総電力需要量を判定用に増量させるための係数であり、1以上の値、例えば1.2が用いられる。係数は、予め定められている値であり、管理者401により設定可能であっても良い。
式(1)でのαは、総電力需要量を判定用に増量させるための係数であり、1以上の値、例えば1.2が用いられる。係数は、予め定められている値であり、管理者401により設定可能であっても良い。
そして、S204では、以下の式(2)を満たすか否かが判定される。
判定用総電力需要量 ≦ 総電力供給量 ・・・(2)
つまり、S204では、地域に存在する各分散型電源102の総電力供給量が、仮想的に増量された判定用総電力需要量を上回るものであるか否かが判定される。ここで、式(2)の条件を満たすのであれば、各分散型電源102の総電力供給量は、S202で取得された総電力需要量に対して十分余裕をもっていることを表し、運用を開始することが可能であると判定される。一方、式(2)の条件を満たさないのであれば、S202で取得された総電力需要量と総電力供給量は拮抗している状態と想定され、運用を開始すれば一部の分散型電源102の電力供給ネットワーク105からの切断があった場合に停電のリスクがあるため、運用を開始しないと判定される。
つまり、S204では、地域に存在する各分散型電源102の総電力供給量が、仮想的に増量された判定用総電力需要量を上回るものであるか否かが判定される。ここで、式(2)の条件を満たすのであれば、各分散型電源102の総電力供給量は、S202で取得された総電力需要量に対して十分余裕をもっていることを表し、運用を開始することが可能であると判定される。一方、式(2)の条件を満たさないのであれば、S202で取得された総電力需要量と総電力供給量は拮抗している状態と想定され、運用を開始すれば一部の分散型電源102の電力供給ネットワーク105からの切断があった場合に停電のリスクがあるため、運用を開始しないと判定される。
S204で運用を開始すると判定された場合、S205において、運用計画部204は、各分散型電源102の運用計画を作成する。運用計画については後述する。S205の後、S206において、運用計画部204は、S205で作成された運用計画で計画されたタイミングに基づいて、運用対象の分散型電源102の稼動を制御する。稼動の制御は、例えば、11月20日の10:00に太陽光発電方式の分散型電源102の稼動を開始させ、11月20日の17:00にその分散型電源102の稼動を停止するといった稼動スケジュールに沿って行われる。
一方、S204で運用を開始しないと判定された場合、運用計画部204は、各分散型電源102の電力供給ネットワーク105からの切断を禁止するよう各分散型電源102を制御する。これにより、S202で取得された総電力需要量とS203で取得された総電力供給量が拮抗しているために発生し得る停電のリスクを防ぐことができる。
図7及び図8は、図6のS205の処理を示すフローチャートである。S301において、運用計画部204は、S201で取得した電力供給制御の目的情報を判定する。例えば、S301の判定は、制御装置101の表示部に表示されたユーザインタフェース画面上で選択された目的項目に基づいて判定されても良い。例えば、ユーザインタフェース画面上には、「分散型電源の運用の目的を選択して下さい。」といったメッセージとともに、複数の選択項目が表示されても良い。本実施形態では、以下のような選択項目が管理者により選択可能である。
・無停電
・エネルギー残量の確保
・経済性
・環境性
・騒音
S302において、運用計画部204は、「無停電」が目的項目として選択されたか否かを判定する。「無停電」は、図1の電力供給システム100においてベース電源103が構成されている場合に選択され得る。「無停電」が選択されたと判定された場合、図7の処理を終了し、図6のS206に進む。そして、S206において、運用計画部204は、ベース電源103による電力供給を安定的にするように各分散型電源102を稼動制御する。例えば、ベース電源103の電力供給が減少した場合には、運用計画部204は、その減少分の電力を補填可能な分散型電源102を選択して稼動を開始するよう制御する。また、ベース電源103の電力供給が過多となった場合には、運用計画部204は、その超過分を蓄電可能な分散型電源102を選択して超過分の電力の蓄電動作を行うよう制御する。
・エネルギー残量の確保
・経済性
・環境性
・騒音
S302において、運用計画部204は、「無停電」が目的項目として選択されたか否かを判定する。「無停電」は、図1の電力供給システム100においてベース電源103が構成されている場合に選択され得る。「無停電」が選択されたと判定された場合、図7の処理を終了し、図6のS206に進む。そして、S206において、運用計画部204は、ベース電源103による電力供給を安定的にするように各分散型電源102を稼動制御する。例えば、ベース電源103の電力供給が減少した場合には、運用計画部204は、その減少分の電力を補填可能な分散型電源102を選択して稼動を開始するよう制御する。また、ベース電源103の電力供給が過多となった場合には、運用計画部204は、その超過分を蓄電可能な分散型電源102を選択して超過分の電力の蓄電動作を行うよう制御する。
S302で「無停電」が目的項目として選択されていないと判定された場合、S306に進む。S306において、運用計画部204は、「エネルギー残量の確保」が目的項目として選択されたか否かを判定する。「エネルギー残量の確保」とは、例えば非常時のために、所定量以上のエネルギーを常に余力として確保することを意味する。S306で「エネルギー残量の確保」が目的項目として選択されたと判定された場合、S307に進む。
S307において、運用計画部204は、S202で取得された総電力需要量から1日あたりの電力需要量を算出し、その電力需要量に対する電力供給が可能な分散型電源102を選択する。このとき、選択される分散型電源102の組み合わせは複数の場合があり得る。
例えば、選択された分散型電源102の組み合わせが以下のようであったとする。
・組み合わせ1:分散型電源A+C+D
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eの蓄電量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gの蓄電量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報の蓄電量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ2>組み合わせ1>組み合わせ3といったように蓄電量の合計が多い順に優先順位が決定される。
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eの蓄電量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gの蓄電量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報の蓄電量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ2>組み合わせ1>組み合わせ3といったように蓄電量の合計が多い順に優先順位が決定される。
そして、運用計画部204は、優先順位が最も高い組み合わせの分散型電源102を選択する。なお、本実施形態では、S307で運用対象の分散型電源102を選択するものとして説明するが、後段のS308で電力供給ネットワーク105からの切断を許可する、即ち運用対象でない分散型電源102を選択するようにしても良い。
S308において、運用計画部204は、S307で選択された分散型電源102以外の分散型電源102の電力供給ネットワーク105からの切断を許可するよう分散型電源102を制御する。
S309において、運用計画部204は、運用対象の分散型電源102の稼動情報に基づいて、その分散型電源102の稼動計画を作成する。例えば、運用計画部204は、稼動情報の運転時間に基づいて、分散型電源102の稼動の開始、発電、蓄電、稼動の停止をスケジューリングする。S309の後、図7の処理を終了し、図6のS206に進む。なお、S206で稼動が制御された後、分散型電源102の異常が検出された場合には、異常が検出された分散型電源102を含まない次以降の優先順位の組み合わせの分散型電源102についてS307からの処理が繰り返される。
S306で「エネルギー残量の確保」が目的項目として選択されていないと判定された場合、S310に進む。S310において、運用計画部204は、「経済性」が目的項目として選択されたか否かを判定する。「経済性」とは、発電コストを安価に抑えることを意味する。S310で「経済性」が目的項目として選択されたと判定された場合、S311に進む。
S311において、運用計画部204は、S202で取得された総電力需要量に基づいて、電力供給が可能な分散型電源102を選択する。 このとき、選択される分散型電源102の組み合わせは複数の場合があり得る。
例えば、選択された分散型電源102の組み合わせが以下のようであったとする。
・組み合わせ1:分散型電源A+C+D
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eの発電単価は、分散型電源A、B、C、D、F、Gより高いものとする。また、分散型電源B、F、Gの発電単価は、分散型電源A、C、D、Eより安いものとする。運用計画部204は、稼動情報の発電単価に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったように発電単価の合計が安い順に優先順位が決定される。
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eの発電単価は、分散型電源A、B、C、D、F、Gより高いものとする。また、分散型電源B、F、Gの発電単価は、分散型電源A、C、D、Eより安いものとする。運用計画部204は、稼動情報の発電単価に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったように発電単価の合計が安い順に優先順位が決定される。
そして、運用計画部204は、優先順位が最も高い組み合わせの分散型電源102を選択する。なお、本実施形態では、S311で運用対象の分散型電源102を選択するものとして説明するが、後段のS312で電力供給ネットワーク105からの切断を許可する、即ち運用対象でない分散型電源102を選択するようにしても良い。
S312において、運用計画部204は、S311で選択された分散型電源102以外の分散型電源102の電力供給ネットワーク105からの切断を許可するよう分散型電源102を制御する。
S313において、運用計画部204は、運用対象の分散型電源102の稼動情報に基づいて、その分散型電源102の稼動計画を作成する。例えば、運用計画部204は、稼動情報の運転時間に基づいて、分散型電源102の稼動の開始、発電、蓄電、稼動の停止をスケジューリングする。S313の後、図7の処理を終了し、図6のS206に進む。なお、S206で稼動が制御された後、分散型電源102の異常が検出された場合には、異常が検出された分散型電源102を含まない次以降の優先順位の組み合わせの分散型電源102についてS311からの処理が繰り返される。
S310で「経済性」が目的項目として選択されていないと判定された場合、図8のS401に進む。S401において、運用計画部204は、「環境性」が目的項目として選択されたか否かを判定する。「環境性」とは、排出ガスを抑えることを意味する。S401で「環境性」が目的項目として選択されたと判定された場合、S402に進む。
S402において、運用計画部204は、S202で取得された総電力需要量に基づいて、電力供給が可能な分散型電源102を選択する。 このとき、選択される分散型電源102の組み合わせは複数の場合があり得る。
例えば、選択された分散型電源102の組み合わせが以下のようであったとする。
・組み合わせ1:分散型電源A+C+D
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eのガス排出量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gのガス排出量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報のガス排出量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったようにガス排出量の合計が少ない順に優先順位が決定される。
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eのガス排出量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gのガス排出量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報のガス排出量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったようにガス排出量の合計が少ない順に優先順位が決定される。
そして、運用計画部204は、優先順位が最も高い組み合わせの分散型電源102を選択する。なお、本実施形態では、S402で運用対象の分散型電源102を選択するものとして説明するが、後段のS403で電力供給ネットワーク105からの切断を許可する、即ち運用対象でない分散型電源102を選択するようにしても良い。
S403において、運用計画部204は、S402で選択された分散型電源102以外の分散型電源102の電力供給ネットワーク105からの切断を許可するよう分散型電源102を制御する。
S404において、運用計画部204は、運用対象の分散型電源102の稼動情報に基づいて、その分散型電源102の稼動計画を作成する。例えば、運用計画部204は、稼動情報の運転時間に基づいて、分散型電源102の稼動の開始、発電、蓄電、稼動の停止をスケジューリングする。S404の後、図8の処理を終了し、図6のS206に進む。なお、S206で稼動が制御された後、分散型電源102の異常が検出された場合には、異常が検出された分散型電源102を含まない次以降の優先順位の組み合わせの分散型電源102についてS402からの処理が繰り返される。
S401で「環境性」が目的項目として選択されていないと判定された場合、図8のS405に進む。S405において、運用計画部204は、「低騒音」が目的項目として選択されたか否かを判定する。「低騒音」とは、発生するノイズが小さいことを意味する。S405で「低騒音」が目的項目として選択されたと判定された場合、S406に進む。
S406において、運用計画部204は、S202で取得された総電力需要量から1日あたりの電力需要量を算出し、その電力需要量に対する電力供給が可能な分散型電源102を選択する。このとき、選択される分散型電源102の組み合わせは複数の場合がある。
例えば、選択された分散型電源102の組み合わせが以下のようであったとする。
・組み合わせ1:分散型電源A+C+D
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eのノイズ発生量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gのノイズ発生量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報のノイズ発生量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったようにノイズ発生量の合計が少ない順に優先順位が決定される。
・組み合わせ2:分散型電源A+E
・組み合わせ3:分散型電源A+B+F+G
組み合わせ1は、発電量が中の分散型電源A、C、Dの組み合わせの例である。組み合わせ2は、発電量が中の分散型電源Aと発電量が大の分散型電源Eの組み合わせの例である。組み合わせ3は、発電量が中の分散型電源Aと発電量が小の分散型電源B、F、Gの組み合わせの例である。ここで、分散型電源Eのノイズ発生量は、分散型電源A、B、C、D、F、Gより多いものとする。また、分散型電源B、F、Gのノイズ発生量は、分散型電源A、C、D、Eより少ないものとする。運用計画部204は、稼動情報のノイズ発生量に基づいて、分散型電源102の組み合わせの優先順位を決定する。例えば、上記の例の場合、組み合わせ3>組み合わせ1>組み合わせ2といったようにノイズ発生量の合計が少ない順に優先順位が決定される。
そして、運用計画部204は、優先順位が最も高い組み合わせの分散型電源102を選択する。なお、本実施形態では、S406で運用対象の分散型電源102を選択するものとして説明するが、後段のS407で電力供給ネットワーク105からの切断を許可する、即ち運用対象でない分散型電源102を選択するようにしても良い。
S407において、運用計画部204は、S406で選択された分散型電源102以外の分散型電源102の電力供給ネットワーク105からの切断を許可するよう分散型電源102を制御する。
S408において、運用計画部204は、運用対象の分散型電源102の稼動情報に基づいて、その分散型電源102の稼動計画を作成する。例えば、運用計画部204は、稼動情報の運転時間に基づいて、分散型電源102の稼動の開始、発電、蓄電、稼動の停止をスケジューリングする。S408の後、図8の処理を終了し、図6のS206に進む。なお、S206で稼動が制御された後、分散型電源102の異常が検出された場合には、異常が検出された分散型電源102を含まない次以降の優先順位の組み合わせの分散型電源102についてS406からの処理が繰り返される。
S405で「低騒音」が目的項目として選択されていないと判定された場合、図8及び図6の処理を終了し、運用を開始しない。なお、S405で「低騒音」が目的項目として選択されなかったと判定された場合、他の目的項目について処理が行われるようにしても良い。例えば、図9Bのデータベースの性能情報に匂いに関するデータが格納されるようにし、「匂いの抑制」について上記の同様の処理が行われるようにしても良い。
図7及び図8で説明したように、電力供給制御の目的情報によって、選択される分散型電源102が異なり得る。言い換えれば、電力供給制御の目的情報は、運用対象の分散型電源102を選択するための選択基準として用いられる。このように、本実施形態によれば、電力供給制御の目的情報、分散型電源102の性能情報及び稼動情報、需要家104の総電力需要量に基づいて、管理する地域に存在する各分散型電源を柔軟に選択して運用することができる。また、本実施形態では、管理者から所定の目的情報の入力を受け付ける構成を説明したが、目的情報と、組み合わせの優先順位を決定する基準となるパラメータ(上述の蓄電量や発電単価等)とを任意に設定可能としても良い。その際、1つの目的情報に対して複数のパラメータを設定するようにしても良いし、複数のパラメータそれぞれに重み付けを行うようにしても良い。
<実施形態のまとめ>
上記実施形態の制御装置は、需要家(104)に電力を供給する電力供給システム(100)における複数の分散型電源(102)と通信可能な制御装置(101)であって、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段(S111)と、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段(S101、S102)と、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段(S201)と、前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段(S307、S311、S402、S406)と、前記選択手段により選択された分散型電源の運用計画を作成する作成手段と(S309、S313、S404、S408)、前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段(S206)とを備える。
上記実施形態の制御装置は、需要家(104)に電力を供給する電力供給システム(100)における複数の分散型電源(102)と通信可能な制御装置(101)であって、前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段(S111)と、前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段(S101、S102)と、前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段(S201)と、前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段(S307、S311、S402、S406)と、前記選択手段により選択された分散型電源の運用計画を作成する作成手段と(S309、S313、S404、S408)、前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段(S206)とを備える。
そのような構成により、電力供給制御の目的情報、分散型電源の性能情報及び稼動情報、需要家の総電力需要量に基づいて、管理する地域に存在する各分散型電源を柔軟に選択して運用することができる。
前記第1取得手段により取得された前記情報と前記複数の分散型電源それぞれとが互いに対応づけられた第1データベースと、前記第2取得手段により取得された前記電力需要量と前記複数の需要家それぞれとが互いに対応づけられた第2データベースを記憶する記憶手段、をさらに備える(203、図9A、図9B)。前記第1取得手段は、所定の時間間隔で前記情報を取得し、該取得した情報で前記第1データベースを更新する。前記第2取得手段は、所定の時間間隔で前記電力需要量を取得し、該取得した情報で前記第2データベースを更新する。
そのような構成により、性能及び稼動に関する情報、電力需要量をデータベースに随時格納していくことができる。
前記選択手段は、前記第1取得手段により取得された前記情報に基づいて、前記第2取得手段により取得された前記電力需要量に対して運用可能な分散型電源の組み合わせを取得し、前記組み合わせが複数の場合、前記第3取得手段により取得された前記選択基準に基づいて、当該複数の組み合わせの優先順位を決定し、最も優先順位が高い組み合わせに含まれる分散型電源を選択する。
そのような構成により、選択基準により異なった優先順位を決定して分散型電源を選択することができる。
前記選択基準は、エネルギー残量、経済性、環境性、低騒音、の少なくともいずれかを目的とする基準である。前記第3取得手段によりエネルギー残量の確保を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれる蓄電量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択する。前記第3取得手段により経済性を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれる発電単価に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択する。前記第3取得手段により環境性を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれるガス排出量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択する。前記第3取得手段により低騒音を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれるノイズの発生量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択する。
そのような構成により、例えば、エネルギー残量、経済性、環境性、低騒音それぞれを選択基準として用いて優先順位を決定し、分散型電源を選択することができる。
前記第3取得手段は、ユーザによるユーザインタフェース画面を介した入力により前記選択基準を取得する。
そのような構成により、例えば、電力供給システム100の管理者が選択基準を入力することができる。
前記電力需要量は、前記複数の需要家における電力需要量が合算された電力需要量である。
そのような構成により、電力供給システム100に存在する需要家104の総電力需要量に基づいて、運用対象の分散型電源102を選択することができる。
前記分散型電源は、ディーゼルエンジンによる発電装置、太陽光による発電装置、風力による発電装置、燃料電池による発電装置、のすくなくともいずれかを含む。
そのような構成により、種々の発電方式を有する分散型電源を用いることができる。
前記電力供給システムは、基幹電力系統からの電力供給を受けないシステムである。
そのような構成により、オフグリッド地域において構築された電力供給システム100に対して本実施形態の動作を適用することができる。
発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。
100 電力供給システム: 101 制御装置: 102a、102b、102c 分散型電源: 103 ベース電源: 104a、104b 需要家: 201、301 プロセッサ: 202、302 メモリ
Claims (17)
- 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置であって、
前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段と、
前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段と、
前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段と、
前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段と、
前記選択手段により選択された分散型電源の運用計画を作成する作成手段と、
前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段と、
を備えることを特徴とする制御装置。 - 前記第1取得手段により取得された前記情報と前記複数の分散型電源それぞれとが互いに対応づけられた第1データベースと、前記第2取得手段により取得された前記電力需要量と前記複数の需要家それぞれとが互いに対応づけられた第2データベースを記憶する記憶手段、をさらに備えることを特徴とする請求項1に記載の制御装置。
- 前記第1取得手段は、所定の時間間隔で前記情報を取得し、該取得した情報で前記第1データベースを更新することを特徴とする請求項2に記載の制御装置。
- 前記第2取得手段は、所定の時間間隔で前記電力需要量を取得し、該取得した情報で前記第2データベースを更新することを特徴とする請求項2に記載の制御装置。
- 前記選択手段は、前記第1取得手段により取得された前記情報に基づいて、前記第2取得手段により取得された前記電力需要量に対して運用可能な分散型電源の組み合わせを取得し、前記組み合わせが複数の場合、前記第3取得手段により取得された前記選択基準に基づいて、当該複数の組み合わせの優先順位を決定し、最も優先順位が高い組み合わせに含まれる分散型電源を選択することを特徴とする請求項1乃至4のいずれか1項に記載の制御装置。
- 前記選択基準は、エネルギー残量の確保、経済性、環境性、低騒音、の少なくともいずれかを目的とする基準であることを特徴とする請求項5に記載の制御装置。
- 前記第3取得手段によりエネルギー残量の確保を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれる蓄電量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択することを特徴とする請求項6に記載の制御装置。
- 前記第3取得手段により経済性を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれる発電単価に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択することを特徴とする請求項6又は7に記載の制御装置。
- 前記第3取得手段により環境性を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれるガス排出量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択することを特徴とする請求項6乃至8のいずれか1項に記載の制御装置。
- 前記第3取得手段により低騒音を目的とする前記選択基準が取得された場合、前記選択手段は、前記第1取得手段により取得された前記情報に含まれるノイズの発生量に基づいて決定された最も優先順位が高い組み合わせに含まれる分散型電源を選択することを特徴とする請求項6乃至9のいずれか1項に記載の制御装置。
- 前記第3取得手段は、ユーザによるユーザインタフェース画面を介した入力により前記選択基準を取得することを特徴とする請求項1乃至10のいずれか1項に記載の制御装置。
- 前記電力需要量は、前記複数の需要家における電力需要量が合算された電力需要量であることを特徴とする請求項1乃至11のいずれか1項に記載の制御装置。
- 前記分散型電源は、ディーゼルエンジンによる発電装置、太陽光による発電装置、風力による発電装置、燃料電池による発電装置、のすくなくともいずれかを含むことを特徴とする請求項1乃至12のいずれか1項に記載の制御装置。
- 前記電力供給システムは、基幹電力系統からの電力供給を受けないシステムであることを特徴とする請求項1乃至13のいずれか1項に記載の制御装置。
- 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置において実行される制御方法であって、
前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得工程と、
前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得工程と、
前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得工程と、
前記第1取得工程において取得された前記情報と、前記第2取得工程において取得された前記電力需要量と、前記第3取得工程において取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択工程と、
前記選択工程において選択された分散型電源の運用計画を作成する作成工程と、
前記作成工程において作成された前記運用計画に基づいて、前記選択工程において選択された分散型電源それぞれの稼動を制御する制御工程と、
を有することを特徴とする制御方法。 - 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータを、
前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段、
前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段、
前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段、
前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段、
前記選択手段により選択された分散型電源の運用計画を作成する作成手段、
前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段、
として機能させるためのプログラム。 - 需要家に電力を供給する電力供給システムにおける複数の分散型電源と通信可能な制御装置のコンピュータを、
前記複数の分散型電源それぞれから性能および稼動に関する情報を取得する第1取得手段、
前記複数の分散型電源の電力供給の対象となる複数の需要家から電力需要量を取得する第2取得手段、
前記複数の需要家に電力を供給する際に運用される分散型電源を前記複数の分散型電源から選択する際に用いられる選択基準を取得する第3取得手段、
前記第1取得手段により取得された前記情報と、前記第2取得手段により取得された前記電力需要量と、前記第3取得手段により取得された前記選択基準とに基づいて、前記複数の分散型電源から、運用される分散型電源を選択する選択手段、
前記選択手段により選択された分散型電源の運用計画を作成する作成手段、
前記作成手段により作成された前記運用計画に基づいて、前記選択手段により選択された分散型電源それぞれの稼動を制御する制御手段、
として機能させるためのプログラムを記憶するコンピュータ読取可能な記憶媒体。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/011725 WO2023175745A1 (ja) | 2022-03-15 | 2022-03-15 | 制御装置、制御方法、プログラムおよび記憶媒体 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/011725 WO2023175745A1 (ja) | 2022-03-15 | 2022-03-15 | 制御装置、制御方法、プログラムおよび記憶媒体 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023175745A1 true WO2023175745A1 (ja) | 2023-09-21 |
Family
ID=88022477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011725 WO2023175745A1 (ja) | 2022-03-15 | 2022-03-15 | 制御装置、制御方法、プログラムおよび記憶媒体 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023175745A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104284A (ja) * | 2006-10-18 | 2008-05-01 | Hitachi Ltd | 分散型電源システム |
JP2009261114A (ja) * | 2008-04-16 | 2009-11-05 | Meidensha Corp | 分散電源システムの運転計画作成装置と作成方法 |
WO2012124368A1 (ja) * | 2011-03-14 | 2012-09-20 | オムロン株式会社 | 需給電力制御装置およびその制御方法、並びに制御プログラム |
-
2022
- 2022-03-15 WO PCT/JP2022/011725 patent/WO2023175745A1/ja unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008104284A (ja) * | 2006-10-18 | 2008-05-01 | Hitachi Ltd | 分散型電源システム |
JP2009261114A (ja) * | 2008-04-16 | 2009-11-05 | Meidensha Corp | 分散電源システムの運転計画作成装置と作成方法 |
WO2012124368A1 (ja) * | 2011-03-14 | 2012-09-20 | オムロン株式会社 | 需給電力制御装置およびその制御方法、並びに制御プログラム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11927976B2 (en) | Utility console for controlling energy resources | |
KR101872557B1 (ko) | 에너지 소비 관리 | |
US8401708B2 (en) | Electric power system | |
JP6114532B2 (ja) | エネルギー管理システム | |
WO2013157481A1 (ja) | エネルギー管理システム、エネルギー管理方法、プログラム、サーバ装置およびクライアント装置 | |
US20160276832A1 (en) | Energy management system for adjusting energy supply and demand of plurality of districts, and energy management method | |
JP6410043B2 (ja) | 分散型発電システム、制御局、及びその制御方法 | |
US20070005192A1 (en) | Fast acting distributed power system for transmission and distribution system load using energy storage units | |
JP2017134863A (ja) | 運転計画最適化装置、運転計画最適化方法及び運転計画最適化プログラム | |
WO2015129734A1 (ja) | エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム | |
KR101927759B1 (ko) | 태양광에너지 발전시스템의 최적 제어시스템 | |
JP5484621B1 (ja) | 蓄電装置の放電開始時刻決定システム | |
US11404877B2 (en) | Hierarchical power control system | |
JP2019033665A (ja) | 電力制御システム、供給元電力システム、制御装置及び電力制御方法 | |
Fesagandis et al. | Resilient scheduling of networked microgrids against real-time failures | |
Joshi et al. | A two-stage fuzzy multiobjective optimization for phase-sensitive day-ahead dispatch of battery energy storage system | |
CN114365370B (zh) | 区域能量管理装置以及区域能量管理方法 | |
JP2016173689A (ja) | エネルギー管理システム | |
Zhang et al. | Resilient energy management for residential communities under grid outages | |
JP2022098769A (ja) | 電力システム、サーバおよび電力需給の調整方法 | |
WO2023175745A1 (ja) | 制御装置、制御方法、プログラムおよび記憶媒体 | |
JPWO2013047444A1 (ja) | 電力管理システム、電力管理装置及び表示制御方法 | |
JP6431580B1 (ja) | 電力制御システム、供給元電力システム、制御装置及び電力制御方法 | |
JP2008113523A (ja) | 電力供給システム、需用家群設備、およびその監視制御方法 | |
US11817711B1 (en) | Systems and methods for adjusting electric power to devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22931258 Country of ref document: EP Kind code of ref document: A1 |