WO2023174482A1 - Bipolarplatte und verfahren zur herstellung einer bipolarplatte - Google Patents

Bipolarplatte und verfahren zur herstellung einer bipolarplatte Download PDF

Info

Publication number
WO2023174482A1
WO2023174482A1 PCT/DE2023/100190 DE2023100190W WO2023174482A1 WO 2023174482 A1 WO2023174482 A1 WO 2023174482A1 DE 2023100190 W DE2023100190 W DE 2023100190W WO 2023174482 A1 WO2023174482 A1 WO 2023174482A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheets
bipolar plate
folding
sheet
folded
Prior art date
Application number
PCT/DE2023/100190
Other languages
English (en)
French (fr)
Inventor
Thomas Swoboda
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2023174482A1 publication Critical patent/WO2023174482A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/67Heating or cooling means
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/75Assemblies comprising two or more cells of the filter-press type having bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals

Definitions

  • the invention relates to a bipolar plate intended for use in a stack of electrochemical cells, in particular in a fuel cell stack.
  • the invention further relates to a method for producing a bipolar plate.
  • a bipolar plate separates a half-cell of a first electrochemical cell from a half-cell of an adjacent cell in a stack of electrochemical cells. This applies to fuel cells as well as to redox flow cells or electrolysis cells for producing hydrogen.
  • the US 2011/0195332 A1 discloses stacked arrangements of bipolar plates in fuel cells, with active areas, i.e. active fields, supply areas, which are also generally referred to as distribution fields, and various inlet and outlet openings, i.e. ports, being formed by the bipolar plates.
  • the bipolar plates are made up of anode plates and cathode plates, which are also referred to as half sheets.
  • a fuel cell plate disclosed in US 2011/0177429 A1 is designed as a fluid flow plate, with a support frame present as a separate element being arranged at the transition between a port and fluid channels of the flow plate extending from it.
  • the support frame is annular and includes a pair of mutually parallel support walls that are arranged on two sides of the fluid channels.
  • the invention is based on the object of achieving progress over the stated prior art in the production of bipolar plates, with the aim of achieving a particularly favorable relationship between manufacturing effort and geometric precision, function and stability of the end product, i.e. stack of electrochemical cells including biopolar plates.
  • a bipolar plate intended for use in a stack of electrochemical cells, in particular fuel cells, with the features of claim 1.
  • the object is also achieved by a method for producing a bipolar plate according to claim 8.
  • the embodiments and advantages of the invention explained below in connection with the manufacturing method also apply mutatis mutandis to the devices, that is to say the bipolar plate and the cell stack, and vice versa.
  • the bipolar plate is constructed in a known basic concept from two half-sheets lying one on top of the other, with the half-sheets forming an active field on each side of the bipolar plate, in which the desired electrochemical reactions take place within the completed cell stack comprising numerous bipolar plates.
  • the active fields take up the majority of the area of each bipolar plate.
  • the bipolar plates form a distribution field and a number of ports for passing media through.
  • at least one of the two half-sheets has a folded area adjacent to one of the ports, with flow channels being formed in the folded area.
  • folded area means that in the corresponding area the half sheet is present in two layers, with the two layers being connected to one another in one piece.
  • the area connecting the two layers borders on one of the ports through which a medium, in particular a cooling medium, flows during operation of the electrochemical cell.
  • the folded area of the bipolar plate bordering one of the ports, in particular the coolant port, is formed by a folded section, which is also referred to as a folding grille without limiting generality, and by a non-folded section, which fits seamlessly into the surrounding area, at least partially embossed sections of the bipolar plate.
  • the so-called folding grille which represents a second layer of the half-sheet of the bipolar plate, takes on the function of an insert, which provides channels due to its shape and at the same time acts as a supporting element.
  • the mechanical support can play a role both in the manufacturing process of the bipolar plate, in particular when applying additional, non-metallic components, such as seals, as well as in the later operation of the electrochemical system, which is to be built using the bipolar plates, which will be discussed in more detail below will be.
  • a folded area providing flow channels is formed by each of the two half-sheets, the said areas of the half-sheets lying on top of each other.
  • the folded areas can be designed to be mirror-symmetrical to a central plane of the bipolar plate.
  • the entire half sheets typically each have a rectangular basic shape. Those surface sections of the half-sheets on which the folded sections, i.e. folding grilles, rest, can be designed as flat partial surfaces of the half-sheets.
  • the shape of the free flow cross sections through which operating or cooling medium flows is determined by the geometry of the folding grilles.
  • numerous partial channels that run parallel to one another are formed by the folding grilles.
  • the area of the folded section is smaller than the area of the adjacent port.
  • the folded section i.e. the folding grille
  • the folded section can be connected to the remaining half sheet in particular via two U-shaped bent webs.
  • the two U-shaped webs can be arranged in particular on the two narrow sides of the overall rectangular folding grille. Configurations can also be realized in which the folding grille is connected to the remaining half-sheet via a larger number of strip-shaped, bent sections.
  • the bent sections can also be used to influence the flow of the medium, for example to achieve turbulence effects.
  • the folding grille can, for example, have a trapezoidal profile in cross section and thus be designed in the manner of a trapezoidal sheet.
  • rectangular or rounded profiles of the folded section can be considered.
  • the folded gate does not necessarily have a uniform profile across its entire width.
  • a variation of the profiling across the width of the folding grille can be carried out, for example, in order to set targeted changes in the fluidic and/or static properties transverse to the flow direction of the medium flowing from the port via the distribution field to the active field or in the opposite direction.
  • This sealing strip is manufactured in particular by injection molding, i.e. sprayed onto the half-sheets that are already firmly connected to one another.
  • the supporting function of the at least one folding grille plays an outstanding role in terms of the geometric precision that can be achieved and thus ultimately also the required sealing function of the non-metallic sealing strip.
  • the process for producing the bipolar plate generally includes the following steps:
  • FIG. 3 shows the half sheet in finished form in a view analogous to FIG. 2,
  • Fig. 4 shows the finished half sheet in a view analogous to Figure 1
  • Fig. 6 a detail of the bipolar plate
  • FIG. 7 shows a detail from the arrangement according to FIG. 6,
  • Fig. 8 shows a detail of the bipolar plate with molded seals.
  • a bipolar plate marked overall with the reference number 1, is constructed from two half-sheets 2, 3 lying one on top of the other and welded together and is intended for use in a fuel cell stack, not shown, that is, a stack of electrochemical cells.
  • a fuel cell stack not shown, that is, a stack of electrochemical cells.
  • the bipolar plate 1 has various ports 4, 6 for the passage of operating media as well as ports 5 arranged between these ports 4, 6 for the passage of a cooling medium, in particular cooling water.
  • An active field of the bipolar plate is 7 designated. Between the active field 7 and the ports 4, 5, 6, distribution fields 8 are designed to distribute the various media flowing in or out.
  • the distribution of cooling water is examined in more detail below.
  • the cooling water flows from port 5 into a structured flow space designated 9, which is formed between the half sheets 2, 3.
  • a sufficiently large flow cross section must be provided in the flow space 9 for the cooling water;
  • the half sheets 2, 3, which are embossed steel sheets, are to be supported against each other.
  • the embossed structures of the half sheets 2, 3 are generally designated 10.
  • the half-sheets 2, 3 are assembled in their final form to form the bipolar plate 1, the half-sheets 2, 3 are in a partially finished shape that can be seen in Figures 1 and 2.
  • this form there is a so-called folding grille 11, which protrudes from the distribution panel 8 into the port 5 and is connected in one piece to the remaining half sheet 2, 3 via two webs 12.
  • the folding grille 11 has a rectangular basic shape, with the webs 12 being formed onto the narrow sides of the folding grille 11.
  • the embossed structure 10 is in the form of longitudinal grooves 13.
  • the longitudinal grooves 13 are aligned parallel to the webs 12. This means that the longitudinal grooves 13 point towards the distribution field 8.
  • the longitudinal grooves 13 give a trapezoidal cross section of the embossed structure 10 of the folding grille 11.
  • the folding grille 11 When the folding grille 11 is unfolded, as can be seen in FIGS. 1 and 2, there is a slot-shaped opening 14 between the folding grille 11 and the distribution panel 8, the width of which corresponds to the length of the webs 12.
  • the webs 12 have a tapered shape, that is to say it becomes narrower towards the middle of the respective web 12.
  • a straight line drawn through the narrowest area of the webs 12 marks the position of a tilt axis designated KA.
  • the folding grille 11 is folded onto that side of the half-sheet 2, 3 which is to be brought into contact with the other half-sheet 3, 2 during further assembly. In the arrangement according to Figures 3 and 4, this is the underside of the half-sheet 2. This produces a folded, i.e. double-layered area of the half-sheet 2, 3, designated 23.
  • the webs 12 have a U-shape that can be seen in FIG.
  • the full size of port 5 is created.
  • the second half sheet 3 is handled in the corresponding manner, so that after the half sheets 2, 3 have been assembled, the arrangement shown in FIGS. 6 and 7 results.
  • the half sheets 2, 3 are supported against each other by the embossed structures 10, which are in the form of the longitudinal grooves 13, which in the present case describe a trapezoidal profile.
  • inner flow channels 15 Two different types are formed here, namely inner flow channels 15 and further flow channels 16.
  • the inner flow channels 15 are cut centrally through the central plane of the bipolar plate 1 and are limited exclusively by the two folding grilles 11 lying one on top of the other.
  • the further flow channels 16 lie above or below the central plane mentioned, each being delimited on the one hand by one of the folding grilles 11 and on the other hand by one of the half sheets 2, 3. All flow channels 15, 16 are aligned parallel to one another.
  • the folding grilles 11 folded inwards rest on a transition area 17, which is part of the distribution field 8.
  • the transition region 17 forms a groove 18 of non-uniform height that runs transversely to the flow direction of the medium, that is to say the coolant.
  • a central region 19 of the groove 18 this has a reduced depth in order to enable the folding grilles 11 to be placed between the half sheets 2, 3.
  • the full depth of the groove 18 is given, so that the half sheets 2, 3 touch each other flatly in these regions 20.
  • Sealing strips 21, which can be seen in Figure 8 and overall form a sealing arrangement 22, are applied by injection molding in such a way that they extend over all areas 19, 20 of the grooves 18.
  • the non-uniform depth of the grooves 18 is also evident in the exemplary embodiment on the surfaces of the sealing arrangement 22 that are visible from the outside.
  • the embossed structures 10 formed by the folding grids 11 and resting on one another ensure that no significant deformation of the half sheets 2, 3 occurs either when the sealing strips 21 are applied or during subsequent operation of the electrochemical cell having the bipolar plate 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

Eine für die Verwendung in einem Stapel elektrochemischer Zellen, insbesondere einem Brennstoffzellen-Stack, vorgesehene Bipolarplatte (1 ) umfasst zwei aufeinanderliegende Halbbleche (2, 3), durch welche ein Aktivfeld (7), ein Verteilerfeld (8), sowie eine Anzahl an Ports (4, 5, 6) zur Durchleitung von Medien gebildet sind. Zumindest eines der beiden Halbbleche (2, 3) weist angrenzend an einen der Ports (4, 5, 6) einen gefalteten Bereich (23) auf, in welchem Strömungskanäle (15, 16) für eines der Medien, insbesondere ein Kühlmedium, ausgebildet sind.

Description

Bipolarplatte und Verfahren zur Herstellung einer Bipolarplatte
Die Erfindung betrifft eine zur Verwendung in einem Stapel elektrochemischer Zellen, insbesondere in einem Brennstoffzellenstapel, vorgesehene Bipolarplatte. Ferner betrifft die Erfindung ein Verfahren zur Herstellung einer Bipolarplatte.
Eine Bipolarplatte trennt in einem Stapel elektrochemischer Zellen eine Halbzelle einer ersten elektrochemischen Zelle von einer Halbzelle einer benachbarten Zelle. Dies gilt für Brennstoffzellen ebenso wie für Redox-Flow-Zellen oder Elektrolysezellen zur Herstellung von Wasserstoff.
Die US 2011/0195332 A1 offenbart gestapelte Anordnungen von Bipolarplatten in Brennstoffzellen, wobei durch die Bipolarplatten aktive Bereiche, das heißt Aktivfelder, Zufuhrbereiche, welche allgemein auch als Verteilerfelder bezeichnet werden, sowie verschiedene Einlass- und Auslassöffnungen, das heißt Ports, gebildet sind. Die Bipolarplatten sind aus Anodenplatten und Kathodenplatten, welche auch als Halbbleche bezeichnet werden, aufgebaut. Zwischen den Halbblechen befinden sich im Fall der US 2011/0195332 A1 unter anderem poröse Abstandshalter.
Eine in der US 2011/0177429 A1 offenbarte Platte einer Brennstoffzelle ist als Fluid- Strömungsplatte ausgebildet, wobei ein als gesondertes Element vorliegender Stützrahmen am Übergang zwischen einem Port und von diesem ausgehenden Fluidkanälen der Strömungsplatte angeordnet ist. Der Stützrahmen ist ringförmig ausgebildet und umfasst ein Paar an zueinander parallelen Stützwänden, die an zwei Seiten der Fluidkanäle angeordnet sind. Eine weitere Möglichkeit, ein gesondertes Element mit strömungsleitender und/oder statischer Funktion in eine Strömungsplatte einer Brennstoffzelle einzusetzen, ist in der US 6,410,179 B1 beschrieben. In diesem Fall wird durch das gesonderte Element auch eine Nut zum Einfügen einer Dichtung bereitgestellt. Weitere Möglichkeiten der Gestaltung strömungsleitender oder sonstiger Elemente in Brennstoffzellen sind zum Beispiel in den Dokumenten US 2011/0033782 A1 , US 2002/0172852 A1 , DE 10 2014 225 160 A1 und US 2015/0200404 A1 offenbart. Im letztgenannten Fall ist ein Verbindungsabschnitt eines elektrisch leitenden Bauteils U- förmig umgebogen, wobei sich zwischen den beiden U-Schenkeln ein Abstandshalter befindet. Eine gattungsgemäße Bipolarplatte lehrt DE 10 2007 051 817 A1 , wobei zwei Unipolarplatten mit umgelegten Rändern zur besseren Abdichtung vorgesehen sind.
Der Erfindung liegt die Aufgabe zugrunde, Fortschritte gegenüber dem genannten Stand der Technik bei der Herstellung von Bipolarplatten zu erzielen, wobei ein besonders günstiges Verhältnis zwischen Fertigungsaufwand und geometrischer Präzision, Funktion und Stabilität des Endproduktes, das heißt Stapels elektrochemischer Zellen einschließlich Biopolarplatten, angestrebt wird.
Diese Aufgabe wird erfindungsgemäß gelöst durch eine für die Verwendung in einem Stapel elektrochemischer Zellen, insbesondere Brennstoffzellen, vorgesehene Bipolarplatte mit den Merkmalen des Anspruchs 1 . Ebenso wird die Aufgabe gelöst durch ein Verfahren zur Herstellung einer Bipolarplatte gemäß Anspruch 8. Im Folgenden im Zusammenhang mit dem Herstellungsverfahren erläuterte Ausgestaltungen und Vorteile der Erfindung gelten sinngemäß auch für die Vorrichtungen, das heißt die Bipolarplatte sowie den Zellenstapel, und umgekehrt.
Die Bipolarplatte ist in an sich bekannter Grundkonzeption aus zwei aufeinanderliegenden Halbblechen aufgebaut, wobei durch die Halbbleche auf jeder Seite der Bipolarplatte ein Aktivfeld gebildet ist, in welchem innerhalb des fertiggestellten, zahlreiche Bipolarplatten umfassenden Zellenstapels die gewünschten elektrochemischen Reaktionen ablaufen. Die Aktivfelder nehmen in typischer Ausgestaltung den Großteil der Fläche einer jeden Bipolarplatte ein. Ferner sind durch die Bipolarplatten ein Verteilerfeld sowie eine Anzahl an Ports zur Durchleitung von Medien gebildet. Bei der anmeldungsgemäßen Bipolarplatte weist zumindest eines der beiden Halbbleche angrenzend an einen der Ports einen gefalteten Bereich auf, wobei in dem gefalteten Bereich Strömungskanäle ausgebildet sind.
Die Bezeichnung „gefalteter Bereich“ bedeutet, dass in dem entsprechenden Bereich das Halbblech doppellagig vorliegt, wobei die beiden Lagen einstückig miteinander verbunden sind. Der die beiden Lagen miteinander verbindende Bereich grenzt an einen der Ports, durch welchen beim Betrieb der elektrochemischen Zelle ein Medium, insbesondere Kühlmedium, strömt.
Der an einen der Ports, insbesondere den Kühlmittel-Port, grenzende gefaltete Bereich der Bipolarplatte ist gebildet durch einen umgeklappten Abschnitt, welcher ohne Beschränkung der Allgemeinheit auch als Klappgitter bezeichnet wird, sowie durch einen nicht umgeklappten Abschnitt, welcher nahtlos in die umgebenden, zumindest teilweise geprägten Abschnitte der Bipolarplatte übergeht.
Das sogenannte Klappgitter, welches eine zweite Lage des Halbblechs der Bipolarplatte darstellt, übernimmt die Funktion eines Einlegeteils, welches durch seine Form Kanäle bereitstellt und zugleich als abstützendes Element wirkt. Die mechanische Abstützung kann sowohl im Herstellungsprozess der Bipolarplatte, insbesondere beim Aufbringen weiterer, auch nichtmetallischer Komponenten, beispielsweise Dichtungen, als auch beim späteren Betrieb des elektrochemischen Systems, welches unter Verwendung der Bipolarplatten aufzubauen ist, eine Rolle spielen, auf die im Folgenden noch näher eingegangen werden wird.
Gemäß einer möglichen Ausgestaltung der Bipolarplatte ist durch jedes der beiden Halbbleche ein gefalteter, Strömungskanäle bereitstellender Bereich ausgebildet, wobei die genannten Bereiche der Halbbleche aufeinander liegen. Insbesondere können die gefalteten Bereiche spiegelsymmetrisch zu einer Mittelebene der Bipolarplatte ausgebildet sein. Die gesamten Halbbleche weisen typischerweise jeweils eine rechteckige Grundform auf. Diejenigen Flächenabschnitte der Halbbleche, auf welchen die umgeklappten Abschnitte, das heißt Klappgitter, aufliegen, können als ebene Teilflächen der Halbbleche gestaltet sein. Die Form der freien Strömungsquerschnitte, durch welchen Betriebs- oder Kühlmedium strömt, ist hierbei durch die Geometrie der Klappgitter bestimmt. Typischerweise sind durch die Klappgitter zahlreiche parallel zueinander verlaufende Teilkanäle gebildet. In fertigungstechnisch einfach umsetzbarer Weise ist die Fläche des umgeklappten Abschnitts kleiner als die Fläche des angrenzenden Ports.
Der umgeklappte Abschnitt, das heißt das Klappgitter, kann insbesondere über zwei U-förmig umgebogene Stege mit dem restlichen Halbblech verbunden sein. Die beiden U-fömigen Stege können insbesondere an den beiden Schmalseiten des insgesamt rechteckigen Klappgitters angeordnet sein. Ebenso sind Ausgestaltungen realisierbar, bei welchen das Klappgitter über eine größere Anzahl streifenförmiger, umgebogener Abschnitte mit dem restlichen Halbblech verbunden ist. Die umgebogenen Abschnitte können auch genutzt werden, um die Strömung des Mediums zu beeinflussen, beispielsweise Verwirbelungseffekte zu erzielen.
Unabhängig von der Art der einstückigen Verbindung zwischen dem Klappgitter und dem restlichen Halbblech kann das Klappgitter im Querschnitt beispielsweise trapezförmig profiliert und damit in der Art eines Trapezbleches gestaltet sein. Alternativ kommen rechteckige oder abgerundete Profilierungen des umgeklappten Abschnitts in Betracht. Der umgeklappte Anschnitt ist nicht notwendigerweise über seine gesamte Breite einheitlich profiliert. Eine Variation der Profilierung über die Breite des Klappgitters kann beispielsweise vorgenommen werden, um gezielte Änderungen der strömungstechnischen und/oder statischen Eigenschaften quer zur Strömungsrichtung des vom Port über das Verteilerfeld zum Aktivfeld oder in umgekehrter Richtung fließenden Mediums einzustellen. Gemäß einer möglichen Weiterbildung befindet sich auf der den Strömungskanälen abgewandten Seiten der Halbbleche jeweils eine Dichtleiste. Diese Dichtleiste wird insbesondere spritzgusstechnisch hergestellt, das heißt auf die bereits fest miteinander verbundenen Halbbleche aufgespritzt. Bei diesem Vorgang spielt die abstützende Funktion des mindestens einen Klappgitters eine herausragende Rolle hinsichtlich der erzielbaren geometrischen Präzision und damit letztlich auch der geforderten abdichtenden Funktion der nichtmetallischen Dichtleiste.
Das Verfahren zur Herstellung der Bipolarplatte umfasst allgemein folgende Schritte:
- Bereitstellung zweier jeweils eine Prägestruktur aufweisender Halbbleche, wobei in jedem der Halbbleche an ein Verteilerfeld angrenzende Ports zur Ein- und Ausleitung verschiedener Medien ausgebildet sind, und wobei zumindest in einem dieser Ports ein Klappgitter angeordnet ist, welches über Stege mit dem übrigen Halbblech verbunden ist, so dass in diesem Fertigungsstadium bei jedem Halbblech zwischen dem Klappgitter und dem Verteilerfeld eine schlitzförmige Öffnung gebildet ist,
- Umklappen der Klappgitter um 180°, so dass diese auf dem Verteilerfeld des jeweiligen Halbblechs aufliegen,
- Aufeinanderlegen der beiden Halbbleche, so dass sich die Klappgitter berühren und sowohl zwischen ebenen, den Verteilerfeldern zuzurechnenden Bereichen der Halbbleche und dem jeweils zugehörigen Klappgitter als auch zwischen den beiden Klappgittern Strömungskanäle und zugleich Stützstrukturen gebildet sind.
Nach dem Aufeinanderlegen der Halbbleche werden diese endgültig, insbesondere durch Verschweißung, miteinander verbunden. Das optionale, bereits erwähnte Aufspritzen von Dichtungen stellt den abschließenden Fertigungsschritt dar.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Zeichnung näher erläutert. Hierin zeigen: Fig. 1 ein teilfertiges Halbblech zur Herstellung einer Bipolarplatte,
Fig. 2 einen Ausschnitt aus der Anordnung nach Figur 1 ,
Fig. 3 das Halbblech in fertiggestellter Form in einer Ansicht analog Figur 2,
Fig. 4 das fertiggestellte Halbblech in einer Ansicht analog Figur 1
Fig. 5 eine Draufsicht auf die aus zwei Halbblechen aufgebaute Bipolarplatte,
Fig. 6 ein Detail der Bipolarplatte,
Fig. 7 einen Ausschnitt aus der Anordnung nach Figur 6,
Fig. 8 ausschnittsweise die Bipolarplatte mit angespritzten Dichtungen.
Eine insgesamt mit dem Bezugszeichen 1 gekennzeichnete Bipolarplatte ist aus zwei aufeinanderliegenden, miteinander verschweißten Halbblechen 2, 3 aufgebaut und zur Verwendung in einem nicht weiter dargestellten Brennstoffzellenstapel, das heißt Stapel elektrochemischer Zellen, vorgesehen. Hinsichtlich der prinzipiellen Funktion der Bipolarplatte 1 in einem Brennstoffzellensystem wird auf den eingangs zitierten Stand der Technik verwiesen.
Die Bipolarplatte 1 weist verschiedene Ports 4, 6 zu Durchleitung von Betriebsmedien sowie zwischen diesen Ports 4, 6 angeordnete Ports 5 zur Durchleitung von einem Kühlmedium, insbesondere Kühlwasser, auf. Ein Aktivfeld der Bipolarplatte ist mit 7 bezeichnet. Zwischen dem Aktivfeld 7 und den Ports 4, 5, 6 sind Verteilerfelder 8 zur Verteilung der verschiedenen, ein- oder ausströmenden Medien ausgebildet.
Im Folgenden wird die Verteilung von Kühlwasser näher betrachtet. Das Kühlwasser gelangt vom Port 5 aus in einen insgesamt mit 9 bezeichnete, strukturierten Strömungsraum, welcher zwischen den Halbblechen 2, 3 gebildet ist. Im Strömungsraum 9 ist einerseits ein ausreichend großer Strömungsquerschnitt für das Kühlwasser bereitzustellen; andererseits sind die Halbbleche 2, 3, bei welchen es sich um geprägte Stahlbleche handelt, gegeneinander abzustützen. Die Prägestrukturen der Halbbleche 2, 3 sind allgemein mit 10 bezeichnet.
Bevor die Halbbleche 2, 3 in ihrer endgültigen Form zur Bipolarplatte 1 zusammengesetzt werden, liegen die Halbbleche 2, 3 mit einer in den Figuren 1 und 2 erkennbaren teilfertigen Form vor. In dieser Form existiert ein sogenanntes Klappgitter 11 , welches vom Verteilerfeld 8 aus in den Port 5 ragt und über zwei Stege 12 mit dem restlichen Halbblech 2, 3 einstückig verbunden ist. Das Klappgitter 11 hat eine rechteckige Grundform, wobei die Stege 12 an die Schmalseiten des Klappgitters 11 angeformt sind. Im Bereich des Klappgitters 11 liegt die Prägestruktur 10 in Form von Längsrillen 13 vor. Die Längsrillen 13 sind parallel zu den Stegen 12 ausgerichtet. Dies bedeutet, dass die Längsrillen 13 in Richtung zum Verteilerfeld 8 weisen. Wie unter anderem aus Figur 2 hervorgeht, ist durch die Längsrillen 13 ein trapezförmiger Querschnitt der Prägestruktur 10 des Klappgitters 11 gegeben. Im ausgeklappten Zustand des Klappgitters 11 , wie in den Figuren 1 und 2 erkennbar, existiert zwischen dem Klappgitter 11 und dem Verteilerfeld 8 eine schlitzförmige Öffnung 14, deren Breite der Länge der Stege 12 entspricht.
Die Stege 12 haben im Ausführungsbeispiel eine taillierte, das heißt zur Mitte des jeweiligen Stegs 12 hin schmaler werdende Form. Eine durch den schmälsten Bereich der Stege 12 gelegte Gerade markiert die Lage einer mit KA bezeichneten Kippachse. Vor dem Zusammenbau der beiden Halbbleche 2, 3 wird das Klappgitter 11 auf diejenige Seite des Halbblechs 2, 3 geklappt, welche im Zuge der weiteren Montage mit dem anderen Halbblech 3, 2 in Kontakt zu bringen ist. In der Anordnung nach den Figuren 3 und 4 ist dies die Unterseite des Halbblechs 2. Damit ist ein mit 23 bezeichneter gefalteter, das heißt doppellagiger Bereich des Halbblechs 2, 3 hergestellt.
Sobald das Klappgitter 11 an die Unterseite des Halbblechs 2 angelegt ist, das heißt der gefaltete Bereich 23 geformt ist, haben die Stege 12 eine in Figur 3 erkennbare U- Form. Gleichzeitig ist damit die volle Größe des Ports 5 hergestellt. Mit dem zweiten Halbblech 3 wird in der entsprechenden Weise verfahren, sodass sich nach dem Zusammensetzen der Halbbleche 2, 3 die in den Figuren 6 und 7 erkennbare Anordnung ergibt. Die Halbbleche 2, 3 sind hierbei durch die Prägestrukturen 10, welche in Form der Längsrillen 13 vorliegen, die im vorliegenden Fall ein Trapezprofil beschreiben, gegeneinander abgestützt.
Hierbei sind zwei verschiedene Arten von Strömungskanälen 15, 16 ausgebildet, nämlich innere Strömungskanäle 15 und weitere Strömungskanäle 16. Die inneren Strömungskanäle 15 werden mittig durch die Mittelebene der Bipolarplatte 1 geschnitten und sind ausschließlich durch die beiden aufeinanderliegenden Klappgitter 11 begrenzt. Dagegen liegen die weiteren Strömungskanäle 16 oberhalb beziehungsweise unterhalb der genannten Mittelebene, wobei sie jeweils einerseits durch eines der Klappgitter 11 und andererseits durch eines der Halbbleche 2, 3 begrenzt werden. Sämtliche Strömungskanäle 15, 16 sind parallel zueinander ausgerichtet.
Die nach innen geklappten Klappgitter 11 liegen an einem Übergangsbereich 17 an, welcher dem Verteilerfeld 8 zuzurechnen ist. Durch den Übergangsbereich 17 ist eine quer zur Strömungsrichtung des Mediums, das heißt Kühlmittels, verlaufende Nut 18 uneinheitlicher Höhe gebildet. In einem Mittelbereich 19 der Nut 18 weist diese eine verminderte Tiefe auf, um die Platzierung der Klappgitter 11 zwischen den Halbblechen 2, 3 zu ermöglichen. In äußeren Bereichen 20 der Nut 18, welche an den Mittelbereich 19 anschließen, ist dagegen die volle Tiefe der Nut 18 gegeben, so dass sich die Halbbleche 2, 3 in diesen Bereichen 20 flächig berühren. Dichtleisten 21 , die in Figur 8 erkennbar sind und insgesamt eine Dichtungsanordnung 22 ergeben, werden spritzgusstechnisch derart aufgebracht, dass sie sich über sämtliche Bereiche 19, 20 der Nuten 18 erstrecken. Die uneinheitliche Tiefe der Nuten 18 zeichnet sich im Ausführungsbeispiel auch an den von außen sichtbaren Oberflächen der Dichtungsanordnung 22 ab. Die durch die Klappgitter 11 gebildeten, aufeinander aufliegenden Prägestrukturen 10 sorgen dafür, dass weder beim Aufbringen der Dichtleisten 21 noch im späteren Betrieb der die Bipolarplatte 1 aufweisenden elektrochemischen Zelle nennenswerte Verformungen der Halbbleche 2, 3 auftreten.
Bezuqszeichenliste
1 Bipolarplatte
2 Halbblech
3 Halbblech
4 Port zur Durchleitung eines Betriebsmediums
5 Port zur Durchleitung von Kühlwasser
6 Port zur Durchleitung eines Betriebsmediums
7 Aktivfeld
8 Verteilerfeld
9 Strömungsraum für Kühlwasser
10 Prägestruktur
11 Klappgitter, umgeklappter Abschnitt
12 Steg
13 Längsrille
14 schlitzförmige Öffnung
15 innerer Strömungskanal
16 weiterer Strömungskanal
17 Übergangsbereich
18 Nut
19 Mittelbereich der Nut
20 äußerer Bereich der Nut
21 Dichtleiste
22 Dichtungsanordnung
23 gefalteter Bereich
KA Kippachse

Claims

Patentansprüche Bipolarplatte (1 ) für einen Stapel elektrochemischer Zellen, mit zwei aufeinanderliegenden Halbblechen (2, 3), durch welche ein Aktivfeld (7), ein Verteilerfeld (8), sowie eine Anzahl an Ports (4, 5, 6) zur Durchleitung von Medien gebildet sind, wobei zumindest eines der beiden Halbbleche (2, 3) angrenzend an einen der Ports (4, 5, 6) einen gefalteten Bereich (23) aufweist, wobei in dem gefalteten Bereich (23) Strömungskanäle (15, 16) ausgebildet sind, dadurch gekennzeichnet, dass die Strömungskanäle (15, 16) durch einen gegenüber dem restlichen Halbblech (2) umgeklappten Abschnitt (11 ) des ersten Halbblechs (2) gebildet sind, wobei der genannte Abschnitt (11 ) auf dem zweiten Halbblech (3) aufliegt. Bipolarplatte (1 ) nach Anspruch 1 , dadurch gekennzeichnet, dass durch jedes der beiden Halbbleche (2, 3) ein gefalteter, Strömungskanäle (15, 16) bereitstellender Bereich (23) ausgebildet ist, wobei diese Bereiche (23) aufeinander liegen. Bipolarplatte (1 ) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Fläche des umgeklappten Abschnitts (11 ) kleiner als die Fläche des angrenzenden Ports (5) ist. Bipolarplatte (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass der umgeklappte Abschnitt (1 1 ) über zwei U-förmig umgebogene Stege (12) mit dem restlichen Halbblech (2, 3) verbunden ist. Bipolarplatte (1 ) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der umgeklappte Abschnitt (11 ) trapezförmig profiliert ist. Bipolarplatte (1 ) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sich auf der den Strömungskanälen (15, 16) abgewandten Seiten der Halbbleche (2, 3) jeweils eine Dichtleiste (21 ) befindet. Verfahren zur Herstellung einer Bipolarplatte (1 ), mit folgenden Schritten:
- Bereitstellung zweier jeweils eine Prägestruktur (10) aufweisender Halbbleche (2, 3), wobei in jedem der Halbbleche (2, 3) an ein Verteilerfeld (8) an- grenzende Ports (4, 5, 6) ausgebildet sind, und wobei zumindest in einem dieser Ports (4, 5, 6) ein Klappgitter (11) angeordnet ist, welches über Stege (12) mit dem übrigen Halbblech (2, 3) verbunden ist, so dass bei jedem Halbblech (2, 3) zwischen dem Klappgitter (11) und dem Verteilerfeld (8) eine schlitzförmige Öffnung (14) gebildet ist,
- Umklappen der Klappgitter (11 ) um 180°, so dass diese auf dem Verteilerfeld (8) des jeweiligen Halbblechs (2, 3) aufliegen,
- Aufeinanderlegen der beiden Halbbleche (2, 3), so dass sich die Klappgitter (11 ) berühren und sowohl zwischen ebenen, den Verteilerfeldern (8) zuzurechnenden Übergangsbereichen (17) der Halbbleche (2, 3) und dem jeweils zugehörigen Klappgitter (11) als auch zwischen den beiden Klappgittern (11 ) Strömungskanäle (15, 16) und zugleich Stützstrukturen gebildet sind. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass auf die Außenseiten der ebenen Übergangsbereiche (17) der Verteilerfelder (8) Dichtleisten (21 ) aufgebracht werden. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass die Dichtleisten (21 ) im Spritzgussverfahren nach dem Zusammenfügen der beiden Halbbleche (2, 3) erzeugt werden.
PCT/DE2023/100190 2022-03-18 2023-03-14 Bipolarplatte und verfahren zur herstellung einer bipolarplatte WO2023174482A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022106374.7 2022-03-18
DE102022106374.7A DE102022106374A1 (de) 2022-03-18 2022-03-18 Bipolarplatte und Verfahren zur Herstellung einer Bipolarplatte

Publications (1)

Publication Number Publication Date
WO2023174482A1 true WO2023174482A1 (de) 2023-09-21

Family

ID=85706799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100190 WO2023174482A1 (de) 2022-03-18 2023-03-14 Bipolarplatte und verfahren zur herstellung einer bipolarplatte

Country Status (2)

Country Link
DE (1) DE102022106374A1 (de)
WO (1) WO2023174482A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117468024A (zh) * 2023-10-31 2024-01-30 温州高企氢能科技有限公司 一种用于碱性电解水制氢的阵列式流场结构及电解槽

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410179B1 (en) 2000-04-19 2002-06-25 Plug Power Inc. Fluid flow plate having a bridge piece
US20020172852A1 (en) 2001-05-15 2002-11-21 David Frank Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate
DE102007051817A1 (de) 2006-11-03 2008-05-21 GM Global Technology Operations, Inc., Detroit Dichtung mit umgelegtem Rand für kostengünstigere Brennstoffzelle
US20110033782A1 (en) 2009-08-04 2011-02-10 Hyundai Motor Company Separator for fuel cell
US20110177429A1 (en) 2010-01-21 2011-07-21 Industrial Technology Research Institute Fluid flow plate of a fuel cell
US20110195332A1 (en) 2010-02-08 2011-08-11 Gm Global Technology Operations, Inc. Conductive porous spacers for nested stamped plate fuel cell
US20150200404A1 (en) 2012-07-27 2015-07-16 Ngk Spark Plug Co., Ltd. Fuel cell, and fuel cell stack
DE102014225160A1 (de) 2013-12-31 2015-07-16 Hyundai Motor Company Metallseparator für Brennstoffzellestapel
GB2565373A (en) * 2017-08-11 2019-02-13 Intelligent Energy Ltd Pressed bipolar plate having integrated water flowpath volume

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6410179B1 (en) 2000-04-19 2002-06-25 Plug Power Inc. Fluid flow plate having a bridge piece
US20020172852A1 (en) 2001-05-15 2002-11-21 David Frank Flow field plate for a fuel cell and fuel cell assembly incorporating the flow field plate
DE102007051817A1 (de) 2006-11-03 2008-05-21 GM Global Technology Operations, Inc., Detroit Dichtung mit umgelegtem Rand für kostengünstigere Brennstoffzelle
US20110033782A1 (en) 2009-08-04 2011-02-10 Hyundai Motor Company Separator for fuel cell
US20110177429A1 (en) 2010-01-21 2011-07-21 Industrial Technology Research Institute Fluid flow plate of a fuel cell
US20110195332A1 (en) 2010-02-08 2011-08-11 Gm Global Technology Operations, Inc. Conductive porous spacers for nested stamped plate fuel cell
US20150200404A1 (en) 2012-07-27 2015-07-16 Ngk Spark Plug Co., Ltd. Fuel cell, and fuel cell stack
DE102014225160A1 (de) 2013-12-31 2015-07-16 Hyundai Motor Company Metallseparator für Brennstoffzellestapel
GB2565373A (en) * 2017-08-11 2019-02-13 Intelligent Energy Ltd Pressed bipolar plate having integrated water flowpath volume

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117468024A (zh) * 2023-10-31 2024-01-30 温州高企氢能科技有限公司 一种用于碱性电解水制氢的阵列式流场结构及电解槽

Also Published As

Publication number Publication date
DE102022106374A1 (de) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2018114819A1 (de) Separatorplatte für ein elektrochemisches system
DE112006003413T5 (de) Separator für Brennstoffzellen
WO2015150536A1 (de) Bipolarplatte und brennstoffzelle mit einer solchen
EP3329536A1 (de) Bipolarplatte und membran-elektroden-einheit für eine in einem brennstoffzellenstapel angeordnete brennstoffzelle, brennstoffzelle und brennstoffzellenstapel
WO2023174482A1 (de) Bipolarplatte und verfahren zur herstellung einer bipolarplatte
WO2015150533A1 (de) Bipolarplatte sowie brennstoffzelle mit einer solchen
DE102022112931A1 (de) Bipolarplatte und Verfahren zum Betrieb eines Brennstoffzellensystems
DE102021115559A1 (de) Brennstoffzelle
EP4327381A2 (de) Einzelzellanordnung für einen brennstoffzellenstapel
WO2024002407A1 (de) Bipolarplatte und verfahren zur herstellung einer bipolarplatte
WO2024028094A2 (de) Bipolarplatte für eine elektrochemische einheit einer elektrochemischen vorrichtung und elektrochemische vorrichtung
DE102008033209A1 (de) Brennstoffzellenanordnung
WO2022253384A1 (de) Bipolarplatte und verfahren zum betrieb eines brennstoffzellensystems
EP4388603A1 (de) Bipolarplatte und verfahren zur herstellung einer bipolarplatte
DE102022203540A1 (de) Separatorplatte mit homogenisierter sickenkraft im portbereich
DE102022119209A1 (de) Bipolarplatte für eine elektrochemische Einheit einer elektrochemischen Vorrichtung und elektrochemische Vorrichtung
DE102015205295A1 (de) Bipolarplattenanordnung für Brennstoffzelle und Fertigungsverfahren
DE102021206582A1 (de) Brennstoffzellenstapel mit einer Vielzahl von Einzelzellen
DE102022129159B3 (de) Bipolarplatte, Zellenstapel und Verfahren zur Herstellung einer Bipolarplatte
DE102021108876B4 (de) Elektrochemisches System
WO2022161572A1 (de) Dichtungsanordnung für eine brennstoffzelle und verfahren zur herstellung einer dichtungsanordnung
DE102022110834B4 (de) Brennstoffzellensystem
DE102022112175B3 (de) Plattenanordnung für eine elektrochemische Zelle
WO2024179633A1 (de) Separatorplatte, bipolarplatte, verfahren und elektrochemische zelle
DE202021106642U1 (de) Separatorplatte mit Schweißabschnitten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23712153

Country of ref document: EP

Kind code of ref document: A1