WO2023174372A1 - 一种波束扫描反射面天线与天线系统 - Google Patents

一种波束扫描反射面天线与天线系统 Download PDF

Info

Publication number
WO2023174372A1
WO2023174372A1 PCT/CN2023/081891 CN2023081891W WO2023174372A1 WO 2023174372 A1 WO2023174372 A1 WO 2023174372A1 CN 2023081891 W CN2023081891 W CN 2023081891W WO 2023174372 A1 WO2023174372 A1 WO 2023174372A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission line
antenna
reflective surface
phase
signal
Prior art date
Application number
PCT/CN2023/081891
Other languages
English (en)
French (fr)
Inventor
邓如渊
蔡华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174372A1 publication Critical patent/WO2023174372A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • Embodiments of the present application relate to the field of antenna technology, and more specifically, to a beam scanning reflective surface antenna and an antenna system.
  • Millimeter wave communication applications often use high-gain antennas with beam scanning capabilities to overcome antenna installation alignment difficulties and low reception levels.
  • Phased array high-gain antenna solutions based on traditional solid-state receive/transmit components are expensive, so beam-scanning reflector antennas that take advantage of the high-gain characteristics of reflector antennas become a low-cost solution.
  • Embodiments of the present application provide a beam scanning reflective surface antenna and antenna system.
  • the transceiver unit of the antenna By using the transceiver unit of the antenna only to transmit and receive signals, and using other non-resonant units to achieve phase modulation of the signal, the work of the antenna can be increased. bandwidth and can reduce antenna loss.
  • a beam scanning reflective surface antenna including: a feed array, a first reflective surface and a second reflective surface; the feed array includes at least one feed source, and the first reflective surface is used to modulate signals.
  • phase the second reflective surface is used to transmit and receive the signal
  • the first reflective surface includes: a transceiver unit, used to transmit and receive the signal;
  • a phase modulation unit used to phase modulate the signal
  • the phase modulation unit includes: a first A transmission line, a second transmission line and a liquid crystal layer.
  • the liquid crystal layer is between the first transmission line and the second transmission line.
  • the first transmission line and the second transmission line are used to transmit the signal.
  • the liquid crystal layer is used to control the signal in the first transmission line. The propagation constant of the signal transmitted between the transmission line and the second transmission line.
  • the transmitting and receiving unit of the antenna By making the transmitting and receiving unit of the antenna only used to transmit and receive signals, and using other non-resonant units to achieve phase modulation of the signal, the operating bandwidth of the antenna can be increased and the loss of the antenna can be reduced, thereby ensuring the air interface capacity of the communication system and The transmission distance of the signal ensures the communication quality of the communication system.
  • the first transmission line, the liquid crystal layer and the second transmission line are relatively arranged in a horizontal direction.
  • the embodiment of the present application can set the length of the transmission line arbitrarily.
  • the length of the transmission line can increase the phase modulation range, so that the purpose of phase modulation of the signal can be better achieved.
  • the first transmission line includes at least one branch
  • the second transmission line includes at least one branch
  • left- and right-handed metamaterial transmission lines can be constructed, which can increase the equivalent capacitance value of the transmission line, and the propagation constant of the transmission line Therefore, increasing the equivalent capacitance value can increase the propagation constant, which in turn can increase the phase shift range of the transmission line, where f is the resonant frequency, L is the inductance value of the equivalent circuit model, and C is the capacitance value of the equivalent circuit model.
  • the at least three branches of the first transmission line are periodically distributed along the first transmission line.
  • embodiments of the present application can reduce the difficulty of process design.
  • the at least three branches of the second transmission line are periodically distributed along the second transmission line.
  • embodiments of the present application can reduce the difficulty of process design.
  • Embodiments of the present application can achieve better phase modulation of signals and impedance adjustment of transmission lines by controlling the position offset between branches.
  • the transceiver unit includes an end-fire antenna.
  • the end-fire antenna includes at least one of the following: a dipole antenna, a Vivaldi antenna, or a Yagi antenna.
  • the dipole antenna includes at least one of the following: two ends of the dipole antenna are connected, two ends of the dipole antenna are not connected and the vertex Overlap, or the ends of the dipole antenna are not connected and the vertices do not overlap.
  • the phase modulation unit further includes: a first substrate and a second substrate, wherein the first transmission line, the liquid crystal layer and the second transmission line are between the first substrate and the second substrate. between the second substrate.
  • an antenna system in a second aspect, includes the antenna described in the first aspect and any aspect of the first aspect.
  • the antenna system further includes: a phase shifter bias module, a phase control module, an amplitude control module and a feed Source switching module; the phase shifter bias module is connected to the first reflective surface, and the phase shifter bias module is used to drive the first reflective surface to work; the feed switching module is connected to the feed array, and the feed source switching module is connected to the feed array.
  • the source switching module is used to switch the feed of the feed array; the phase shifter bias module is connected to the phase control module, and the phase control module is used to phase modulate the signal; the feed switching module is connected to the amplitude control The module is connected, and the amplitude control module is used to compensate the amplitude of the antenna.
  • the embodiment of the present application uses a phase control module and an amplitude control module to implement amplitude and phase compensation mechanisms, which can enhance the beam scanning performance of the antenna. Specifically, it increases the scanning range, reduces the scanning gain loss, and reduces the scanning direction. The side lobe levels of the graph, etc.
  • Figure 1 is a schematic structural diagram of an existing high-gain reflector antenna with electronic beam scanning capabilities.
  • FIG. 2 is a schematic structural diagram of the first reflecting surface of the antenna shown in FIG. 1 .
  • Figure 3 is a schematic structural diagram of a beam scanning reflective surface antenna in an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of an impedance matching unit in an embodiment of the present application.
  • Figure 5 is another structural schematic diagram of a beam scanning reflective surface antenna in an embodiment of the present application.
  • Figure 6 is a schematic structural diagram of a phase modulation unit in an embodiment of the present application.
  • FIG. 7 is another structural schematic diagram of the phase modulation unit in the embodiment of the present application.
  • Figure 8 is a schematic structural diagram of a transmission line in an embodiment of the present application.
  • Figure 9 is another structural schematic diagram of a transmission line in an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of a transceiver unit in an embodiment of the present application.
  • FIG 11 is a schematic block diagram of an antenna system in an embodiment of the present application.
  • Figure 12 is a schematic diagram of beam scanning feed source switching in an embodiment of the present application.
  • the antenna and/or antenna system of the embodiment of the present application can be applied to various communication systems, such as: global system for mobile communication (GSM) system, code division multiple access (code division multiple access, CDMA) system, broadband Code division multiple access (wideband code division multiple access, WCDMA) system, general packet radio service (GPRS), long term evolution (LTE) system, LTE frequency division duplex (FDD) ) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), global interoperability for microwave access (WiMAX) communication system, fifth generation (5 5th generation (5G) system or new radio (NR), future sixth generation ( 6th generation, 6G) system, inter-satellite communication and satellite communication and other communication systems.
  • GSM global system for mobile communication
  • CDMA code division multiple access
  • WCDMA broadband Code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD LTE frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile t
  • FIG. 1 is a schematic structural diagram of an existing high-gain reflector antenna with electronic beam scanning capabilities.
  • the antenna includes:
  • feed 101 (one feed) is used to transmit and receive signals.
  • the first reflective surface 102 is used to compensate and correct the phase of the signal incident or received on its surface. In other words, the first reflective surface 102 can be used to phase modulate the signal, and its phase modulation function is the same as the specific function of the first reflective surface 102 .
  • the structure is related and can be seen in Figure 2.
  • the second reflective surface 103 is used to convert spherical waves into plane waves when operating in the transmitting mode, and is used to convert plane waves into spherical waves when operating in the receiving mode. In other words, the second reflective surface 103 is used to transmit and receive signals.
  • the signal transmission path of the antenna shown in Figure 1 is:
  • the transmission path is: second reflective surface 103 ⁇ first reflective surface 102 ⁇ feed source 101;
  • the transmission path is: feed source 101 ⁇ first reflective surface 102 ⁇ second reflective surface 103.
  • FIG. 2 is a schematic structural diagram of the first reflecting surface of the antenna shown in FIG. 1 .
  • the first reflective surface 102 includes:
  • Resonance unit 201 Resonance unit 201, first substrate 202, liquid crystal layer 203, second substrate 204 and reflective layer 205.
  • the structure of the first reflective surface 102 includes, from top to bottom, the resonant unit 201, the first substrate 202, the liquid crystal layer 203, the second substrate 204 and the reflective layer 205.
  • the resonance unit 201 includes dipole unit 1 , dipole unit 2 and dipole unit 3 .
  • the length of the dipole unit increases sequentially from left to right, and dipole unit 1, dipole unit 2 and dipole unit 3 are connected together through bias lines.
  • a dipole unit may be understood as an antenna, for example, a dipole antenna.
  • the material of the first substrate 202 and the second substrate 204 is glass, the liquid crystal layer 203 is composed of liquid crystal material, and the material of the reflective layer 205 is metal, such as copper, silver, aluminum, etc.
  • the first reflective surface 102 can achieve phase modulation of signals based on the resonant unit 201 .
  • the input impedance of the equivalent circuit model of the resonant unit 201 and the liquid crystal layer 203 as a whole is in the form of pure resistance, equivalent to The impedance is real and the reflection phase is 0°. Due to the resonant frequency (Here L is the inductance value of the equivalent circuit model, and C is the capacitance value of the equivalent circuit model). When the equivalent dielectric constant of the liquid crystal layer 203 is changed, the C value of the equivalent circuit model will change. At this time The resonant frequency will shift, increase or decrease.
  • the input impedance of the equivalent circuit model at the frequency of interest will change from pure resistance to inductance or capacitance. If it is capacitive, its phase will change from -180 to 0°; if it is perceptual, its phase will change from 0 to 180°. Therefore, by continuously adjusting the equivalent dielectric constant of the liquid crystal layer 203, the phase adjustment of the resonant unit 201 at the frequency of interest can be achieved.
  • the resonant unit 201 is also used to phase-modulate signals. This results in a narrow operating bandwidth of the phase-modulated signal sent by the resonant unit 201, resulting in a narrow operating bandwidth of the antenna, which affects the communication rate. And because the dielectric layer of the resonant unit 201 is a high-loss liquid crystal material, most of the energy is lost in the liquid crystal layer when it resonates, resulting in a low reflection coefficient and high loss. Therefore, when this type of unit is used in antenna design, it will cause large losses in the entire antenna system, which will reduce the air interface capacity and transmission distance of the communication system, thereby reducing the communication quality of the entire communication system.
  • embodiments of the present application provide a beam scanning reflective surface antenna.
  • the antenna's performance can be increased.
  • Working bandwidth and can reduce the loss of the antenna, thereby ensuring the air interface capacity of the communication system and the signal transmission distance, thereby ensuring the communication quality of the communication system.
  • FIG. 3 is a schematic structural diagram of a beam scanning reflective surface antenna in an embodiment of the present application.
  • the antenna includes:
  • the feed array 301 includes at least one feed source, or in other words, the feed array 301 includes N feed sources, where N is a positive integer.
  • the feeds in the feed array 301 may include a horn antenna with a gradually increasing opening based on a metal structure, a microstrip antenna based on a printing process, or other types of antennas.
  • the first reflective surface 302 is used for phase modulation of signals
  • the second reflective surface 303 is used for transmitting and receiving signals.
  • the phase modulation function of the first reflective surface 302 is related to its structure.
  • the first reflective surface 302 includes:
  • Transceiver unit 3021 and phase modulation unit 3022 are Transceiver units 3021 and phase modulation unit 3022.
  • the transceiver unit 3021 is used to send and receive signals, and the phase modulation unit 3022 is used to phase modulate the signal.
  • the transceiver unit 3021 is above the phase modulation unit 3022 (when arranged horizontally, the transceiver unit 3021 is on the left side of the phase modulation unit 3022 or On the right side, the positional relationship between the transceiver unit 3021 and the phase modulation unit 3022 specifically depends on the arrangement of the first reflective surface 302), that is, the phase modulation unit 3022 is used to phase modulate the signals sent and received by the transceiver unit 3021.
  • the embodiment of this application is described by taking the transceiver unit 3021 above the phase modulation unit 3022 as an example, but it does not rule out that the transceiver unit 3021 is on the left, right or other implementation of the phase modulation unit 3022, depending on the first reflection. However, no matter whether the transceiver unit 3021 is above, to the left, to the right or at other orientations of the phase modulation unit 3022, the phase modulation unit 3022 is used to phase modulate the signals sent and received by the transceiver unit 3021.
  • phase modulation unit 3022 includes:
  • the liquid crystal layer 30222 is between the first transmission line 30221 and the second transmission line 30223.
  • the first transmission line 30221 and the second transmission line 30223 are used to transmit signals, and the liquid crystal layer 30222 is used to control the propagation constant of the signal transmitted between the first transmission line 30221 and the second transmission line 30223. Specifically, it can be achieved by controlling the bias voltage of the liquid crystal layer 30222 (this can be achieved by the liquid crystal bias network controlling the liquid crystal through indium tin oxide (ITO) lines.
  • the liquid crystal bias network is generally arranged on the back of the reflective layer), It is possible to dynamically adjust the dielectric constant of the liquid crystal layer 30222, change the propagation constant of the signal transmission by the transmission line, and then change the phase of the signal, realize the compensation of the phase of the signal, and finally achieve the purpose of phase modulation.
  • the transmission line includes microstrip lines, grounded coplanar waveguides, and parallel dual-wire transmission lines.
  • the transmission line is a parallel dual-wire transmission line as an example, but other types are not excluded. Transmission line.
  • the first reflective surface 302 further includes an impedance matching unit, which can be arranged between the transceiver unit 3021 and the phase modulation unit 3022 (for example, between the transceiver unit 3021 and the first transmission line 30221 or between the transceiver unit 3021 and the first transmission line 30221).
  • the second transmission line 30223 (or between the transceiver unit 3021 and the first transmission line 30221 and the second transmission line 30223) is used to achieve good impedance matching between the transceiver unit 3021 and the phase modulation unit 3022.
  • the impedance matching unit can be used to improve the impedance matching performance between the transceiver unit 3021 and the phase modulation unit 3022.
  • the structure of the impedance matching unit can be seen in Figure 4.
  • FIG 4 is a schematic structural diagram of an impedance matching unit in an embodiment of the present application.
  • the impedance matching unit is a trapezoidal continuous gradient structure and is used to achieve impedance matching between the transceiver unit 3021 and the first transmission line 30221.
  • the impedance matching unit is two ladder structures stacked together (non-continuous gradient structure (can also be understood as a discrete structure) )), used to achieve impedance matching between the transceiver unit 3021 and the first transmission line 30221.
  • the impedance matching unit between the transceiver unit 3021 and the second transmission line 30223, and the impedance matching unit between the transceiver unit 3021 and the first transmission line 30221 and the second transmission line 30223 is the same as the aforementioned impedance matching unit.
  • the impedance matching unit shown in FIG. 4 is only understood as an example, and the embodiment of the present application does not limit the specific structural style of the impedance matching unit.
  • the impedance matching unit shown in Figure 4 can be integrated in the transmission line, or can be designed separately as shown in Figure 4 .
  • the impedance matching unit may be integrated in the phase modulation unit 3022, or may be designed separately, which is not limited by the embodiments of this application.
  • the impedance matching unit includes stepped impedance matching.
  • the transceiver unit 3021 maintains a physical connection relationship with both the first transmission line 30221 and the second transmission line 30223 (non-electromagnetic spatial coupling relationship, such as electromagnetic coupling between the transceiver unit and the transmission line through a gap).
  • the first reflective surface 302 also includes:
  • the reflection unit 3023 is used to change the transmission direction of the signal.
  • the reflection unit 3023 is used to change the transmission direction of the signal by 180°.
  • the reflection unit 3023 is below the phase modulation unit 3022, that is, the structure of the first reflection surface 302 includes from top to bottom: a transceiver unit 3021, a phase modulation unit 3022, and a reflection unit 3023. See Figure 5 for details.
  • FIG. 5 is another structural schematic diagram of a beam scanning reflective surface antenna in an embodiment of the present application.
  • the first reflecting surface 302 in the antenna also includes a reflecting unit 3023.
  • the signal transmission path of the antenna shown in Figure 5 is:
  • the transmission path is: second reflective surface 303 ⁇ first reflective surface 302 ⁇ feed array 301;
  • the transmission path is: feed array 301 ⁇ first reflective surface 302 ⁇ second reflective surface 303.
  • the working principle of the antenna shown in FIG. 5 is: when a signal is incident on the surface of the first reflective surface 302 via the second reflective surface 303, it will first be captured by the transceiver unit 3021 of the first reflective surface 302. Since the transceiver unit 3021 maintains a physical connection with the transmission line and can achieve good impedance matching (one way to achieve impedance matching is stepped impedance matching), the signal will enter the transmission line (including the first transmission line 30221 and the second transmission line 30223) and After arriving at the reflection unit 3023 via the transmission line (the reflection unit 3023 is used to reflect the signal), the signal undergoes total reflection, is transmitted along the transmission line again, and is sent out by the transceiver unit 3021.
  • the dielectric constant of the liquid crystal layer 30222 can be changed by controlling the bias voltage of the liquid crystal layer 30222, so that the transmission line has different propagation constants, thereby changing the phase of the signal, so that the phase of the incident signal is consistent with the outgoing signal.
  • the phase of the signal is different, ultimately achieving the purpose of phase modulation.
  • the relationship curve between the phase of the signal and the dielectric constant of the liquid crystal can be obtained, and based on this curve and the required compensation phase, the required compensation phase can be matched with the dielectric constant of the liquid crystal, that is, The required dielectric constant distribution of the liquid crystal can be obtained.
  • the phase modulation function of the signal can be realized based on the above structure.
  • the first reflective surface 302 includes a phase-reconfigurable reflective surface, which is used to compensate and correct the phase of signals incident or reflected on its surface. In other words, the first reflective surface 302 is used to phase modulate the signal.
  • phase-reconfigurable reflective surface can compensate and correct the phase of signals incident or received on its surface.
  • the phase reconfigurable reflective surface includes an electronic phase shifter.
  • phase-shifting electronic devices based on liquid crystal or PIN tube.
  • the diameter of the first reflective surface 302 may be 55 mm.
  • the orifice of the first reflective surface 302 is square, its side length is 55 mm; or, when the orifice of the first reflective surface 302 is circular, its diameter is 55 mm.
  • the second reflective surface 303 may be a standard paraboloid or a circumfocal paraboloid with a certain offset in focus.
  • the second reflective surface 303 may include a standard paraboloid with a diameter of 660 mm.
  • the second reflective surface 303 is made of metal material, such as aluminum or copper.
  • the feedback form of the signal from the second reflective surface 303 includes forward feedback (meaning that the focus of the second reflective surface is directly opposite to the focus of the first reflective surface) and offset feedback (meaning that the focus of the second reflective surface is opposite to the focus of the first reflective surface).
  • the focus is offset by a certain distance) in two forms.
  • the transceiver unit 3021 of the first reflective surface 302 is only used to send and receive signals, and is not used to phase modulate the signal. Instead, the non-resonant phase modulation unit compensates and corrects the phase of the signal. In this way, This can solve the problems of narrow antenna working bandwidth and high loss existing in the existing technology.
  • the phase modulation unit 3022 has a parallel two-wire transmission line structure.
  • the transmission line can transmit transverse electromagnetic waves (TEM).
  • TEM transverse electromagnetic waves
  • the signal in this mode has no working bandwidth limit in theory. Therefore, the working bandwidth of the antenna will only be determined by the bandwidth of the transceiver unit 3021.
  • the transceiver unit and the phase modulation unit are the same component.
  • the working bandwidth of the antenna will be determined by the smaller of the transceiver unit and the phase modulation unit.
  • the phase modulation capability of the resonant unit is only It works at resonance, so its operating bandwidth is narrow.
  • FIG. 6 is a schematic structural diagram of a phase modulation unit in an embodiment of the present application.
  • the first transmission line 30221, the liquid crystal layer 30222, and the second transmission line 30223 are arranged oppositely in the vertical direction. In this way, processing is easy to implement, and processing accuracy is easier to control. In addition, structures that are arranged opposite each other in the vertical direction can be processed in a stacked manner, which can achieve higher processing accuracy.
  • the first transmission line 30221, the liquid crystal layer 30222, and the second transmission line 30223 are arranged in the horizontal direction. In this way, the length of the transmission line can be set arbitrarily when arranging the transmission line in the horizontal direction. By extending the length of the transmission line, the phase modulation range can be increased, and the purpose of phase modulation of the signal can be better achieved.
  • the direction that is the same as the incident direction of the signal (which may also be the output direction) is the vertical direction, and the direction perpendicular to the incident direction of the signal (which may also be the output direction) is the horizontal direction.
  • this does not apply. Limit other possible forms.
  • the phase modulation unit 3022 further includes a first substrate 30224 and a second substrate 30225, and the first transmission line 30221, the liquid crystal layer 30222 and the second transmission line 30223 are between the first substrate 30224 and the second substrate 30225. See Figure 7 for details.
  • Figure 7 is another structural schematic diagram of the phase modulation unit in the embodiment of the present application.
  • the first substrate 30224 is on the upper side of the first transmission line 30221
  • the second substrate 30225 is on the lower side of the second transmission line 30223 .
  • the first substrate 30224 is on the left side of the first transmission line 30221
  • the second substrate 30225 is on the right side of the second transmission line 30223 .
  • the liquid crystal layer 30222 and the first substrate 30224 are separated by the first transmission line 30221
  • the liquid crystal layer 30222 and the second substrate 30225 are separated by the second transmission line 30223.
  • the material of the first substrate 30224 and the second substrate 30225 may be glass or other materials, including but not limited to: quartz and ceramics, etc., which are mainly used to process the required transceiver unit 3021 and transmission line (including the first The pattern of the transmission line 30221 and the second transmission line 30223).
  • the metal patterns required for the transceiver unit 3021 and the first transmission line 30221 and the second transmission line 30223 can be processed on the lower surface of the first substrate 30224 and the upper surface of the second substrate 30225 through an electroplating process.
  • the first transmission line 30221 includes at least one stub
  • the second transmission line 30223 includes at least one stub.
  • left-hand materials refer to electric field strength, magnetic field strength Materials whose directions of electric field strength, magnetic field strength, and wave vector follow the left-hand rule.
  • Right-hand materials refer to materials whose directions of electric field strength, magnetic field strength, and wave vector follow the right-hand rule), thereby increasing the equivalent capacitance value of the transmission line, while the transmission line
  • the propagation constant of Therefore, increasing the equivalent capacitance value can increase the propagation constant, which in turn can increase the phase shift range of the transmission line, where f is the resonant frequency, L is the inductance value of the equivalent circuit model, and C is the capacitance value of the equivalent circuit model.
  • Figure 8 is a schematic structural diagram of a transmission line in an embodiment of the present application.
  • the first transmission line 30221 includes at least one branch.
  • the at least three branches of the first transmission line 30221 may be periodically distributed or non-periodic. Distribution is not limited by the embodiments of this application.
  • the second transmission line 30223 includes at least one branch.
  • the third transmission line 30223 includes at least one branch. The at least three branches of the second transmission line 30223 may be distributed periodically or non-periodically, which is not limited in the embodiment of the present application. (c) in FIG.
  • FIG. 8 describes that there is a positional offset between the corresponding branches of the first transmission line 30221 and the second transmission line 30223, and the relative offset directions are the y and z directions.
  • (d) in Figure 8 depicts a schematic cross-sectional view of the positional offset between the first transmission line 30221 and the second transmission line 30223.
  • the dotted circle in (d) in Figure 8 is used to represent the first transmission line 30221 and the second transmission line 30223. Only in the overlapping area I between the second transmission lines 30223, the liquid crystal layer 30222 can affect the aforementioned propagation constant.
  • position offset additional adjustment parameters can be introduced to increase the degree of design freedom.
  • the embodiments of the present application can achieve better phase modulation of signals and impedance adjustment of transmission lines by controlling the position offset between branches.
  • the number of branches of the first transmission line 30221 and the second transmission line 30223 can be determined according to the required phase shift amount ⁇ , which generally needs to be greater than or equal to 360°.
  • the physical length L and branch period P of the transmission line can be specifically shown in (a) and (b) in Figure 8 .
  • the width of the first transmission line 30221 and the second transmission line 30223 is generally 0.01 to 0.1 wavelength.
  • the thickness of the first transmission line 30221 and the second transmission line 30223 is generally between 1um and 20um.
  • branches of the first transmission line 30221 are periodically distributed along the first transmission line 30221, that is, the size and spacing of two adjacent branches are consistent. In this way, the difficulty of process design can be reduced.
  • the number of cycles is determined by the required phase shift amount, and the number of cycles is greater than or equal to 1.
  • the branches of the second transmission line 30223 may be distributed periodically or non-periodically along the second transmission line 30223.
  • branches of the second transmission line 30223 are periodically distributed along the second transmission line 30223, that is, the size and spacing of two adjacent branches are consistent. In this way, the difficulty of process design can be reduced.
  • the number of cycles is determined by the required phase shift amount, and the number of cycles is greater than or equal to 1.
  • the branches of the first transmission line 30221 are non-periodically distributed along the first transmission line 30221, and the branches of the second transmission line 30223 are non-periodically distributed along the second transmission line 30223, that is, the sum of the sizes of the two adjacent branches (or ) spacing is inconsistent. In this way, the degree of design freedom can be increased, and a larger phase shift range and lower transmission loss can be obtained.
  • the branch structure of the first transmission line 30221 and the branch structure of the second transmission line 30223 may be the same or different.
  • the branch structure includes but is not limited to: square, rectangle, triangle, polygon, semicircle, semiellipse or other shapes.
  • the first transmission line 30221 and the second transmission line 30223 do not have branch structures.
  • the transceiver unit 3021 in the first reflective surface 302 includes an end-fire antenna.
  • the end-fire antenna includes but is not limited to: dipole antenna, Vivaldi antenna or Yagi antenna, etc.
  • edge-fire antennas and end-fire antennas are distinguished according to the direction of the radiation pattern.
  • the edge-fire antenna has the maximum radiation direction perpendicular to the array straight line or array plane, and the end-fire antenna has the maximum radiation direction along the array straight line or array plane.
  • Figure 9 is another structural schematic diagram of a transmission line in an embodiment of the present application.
  • the first transmission line 30221 includes a first transmission section A (can be understood as a first transmission section), a branch A (can be understood as a first branch) and a second transmission section A (can be understood as a first branch) second transmission section), the first transmission section A is connected to branch A, and the second transmission section A is not connected to branch A.
  • the second transmission line 30223 includes the first transmission section B (can be understood as the third transmission section B).
  • first transmission segment B is connected to the branch B
  • second transmission segment B is not connected to the branch B.
  • the arrangement relationship between the first transmission line 30221 and the second transmission line 30223 can refer to (c) in FIG. 9 .
  • the first transmission section A of the first transmission line 30221 is arranged opposite to the second transmission section B of the second transmission line 30223, and the second transmission section A of the first transmission line 30221 is arranged opposite to the first transmission section B of the second transmission line 30223.
  • the area of the overlapping area (including overlapping area I, overlapping area II and overlapping area III) between the first transmission line 30221 and the second transmission line 30223 is increased, so The phase modulation performance of the signal by the transmission line can be effectively improved.
  • the embodiments of the present application can increase the effective working range of the liquid crystal, thereby increasing the phase modulation range of the signal.
  • the embodiment of the present application does not limit the specific value of the width of each transmission segment.
  • the dotted circles described in (c) in Figure 9 are used to represent the overlapping area I, the overlapping area II and the overlapping area III between the first transmission line 30221 and the second transmission line 30223 respectively.
  • the liquid crystal layer 30222 is only in the first transmission line 30221.
  • the aforementioned propagation constant can only be affected in the overlapping area between the transmission line 30223 and the second transmission line 30223.
  • Figures 8 and 9 show two structures of transmission lines.
  • the transmission line shown in Figure 8 includes a first transmission section and a branch, and the first transmission section is connected to the branch.
  • the transmission line shown in Figure 9 includes a first transmission section, a branch and a second transmission section. The first transmission section is connected to the branch, and the second transmission section is not connected to the branch.
  • FIG 10 is a schematic structural diagram of a transceiver unit in an embodiment of the present application.
  • the transceiver unit 3021 includes a dipole antenna connected at both ends. The two ends of the dipole antenna are connected by a metal connecting wire (can be regarded as a metal short-circuit). In this way, A bias line is used to connect the metal connecting line to control the dipole antenna, which simplifies the design of the bias line and increases the bias efficiency.
  • the transceiver unit 3021 includes a dipole antenna whose two ends are not connected and whose vertices overlap each other, which can make the transceiver unit compact and easy to design and process.
  • the transceiver unit 3021 includes a dipole antenna whose two ends are not connected and the vertices do not overlap.
  • the transceiver unit 3021 can be made of high conductivity materials, such as copper, aluminum, silver, gold, etc.
  • the initial length of the dipole antenna is generally half a wavelength of the operating frequency, the width is 0.05 to 0.1 wavelength, and the thickness is between 1um and 20um. Both ends of the transceiver unit 3021 need to maintain a physical connection relationship with the first transmission line 30221 and the second transmission line 30223 respectively.
  • the aforementioned impedance matching unit such as a ladder-shaped impedance matching unit, may be introduced between the two.
  • impedance matching unit such as a ladder-shaped impedance matching unit
  • FIG 11 is a schematic structural diagram of an antenna system in an embodiment of the present application.
  • the antenna system includes:
  • the feed switching module 304 is connected to the feed array 301 and is used to switch the feeds in the feed array 301 .
  • the phase shifter bias module 305 is connected to the first reflective surface 302 and is used to drive the first reflective surface 302 to work.
  • the phase shifter bias module 305 is connected to the phase control module 307, which is used to phase modulate the electromagnetic wave signal.
  • the feed switching module 304 is connected to the amplitude control module 306, which is used to compensate the amplitude of the antenna.
  • the feed array 301 includes N feeds.
  • N the feed array 301 will involve switching between multiple feed sources, and the switching work is assisted by the feed switching module 304.
  • the feed array 301 switches the feed operating mode through the feed switching module 304 .
  • the feed switching module 304 is generally composed of an electronic device based on an electronic switch, such as an electronic switch based on a ferrite or a PIN tube.
  • One end of the feed switching module 304 includes a channel, which is connected to the non-moving end of the single-pole multi-throw switch, and the moving end of the single-pole multi-throw switch is connected to the feed array 301 for selecting the corresponding feed source.
  • the embodiment of the present application does not limit other possible forms of the feed switching module 304.
  • the phase shifter module 305 is used to dynamically adjust the dielectric constant of the liquid crystal layer 30222 of the first reflective surface 302, thereby achieving functions such as phase modulation or phase compensation of signals.
  • the above-mentioned amplitude control module 306 and phase control module 307 may be component modules of the beam control module.
  • the beam control module is a system device used to control the beam of the antenna.
  • the beam control module 308 may be a central processing unit (CPU), an application specific integrated circuit (ASIC), or may be configured as one or more integrated circuits, such as one or more A digital signal processor (DSP), or one or more field programmable gate arrays (FPGA).
  • the beam control module can perform the function of controlling the amplitude control module 306 and the phase control module 307 by running or executing software programs and/or modules, and calling data.
  • the signal transmission path is: second reflective surface 303 ⁇ first reflective surface 302 ⁇ feed array 301.
  • the propagation path of electromagnetic waves is: feed array 301 ⁇ first reflective surface 302 ⁇ second reflective surface 303.
  • the feed array 301 is connected to the back-end radio frequency equipment, such as the radio frequency remote unit (RRU) of the base station, or the outdoor unit (out door unit, ODU) equipment of microwave communication.
  • RRU radio frequency remote unit
  • ODU outdoor unit
  • One end of the phase shifter bias module 305 is connected to the first reflective surface 302, and the other end is connected to the phase control module 307.
  • One end of the feed switching module 304 is connected to the feed array 301, and the other end is connected to the amplitude control module 306.
  • the phase control module 307 and the amplitude control module 306 are sub-modules of the beam control module 308.
  • the beam control module 308 can control the phase control module 307 and the amplitude control module 306 by running or executing software programs and/or modules and calling data. function.
  • the preset beam scanning angle of the antenna system is [- ⁇ 0 , ⁇ 0 ], and N feed sources are deployed in the plane determined by the scanning direction. It is assumed here that N is an odd number, and N ⁇ 1,
  • the feed switching rules are as follows:
  • the above feed source switching is controlled by the amplitude control module 306, and the switching rules are stored in the amplitude control module 306 in advance.
  • the phase control module 307 completes the following operations:
  • ⁇ 1 is the compensation phase required by the first reflective surface 302
  • ⁇ 2 is the conjugate field phase generated by the incident plane wave on the first reflection surface 302 at the angle corresponding to the beam scanning;
  • ⁇ 3 is the phase distribution of the feed incident on the first reflective surface 302 .
  • ⁇ 2 and ⁇ 3 can be stored in registers in advance and later called by the phase control module 307 , or they can be calculated numerically by the phase control module 307 , and the calculation formula can be saved in the phase control module 307 in advance.
  • FIG 12 is a schematic diagram of beam scanning feed source switching in an embodiment of the present application.
  • ⁇ 1 when the scanning angle ⁇ 1 is [-5, -1.667°], feed source 1 is working (sending and receiving signals).
  • ⁇ 1 when the scanning angle ⁇ 1 is [-1.667, 1.667°], feed source 2 is working (sending and receiving signals).
  • Figure 10c when the scanning angle ⁇ 1 is [1.667°, 5°], feed source 3 is working (sending and receiving signals).
  • the embodiment of the present application can enhance the beam scanning performance of the antenna by using the phase control module and the amplitude control module to implement the amplitude and phase compensation mechanism. Specifically, it can increase the scanning range, reduce the scanning gain loss, and reduce the scanning gain. The side lobe level of the pattern, etc.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本申请实施例提供一种波束扫描反射面天线,该天线包括:馈源阵列、第一反射面以及第二反射面;该馈源阵列包括至少一个馈源,该第一反射面用于对信号进行调相,该第二反射面用于收发该信号,该第一反射面包括:收发单元,用于收发该信号;调相单元,用于对该信号进行调相,该调相单元包括:第一传输线、第二传输线以及液晶层,该液晶层在该第一传输线与该第二传输线之间,该第一传输线和该第二传输线用于传输该信号,该液晶层用于控制在该第一传输线和该第二传输线之间传输的该信号的传播常数。通过使天线的收发单元仅用于收发信号,并由其他非谐振型单元实现对信号的调相,如此,就可以增加天线的工作带宽,并可以降低天线的损耗。

Description

一种波束扫描反射面天线与天线系统
本申请要求于2022年03月18提交国家知识产权局、申请号为202210270682.2、申请名称为“一种波束扫描反射面天线与天线系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及天线技术领域,更具体地,涉及一种波束扫描反射面天线与天线系统。
背景技术
毫米波通信应用通常会使用具备波束扫描能力的高增益天线,以便克服天线安装对准困难和接收电平较低的问题。基于传统的固态接收/发送组件的相控阵高增益天线解决方案成本高昂,因此利用反射面天线的高增益特性的波束扫描反射面天线成为一种低成本解决方案。
现有的具备波束扫描能力的高增益反射面天线一般是通过机械转动方式来实现波束扫描。但机械体制方案扫描速度慢,长期可靠性低。另一方面,现有的基于电子波束扫描方案的具备波束扫描能力的高增益反射面天线存在工作带宽较窄和损耗较高等问题。
因此,如何使得基于电子波束扫描体制的波束扫描的高增益反射面天线的工作带宽增大和损耗降低是目前亟待解决的技术问题。
发明内容
本申请实施例提供一种波束扫描反射面天线与天线系统,通过使天线的收发单元仅用于收发信号,并由其他非谐振型单元实现对信号的调相,如此,就可以增加天线的工作带宽,并可以降低天线的损耗。
第一方面,提供一种波束扫描反射面天线,包括:馈源阵列、第一反射面以及第二反射面;该馈源阵列包括至少一个馈源,该第一反射面用于对信号进行调相,该第二反射面用于收发该信号,该第一反射面包括:收发单元,用于收发该信号;调相单元,用于对该信号进行调相,该调相单元包括:第一传输线、第二传输线以及液晶层,该液晶层在该第一传输线与该第二传输线之间,该第一传输线和该第二传输线用于传输该信号,该液晶层用于控制在该第一传输线和该第二传输线之间传输的该信号的传播常数。
通过使天线的收发单元仅用于收发信号,并由其他非谐振单元实现对信号的调相,如此,就可以增加天线的工作带宽,并可以降低天线的损耗,从而保证通信系统的空口容量以及信号的传输距离,继而保证通信系统的通信质量。
结合第一方面,在第一方面的某些可能实现方式中,该第一传输线、该液晶层以及该第二传输线沿水平方向相对排列。
通过在水平方向布置传输线,本申请实施例就可以任意设置传输线的长度,通过延长 传输线的长度就可以增大调相范围,如此,就可以更好地实现对信号进行调相的目的。
结合第一方面,在第一方面的某些可能实现方式中,该第一传输线包括至少一个枝节,该第二传输线包括至少一个枝节。
通过在传输线布置枝节结构,形成周期性或者非周期性分布,可以构建出左右手超材料传输线,可以增大传输线的等效电容值,而传输线的传播常数因此增大等效电容值可以增大传播常数,进而可以增大传输线的移相范围,其中,f为谐振频率,L为等效电路模型的电感值,C为等效电路模型的电容值。
结合第一方面,在第一方面的某些可能实现方式中,该第一传输线包括至少三个枝节时,该第一传输线的至少三个枝节沿第一传输线呈周期性分布。
通过使得第一传输线的至少三个枝节沿着第一传输线呈周期性分布,本申请实施例就可以降低工艺设计难度。
结合第一方面,在第一方面的某些可能实现方式中,该第二传输线包括至少三个枝节时,该第二传输线的至少三个枝节沿第二传输线呈周期性分布。
通过使得第二传输线的至少三个枝节沿着第二传输线呈周期性分布,本申请实施例就可以降低工艺设计难度。
结合第一方面,在第一方面的某些可能实现方式中,该第一传输线的枝节与该第二传输线的对应枝节之间存在位置偏移。
通过引入位置偏移,可以额外的引入调节参数,增大设计自由度,本申请实施例可以通过控制枝节之间的位置偏移量实现更好地对信号进行调相和传输线的阻抗调节。
结合第一方面,在第一方面的某些可能实现方式中,该收发单元包括端射天线。
结合第一方面,在第一方面的某些可能实现方式中,该端射天线包括以下至少一种:偶极子天线、维瓦尔迪天线或者八木天线。
结合第一方面,在第一方面的某些可能实现方式中,该偶极子天线包括以下至少一种:该偶极子天线的两端相连,该偶极子天线的两端不相连且顶点重叠,或者,该偶极子天线的两端不相连且顶点不重叠。
结合第一方面,在第一方面的某些可能的实现方式中,该调相单元还包括:第一基板与第二基板,其中,第一传输线、液晶层与第二传输线在第一基板与第二基板之间。
第二方面,提供一种天线系统,该天线系统包括第一方面以及第一方面任意方面所述的天线,该天线系统还包括:移相器偏置模块、相位控制模块、幅度控制模块以及馈源切换模块;该移相器偏置模块与该第一反射面连接,该移相器偏置模块用于驱动该第一反射面工作;该馈源切换模块与该馈源阵列连接,该馈源切换模块用于切换该馈源阵列的馈源;该移相器偏置模块与该相位控制模块连接,该相位控制模块用于对该信号进行调相;该馈源切换模块与该幅度控制模块连接,该幅度控制模块用于对该天线的幅度进行补偿。
通过上述天线系统,本申请实施例通过采用相位控制模块与幅度控制模块实现幅度和相位补偿机制,能够增强天线的波束扫描性能,具体而言就是增大扫描范围,降低扫描增益损失,降低扫描方向图的旁瓣电平等。
附图说明
图1为现有的具备电子波束扫描能力的高增益反射面天线的结构示意图。
图2为图1所示天线的第一反射面的结构示意图。
图3为本申请实施例中波束扫描反射面天线的一种结构示意图。
图4为本申请实施例中阻抗匹配单元的结构示意图。
图5为本申请实施例中波束扫描反射面天线的另一种结构示意图。
图6为本申请实施例中调相单元的一种结构示意图。
图7为本申请实施例中调相单元的另一种结构示意图。
图8为本申请实施例中传输线的一种结构示意图。
图9为本申请实施例中传输线的另一结构示意图。
图10为本申请实施例中收发单元的结构示意图。
图11为本申请实施例中天线系统的示意框图。
图12为本申请实施例中波束扫描馈源切换的示意图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。显然,本申请描述的实施例仅是部分实施例,而不是全部的实施例。基于本申请实施例描述的内容,本领域所属普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,均属于本申请实施例要求保护的范围。
本申请实施例的天线和/或天线系统可以应用于各种通信系统,例如:全球移动通讯(global system for mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)、未来第六代(6th generation,6G)系统、星间通信和卫星通信等通信系统。本申请实施例所述的天线和/或天线系统还可以应用于其他的通信系统,在此不再详述。
图1为现有的具备电子波束扫描能力的高增益反射面天线的结构示意图。该天线包括:
馈源101、第一反射面102和第二反射面103。
具体而言,馈源101(一个馈源)用于收发信号。第一反射面102用于对入射或接收在其表面的信号的相位进行补偿校正,换言之,第一反射面102能够用于对信号进行调相,其调相功能与第一反射面102的具体结构相关,可以见图2。第二反射面103用于工作在发射模式时将球面波转换为平面波,用于工作在接收模式时将平面波转换为球面波,换言之,第二反射面103用于收发信号。
图1所示天线的信号的传输路径是:
处于接收模式时,传输路径是:第二反射面103→第一反射面102→馈源101;
处于发送模式时,传输路径是:馈源101→第一反射面102→第二反射面103。
图1所示天线的信号的传输路径具体可以参考图1中实线箭头(接收信号)和虚线箭头(发送信号)分别所指的方向。
图2为图1所示天线的第一反射面的结构示意图。第一反射面102包括:
谐振单元201、第一基板202、液晶层203、第二基板204和反射层205。
其中,第一反射面102的结构从上往下依次包括:谐振单元201、第一基板202、液晶层203、第二基板204和反射层205。
具体地,谐振单元201包括偶极子单元1、偶极子单元2和偶极子单元3。偶极子单元的长度从左至右依次增大,偶极子单元1、偶极子单元2和偶极子单元3之间通过偏置线连接在一起。偶极子单元可以理解为天线,例如,偶极子天线。第一基板202和第二基板204的材料为玻璃,液晶层203是由液晶材料组成的,反射层205的材料是金属,比如铜,银,铝等。
第一反射面102能够实现对信号的调相是基于谐振单元201而实现的。示例性地,当谐振单元201通过参数设计使得在所关心的频率点谐振时,此时,该谐振单元201与液晶层203作为一个整体的等效电路模型的输入阻抗为纯电阻形式,等效阻抗为实数,反射相位为0°。由于谐振频率(此处L为等效电路模型的电感值,C为等效电路模型的电容值),当更改液晶层203的等效介电常数时,等效电路模型的C值将会改变,此时谐振频率将会发生偏移,增大或者减小。当谐振频率发生偏移后,所关心的频率处的等效电路模型的输入阻抗将会由纯电阻形式改变为感性或者容性。如果呈容性,其相位将在-180~0°变化;如果呈感性,其相位将在0~180°变化。因此,通过对液晶层203的等效介电常数的连续调控就可以实现谐振单元201在所关心的频率处实现相位调节。
除了用于收发信号,谐振单元201还用于对信号进行调相,这就使得谐振单元201发送的经调相后的信号的工作带宽较窄,导致天线的工作带宽较窄,影响通信速率。又因为谐振单元201的介质层为高损耗的液晶材料,因此在其谐振时,大部分能量在液晶层中被损耗掉了,导致其反射系数幅度低,损耗大。因此将该类型的单元用于天线设计时,将会导致整个天线系统的损耗大,这会降低通信系统的空口容量以及传输距离,继而降低整个通信系统的通信质量。
鉴于上述技术问题,本申请实施例提供一种波束扫描反射面天线,通过使天线的收发单元仅用于收发信号,并由其他非谐振单元实现对信号的调相,如此,就可以增加天线的工作带宽,并可以降低天线的损耗,从而保证通信系统的空口容量以及信号的传输距离,继而保证通信系统的通信质量。
下文将结合附图对本申请实施例提供的波束扫描反射面天线进行描述。
图3为本申请实施例中波束扫描反射面天线的一种结构示意图。该天线包括:
馈源阵列301、第一反射面302以及第二反射面303。
具体地,馈源阵列301包括至少一个馈源,或者说,馈源阵列301包括N个馈源,N为正整数。馈源阵列301中馈源可以包括基于金属结构的张口逐渐增大的喇叭天线,也可以包括基于印刷工艺的微带天线,也可以包括其他类型的天线。
其中,第一反射面302用于对信号进行调相,第二反射面303用于收发信号。
具体地,第一反射面302的调相功能与其结构相关。第一反射面302包括:
收发单元3021和调相单元3022。
其中,收发单元3021用于收发信号,调相单元3022用于对信号进行调相。收发单元3021在调相单元3022的上方(在水平排列时,收发单元3021在调相单元3022的左侧或 者右侧,收发单元3021与调相单元3022之间的位置关系具体取决于第一反射面302的布置形式),即调相单元3022用于对收发单元3021收发的信号进行调相。
本申请实施例以收发单元3021在调相单元3022的上方为例进行描述,但也不排除收发单元3021在调相单元3022的左侧、右侧或者其他实现方式,这具体取决于第一反射面302的结构形式,但无论收发单元3021是在调相单元3022的上方、左侧、右侧还是其他方位,调相单元3022是用于对收发单元3021收发的信号进行调相。
具体地,该调相单元3022包括:
第一传输线30221、液晶层30222和第二传输线30223,液晶层30222在第一传输线30221和第二传输线30223之间。
第一传输线30221和第二传输线30223用于传输信号,液晶层30222用于控制在第一传输线30221和第二传输线30223之间传输的信号的传播常数。具体可以通过控制液晶层30222的偏置电压(这可以由液晶偏置网络通过氧化铟锡(indium tin oxide,ITO)线对液晶进行控制实现,液晶偏置网络一般布置在反射层的背部),实现动态调控液晶层30222的介电常数,改变传输线对信号传输的传播常数,进而改变信号的相位,实现对信号的相位进行补偿,最终实现调相的目的。
一个可能的实现方式中,该传输线包括微带线、接地的共面波导、以及平行双线传输线等类型,本申请实施例以传输线为平行双线传输线为例进行说明,但不排除其他类型的传输线。
一个可能的实现,第一反射面302还包括阻抗匹配单元,该阻抗匹配单元可以布置在收发单元3021与调相单元3022(例如,在收发单元3021与第一传输线30221或者,在收发单元3021与第二传输线30223或者,在收发单元3021与第一传输线30221和第二传输线30223)之间,用于实现收发单元3021与调相单元3022之间的良好阻抗匹配。换言之,在收发单元3021与调相单元3022之间阻抗匹配不良时,可以通过该阻抗匹配单元来改善收发单元3021与调相单元3022之间的阻抗匹配性能。阻抗匹配单元的结构可以见图4。
图4为本申请实施例中阻抗匹配单元的结构示意图。图4中的(a),收发单元3021与第一传输线30221之间有一个阻抗匹配单元,该阻抗匹配单元为一个梯形连续渐变结构,用于实现收发单元3021与第一传输线30221之间阻抗匹配;图4中的(b)中,收发单元3021与第一传输线30221之间有一个阻抗匹配单元,该阻抗匹配单元为两个梯形结构叠在一起(非连续渐变结构(也可以理解为离散结构)),用于实现收发单元3021与第一传输线30221之间阻抗匹配。收发单元3021与第二传输线30223,以及收发单元3021与第一传输线30221和第二传输线30223之间的阻抗匹配单元与前述阻抗匹配单元相同。
图4所示的阻抗匹配单元仅作为示例性理解,本申请实施例不限定阻抗匹配单元的具体结构样式。图4所示的阻抗匹配单元可以被集成在传输线中,也可以如图4所示的进行单独设计。
示例性地,该阻抗匹配单元可以被集成在调相单元3022中,或者,也可以单独设计,本申请实施例不限定。例如,该阻抗匹配单元包括阶梯式阻抗匹配。
收发单元3021与第一传输线30221和第二传输线30223均保持物理连接关系(非电磁空间耦合关系,比如通过缝隙实现收发单元与传输线之间的电磁耦合)。
一个可能的实现,第一反射面302还包括:
反射单元3023,用于改变信号的传输方向。例如,反射单元3023用于将信号的传输方向发生180°的改变。
其中,反射单元3023在调相单元3022的下方,即第一反射面302的结构从上往下依次包括:收发单元3021、调相单元3022和反射单元3023。具体可以见图5。
图5为本申请实施例中波束扫描反射面天线的另一种结构示意图。该天线中第一反射面302还包括反射单元3023。具体描述可以参见前文描述。图5所示天线的信号的传输路径是:
处于接收模式时,传输路径是:第二反射面303→第一反射面302→馈源阵列301;
处于发送模式时,传输路径是:馈源阵列301→第一反射面302→第二反射面303。
图5所示天线的信号的传输路径具体可以参考图5中实线箭头(发送信号)和虚线箭头(接收信号)分别所指的方向。
图5所示天线的工作原理为:当信号经由第二反射面303入射至第一反射面302的表面时,首先会被第一反射面302的收发单元3021捕获。由于收发单元3021与传输线保持物理连接关系,且能够实现良好的阻抗匹配(实现阻抗匹配的一种方式是阶梯式阻抗匹配),信号会进入传输线(包括第一传输线30221和第二传输线30223)并经由传输线到达反射单元3023(反射单元3023用于反射信号),之后,信号经过全反射,再次沿着传输线传输,并由收发单元3021将其发送出去。信号在传输线内的传输过程中,可以通过控制液晶层30222的偏置电压来改变液晶层30222的介电常数,使得传输线具有不同的传播常数,进而改变信号的相位,使入射信号的相位与出射信号的相位不同,最终达到调相目的。
更具体地说,可以通过获取信号的相位与液晶的介电常数之间的关系曲线,并基于该曲线以及所需要的补偿相位,将所需要的补偿相位与液晶的介电常数进行匹配,即可获得所需要的液晶的介电常数分布。如此,便能够基于上述结构实现对信号的调相功能。
一个可能的实现,第一反射面302包括相位可重构反射面,用于对入射或者反射在其表面的信号的相位进行补偿校正。换言之,第一反射面302用于对信号进行调相。
具体地,相位可重构反射面能够实现对入射或接收在其表面的信号的相位进行补偿校正。相位可重构反射面包括电子移相器。例如,基于液晶或者PIN管的移相电子器件。
示例性地,第一反射面302的口径大小可以为55mm。例如,第一反射面302的口面为正方形时,其边长为55mm;或者,第一反射面302的口面为圆形时,其直径为55mm。
第二反射面303可以采用标准的抛物面或者焦点具有一定偏移的环焦抛物面,例如,第二反射面303可以包括660mm口径的标准抛物面。第二反射面303是由金属材料加工而成,例如,铝或铜等。第二反射面303对信号的反馈形式包括正馈(是指第二反射面的焦点与第一反射面的焦点正相对)和偏馈(是指第二反射面的焦点与第一反射面的焦点偏移一定距离)两种形式。
在图5所示的天线中,第一反射面302的收发单元3021仅用于收发信号,不用于对信号进行调相,而是由非谐振调相单元对信号的相位进行补偿校正,如此,就可以解决现有技术中存在的天线工作带宽较窄以及损耗较高的问题。
一种实现方式中,调相单元3022为平行双线传输线结构,该传输线可以传输横向电磁波(transverse electromagnetic wave,TEM),该模式的信号理论上没有工作带宽的限制, 因此天线的工作带宽大小将只由收发单元3021的带宽大小决定。而现有技术的收发单元和调相单元是同一个部件,天线的工作带宽大小将由收发单元和调相单元的二者较小者决定,而一般情况下,谐振型单元的调相能力只在谐振处起作用,因此其工作带宽较窄。而采用本方案,就可以增加天线的工作带宽,并同时可以降低天线的损耗,从而保证通信系统的空口容量以及信号的传输距离,继而保证通信系统的通信质量。
图6为本申请实施例中调相单元的一种结构示意图。图6中的(a)中,第一传输线30221、液晶层30222和第二传输线30223沿垂直方向相对排列。如此,易于实现加工,且加工精度更容易把控。另外,采用垂直方向相对排列的结构可以采用堆叠方式进行加工,这可以实现更高的加工精度。图6中的(b)中,第一传输线30221、液晶层30222和第二传输线30223沿水平方向排列。如此,在水平方向布置传输线时可以任意设置传输线的长度,通过延长传输线的长度就可以增大调相范围,就可以更好地实现对信号进行调相的目的。
本申请实施例以与信号的入射方向(也可以是出射方向)相同的方向为垂直方向,以与信号的入射方向(也可以是出射方向)垂直的方向为水平方向为例进行说明,但不限定其他的可能形式。
一个可能的实现,该调相单元3022还包括第一基板30224和第二基板30225,第一传输线30221、液晶层30222和第二传输线30223在第一基板30224和第二基板30225之间。具体可以见图7。
图7为本申请实施例中调相单元的另一种结构示意图。图7中的(a)中,第一基板30224在第一传输线30221的上侧,第二基板30225在第二传输线30223的下侧。图7中的(b)中,第一基板30224在第一传输线30221的左侧,第二基板30225在第二传输线30223的右侧。或者说,液晶层30222与第一基板30224之间隔了第一传输线30221,液晶层30222与第二基板30225之间隔了第二传输线30223。
第一基板30224和第二基板30225的材料可以是玻璃,也可以是其他材料,例如,包括但不限于:石英和陶瓷等,其主要用于加工出所需要的收发单元3021和传输线(包括第一传输线30221和第二传输线30223)的图案。
本申请实施例可以通过电镀工艺在第一基板30224下表面和第二基板30225上表面加工出收发单元3021与第一传输线30221和第二传输线30223所需要的金属图案。
一个可能的实现,第一传输线30221包括至少一个枝节(stub),第二传输线30223包括至少一个枝节(stub)。通过在传输线布置枝节结构,并形成周期性或者非周期性分布(传输线的枝节数量多于三个时),本申请实施例就可以构建出左右手超材料传输线(左手材料是指电场强度、磁场强度和波矢三者的方向遵从左手定则的材料,右手材料是指电场强度、磁场强度和波矢三者的方向遵从右手定则的材料),从而增大传输线的等效电容值,而传输线的传播常数因此增大等效电容值可以增大传播常数,进而可以增大传输线的移相范围,其中,f为谐振频率,L为等效电路模型的电感值,C为等效电路模型的电容值。
图8为本申请实施例中传输线的一种结构示意图。图8中的(a)中,第一传输线30221包括至少一个枝节,当第一传输线30221包括至少三个枝节时,第一传输线30221的至少三个枝节之间可以呈周期性分布或者非周期性分布,本申请实施例不作限定。图8中的(b)中,第二传输线30223包括至少一个枝节,当第一传输线30221包括至少三个枝节时,第 二传输线30223的至少三个枝节之间可以呈周期性分布或者非周期性分布,本申请实施例也不作限定。图8中的(c)描述的是第一传输线30221和第二传输线30223的对应枝节之间存在位置偏移,相对偏移方向为y和z方向。图8中的(d)描述的是第一传输线30221与第二传输线30223之间的位置偏移的横向截面示意图,其中,图8中的(d)的虚线圆圈用于表示第一传输线30221与第二传输线30223之间的重叠区域Ⅰ,液晶层30222只有在该重叠区域中才能影响前述的传播常数。通过引入位置偏移,可以额外的引入调节参数,增大设计自由度,本申请实施例就可以通过控制枝节之间的位置偏移量实现更好地对信号进行调相和传输线的阻抗调节。
第一传输线30221和第二传输线30223的枝节数量可以根据所需要的移相量φ确定,移相量φ一般需要大于等于360°。具体确定流程如下:首先根据公式移相量φ=βL(此处β为传输线的传播常数,可以通过电磁仿真获取该物理量的大小;L为传输线的物理长度),然后通过L=φ/β=N*P,则可以得到枝节数量,此处P为枝节周期,N为枝节数量。示例性地,传输线的物理长度L和枝节周期P具体可以参见图8中的(a)和(b)所示。
示例性地,第一传输线30221和第二传输线30223的宽度一般为0.01~0.1波长。
示例性地,第一传输线30221和第二传输线30223的厚度一般为1um~20um之间。
一个可能的实现,第一传输线30221的枝节沿第一传输线30221呈周期性分布,即相邻两个枝节的大小和间距一致,如此,可以降低工艺设计上的难度。周期数量由所需要的移相量决定,周期数量大于等于1。第二传输线30223的枝节沿第二传输线30223呈周期性分布或者非周期性分布均可。
一个可能的实现,第二传输线30223的枝节沿第二传输线30223呈周期性分布,即相邻两个枝节的大小和间距一致,如此,可以降低工艺设计上的难度。周期数量由所需要的移相量决定,周期数量大于等于1。
一个可能的实现,第一传输线30221的枝节沿第一传输线30221呈非周期性分布,第二传输线30223的枝节沿第二传输线30223呈非周期性分布,即相邻两个枝节的大小和(或)间距不一致。如此,可以增大设计自由度,可以获得更大的移相范围和更低的传输损耗。
一个可能的实现,第一传输线30221的枝节结构和第二传输线的30223的枝节结构可以相同,也可以不同。该枝节结构包括但不限于:方形、长方形、三角形、多边形、半圆形、半椭圆形或者其他形状。
可选地,第一传输线30221的枝节和第二传输线30223的对应枝节之间不存在位置偏移。
可选地,第一传输线30221和第二传输线30223不具有枝节结构。
一个可能的实现,第一反射面302中收发单元3021包括端射天线。该端射天线包括但不限于:偶极子天线、维瓦尔迪天线或者八木天线等等。
其中,边射天线和端射天线是按照辐射方向图的指向来区分的。边射天线是最大辐射方向垂直于阵列直线或者阵平面,端射天线是最大辐射方向沿阵列直线或阵平面。
图9为本申请实施例中传输线的另一种结构示意图。图9中的(a)中,第一传输线30221包括第一传输段A(可以理解为第一传输段)、枝节A(可以理解为第一枝节)和第二传输段A(可以理解为第二传输段),第一传输段A与枝节A连接,第二传输段A不与枝节A连接。图9中的(b)中,第二传输线30223包括第一传输段B(可以理解为第三传输 段),枝节B(可以理解为第二枝节)和第二传输段B(可以理解为第四传输段),第一传输段B与枝节B连接,第二传输段B不与枝节B连接。第一传输线30221与第二传输线30223之间的排布关系可以参考图9中的(c)。
具体地,第一传输线30221的第一传输段A与第二传输线30223的第二传输段B相对布置,第一传输线30221的第二传输段A与第二传输线30223的第一传输段B相对布置,通过这样的结构方式,对比图8中的(d),第一传输线30221与第二传输线30223之间的重叠区域(包括重叠区域Ⅰ、重叠区域Ⅱ和重叠区域Ⅲ)面积得到增大,因此该传输线对信号的调相性能可以得到有效提升,本申请实施例可以增加液晶的有效工作范围,从而能够增大对信号的调相范围。另外,本申请实施例不限定每段传输段的宽度的具体数值。
图9中的(c)中所述的虚线圆圈分别用于表示第一传输线30221与第二传输线30223之间的重叠区域Ⅰ、重叠区域Ⅱ和重叠区域Ⅲ,液晶层30222只有在第一传输线30221和第二传输线30223之间的重叠区域中才能影响前述的传播常数。
图8和图9所示的是传输线的两种结构。具体来说,图8所示的传输线包括第一传输段与枝节,第一传输段与枝节连接。图9所示的传输线包括第一传输段、枝节和第二传输段,第一传输段与枝节连接,第二传输段不与枝节连接。
图10为本申请实施例中收发单元的结构示意图。图10中的(a)中,收发单元3021包括两端相连的偶极子天线,偶极子天线的两端由一根金属连接线(可以视为金属短路线)进行连接,如此,就可以用一根偏置线连接该金属连接线实现对偶极子天线进行控制,这简化了偏置线的设计,增加了偏置效率。图10中的(b)中,收发单元3021包括两端不相连且顶点互相重叠的偶极子天线,这可以使得收发单元结构紧凑,易于设计和加工。当偶极子天线的两个顶点重叠时,第一传输线30221和第二传输线30223分别与该偶极子天线的两端物理连接。图10中的(c)中,收发单元3021包括两端不相连且顶点不重叠的偶极子天线。
收发单元3021可以由高电导率材料加工而成,例如,铜、铝,银、金等。偶极子天线的长度初始值一般为工作频率的半波长,宽度为0.05~0.1波长,厚度为1um~20um之间。收发单元3021的两端需要分别与第一传输线30221和第二传输线30223保持物理连接关系。
为了实现收发单元3021与第一传输线30221和第二传输线30223之间的阻抗匹配,可以在二者之间引入前述的阻抗匹配单元,比如阶梯状阻抗匹配单元。具体可以参见图4所示内容,在此不再赘述。
图11为本申请实施例中天线系统的结构示意图。该天线系统包括:
馈源阵列301、第一反射面302、第二反射面303、馈源切换模块304、移相器偏置模块305、幅度控制模块306和相位控制模块307。
馈源切换模块304与馈源阵列301连接,用于切换馈源阵列301中的馈源。移相器偏置模块305与第一反射面302连接,用于驱动第一反射面302工作。移相器偏置模块305与相位控制模块307连接,相位控制模块307用于对电磁波信号进行调相。馈源切换模块304与幅度控制模块306连接,幅度控制模块306用于对天线的幅度进行补偿。
上文提到,馈源阵列301包括N个馈源。当N≥2时,该馈源阵列301会涉及多个馈源之间的切换,该切换工作是由馈源切换模块304辅助完成的。
具体地,馈源阵列301通过馈源切换模块304进行馈源工作模式的切换。馈源切换模块304一般地由基于电子开关的电子器件构成,比如,基于铁氧体或者PIN管的电子开关。馈源切换模块304的一端包括一个通道,其与单刀多掷开关的不动端连接,该单刀多掷开关的动端与馈源阵列301连接,用于选择相应的馈源。本申请实施例不限定馈源切换模块304的其他可能形式。移相器模块305用于实现动态调控第一反射面302的液晶层30222的介电常数,从而实现对信号的调相或者相位补偿等功能。
上述的幅度控制模块306和相位控制模块307可以是波束控制模块的组成模块。波束控制模块是用于对天线的波束进行控制的系统装置。波束控制模块308可以是一个中央处理器(central processing unit,CPU),也可以是特定集成电路(application specific integrated circuit,ASIC),或者是被配置成一个或多个集成电路,例如:一个或多个数字信号处理器(digital signal processor,DSP),或者,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。波束控制模块可以通过运行或执行软件程序和/或模块,以及调用数据,执行对幅度控制模块306和相位控制模块307进行控制的功能。
在图11所示的天线系统中,该天线系统工作在接收模式时,信号的传输路径为:第二反射面303→第一反射面302→馈源阵列301。该天线系统工作在发射模式时,电磁波的传播路径为:馈源阵列301→第一反射面302→第二反射面303。
其中,馈源阵列301与后端的射频设备相连,比如,基站的射频拉远单元(remote radio unit,RRU),或者,微波通信的室外单元(out door unit,ODU)设备。移相器偏置模块305一端与第一反射面302相连,另一端与相位控制模块307相连。馈源切换模块304一端与馈源阵列301相连,另一端与幅度控制模块306相连。相位控制模块307与幅度控制模块306为波束控制模块308的子模块,波束控制模块308可以通过运行或执行软件程序和/或模块以及调用数据,执行对相位控制模块307与幅度控制模块306进行控制的功能。
天线工作时,假设天线系统的预设波束扫描角度为[-θ00],馈源在该扫描方向所确定的平面内部署有N个,这里假设N为奇数,且N≥1,则馈源切换规则如下:
当波束扫描范围在[-θ0,-θ0+2θ0/N]]时,系统切换至编号为1的馈源;
当波束扫描范围在[-θ0+2θ0/N,-θ0+4θ0/N]时,系统切换至编号为2的馈源;
……
当波束扫描范围为[-4θ0/N,-2θ0/N]时,系统切换至编号为(N-1)/2的馈源;
特别的,当波束扫描范围为[-2θ0/N,2θ0/N]时,系统切换至编号为(N+1)/2的馈源;
当波束扫描范围为[2θ0/N,4θ0/N]时,系统切换至编号为(N+3)/2的馈源;
……
当波束扫描范围在[θ0-4θ0/N,θ0-2θ0/N]时,系统切换至编号为N-1的馈源;
当波束扫描范围在[θ0-2θ0/N,θ0]时,系统切换至编号为N的馈源;
以上馈源切换由幅度控制模块306进行控制,该切换规则预先保存于幅度控制模块306中。在完成馈源切换以后,再由相位控制模块307完成以下操作:
φ1=φ23,其中,
φ1是第一反射面302所需要的补偿相位,
φ2是波束扫描所对应的角度的入射平面波在第一反射面302产生的共轭场相位;
φ3是馈源入射至第一反射面302的相位分布。
其中φ2和φ3的数值可以预先存储在寄存器中,后期由相位控制模块307进行调用,或者也可以由相位控制模块307经过数值计算得出,计算公式可以预先保存于相位控制模块307中。
图12为本申请实施例中波束扫描馈源切换的示意图。如图12所示,N=3,馈源由右至左依次编号为1、2和3,θ0=5°。图10(a)中,扫描角度θ1为[-5,-1.667°]时,馈源1工作(收发信号)。图10(b)中,扫描角度θ1为[-1.667,1.667°]时,馈源2工作(收发信号)。图10c中,扫描角度θ1为[1.667°,5°]时,馈源3工作(收发信号)。
通过上述天线系统,本申请实施例通过采用相位控制模块与幅度控制模块实现幅度和相位补偿机制,就能增强天线的波束扫描性能,具体而言就是增大扫描范围,降低扫描增益损失,降低扫描方向图的旁瓣电平等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种波束扫描反射面天线,其特征在于,包括:
    馈源阵列、第一反射面以及第二反射面;
    所述馈源阵列包括至少一个馈源,所述第一反射面用于对信号进行调相,所述第二反射面用于收发所述信号,
    其中,所述第一反射面包括:
    收发单元,用于收发所述信号;
    调相单元,用于对所述信号进行调相,
    其中,所述调相单元包括:
    第一传输线、第二传输线以及液晶层,
    所述液晶层在所述第一传输线与所述第二传输线之间,
    所述第一传输线和所述第二传输线用于传输所述信号,
    所述液晶层用于控制在所述第一传输线和所述第二传输线之间传输的所述信号的传播常数。
  2. 根据权利要求1所述的天线,其特征在于,所述第一传输线、所述液晶层以及所述第二传输线沿水平方向排列。
  3. 根据权利要求2所述的天线,其特征在于,所述第一传输线包括至少一个枝节,所述第二传输线包括至少一个枝节。
  4. 根据权利要求3所述的天线,其特征在于,所述第一传输线包括至少三个枝节时,所述第一传输线的至少三个枝节沿所述第一传输线呈周期性分布。
  5. 根据权利要求3或4所述的天线,其特征在于,所述第二传输线包括至少三个枝节时,所述第二传输线的至少三个枝节沿所述第二传输线呈周期性分布。
  6. 根据权利要求2至5中任一项所述的天线,其特征在于,所述第一传输线的枝节与所述第二传输线的对应枝节之间存在位置偏移。
  7. 根据权利要求1至6中任一项所述的天线,其特征在于,所述收发单元包括端射天线。
  8. 根据权利要求7所述的天线,其特征在于,所述端射天线包括以下至少一种:
    偶极子天线、维瓦尔迪天线或者八木天线。
  9. 根据权利要求8所述的天线,其特征在于,所述偶极子天线包括以下至少一种:
    所述偶极子天线的两端相连,所述偶极子天线的两端不相连且顶点重叠,或者,所述偶极子天线的两端不相连且顶点不重叠。
  10. 一种天线系统,其特征在于,所述天线系统包括权利要求1至9中任一项所述的天线,所述天线系统还包括:
    移相器偏置模块、相位控制模块、幅度控制模块以及馈源切换模块;
    所述移相器偏置模块与所述第一反射面连接,所述移相器偏置模块用于驱动所述第一反射面工作;
    所述馈源切换模块与所述馈源阵列连接,所述馈源切换模块用于切换所述馈源阵列的 馈源;
    所述移相器偏置模块与所述相位控制模块连接,所述相位控制模块用于对所述信号进行调相;
    所述馈源切换模块与所述幅度控制模块连接,所述幅度控制模块用于对所述天线的幅度进行补偿。
PCT/CN2023/081891 2022-03-18 2023-03-16 一种波束扫描反射面天线与天线系统 WO2023174372A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210270682.2A CN116799505A (zh) 2022-03-18 2022-03-18 一种波束扫描反射面天线与天线系统
CN202210270682.2 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023174372A1 true WO2023174372A1 (zh) 2023-09-21

Family

ID=88022369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081891 WO2023174372A1 (zh) 2022-03-18 2023-03-16 一种波束扫描反射面天线与天线系统

Country Status (2)

Country Link
CN (1) CN116799505A (zh)
WO (1) WO2023174372A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474151A (zh) * 2019-09-16 2019-11-19 上海无线电设备研究所 一种基于液晶材料的折合平面反射阵天线
CN110739527A (zh) * 2018-07-19 2020-01-31 华为技术有限公司 一种波束重构方法、天线、微波设备和网络系统
EP3609017A1 (en) * 2018-08-06 2020-02-12 ALCAN Systems GmbH Radio frequency phase shifting device
CN112448106A (zh) * 2019-08-30 2021-03-05 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN113690554A (zh) * 2021-08-24 2021-11-23 电子科技大学 基于矢量正交法的液晶移相器及调控方法
CN114063329A (zh) * 2020-07-30 2022-02-18 株式会社日本显示器 相控阵天线的驱动方法以及反射板的驱动方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110739527A (zh) * 2018-07-19 2020-01-31 华为技术有限公司 一种波束重构方法、天线、微波设备和网络系统
EP3609017A1 (en) * 2018-08-06 2020-02-12 ALCAN Systems GmbH Radio frequency phase shifting device
CN112448106A (zh) * 2019-08-30 2021-03-05 京东方科技集团股份有限公司 馈电结构、微波射频器件及天线
CN110474151A (zh) * 2019-09-16 2019-11-19 上海无线电设备研究所 一种基于液晶材料的折合平面反射阵天线
CN114063329A (zh) * 2020-07-30 2022-02-18 株式会社日本显示器 相控阵天线的驱动方法以及反射板的驱动方法
CN113690554A (zh) * 2021-08-24 2021-11-23 电子科技大学 基于矢量正交法的液晶移相器及调控方法

Also Published As

Publication number Publication date
CN116799505A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
Uchendu et al. Survey of beam steering techniques available for millimeter wave applications
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
US7391377B2 (en) Polarization switching/variable directivity antenna
US7541999B2 (en) Polarization switching/variable directivity antenna
CN106129593B (zh) 一种二维宽角度扫描的全金属相控阵雷达天线单元
JP4976477B2 (ja) 平面再構成可能アンテナ
US20200244327A1 (en) Spherical coverage antenna systems, devices, and methods
EP4007067A1 (en) Antenna unit and electronic device
CN109193154B (zh) 一种毫米波圆极化多波束平板圆柱介质透镜天线
CN109638428A (zh) 一种应用于5g的新一代通信天线
JP2004015408A (ja) スロットアレーアンテナ
WO2021244158A1 (zh) 双极化天线及客户前置设备
CN116349090A (zh) 喇叭天线元件
JPWO2008018230A1 (ja) アンテナ装置
WO2023174372A1 (zh) 一种波束扫描反射面天线与天线系统
WO2023134429A1 (zh) 天线结构以及天线系统
KR101432748B1 (ko) Lc(인덕터와 커패시터) 회로의 소형 영차 공진 안테나
JP2005286854A (ja) 偏波切換え機能を有するアンテナ
CN110739536B (zh) 半模Vivaldi天线及小型化大角度频扫天线阵列
CN112332106B (zh) 一种极化和相位360度可调的透镜单元
Das et al. Digitally Coded Metasurface Lens Antenna for Millimeter Wave Applications
Kang et al. 57‐2: Glass‐embedded Electromagnetic Surface for Energy‐Saving Future Wireless Communication
CN218919284U (zh) 一种天线单元、天线及通信设备
Qasem et al. Dual-Band Millimeter-Wave Beam Scanning Slotted Square Patch Antenna Based on Active Frequency Selective Surfaces for 5G Applications
Esmail et al. Dual beam Yagi antenna using novel metamaterial structure at 5G band of 28 GHz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769874

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023769874

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023769874

Country of ref document: EP

Effective date: 20240829