WO2023134429A1 - 天线结构以及天线系统 - Google Patents

天线结构以及天线系统 Download PDF

Info

Publication number
WO2023134429A1
WO2023134429A1 PCT/CN2022/141678 CN2022141678W WO2023134429A1 WO 2023134429 A1 WO2023134429 A1 WO 2023134429A1 CN 2022141678 W CN2022141678 W CN 2022141678W WO 2023134429 A1 WO2023134429 A1 WO 2023134429A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiating arm
conductor
mentioned
unit
Prior art date
Application number
PCT/CN2022/141678
Other languages
English (en)
French (fr)
Inventor
杨君宇
Original Assignee
联洲集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联洲集团有限公司 filed Critical 联洲集团有限公司
Publication of WO2023134429A1 publication Critical patent/WO2023134429A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/01Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the shape of the antenna or antenna system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present disclosure relates to the field of antennas, and in particular, to an antenna structure and an antenna system.
  • the antenna is an indispensable part of the wireless communication system. With the rapid development of information technology and wireless communication technology, the antenna technology is also developing rapidly. In order to improve the communication quality of the wireless communication system and reduce the cost of the wireless communication system, multi-functional Miniaturization, planarization, and ultra-wide bandwidth have become the mainstream trends in antenna design. In order to realize the multi-function of wireless communication antenna system, reconfigurable antenna technology has become one of the key technologies of modern wireless communication antenna, and it is also a research hotspot in the field of antenna theory and design. The polarization reconfigurable antenna is the focus of research, because it can switch the polarization mode with the best communication quality in real time according to the change of the communication environment, reduce the loss caused by polarization mismatch to the wireless communication system, and improve the communication quality.
  • Polarization reconfigurable antennas have been proposed in the prior art, however, no solution has been given yet on how to implement antenna pattern reconfiguration to adapt to complex communication environments.
  • the main purpose of the present disclosure is to provide an antenna structure and an antenna system to solve the problem in the prior art that there is no method for reconfiguring the pattern of the antenna.
  • an antenna structure includes a dielectric substrate, a parallel pair of wires, a first dipole antenna, a second dipole antenna, and a reconstruction structure
  • the dielectric substrate includes an opposite front and a back
  • the parallel double wires include a front conductor and a back conductor, the front conductor is located on the front, and the back conductor is located on the back
  • the antenna includes a first radiating arm and a second radiating arm
  • the second dipole antenna includes a third radiating arm and a fourth radiating arm, the first radiating arm and the third radiating arm are located on the front side, so The second radiating arm and the fourth radiating arm are located on the back, and the first radiating arm and the third radiating arm are respectively connected to the front conductor, and the second radiating arm and the fourth radiating arm are respectively connected to the front conductor.
  • the radiating arms are respectively connected to the back conductors;
  • the reconstruction structure includes a front unit, a back unit and a switching device, the front unit is located between the first radiating arm and the third radiating arm, and the front The first end of the unit is connected to the front conductor; the back unit is located between the second radiating arm and the fourth radiating arm, and the first end of the back unit is connected to the back conductor;
  • the first end of the switching device is electrically connected to the second end of the front unit, and the second end of the switching device is electrically connected to the second end of the rear unit; wherein, the parallel double wires are used to transmit radio frequency A signal and a control signal, the control signal is a signal for controlling the switching state of the switching device.
  • the antenna structure further includes a signal feed point and a reference point, wherein the signal feed point is located on the front side and on the same side of the first radiating arm and the third radiating arm, and the signal The feed point is connected to the front conductor; the reference point is located on the back and on the same side of the second radiating arm and the fourth radiating arm, the reference point is connected to the back conductor, and the signal The feed point and the reference point are respectively used to connect with the coaxial line, so as to receive the radio frequency signal and the control signal through the coaxial line.
  • the front unit is perpendicular to the front conductor
  • the rear unit is perpendicular to the rear conductor
  • the lengths of the front conductor and the back conductor are respectively predetermined wavelengths
  • the predetermined wavelength is a wavelength corresponding to the working frequency band of the antenna structure
  • the first end of the front unit is located at the front conductor
  • the first end of the back unit is located in the middle of the back conductor
  • the length of the front unit and the length of the back unit are respectively a quarter of the predetermined wavelength.
  • the first dipole antenna is an H-type dipole
  • the second dipole antenna is an H-type dipole
  • the first radiating arm and the third radiating arm are respectively axisymmetric to the front conductor, and the second radiating arm and the fourth radiating arm are respectively axisymmetric to the rear conductor.
  • the switching device is a PIN diode, a varactor diode or a MEMS (Micro Electro Mechanical Systems, Micro Electro Mechanical Systems) switch.
  • MEMS Micro Electro Mechanical Systems, Micro Electro Mechanical Systems
  • the switch device when the switch device is turned on, the first dipole antenna and the second dipole antenna work simultaneously, and when the switch device is turned off, the first dipole antenna Either the dipole antenna or the second dipole antenna operates.
  • an antenna system including the antenna structure described above.
  • the antenna structure includes a signal feed point and a reference point
  • the antenna system further includes a coaxial line, and the coaxial line is respectively connected to the signal feed point and the reference point.
  • the antenna structure includes a dielectric substrate, parallel twin wires, a first dipole antenna, a second dipole antenna, and a reconstruction structure, wherein the dielectric substrate includes opposite front surfaces and rear surfaces;
  • the parallel pair includes a front conductor and a back conductor;
  • the first dipole antenna includes a first radiating arm and a second radiating arm, and the second dipole antenna includes a third radiating arm and a fourth radiating arm;
  • the reconstruction structure includes a front unit, a back unit and a switch device; two ends of the switch device are respectively connected to the front unit and the back unit; the parallel double lines are used for transmitting radio frequency signals and control signals.
  • the antenna structure of the present disclosure controls the closing of the switching device through the control signal, so as to reduce the impedance of the reconstruction structure or The phase value is introduced into the antenna structure, thereby changing the shape of the directional pattern, realizing the switching of the gain size and the switching of the elevation angle of the radiation beam, and realizing the reconstruction of the directional pattern of the antenna.
  • both the radio frequency signal and the control signal are transmitted by the parallel two-wire, that is, the wireless performance of the same transmission structure and the multiplexing of the control signal are realized, and the influence of the control circuit on the antenna radiation is alleviated.
  • the present disclosure simplifies the design and ensures that the manufacturing cost of the antenna structure is low.
  • the switching device is loaded between the front unit and the rear unit instead of on the main radiation structure of the antenna, the influence of the insertion loss of the switching device on the performance of the antenna is also alleviated.
  • FIG. 1 shows a schematic diagram of an antenna structure according to an embodiment of the present disclosure
  • FIG. 2 shows a specific schematic diagram of an antenna structure according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of radiation directions on a pitch plane of an antenna structure according to an embodiment of the present disclosure
  • Fig. 4 shows a schematic diagram of a horizontal plane radiation direction of an antenna structure according to an embodiment of the present disclosure
  • Fig. 5 shows a schematic diagram of the relationship between frequency and return loss according to an embodiment of the present disclosure.
  • the prior art lacks a method for reconfiguring the pattern of the antenna.
  • the present disclosure proposes an antenna structure and an antenna system.
  • an antenna structure is provided.
  • the above-mentioned dielectric substrate 10 includes an opposite front surface 101 and a back surface 102;
  • the above-mentioned parallel double wires 20 include a front conductor 201 and a back conductor 202, and the above-mentioned front conductor 201 is located on the above-mentioned front surface 101, the back conductor 202 is located on the back 102;
  • the first dipole antenna 30 includes a first radiating arm 301 and a second radiating arm 302, and the second dipole antenna 40 includes a third radiating arm 401 and a fourth radiating arm 401.
  • the reconstruction structure 50 includes a front unit 501, a rear unit 502 and a switching device 503,
  • the front unit 501 is located between the first radiating arm 301 and the third radiating arm 401, and the first end of the front unit 501 is connected to the front conductor 201;
  • the back unit 502 is located between the second radiating arm 302 and the above-mentioned between the fourth radiating arms 402, and the first end of the above-mentioned back unit 502 is connected to the above-mentioned back conductor 202;
  • the two ends are electrically connected to the second end of the rear unit 502;
  • the above-mentioned antenna structure includes a dielectric substrate, parallel double wires, a first dipole antenna, a second dipole antenna, and a reconstruction structure, wherein the above-mentioned dielectric substrate includes opposite front and back sides; the above-mentioned parallel double wires include front conductors and The back conductor; the above-mentioned first dipole antenna includes a first radiating arm and a second radiating arm, and the above-mentioned second dipole antenna includes a third radiating arm and a fourth radiating arm; the above-mentioned reconstruction structure includes a front unit, a back unit and A switch device; both ends of the switch device are respectively connected to the front unit and the back unit; the parallel double wires are used to transmit radio frequency signals and control signals.
  • the above-mentioned antenna structure of the present disclosure controls the closing of the above-mentioned switch device through the above-mentioned control signal, so as to introduce the impedance or phase value of the above-mentioned reconstructed structure into the above-mentioned
  • the antenna structure changes the shape of the directional pattern, realizes the switching of the gain size and the switching of the pitch angle of the radiation beam, and realizes the reconstruction of the directional pattern of the antenna.
  • the above-mentioned radio frequency signal and the above-mentioned control signal are both transmitted by the above-mentioned parallel two-wire, that is, the wireless performance of the same transmission structure and the multiplexing of the control signal are realized, and the influence of the control circuit on the antenna radiation is alleviated.
  • the existing control signals and radio frequency signals are transmitted in different ways, but the present disclosure simplifies the design and ensures that the manufacturing cost of the above-mentioned antenna structure is relatively low.
  • the switching device is loaded between the front unit and the rear unit instead of on the main radiation structure of the antenna, the influence of the insertion loss of the switching device on the performance of the antenna is alleviated.
  • the above-mentioned dielectric substrate includes PTFE (Poly Tetra Fluor ethylene, polytetrafluoroethylene) PCB (Printed Circuit Board, printed circuit board), of course, it can also be other board materials.
  • PTFE Poly Tetra Fluor ethylene, polytetrafluoroethylene
  • PCB printed Circuit Board, printed circuit board
  • the second end of the first short section and the second end of the second short section are connected through the metallized via hole on the dielectric substrate, and the switching device is placed.
  • the above-mentioned antenna structure further includes a signal feed point 60 and a reference point 70, wherein the above-mentioned signal feed point 60 is located on the above-mentioned front 101 and is located on the above-mentioned first radiating arm 301 and On the same side of the third radiation arm 401, the signal feed point 60 is connected to the front conductor 201;
  • the reference point 70 is connected to the back conductor 202 , and the signal feed point 60 and the reference point 70 are respectively used to connect with the coaxial line to receive the radio frequency signal and the control signal through the coaxial line.
  • the above-mentioned signal feeding point and the above-mentioned reference point receive the above-mentioned radio frequency signal and the above-mentioned control signal through the above-mentioned coaxial line, so that while further ensuring the stable transmission of the radio frequency signal, it is further realized to control the switching of the switching device through the input of electrical signals State, and then the purpose of reconstructing the pattern of the antenna.
  • the coaxial cable includes an inner conductor and an outer conductor, the inner conductor of the coaxial cable is connected to the signal feed point of the dielectric substrate, and the outer conductor of the coaxial cable is connected to the reference point of the dielectric substrate.
  • the above-mentioned signal feeding point is used as the input point of the above-mentioned control signal and the above-mentioned radio frequency signal
  • the above-mentioned reference point is used as the reference ground of the above-mentioned radio-frequency signal and the low-potential reference point of the control signal.
  • the above-mentioned radio-frequency signal is stably input, and by changing the input value of the control level,
  • the above-mentioned switch device is turned on and off, thereby changing the impedance or phase input of the reconstructed structure, thereby changing the pattern of the antenna.
  • the above-mentioned front unit may not be perpendicular to the above-mentioned front conductor, and the above-mentioned back unit may not be perpendicular to the above-mentioned back conductor.
  • other additional structures need to be provided to adjust the non-vertical state to the vertical state. performance.
  • the lengths of the front conductor and the back conductor are respectively predetermined wavelengths
  • the predetermined wavelength is a wavelength corresponding to the working frequency band of the antenna structure
  • the first end of the front unit is located at the front In the middle of the conductor
  • the first end of the above-mentioned back unit is located in the middle of the above-mentioned back conductor, that is, the above-mentioned front unit and the above-mentioned back unit are respectively located at 1/2 predetermined wavelength positions
  • the length of the above-mentioned front unit and the length of the above-mentioned back unit are respectively the above-mentioned a quarter of the predetermined wavelength.
  • the first dipole antenna is an H-type dipole
  • the second dipole antenna is an H-type dipole
  • the above-mentioned first radiating arm 301 and the above-mentioned third radiating arm 401 are respectively axisymmetric to the above-mentioned front conductor 201, and the above-mentioned second radiating arm 302 and the above-mentioned fourth radiating arm
  • the arms 402 are respectively axisymmetric with respect to the aforementioned back conductor 202 .
  • the positional relationship between the above-mentioned first radiating arm and the above-mentioned third radiating arm is not limited to the above-mentioned axis symmetry with respect to the front conductor
  • the positional relationship between the above-mentioned second radiating arm and the above-mentioned fourth radiating arm is not limited to the above-mentioned It is axisymmetric with respect to the above-mentioned back conductor.
  • the above switching device may be any suitable two-terminal switch in the prior art, such as a diode.
  • the above switching device is a PIN diode, a varactor diode or a MEMS switch.
  • the reconstruction structure is used for impedance adjustment as a variable impedance loading section; when the switching device is a varactor diode, the reconstruction structure is used for impedance adjustment and phase shifting as a phase shifting part.
  • the above-mentioned PIN diode is a diode with a P-I-N structure formed by adding a thin low-doped intrinsic (Intrinsic) semiconductor layer between P and N semiconductor materials.
  • the above-mentioned first dipole antenna and the above-mentioned first dipole antenna need the above-mentioned parallel two-wire feeding, and the above-mentioned PIN diode/varactor diode needs the above-mentioned control signal to generate a potential difference, and is loaded through a variable impedance Section (for the above-mentioned PIN diode), or the design of the phase-shifting section (for the above-mentioned varactor diode), the above-mentioned front conductor and the above-mentioned back conductor as the transmission line can be used as the control signal input line of the above-mentioned PIN tube at the same time, and welded by the front
  • the radio frequency coaxial line feeds the above radio frequency signal and the above control signal at the same time, realizes the multiplexing of wireless performance and control signals of the same transmission structure, greatly reduces the influence of the control circuit on the antenna radiation, and at the same time simplifies the design and reduces the
  • the first dipole antenna and the second dipole antenna work simultaneously; when the switching device is turned off, the first dipole antenna The dipole antenna or the above-mentioned second dipole antenna works.
  • the above-mentioned signal feed point and the above-mentioned reference point are respectively located on the side of the above-mentioned first dipole antenna away from the above-mentioned second dipole antenna.
  • the input impedance is infinitely small, and the The function of current balance, the above-mentioned first dipole antenna and the above-mentioned second dipole antenna work at the same time;
  • the input impedance is infinite, and the signal is totally reflected there, and only the above-mentioned first dipole antenna works.
  • a varactor diode when the input level is low, the above-mentioned switching device is turned off, and the above-mentioned reconstructed structure is equivalent to a parallel 1/4 wavelength open line.
  • the input impedance is infinite, the signal is totally reflected there, and only the above-mentioned first dipole antenna works.
  • the input control level corresponds to the conduction of the strain capacitance diode and no capacitance is introduced, the above-mentioned switching device is turned on, and there is no capacitance loading.
  • the above-mentioned reconstruction structure is equivalent to a parallel 1/4 wavelength short-circuit line.
  • the above-mentioned first dipole antenna and the above-mentioned second dipole antenna work at the same time; when the input control level corresponds to the conduction of the strain capacitance diode and the capacitance is introduced, The above-mentioned switching device is turned on, and there is a capacitive load, and the current phase is advanced.
  • the above-mentioned reconstruction structure is equivalent to a parallel 1/4 wavelength open line, and at the same time, it also has a phase-shifting effect. In other words, the input impedance is infinitely small, the above-mentioned first dipole antenna and the above-mentioned second dipole antenna work at the same time, and they are fed by unequal phases.
  • the above-mentioned switching device when the above-mentioned switching device is turned off, the above-mentioned reconstruction structure is in an open circuit state, and the impedance introduced at this point is infinite.
  • the signal reaches the parallel position of the above-mentioned reconstruction structure, total reflection will occur, and only the above-mentioned first dipole
  • the antenna works to achieve a low-gain wide-beam pattern; as shown in Figure 2, when a DC bias voltage is applied to the inner core of the coaxial line, the switch is turned on at this time, and the above-mentioned reconstructed structure is in a short-circuit state, and the impedance introduced at this point is infinitesimal , the stub does not affect the original structure, and the above-mentioned first dipole antenna and the above-mentioned second dipole antenna work simultaneously to realize a high-gain narrow beam mode.
  • the return loss of the antenna in the 5.15-5.5GHz frequency band is less than -10dB when the switching device is turned on and off, and better matching and radiation efficiency can be obtained.
  • the above-mentioned antenna structure can realize omnidirectional radiation on the azimuth plane.
  • the home WIFI communication system can work in the 2-7GHz frequency band, omnidirectional radiation on the azimuth plane, adjustable beam inclination angle on the elevation plane, and the antenna Gain and beam width are adjustable, suitable for household communication products.
  • an antenna system including the above antenna structure.
  • the above antenna system including the above antenna structure, lacks a method for reconfiguring the antenna pattern in the prior art.
  • the above control signal is used to control the closing of the above switch device, so that the above reconfiguration
  • the impedance or phase value of the structural structure is introduced into the above antenna structure, thereby changing the shape of the pattern, realizing the switching of the gain size and the switching of the pitch angle of the radiation beam, and realizing the reconstruction of the pattern of the antenna.
  • the above-mentioned radio frequency signal and the above-mentioned control signal are both transmitted by the above-mentioned parallel two-wire, that is, the wireless performance of the same transmission structure and the multiplexing of the control signal are realized, and the influence of the control circuit on the antenna radiation is alleviated.
  • the existing control signals and radio frequency signals are transmitted in different ways, but the present disclosure simplifies the design and ensures that the manufacturing cost of the above-mentioned antenna structure is relatively low.
  • the switching device is loaded between the front unit and the rear unit instead of on the main radiation structure of the antenna, the influence of the insertion loss of the switching device on the performance of the antenna is alleviated.
  • the size of the above-mentioned antenna system is 90mm*12mm*0.75mm, which is small in size and suitable for miniaturized terminal communication products.
  • the above-mentioned antenna structure includes a signal feed point and a reference point
  • the above-mentioned antenna system further includes a coaxial line
  • the above-mentioned coaxial line includes an inner conductor and an outer conductor
  • the inner conductor of the above-mentioned coaxial line is connected to the above-mentioned
  • the signal feed point is connected
  • the outer conductor of the above-mentioned coaxial line is connected to the above-mentioned reference point.
  • the above-mentioned antenna structure of the present disclosure includes a dielectric substrate, a parallel pair of wires, a first dipole antenna, a second dipole antenna, and a reconstruction structure, wherein the above-mentioned dielectric substrate includes opposite front and back sides; the above-mentioned parallel The double line includes parallel front conductors and back conductors; the first dipole antenna includes a first radiating arm and a second radiating arm, and the second dipole antenna includes a third radiating arm and a fourth radiating arm; the above-mentioned reconstruction
  • the structure includes a front unit, a back unit and a switch device; the two ends of the switch device are respectively connected to the front unit and the back unit; the parallel double lines are used to transmit radio frequency signals and control signals.
  • the above-mentioned antenna structure of the present disclosure controls the closing of the above-mentioned switch device through the above-mentioned control signal, so as to introduce the impedance or phase value of the above-mentioned reconstructed structure into the above-mentioned
  • the antenna structure changes the shape of the directional pattern, realizes the switching of the gain size and the switching of the pitch angle of the radiation beam, and realizes the reconstruction of the directional pattern of the antenna.
  • the above-mentioned radio frequency signal and the above-mentioned control signal are both transmitted by the above-mentioned parallel two-wire, that is, the wireless performance of the same transmission structure and the multiplexing of the control signal are realized, and the influence of the control circuit on the antenna radiation is alleviated.
  • the existing control signals and radio frequency signals are transmitted in different ways, but the present disclosure simplifies the design and ensures that the manufacturing cost of the above-mentioned antenna structure is relatively low.
  • the switching device is loaded between the front unit and the rear unit instead of on the main radiation structure of the antenna, the influence of the insertion loss of the switching device on the performance of the antenna is alleviated.
  • the above-mentioned antenna system of the present disclosure includes the above-mentioned antenna structure. Compared with the problem of lack of a method for reconfiguring the antenna pattern in the prior art, the above-mentioned antenna system of the present disclosure controls the operation of the above-mentioned switching device through the above-mentioned control signal. Closed to introduce the impedance or phase value of the above-mentioned reconstruction structure into the above-mentioned antenna structure, thereby changing the shape of the pattern, realizing the switching of the gain size and the switching of the pitch angle of the radiation beam, and realizing the reconstruction of the pattern of the antenna.
  • the above-mentioned radio frequency signal and the above-mentioned control signal are both transmitted by the above-mentioned parallel two-wire, that is, the wireless performance of the same transmission structure and the multiplexing of the control signal are realized, and the influence of the control circuit on the antenna radiation is alleviated.
  • the existing control signals and radio frequency signals are transmitted in different ways, but the present disclosure simplifies the design and ensures that the manufacturing cost of the above-mentioned antenna structure is relatively low.
  • the switching device is loaded between the front unit and the rear unit instead of on the main radiation structure of the antenna, the influence of the insertion loss of the switching device on the performance of the antenna is alleviated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本公开提供了一种天线结构以及天线系统,天线结构包括介质基板、平行双线、第一偶极子天线、第二偶极子天线以及重构结构,其中,介质基板包括相对的正面以及背面;平行双线包括平行的正面导体以及背面导体;第一偶极子天线包括第一辐射臂以及第二辐射臂,第二偶极子天线包括第三辐射臂以及第四辐射臂;重构结构包括正面单元、背面单元以及开关器件;开关器件的两端分别与正面单元以及背面单元连接;平行双线用于传输射频信号以及控制信号。通过控制信号控制开关器件的闭合,以将重构结构的阻抗或者相位值引入天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现对天线的方向图进行重构。

Description

天线结构以及天线系统
本公开以2022年1月13日递交的、申请号为202210039312.8且名称为“天线结构以及天线系统”以及2022年1月30日递交的、申请号为202210114584.X且名称为“天线结构以及天线系统”的两件专利文件为优先权文件,该两件专利文件的全部内容通过引用结合在本公开中。
技术领域
本公开涉及天线领域,具体而言,涉及一种天线结构以及天线系统。
背景技术
天线是无线通信系统中不可或缺的一部分,随着信息技术和无线通信技术的高速发展,天线技术也相应地迅猛发展,为了提高无线通信系统的通信质量、降低无线通信系统的成本,多功能化、小型化、平面化和超宽宽带成为天线设计的主流趋势。为了实现无线通信天线系统的多功能化,可重构天线技术成为现代无线通信天线关键技术之一,也是天线理论与设计领域研究的热点。而极化可重构天线是研究的重点,因为它可以根据通信环境改变而实时切换通信质量最佳的极化方式,降低极化失配对无线通信系统带来的损耗,提高通信质量。
现有技术中提出了极化可重构天线,但是,如何实现天线的方向图重构,以适应复杂的通信环境,目前仍未给出解决方案。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本公开的主要目的在于提供一种天线结构以及天线系统,以解决现有技术中缺少对天线进行方向图重构的方法的问题。
为了实现所述目的,根据本公开的一个方面,提供了一种天线结构,所述天线结构包括介质基板、平行双线、第一偶极子天线、第二偶极子天线以及重构结构,其中,所述介质基板包括相对的正面以及背面;所述平行双线包括正面导体以及背面导体,所述正面导体位于所述正面,所述背面导体位于所述背面;所述第一偶极子天线包括第一辐射臂以及第二辐射臂,所述第二偶极子天线包括第三辐射臂以及第四辐射臂, 所述第一辐射臂以及所述第三辐射臂位于所述正面,所述第二辐射臂以及所述第四辐射臂位于所述背面,且所述第一辐射臂与所述第三辐射臂分别与所述正面导体连接,所述第二辐射臂以及所述第四辐射臂分别与所述背面导体连接;所述重构结构包括正面单元、背面单元以及开关器件,所述正面单元位于所述第一辐射臂与所述第三辐射臂之间,且所述正面单元的第一端与所述正面导体连接;所述背面单元位于所述第二辐射臂与所述第四辐射臂之间,且所述背面单元的第一端与所述背面导体连接;所述开关器件的第一端与所述正面单元的第二端电连接,所述开关器件的第二端与所述背面单元的第二端电连接;其中,所述平行双线用于传输射频信号以及控制信号,所述控制信号为控制所述开关器件的开关状态的信号。
可选地,所述天线结构还包括信号馈点以及参考地点,其中,所述信号馈点位于所述正面且位于所述第一辐射臂以及所述第三辐射臂的同一侧,所述信号馈点与所述正面导体连接;所述参考地点位于所述背面且位于所述第二辐射臂以及所述第四辐射臂的同一侧,所述参考地点与所述背面导体连接,所述信号馈点以及所述参考地点分别用于与同轴线连接,以通过所述同轴线接收所述射频信号以及所述控制信号。
可选地,所述正面单元与所述正面导体垂直,所述背面单元与所述背面导体垂直。
可选地,所述正面导体与所述背面导体的长度分别为预定波长,所述预定波长为所述天线结构的工作频段对应的一个波长,所述正面单元的第一端位于所述正面导体的中部,所述背面单元的第一端位于所述背面导体的中部,所述正面单元的长度以及所述背面单元的长度分别为所述预定波长的四分之一。
可选地,所述第一偶极子天线为H型偶极子,所述第二偶极子天线为H型偶极子。
可选地,所述第一辐射臂以及所述第三辐射臂分别关于所述正面导体轴对称,所述第二辐射臂以及所述第四辐射臂分别关于所述背面导体轴对称。
可选地,所述开关器件为PIN二极管、变容二极管或者MEMS(Micro Electro Mechanical Systems,微电子机械系统)开关。
可选地,在所述开关器件导通的情况下,所述第一偶极子天线与所述第二偶极子天线同时工作,在所述开关器件关闭的情况下,所述第一偶极子天线或者所述第二偶极子天线工作。
根据本公开的另一方面,提供了一种天线系统,包括所述的天线结构。
可选地,所述天线结构包括信号馈点以及参考地点,所述天线系统还包括同轴线,所述同轴线分别与所述信号馈点以及所述参考地点连接。
应用本公开的技术方案,所述天线结构包括介质基板、平行双线、第一偶极子天线、第二偶极子天线以及重构结构,其中,所述介质基板包括相对的正面以及背面;所述平行双线包括正面导体以及背面导体;所述第一偶极子天线包括第一辐射臂以及第二辐射臂,所述第二偶极子天线包括第三辐射臂以及第四辐射臂;所述重构结构包括正面单元、背面单元以及开关器件;所述开关器件的两端分别与所述正面单元以及所述背面单元连接;所述平行双线用于传输射频信号以及控制信号。相比现有技术中缺少对天线进行方向图重构的方法的问题,本公开的所述天线结构,通过所述控制信号控制所述开关器件的闭合,以将所述重构结构的阻抗或者相位值引入所述天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现了对天线的方向图进行重构。并且,本公开中,所述射频信号与所述控制信号均由所述平行双线传输,即实现了同一传输结构的无线性能和控制信号的复用,缓解了控制电路对天线辐射的影响,同时相比现有的通过不同方式传输控制信号以及射频信号,本公开简化了设计,保证了所述天线结构的制作成本较低。同时,由于所述开关器件加载在所述正面单元以及所述背面单元之间,而非天线主辐射结构上,这样也缓解了开关器件插损对天线性能的影响。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的实施例的天线结构示意图;
图2示出了根据本公开的实施例的天线结构具体示意图;
图3示出了根据本公开的实施例的天线结构的俯仰面辐射方向示意图;
图4示出了根据本公开的实施例的天线结构的水平面辐射方向示意图;
图5示出了根据本公开的实施例的频率与回波损耗关系示意图。
其中,上述附图包括以下附图标记:
10、介质基板;20、平行双线;30、第一偶极子天线;40、第二偶极子天线;50、重构结构;60、信号馈点;70、参考地点;101、正面;102、背面;201、正面导体;202、背面导体;301、第一辐射臂;302、第二辐射臂;401、第三辐射臂;402、第四辐射臂;501、正面单元;502、背面单元;503、开关器件。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术所介绍的,现有技术中缺少对天线进行方向图重构的方法的问题,为了解决如上问题,本公开提出了一种天线结构以及天线系统。
根据本公开的一种典型的实施例,提供了一种天线结构,如图1所示,上述天线结构包括介质基板10、平行双线20、第一偶极子天线30、第二偶极子天线40以及重构结构50,其中,如图2所示,上述介质基板10包括相对的正面101以及背面102;上述平行双线20包括正面导体201以及背面导体202,上述正面导体201位于上述正面101,上述背面导体202位于上述背面102;上述第一偶极子天线30包括第一辐射臂301以及第二辐射臂302,上述第二偶极子天线40包括第三辐射臂401以及第四辐射臂402,上述第一辐射臂301以及上述第三辐射臂401位于上述正面101,上述第二辐射臂302以及上述第四辐射臂402位于上述背面102,且上述第一辐射臂301与上述第三辐射臂401分别与上述正面导体201连接,上述第二辐射臂302以及上述第四辐射臂402分别与上述背面导体202连接;上述重构结构50包括正面单元501、背面单元502以及开关器件503,上述正面单元501位于上述第一辐射臂301与上述第三辐射臂401之间,且上述正面单元501的第一端与上述正面导体201连接;上述背面单元502位于上述第二辐射臂302与上述第四辐射臂402之间,且上述背面单元502的第一端与上述背面导体202连接;上述开关器件503的第一端与上述正面单元501的第二端电连接,上述开关器件503的第二端与上述背面单元502的第二端电连接;其中,上述平行双线20用于传输射频信号以及控制信号,上述控制信号为控制上述开关器件的开关状态的信号。
上述天线结构,包括介质基板、平行双线、第一偶极子天线、第二偶极子天线以及重构结构,其中,上述介质基板包括相对的正面以及背面;上述平行双线包括正面 导体以及背面导体;上述第一偶极子天线包括第一辐射臂以及第二辐射臂,上述第二偶极子天线包括第三辐射臂以及第四辐射臂;上述重构结构包括正面单元、背面单元以及开关器件;上述开关器件的两端分别与上述正面单元以及上述背面单元连接;上述平行双线用于传输射频信号以及控制信号。相比现有技术中缺少对天线进行方向图重构的方法的问题,本公开的上述天线结构,通过上述控制信号控制上述开关器件的闭合,以将上述重构结构的阻抗或者相位值引入上述天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现了对天线的方向图进行重构。并且,本公开中,上述射频信号与上述控制信号均由上述平行双线传输,即实现了同一传输结构的无线性能和控制信号的复用,缓解了控制电路对天线辐射的影响,同时相比现有的通过不同方式传输控制信号以及射频信号,本公开简化了设计,保证了上述天线结构的制作成本较低。同时,由于上述开关器件加载在上述正面单元以及上述背面单元之间,而非天线主辐射结构上,这样也缓解了开关器件插损对天线性能的影响。
具体地,上述介质基板包括PTFE(Poly Tetra Fluor ethylene,聚四氟乙烯)PCB(Printed Circuit Board,印制电路板),当然,也可以为其他板材。上述第一短截的第二端以及上述第二短截的第二端通过上述介质基板上的金属化过孔相连,并放置上述开关器件。
根据本公开的一种具体实施例,如图2所示,上述天线结构还包括信号馈点60以及参考地点70,其中,上述信号馈点60位于上述正面101且位于上述第一辐射臂301以及上述第三辐射臂401的同一侧,上述信号馈点60与上述正面导体201连接;上述参考地点70位于上述背面102且位于上述第二辐射臂302以及上述第四辐射臂402的同一侧,上述参考地点70与上述背面导体202连接,上述信号馈点60以及上述参考地点70分别用于与同轴线连接,以通过上述同轴线接收上述射频信号以及上述控制信号。上述信号馈点以及上述参考地点通过上述同轴线接收上述射频信号以及上述控制信号,这样在进一步的保证射频信号的稳定传输的同时,进一步地实现了通过电信号的输入来控制开关器件的开关状态,进而对天线进行方向图重构的目的。
具体地,上述同轴线包括内导体以及外导体,上述同轴线的内导体与上述介质基板的信号馈点连接,上述同轴线的外导体与上述介质基板的参考地点连接。上述信号馈点作为上述控制信号以及上述射频信号的输入点,上述参考地点作为上述射频信号的参考地以及控制信号的低电势参考点,上述射频信号稳定输入,通过更改控制电平的输入值,实现上述开关器件的通断,从而改变重构结构的阻抗或者相位输入,以此改变天线的方向图。
为了进一步地保证上述天线结构的性能较好,根据本公开的另一种具体实施例,如图2所示,上述正面单元501与上述正面导体201垂直,上述背面单元502与上述 背面导体202垂直。当然,在实际的应用过程中,上述正面单元也可以不垂直于上述正面导体,上述背面单元也可以不垂直于上述背面导体,此时需要设置其他附加结构去将不垂直状态调节至垂直状态同等的性能。
根据本公开的又一种具体实施例,上述正面导体与上述背面导体的长度分别为预定波长,上述预定波长为上述天线结构的工作频段对应的一个波长,上述正面单元的第一端位于上述正面导体的中部,上述背面单元的第一端位于上述背面导体的中部,即,上述正面单元以及上述背面单元分别位于1/2预定波长位置,上述正面单元的长度以及上述背面单元的长度分别为上述预定波长的四分之一。
根据本公开的一种具体实施例,上述第一偶极子天线为H型偶极子,上述第二偶极子天线为H型偶极子。
根据本公开的另一种具体实施例,如图2所示,上述第一辐射臂301以及上述第三辐射臂401分别关于上述正面导体201轴对称,上述第二辐射臂302以及上述第四辐射臂402分别关于上述背面导体202轴对称。
需要说明的是,上述第一辐射臂以及上述第三辐射臂的位置关系并不限于上述的关于正面导体轴对称,上述第二辐射臂以及上述第四辐射臂的位置关系也并不限于上述的关于上述背面导体轴对称。
上述开关器件可以为现有技术中任意合适的两端子的开关,如二极管等,根据本公开的又一种具体实施例,上述开关器件为PIN二极管、变容二极管或者MEMS开关。当上述开关器件为PIN二极管时,上述重构结构用于阻抗调整,作为可变阻抗加载段;当上述开关器件为变容二极管时,上述重构结构用于阻抗调整以及相位移动,作为移相段。
上述PIN二极管是在P和N半导体材料之间加入一薄层低掺杂的本征(Intrinsic)半导体层而组成的P-I-N结构的二极管。
一种具体的实施例中,上述第一偶极子天线以及上述第一偶极子天线需要上述平行双线馈电,上述PIN二极管/变容二极管需要上述控制信号产生电势差,通过可变阻抗加载段(对于上述PIN二极管),或移相段(对于上述变容二极管)的设计,可以将作为传输线的上述正面导体以及上述背面导体同时作为上述PIN管的控制信号输入线,并由前端焊接的射频同轴线同时馈入上述射频信号以及上述控制信号,实现同一传输结构无线性能和控制信号的复用,极大降低控制电路对天线辐射的影响,同时简化设计,降低成本。同时,由于上述开关器件加载在阻抗/相位引入段而非天线主辐射结构上,也降低了开关器件插损对天线性能的影响。
根据本公开的一种具体实施例,在上述开关器件导通的情况下,上述第一偶极子天线与上述第二偶极子天线同时工作,在上述开关器件关闭的情况下,上述第一偶极子天线或者上述第二偶极子天线工作。
一种具体的实施例中,如图1所示,上述信号馈点以及上述参考地点分别位于上述第一偶极子天线的远离上述第二偶极子天线的一侧,当采用PIN二极管时,输入控制电平为高电平时,上述开关器件导通,上述重构结构等效为并联1/4波长短路线,对上述平行双线上该结构的加载位置而言,输入阻抗无限小,起电流平衡的作用,上述第一偶极子天线与上述第二偶极子天线同时工作;输入电平为低电平时,上述开关器件断开,上述重构结构等效为并联1/4波长开路线,对上述平行双线上该结构的加载位置而言,输入阻抗无限大,信号在该处全反射,仅上述第一偶极子天线工作。当采用变容二极管时,输入电平为低电平时,上述开关器件断开,上述重构结构等效为并联1/4波长开路线,对上述平行双线上该结构的加载位置而言,输入阻抗无限大,信号在该处全反射,仅上述第一偶极子天线工作。输入控制电平对应变容二极管导通且无电容引入时,上述开关器件导通,无电容加载,上述重构结构等效为并联1/4波长短路线,对上述平行双线上该结构的加载位置而言,输入阻抗无限小,起电流平衡的作用,上述第一偶极子天线与上述第二偶极子天线同时工作;输入控制电平对应变容二极管导通且有电容引入时,上述开关器件导通,且有电容加载,电流相位超前,上述重构结构等效为并联1/4波长开路线的同时,还具有移相作用,对上述平行双线上该结构的加载位置而言,输入阻抗无限小,上述第一偶极子天线与上述第二偶极子天线同时工作,且其为不等相馈电。
如图2所示,上述开关器件关闭时,上述重构结构为开路状态,该点引入的阻抗为无穷大,信号到达上述重构结构的并联位置时会发生全反射,仅上述第一偶极子天线工作,实现低增益宽波束模式;如图2所示,当同轴线内芯上加载直流偏置电压时,此时开关导通,上述重构结构为短路状态,该点引入的阻抗无穷小,短截线对原本结构不产生影响,上述第一偶极子天线与上述第二偶极子天线同时工作,实现高增益窄波束模式。
具体地,如图3至图4所示,当上述开关器件导通时,最大增益方向在水平面上,此时最大增益约5dBi,3dB波束宽度45°左右;当上述开关器件断开时,天线最大增益方向下倾45°(θ=135°左右),此时最大增益约3dBi,3dB波束宽度约80°。如图5所示,开关器件导通和断开的状态下天线在5.15~5.5GHz频段的回波损耗都小于-10dB,能够获得较好的匹配和辐射效率。
一种具体的实施例中,上述天线结构可以实现方位面上的全向辐射,家用WIFI通信系统,工作在2~7GHz频段均可,方位面全向辐射,俯仰面波束倾角可调,且天线增益、波束宽度可调,适用于家用通信产品。
根据本公开的另一种典型的实施例,提供了一种天线系统,包括上述的天线结构。
上述天线系统,包括上述天线结构,相比现有技术中缺少对天线进行方向图重构的方法的问题,本公开的上述天线系统,通过上述控制信号控制上述开关器件的闭合,以将上述重构结构的阻抗或者相位值引入上述天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现了对天线的方向图进行重构。并且,本公开中,上述射频信号与上述控制信号均由上述平行双线传输,即实现了同一传输结构的无线性能和控制信号的复用,缓解了控制电路对天线辐射的影响,同时相比现有的通过不同方式传输控制信号以及射频信号,本公开简化了设计,保证了上述天线结构的制作成本较低。同时,由于上述开关器件加载在上述正面单元以及上述背面单元之间,而非天线主辐射结构上,这样也缓解了开关器件插损对天线性能的影响。
一种具体的实施例中,上述天线系统尺寸90mm*12mm*0.75mm,尺寸小,适用于小型化的终端通信产品。
根据本公开的一种具体实施例,上述天线结构包括信号馈点以及参考地点,上述天线系统还包括同轴线,上述同轴线包括内导体以及外导体,上述同轴线的内导体与上述信号馈点连接,上述同轴线的外导体与上述参考地点连接。
在本公开的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的上述天线结构,包括介质基板、平行双线、第一偶极子天线、第二偶极子天线以及重构结构,其中,上述介质基板包括相对的正面以及背面;上述平行双线包括平行的正面导体以及背面导体;上述第一偶极子天线包括第一辐射臂以及第二辐射臂,上述第二偶极子天线包括第三辐射臂以及第四辐射臂;上述重构结构包括正面单元、背面单元以及开关器件;上述开关器件的两端分别与上述正面单元以及上述背面单元连接;上述平行双线用于传输射频信号以及控制信号。相比现有技术中缺少对天线进行方向图重构的方法的问题,本公开的上述天线结构,通过上述控制信号控制上述开关器件的闭合,以将上述重构结构的阻抗或者相位值引入上述天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现了对天线的方向图进行重构。并且,本公开中,上述射频信号与上述控制信号均由上述平行双线传输,即实现了同一传输结构的无线性能和控制信号的复用,缓解了控制电路对天线 辐射的影响,同时相比现有的通过不同方式传输控制信号以及射频信号,本公开简化了设计,保证了上述天线结构的制作成本较低。同时,由于上述开关器件加载在上述正面单元以及上述背面单元之间,而非天线主辐射结构上,这样也缓解了开关器件插损对天线性能的影响。
2)、本公开的上述天线系统,包括上述天线结构,相比现有技术中缺少对天线进行方向图重构的方法的问题,本公开的上述天线系统,通过上述控制信号控制上述开关器件的闭合,以将上述重构结构的阻抗或者相位值引入上述天线结构,从而改变方向图形状,实现增益大小切换以及辐射波束俯仰角切换,实现了对天线的方向图进行重构。并且,本公开中,上述射频信号与上述控制信号均由上述平行双线传输,即实现了同一传输结构的无线性能和控制信号的复用,缓解了控制电路对天线辐射的影响,同时相比现有的通过不同方式传输控制信号以及射频信号,本公开简化了设计,保证了上述天线结构的制作成本较低。同时,由于上述开关器件加载在上述正面单元以及上述背面单元之间,而非天线主辐射结构上,这样也缓解了开关器件插损对天线性能的影响。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种天线结构,其特征在于,包括:
    介质基板,包括相对的正面以及背面;
    平行双线,包括正面导体以及背面导体,所述正面导体位于所述正面,所述背面导体位于所述背面;
    第一偶极子天线以及第二偶极子天线,所述第一偶极子天线包括第一辐射臂以及第二辐射臂,所述第二偶极子天线包括第三辐射臂以及第四辐射臂,所述第一辐射臂以及所述第三辐射臂位于所述正面,所述第二辐射臂以及所述第四辐射臂位于所述背面,且所述第一辐射臂与所述第三辐射臂分别与所述正面导体连接,所述第二辐射臂以及所述第四辐射臂分别与所述背面导体连接;
    重构结构,包括短截线以及开关器件,所述短截线包括位于所述正面的正面单元以及位于所述背面的背面单元,所述正面单元位于所述第一辐射臂与所述第三辐射臂之间,且所述正面单元的第一端与所述正面导体连接;所述背面单元位于所述第二辐射臂与所述第四辐射臂之间,且所述背面单元的第一端与所述背面导体连接;所述开关器件的第一端与所述正面单元的第二端电连接,所述开关器件的第二端与所述背面单元的第二端电连接;
    其中,所述平行双线用于传输射频信号以及控制信号,所述控制信号为控制所述开关器件的开关状态的信号。
  2. 根据权利要求1所述的天线结构,其特征在于,所述天线结构还包括:
    信号馈点,位于所述正面且位于所述第一辐射臂以及所述第三辐射臂的同一侧,所述信号馈点与所述正面导体连接;
    参考地点,位于所述背面且位于所述第二辐射臂以及所述第四辐射臂的同一侧,所述参考地点与所述背面导体连接,所述信号馈点以及所述参考地点分别用于与同轴线连接,以通过所述同轴线接收所述射频信号以及所述控制信号。
  3. 根据权利要求1所述的天线结构,其特征在于,所述正面单元与所述正面导体垂直,所述背面单元与所述背面导体垂直。
  4. 根据权利要求3所述的天线结构,其特征在于,所述正面导体与所述背面导体的长度分别为预定波长,所述预定波长为所述天线结构的工作频段对应的一个波长,所述正面单元的第一端位于所述正面导体的中部,所述背面单元的第一端位于所述背面导体的中部,所述正面单元的长度以及所述背面单元的长度分别为所述预定波长的四分之一。
  5. 根据权利要求1所述的天线结构,其特征在于,所述第一偶极子天线为H型偶极子,所述第二偶极子天线为H型偶极子。
  6. 根据权利要求5所述的天线结构,其特征在于,所述第一辐射臂以及所述第三辐射臂分别关于所述正面导体轴对称,所述第二辐射臂以及所述第四辐射臂分别关于所述背面导体轴对称。
  7. 根据权利要求1至6中任一项所述的天线结构,其特征在于,所述开关器件为PIN二极管、变容二极管或者MEMS开关。
  8. 根据权利要求1至6中任一项所述的天线结构,其特征在于,在所述开关器件导通的情况下,所述第一偶极子天线与所述第二偶极子天线同时工作,在所述开关器件关闭的情况下,所述第一偶极子天线或者所述第二偶极子天线工作。
  9. 一种天线系统,其特征在于,包括:权利要求1至8中任一项所述的天线结构。
  10. 根据权利要求9所述的天线系统,其特征在于,所述天线结构包括信号馈点以及参考地点,所述天线系统还包括:
    同轴线,分别与所述信号馈点以及所述参考地点连接。
PCT/CN2022/141678 2022-01-13 2022-12-23 天线结构以及天线系统 WO2023134429A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210039312 2022-01-13
CN202210039312.8 2022-01-13
CN202210114584.XA CN114374079A (zh) 2022-01-13 2022-01-30 天线结构以及天线系统
CN202210114584.X 2022-01-30

Publications (1)

Publication Number Publication Date
WO2023134429A1 true WO2023134429A1 (zh) 2023-07-20

Family

ID=81145368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141678 WO2023134429A1 (zh) 2022-01-13 2022-12-23 天线结构以及天线系统

Country Status (2)

Country Link
CN (1) CN114374079A (zh)
WO (1) WO2023134429A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114374079A (zh) * 2022-01-13 2022-04-19 成都市联洲国际技术有限公司 天线结构以及天线系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629708A (zh) * 2011-12-27 2012-08-08 广西工学院 一种wifi移动终端平面天线
CN104993254A (zh) * 2015-07-15 2015-10-21 华南理工大学 一种宽带方向图可重构天线
US20150349418A1 (en) * 2012-12-21 2015-12-03 Drexel University Wide band reconfigurable planar antenna with omnidirectional and directional radiation patterns
CN108649326A (zh) * 2018-04-20 2018-10-12 四川斐讯信息技术有限公司 一种极化可重构天线、重构方法及mimo系统
CN114374079A (zh) * 2022-01-13 2022-04-19 成都市联洲国际技术有限公司 天线结构以及天线系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629708A (zh) * 2011-12-27 2012-08-08 广西工学院 一种wifi移动终端平面天线
US20150349418A1 (en) * 2012-12-21 2015-12-03 Drexel University Wide band reconfigurable planar antenna with omnidirectional and directional radiation patterns
CN104993254A (zh) * 2015-07-15 2015-10-21 华南理工大学 一种宽带方向图可重构天线
CN108649326A (zh) * 2018-04-20 2018-10-12 四川斐讯信息技术有限公司 一种极化可重构天线、重构方法及mimo系统
CN114374079A (zh) * 2022-01-13 2022-04-19 成都市联洲国际技术有限公司 天线结构以及天线系统

Also Published As

Publication number Publication date
CN114374079A (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
US9287633B2 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
JP3903991B2 (ja) アンテナ装置
US20150200452A1 (en) Planar beam steerable lens antenna system using non-uniform feed array
US20130300602A1 (en) Antenna arrays with configurable polarizations and devices including such antenna arrays
EP1502323A1 (en) Reflect array antenna wih assymetrically switched antenna elements
JP4564868B2 (ja) アンテナ装置、無線モジュールおよび無線システム
Wang et al. Compact shared aperture quasi-Yagi antenna with pattern diversity for 5G-NR applications
CN101459285A (zh) 用于毫米波信号的缝隙天线
JP2005210521A (ja) アンテナ装置
WO2021244158A1 (zh) 双极化天线及客户前置设备
WO2023134429A1 (zh) 天线结构以及天线系统
Mohammed et al. A review of microstrip patch antenna design at 28 GHz for 5G applications system
CN108767456B (zh) 一种可分块控制的方向图可重构液晶天线及重构方法
Hasan et al. A polarization switchable active array antenna integrating a multiport oscillator and PSK modulators
US20030048226A1 (en) Antenna for array applications
Ha et al. Reconfigurable Beam‐Steering Antenna Using Dipole and Loop Combined Structure for Wearable Applications
JP2005286854A (ja) 偏波切換え機能を有するアンテナ
CN111819734A (zh) 波束可控天线设备、系统和方法
CN110783701B (zh) 一种集成可调移相功分器的圆极化可重构天线
Hasan et al. A quad-polarization and beam agile array antenna using rat-race coupler and switched-line phase shifter
CN112054311A (zh) 一种平面型和低剖面型准八木方向图可重构5g天线
WO2020132865A1 (zh) 天线单元和相控阵天线
Luk et al. Transmitarray and Reflectarray Antennas Based on a Magnetoelectric Dipole Antenna
JP2005295188A (ja) マルチビームアンテナ
Modani et al. A survey on polarization reconfigurable patch antennas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22920059

Country of ref document: EP

Kind code of ref document: A1