WO2023174190A1 - 一种光学芯片及其制备方法 - Google Patents

一种光学芯片及其制备方法 Download PDF

Info

Publication number
WO2023174190A1
WO2023174190A1 PCT/CN2023/080971 CN2023080971W WO2023174190A1 WO 2023174190 A1 WO2023174190 A1 WO 2023174190A1 CN 2023080971 W CN2023080971 W CN 2023080971W WO 2023174190 A1 WO2023174190 A1 WO 2023174190A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
functional layer
layer
region
waveguide
Prior art date
Application number
PCT/CN2023/080971
Other languages
English (en)
French (fr)
Inventor
牛欣翔
张翔
董晓文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174190A1 publication Critical patent/WO2023174190A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12159Interferometer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods

Definitions

  • the present application relates to the field of semiconductors and optoelectronic integration, and more specifically, to an optical chip and a preparation method thereof.
  • the integrated chip optical system i.e. optical chip
  • the integration of the overall size of the system can increase the bandwidth density of the optical information processing system by several orders of magnitude, significantly reduce the power consumption density, and enable it to meet the actual needs of large-scale information processing.
  • optical chip a variety of modules with different functions such as optical signal generation, modulation, passive transmission and detection can be included to realize the transmission and processing of optical signals on a single chip.
  • the construction of these modules varies with the properties of the optical materials required. For example, for the optical signal generation and detection module in the chip, materials with higher gain and absorption coefficient need to be used; for the transmission module, optically transparent (that is, lower gain and absorption coefficient) materials need to be used to reduce the overall chip Signal transmission loss. Therefore, the construction of optical chips is difficult to be based on a single material.
  • a variety of materials are usually used to construct different functional modules and are heterogeneously integrated.
  • This application provides an optical chip and a preparation method thereof.
  • the optical structures in each functional layer of the optical chip do not need to be optically aligned based on mechanical means, which can improve the preparation efficiency of heterogeneous integrated optical chips.
  • an optical chip in a first aspect, includes an optical substrate, a first functional layer provided on the optical substrate, a first spacer layer provided on the first functional layer, and a first spacer layer provided on the first functional layer. a second functional layer on the spacer layer; a second optical structure is formed on the second functional layer, the second optical structure includes a second inter-layer coupling structure and a second intra-layer transmission structure, the second intra-layer transmission structure is located The first region of the second functional layer; a first optical structure is formed on the first functional layer, the first optical structure includes a first inter-layer coupling structure and a first intra-layer transmission structure, the first optical structure is located on the The second area of the first functional layer, the projection of the second area and the first area in the normal direction of the plane of the optical substrate The shadows do not overlap; wherein, the inter-layer coupling structure is used for signal exchange between the first functional layer and the second functional layer, the intra-layer transmission structure is used to control signal transmission within the functional layer, and the second layer The inter-layer coupling structure
  • a second optical structure located in the first area is formed on the second functional layer.
  • the second optical structure includes a second inter-layer coupling structure and a second intra-layer transmission structure;
  • a first optical structure located in a second area is formed on a functional layer.
  • the first optical structure includes a first inter-layer coupling structure and a first intra-layer transmission structure.
  • the second area and the first area are on the plane of the optical substrate.
  • the normal projections of do not overlap; the second interlayer coupling structure is located in the third region of the second functional layer, the first interlayer coupling structure is located in the fourth region of the first functional layer, the third region and the The normal projection of the fourth area on the plane of the optical substrate partially or completely overlaps.
  • the optical structures in each functional layer of the optical chip do not need to be optically aligned based on mechanical means.
  • the second optical structure further includes the second interlayer coupling structure located in the ninth region of the second functional layer
  • the optical chip further includes the second optical chip located in the ninth region of the second functional layer.
  • a third optical structure is formed on the third functional layer;
  • the third optical structure includes a third interlayer coupling structure and a third intra-layer transmission structure; wherein the third inter-layer coupling structure is located in the seventh region of the third functional layer, the third intra-layer transmission structure is located in the eighth region of the third functional layer, and the third inter-layer coupling structure is located in the seventh region of the third functional layer.
  • the eighth region does not overlap with the projection of the first region in the normal direction of the optical substrate plane
  • the ninth region partially or completely overlaps with the projection of the seventh region in the normal direction of the optical substrate plane.
  • the second intra-layer transmission structure includes a first input waveguide, a first output waveguide and at least one first optical resonant cavity; wherein the first output waveguide includes at least A waveguide structure, the at least one waveguide structure corresponds to the at least one first optical resonant cavity and is optically coupled.
  • the first input waveguide includes a waveguide structure, and the waveguide structure is optically coupled to the at least one first optical resonant cavity. coupling connection.
  • the second interlayer coupling structure includes a first tapered structure formed at the first end of the first input waveguide.
  • the first optical structure includes a second optical resonant cavity, and parallel first and second waveguides, one end of the first waveguide being in contact with the first tapered Structured light coupling connection.
  • the thickness of the second functional layer ranges from 150 nm to 5 ⁇ m.
  • the thickness of the first functional layer ranges from 150 nm to 5 ⁇ m.
  • the transmission structure in the second layer is a Mach-Zehnder interferometer structure, and the Mach-Zehnder interferometer structure includes a first interference arm, a second interference arm and a second interference arm.
  • the first optical structure includes a straight waveguide structure, one end of the straight waveguide structure is optically coupled to the second tapered structure.
  • the thickness of the second functional layer ranges from 300 nm to 1 ⁇ m.
  • the thickness of the first functional layer ranges from 200 nm to 500 nm.
  • a method for preparing an optical chip includes: sequentially depositing a first functional layer, a first spacer layer and a second functional layer on an optical substrate to form a first structure; patterning the second functional layer.
  • functional layer to form the Two optical structures the second optical structure is located in the first area of the second functional layer, the second optical structure includes a second inter-layer coupling structure and a second intra-layer transmission structure; remove the first in the second area
  • the spacer layer is used to expose the first functional layer, and the projection of the second area and the first area in the normal direction of the first structural plane does not overlap; the first functional layer in the second area is patterned to form the first functional layer.
  • the first optical structure includes a first inter-layer coupling structure and a first intra-layer transmission structure; wherein the inter-layer coupling structure is used for signal exchange between the first functional layer and the second functional layer, the The intra-layer transmission structure is used to control signal transmission within the functional layer.
  • the second inter-layer coupling structure is located in the third area of the second functional layer.
  • the first inter-layer coupling structure is located in the fourth area of the first functional layer. area, the projection of the third area and the fourth area in the normal direction of the first structural plane partially or completely overlaps.
  • unpatterned heterogeneous optical materials are first stacked and arranged on the same optical substrate. After the material films are stacked, in order from top to bottom, Corresponding optical structures are patterned on each layer in turn to realize the construction of heterogeneous integrated optical chips.
  • This method is based on a top-down sequential processing method, which can more easily achieve the alignment of coupling structures between modules without the need for mechanical The optical alignment between each module is carried out in this way, which improves the preparation efficiency of optical chips.
  • this method does not require the placement of the spacer layer on top of the existing patterned structure, so its thickness can be accurately controlled.
  • a second spacer layer and a third functional layer are sequentially deposited on the first structure, To form a second structure; pattern the third functional layer to form a third optical structure, the third optical structure is located in the fifth region of the third functional layer, the third optical structure includes a third interlayer coupling structure and a third Three-layer intra-transmission structure; remove the second spacer layer in the sixth region to expose the second functional layer, and the projections of the sixth region and the fifth region in the normal direction of the second structure plane do not overlap.
  • the third inter-layer coupling structure is located in the seventh region of the third functional layer, and the third intra-layer transmission structure is located in the third functional layer.
  • the second functional layer in the sixth region is patterned to form the second optical structure.
  • the second optical structure also includes the second interlayer coupling located in the ninth region in the second functional layer. Structure; wherein, the projections of the eighth region and the sixth region in the normal direction of the second structural plane do not overlap, and the projections of the ninth region and the seventh region in the normal direction of the second structural plane are partially or completely overlapping.
  • the second functional layer is patterned to form the second intra-layer transmission structure, the second intra-layer transmission structure includes a first input waveguide, a first output waveguide And at least one first optical resonant cavity; wherein, the first output waveguide includes at least one waveguide structure, the at least one waveguide structure corresponds to the at least one first optical resonant cavity and is optically coupled, and the first input waveguide includes A waveguide structure is optically coupled to the at least one first optical resonant cavity.
  • the first end of the first input waveguide is patterned into a first tapered structure to form the second interlayer coupling structure.
  • the first functional layer in the second region is patterned to form a second optical resonant cavity, and parallel first waveguides and second waveguides. One end of a waveguide is optically coupled to the first tapered structure.
  • the thickness of the second functional layer ranges from 150 nm to 5 ⁇ m.
  • the thickness of the first functional layer ranges from 150 nm to 5 ⁇ m.
  • the second functional layer is patterned to form a Mach-Zehnder interferometer structure, the Mach-Zehnder interferometer structure including a first interference arm, a second interference arm and a second input waveguide; patterning a second tapered structure formed at a first end of the second input waveguide.
  • the first functional layer in the second region is patterned to form a straight waveguide structure, one end of the straight waveguide structure is optically coupled to the second tapered structure connect.
  • the thickness of the second functional layer ranges from 300 nm to 1 ⁇ m.
  • the thickness of the first functional layer ranges from 200 nm to 500 nm.
  • Figure 1 is a schematic structural diagram of an optical chip provided by this application.
  • Figure 2 is an exemplary flow chart of an optical chip preparation method provided by this application.
  • Figure 3 is a schematic structural diagram of the first structure provided by this application.
  • Figure 4 is a schematic structural diagram of an example of an optical chip provided by this application.
  • Figure 5 is an exemplary flow chart of another optical chip preparation method provided by this application.
  • FIG. 6 is a schematic structural diagram of an example of forming the first structure provided by this application.
  • Figure 7 is a schematic structural diagram of another example of an optical chip provided by this application.
  • Figure 8 is an exemplary flow chart of another optical chip preparation method provided by this application.
  • Figure 9 is an exemplary structural diagram of forming a first functional layer provided by this application.
  • FIG. 10 is a schematic structural diagram of another example of the first structure provided by the present application.
  • FIG. 11 is a schematic diagram of an example of the optical module of the present application.
  • FIG. 12 is a schematic diagram of an example of the communication device of the present application.
  • the integrated chip optical system i.e. optical chip
  • the integration of the overall size of the system can increase the bandwidth density of the optical information processing system by several orders of magnitude and significantly reduce the power consumption density, making it able to meet the actual needs of large-scale information processing.
  • optical chip structure it can include a variety of modules with different functions such as optical signal generation, modulation, passive transmission and detection, etc., to realize the transmission and processing of optical signals on a single chip.
  • modules have different requirements for the properties of the required optical materials. For example, for optical signal generation and detection modules, materials with higher gain and absorption coefficients are required; for transmission modules, materials with optical transparency (i.e., gain and absorption coefficients) are required. Materials with lower coefficient) characteristics to reduce the overall signal transmission loss of the chip; for the modulation module, materials with higher optical nonlinearity need to be used.
  • high optical gain and absorption coefficient and optical transparency are contradictory.
  • commonly used optical materials generally have lower optical nonlinear coefficients, and materials with higher optical nonlinearity ,That Optical transparency and optical gain characteristics tend to be poor. Therefore, optical chips are difficult to build based on a single material.
  • the pre-processed light emission/light detection module, the passive transmission module and the optical nonlinear modulation module are aligned along the plane of the chip to realize the optical connection of different modules along the plane of the chip to construct a two-dimensional integrated optical chip;
  • the processed module structure is transferred to the side of another module to obtain an optical connection along the chip plane direction, realize the coupling transmission of optical signals between the two modules, and construct a two-dimensional integrated optical chip; and then
  • the pre-processed active laser module and the passive optical waveguide are optically connected in a direction perpendicular to the chip plane to construct a three-dimensional integrated optical chip.
  • this application proposes a method for preparing optical chips.
  • This method first combines different types of unpatterned thin film materials, and then further performs patterning processing of functional structures on each layer of materials, so that in When processing heterogeneous integrated optical chips, it is no longer necessary to perform high-precision mechanical alignment of different functional modules along the in-plane or vertical direction of the chip, which can improve the preparation efficiency of optical chips and achieve low-cost optical chips. production; at the same time, the thickness of the spacer layer between different module layers can also be precisely controlled, which can improve the production yield.
  • optical chip provided by the embodiments of the present application can be used in high-speed optical transmission, optical communication, optical computing and other scenarios that require heterogeneous integrated optical signal processing chips and modules.
  • orientations or positional relationships indicated by "width”, “upper”, “lower”, “level”, “bottom”, etc. involved in the embodiments of the present application are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing this application.
  • the application and simplified description are not intended to indicate or imply that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore should not be construed as a limitation on the present application.
  • the at least one involved in the embodiments of this application includes one or more; where multiple means greater than or equal to two.
  • words such as “first” and “second” are only used for the purpose of distinguishing the description, and cannot be understood as indicating or implying relative importance, nor can they be understood as indicating. Or suggestive order.
  • Figure 1 shows a structural side view of an optical chip obtained according to the optical chip preparation method provided by the embodiment of the present application. It should be noted that in the schematic diagram of FIG. 1 , the thickness of each layer, the proportional relationship between each optical structure and the layers, etc. are only schematic.
  • the optical chip may include an optical substrate 101, a first functional layer 110 provided on the optical substrate 101, a first spacer layer 120 provided above the first functional layer 110, The second functional layer 130 above the layer 110; wherein, a second optical structure is formed on the second functional layer 130.
  • the second optical structure includes a second intra-layer transmission structure 131 and a second inter-layer coupling structure 132.
  • the two-layer intra-transmission structure 131 is located in the first region of the second functional layer 130, and the second inter-layer coupling structure is located in the third region of the second functional layer 130; a first optical fiber is formed on the first functional layer 110.
  • the first optical structure is located in the second area of the first functional layer, and the projection of the second area and the first area in the normal direction of the optical substrate plane does not overlap;
  • the first optical structure includes a first layer
  • the inner transmission structure 111 and the first interlayer coupling structure 112 are located in the fourth area in the first functional layer 110.
  • the third area and the fourth area are normal to the plane of the optical substrate.
  • the projections overlap partially or completely.
  • the optical chip may further include a second spacer layer 140 and a third functional layer 150 stacked on the second functional layer 130.
  • the number of layers of the second spacer layer 140 and the third functional layer 150 may be respectively is N, N is a positive integer;
  • the second optical structure may also include a second interlayer coupling structure 133 located in the ninth region of the second functional layer 130; a third optical structure is formed on the third functional layer 150,
  • the third optical structure includes a third intra-layer transmission structure 151 and a third inter-layer coupling structure 152.
  • the third inter-layer coupling structure 152 is located in the seventh region of the third functional layer 150.
  • the third intra-layer transmission structure 151 The eighth region located in the third functional layer 150 does not overlap with the projection of the first region in the normal direction of the optical substrate plane, and the ninth region and the seventh region do not overlap with the projection of the first region in the normal direction of the optical substrate plane.
  • the projections of the normals overlap partially or completely.
  • the intra-layer transmission structure is used to transmit signals within the layer where it is located;
  • the inter-layer coupling structure is used to exchange signals between the layer where it is located and other layers, and the signal can be an optical signal.
  • the interlayer coupling structure is a tapered structure.
  • first functional layer 110, the second functional layer 130 and the third functional layer 150 may be single crystal inorganic films, polycrystalline inorganic films, or organic films.
  • the first spacer layer 120 and the second spacer layer 140 are used as spacer protective layers between different functional layers.
  • the material of the first spacer layer 120 and the second spacer layer 140 can be silicon oxide, silicon nitride, metal oxide, metal nitride, etc., for example, silicon dioxide, silicon nitride, aluminum oxide, One or more of aluminum nitride, hafnium oxide, zirconium oxide, zinc oxide, titanium dioxide and other materials. It should be noted that the first spacer layer 120 and the second spacer layer 140 may be one layer, or two or more layers, which is not limited in this application.
  • Figure 2 shows a schematic flow chart of a method for preparing an optical chip provided by the present application. The method may include the following steps.
  • the optical substrate 101 may be silicon or other semiconductor materials, such as ceramics, glass, etc.
  • the first functional layer 110 can be a functional layer for constructing a certain optical module, for example, for an optical signal generation module, an optical signal modulation module or an optical signal transmission module; the first functional layer 110 is used for constructing what kind of optical module can according to The actual situation is determined, and this application does not limit this.
  • the first functional layer 110 may be an optical film of different materials.
  • the first functional layer 110 may be a single crystal inorganic film, a polycrystalline inorganic film, or an organic film.
  • Depositing the first functional layer 110 on the optical substrate 101 includes but is not limited to the following methods: molecular beam epitaxy (MBE), single crystal thin film bonding, physical vapor deposition (PVD), for example, magnetron It is formed by sputtering, thermal evaporation, electron beam evaporation, pulse laser deposition, electroplating, etc., chemical vapor deposition (CVD), organic spin coating and other methods.
  • MBE molecular beam epitaxy
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • organic spin coating organic spin coating and other methods.
  • S212 Deposit the first spacer layer 120 on the first functional layer 110 and optically planarize it.
  • the first spacer layer 120 can subsequently serve as a spacer protection layer between different functional layers.
  • the material of the first spacer layer 120 may be silicon oxide (SiO x ), silicon nitride (SiN x ), metal oxide, metal nitride, etc., for example, silicon dioxide, silicon nitride, oxide One or more of aluminum, aluminum nitride, hafnium oxide, zirconium oxide, zinc oxide, titanium dioxide and other materials.
  • the first spacer layer 120 may be deposited by PVD or CVD.
  • first spacer layer 120 can be one layer, or two or more layers, which is not limited in this application.
  • the second functional layer 130 may be a functional layer that jointly constructs a certain optical module with the first functional layer 110, for example, used to jointly construct an optical signal generation module, an optical signal modulation module or an optical signal transmission module; or, the third The second function is used to construct other optical modules that are different from the optical modules constructed on the first functional layer 110 .
  • the optical material of the second functional layer 130 and the first functional layer 110 may be the same or different.
  • the second functional layer 130 may be a single crystal inorganic film, a polycrystalline inorganic film, or an organic film.
  • the deposition method of the second functional layer 130 can be referred to the first functional layer 110 and will not be described again here.
  • the method may also include S114, sequentially depositing the second spacer layer 140 and the third functional layer 150 on the second functional layer 130, and optically planarizing them.
  • the second spacer layer and the third functional layer The number of layers can be N, and N is a positive integer.
  • the structure after sequentially depositing the second spacer layer 140 and the third functional layer 150 on the second functional layer 130 is as shown in (b) of FIG. 3 .
  • the optical material and deposition method of the second spacer layer 140 can refer to the first spacer layer 120; the material of the third functional layer 150 can be the same as at least one of the first functional layer 110 and the second functional layer 130, Alternatively, the optical materials of the third functional layer 150, the first functional layer 110 and the second functional layer 130 are different.
  • the third functional layer 150 may be used to construct a third optical module, which may be the same as or different from the optical module constructed on the first functional layer 110 and/or the second functional layer 130 . In this application, whether to deposit the second spacer layer 140 and the third functional layer 150 can be determined according to actual application scenarios.
  • the first structure may include at least two functional layers (first functional layer 110 and second functional layer 130) and at least one spacer layer (first spacer layer 120), And each layer of material is not patterned in advance.
  • the uppermost functional layer in the first structure may be the third functional layer or the second functional layer.
  • the uppermost functional layer is the third functional layer 150 as an example.
  • the first optical structure may include an intra-layer transmission structure 151 for controlling the transmission of optical signals within the module, and an inter-layer coupling structure 152 for signal exchange with optical modules in other layers.
  • the first optical structure is located in a first area in the plane of the optical chip, and the first area includes area #1 where the inter-layer coupling structure 152 is located, and area #2 where the intra-layer transmission structure 151 is located.
  • the area #2 and the area where the intra-layer transmission structure is located in other layers are misaligned with each other along the chip plane direction, or in other words, the projection of area #2 and the area where the intra-layer transmission structure is located in other layers are different from each other in the normal direction of the plane of the optical substrate.
  • the patterning method may be based on electron beam exposure or dry etching technology.
  • the third spacer layer may be the first spacer layer 120 or the second spacer layer 140 mentioned above.
  • the following description takes as an example that when N is 1, the third spacer layer is the second spacer layer 140 .
  • the second spacer layer 140 After removing the second spacer layer 140 in the second area, the second spacer layer 140 is shown as the second spacer layer 141 in FIG. 1 , and the second spacer layer 140 can be exposed by removing the spacer layer in the second area.
  • the functional layer in the second area may be the second functional layer 130 or the first functional layer 120 .
  • the following description takes as an example that when N is 1, the functional layer is the second functional layer 130 .
  • the second functional layer 130 in the second area is patterned to form a second optical structure.
  • the second optical structure may include an intra-layer transmission structure 131 for controlling the transmission of optical signals within the module, and an inter-layer coupling structure for signal exchange with other modules.
  • the intra-layer transmission structure 131 is located in area #3 in the second functional layer 130, and the projection of area #3 and the area where the optical structure is located in other layers (for example, the first area) in the normal direction of the optical substrate plane No overlap;
  • the inter-layer coupling structure may include an inter-layer coupling structure 132 (an example of the second inter-layer coupling structure).
  • the inter-layer coupling structure 132 is located in area #4 of the second functional layer. This area #4 is different from other areas.
  • the projection of the region where the interlayer coupling structure is located in the layer (lower functional layer) in the normal direction of the optical substrate plane partially or completely overlaps.
  • the inter-layer coupling structure may also include an inter-layer coupling structure 133 (an example of a second inter-layer coupling structure).
  • the inter-layer coupling structure 133 is located in area #5 in the second functional layer 130.
  • the area # 5 partially or completely overlaps with the normal projection of the area where the interlayer coupling structure 152 is located in other layers (upper functional layer) (for example, area #1 where the interlayer coupling structure 152 is located) in the normal direction of the optical substrate plane.
  • the second spacer layer may be the first spacer layer 120 described above. After removing the first spacer layer 120 in the third region, the first spacer layer 120 is shown as the first spacer layer 121 in FIG. 1 and can be exposed by removing the spacer layer in the third region. The functional layer (first functional layer 110) under the first spacer layer 120 is exposed.
  • the first functional layer 110 in the third region is patterned to form a first optical structure.
  • the first optical structure may include an intra-layer transmission structure 111 for controlling the transmission of optical signals within the module, and an inter-layer coupling structure 112 for signal exchange with other modules.
  • the intra-layer transmission structure 111 is located in area #6 in the first functional layer 110, and the projection of area #6 and the area where the optical structure is located in other layers (for example, the second area) in the normal direction of the optical substrate plane No overlap
  • the interlayer coupling structure 112 is located in area #7 in the second functional layer, and the projection of area #7 and the area where the interlayer coupling structure is located in other layers (upper functional layers) in the normal direction of the optical substrate plane Partially or completely overlapped.
  • each functional layer can include an intra-layer transmission structure for controlling the transmission of optical signals within the module and an inter-layer coupling structure for signal exchange with other modules, thereby realizing a three-dimensional heterogeneous integrated optical chip. Construct.
  • a plurality of unpatterned heterogeneous optical materials are first stacked and arranged on the same optical substrate. After the material films are laminated, they are then stacked according to the top-to-bottom process. Sequentially, the corresponding optical structures are patterned on each layer to realize the construction of heterogeneous integrated optical chips.
  • This method is based on the sequential processing method from top to bottom, which can naturally realize the alignment of the coupling structure between modules without the need for The optical alignment between each module is carried out mechanically, which improves the preparation efficiency of optical chips.
  • this method does not require the arrangement of the spacer layer above the existing structure, so its thickness can be accurately controlled.
  • Figure 4(c) shows a structural top view of an optical chip obtained according to the optical chip preparation method provided by the embodiment of the present application. It should be noted that in the schematic diagram of FIG. 4(c) , the proportional relationship between each optical structure and the layers is only schematic.
  • the optical chip may include an optical substrate, an optical film #1 provided on the optical substrate, a spacer layer #1 provided above the optical film #1, and a spacer layer #1 provided on the spacer layer #1.
  • Optical film #2 above 1.
  • the optical film #1 can be a material with optical gain-increasing properties.
  • the optical film #1 can be an organic film, for example, lead sulfide quantum dot film, cadmium selenide film, polymethyl methacrylate (PMMA) film, etc.
  • the optical film #2 can be a material with a high optical refractive index.
  • the optical film #2 is a single crystal inorganic film, such as a single crystal silicon film, a lithium niobate (LiNbO3) film, etc.
  • An optical structure #2 is formed on the optical film #2, and the optical structure #2 includes an intra-layer transmission structure #2 and an inter-layer coupling structure #2.
  • the intra-layer transmission structure #2 may include an output waveguide.
  • the output waveguide includes a first waveguide 1311 and a second waveguide 1312.
  • the first waveguide 1311 and the second waveguide 1312 are used to output two channels of signal light with different wavelengths. . It should be understood that the number of output waveguides can be set according to actual conditions.
  • the first waveguide 1311 and the second waveguide 1312 are only examples.
  • the output waveguide may also include one or more output waveguide structures.
  • the intra-layer transmission structure #2 may also include a first optical resonant cavity.
  • the first optical resonant cavity may continuously resonate and amplify the optical signal in the resonant cavity based on the optical resonance effect.
  • the first optical resonant cavity may be an optical micro-ring resonant cavity, an FP resonant cavity, etc.
  • the first optical resonant cavity may include two micro-rings with different radii (a first micro-ring 13131 and a second micro-ring 13132).
  • the first waveguide 1311 The second waveguide 1312 is optically coupled and connected to the first microring 13131, and the second waveguide 1312 is optically coupled to the second microring 13132. answer It is understood that the number of micro rings can be set according to the actual situation, and the number of micro rings can be one or more.
  • the intra-layer transmission structure #2 may also include an input waveguide.
  • the input waveguide includes a third waveguide 1314.
  • the third waveguide 1314 is optically coupled to the first optical resonant cavity 1313. It should be understood that the number of input waveguides It can be set according to the actual situation and is not limited in this application.
  • the interlayer coupling structure #2 includes a patterned tapered structure at the end of the third waveguide 1314 .
  • the intra-layer transmission structure #2 is located in area #1 in the optical film #2, and the inter-layer coupling structure #2 is located in area #2 in the chip plane.
  • An optical structure #1 is formed on the optical film #1, and the optical structure #1 includes an intra-layer transmission structure #1 and an inter-layer coupling structure #1.
  • the intra-layer transmission structure #1 may include a fourth waveguide 1111 and a second optical resonant cavity 1112.
  • the second optical resonant cavity 1112 may be an optical micro-ring resonant cavity, an F-P resonant cavity, or the like.
  • the fourth waveguide 1111 may be a straight waveguide optically coupled to the optical micro-ring resonant cavity and located below the optical micro-ring resonant cavity.
  • the number of the fourth waveguides 1111 can be set according to actual conditions, and this application does not limit this.
  • the intra-layer transmission structure #1 may further include a fifth waveguide 1113 optically coupled to the optical micro-ring resonant cavity and located above the optical micro-ring resonant cavity.
  • the end of the fifth waveguide 1113 may serve as interlayer coupling structure #1.
  • the intra-layer transmission structure #1 is located in area #3 in the optical film #1, and the inter-layer coupling structure #1 is located in area #4 in the chip plane; the area #3 and the second optical structure are located in area #3.
  • the projections of the area in the normal direction of the optical substrate plane do not overlap; the projections of area #4 and area #2 in the normal direction of the optical substrate plane partially or completely overlap. Therefore, the interlayer coupling structure #1 and the interlayer coupling structure #2 do not need to be optically aligned mechanically, so that the output signal in the optical film #1 can be efficiently coupled to the optical film #2 to achieve the signal.
  • Cross-layer transmission is provided in area #3 in the optical film #1
  • the inter-layer coupling structure #1 is located in area #4 in the chip plane
  • the area #3 and the second optical structure are located in area #3.
  • the projections of the area in the normal direction of the optical substrate plane do not overlap; the projections of area #4 and area #2 in the normal direction of the optical substrate plane partially or completely overlap. Therefore, the interlayer coupling structure #1 and
  • the width of the fifth waveguide 1113 can be set to be greater than the width of the area #2, as shown in (c) of Figure 4 .
  • the ultraviolet pump light can be coupled into the input waveguide constructed of lead sulfide material, so that the lead sulfide module generates a broadband laser signal in the near-infrared communication band.
  • the signal is coupled into the silicon module through the overlapping lead sulfide waveguide and tapered silicon waveguide structures along the chip plane. Based on the filtering effect in the silicon module, two narrow-band laser signals with different wavelengths are finally output.
  • Figure 5 shows a schematic flow chart of a method for preparing an optical chip provided by the present application.
  • the optical chip prepared by this method can be used in fields such as integrated optical communications.
  • the method may include the following steps.
  • optical film #1 an example of the first functional layer
  • the optical film #1 can be a material with optical gain-increasing properties.
  • the optical film #1 can be an organic film, for example, lead sulfide quantum dot film, cadmium selenide (CdSe) film, polymethacrylate Ester (PMMA) film, etc.
  • depositing the optical film #1 on the optical substrate may include: dissolving the lead sulfide quantum dots in a toluene solvent, and passing the solution through a glue homogenizer.
  • the surface of the quartz glass substrate is coated by spin coating; during the spin coating process, the high-speed rotation of the vacuum suction cup in the glue spreader is used to volatilize the relevant solvent, causing the lead sulfide quantum dots to form a dense optical film on the surface of the quartz glass.
  • the thickness of the optical film #1 can be controlled from 150 nm to 5 ⁇ m.
  • the thickness of the optical film #1 can be controlled to 1 ⁇ m.
  • the spacer layer #1 may be a silicon oxide film, and depositing the spacer layer #1 on the optical film #1 may include thermal evaporation. By controlling the evaporation time, the thickness of the film can be controlled from 20 nm to 500 nm.
  • the thickness of the spacer layer #1 can be set according to the actual situation, and is not limited in this application.
  • the thickness of the first spacer layer may be 150 nm.
  • the structure after depositing the spacer layer #1 on the optical film #1 is shown in (b) of Figure 6 .
  • S513 Deposit optical film #2 (an example of the second functional layer) on the spacer layer #1, and optically planarize it.
  • the optical film #2 can be a material with a high optical refractive index.
  • the optical film is a single crystal inorganic film, such as a single crystal silicon film, a lithium niobate (LiNbO3) film, or a silicon nitride film. wait.
  • the optical film #2 is a single crystal silicon film.
  • Depositing optical film #2 on spacer layer #1 includes: bonding a layer of single crystal silicon wafer to the evaporated silicon oxide film (spacer layer #1) based on silicon-silicon bonding. surface.
  • the bonded single crystal silicon film is polished and thinned to 150nm to 5 ⁇ m by grinding and chemical mechanical polishing (CMP).
  • CMP chemical mechanical polishing
  • optical film #2 can also be made of other materials, such as polycrystalline inorganic films, organic films, etc.
  • the optical structure #2 may include an intra-layer transmission structure #2 for controlling the transmission of optical signals within the module, and an inter-layer coupling structure #2 for signal exchange with other modules.
  • the intra-layer transmission structure #2 may include an output waveguide.
  • patterning the optical film #2 includes patterning the first waveguide 1311 and the second waveguide 1312 on the single crystal silicon film.
  • the first waveguide 1311 and the second waveguide 1312 is used to output two channels of signal light with different wavelengths.
  • the structure of the output waveguide is shown in (a) of Figure 4 .
  • the number of output waveguides can be set according to actual conditions.
  • the first waveguide 1311 and the second waveguide 1312 are only examples.
  • One or more output waveguide structures can also be patterned on the optical film #2.
  • Patterning the optical film #2 may also include patterning a first optical resonant cavity on the single crystal silicon film.
  • the first optical resonant cavity can continuously resonate and amplify the optical signal in the resonant cavity based on the optical resonance effect.
  • the first optical resonant cavity may be an optical microring resonant cavity, a Fabry-Pérot (F-P) resonant cavity (cavity), etc.
  • the first optical resonant cavity is an optical micro-ring resonant cavity as an example.
  • the first optical resonant cavity includes two micro-rings with different radii (the first micro-ring 13131 and the second micro-ring 13132).
  • the first waveguide 1311 is optically coupled and connected to the first microring 13131, and the second waveguide 1312 is optically coupled and connected to the second microring 13132, as shown in (a) of Figure 4 .
  • the number of micro rings can be set according to actual conditions, and the number of micro rings can also be one or more.
  • Patterning the optical film #2 may also include patterning an input waveguide.
  • the input waveguide includes a third waveguide 1314.
  • the third waveguide 1314 is optically coupled to the first optical resonant cavity 1313, as shown in Figure 4 shown in (a). It should be understood that the number of input waveguides can be set according to actual conditions, and is not limited in this application.
  • the third waveguide 1314 Based on the optical resonance effect of the first optical resonant cavity, when a broadband laser beam is input into the third waveguide 1314, laser light with different wavelength components will resonate in the first microring 13131 and the second microring 13132, respectively. And are coupled to the first waveguide 1311 and the second waveguide 1312 respectively to achieve simultaneous output of different wavelengths.
  • the input waveguide (the third waveguide 1314)
  • its end is patterned into a tapered structure with gradually narrowing width, which structure can be based on evanescent waves.
  • the coupling effect effectively couples the optical signal transmitted in the optical film #1 below to this layer, or in other words, this structure can serve as the interlayer coupling structure #2.
  • the above methods for patterning optical films include, but are not limited to, ultraviolet lithography, electron beam exposure, dry etching, wet etching, ion beam etching, etc., based on physical bombardment or chemical etching.
  • metal electrodes can also be arranged around the optical structures based on electron beam evaporation, thermal evaporation, magnetron sputtering, etc. These metal electrodes do not transmit optical signals, but are used to apply electric fields to change the optical properties of the surrounding materials used to transmit optical signals, thereby affecting the transmission state of the optical signals.
  • S522 Remove the spacer layer #1 in the area #1.
  • the projections of the area #1 and the area #2 in the normal direction of the optical substrate plane do not overlap.
  • the area #2 is the area where the optical structure #2 is located.
  • the area #1 is shown in (b) of FIG. 4 , and the optical film #1 in the area #1 can be exposed by removing the spacer layer #1 in the area #1.
  • the optical structure #1 may include an intra-layer transmission structure #1 for controlling the transmission of optical signals within the structure, and an inter-layer coupling structure #1 for signal exchange with other functional layers.
  • the intra-layer transmission structure #1 may include a fourth waveguide 1111 and a second optical resonant cavity 1112.
  • the second optical resonant cavity 1112 may be an optical micro-ring resonant cavity, an F-P resonant cavity, or the like.
  • the fourth waveguide 1111 may be a straight waveguide optically coupled with the optical micro-ring resonant cavity and located below the optical micro-ring resonant cavity.
  • the number of the fourth waveguides 1111 can be set according to actual conditions, and this application does not limit this.
  • the intra-layer transmission structure #1 also includes a fifth waveguide 1113 optically coupled with the optical micro-ring resonant cavity, which is located above the optical micro-ring resonant cavity.
  • the end of the fifth waveguide 1113 and the end of the third waveguide 1314 The projection of the tapered structure in the normal direction of the optical substrate plane partially or completely overlaps, as shown in (c) of Figure 4; or in other words, the area where the fifth waveguide 1113 is located in the optical plane and the interlayer coupling structure
  • the projection of the area where #2 is located in the optical plane in the normal direction of the optical substrate plane partially or completely overlaps.
  • the width of the fifth waveguide 1113 is greater than the width of the area #3, as shown in (c) of FIG. 4 .
  • the fifth waveguide 1113 and the third waveguide 1514 are not Optical alignment requires mechanical means.
  • the fifth waveguide 1113 and the third waveguide 1514 are coupled through patterning, so that the output signal in the optical film #1 can be efficiently coupled to the optical film #2 to achieve cross-layer transmission of the signal.
  • the above methods for patterning optical films include, but are not limited to, ultraviolet lithography, electron beam exposure, dry etching, wet etching, ion beam etching, etc., based on physical bombardment or chemical etching.
  • metal electrodes can also be arranged around the optical structures based on electron beam evaporation, thermal evaporation, magnetron sputtering, etc. These metal electrodes do not transmit optical signals, but are used to apply electric fields to change the optical properties of the surrounding materials used to transmit optical signals, thereby affecting the transmission state of the optical signals.
  • a three-dimensional heterogeneous integrated light-emitting chip with dual-wavelength output channels is constructed.
  • This method first stacks and arranges a variety of unpatterned heterogeneous optical materials on the same optical substrate. After the material films are stacked, patterning is performed on each layer in order from top to bottom.
  • the corresponding optical structure realizes the construction of heterogeneous integrated optical chips.
  • This method does not require mechanical optical alignment between modules and improves the preparation efficiency of optical chips.
  • this method does not require the arrangement of the spacer layer above the existing structure, so its thickness can be accurately controlled.
  • Figure 7(c) shows a structural top view of an optical chip obtained according to the optical chip preparation method provided by the embodiment of the present application. It should be noted that in the schematic diagram of (c) of FIG. 7 , the proportional relationship between each optical structure and the layers is only schematic.
  • the optical chip may include an optical substrate, an optical film #3 provided on the optical substrate, a spacer layer #2 provided above the optical film #3, and a spacer layer #2 provided on the spacer layer #3.
  • Optical film #4 above 2.
  • the optical film #3 can be made of a material with a large optical second-order nonlinear coefficient.
  • the optical film #3 can be a single crystal inorganic film, such as a single crystal lithium niobate film, a single crystal Lithium tantalate film, etc.
  • the optical film #4 can be made of a material with semiconductor properties, and the optical film #4 can change its optoelectronic properties through doping.
  • the optical film #4 can be a single crystal inorganic film, for example, a single crystal silicon film. .
  • optical structure #4 is formed on the optical film #4.
  • the optical structure #4 may include an intra-layer transmission structure #4 used to control the transmission of optical signals within the module, and an inter-layer coupling structure for signal exchange with other modules. #4.
  • the optical structure #4 is used to split the input optical signal, transmit it independently, and then combine the beams.
  • the optical structure #4 may be a Mach-Zehnder interferometer structure.
  • the intra-layer transmission structure #4 includes two arms (1315 and 1316) of the Mach-Zehnder interferometer, which are prepared into a PIN structure by doping.
  • the intra-layer transmission structure #4 also includes Metal electrodes 1317 on both sides of the arm, and input waveguide 1318.
  • the end of the input waveguide 1318 is patterned into a tapered structure with gradually narrowing width.
  • This structure can effectively couple the optical signal transmitted in the lower optical film #3 to the silicon-based optical structure of this layer based on the evanescent wave coupling effect. , that is, the tapered structure can be used as interlayer coupling structure #4.
  • the optical structure #3 includes an intra-layer transmission structure #3 and an inter-layer coupling structure #3.
  • the optical structure #3 may be a lithium niobate straight waveguide structure, wherein the area where one end of the straight waveguide is located and the area where the tapered waveguide part of the optical structure #4 is located are in the normal direction of the optical substrate plane.
  • the projections are partially or completely coincident to achieve efficient coupling of optical signals between the two modules based on the evanescent wave coupling effect. Therefore, the interlayer coupling structures in the optical structure #3 and the optical structure #4 do not need to be optically aligned mechanically.
  • chromium electrodes 1319 can also be prepared on both sides of the straight waveguide.
  • the chromium electrodes 1319 are used to polarize the straight waveguide, and after the polarization is completed, they can also be removed by wet etching or other methods. .
  • a high-voltage pulse electrical signal can be applied to the chromium electrode to achieve periodic domain inversion of the lithium niobate waveguide, and a periodically polarized lithium niobate waveguide can be constructed. Improve the efficiency of nonlinear frequency conversion; input the infrared pulse light signal into the lithium niobate waveguide.
  • photon pairs with entangled characteristics can be generated in the lithium niobate waveguide and pass through the lithium niobate waveguide.
  • the coupling region of the tapered silicon waveguide is transmitted to the silicon-based Mach-Zehnd interference structure; by adjusting the voltage applied on the two arms of the interference structure, the entangled photon pairs can be modulated.
  • Figure 8 shows a schematic flow chart of a method for preparing an optical chip provided by the present application.
  • the optical chip prepared by this method can be used in fields such as optical quantum computing.
  • the method may include the following steps.
  • optical film #3 an example of the first functional layer
  • the optical film #3 can be made of a material with a large optical second-order nonlinear coefficient.
  • the first optical film can be a single crystal inorganic film, for example, a single crystal lithium niobate film, a single crystal tantalic acid film. Lithium film, etc.
  • depositing the optical film #3 on the optical substrate can be done by bonding the lithium niobate wafer to the optical substrate based on high-temperature bonding (as shown in Figure 9 (shown in (a)); after bonding After completion, by injecting argon ions (Ar+), the lithium niobate wafer forms an ion damage layer (plasma layer) at a specific thickness (as shown in (b) of Figure 9); further, through high-temperature annealing, the niobate wafer is The lithium wafer dissociates at the damaged layer (as shown in Figure 9 (c)); it is finally chemically and mechanically polished, leaving a certain thickness of lithium niobate film on the optical substrate (as shown in Figure 9 (d) ) to achieve the bonding of single crystal lithium niobate thin films on optical substrates.
  • the thickness of the optical film #3 can be controlled from 150 n
  • S813 Deposit optical film #4 (an example of the second functional layer) on the spacer layer #2, and optically planarize it.
  • the optical film #4 can be made of a material with semiconductor properties, and the optical film #4 can change its optoelectronic properties through doping.
  • the optical film #4 can be a single crystal inorganic film, for example, a single crystal silicon film. .
  • Depositing the optical film #4 on the spacer layer #2 may include: depositing a layer of single crystal on top of the material of the evaporated silicon oxide film (an example of the spacer layer #2) based on silicon-silicon bonding.
  • the silicon wafer (an example of the optical film #4) is bonded to the silicon oxide film, and the bonded single crystal silicon film is polished and thinned to 150nm-5 ⁇ m by grinding and chemical mechanical polishing.
  • the single crystal silicon film is The specific thickness can be determined according to actual conditions. For example, the thickness of the single crystal silicon film is 220 nm.
  • optical film #4 can also be made of other materials, such as silicon nitride film, silicon oxide film, etc., which is not limited in this application.
  • the optical structure #4 may include an intra-layer transmission structure #4 for controlling the transmission of optical signals within the module, and an inter-layer coupling structure #4 for signal exchange with other modules.
  • the optical structure #4 is used to split the input optical signal, transmit it independently, and then combine the beams.
  • the optical structure #4 may be a Mach-Zehnder interferometer structure, as shown in (a) of FIG. 7 .
  • the two arms of the Mach-Zehnder interferometer can be prepared into a PIN structure through doping based on ion implantation, and electron beams can be passed through both sides of each interference arm.
  • the metal electrode 1317 with a thickness of about 200 nm is arranged by evaporation, so that the light transmission properties of the silicon waveguide can be changed by applying an external electric field.
  • the input waveguide 1318 an example of the second input waveguide
  • its end is patterned into a tapered structure with gradually narrowing width. This structure can transfer the light transmitted in the optical film #3 below based on the evanescent wave coupling effect.
  • the signal is effectively coupled into the silicon-based optical structure of this layer, that is, the tapered structure can be used as interlayer coupling structure #4.
  • optical structure #4 can also be other structures, such as an Add-Drop micro-ring resonant cavity structure, a photonic crystal structure, etc., which is not limited in this application.
  • the above methods of patterning the optical structure #4 on the optical film #4 include, but are not limited to, electron beam exposure, ion implantation, dry etching technology, metal evaporation, and other methods.
  • the area #1 is shown in (b) of FIG. 7 , and the optical film #3 in the area #1 can be exposed by removing the spacer layer #2 in the area #1.
  • the optical structure #3 includes an intra-layer transmission structure #3 used to control the transmission of optical signals within the module, and an inter-layer coupling structure #3 for signal exchange with other modules.
  • the optical structure #3 may be a lithium niobate straight waveguide structure 1320, wherein part or all of the projection of one end of the straight waveguide structure 1320 and the tapered waveguide part in the optical structure #4 in the normal direction of the optical substrate plane Coincidence to achieve efficient coupling of optical signals between the two modules based on the evanescent wave coupling effect. Therefore, the interlayer coupling structures in the optical structure #3 and the optical structure #4 do not need to be optically aligned mechanically.
  • the optical structure #3 can also be a lithium niobate photonic crystal cantilever beam structure, an F-P resonant cavity structure, etc.
  • chromium electrodes 1319 can also be prepared on both sides of the lithium niobate waveguide by electron beam evaporation or other methods.
  • the chromium electrodes 1319 are used to polarize the lithium niobate waveguide, and after the polarization is completed, they can also be Removed by wet etching.
  • the above methods for patterning optical films include, but are not limited to, ultraviolet lithography, electron beam exposure, dry etching, wet etching, ion beam etching, etc., based on physical bombardment or chemical etching.
  • a three-dimensional optical chip capable of generating and modulating entangled photon pairs can be constructed, and the chip can be used in fields such as optical quantum computing.
  • This method first stacks and arranges a variety of unpatterned heterogeneous optical materials on the same optical substrate. After the material films are stacked, patterning is performed on each layer in order from top to bottom. The corresponding optical structure realizes the construction of heterogeneous integrated optical chips.
  • This method does not require mechanical optical alignment between modules, which improves the preparation efficiency of optical chips.
  • this method does not require the arrangement of the spacer layer above the existing structure, so its thickness is accurately controllable.
  • FIG. 11 is a schematic diagram of an example of an optical module of the present application. As shown in FIG. 11 , the optical module 1100 includes a substrate 1110 and an optical chip 1120 .
  • the substrate 1110 may include but is not limited to a ceramic substrate or a printed circuit board (PCB).
  • PCB printed circuit board
  • the optical chip 1120 is specifically the optical chip in any of the above-mentioned implementations in FIGS. 1 to 10 .
  • the communication device 1200 includes a processor 1210 and a transceiver 1220.
  • the processor 1210 is used to process the data to be sent to generate a digital signal.
  • the transceiver 1220 includes In the optical module shown in Figure 12, the transceiver 1220 is used to process the signal, for example, process the generated radio frequency signal through an optical chip, generate an optical signal, and send the optical signal to other communication devices.
  • the optical chip processes the optical signal received by the transceiver to generate a radio frequency signal.
  • the electrical chip can process the radio frequency signal to generate a digital signal, and the processor processes the data signal to obtain the data carried by the digital signal.
  • the disclosed systems and devices can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • Another point, shown or discussed The mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本申请提供了一种光学芯片及其制备方法,该光学芯片包括光学基板,依次设于光学基板上的第一功能层,第一间隔层以及第二功能层;第二功能层上形成有第二光学结构,第二光学结构包括第二层间耦合结构和第二层内传输结构,第二层内传输结构位于第二功能层的第一区域;第一功能层上形成有位于第二区域的第一光学结构,第一光学结构包括第一层间耦合结构和第一层内传输结构,第二区域与该第一区域在光学基板平面的法向的投影不重叠;第二层间耦合结构位于第二功能层中的第三区域,第一层间耦合结构位于第一功能层的第四区域,第三区域与第四区域在光学基板平面的法向投影部分或全部重叠。该光学芯片各功能层中的光学结构无需基于机械方式光学对准。

Description

一种光学芯片及其制备方法
本申请要求于2022年3月16日提交中国专利局、申请号为202210260411.9、申请名称为“一种光学芯片及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体领域和光电集成领域,并且更具体地,涉及一种光学芯片及其制备方法。
背景技术
近年来,为了适应人工智能、云、高性能计算等应用场景中,对信息的传输和计算需求的爆炸性增长,全光信息处理系统逐渐进入集成芯片化时代。相比于传统的基于光纤连接不同功能器件的方式构建的分立式光学信息处理系统,集成芯片化的光学系统(即光学芯片)不仅不易受到温度、磁场、噪声变化等情况的影响,具有更强的抗干扰性;同时,系统整体尺寸的集成化,可以将光学信息处理系统的带宽密度提升若干个数量级,大幅降低功耗密度,使其满足大规模信息处理的实际需求。
在光学芯片中,可以包括光信号的产生、调制、被动传输和探测等多种具有不同功能的模块,以实现单一芯片上光学信号的传输和处理。这些模块的构建,对所需要的光学材料的特性各不相同。例如,对于芯片中的光信号产生和探测模块,需要使用具有较高增益和吸收系数的材料;对于传输模块,需要使用光学透明(即增益和吸收系数较低)的材料,以降低芯片整体的信号传输损耗。因此,光学芯片的构建很难基于单一材料,其通常选用多种材料构建不同的功能模块,并进行异质集成。
在构建异质集成光学芯片过程中,需要将利用不同材料构建的不同功能模块,在沿着芯片平面内方向或法向的投影进行高精度机械对准,因此,限制了此类异质集成光学芯片的制备效率。
发明内容
本申请提供一种光学芯片及其制备方法,该光学芯片各功能层中的光学结构无需基于机械方式光学对准,能够提升异质集成光学芯片的制备效率。
第一方面,提供了一种光学芯片,该光学芯片包括光学基板,设于该光学基板上的第一功能层,设于该第一功能层上的第一间隔层,以及设于该第一间隔层上的第二功能层;该第二功能层上形成有第二光学结构,该第二光学结构包括第二层间耦合结构和第二层内传输结构,该第二层内传输结构位于该第二功能层的第一区域;该第一功能层上形成有第一光学结构,该第一光学结构包括第一层间耦合结构和第一层内传输结构,该第一光学结构位于该第一功能层的第二区域,该第二区域与该第一区域在该光学基板平面的法向的投 影不重叠;其中,该层间耦合结构用于该第一功能层与该第二功能层之间的信号交换,该层内传输结构用于控制该功能层内的信号传输,该第二层间耦合结构位于该第二功能层中的第三区域,该第一层间耦合结构位于该第一功能层的第四区域,该第三区域与该第四区域在该光学基板平面的法向的投影部分或全部重叠。
根据本申请实施例提供的光学芯片,该第二功能层上形成有位于第一区域的第二光学结构,该第二光学结构包括第二层间耦合结构和第二层内传输结构;该第一功能层上形成有位于第二区域的第一光学结构,该第一光学结构包括第一层间耦合结构和第一层内传输结构,该第二区域与该第一区域在该光学基板平面的法向投影不重叠;该第二层间耦合结构位于该第二功能层中的第三区域,该第一层间耦合结构位于该第一功能层的第四区域,该第三区域与该第四区域在该光学基板平面的法向投影部分或全部重叠。该光学芯片各功能层中的光学结构无需基于机械方式光学对准。
结合第一方面,在第一方面的某些设计中,该第二光学结构还包括位于该第二功能层的第九区域的该第二层间耦合结构,该光学芯片还包括设于该第二功能层上的第二间隔层,以及设于该第二间隔层上的第三功能层,该第三功能层上形成有第三光学结构,该第三光学结构包括第三层间耦合结构和第三层内传输结构;其中,该第三层间耦合结构位于该第三功能层中的第七区域,该第三层内传输结构位于该第三功能层中的第八区域,该第八区域与该第一区域在该光学基板平面的法向的投影不重叠,该第九区域与该第七区域在该光学基板平面的法向的投影部分或全部重叠。
结合第一方面,在第一方面的某些设计中,该第二层内传输结构包括第一输入波导,第一输出波导以及至少一个第一光学谐振腔;其中,该第一输出波导包括至少一个波导结构,该至少一个波导结构与该至少一个第一光学谐振腔一一对应且光耦合连接,该第一输入波导包括一个波导结构,该一个波导结构与该至少一个第一光学谐振腔光耦合连接。
结合第一方面,在第一方面的某些设计中,该第二层间耦合结构包括在该第一输入波导的第一端形成的第一锥型结构。
结合第一方面,在第一方面的某些设计中,该第一光学结构包括第二光学谐振腔,以及平行的第一波导和第二波导,该第一波导的一端与该第一锥型结构光耦合连接。
结合第一方面,在第一方面的某些设计中,该第二功能层的厚度范围为150nm至5μm。
结合第一方面,在第一方面的某些设计中,该第一功能层的厚度范围为150nm至5μm。
结合第一方面,在第一方面的某些设计中,该第二层内传输结构为马赫增德干涉仪结构,该马赫增德干涉仪结构包括第一干涉臂,第二干涉臂和第二输入波导;该第二层间耦合结构包括在该第二输入波导的第一端形成的第二锥型结构。
结合第一方面,在第一方面的某些设计中,该第一光学结构包括直波导结构,该直波导结构的一端与该第二锥型结构光耦合连接。
结合第一方面,在第一方面的某些设计中,该第二功能层的厚度范围为300nm至1μm。
结合第一方面,在第一方面的某些设计中,该第一功能层的厚度范围为200nm至500nm。
第二方面,提供了一种光学芯片的制备方法,该方法包括:在光学基板上依次沉积第一功能层,第一间隔层以及第二功能层,以形成第一结构;图案化该第二功能层以形成第 二光学结构,该第二光学结构位于该第二功能层的第一区域,该第二光学结构包括第二层间耦合结构和第二层内传输结构;移除第二区域中的该第一间隔层以露出该第一功能层,该第二区域与该第一区域在该第一结构平面的法向的投影不重叠;图案化该第二区域中的该第一功能层以形成第一光学结构,该第一光学结构包括第一层间耦合结构和第一层内传输结构;其中,该层间耦合结构用于该第一功能层与该第二功能层之间的信号交换,该层内传输结构用于控制该功能层内的信号传输,该第二层间耦合结构位于该第二功能层中的第三区域,该第一层间耦合结构位于该第一功能层的第四区域,该第三区域与该第四区域在该第一结构平面的法向的投影部分或全部重叠。
根据本申请实施例提供的光学芯片的制备方法,先将未经图案化的异质光学材料层叠排布于同一光学基底之上,在材料薄膜层叠完毕之后,再按照由上至下的顺序,依次在各层上图案化出相应的光学结构,实现异质集成光学芯片的构建,该方法基于由上至下的顺序加工方式,可以较为方便地实现模块间耦合结构的对准,无需基于机械方式进行各个模块之间的光学对准,提升了光学芯片的制备效率。同时,在间隔层厚度的控制方面,该方法也不需要在已有图案化的结构的上方进行间隔层的布置,因此其厚度可以实现精确控制。
结合第二方面,在第二方面的某些实现方式中,在图案化该第二功能层以形成第二光学结构之前,在该第一结构上依次沉积第二间隔层和第三功能层,以形成第二结构;图案化该第三功能层以形成第三光学结构,该第三光学结构位于该第三功能层的第五区域,该第三光学结构包括第三层间耦合结构和第三层内传输结构;移除第六区域中的该第二间隔层以露出该第二功能层,该第六区域与该第五区域在该第二结构平面的法向的投影不重叠。
结合第二方面,在第二方面的某些实现方式中,该第三层间耦合结构位于该第三功能层中的第七区域,该第三层内传输结构位于该第三功能层中的第八区域,图案化该第六区域中的该第二功能层以形成该第二光学结构,该第二光学结构还包括位于该第二功能层中的第九区域的该第二层间耦合结构;其中,该第八区域与该第六区域在该第二结构平面的法向的投影不重叠,该第九区域与该第七区域在该第二结构平面的法向的投影部分或全部重叠。
结合第二方面,在第二方面的某些实现方式中,图案化该第二功能层以形成该第二层内传输结构,该第二层内传输结构包括第一输入波导,第一输出波导以及至少一个第一光学谐振腔;其中,该第一输出波导包括至少一个波导结构,该至少一个波导结构与该至少一个第一光学谐振腔一一对应且光耦合连接,该第一输入波导包括一个波导结构,该一个波导结构与该至少一个第一光学谐振腔光耦合连接。
结合第二方面,在第二方面的某些实现方式中,将该第一输入波导的第一端图案化为第一锥型结构以形成该第二层间耦合结构。
结合第二方面,在第二方面的某些实现方式中,图案化该第二区域中的该第一功能层以形成第二光学谐振腔,以及平行的第一波导和第二波导,该第一波导的一端与该第一锥型结构光耦合连接。
结合第二方面,在第二方面的某些实现方式中,该第二功能层的厚度范围为150nm至5μm。
结合第二方面,在第二方面的某些实现方式中,该第一功能层的厚度范围为150nm至5μm。
结合第二方面,在第二方面的某些实现方式中,图案化该第二功能层以形成马赫增德干涉仪结构,该马赫增德干涉仪结构包括第一干涉臂,第二干涉臂和第二输入波导;图案化该第二输入波导的第一端形成的第二锥型结构。
结合第二方面,在第二方面的某些实现方式中,图案化该第二区域中的该第一功能层以形成直波导结构,该直波导结构的一端与该第二锥型结构光耦合连接。
结合第二方面,在第二方面的某些实现方式中,该第二功能层的厚度范围为300nm至1μm。
结合第二方面,在第二方面的某些实现方式中,该第一功能层的厚度范围为200nm至500nm。
附图说明
图1是本申请提供的一种光学芯片的结构示意图。
图2是本申请提供的一种光学芯片制备方法的示例性流程图
图3是本申请提供的第一结构的示意性结构图。
图4是本申请提供的一例光学芯片的示意性结构图。
图5是本申请提供的另一种光学芯片制备方法的示例性流程图。
图6是本申请提供的一例形成第一结构的示意性结构图。
图7是本申请提供的另一例光学芯片的示意性结构图。
图8是本申请提供的另一种光学芯片制备方法的示例性流程图。
图9是本申请提供的形成第一功能层的示例性结构图。
图10是本申请提供的形成的另一例第一结构的示意性结构图。
图11是本申请的光模块的一例的示意图。
图12是本申请的通信设备的一例的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
近年来,为了适应人工智能、云、高性能计算等新应用场景中,对信息的传输和计算需求的爆炸性增长,全光信息处理系统逐渐进入集成芯片化时代。相比于传统的基于光纤连接不同功能器件的方式构建的分立式光学信息处理系统,集成芯片化的光学系统(即光学芯片)不仅不易受到温度、磁场、噪声变化等情况的影响,具有更强的抗干扰性;同时,系统整体尺寸的集成化,可以将光学信息处理系统的带宽密度提升若干个数量级,并大幅降低功耗密度,使其可以满足大规模信息处理的实际需求。
在一种光学芯片结构中,其可以包括光信号的产生、调制、被动传输和探测等多种具有不同功能的模块,以实现单一芯片上光学信号的传输和处理。这些模块对所需要的光学材料的特性的要求各不相同,例如,对于光信号产生和探测模块,需要具有较高增益和吸收系数的材料;对于传输模块,需要具有光学透明(即增益和吸收系数较低)特性的材料,以降低芯片整体的信号传输损耗;对于调制模块,则需要使用具有较高的光学非线性的材料。然而,对于单一材料而言,高的光学增益和吸收系数与光学透明性之间是相互矛盾的,同时,常用的光学材料一般具有较低的光学非线性系数,具有较高光学非线性的材料,其 光学透明性和光学增益特性往往较差。因此,光学芯片很难基于单一材料构建。
当前,有一种技术,可以采用异质集成的方案制备光学芯片,即将基于不同材料构建的功能模块集成于同一基底之上,令其相互连通,从而使得信息载体可在两模块之间交换传输。例如,将预加工好的光发射/光探测模块与无源传输模块及光学非线性调制模块在沿芯片平面方向对齐,实现不同模块在沿芯片平面方向的光学连接,构建二维集成光学芯片;又如,基于模板转移法,将加工好的模块结构转移到另一模块旁边,获得沿芯片平面方向的光学连接,实现光信号在两模块之间的耦合传输,构建二维集成光学芯片;再如,基于倒装贴合的方式,将预加工好的有源激光模块与无源被动光波导实现沿垂直于芯片平面方向的光学连接,构建三维集成光学芯片。
在构建异质集成光学芯片过程中,为实现不同模块之间光学连接的高效性,即光信号以尽可能低的耦合损耗在不同模块之间传输,需要不同结构模块之间在制备过程中的对准偏差尽可能的小。对于典型的芯片上光信号传输结构,其特征尺寸一般在百纳米至几微米,这就意味着在制备过程中,各模块之间允许的对准误差往往在几纳米至几十纳米之间。而基于上述异质集成的制备方式,此精度的实现存在较大的难度,因此限制了此类异质集成光学芯片的制备效率。
有鉴于此,本申请提出了一种光学芯片的制备方法,该方法通过先将不同种类的未图案化的薄膜材料结合,进一步地分别在各层材料上进行功能结构的图案化加工,使得在进行异质集成光学芯片的加工时,不再需要将不同功能模块在沿着芯片平面内方向或垂直方向上进行高精度机械对准,从而可以提升光学芯片的制备效率,实现光学芯片的低成本生产;同时,不同模块层之间的间隔层厚度也可精确控制,可以提升制备良率。
本申请实施例提供的光学芯片可以应用于高速光传输、光通信、光计算等需要异质集成光信号处理芯片和模块的场景中。
本申请实施例涉及的“宽度”、“上”、“下”、“水平”、“底部”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请实施例涉及的至少一个,包括一个或者多个;其中,多个是指大于或者等于两个。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括例如“一个或多个”这种表达形式,除非其上下文中明确地有相反指示。还应当理解,在本申请实施例中,“一个或多个”是指一个、两个或两个以上;“和/或”,描述关联对象的关联关系,表示可以存在三种关系;例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
在本申请实施例中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书 中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
图1所示为根据本申请实施例提供的光学芯片的制备方法得到的一种光学芯片的结构侧视图。应注意,在图1的示意图中,各层的厚度、各个光学结构与层之间的比例关系等仅是示意性的。
如图1所示,该光学芯片可包括光学基板101、设于光学基板101上的第一功能层110、设于该第一功能层110上方的第一间隔层120、设于该第一间隔层110上方的第二功能层130;其中,该第二功能层130上形成有第二光学结构,该第二光学结构包括第二层内传输结构131和第二层间耦合结构132,该第二层内传输结构131位于该第二功能层130中的第一区域,该第二层间耦合结构位于该第二功能层130的第三区域;该第一功能层110上形成有第一光学结构,该第一光学结构位于所述第一功能层的第二区域,该第二区域与该第一区域在该光学基板平面的法向的投影不重叠;该第一光学结构包括第一层内传输结构111和第一层间耦合结构112,该第一层间耦合结构112位于该第一功能层110中的第四区域,该第三区域与该第四区域在该光学基板平面的法向的投影部分或全部重叠。
可选地,该光学芯片还可以包括层叠设于该第二功能层130上的第二间隔层140和第三功能层150,该第二间隔层140和第三功能层150的层数可以分别为N,N为正整数;该第二光学结构还可以包括位于该第二功能层130第九区域的第二层间耦合结构133;该第三功能层150上形成有第三光学结构,该第三光学结构包括第三层内传输结构151和第三层间耦合结构152,该第三层间耦合结构152位于该第三功能层150中的第七区域,该第三层内传输结构151位于该第三功能层150中的第八区域,该第八区域与该第一区域在该光学基板平面的法向的投影不重叠,该第九区域与该第七区域在该光学基板平面的法向的投影部分或全部重叠。
其中,层内传输结构用于传输其所在的层内的信号;层间耦合结构用于交换其所在的层与其他层中的信号,该信号可以为光信号。可选地,该层间耦合结构为锥型结构。
应理解,该第一功能层110、第二功能层130以及第三功能层150可以是单晶无机物薄膜、多晶无机物薄膜、或者是有机物薄膜。
该第一间隔层120以及第二间隔层140用于作为不同功能层之间的间隔保护层。该第一间隔层120和第二间隔层140的材料可以是硅的氧化物,硅的氮化物,金属的氧化物,金属的氮化物等,例如,二氧化硅、氮化硅、氧化铝、氮化铝、氧化铪、氧化锆、氧化锌、二氧化钛等材料中的一种或多种。需要说明的是,该第一间隔层120、第二间隔层140可以是一层,也可以是两层或两层以上,本申请对此不做限定。
图2所示为本申请提供的一种光学芯片的制备方法的示意性流程图,该方法可以包括以下几个步骤。
S211,在光学基板101上沉积第一功能层110,并将其光学平整化。
其中,该光学基板101可以是硅或其他半导体材料,例如,陶瓷、玻璃等。
该第一功能层110可以是构建某种光学模块的功能层,例如,用于光信号产生模块、光信号调制模块或者光信号传输模块;该第一功能层110用于构建何种光学模块可以根据 实际情况确定,本申请对此不做限定。
根据该第一功能层110构建的光学模块的不同,该第一功能层110可以是不同材料的光学薄膜。示例性地,该第一功能层110可以是单晶无机物薄膜、多晶无机物薄膜、或者是有机物薄膜。
在光学基板101上沉积第一功能层110包括但不限于以下方式:分子束外延(molecular beam epitaxy,MBE),单晶薄膜键合,物理气相沉积(physical vapor deposition,PVD),例如,磁控溅射、热蒸发、电子束蒸镀、脉冲激光沉积、电镀等,化学气相沉积(chemical vapor deposition,CVD),有机旋涂等方法形成。基于上述工艺沉积该第一功能层时,其厚度易于控制为需求参数。在光学基板101上沉积第一功能层110后的结构如图3的(a)中所示。
S212,在该第一功能层110上沉积第一间隔层120,并将其光学平整化。
该第一间隔层120后续可以作为不同功能层之间的间隔保护层。该第一间隔层120的材料可以是硅的氧化物(SiOx),硅的氮化物(SiNx),金属的氧化物,金属的氮化物等,例如,二氧化硅、氮化硅、氧化铝、氮化铝、氧化铪、氧化锆、氧化锌、二氧化钛等材料中的一种或多种。示例性地,可以通过PVD或CVD沉积该第一间隔层120。
需要说明的是,该第一间隔层120可以是一层,也可以是两层或两层以上,本申请对此不做限定。
S213,在该第一间隔层120上沉积第二功能层130,并将其光学平整化。
该第二功能层130可以是与该第一功能层110共同构建某种光学模块的功能层,例如,用于共同构建光信号产生模块、光信号调制模块或者光信号传输模块;或者,该第二功能用于构建其他光学模块,该光学模块与第一功能层110上构建的光学模块不同。该第二功能层130的光学材料与该第一功能层110可以相同,也可以不同。
应理解,该第二功能层130用于构建何种光学模块可以根据实际情况确定,本申请对此不做限定。该第二功能层130可以是单晶无机物薄膜、多晶无机物薄膜、或者是有机物薄膜。
该第二功能层130的沉积方式可以参考第一功能层110,在此不再赘述。
可选地,该方法还可以包括S114,在该第二功能层130上依次沉积第二间隔层140和第三功能层150,并将其光学平整化,该第二间隔层和第三功能层的层数可以为N,N为正整数。
示例性地,当N为1时,在该第二功能层130上依次沉积第二间隔层140和第三功能层150后的结构如图3的(b)中所示。
其中,该第二间隔层140的光学材料以及沉积方式可以参考第一间隔层120;该第三功能层150的材料可以与第一功能层110以及第二功能层130中的至少一种相同,或者,该第三功能层150与该第一功能层110以及第二功能层130的光学材料均不同。该第三功能层150可以用于构建第三光学模块,该第三光学模块可以与第一功能层110和/或第二功能层130上构建的光学模块相同或不同。在本申请中,可以根据实际应用场景确定是否沉积该第二间隔层140以及该第三功能层150。
通过上述步骤可以得到一种多层光学薄膜共基底的第一结构。该第一结构可以包括至少两层功能层(第一功能层110和第二功能层130)和至少一层间隔层(第一间隔层120), 且其中的各层材料均未预先进行图案化。
S221,对该第一结构中的最上层功能层进行图案化,形成第一光学结构。
该第一结构中的最上层功能层可以是该第三功能层或该第二功能层,以下以N为1时,最上层的功能层为该第三功能层150为例进行说明。
该第一光学结构可以包括用于控制光信号在该模块内传输的层内传输结构151,以及与其他层中光学模块进行信号交换的层间耦合结构152。其中,该第一光学结构位于该光学芯片平面中的第一区域,该第一区域包括该层间耦合结构152所在的区域#1,以及层内传输结构151所在的区域#2。该区域#2与其它层中层内传输结构所在的区域在沿芯片平面方向相互错位,或者说,该区域#2与其它层中层内传输结构所在的区域在该光学基板平面的法向的投影不重叠;该区域#1与其它层(例如,该第二功能层)中层间耦合结构所在的区域在该光学基板平面的法向的投影部分或全部重叠。
本申请对该第一结构中最上层的功能层进行图案化的方式不做限定,例如,该图案化方法可以是基于电子束曝光或干法刻蚀技术。
S222,移除第二区域中的该第三间隔层,以露出该第二区域中该第三间隔层下方的功能层,该第三间隔层为该第一结构中的最上层功能层下方的间隔层,该第二区域与该第一区域在该光学基板平面的法向的投影不重叠。
该第三间隔层可以是上述第一间隔层120或第二间隔层140。以下以N为1时,该第三间隔层为该第二间隔层140为例进行说明。
移除该第二区域中的该第二间隔层140后,该第二间隔层140如图1中的第二间隔层141所示,通过移除该第二区域的间隔层可以暴露出该第二间隔层140下方的功能层(第二功能层130)。
S223,对该第二区域中的第二功能层进行图案化,以形成第二光学结构。
该第二区域中的功能层可以是第二功能层130或第一功能层120。以下以N为1时,该功能层为该第二功能层130为例进行说明。
对该第二区域中的该第二功能层130进行图案化,以形成第二光学结构。该第二光学结构可以包括用于控制光信号在该模块内传输的层内传输结构131,以及与其他模块进行信号交换的层间耦合结构。其中,层内传输结构131位于该第二功能层130中的区域#3,该区域#3与其它层中光学结构所在的区域(例如,该第一区域)在光学基板平面的法向的投影不重叠;该层间耦合结构可以包括层间耦合结构132(第二层间耦合结构的一例),该层间耦合结构132位于该第二功能层中的区域#4,该区域#4与其它层(下层功能层)中层间耦合结构所在的区域在光学基板平面的法向的投影部分或全部重叠。
可选地,该层间耦合结构还可以包括层间耦合结构133(第二层间耦合结构的一例),该层间耦合结构133位于该第二功能层130中的区域#5,该区域#5与其它层(上层功能层)中层间耦合结构所在的区域(例如,层间耦合结构152所在的区域#1)在光学基板平面的法向的投影部分或全部重叠。
S224,移除第三区域中的第二间隔层,以露出该第三区域中该第二间隔层下方的功能层,并对该第三区域中的功能层进行图案化,以形成第一光学结构。
该第二间隔层可以是上述第一间隔层120。移除该第三区域中的该第一间隔层120后,该第一间隔层120如图1中的第一间隔层121所示,通过移除该第三区域的间隔层可以暴 露出该第一间隔层120下方的功能层(第一功能层110)。
对该第三区域中的该第一功能层110进行图案化,以形成第一光学结构。该第一光学结构可以包括用于控制光信号在该模块内传输的层内传输结构111,以及与其他模块进行信号交换的层间耦合结构112。其中,层内传输结构111位于该第一功能层110中的区域#6,该区域#6与其它层中光学结构所在的区域(例如,该第二区域)在光学基板平面的法向的投影不重叠;该层间耦合结构112位于该第二功能层中的区域#7,该区域#7与其它层(上层功能层)中层间耦合结构所在的区域在光学基板平面的法向的投影部分或全部重叠。
重复S122至S123若干次,直至将该第一结构中的功能层按从上到下的顺序完成图案化,如图1所示。每层功能层中图案化加工的结构均可以包括用于控制光信号在该模块内传输的层内传输结构和与其他模块进行信号交换的层间耦合结构,从而实现三维异质集成光学芯片的构建。
根据本申请实施例提供的光学芯片的制备方法,先将多种未经图案化的异质光学材料层叠排布于同一光学基底之上,在材料薄膜层叠完毕之后,再按照由上至下的顺序,依次在各层上图案化出相应的光学结构,实现异质集成光学芯片的构建,该方法基于由上至下的顺序加工方式,可以自然地实现模块间耦合结构的对准,无需基于机械方式进行各个模块之间的光学对准,提升了光学芯片的制备效率。同时,在间隔层厚度的控制方面,该方法也不需要在已有结构的上方进行间隔层的布置,因此其厚度的精确控制。
下面结合图4至图10详细介绍本申请提供的一种光学芯片及其制备方法。
图4的(c)中所示为根据本申请实施例提供的光学芯片的制备方法得到的一种光学芯片的结构俯视图。应注意,在图4的(c)的示意图中,各个光学结构与层之间的比例关系等仅是示意性的。
如图4的(c)所示,该光学芯片可包括光学基板、设于光学基板上的光学薄膜#1、设于该光学薄膜#1上方的间隔层#1,以及设于该间隔层#1上方的光学薄膜#2。
其中,该光学薄膜#1可以为具有光学增增益特性的材料,示例性地,该光学薄膜#1可以为有机物薄膜,例如,硫化铅量子点薄膜、硒化镉薄膜、聚甲基丙烯酸甲酯(PMMA)薄膜等。该光学薄膜#2可以为具有较高的光学折射率的材料,示例性地,该光学薄膜#2为单晶无机物薄膜,例如,单晶硅薄膜、铌酸锂(LiNbO3)薄膜等。
该光学薄膜#2上形成有光学结构#2,该光学结构#2包括层内传输结构#2和层间耦合结构#2。
该层内传输结构#2可包括输出波导,示例性地,该输出波导包括第一波导1311和第二波导1312,该第一波导1311和第二波导1312用于输出两路不同波长的信号光。应理解,输出波导的数量可以根据实际情况设置,该第一波导1311和该第二波导1312仅为示例,该输出波导还可以包括一根或多根输出波导结构。
该层内传输结构#2还可以包括第一光学谐振腔,该第一光学谐振腔可以基于光学谐振效应可使光信号在谐振腔内不断谐振和放大。示例性地,该第一光学谐振腔可以为光学微环谐振腔,F-P谐振腔等。以该第一光学谐振腔为光学微环谐振腔为例,该第一光学谐振腔可以包括两个半径不同的微环(第一微环13131和第二微环13132),该第一波导1311与该第一微环13131光耦合连接,该第二波导1312与该第二微环13132光耦合连接。应 理解,微环数量可以根据实际情况设置,该微环还可以为一个或多个。
该层内传输结构#2还可以包括输入波导,示例性地,该输入波导包括第三波导1314,该第三波导1314与该第一光学谐振腔1313光耦合连接,应理解,输入波导的数量可以根据实际情况设置,本申请不做限定。
该层间耦合结构#2包括在该第三波导1314末端图案化的锥型结构。
其中,该层内传输结构#2位于该光学薄膜#2中的区域#1,该层间耦合结构#2位于该芯片平面内的区域#2。
该光学薄膜#1上形成有光学结构#1,该光学结构#1包括层内传输结构#1和层间耦合结构#1。
该层内传输结构#1可以包括第四波导1111和第二光学谐振腔1112。该第二光学谐振腔1112可以是光学微环谐振腔、F-P谐振腔等。以该第二谐振腔1112为光学微环谐振腔为例,该第四波导1111可以为与该光学微环谐振腔光学耦合的直波导,其位于该光学微环谐振腔的下方。该第四波导1111的数量可以根据实际情况设置,本申请对此不做限定。
该层内传输结构#1还可以包括与该光学微环谐振腔光学耦合的第五波导1113,其位于该光学微环谐振腔的上方。该第五波导1113的末端可作为层间耦合结构#1。
其中,该层内传输结构#1位于该光学薄膜#1中的区域#3,该层间耦合结构#1位于该芯片平面内的区域#4;该区域#3与该第二光学结构所在的区域在该光学基板平面的法向的投影不重叠;该区域#4与该区域#2在该光学基板平面的法向的投影部分或全部重叠。因此,层间耦合结构#1和层间耦合结构#2不需要经过机械方式进行光学对准,即可实现将该光学薄膜#1中的输出信号高效耦合至光学薄膜#2中,实现信号的跨层传输。
在一种可能的设计中,可以设置该第五波导1113的宽度大于该区域#2的宽度,如图4中的(c)所示。
基于以上光学芯片,对于该芯片的运行,可以是将紫外泵浦光耦合进硫化铅材料构建的输入波导,使得硫化铅模块产生近红外通讯波段的宽带激光信号。该信号通过沿芯片平面方向相互交叠的硫化铅波导和锥形硅波导结构,耦合进硅模块中,基于硅模块中的滤波效应,最终输出两个不同波长的窄带激光信号。
图5所示为本申请提供的一种光学芯片的制备方法的示意性流程图,通过该方法制备的光学芯片可用于集成光通信等领域,该方法可以包括以下几个步骤。
S511,在光学基板上沉积光学薄膜#1(第一功能层的一例),并将其光学平整化。
该光学基板的材料参考S211中的描述。该光学薄膜#1可以为具有光学增增益特性的材料,示例性地,该光学薄膜#1可以为有机物薄膜,例如,硫化铅量子点薄膜、硒化镉(CdSe)薄膜、聚甲基丙烯酸甲酯(PMMA)薄膜等。
示例性地,以该光学薄膜#1为硫化铅量子点薄膜进行说明,在光学基板上沉积光学薄膜#1可以包括:将硫化铅量子点溶解于甲苯溶剂中,利用匀胶机将该溶液通过旋涂方式涂布于石英玻璃基底表面;在旋涂过程中,利用匀胶机中真空吸盘的高速旋转,挥发相关溶剂,使得硫化铅量子点在石英玻璃表面形成一层致密光学薄膜。通过控制溶液的浓度和匀胶机转速,可控制该光学薄膜#1的厚度为150nm至5μm,例如,该光学薄膜#1的厚度可以控制为1μm。
在光学基板上沉积光学薄膜#1后的结构如图6的(a)所示。
S512,在该光学薄膜#1上沉积间隔层#1(第一间隔层的一例),并将其光学平整化。
该步骤和S212中类似,示例性地,该间隔层#1可以为氧化硅薄膜,在该光学薄膜#1上沉积间隔层#1可以包括通过热蒸镀方式。通过控制蒸镀时间,可以控制该薄膜的厚度为20nm至500nm,该间隔层#1的厚度可以根据实际情况设置,本申请对此不做限定。例如,该第一间隔层的厚度可以为150nm。在该光学薄膜#1上沉积间隔层#1后的结构如图6的(b)所示。
S513,在该间隔层#1上沉积光学薄膜#2(第二功能层的一例),并将其光学平整化。
该光学薄膜#2可以为具有较高的光学折射率的材料,示例性地,该光学薄膜为单晶无机物薄膜,例如,单晶硅薄膜、铌酸锂(LiNbO3)薄膜、氮化硅薄膜等。
示例性地,本申请中以该光学薄膜#2为单晶硅薄膜为例进行说明。在间隔层#1上沉积光学薄膜#2包括:在蒸镀完氧化硅薄膜(间隔层#1)的材料的上方,基于硅-硅键合的方式,将一层单晶硅片键合至表面。通过研磨以及化学机械抛光(chemical mechanical polishing,CMP)的方式该单晶硅薄膜,将键合的单晶硅薄膜抛光减薄至150nm至5μm,该单晶硅薄膜的具体厚度可根据实际情况确定,例如,该单晶硅薄膜的厚度为220nm。
可以理解的是,该光学薄膜#2还可以是其他材料,例如多晶无机薄膜,有机物薄膜等。
在在该间隔层#1上沉积光学薄膜#2后的结构如图6的(c)所示。
S521,对该光学薄膜#2进行图案化,形成光学结构#2。
该光学结构#2可包括用于控制光信号在该模块内传输的层内传输结构#2,和与其他模块进行信号交换的层间耦合结构#2。
其中,层内传输结构#2可包括输出波导,示例性地,对该光学薄膜#2进行图案化包括在单晶硅薄膜上图案化第一波导1311和第二波导1312,该第一波导1311和第二波导1312用于输出两路不同波长的信号光。该输出波导的结构如图4的(a)中所示。
应理解,输出波导的数量可以根据实际情况设置,该第一波导1311和该第二波导1312仅为示例,还可以在该光学薄膜#2上图案化一根或多根输出波导结构。
对该光学薄膜#2进行图案化还可以包括在单晶硅薄膜上图案化第一光学谐振腔,该第一光学谐振腔基于光学谐振效应可使光信号在谐振腔内不断谐振和放大。示例性地,该第一光学谐振腔可以为光学微环谐振腔,法布里-珀罗(Fabry–Pérot,F-P)谐振腔(cavity)等。本申请中以该第一光学谐振腔为光学微环谐振腔为例进行说明,该第一光学谐振腔包括两个半径不同的微环(第一微环13131和第二微环13132),该第一波导1311与该第一微环13131光耦合连接、第二波导1312与第二微环13132光耦合连接,如图4的(a)中所示。应理解,微环数量可以根据实际情况设置,该微环还可以为一个或多个。
对该光学薄膜#2进行图案化还可以包括图案化输入波导,示例性地,该输入波导包括第三波导1314,该第三波导1314与该第一光学谐振腔1313光耦合连接,如图4的(a)中所示。应理解,输入波导的数量可以根据实际情况设置,本申请不做限定。
基于该第一光学谐振腔的光学谐振效应,当该第三波导1314中输入一束宽带激光时,不同波长成分的激光会分别在该第一微环13131和第二微环13132内发生谐振,并分别耦合到第一波导1311和第二波导1312中,实现不同波长的同时输出。此外,对于输入波导(第三波导1314),其末端被图案化为宽度逐渐变窄的锥形结构,该结构可基于倏逝波 耦合效应,将下方光学薄膜#1中传输的光信号有效耦合至该层中,或者说,该结构可作为该层间耦合结构#2。
以上对光学薄膜图案化的方式包括但不限于,紫外光刻,电子束曝光,干法刻蚀,湿法腐蚀,离子束刻蚀等,基于物理轰击或化学腐蚀的方式。其次,在光学结构(例如,层内传输结构,层间耦合结构)的加工过程中,也可在光学结构周围基于电子束蒸镀,热蒸镀,磁控溅射等方式布置金属电极。这些金属电极中并不传输光信号,而是用于施加电场,以改变其周围的用于传输光信号材料的光学性质,实现对光信号的传输状态的影响。
S522,移除区域#1中的间隔层#1,该区域#1与区域#2在光学基板平面的法向的投影不重叠,该区域#2为该光学结构#2所在的区域。
该区域#1如图4的(b)中所示,通过移除该区域#1中的间隔层#1可以暴露出该区域#1中的光学薄膜#1。
S523,对该区域#1中的该光学薄膜#1进行图案化,形成光学结构#1。
该光学结构#1可以包括用于控制光信号在该结构内传输的层内传输结构#1,以及用于与其他功能层进行信号交换的层间耦合结构#1。
其中,层内传输结构#1可以包括第四波导1111和第二光学谐振腔1112。该第二光学谐振腔1112可以是光学微环谐振腔、F-P谐振腔等。以该第二谐振腔1112为光学微环谐振腔为例,该第四波导1111可以是与该光学微环谐振腔光学耦合的直波导,其位于该光学微环谐振腔的下方。该第四波导1111的数量可以根据实际情况设置,本申请对此不做限定。
该层内传输结构#1还包括与该光学微环谐振腔光学耦合的第五波导1113,其位于该光学微环谐振腔的上方,该第五波导1113的末端与该第三波导1314末端的锥型结构在光学基板平面法向的投影部分或全部重叠,如图4的(c)中所示;或者说,该第五波导1113在该光学平面中所在的区域,与该层间耦合结构#2在该光学平面中所在的区域在该光学基板平面的法向上的投影部分或全部重叠。在一种可能的图案化方式中,该第五波导1113的宽度大于该区域#3的宽度,如图4中的(c)所示,因此,该第五波导1113和该第三波导1514不需要经过机械方式进行光学对准。通过图案化使得该第五波导1113和第三波导1514耦合,从而可以使得该光学薄膜#1中的输出信号高效耦合至光学薄膜#2中,实现信号的跨层传输。
以上对光学薄膜图案化的方式包括但不限于,紫外光刻,电子束曝光,干法刻蚀,湿法腐蚀,离子束刻蚀等,基于物理轰击或化学腐蚀的方式。其次,在光学结构(例如,层内传输结构,层间耦合结构)的加工过程中,也可在光学结构周围基于电子束蒸镀,热蒸镀,磁控溅射等方式布置金属电极。这些金属电极中并不传输光信号,而是用于施加电场,以改变其周围的用于传输光信号材料的光学性质,实现对光信号的传输状态的影响。
根据本申请实施例提供的光学芯片的制备方法,构建了一个具有双波长输出通道的三维异质集成光发射芯片。该方法通过先将多种未经图案化的异质光学材料层叠排布于同一光学基底之上,在材料薄膜层叠完毕之后,再按照由上至下的顺序,依次在各层上图案化出相应的光学结构,实现了异质集成光学芯片的构建,该方法无需基于机械方式进行各个模块之间的光学对准,提升了光学芯片的制备效率。同时,在间隔层厚度的控制方面,该方法也不需要在已有结构的上方进行间隔层的布置,因此其厚度的精确控制。
图7的(c)中所示为根据本申请实施例提供的光学芯片的制备方法得到的一种光学芯片的结构俯视图。应注意,在图7的(c)的示意图中,各个光学结构与层之间的比例关系等仅是示意性的。
如图7的(c)所示,该光学芯片可包括光学基板、设于光学基板上的光学薄膜#3、设于该光学薄膜#3上方的间隔层#2,以及设于该间隔层#2上方的光学薄膜#4。
其中,该光学薄膜#3可以采用具有较大的光学二阶非线性系数的材料,示例性地,该光学薄膜#3可以为单晶无机物薄膜,例如,单晶铌酸锂薄膜、单晶钽酸锂薄膜等。该光学薄膜#4可以采用具有半导体特性的材料,该光学薄膜#4能够通过掺杂改变其光电特性,示例性地,该光学薄膜#4可以为单晶无机物薄膜,例如,单晶硅薄膜。
该光学薄膜#4上形成有光学结构#4,该光学结构#4可以包括用于控制光信号在该模块内传输的层内传输结构#4,和与其他模块进行信号交换的层间耦合结构#4。该光学结构#4用于对输入的光信号进行分束,独立传输,再合束。
示例性地,该光学结构#4可以是马赫-增德干涉仪结构。具体地,该层内传输结构#4包括将马赫-增德干涉仪的两臂(1315和1316),其通过掺杂制备为PIN结构,该层内传输结构#4还包括设于每一个干涉臂的两边的金属电极1317,以及输入波导1318。该输入波导1318的末端被图案化为宽度逐渐变窄的锥形结构,该结构可基于倏逝波耦合效应,将下方光学薄膜#3中传输的光信号有效耦合至该层的硅基光学结构中,即该锥型结构可作为层间耦合结构#4。
该光学薄膜#3上形成有光学结构#3,该光学结构#3包括层内传输结构#3和层间耦合结构#3。示例性地,该光学结构#3可以是铌酸锂直波导结构,其中,该直波导的一端所在的区域与该光学结构#4中的锥形波导部分所在的区域在光学基板平面法向上的投影部分或全部重合,以实现光信号基于倏逝波耦合效应,在这两个模块之间的高效耦合。因此,该光学结构#3和该光学结构#4中的层间耦合结构不需要经过机械方式进行光学对准。
可选地,在该直波导的两侧还可以制备由铬电极1319,铬电极1319用于对该直波导进行极化,且在完成极化后,还可以通过湿法腐蚀等方式进行移除。
基于以上光学芯片,对于该芯片的运行,可以是在铬电极上施加高压脉冲电信号,实现铌酸锂波导的周期性畴翻转(domain inversion),构建周期性极化的铌酸锂波导,以提高非线性频率转换的效率;将红外脉冲光信号输入该铌酸锂波导中,基于频率上/下转换的过程,铌酸锂波导中可产生具有纠缠特性的光子对,并通过铌酸锂波导-锥形硅波导的耦合区域传输至硅基马赫-增德干涉结构之中;通过调整干涉结构两臂上施加的电压,可实现对纠缠光子对的调制。
图8所示为本申请提供的一种光学芯片的制备方法的示意性流程图,通过该方法制备的光学芯片可用于光量子计算等领域,该方法可以包括以下几个步骤。
S811,在光学基板上沉积光学薄膜#3(第一功能层的一例),并将其光学平整化。
该光学基板的材料参考S211中的描述。该光学薄膜#3可以采用具有较大的光学二阶非线性系数的材料,示例性地,该第一光学薄膜可以为单晶无机物薄膜,例如,单晶铌酸锂薄膜、单晶钽酸锂薄膜等。
以该光学薄膜#3为单晶铌酸锂薄膜为例,在光学基板上沉积光学薄膜#3可以是:将铌酸锂晶片基于高温键合的方式,键合于光学基板上(如图9的(a)所示);在键合完 毕后,通过注入氩离子(Ar+),使得铌酸锂晶片在特定厚度处形成离子损伤层(等离子层)(如图9的(b)所示);进一步地,通过高温退火,使得铌酸锂晶片在该损伤层处发生解离(如图9的(c)所示);最后经过化学机械抛光,使得光学基板上留存一定厚度的铌酸锂薄膜(如图9的(d)所示),实现单晶铌酸锂薄膜在光学基板上的键合。通过抛光该可控制该光学薄膜#3的厚度为150nm至5μm,例如,该光学薄膜#3的厚度可以控制为600nm。
在光学基板上沉积光学薄膜#3后的结构如图10的(a)所示。
S812,在该光学薄膜#3上沉积间隔层#2,并将其光学平整化。
该步骤和S612中类似,在此不再赘述。在该光学薄膜#3上沉积间隔层#2后的结构如图10的(b)所示。
S813,在该间隔层#2上沉积光学薄膜#4(第二功能层的一例),并将其光学平整化。
该光学薄膜#4可以采用具有半导体特性的材料,该光学薄膜#4能够通过掺杂改变其光电特性,示例性地,该光学薄膜#4可以为单晶无机物薄膜,例如,单晶硅薄膜。
在该间隔层#2上沉积光学薄膜#4可以包括:在蒸镀完氧化硅薄膜(该间隔层#2的一例)的材料的上方,基于硅-硅键合的方式,将一层单晶硅片(该光学薄膜#4的一例)键合至氧化硅薄膜,并通过研磨以及化学机械抛光的方式,将键合的单晶硅薄膜抛光减薄至150nm-5μm,该单晶硅薄膜的具体厚度可根据实际情况确定,例如,该单晶硅薄膜的厚度为220nm。
可以理解的是,该光学薄膜#4还可以是其他材料,例如氮化硅薄膜,氧化硅薄膜等,本申请对此不做限定。
在该间隔层#2上沉积光学薄膜#4后的结构如图10的(c)所示。
S821,对该光学薄膜#4进行图案化,以形成光学结构#4。
该光学结构#4可以包括用于控制光信号在该模块内传输的层内传输结构#4,和与其他模块进行信号交换的层间耦合结构#4。
该光学结构#4用于对输入的光信号进行分束,独立传输,再合束。示例性地,该光学结构#4可以是马赫-增德(Mach-Zehnder)干涉仪(interferometer)结构,如图7的(a)所示。
具体地,可以基于离子注入,将马赫-增德干涉仪的两臂(第一干涉臂1315和第二干涉臂1316)通过掺杂制备为PIN结构,并在每一个干涉臂的两边通过电子束蒸镀方式布置约200nm厚的金属电极1317,使得硅波导的光传输性质可以通过外加电场实现改变。此外,对于输入波导1318(第二输入波导的一例),其末端被图案化为宽度逐渐变窄的锥形结构,该结构可基于倏逝波耦合效应,将下方光学薄膜#3中传输的光信号有效耦合至该层的硅基光学结构中,即该锥型结构可作为层间耦合结构#4。
应理解,该光学结构#4还可以是其他结构,例如,Add-Drop型微环谐振腔结构,光子晶体结构等,本申请对此不做限定。
以上在光学薄膜#4上图案化光学结构#4的方式包括但不限于,电子束曝光、离子注入、干法刻蚀技术和金属蒸镀等方式。
S822,移除区域#1中的间隔层#2,该区域#1与区域#2在光学基板平面的法向上的投影不重叠,该区域#2为该光学结构#4所在的区域。
该区域#1如图7的(b)中所示,通过移除该区域#1中的间隔层#2可以暴露出该区域#1中的光学薄膜#3。
S823,对该区域#1中的该光学薄膜#3进行图案化,形成光学结构#3。
该光学结构#3包括用于控制光信号在该模块内传输的层内传输结构#3,和与其他模块进行信号交换的层间耦合结构#3。
示例性地,该光学结构#3可以是铌酸锂直波导结构1320,其中,该直波导结构1320的一端和光学结构#4中的锥形波导部分在光学基板平面法向上的投影部分或全部重合,以实现光信号基于倏逝波耦合效应,在这两个模块之间的高效耦合。因此,该光学结构#3和该光学结构#4中的层间耦合结构不需要经过机械方式进行光学对准。
该光学结构#3还可以是铌酸锂光子晶体悬臂梁结构,F-P谐振腔结构等。
可选地,还可以通过电子束蒸镀等方式在铌酸锂波导的两侧制备铬电极1319,铬电极1319用于对铌酸锂波导进行极化,且在完成极化后,还可以通过湿法腐蚀等方式进行移除。
以上对光学薄膜图案化的方式包括但不限于,紫外光刻,电子束曝光,干法刻蚀,湿法腐蚀,离子束刻蚀等,基于物理轰击或化学腐蚀的方式。
根据本申请实施例提供的光学芯片的制备方法,可以构建一种具有产生和调制纠缠光子对的三维光学芯片,该芯片可以用于光量子计算等领域。该方法通过先将多种未经图案化的异质光学材料层叠排布于同一光学基底之上,在材料薄膜层叠完毕之后,再按照由上至下的顺序,依次在各层上图案化出相应的光学结构,实现了异质集成光学芯片的构建。该方法无需基于机械方式进行各个模块之间的光学对准,提升了光学芯片的制备效率。同时,在间隔层厚度的控制方面,该方法也不需要在已有结构的上方进行间隔层的布置,因此其厚度精确可控。
图11是本申请的光模块的一例的示意图,如图11所示,该光模块1100包括基板1110,光芯片1120。
其中,该基板1110可以包括但不限于陶瓷基板或印刷电路板(Printed Circuit Board,PCB)。
该光学芯片1120具体上述图1至图10中任一实现方式的光学芯片。
本申请实施例还提供了一种装置,如图12所示,该通信设备1200包括处理器1210和收发机1220,该处理器1210用于对待发送数据进行处理生成数字信号,该收发机1220包括图12所示的光模块,该收发机1220用于对该信号进行处理,例如,通过光学芯片对生成的射频信号进行处理,生成光信号,并将该光信号发送至其他通信设备。
或者,光芯片对收发机接收到的光信号进行处理,生成射频信号,可由电芯片对射频信号进行处理生成数字信号,处理器对数据信号进行处理以获得该数字信号承载的数据。
专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统和装置,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨 论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种光学芯片,其特征在于,包括光学基板,设于所述光学基板上的第一功能层,设于所述第一功能层上的第一间隔层,以及设于所述第一间隔层上的第二功能层;
    所述第二功能层上形成有第二光学结构,所述第二光学结构包括第二层间耦合结构和第二层内传输结构,所述第二层内传输结构位于所述第二功能层的第一区域;
    所述第一功能层上形成有第一光学结构,所述第一光学结构包括第一层间耦合结构和第一层内传输结构,所述第一光学结构位于所述第一功能层的第二区域,所述第二区域与所述第一区域在所述光学基板平面的法向的投影不重叠;
    其中,所述层间耦合结构用于所述第一功能层与所述第二功能层之间的信号交换,所述层内传输结构用于控制所述功能层内的信号传输,所述第二层间耦合结构位于所述第二功能层中的第三区域,所述第一层间耦合结构位于所述第一功能层的第四区域,所述第三区域与所述第四区域在所述光学基板平面的法向的投影部分或全部重叠。
  2. 根据权利要求1所述的光学芯片,其特征在于,所述第二光学结构还包括位于所述第二功能层的第九区域的所述第二层间耦合结构,所述光学芯片还包括设于所述第二功能层上的第二间隔层,以及设于所述第二间隔层上的第三功能层,所述第三功能层上形成有第三光学结构,所述第三光学结构包括第三层间耦合结构和第三层内传输结构;
    其中,所述第三层间耦合结构位于所述第三功能层中的第七区域,所述第三层内传输结构位于所述第三功能层中的第八区域,所述第八区域与所述第一区域在所述光学基板平面的法向的投影不重叠,所述第九区域与所述第七区域在所述光学基板平面的法向的投影部分或全部重叠。
  3. 根据权利要求1或2所述的光学芯片,其特征在于,
    所述第二层内传输结构包括第一输入波导,第一输出波导以及至少一个第一光学谐振腔;
    其中,所述第一输出波导包括至少一个波导结构,所述至少一个波导结构与所述至少一个第一光学谐振腔一一对应且光耦合连接,所述第一输入波导包括一个波导结构,所述一个波导结构与所述至少一个第一光学谐振腔光耦合连接。
  4. 根据权利要求3所述的光学芯片,其特征在于,所述第二层间耦合结构包括在所述第一输入波导的第一端形成的第一锥型结构。
  5. 根据权利要求4所述的光学芯片,其特征在于,所述第一光学结构包括第二光学谐振腔,以及平行的第一波导和第二波导,所述第一波导的一端与所述第一锥型结构光耦合连接。
  6. 根据权利要求1至5中任一项所述的光学芯片,其特征在于,所述第二功能层的厚度范围为150nm至5μm。
  7. 根据权利要求1至6中任一项所述的光学芯片,其特征在于,所述第一功能层的厚度范围为150nm至5μm。
  8. 根据权利要求1或2所述的光学芯片,其特征在于,
    所述第二层内传输结构为马赫增德干涉仪结构,所述马赫增德干涉仪结构包括第一干 涉臂,第二干涉臂和第二输入波导;
    所述第二层间耦合结构包括在所述第二输入波导的第一端形成的第二锥型结构。
  9. 根据权利要求8所述的光学芯片,其特征在于,所述第一光学结构包括直波导结构,所述直波导结构的一端与所述第二锥型结构光耦合连接。
  10. 根据权利要求8或9中所述的光学芯片,其特征在于,所述第二功能层的厚度范围为300nm至1μm。
  11. 根据权利要求8或9中所述的光学芯片,其特征在于,所述第一功能层的厚度范围为200nm至500nm。
  12. 一种光学芯片的制备方法,其特征在于,包括:
    在光学基板上依次沉积第一功能层,第一间隔层以及第二功能层;
    图案化所述第二功能层以形成第二光学结构,所述第二光学结构位于所述第二功能层的第一区域,所述第二光学结构包括第二层间耦合结构和第二层内传输结构;
    移除第二区域中的所述第一间隔层以露出所述第一功能层,所述第二区域与所述第一区域在所述光学基板平面的法向的投影不重叠;
    图案化所述第二区域中的所述第一功能层以形成第一光学结构,所述第一光学结构包括第一层间耦合结构和第一层内传输结构;
    其中,所述层间耦合结构用于所述第一功能层与所述第二功能层之间的信号交换,所述层内传输结构用于控制所述功能层内的信号传输,所述第二层间耦合结构位于所述第二功能层中的第三区域,所述第一层间耦合结构位于所述第一功能层的第四区域,所述第三区域与所述第四区域在所述光学基板平面的法向的投影部分或全部重叠。
  13. 根据权利要求12所述的方法,其特征在于,在图案化所述第二功能层以形成第二光学结构之前,所述方法还包括:
    在所述第一结构上依次沉积第二间隔层和第三功能层;
    图案化所述第三功能层以形成第三光学结构,所述第三光学结构位于所述第三功能层的第五区域,所述第三光学结构包括第三层间耦合结构和第三层内传输结构;
    移除第六区域中的所述第二间隔层以露出所述第二功能层,所述第六区域与所述第五区域在所述光学基板平面的法向的投影不重叠。
  14. 根据权利要求13所述的方法,其特征在于,所述第三层间耦合结构位于所述第三功能层中的第七区域,所述第三层内传输结构位于所述第三功能层中的第八区域,图案化所述第二功能层以形成第二光学结构包括:
    图案化所述第六区域中的所述第二功能层以形成所述第二光学结构,所述第二光学结构还包括位于所述第二功能层中的第九区域的所述第二层间耦合结构;
    其中,所述第八区域与所述第六区域在所述光学基板平面的法向的投影不重叠,所述第九区域与所述第七区域在所述光学基板平面的法向的投影部分或全部重叠。
  15. 根据权利要求12至14中任一项所述的方法,其特征在于,图案化所述第二功能层以形成第二光学结构包括:
    图案化所述第二功能层以形成所述第二层内传输结构,所述第二层内传输结构包括第一输入波导,第一输出波导以及至少一个第一光学谐振腔;
    其中,所述第一输出波导包括至少一个波导结构,所述至少一个波导结构与所述至少 一个第一光学谐振腔一一对应且光耦合连接,所述第一输入波导包括一个波导结构,所述一个波导结构与所述至少一个第一光学谐振腔光耦合连接。
  16. 根据权利要求15所述的方法,其特征在于,图案化所述第二功能层以形成第二光学结构还包括:
    将所述第一输入波导的第一端图案化为第一锥型结构以形成所述第二层间耦合结构。
  17. 根据权利要求16所述的方法,其特征在于,图案化所述第二区域中的所述第一功能层以形成第一光学结构包括:
    图案化所述第二区域中的所述第一功能层以形成第二光学谐振腔,以及平行的第一波导和第二波导,所述第一波导的一端与所述第一锥型结构光耦合连接。
  18. 根据权利要求12至17中任一项所述的方法,其特征在于,所述第二功能层的厚度范围为150nm至5μm。
  19. 根据权利要求12至18中任一项所述的方法,其特征在于,所述第一功能层的厚度范围为150nm至5μm。
  20. 根据权利要求12至14中任一项所述的方法,其特征在于,图案化所述第二功能层以形成第二光学结构包括:
    图案化所述第二功能层以形成马赫增德干涉仪结构,所述马赫增德干涉仪结构包括第一干涉臂,第二干涉臂和第二输入波导;
    图案化所述第二输入波导的第一端形成的第二锥型结构。
  21. 根据权利要求20所述的方法,其特征在于,图案化所述第二区域中的所述第一功能层以形成第一光学结构包括:
    图案化所述第二区域中的所述第一功能层以形成直波导结构,所述直波导结构的一端与所述第二锥型结构光耦合连接。
  22. 根据权利要求20或21中所述的方法,其特征在于,所述第二功能层的厚度范围为300nm至1μm。
  23. 根据权利要求20或21中所述的方法,其特征在于,所述第一功能层的厚度范围为200nm至500nm。
PCT/CN2023/080971 2022-03-16 2023-03-13 一种光学芯片及其制备方法 WO2023174190A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210260411.9A CN116794769A (zh) 2022-03-16 2022-03-16 一种光学芯片及其制备方法
CN202210260411.9 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023174190A1 true WO2023174190A1 (zh) 2023-09-21

Family

ID=88022207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080971 WO2023174190A1 (zh) 2022-03-16 2023-03-13 一种光学芯片及其制备方法

Country Status (2)

Country Link
CN (1) CN116794769A (zh)
WO (1) WO2023174190A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145512A (ja) * 2007-12-13 2009-07-02 Japan Aviation Electronics Industry Ltd 光導波路素子及びその作製方法
CN101825480A (zh) * 2010-01-29 2010-09-08 浙江大学 一种基于宽带光源和级连光波导滤波器的光传感器
JP2011018870A (ja) * 2009-06-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体表面におけるパターンの作製方法
CN108732795A (zh) * 2017-04-14 2018-11-02 天津领芯科技发展有限公司 一种硅基铌酸锂高速光调制器及其制备方法
CN209044108U (zh) * 2018-09-27 2019-06-28 上海新微科技服务有限公司 激光器与硅光芯片集成结构
CN111220963A (zh) * 2018-11-27 2020-06-02 北京万集科技股份有限公司 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达
CN113568105A (zh) * 2021-06-17 2021-10-29 中国科学院微电子研究所 一种波导层间耦合结构及其制备方法
CN114114538A (zh) * 2021-12-14 2022-03-01 武汉光谷信息光电子创新中心有限公司 光耦合结构及其制备方法、包括光耦合结构的硅基芯片
CN114945836A (zh) * 2021-08-10 2022-08-26 深圳市速腾聚创科技有限公司 光学相控阵芯片以及激光雷达
CN115407532A (zh) * 2022-09-23 2022-11-29 中山大学 基于异质集成薄膜铌酸锂片上耦合结构、制备方法及光器件

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145512A (ja) * 2007-12-13 2009-07-02 Japan Aviation Electronics Industry Ltd 光導波路素子及びその作製方法
JP2011018870A (ja) * 2009-06-10 2011-01-27 Nippon Telegr & Teleph Corp <Ntt> 半導体表面におけるパターンの作製方法
CN101825480A (zh) * 2010-01-29 2010-09-08 浙江大学 一种基于宽带光源和级连光波导滤波器的光传感器
CN108732795A (zh) * 2017-04-14 2018-11-02 天津领芯科技发展有限公司 一种硅基铌酸锂高速光调制器及其制备方法
CN209044108U (zh) * 2018-09-27 2019-06-28 上海新微科技服务有限公司 激光器与硅光芯片集成结构
CN111220963A (zh) * 2018-11-27 2020-06-02 北京万集科技股份有限公司 多层材料相控阵激光雷达发射芯片、制作方法及激光雷达
CN113568105A (zh) * 2021-06-17 2021-10-29 中国科学院微电子研究所 一种波导层间耦合结构及其制备方法
CN114945836A (zh) * 2021-08-10 2022-08-26 深圳市速腾聚创科技有限公司 光学相控阵芯片以及激光雷达
CN114114538A (zh) * 2021-12-14 2022-03-01 武汉光谷信息光电子创新中心有限公司 光耦合结构及其制备方法、包括光耦合结构的硅基芯片
CN115407532A (zh) * 2022-09-23 2022-11-29 中山大学 基于异质集成薄膜铌酸锂片上耦合结构、制备方法及光器件

Also Published As

Publication number Publication date
CN116794769A (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
EP1354227B9 (en) Electro-optic structure and process for fabricating same
CN107843957A (zh) 氮化硅‑铌酸锂异质集成波导器件结构及制备方法
TW580597B (en) Waveguide-bonded optoelectronic devices
JPH04213406A (ja) 光導波管及びその製造方法
CN112764246B (zh) 一种薄膜铌酸锂电光调制器及其制备方法
WO2023179336A1 (zh) 电光调制器及其制造方法
CN108693602A (zh) 一种氮化硅三维集成多微腔谐振滤波器件及其制备方法
CN111965856A (zh) 一种电光晶体薄膜及其制备方法,及电光调制器
CN111461317A (zh) 单片集成光子卷积神经网络计算系统及其制备方法
CN113933931A (zh) 一种基于二氧化钒纳米线的环形腔光调制器
US10935722B1 (en) CMOS compatible material platform for photonic integrated circuits
WO2023174190A1 (zh) 一种光学芯片及其制备方法
JPH06222229A (ja) 光導波路素子とその製造方法
WO2014201964A1 (zh) 环形腔器件及其制作方法
CN115774300A (zh) 异质集成硅基薄膜铌酸锂调制器及其制造方法
CN112612078B (zh) 一种基于goi或soi上的高效耦合波导及其制备方法
JP2007298895A (ja) 光学素子、光学集積デバイス及びその製造方法
CN109683354B (zh) 一种中红外波段调制器及其制备方法
CN113109902A (zh) 片上铌酸锂薄膜偏振分集器及其制备方法
EP4062212A1 (en) Hetergenous integration and electro-optic modulation of iii-nitride photonics on a silicon photonic platform
CN111965855A (zh) 电光晶体薄膜及其制备方法,及电光调制器
US20220373828A1 (en) Optical device and optical communication apparatus
CN117991448B (zh) 一种集成光栅和铌酸锂薄膜波导的方法
CN111487791B (zh) 一种集成光学复合基板
CN118039727A (zh) 一种钽酸锂-氮化硅光电芯片的制备方法及光电芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769693

Country of ref document: EP

Kind code of ref document: A1