WO2023174109A1 - 底泥污染过程与控制智能模拟装置及实验方法 - Google Patents

底泥污染过程与控制智能模拟装置及实验方法 Download PDF

Info

Publication number
WO2023174109A1
WO2023174109A1 PCT/CN2023/080125 CN2023080125W WO2023174109A1 WO 2023174109 A1 WO2023174109 A1 WO 2023174109A1 CN 2023080125 W CN2023080125 W CN 2023080125W WO 2023174109 A1 WO2023174109 A1 WO 2023174109A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
experimental
water tank
sediment
tank
Prior art date
Application number
PCT/CN2023/080125
Other languages
English (en)
French (fr)
Inventor
姜霞
吴志皓
王书航
陈俊伊
王坤
蔡青
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Publication of WO2023174109A1 publication Critical patent/WO2023174109A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
    • G01N27/626Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode using heat to ionise a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • G01N33/1806Water biological or chemical oxygen demand (BOD or COD)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output

Definitions

  • the invention relates to the technical field of sediment pollution experiments, and in particular to an intelligent simulation device and experimental method for sediment pollution process and control.
  • Trophication of lake water bodies is a key concern in global lake research.
  • Water nutrients (ammonia nitrogen/nitrate nitrogen/phosphorus) enter the sediment layer through complex biogeochemical processes and are re-released into the water body under changes in environmental factors, becoming endogenous pollutants in the lake ecosystem and leading to eutrophication of the water body. chemical and algal blooms.
  • Many lakes in my country (Taihu Lake, Dianchi Lake, Erhai Lake, etc.) have varying degrees of endogenous sediment nitrogen and phosphorus loads.
  • Existing sediment/water interface pollutant environmental process simulation devices are small devices with limited functions, including two types: (1) The first type of simulation device has a single function and can only simply simulate sediment nitrogen, phosphorus, and polychlorinated biphenyls. Or the migration and release of metallic elements. See the following three patents: (i) "A water environment simulation reactor based on the water-soil interface” (domestic invention patent, application number: 2011104126804); (ii) "Sediment-water interface PCB release simulation device ( Utility model patent, application number: 2010202028901)"; (iii) "A simulation device for measuring geochemical processes at the river sediment-water microinterface (invention patent, application number: 2012100349456)"; (2) No.
  • the type simulation device is more complex and can not only simulate environmental processes, but also sample and monitor environmental parameters online.
  • the most advanced devices are: (iv) “A device and method for simulating the fate of nitrogen in in-situ river ecosystems” (invention patent, publication number: CN105585129A32); (v) “Simulating anaerobic in-situ river sediment Ammonia oxidation process device and usage methods and applications” (invention patent, authorized patent number, ZL2014106334415); (vi) “A multi-functional device for simulating lake ecological restoration, usage methods and applications” (invention patent, authorized patent number, ZL201110004505 .1); (vii) "Indoor simulation device applied to study of lake sediment-water interface processes" (Utility Model, Application No.: 2007200439279).
  • the first type of device has a simple structure, including: a main device for placing sediment/water, a test probe for testing environmental conditions, a lighting device or a resuspended stirring rod, and a pollutant collection device.
  • the second type of simulation device has a relatively complete structure, including: water inlet device, main device (cylinder or box) to simulate lakes or rivers, gas static collection box or sampling port, environmental parameter monitoring probe, light source, water temperature control system .
  • main devices can also place nitrogen cycle bacteria carriers, submerged plants and sediments inside.
  • Two of the patents iv and v) connect the computer and environmental parameter monitoring probes to display the pH/DO/temperature parameters of the sediment/water interface online.
  • the above-mentioned first type of device is too simple and lacks automatic water sample collection and online water quality monitoring devices; there is no computer control system and manual control of the device operation. For example: only install an environmental parameter monitoring probe and a resuspended stirring rod to simulate limited environmental conditions (temperature), hydraulic conditions (interface resuspension caused by wind and waves) or lighting conditions.
  • the second type of device can comprehensively regulate and optimize water temperature, dissolved oxygen and light, and is equipped with water sample and sediment sample sampling ports, hydraulic disturbance devices, and environmental parameter monitoring probes; some devices are also equipped with computers and monitors.
  • the second type of device cannot realize automated precise control and real-time monitoring of interface environmental parameters or water quality.
  • the computer of the existing device can only display environmental parameters, but cannot control the operation of each component and display the change curve of environmental parameters. It lacks an intelligent control system and cannot direct the automated operation and data feedback of each subsystem.
  • the technical problems that need to be solved urgently in existing devices include: (1) The sediment/water interface environmental condition parameter control function is limited and cannot achieve precise control of multiple environmental parameters at the interface; (2) It does not have multiple types of water quality indicators and Online detection of environmental parameters and automatic collection of water samples; (3) lack of intelligent control system, manual operation of simulation devices, low efficiency, and inability to display process parameters in real time; Monitor data change curves, continuous operation for multiple days (more than 60 days) and automatic saving of real-time data.
  • the purpose of this invention is to provide an intelligent simulation device and experimental method for sediment pollution process and control to solve the problems existing in the above-mentioned existing technologies. It has the characteristics of automation, visualization, intelligence and modularization, and can realize multiple sedimentation processes. Research and development verification of pollution control technologies.
  • the present invention provides the following solutions:
  • the invention provides an intelligent simulation device for sediment pollution process and control, which includes:
  • the experimental water tank can be used to simulate the nitrogen and phosphorus process at the sediment/water interface.
  • the experimental water tank is connected with a water inlet tank and a return water tank.
  • the water inlet tank can save experimental water and can provide water to the experimental water tank.
  • Water is added inside; the backflow water tank is connected to the experimental water tank to realize backflow between the water body of the experimental water tank and the backflow water tank.
  • a wave-making system which is installed on the upper part of the inner wall of the experimental water tank.
  • the wave-making system can create sediment/water interface wind waves;
  • a lighting system the lighting system is installed directly above the experimental water tank, and the lighting system can simulate lighting;
  • the dosing system is installed below the experimental water tank.
  • the dosing system can add experimental chemicals (such as acid and alkali) into the experimental water tank, and is used to control the flow of water in the experimental water tank. pH or adding contaminants or flocculants;
  • the aeration system is installed on the upper part of the inner wall of the experimental water tank, the aeration system can aerate the water body in the experimental water tank and control the dissolved oxygen in the water body of the experimental water tank;
  • the online monitor for environmental condition parameters is installed on the inner wall of the experimental water tank and can extend into different depths of the water body of the experimental water tank to measure water environmental parameters online.
  • the environmental parameters Including pH, Eh, DO and conductivity;
  • An online water body water quality indicator analyzer can monitor water body water quality indicators in real time, and the water body water quality indicators include total nitrogen, ammonia nitrogen, total phosphorus and CODcr;
  • An automatic water sample sampling device which is connected to the experimental water tank or the return water tank and can automatically collect water samples in a single or cycle mode;
  • Offline analyzer which can be used to quickly measure water quality indicators or sediment physical and chemical indicators of collected water samples
  • the sampling device and the offline analyzer are both connected to the automatic control module, and the automatic control block directs each of the above-mentioned separate devices to operate according to the set parameters and collect data online.
  • the experimental water tank and the water inlet box are installed on a bracket, and a bracket cavity is provided below the bracket.
  • the bracket cavity can be used to accommodate experimental devices, etc.
  • the experimental device includes a peristaltic pump, Valves, pipes, return water tanks, solenoid valves, sampling cups and tees; the experimental water tank is connected to a return water tank through a return pipe, and an overflow weir is also provided on the experimental water tank, and the overflow weir is connected to the overflow pipe through the overflow pipe.
  • the return water tank is connected.
  • four experimental water tanks and four water inlet tanks are provided correspondingly, and the four experimental water tanks can operate independently; or, the water body can circulate after the four experimental water tanks are connected in series.
  • the main device of the wave-making system is a wave-making pump
  • the wave-making pump is fixed on the inner wall of the experimental water tank, and the wave-making pump can adjust the height in the surface water;
  • the main device of the lighting system is a lighting fixture.
  • the lighting fixture has a color temperature of 400k, a power of 150W, and a lighting intensity of 0 to 10000 Lux.
  • the lighting fixture can automatically simulate the changes in sunlight within 24 hours a day, and can be set Set a fixed light intensity.
  • the dosing system includes three reagent bottles, and the three reagent bottles can respectively hold acid, alkali and reagents.
  • the reagent bottles are connected to the return water tank through a dosing pipeline.
  • a metering pump is connected to the dosing pipeline;
  • the aeration system includes an aeration head, which is connected to an air supply system through a gas path.
  • the gas path is also connected to an air pump.
  • a flow meter, a control valve and a pressure reducing valve are provided on the gas path.
  • the environmental condition parameter online monitor includes a monitoring probe, which includes a pH electrode, a fluorescence dissolved oxygen sensor, a conductivity electrode and an Eh electrode, and the monitoring probe is fixed on the inner wall of the experimental water tank, The depth of the monitoring probe in the water body can be adjusted through the aluminum alloy scale frame.
  • a monitoring probe which includes a pH electrode, a fluorescence dissolved oxygen sensor, a conductivity electrode and an Eh electrode, and the monitoring probe is fixed on the inner wall of the experimental water tank, The depth of the monitoring probe in the water body can be adjusted through the aluminum alloy scale frame.
  • the online water quality index analyzer includes an automatic ammonia nitrogen analyzer, an automatic analyzer for total phosphorus and total nitrogen, and an automatic COD Cr analyzer, and the online water quality index analyzer is connected to the experimental water tank.
  • the automatic water sample sampling device adopts a refrigerator-type sampler
  • the automatic water sample sampling device can be connected to the water body of the reflux water tank or experimental water tank;
  • the offline analyzers include multifunctional microplate readers, GC/MS analyzers, ICP-MS analyzers, laser particle size analyzers, Unisense microelectrodes and planar optode systems.
  • the automation control module adopts PLC (programmable logic controller control system), and the automation control module is installed in a control cabinet; the industrial computer touch screen page of the automation control module can display the structure and operation of the intelligent simulation device. status, set the operating parameters of the split device, and display the online monitoring numbers and the time-varying curves of environmental parameters, water quality indicators and other data in real time.
  • PLC programmable logic controller control system
  • the present invention also provides an experimental method based on the above-mentioned sediment pollution process and control intelligent simulation device, including the following steps:
  • Step 1 Collect sediment and water samples
  • Step 2 Add sediment to the experimental tank
  • Step 3 Add water sample to the experimental water tank
  • Step 4 Start the automation control module and turn on the wave making system and lighting system
  • Step 5 Start the environmental condition parameter online monitor to measure the water environment parameters online
  • Step 6 Start the online water quality indicator analyzer to monitor the water quality indicators in real time
  • Step 7 Start the automatic water sample sampling device
  • Step 8 Control environmental conditions
  • Step 9 Start the simulation experiment
  • Step 10 After the simulation experiment is completed, stop the experiment; drain water and sediment;
  • Step 11 Prepare for the next simulation experiment.
  • this invention combines experimental water tanks, water inlet tanks, peristaltic pumps, submersible pumps, pipelines, valves, environmental condition control systems, lighting and wind and wave systems, automatic water sampling devices, and online environmental parameter monitors (pH/DO/Eh/conductivity). rate), water quality parameter online monitor and other subsystems (split devices) are connected and installed; an intelligent control system is developed to automatically run the above subsystems.
  • the intelligent control system sets the operating parameters of the simulation device, which can accurately control multiple environmental conditions at the sediment/water interface, automatically test the environmental condition parameters of the sediment/water interface, water quality indicators, and automatically collect water samples;
  • the industrial computer can display the structure of the split device and operating status, set the operating parameters of the split device, display process parameters and data curves in real time, and save the data.
  • the simulation device can be loaded with in-situ testing technology (gradient diffusion film, planar optode or microelectrode device) to achieve precise testing of sediment/water interfaces with high spatial resolution ( ⁇ 100 ⁇ m) (ammonia nitrogen/nitrate nitrogen/phosphorus/heavy metals). and environmental parameters: DO/pH).
  • the simulation device of the present invention can achieve: (1) Accurately reveal the formation mechanism of endogenous load of nitrogen and phosphorus in sediments, the impact of environmental parameters on the migration and transformation of nitrogen and phosphorus, and the migration cycle of nitrogen and phosphorus at the water-sediment-algae-aquatic plant interface; ( 2) Establish ecological risk assessment standards and control technology method systems for sediment pollutants; formulate technical guidelines for sediment endogenous load control and sediment quality benchmarks and thresholds; (3) Complete sediment pollution control technologies (ecological restoration, sediment Passivation, environmental protection dredging) research and development verification.
  • Figure 1-1 is a schematic diagram of the main equipment structure of the intelligent simulation device for sediment pollution process and control of the present invention
  • Figure 1-2 is an enlarged schematic diagram of point I in Figure 1-1;
  • Figures 1-3 are schematic layout diagrams of the main split devices of the simulation system of the present invention in the laboratory;
  • Figures 1-4 are schematic structural diagrams of the overflow weir/overflow pipe/return pipe device of the present invention
  • 1-1 Experimental water tank (from left to right: a, b, c, d); 1-2: Water inlet tank (from left to right: A , B, C, D); 1-3: overflow weir: 1-4: overflow pipe; 1-5: return pipe; 1-6: submersible pump; 1-7: peristaltic pump; 1-8: valve ;1-9: Solenoid valve; 1-10: Return water tank; 1-11: Sampling cup; 1-12: Dosing device: 1-13: Outlet pipe of dosing device; 1-14: Tee; 1-15 : four-way; 1-16: main water inlet pipe; 1-17: main drainage pipe; 1-18: water inlet pipe; 1-19: drainage branch pipe; 1-20: water intake pipe of automatic water sample sampling device; 1-21 : Inlet and outlet pipes of the sampling cup; 1-22: PLC, integrated circuits, strong and weak current and circuit boards; 1-23: water inlet pipe; 1-24: mud discharge pipe; 1-25: series pipe; 1-
  • Figure 2 is a schematic diagram of the experimental water tank, water inlet tank and ancillary devices in the present invention
  • Figure 3-1 is a schematic structural diagram of the lighting system in the present invention.
  • Figure 3-2 is a schematic structural diagram of the wave-making system in the present invention.
  • Figure 3-3 is a schematic structural diagram of the automatic dosing device in the present invention.
  • Figures 3-4 are schematic structural diagrams of the aeration device in the present invention.
  • FIG. 3-1 to Figure 3-4 3-1: lighting fixture (external PLC); 3-2: wave pump (external PLC); 3-3-1: acid-base pollutant reagent bottle; 3-3 -2: Frequency conversion peristaltic metering pump; 3-3-3: Water inlet pipe of dosing device; 3-4-1: Aeration head; 3-4-2: Laboratory centralized gas supply system (argon/pure Oxygen); 3-4-3: Argon cylinder; 3-4-4: Pure oxygen cylinder; 3-4-5: Gas path; 3-4-6: Pressure reducing valve; 3-4-7: Control valve ;3-4-8: flow meter; 3-4-9: air pump;
  • Figure 4 is a schematic structural diagram of the online environmental condition parameter monitor of the present invention.
  • Figure 5 is a schematic structural diagram of an automatic ammonia nitrogen analyzer in the present invention.
  • Figure 6 is a schematic diagram of the total phosphorus/total nitrogen automatic analyzer in the present invention.
  • FIG. 6 6-1: Power switch and circuit board; 6-2: LCD display and buttons; 6-3: Thermal decomposition system; 6-4: Display metering pump; 6-5: Detector; 6-6 : Reagent pump; 6-7: Pure water tank; 6-8: Waste liquid tank; 6-9: Instrument door; 6-10: TN/TP standard solution and sodium hydroxide/hydrochloric acid reagent; 6-11: Reagent: Potassium sulfate/ascorbic acid/ammonium molybdate;
  • FIG. 7 is a schematic diagram of the CODCr automatic analyzer in the present invention.
  • Figure 8-1 is a front view of the automatic water sample sampling device in the present invention.
  • Figure 8-2 is a left view of the automatic water sample sampling device in the present invention.
  • Figure 8-3 is a right view of the automatic water sample sampling device in the present invention.
  • FIG. 8-1 to Figure 8-3 8-1: Control panel cover; 8-2: Control panel; 8-3: Discharge pipe; 8-4: Distribution arm; 8-5: Sampling bottle; 8-6 : Bottle rack; 8-7: Refrigerator door; 8-8: Latch; 8-9: Height adjustment rack; 8-10: Liquid detector and pump; 8-11: Support point; 8-12: External facility connection ;8-13: Refrigeration components;8-14: AC main line;
  • FIG. 9 is a schematic structural diagram of the control cabinet in the present invention.
  • the purpose of the present invention is to provide an intelligent simulation device and experimental method for sediment pollution process and control to solve the problems existing in the above-mentioned existing technologies. It has the characteristics of automation, visualization, intelligence and modularization, and can realize lake sediment/ Simulation experiments on the migration and release process of nitrogen and phosphorus at the water interface and research and development verification of multiple sediment pollution control technologies.
  • this embodiment provides an intelligent simulation device for sediment pollution process and control.
  • the device symbols are explained:
  • the intelligent simulation device for sediment pollution process and control in this embodiment can accurately control multiple environmental conditions at the sediment/water interface, monitor interface environmental parameters and water quality parameters in real time, and automatically collect water samples; this embodiment can achieve automation, visualization, and intelligence It is modular and modular, and can provide real-time online monitoring of water environment parameters and water quality indicators in the experimental tank water body, as well as offline monitoring of sediment water samples; it is highly scalable and can simulate environmental processes of pollutants at the sediment/water interface based on the simulation device.
  • the simulation device is mainly formed by a strict combination of multiple subsystems (split devices) and pipes/pumps/valves, and can simulate various types of water environmental conditions (pH/DO) in lake sediments and water bodies. /Eh/conductivity), hydrodynamic conditions (wind and waves) and light conditions; realize real-time monitoring of water environment parameters and water quality indicators; and automatically collect water samples.
  • the industrial computer and PLC are the core automation control modules to control the automated operation of the device, display test data curves and save data online.
  • the structural functions and usage methods of the split device and pipes/pumps/valves are as follows:
  • a lighting system is installed on the top of the experimental water tank, and a wave-making system, an online monitor of environmental condition parameters, a wave-making device and an aeration head of the aeration device are installed on the internal wall.
  • the overflow weir, overflow pipe and return pipe are also installed or connected inside the experimental water tank.
  • the four experimental tanks can operate independently, or multiple experimental tanks can be connected in series and the water can flow continuously in multiple experimental tanks through pipelines and peristaltic pumps.
  • the experimental water tank and water inlet tank are placed on the bracket.
  • the bracket is a rectangular parallelepiped with the lower part open. Volume: 1.20 ⁇ 0.80 ⁇ 0.60m. Wall thickness of the upper plane: 20mm; wall thickness of the surrounding sides: 5mm; inside is a cavity. ;Material: Made of carbon steel spray-coated, with insulation and anti-corrosion treatment on the surface.
  • the bracket cavity is used to house a series of small devices.
  • Small installations of experimental sink support cavities include: Peristaltic pumps, valves, various types of pipelines, return water tanks, solenoid valves, sampling cups, tees, submersible pumps, dosing systems, circuit boards, strong and weak current lines and signal cables.
  • Small devices in the water inlet tank bracket cavity include: peristaltic pumps, valves, pipes, return water tanks, submersible pumps, PLCs, circuit boards and strong and weak current lines.
  • the overflow weir and return pipe inside the experimental water tank are used to realize water circulation between the experimental water tank and the return water tank.
  • the overflow weir shell material: ultra-white glass
  • the overflow weir is formed by bonding two flat surfaces on the right corner of the experimental water tank and two strip-shaped ultra-white glass plates. The bottoms of the two strip-shaped glass plates are bonded to the bottom of the experimental water tank.
  • Install a vertical overflow pipe material: PVC hard pipe
  • the total height is: 1.15m; the inner diameter: 3cm; the height of the part above the bottom of the experimental water tank is: 1.06m.
  • the lower part of the overflow pipe passes through the bottom of the experimental tank, and the end is connected to a PVC corrugated hose (length: 9cm; inner diameter: 4cm); if the liquid level in the experimental tank exceeds the overflow pipe, it can be introduced into the return water tank through this pipe.
  • the length, width and height of the return water tank are 50 ⁇ 40 ⁇ 30cm; material: acrylic.
  • the return pipe is a 90-degree elbow, material: PVC hard pipe, inner diameter: 1.5cm; horizontal length: 1.00m; vertical height: 1.30m).
  • the vertical part of the return pipe is installed in the middle of the overflow pipe and is concentrically arranged. After the horizontal return pipe crosses the top of the overflow weir shell, its top extends to the left side of the experimental water tank. The bottom end of the vertical part of the return pipe passes through the bottom of the experimental water tank, and is then connected to a PU hose (inner diameter: 2cm; length: 5cm) and a reducer pipe (two openings, inner diameter: 1.5 or 2cm; length: 2cm).
  • the other end of the PU hose is connected to an opening of a tee (material: hard PVC); the submersible pump of the return water tank is connected to the tee through another PU hose (inner diameter: 2cm; length: 5cm), and water passes through the above tee.
  • the opening, PU hose and return pipe can be introduced into the top left side of the experimental water tank to realize water circulation between the experimental water tank and the return water tank.
  • the other opening of the submersible pump tee is connected to the online water quality indicator analyzer sampling cup interface through a PU hose (inner diameter: 2cm; length: 12cm), which is used to draw water from the online water quality indicator analyzer.
  • the water intake hard pipe (PVC) (inner diameter: 2cm) of the water sample automatic sampling device is connected to a section of PU hose (inner diameter: 2cm; length: 5cm), and the opening of one end of this PU hose is fixed below the liquid level of the return water tank , realizing the water intake of the automatic water sample sampling device.
  • PVC water intake hard pipe
  • a PVC hard pipe and three connected branch pipes water intake pipes of the automatic water sample sampling device
  • the lower part of the PVC hard pipe is turned. Then it crosses the bottom of the experimental water tank, and the other end is connected to the water sample automatic sampling device.
  • the tubes are connected to enable sampling of surface, middle and bottom water.
  • the material of the mud discharge pipe PVC corrugated hose (inner diameter: 4cm; length: 12cm).
  • This mud discharge pipe is equipped with a valve. Under normal circumstances, it is closed; at the end of the experiment, it is opened to discharge the sediment.
  • the small devices in the bracket cavity below the water inlet tank include: peristaltic pump, return water tank, submersible pump, pipeline, PLC, circuit board and strong and weak current lines.
  • the small device is exactly the same size, material and function as the water-type device under the experimental sink.
  • the water in the water inlet tank can be introduced into the experimental sink through a peristaltic pump, water inlet pipe (quality: PVC hard pipe; inner diameter: 2.0cm) and valve; after the experiment, the water in the experimental sink can be passed through the drainage branch pipe, main drainage pipe, The inlet water pipe and valve are directed into the water inlet tank for storage; the water in the experimental tank can also be discharged into the sewer through the drainage branch pipe, main drainage pipe and valve.
  • the water in the drainage tank can be discharged to the sewer through the peristaltic pump, valve, water inlet pipe and main drainage pipe.
  • the main water inlet pipe, water inlet pipe, peristaltic pump and valve can also pass the tap water or experimental water from outside the laboratory into the water inlet tank for storage, and then introduce it into the experimental water tank through the water inlet pipe, peristaltic pump and valve.
  • the main water inlet pipe, water inlet pipe, peristaltic pump and valve can also directly connect the tap water from outside the laboratory to the experimental water tank, and the dosing system can add pollutant reagents to prepare simulated sewage.
  • the water inlet and drainage of the experimental sink or water inlet tank can also be completed through PU hose (inner diameter: 3.0cm; length: 3.0m) and peristaltic pump.
  • An online environmental condition parameter monitor, a wave-making system (wave pump) and an aeration system are fixedly installed on the upper side wall of the experimental tank; a lighting system is installed at a height of 1.0m in the center of the experimental tank, and a lighting system is installed below the experimental tank.
  • a dosing system is installed in the overhead cavity.
  • the environmental condition parameter online monitor monitors the pH/DO/Eh/conductivity of the water body in real time (American Hach Company), including: pH, DO, Eh, conductivity sensors; the stainless steel sensor holder holds the above sensor probes Fixed on the wall of the experimental water tank, its depth in the water can be adjusted, and the surface, middle and bottom water environmental condition parameters can be measured online; (ii) Wave pump; fixed on the wall of the experimental water tank, its depth in the surface water (0 ⁇ 30cm) can be measured Height adjustment is performed to simulate wind and wave effects and create resuspension of surface sediments; (iii) Aeration head and aeration pump; connect pure oxygen and argon pipelines, and air, pure oxygen or argon can be aerated through the aeration head; Adjustable aeration depth: aeration in surface water and middle water; (iv) Lighting fixtures: can automatically simulate changes within 24 hours a day, light intensity: 0 ⁇ 10000 Lux (lux); (v
  • Wave-making and lighting system used to create wind waves at the sediment/water interface and daylight above the experimental tank.
  • the schematic diagram of wave making and lighting system lighting is shown in Figure 3.
  • Wave pump type 5000; EHEIM Company of Germany, power: 5w; frequency: 50HZ
  • the height can be adjusted in the surface water (0 ⁇ 30cm), simulating the effect of wind and waves, and creating waves of surface sediments Resuspend.
  • Lighting fixtures LED: color temperature: 400k; power: 150W; Guangzhou Maiguang Electronic Technology Co., Ltd.
  • close to the solar spectrum performance can automatically simulate changes within 24 hours a day, light intensity: 0 ⁇ 10000 Lux (lux), can also be set Fixed light intensity.
  • the industrial computer in the control cabinet can set operating parameters and control the operation of the wave-making and lighting systems.
  • the display screen displays the online parameters of the lighting system.
  • the dosing module includes: 3 reagent bottles (volume: 2L) for placing acids, bases and chemicals; variable frequency peristaltic metering pump (model: BW-100; Baoding Chuangrui Pump Industry Co., Ltd., Hebei province, China); PLC module and liquid dosing Pipes (three), material: FEP (perfluoroethylene propylene copolymer). One end of the liquid filling pipe is connected to the metering pump, and the other end is placed in the return water tank.
  • variable frequency peristaltic metering pump model: BW-100; Baoding Chuangrui Pump Industry Co., Ltd., Hebeizhou, China
  • PLC module and liquid dosing Pipes three
  • material FEP (perfluoroethylene propylene copolymer).
  • One end of the liquid filling pipe is connected to the metering pump, and the other end is placed in the return water tank.
  • the industrial computer in the control cabinet sets the target parameter value (the set experimental water tank pH value or dosage), and the PLC controls the frequency conversion peristaltic metering pump to add acid, alkali or medicine to the experimental water tank at a certain flow rate (0 ⁇ 10ml/min); until When the water pH tested by the online monitoring module of the experimental water tank reaches the set target value or reaches the dosing dosage, dosing will be automatically stopped.
  • the automatic dosing module is connected to the control cabinet, and the target pH value is pre-set; according to the set target pH value and the pH feedback from the online monitor, the switch and flow rate of the variable frequency peristaltic metering pump are controlled, and the pH of the experimental tank water reaches the target value or the amount of pollutants added.
  • the aeration device includes: air pump and aeration head (model: 200-3702, EHEIM, Germany), laboratory centralized gas supply system (argon/pure oxygen), argon/pure oxygen cylinder, gas line (stainless steel pipe ; BA level), flow meters, control valves, pressure reducing valves, etc.
  • the maximum exhaust volume of the air pump is 400L/min; power: 3.5W; used for the water body of the experimental tank.
  • Disk aeration head material ethylene propylene rubber (EPDM).
  • the PLC and frequency converter of the aeration device are connected to the control cabinet.
  • the aeration switch and flow rate are controlled according to the DO target value set by the industrial computer and the data fed back by the online monitor. Aeration is stopped when the target value is reached. The operating status and parameters of the automatic dosing and aeration devices are automatically displayed on the industrial computer screen.
  • Environmental condition parameter online monitor used to monitor the pH/DO/Eh/conductivity of water in real time; including: monitoring probe for online measurement of water environmental parameters (pH/Eh/DO/salinity) (Figure 4), Bag Includes: pH electrode (model: PD1R1; Hach, United States), fluorescence dissolved oxygen sensor (model: LDOII; Hach, United States), conductivity electrode (model: 3725E2T; Hach, United States), Eh electrode (model: HQ30D; Hach , the United States), SC1000 multi-parameter universal controller, multi-parameter wall-mounted meter, stainless steel sensor holder, aluminum alloy scale frame.
  • Online water quality indicator analyzer used for real-time monitoring of water quality indicators: total nitrogen, total phosphorus, ammonium nitrogen, CODcr, and the online test data can be transmitted to the industrial computer in the control cabinet, and the above parameters can be saved in real time and displayed online. The change curve of time; at the same time, the parameters are also automatically displayed at the position of the analysis image on the industrial computer screen.
  • the water quality indicator analyzer uses the Hach international brand, including: ammonia nitrogen (American Hach, Amtax sc100), total phosphorus/total nitrogen (American Hach, NPW160H) and CODcr automatic monitor (American Hach, CODmax plus sc).
  • Monitoring device enables real-time and accurate detection and analysis of ammonia nitrogen, total phosphorus and total nitrogen, and CODcr.
  • a sampling inlet is set in the return water tank of the experimental water tank, and the submersible pump provides power to introduce the water sample into the online water quality indicator analyzer through the inlet and outlet pipes of the sampling cup; the control system of the control cabinet programs and controls the solenoid valve to realize the entry into the online analyzer. Water samples are typical and real-time.
  • the intelligent control system (programmable logic controller PLC and industrial computer) of the control cabinet controls the water quality indicator analyzer, which can realize single measurement (only one analysis) and cycle measurement (continuous analysis two to six times a day) of the four experimental water tanks. .
  • the automatic ammonia nitrogen analyzer uses the ammonia gas-sensitive electrode method for rapid determination of ammonia nitrogen.
  • the test range is: 0-5 ⁇ 500mg/L.
  • the lowest detection limit is 0.02mg/L, with high accuracy; it has automatic cleaning, automatic calibration and automatic diagnosis functions, and requires little maintenance work.
  • the module includes: casing, compressor, collection tray, humidity sensor, electrode assembly (electrode body, electrode, sealing cap, diaphragm cap, connector), electrolyte replacement bottle, sampling tube, overflow container, filter, air pipe, Reagents, standard solutions (high/low standards), cleaning solutions, reagent pumps (valve pumps), pump head piston pumps (10 ml), discharge tubes, heated discharge tubes, FILTRAX sampling tubes, discharge tubes, etc.
  • the total phosphorus/total nitrogen automatic analyzer (shown in Figure 6) digests based on GB11893-89: potassium persulfate is used as an oxidant to digest the water sample at 120°C for 30 minutes to convert phosphide into phosphate ions.
  • the analysis unit includes: digestion unit, detector (UV-visible spectrophotometer), valve unit, display metering pump, metering tube, reagent pump, thermal decomposition device, range calibration liquid tank, reagent tank, solution tank, pure water tank, waste water tank. Liquid tank, pure water, reagents (potassium persulfate, sodium hydroxide, hydrochloric acid, ammonium molybdate, ascorbic acid) and standard solution (TN/TP). In addition, there are operation panels and displays.
  • the COD Cr automatic analyzer uses the potassium dichromate method to measure COD Cr .
  • the principle is: water sample, potassium dichromate, and silver sulfate solution (the catalyst oxidizes linear aromatic hydrocarbon compounds more fully)
  • the mixed solution with concentrated sulfuric acid is heated to 175°C in the digestion tank. During this period, the chromium ions are reduced from VI valence to III valence as an oxidant and change the color. The degree of color change corresponds to the content of organic compounds in the sample.
  • the instrument directly displays the COD Cr of the sample through colorimetric conversion.
  • COD Cr rapid tester detects wastewater COD Cr
  • the main interference is chloride, which can be removed by adding mercury sulfate to form a complex.
  • Measuring range of COD Cr automatic analyzer 10-5000mg/L.
  • the analysis unit includes: sampling tube, piston pump, digestion unit, spectrophotometer, high level photometer, low level photometer, valve unit, metering tube, reagents (potassium dichromate solution, mercury sulfate solution, sulfuric acid );standard solution.
  • the water samples of the above three monitoring equipment are collected using the equipment piping system, and the industrial computer in the control cabinet sets the sampling time and frequency, etc.; through the submersible pump, solenoid valve and sampling cup near the return water tank, samples are automatically collected from the four experimental water tanks and input Go to the above three automatic monitors to test the four water quality indicators.
  • the three automatic monitors all have operation interfaces, which can execute manual menu interfaces to realize parameter setting, correction, cleaning, operation, management, alarm and other functions; they can also realize automated operation through field bus control. That is, it is connected to the intelligent control system (PLC and data reader) of the industrial control cabinet through a 4-core cable and RS485/RS232 interface, and the test parameters are set on the industrial computer. Control the automatic operation of the monitor.
  • the industrial computer selects one or more experimental water tanks, sets the measurement time, single or cycle test, etc., then triggers the operation of three automatic monitors, feeds back the test data to the industrial computer in real time and saves it, and the display screen displays four parameters online. , water quality index changes curve with time.
  • Water sample automatic sampling device A total of 2 water sample automatic sampling devices are installed, using Isco4700 refrigerator sampler (American Teledyne Isco 4700), as shown in Figure 8.
  • the fully automatic water sampler can be controlled and programmed, and sampling is fast, simple, and easy to operate; the controller can flexibly control and display the sampling temperature, and can save 24 water samples at 4°C; the peristaltic pump generates negative pressure to collect samples, And distributed to sampling bottles through the controller.
  • the automatic sampling device includes: suction tube-linear FEP (perfluoroethylene propylene copolymer), peristaltic sampling pump, sampling tube, liquid detector, distribution arm, pump filter, controller, sample bottles (24 1L polyethylene bottles; Automatic compressor controls sample bottle storage temperature).
  • FEP perfluoroethylene propylene copolymer
  • the water quality automatic sampling device is connected to the PLC and data acquisition module of the control computer through a 4-core cable and RS485 interface.
  • the sampling frequency and volume can be set on the industrial computer to sample water samples from the experimental water tank or return water tank, single or cycle sampling. ;
  • the automatic sampling device operates automatically, and the water sample is taken out and temporarily placed in the refrigerator of the water collector.
  • Programming the solenoid valve and automatic water quality sampling device through the control system can achieve single sampling (sampling only once) and cycle sampling (up to six times a day).
  • Offline analyzers including: instruments for the analysis of heavy metals, nitrogen, phosphorus and organic matter: SpectraMaxM2/M2e multi-function microplate reader, Agilent/Agilent GC/MS instrument; Agilent/Agilent ICP-MS; used for sediments Sympatek laser particle size analyzer for particle size determination; Danish Unisense microelectrode for determination of sediment micro-interface environmental conditions; planar optode system (PO).
  • instruments for the analysis of heavy metals, nitrogen, phosphorus and organic matter including: SpectraMaxM2/M2e multi-function microplate reader, Agilent/Agilent GC/MS instrument; Agilent/Agilent ICP-MS; used for sediments Sympatek laser particle size analyzer for particle size determination; Danish Unisense microelectrode for determination of sediment micro-interface environmental conditions; planar optode system (PO).
  • Pipes are used to connect various experimental tanks, water inlet tanks, return water tanks, online water quality indicator analyzers and automatic water sample sampling devices to control water inlet, drainage, overflow, backflow, water intake, etc. .
  • the pipes of this device are divided into cylindrical PVC (hard polyvinyl chloride) hard pipes, PU (polyurethane) hoses and PVC corrugated hoses.
  • the return pipe and overflow pipe in the cavity of the bracket below the experimental water tank are both PVC hard pipes (inner diameter: 1.5 or 3.0cm).
  • the overflow pipe is connected to a reducing pipe below the bottom of the experimental water tank (the two openings are: 3.0 or 3.0cm).
  • the water outlet of the submersible pump is connected to a section of PU hose (inner diameter: 2cm; length: 5cm), with a valve (Bolder, Germany) installed on it.
  • the end of this PU hose is connected to a tee (material: hard PVC).
  • the two openings are connected to two PU hoses (inner diameter: 2cm), which are respectively connected with the water inlet of the sampling cup of the online water quality tester or the reducing pipe of the return pipe (inner diameter of the two openings: 1.5 or 2cm; length: 2cm ) are connected.
  • the mud drain pipe at the bottom of the experimental tank is made of PVC corrugated hose (inner diameter: 4cm; length: 12cm), with a valve installed on it.
  • the main drainage pipe, main water inlet pipe, water inlet pipe, drainage branch pipe, water inlet pipe, series pipe, outlet pipe of the sampling cup, water intake pipe of the automatic water sample sampling device and series pipes are all PVC hard pipes (inner diameter: 2.0cm).
  • the connection between the main water inlet pipe and the water inlet pipe is a four-way, and a nearby valve controls the flow of water in and out.
  • the PVC hard pipe of the main drainage pipe, main water inlet pipe, water inlet pipe and series pipe is close to the peristaltic pump. It is a section of PU hose (inner diameter: 2cm; length: 15cm). The middle part of the PU hose is placed in the groove of the peristaltic pump. , both ends are connected to the above-mentioned PVC hard pipe interface; the drainage branch pipe and the water inlet pipe are all PVC hard pipes and are not connected to PU hoses or peristaltic pumps.
  • the sampling cup under the experimental water tank is a cube (5 ⁇ 5 ⁇ 10cm).
  • Two solenoid valves (model: CWX-25S; 24V DN20 copper; power: 5W; China Shanghai Xinjiao Valve Co., Ltd.) are installed to control the entry and exit of the sampling cup.
  • Water; the water outlet pipe under the sampling cup is a PVC hard pipe (inner diameter: 0.5cm; length: 2m), which is connected to the online water quality indicator analyzer, and the water inlet of the sampling cup is connected to a section of PU hose (inner diameter: 2cm; length: 12cm) , it is connected to an opening of the water outlet tee of the submersible flow pump.
  • the submersible pump passes the water from the return water tank into the tee, PU hose and solenoid valve into the sampling cup, and then through another solenoid valve and outlet pipe (PVC hard pipe) Online water quality indicator analyzer.
  • a drain pipe material: PVC hard pipe diameter: 0.5cm; length: 0.5m
  • the two solenoid valves are controlled by the industrial computer program. When cleaning the sampling cup, only the valve that controls the water outlet is opened, and the remaining water in the sampling cup is discharged from the drain pipe; then, the other valve is opened at the same time, and the water from the submersible pump flows into the inlet and outlet pipes. Sampling cup and then into the online water analyzer.
  • the experimental water tank can also be filled or drained using PU hose (inner diameter: 2.0cm; length: 3.0m) for manual operation: Place the middle part of the PU hose (length: 12cm) in the groove of the peristaltic pump, and the PU hose One end is placed in the experimental tank, and the other end is connected to a water inlet tank or bucket to realize water inflow into the experimental tank. Or put the other end of the PU hose in the sewer and drain it directly.
  • PU hose inner diameter: 2.0cm; length: 3.0m
  • Two types of pumps are installed under the experimental tank support to provide kinetic energy and transport water and sediment for experiments throughout the experimental tank. Includes: (1) Two variable frequency peristaltic metering pumps (model: BW-100 or CT1000; Baoding Chuangrui Pump Co., Ltd., Hebei province, China), with flow rates of: 0.04 ⁇ 36ml/min or 0.4 ⁇ 360ml/min; two types
  • the pumps of the models are respectively used for: (i) the automatic dosing module or (ii) the inlet/drainage of the experimental water tank and water inlet tank, the series connection of the experimental water tank or the discharge of mud; (2) a submersible pump (model HQB-4500; power : 100W; flow rate: 0.4 ⁇ 75ml/min; Sensen Industrial Co., Ltd., Zhejiangzhou, China), placed in the return water tank, can not only return the water in the return water tank to the experimental water tank, but also conduct water to the inlet and outlet pipes of the online water quality tester .
  • Automation control module That is, the intelligent management system, installed in the control cabinet (as shown in Figure 9), consists of PLC (programmable logic controller), industrial computer (industrial control computer), display screen, switch, and data collection Block (data reader), intelligent management software, etc.
  • the automation control module adopts a PLC control system and sets up a human-computer interaction interface. Through the data collection block, it realizes data communication, data collection and processing, parameter setting and online display of various parameters and data changes of sensors, small devices and detection equipment.
  • the sensor outputs the detection signal to the PLC module, and the PLC programming controls the opening of the pump valve and the operation of various devices to control the switch and flow of some pipelines, wave making, lighting, automatic dosing, aeration, automatic water quality sampling, Online water quality index analysis, real-time collection of data from online monitors of environmental conditions parameters and the above devices.
  • Each subsystem has complete independent control functions and does not interfere with each other.
  • the intelligent management software has the following functions: data collection; setting process parameters, saving data, real-time display of data and parameter change curves over time, identity recognition, and remote control.
  • the touch screen page of the industrial computer can display the main device structure, set parameters, real-time display of online monitoring data, and the time-varying curves of environmental parameters and water quality indicators.
  • the startup steps of the "Intelligent Simulation Device for Sediment Pollution Process and Control" are as follows: add sediment ⁇ add water ⁇ start the wave making system ⁇ start the lighting system ⁇ start the environmental condition parameter analyzer ⁇ start the water quality index analyzer ⁇ start the automatic water sample Sampling device ⁇ Control environmental conditions (aeration or dosing) ⁇ Simulation experiments, including: online analysis of environmental condition parameters/water quality indicators, offline analysis of water samples, collection and testing of sediment samples, etc.) ⁇ Stop the experiment ⁇ Drainage ⁇ Drainage Mud ⁇ Prepare for next simulation experiment.
  • simulation device Since the simulation device has four experimental water tanks and corresponding water inlet tanks, under normal circumstances, simulation experiments with four experimental water tanks or only one experimental water tank can be conducted in parallel, and the experimental methods are basically the same. If there are special experimental requirements, the series pipelines, peristaltic pumps and valves will also be opened to complete the series flow and closed backflow of surface water in more than two experimental tanks.
  • simulation experiment steps corresponding to an experimental water tank are as follows:
  • the mixture of sediment and water in barrels can be injected into the experiment using a peristaltic pump (model: CT1000; Baoding Chuangrui Pump Industry Co., Ltd., Hebei province, China) and PU hose (inner diameter: 4cm; length: 2.0m) sink.
  • the volume of the plastic bucket containing sediment is 50L.
  • Barrel sediment can also be poured directly from the upper part of the experimental tank through the baffle. Finally, the sediment at the bottom of the experimental tank was leveled. If there are aquatic plant vegetation restoration experiments, aquatic plant seedlings can be planted in the sediment.
  • the experimental water in the water inlet tank can be passed through the peristaltic pump (model: CT1000; Baoding Chuangrui Pump Industry Co., Ltd., Hebeizhou, China), water inlet pipe (material: PVC hard pipe; inner diameter: 2.0cm) and valve. Experimental sink.
  • the barreled experimental water in the laboratory can be directly connected to the experimental water tank using a peristaltic pump and PU hose (inner diameter: 2.0cm); when the water in the experimental tank exceeds the overflow weir, it will be led into the return water tank below through the overflow pipe.
  • the acid/alkali or reagent can circulate between the return water tank and the experimental water tank multiple times to mix evenly.
  • Wave-making The industrial computer in the control cabinet can turn on the wave-making system, and adjust the wave-making pump speed (0 to 100 rpm) according to the experimental requirements to make the water body have waves similar to those of a lake.
  • Lighting Turn on the light switch on the industrial computer and set the sunlight intensity for 24 hours regularly. The changes in sunlight above the experimental tank during the day are consistent with the lake; or enter a fixed light intensity.
  • the total phosphorus and total nitrogen online analyzer, the ammonia nitrogen online analyzer and the COD Cr online analyzer can be connected to the data acquisition module and PLC of the control cabinet through signal cables, and the power supply line is connected to the switch of the control cabinet. .
  • the time-varying curves of the environmental condition parameters, water quality indicators and other data of each experimental tank can be automatically displayed on the industrial computer display screen, and the data can be saved in the industrial computer.
  • Two automatic water sample sampling devices collect water from the experimental sink or return water tank through the micro solenoid valve and sampler sampling pipeline (4 channels).
  • the solenoid valve signal cable and sampler control line are connected to the control cabinet.
  • the data acquisition module, switch and PLC are connected; the control cabinet can be set to "single” or "cyclic” mode to achieve single or multiple sampling within a day. It can set up to 12 cyclic water samples a day, each sampling Volume: 50 ⁇ 400mL; the refrigerator of the automatic sampling device can store 24 bottles of water samples at 4°C.
  • the offline monitor performs subsequent analysis and testing, analyzing water samples for nitrogen, phosphorus, heavy metals, organic matter, etc.
  • Control environmental conditions (aeration or dosing): Based on the DO target value of the water body in the simulation experiment and the DO online data fed back to the industrial computer by the online monitor of environmental condition parameters, three methods of aeration devices (air, argon and Pure oxygen), the industrial computer sets the DO target value, and then starts the aeration system; when the DO displayed online on the industrial computer reaches the set value, the aeration head automatically stops aeration.
  • the industrial computer selects whether to add acid (HCl) or alkali solution (NaOH) and the amount of dosing, sets the pH target value, and then starts the dosing device; When the pH displayed online by the industrial computer reaches the set value, dosing will be automatically stopped. If the simulation experiment requires the addition of reagents, the industrial computer sets the dosing time for "pollutants", and when the reagents are added to the target value, the dosing ends automatically.
  • acid HCl
  • NaOH alkali solution
  • Simulation experiment After the water environment conditions, light, aeration, wind and wave conditions, and various online testers and water samplers run smoothly, the sediment/water interface layering is stable, and the growth of aquatic plants reaches Require. At this time, simulation experiments can be carried out, such as: (1) experiments on the migration and release mechanism of nitrogen and phosphorus in sediments; (2) experiments on the nitrogen and phosphorus processes in the rhizosphere of submerged plants and the extraction mechanism of plants; or (3) experiments on sediment passivation and Research on the mechanism of nitrogen and phosphorus ecological restoration.
  • Required experiments or startup devices include: automatic dosing or aeration devices to control the pH or DO of water; automatic dosing devices to put water purification reagents into water bodies or manually add passivating agents to the surface of sediments; control of lighting or wave-making devices Light or hydraulic disturbance conditions; online environmental condition parameter monitors and online water quality indicator analyzers to measure water environment parameters and water quality indicators; water sample collection and storage of automatic water sample sampling devices; offline monitors are used to determine water samples (nitrogen and phosphorus forms ; heavy metal elements; organic matter).
  • the industrial computer saves the above online data and is used to study the bioavailability of nitrogen and phosphorus in the water body and sediment/water interface, as well as the interfacial circulation characteristics.
  • Sediment and aquatic plant samples were collected manually, and the total amount and form of nitrogen and phosphorus heavy metals in the sediment, organic matter content, aquatic plant tissue weight, element content, and root surface area were analyzed.
  • Sediment or aquatic plant rhizosphere can also be tested in situ (DGT, Peeper, microelectrode, planar photoelectrode), and subsequent analysis and testing can obtain one- or two-dimensional high-dimensional data of sediment or aquatic plant rhizosphere elements or environmental condition parameters. Spatial resolution distribution (100 ⁇ m ⁇ mm).
  • the water in the experimental tank can be drained to the lower channel through peristaltic pumps, valves, drainage pipes and main drainage pipes.
  • the water in the experimental tank can also be introduced into the water inlet tank for storage through peristaltic pumps, valves, drainage pipes, main water inlet pipes and water inlet pipes.
  • When there is no water in the experimental tank turn off the peristaltic pump and valve and end drainage.
  • the water in the return tank can be drained into the sewer or water inlet tank through the peristaltic pump and PU hose. To drain the water from the inlet tank and its return tank, you can use a peristaltic pump and PU hose to drain it into the sewer.
  • Sludge discharge A small amount of water can be added to the sediment in the lower part of the experimental tank. After manually stirring it into a slurry, open the mud discharge pipe of the experimental tank and discharge it into the mud storage bucket; or directly use a mud discharge pump and PU hose to drain the sediment. The sediment in the inspection tank is extracted and discharged into the mud storage bucket. Finally, rinse the experimental tank with water, and then use the above operation to discharge the mud-water mixture in the experimental tank into the mud storage bucket.
  • experiments corresponding to "Study on the migration and release mechanism of ammonia nitrogen/nitrate nitrogen/phosphorus in lake anoxic sediments and assessment of endogenous load" can be carried out; the experiments mainly include: (1) Simulation device sediment/water interface Regulation of environmental conditions; (2) Testing of the sediment/water interface based on DGT (gradient diffusion film) and Peeper device; (3) Sediment ammonia nitrogen/nitrate nitrogen/phosphorus migration and release mechanism and endogenous load assessment; specifically including the following step:
  • the industrial computer starts the NPW160 total nitrogen and total phosphorus online analyzer, CODPlus COD online analyzer and AmtaxSC ammonia nitrogen online analyzer, and sets it to sample and measure twice a day and analyze once every 12 hours.
  • the industrial computer collects data and displays the water quality index curve that changes over time online.
  • the industrial computer starts the automatic water sample sampling device and sets it to sample and measure twice a day and analyze once every 12 hours.
  • the internal refrigerator of each automatic water sampling device can store 24 bottles of water samples. Excess water samples were transferred and stored in the laboratory refrigerator.
  • Method The industrial computer starts the aeration and dosing device. Aeration device The water body is deoxidized by argon gas exposure until the DO reaches 2.2 mg/L; the dosing device uses alkali solution (NaOH) to alkalinize the water body until the pH reaches 8.50.
  • the environmental condition parameter online monitor monitors the pH/DO and other parameters of the middle water in real time and feeds back to the industrial computer in real time.
  • DO or pH When DO or pH reaches the target value, the industrial computer immediately stops the operation of the aeration and dosing device. If DO or pH deviates from the target value, continue to expose argon or pure oxygen (DO is higher or lower than 2.2mg/L); or add alkali (NaOH) or acid (HCl) (pH is lower than or higher than 8.50) until DO or pH reaches the target value.
  • DO argon or pure oxygen
  • HCl acid
  • AMP-TH&ZrO-chelex and Zr-oxide&AgI DGT and an HR-Peeper probe are vertically inserted into the sediment/water interface face to face with a horizontal distance of 2cm.
  • the DGT probe and Peeper windows of the overlying water part are 2cm or 5cm, and the sediment is 13 respectively. or 15cm.
  • the test times of DGT and HR-Peeper probes are: 24 and 48h respectively.
  • the DGT and HR-Peeper probes are then retrieved for subsequent analysis.
  • a columnar sediment sampler was used to collect sediment column samples tested by DGT and HR-Peeper for subsequent analysis by DGT and HR-Peeper.
  • the flatbed scanner scans the image, and the computer imaging density measurement (CID) calculates the two-dimensional spatial distribution image of the phosphorus or sulfur DGT concentration, and then converts DGT-phosphorus and DGT-sulfur into A two-dimensional distribution image that is consistent in the horizontal direction.
  • CID computer imaging density measurement
  • UV phosphorus Molybdenum blue photometric analysis of phosphorus salicylic acid-hypochlorite colorimetric analysis of ammonia nitrogen
  • UV spectrophotometric analysis of nitrate nitrogen UV spectrophotometric analysis of nitrate nitrogen
  • phenanthroline spectrophotometric measurement of Fe(II) mapping of ammonia nitrogen, nitrate nitrogen, and iron in sediment void water and phosphorus concentration one-dimensional profiles and two-dimensional images of sulfur and phosphorus.
  • sediment iron-aluminum-calcium organic matter revealing the migration and release rules of ammonia nitrogen/nitrate-nitrogen/phosphorus in the anoxic sediment layer, geochemical processes and formation mechanisms, and the influence mechanism of iron-aluminum-calcium organic matter on the release of ammonia nitrogen/nitrate-nitrogen/phosphorus in the anoxic sediment layer.
  • the DGT two-dimensional images of phosphorus and sulfur and the DGT-iron profile were analyzed to compare the spatial variation patterns of the three elements phosphorus, iron, and sulfur, and study the phosphorus release caused by the coupled geochemical reactions of the three elements. Analyze the distribution pattern of phosphorus microhabitat in sediments and study the formation mechanism of phosphorus microhabitat in anoxic sediments.
  • F is the apparent diffusion flux at the sediment/water interface ( ⁇ g m -2 d or mg m -2 d); Fs and Fw are the diffusion fluxes in the surface sediment and overlying water layer ( ⁇ g m -2 d or mg m -2 d); the diffusion coefficient of sediment Ds (cm s -1 ) is derived from the calculation of molecular diffusion flux in water and sediment void ratio ( ⁇ ). and are the diffusion gradients of surface sediments and overlying water layers, respectively.
  • W ( ⁇ g a -1 ) is the endogenous load of sediment in the simulation device; A is the sediment area (m 2 ); t is 365 days in a year.

Abstract

本发明公开一种底泥污染过程与控制智能模拟装置及实验方法,涉及底泥污染实验技术领域,包括实验水槽,实验水槽连接有进水箱和回流水箱;造浪系统、光照系统、加药系统和曝气系统;环境条件参数在线监测仪,能够在线测定水体环境参数;在线水体水质指标分析仪,实时监测水体水质指标;水样自动采样装置,按照单次或循环模式自动采集水样;离线分析仪,能够测定所采集水样的水质指标或沉积物理化指标;自动化控制模块,对上述各个装置进行自动化控制。本发明还提供一种基于底泥污染过程与控制智能模拟装置的实验方法。本发明具有自动化、可视化、智能化和模块化等特点,实现多项沉积物/水界面氮磷环境过程的模拟及沉积物污染控制技术的研发验证。

Description

底泥污染过程与控制智能模拟装置及实验方法 技术领域
本发明涉及底泥污染实验技术领域,特别是涉及一种底泥污染过程与控制智能模拟装置及实验方法。
背景技术
湖泊水体营养化,尤其是沉积物氮磷释放导致的内源负荷,是全球湖泊研究的重点关注问题。水体营养盐(氨氮/硝氮/磷)通过复杂的生物地球化学过程进入沉积物层,在环境因子的变化下会重新释放至水体,成为湖泊生态系统的内源污染物,会导致水体富营养化和藻华。我国许多湖泊(太湖,滇池,洱海等)都存在不同程度的沉积物氮磷内源负荷。沉积物/水界面的环境参数、水动力学和光照等条件是影响沉积物氮磷地球化学和动力学迁移释放的重要因素。环境条件下湖泊沉积物氮磷内源负荷形成机制以及评估氮磷释放风险是中国湖泊营养化演变研究的研究重点,也能为湖泊内源负荷控制和水生态修复提供理论支撑。中国湖泊类型较多,水环境条件和内源负荷形成机制复杂,需要开发模拟装置模拟不同类型湖泊的水环境,水动力条件,底质和水的理化性质,例如:湖泊下层滞水带的缺氧层,有利于磷释放的碱性条件(pH>9.0),风浪对沉积物/水界面的扰动,光照,沉积物以及水体氮磷重金属有机质含量和理化性质,并且能准确测试界面环境条件和氮磷等污染物,是充分理解湖泊沉积物氮磷内源负荷以及迁移释放的前提和关键。
现有沉积物/水界面污染物环境过程模拟装置都是小型装置,功能有限,包括两类:(1)第一类模拟装置功能单一,只能简单地模拟沉积物氮磷、多氯联苯或金属元素的迁移释放。参见下面三个专利:(i)“一种基于水土界面的水环境模拟反应器”(国内发明专利,申请号:2011104126804);(ii)“沉积物-水界面多氯联苯释放模拟装置(实用新型专利,申请号:2010202028901)”;(iii)“一种用于测量河流沉积物-水微界面发生地球化学过程作用的模拟装置(发明专利,申请号:2012100349456)”;(2)第二 类型模拟装置较复杂,既能模拟环境过程,又能采样以及在线监测环境参数。其中最先进的装置是:(iv)“一种模拟原位河道生态系统氮素归趋的装置及方法”(发明专利,公开号:CN105585129A32);(v)“模拟原位河道底泥厌氧氨氧化过程装置及使用方法和应用”(发明专利,授权专利号,ZL2014106334415);(vi)“一种多功能模拟湖泊生态修复的装置和使用方法及应用”(发明专利,授权专利号,ZL201110004505.1);(vii)“应用于湖泊沉积物-水界面过程研究的室内模拟装置”(实用新型,申请号:2007200439279)。
综上,第一类装置结构简单,包括:放置沉积物/水的主体装置、安装测试环境条件的测试探头、光照装置或是再悬浮的搅拌杆,以及污染物收集装置。第二类模拟装置具有较为完备的结构,包括:进水装置,模拟湖泊或河道的主体装置(柱体或箱体),气体静态采集箱或采样口,环境参数监测探头,光源,水温控制系统。其中,有的主体装置内部还能放置氮循环菌载体,沉水植物和沉积物。其中两个专利(iv和v),计算机和环境参数监测探头连接,能在线显示沉积物/水界面的pH/DO/温度参数。
上述第一类装置过于简单,缺乏水样自动采集和在线水质监测装置;没有计算机控制系统,人工控制装置运行。例如:仅安装一个环境参数监测探头以及再悬浮的搅拌杆,模拟有限的环境条件(温度)、水力学条件(风浪造成的界面再悬浮)或者光照条件。第二类装置能综合调控和优化水温、溶解氧和光照,设置水样和沉积物样取样口,水力学扰动装置,环境参数监测探头;有的装置还设置计算机和显示器等。但是,第二类装置无法实现界面环境参数或水体水质的自动化精准控制与实时监测,也就是:无法控制多类水环境条件,不能自动化采集水样和在线分析水质指标。现有装置的计算机仅能显示环境参数,无法控制各部件运行和显示环境参数的变化曲线。缺乏智能控制系统,不能指挥各子系统的自动化运行以及数据反馈。
综上,现有装置亟需解决的技术问题包括:(1)沉积物/水界面环境条件参数调控功能有限,不能实现界面多种环境参数的精准控制;(2)不具备多类水质指标和环境参数的在线检测以及水样自动化采集功能;(3)缺乏智能控制系统,人工运行模拟装置,效率低,无法实时显示工艺参数以及 监测数据变化曲线,以及连续多天(60天以上)的持续运行以及实时数据的自动保存。
因此,提供一种底泥污染过程与控制智能模拟装置及实验方法,以解决现有技术中所存在的上述问题。
发明内容
本发明的目的是提供一种底泥污染过程与控制智能模拟装置及实验方法,以解决上述现有技术存在的问题,具有自动化、可视化、智能化和模块化等特点,能够实现多项沉积物污染控制技术的研发验证。
为实现上述目的,本发明提供了如下方案:
本发明提供一种底泥污染过程与控制智能模拟装置,包括:
实验水槽,所述实验水槽能够用于沉积物/水界面氮磷过程模拟,所述实验水槽连接有进水箱和回流水箱,所述进水箱能够保存实验用水,并能够向所述实验水槽内加水;所述回流水箱与所述实验水槽连接,能够实现实验水槽与回流水箱水体之间的回流。
造浪系统,所述造浪系统安装于所述实验水槽的内壁上部,所述造浪系统能够制造沉积物/水界面风浪;
光照系统,所述光照系统安装于所述实验水槽的正上方,所述光照系统能够模拟光照;
加药系统,所述加药系统安装于所述实验水槽的下方,所述加药系统能够将实验药剂(例如:酸碱)加入所述实验水槽内,用于控制所述实验水槽内水体的pH或加入污染物或絮凝剂;
曝气系统,所述曝气系统安装于所述实验水槽的内壁上部,所述曝气系统能够对所述实验水槽内的水体进行曝气处理,控制实验水槽水体的溶解氧;
环境条件参数在线监测仪,所述环境条件参数在线监测仪安装于所述实验水槽的内壁上,并能够伸入所述实验水槽的水体内的不同深度,在线测定水体环境参数,所述环境参数包括pH、Eh、DO和电导率;
在线水体水质指标分析仪,所述在线水体水质指标分析仪能够实时监测水体水质指标,所述水体水质指标包括总氮、氨氮、总磷和CODcr;
水样自动采样装置,所述水样自动采样装置与所述实验水槽或回流水箱连接,能够按照单次或循环模式自动采集水样;
离线分析仪,所述离线分析仪能够用于快速测定所采集水样的水质指标或沉积物理化指标;
自动化控制模块,所述造浪系统、所述光照系统、所述加药系统、所述曝气系统、所述环境条件参数在线监测仪、所述在线水体水质指标分析仪、所述水样自动采样装置以及所述离线分析仪均与所述自动化控制模块连接,由自动控制化块指挥上述各分体装置按照设置参数运行并在线收集数据。
优选的,所述实验水槽以及所述进水箱均安装于支架上,所述支架下方设置有支架空腔,所述支架空腔能够用于容纳实验装置等,所述实验装置包括蠕动泵、阀门、管道、回流水箱,电磁阀、采样杯和三通;所述实验水槽通过回流管连接有一回流水箱,所述实验水槽上还设置有溢流堰,所述溢流堰通过溢流管与所述回流水箱连接。
优选的,所述实验水槽与所述进水箱均对应设置有四个,四个所述实验水槽能够独立运行;或者,四个所述实验水槽串联连接后水体流通运行。
优选的,所述造浪系统的主体装置是造浪泵,所述造浪泵固定在所述实验水槽的内壁上,所述造浪泵能够在表层水中进行高度调节;
所述光照系统的主体装置是光照灯具,所述光照灯具的色温为400k、功率为150W、光照强度为0~10000Lux,所述光照灯具能够自动模拟一天24小时内的太阳光照变化,并能够设定固定的光照强度。
优选的,所述加药系统包括试剂瓶,所述试剂瓶设置有三个,三个所述试剂瓶分别能够放置酸、碱和药剂,所述试剂瓶通过加药管道与所述回流水箱连接,所述加药管道上连接有计量泵;
所述曝气系统包括曝气头,所述曝气头通过气路连接有供气系统,所述气路还连接有空气泵,所述气路上设置有流量计、控制阀门和减压阀门。
优选的,所述环境条件参数在线监测仪包括监测探头,所述监测探头包括pH电极、荧光法溶氧传感器、电导率电极和Eh电极,所述监测探头固定在所述实验水槽的内壁上,通过铝合金标尺架能够调整所述监测探头在水体中的深度。
优选的,所述在线水体水质指标分析仪包括氨氮自动分析仪、总磷总氮自动分析仪和CODCr自动分析仪,所述在线水体水质指标分析仪与所述实验水槽连接。
优选的,所述水样自动采样装置设置有两个,所述水样自动采样装置采用冰箱式采样仪,所述水样自动采样装置能够与所述回流水箱或实验水槽的水体相连接;
所述离线分析仪包括多功能酶标仪、GC/MS分析仪、ICP-MS分析仪、激光粒度分析仪、Unisense微电极和平面光极系统。
优选的,所述自动化控制模块采用PLC(可编程逻辑控制器控制系统),所述自动化控制模块安装于控制机柜;所述自动化控制模块的工控机触屏页面能够展示智能模拟装置的结构以及运行状况,设置分体装置运行参数,实时显示在线监测数以及环境参数、水质指标和其它数据随时间的变化曲线。
本发明还提供一种基于上述底泥污染过程与控制智能模拟装置的实验方法,包括以下步骤:
步骤一、采集沉积物和水样;
步骤二、向实验水槽加入沉积物;
步骤三、向实验水槽加入水样;
步骤四、启动自动化控制模块,开启造浪系统和光照系统;
步骤五、启动环境条件参数在线监测仪,在线测定水体环境参数;
步骤六、启动在线水体水质指标分析仪,实时监测水体水质指标;
步骤七、启动水样自动采样装置;
步骤八、控制环境条件;
步骤九、开始模拟实验;
步骤十、模拟实验完成后,中止实验;排水、排沉积物;
步骤十一、准备下一次模拟实验。
本发明相对于现有技术取得了以下有益技术效果:
本发明首次将实验水槽、进水箱、蠕动泵、潜水泵、管路、阀门、环境条件控制系统、照明和风浪系统,水体自动采样装置、环境参数在线监测仪(pH/DO/Eh/电导率)、水质参数在线监测仪等子系统(分体装置)进行连接安装;开发智能控制系统自动运行上述子系统。智能控制系统设置模拟装置运行参数,能精准控制沉积物/水界面的多类环境条件,自动化测试沉积物/水界面环境条件参数、水质指标以及自动采集水样;工控机可以显示分体装置结构和运行状况,设置分体装置的运行参数,实时显示工艺参数和数据曲线,并保存数据。此外,模拟装置能加载原位测试技术(梯度扩散薄膜,平面光极或微电极装置),实现沉积物/水界面高空间分辨率(~100μm)的精准测试(氨氮/硝氮/磷/重金属以及环境参数:DO/pH)。
本发明模拟装置可以实现:(1)精准揭示沉积物氮磷内源负荷形成机制、环境参数对氮磷迁移转化的影响、氮磷在水-沉积物-藻类-水生植物界面的迁移循环;(2)建立底泥污染物生态风险评估标准和控制技术方法体系;制订沉积物内源负荷控制技术指南以及沉积物质量基准和阀值;(3)完成沉积物污染控制技术(生态修复、沉积物钝化、环保疏浚)的研发验证。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1-1为本发明底泥污染过程与控制智能模拟装置的主要设备结构示意图;
图1-2为图1-1中Ⅰ处放大示意图;
图1-3为本发明模拟系统主要分体装置在实验室的布局示意图;
图1-4为本发明溢流堰/溢流管/回流管装置结构示意图;
图1-1至图1-4中:1-1:实验水槽(从左向右依次为:a,b,c,d);1-2:进水箱(从左向右依次为:A,B,C,D);1-3:溢流堰:1-4:溢流管;1-5:回流管;1-6:潜水泵;1-7:蠕动泵;1-8:阀门;1-9:电磁阀;1-10:回流水箱;1-11:采样杯;1-12:加药装置:1-13:加药装置出水管;1-14:三通;1-15:四通;1-16:总进水管;1-17:总排水管;1-18:进水管;1-19:排水分管;1-20:水样自动采样装置的取水管;1-21:采样杯的进出水管;1-22:PLC、集成电路,强电弱电和线路板;1-23:进水分管;1-24:排泥管;1-25:串联管道;1-26:光照灯具;1-27:造浪装置;1-28:曝气头;1-29:环境条件参数在线监测仪;1-30:在线水体水质指标分析仪;1-31:水样自动采样装置;1-32:自动化控制模块;1-33:总磷/总氮自动分析仪;1-34:氨氮自动分析仪;1-35:CODCr自动分析仪;1-36:GC/MS分析仪;1-37:ICP-MS分析仪;1-38:平面光极系统(PO);1-39:多功能酶标仪;1-40:沉积物/水界面;
图2为本发明中实验水槽和进水箱及附属装置示意图;
图2中:2-1:实验水槽;2-2:实验水槽或进水箱支架;2-3:进水箱;2-4:沉积物/水界面;2-5:溢流堰:2-6:溢流管;2-7:回流管;2-8:潜水泵;2-9:蠕动泵;2-10:阀门;2-11:电磁阀;2-12:PLC、集成电路,强电弱电和线路板;2-13:回流水箱;2-14:采样杯;2-15:加药装置;2-16:加药装置出水管;2-17:三通;2-18:四通;2-19:总进水管;2-20:总排水管;2-21:进水管;2-22:排水分管;2-23:串联管道;2-24:进水分管;2-25:采样杯的进出水管;2-26:水样自动采样装置的取水管;2-27:排泥管;
图3-1为本发明中光照系统的结构示意图;
图3-2为本发明中造浪系统的结构示意图;
图3-3为本发明中自动加药装置的结构示意图;
图3-4为本发明中曝气装置的结构示意图;
图3-1至图3-4中:3-1:光照灯具(外接PLC);3-2:造浪泵(外接PLC);3-3-1:酸碱污染物试剂瓶;3-3-2:变频蠕动计量泵;3-3-3:加药装置进水管;3-4-1:曝气头;3-4-2:实验室集中供气系统(氩气/纯 氧);3-4-3:氩气钢瓶;3-4-4:纯氧气钢瓶;3-4-5:气路;3-4-6:减压阀门;3-4-7:控制阀门;3-4-8:流量计;3-4-9:空气泵;
图4为本发明环境条件参数在线监测仪的结构示意图;
图4中:4-1:Eh电极;4-2:电导率电极;4-3:荧光法溶氧传感器;4-4:pH电极;4-5:电极外壳;4-6:SC1000多参数通用控制器;4-7:多参数壁挂表头;4-8:不锈钢传感器固定架;4-9:信号电缆线;4-10:铝合金标尺架;
图5为本发明中氨氮自动分析仪的结构示意图;
图5中:5-1:电解液置换瓶;5-2:电极组件;5-3:膜帽固定件;5-4:电极板接头;5-5:连接到试管的接口;5-6:排放接口;5-7:取样管;5-8:试剂;5-9:标准溶液(高标准);5-10:标准溶液(低标准);5-11:清洗液;
图6为本发明中总磷/总氮自动分析仪示意图;
图6中:6-1:电源开关和线路板;6-2:液晶显示屏和按键;6-3:加热分解系统;6-4:显示计量泵;6-5:检测器;6-6:试剂泵;6-7:纯水槽;6-8:废液槽;6-9:仪器门;6-10:TN/TP标准溶液以及氢氧化钠/盐酸试剂;6-11:试剂:过硫酸钾/抗坏血酸/钼酸铵;
图7为本发明中CODCr自动分析仪示意图;
图7中:7-1:进样管;7-2:废液排放管;7-3:活塞泵;7-4:试剂瓶;7-5:仪器门;7-6:消解单元;7-7:液晶显示屏和按键;7-8:光度计;7-9:低液位光度计;7-10:高液位光度计;7-11:阀单元;7-12:计量管;
图8-1为本发明中水样自动采样装置的前视图;
图8-2为本发明中水样自动采样装置的左视图;
图8-3为本发明中水样自动采样装置的右视图;
图8-1至图8-3中:8-1:控制面板盖;8-2:控制面板;8-3:排放管;8-4:分配臂;8-5:采样瓶;8-6:瓶架;8-7:冰箱门;8-8:插销;8-9:高度调整机架;8-10:液体探测器和泵;8-11:支撑点;8-12:外部设施连接;8-13:制冷组件;8-14:交流电主线;
图9为本发明中控制机柜结构示意图;
图9中:9-1:开关;9-2:漏电保护器;9-3:插座;9-4:电源;9-5: 交换机;9-6:保险丝端子;9-7:接线端子;9-8:数据采集模块;9-9:PLC;9-10:继电器;9-11:无线网桥;9-12:工控机主机;9-13:屏幕;9-14:控制机柜门;9-15:控制机柜上部;9-16:控制机柜下部;9-17:屏幕装置结构与参数示意图;9-18:屏幕参数设置与控制页面;9-19:屏幕的环境条件参数和水质指标在线变化曲线展示页面。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种底泥污染过程与控制智能模拟装置及实验方法,以解决上述现有技术存在的问题,具有自动化、可视化、智能化和模块化等特点,能够实现湖泊沉积物/水界面氮磷迁移释放过程模拟实验以及多项沉积物污染控制技术的研发验证。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例一
如图1-1至图9所示,本实施例提供一种底泥污染过程与控制智能模拟装置,图中,装置符号说明:
蠕动泵:
潜流泵:
阀门:
电磁阀:
三通阀:
四通阀:
采样杯:
加药装置:
PLC、集成电路,强电弱电和线路板:
本实施例的底泥污染过程与控制智能模拟装置能精准控制沉积物/水界面多类环境条件、实时监测界面环境参数和水质参数、自动采集水样;本实施例能够实现自动化、可视化、智能化和模块化,实验水槽水体水环境参数和水质指标的实时在线监测以及沉积物水样的离线监测;拓展性强,基于模拟装置可实现沉积物/水界面污染物环境过程模拟。
本实施例中,模拟装置主要由多个子系统(分体装置)以及管道/泵/阀门之间的严密组合安装而形成,能模拟湖泊沉积物和水体多种类型的水环境条件(pH/DO/Eh/电导率),水动力条件(风浪)和光照条件;实现水环境参数和水质指标的实时监测;以及自动采集水样。工控机和PLC(可编程逻辑控制器)为核心的自动化控制模块,控制本装置的自动化运行,在线显示测试数据曲线和保存数据。如图1-1至图1-3所示,分体装置与管道/泵/阀门的结构功能与使用方法如下所示:
(1)四个进水箱(体积:1.20×0.80×1.00m),用于贮存采集的湖水或实验水槽排出的水;材质:亚克力制作(厚:30mm)。启动蠕动泵,通过PVC(硬聚氯乙烯)硬管或PU(聚氨酯)软管能实现进水箱和实验水槽之间的进出水操作。实验水槽(体积:1.20×0.80×1.20m),材质:超白玻璃(厚:12mm),实验水槽用于放置沉积物和水,进行沉积物/水界面氮磷环境过程模拟实验;器壁透明,可以清晰地观察到沉积物/水界面以及实验水槽内的小型装置。实验水槽顶部安装了光照系统,内部器壁安装了造浪系统、环境条件参数在线监测仪、造浪装置和曝气装置的曝气头。实验水槽内部还设置或连接溢流堰、溢流管和回流管。四个实验水槽可以独立运行,也能通过管道和蠕动泵实现多个实验水槽的串接和水在多个实验水槽的连续流动。
实验水槽和进水箱都放置在支架之上,支架是下部开口的长方体,体积:1.20×0.80×0.60m,上部平面器壁厚:20mm;四周侧面器壁厚:5mm;内部是一个空腔;材质:碳钢喷塑制作,表面进行了绝缘和防腐蚀处理。支架空腔用来安放一系列小型装置。实验水槽支架空腔的小型装置包括: 蠕动泵、阀门、各类管道、回流水箱,电磁阀、采样杯、三通、潜水泵、加药系统、线路板、强弱电线路和信号电缆。进水箱支架空腔的小型装置包括:蠕动泵、阀门、管道、回流水箱、潜水泵、PLC、线路板和强弱电线路。
实验水槽内部的溢流堰和回流管(图1-1至图3-4),用于实现实验水槽和回流水箱之间的水循环。溢流堰外壳(材质:超白玻璃)是一个中空长方体,高度为:1.07m;壁厚:12mm;横截面边长:15cm。溢流堰由实验水槽右侧角落的两个平面以及两个条形超白玻璃板粘合形成,两个条形玻璃板底部与实验水槽底部粘合。在溢流堰外壳的正中间,安装一个垂直的溢流管道(材质:PVC硬管),总高度为:1.15m;内径:3cm;实验水槽底部以上部分高度为:1.06m。溢流管道的下部穿过实验水槽底部,末端连接一个PVC波纹软管(长度:9cm;内径:4cm);实验水槽液面若超过溢流管,能通过此管道导入回流水箱中。回流水箱的长宽高为50×40×30cm;材质:亚克力。回流管为一个90度弯管,材质:PVC硬管,内径:1.5cm;水平方向长度:1.00m;垂向高度:1.30m)。垂向部分的回流管安装在溢流管道正中间,同圆心套装,水平方向的回流管道跨过溢流堰外壳顶端后,其顶端延伸至实验水槽的左侧。垂向部分的回流管道底端穿过实验水槽底部,然后和PU软管(内径:2cm;长度:5cm)和一个变径管(两个开口内径:1.5或2cm;长度:2cm)连接,这段PU软管另一端连接一个三通(材质:硬PVC)的一个开口;回流水箱的潜水泵通过另一PU软管(内径:2cm;长度:5cm)和三通连接,水通过上述三通的开口、PU软管、回流管,能导入实验水槽左侧顶端,能实现实验水槽和回流水箱之间的水循环。潜水泵三通的另一个开口通过PU软管(内径:2cm;长度:12cm)与在线水体水质指标分析仪采样杯接口连接,用于在线水体水质指标分析仪的取水。水样自动采样装置的取水硬管(PVC)(内径:2cm)与一段PU软管(内径:2cm;长度:5cm)相连接,而这段PU软管一端开口固定在回流水箱液面之下,实现水样自动采样装置的取水。此外,实验水槽左侧固定安装的一个PVC硬管以及联结的三个分管(水样自动采样装置的取水管),固定在实验水槽左侧内壁的表层,中层和底层中,PVC硬管下部拐弯后横穿实验水槽底部,另一端与水样自动采样装置的取水水样自动采样装置硬 管相连接,能实现取表层,中层和底层水的采样。实验水槽左侧底部还设置一个排泥管和阀门。排泥管的材质:PVC波纹软管(内径:4cm;长度:12cm),此排泥管安装一个阀门,一般情况下,关闭;实验结束时,打开排出底泥。
进水箱下方支架空腔中的小型装置包括:蠕动泵、回流水箱、潜水泵、管道、PLC、线路板和强弱电线路。小型装置的尺寸、材质和功能与实验水槽下方的水型装置完全一样。可以将进水箱的水通过蠕动泵、进水管(村质:PVC硬管;内径:2.0cm)和阀门导入实验水槽;实验结束后可以将实验水槽的水再通过排水分管,总排水管,进水分管,阀门导入进水箱保存;实验水槽的水还可以通过排水分管,总排水管和阀门排入下水道。排水箱的水可以通过蠕动泵,阀门、进水管,总排水管排至下水道。总进水管、进水分管、蠕动泵和阀门也可将实验室外接的自来水或实验用水通入进水箱保存,然后再通过进水管、蠕动泵和阀门导入实验水槽。总进水管、进水管、蠕动泵和阀门也可以将实验室外接的自来水直接通入实验水槽,由加药系统加入污染物试剂,配制模拟污水。实验水槽或进水箱的进水和排水也可以通过PU软管(内径:3.0cm;长度:3.0m)和蠕动泵完成。
实验水槽内部上部侧壁固定安装一个环境条件参数在线监测仪、一个造浪系统(造浪泵)和一个曝气系统;实验水槽上方正中央1.0m高度处,安装一个光照系统,实验水槽下方支架空腔内安装加药系统。其中,(i)环境条件参数在线监测仪实时监测水体的pH/DO/Eh/电导率(美国哈希公司),包括:pH、DO、Eh、电导率传感器;不锈钢传感器固定架将上述传感器探头固定在实验水槽器壁,可以调整其在水中的深度,在线测定表层、中层和底层水环境条件参数;(ii)造浪泵;固定在实验水槽器壁,可以在表层水(0~30cm)中进行高度调节,模拟风浪效应,制造表层沉积物的再悬浮;(iii)曝气头和曝气泵;联接纯氧和氩气管路,可以通过曝气头曝空气,纯氧或氩气;可调整曝气深度:在表层水和中层水体曝气;(iv)光照灯具:能自动模拟一天24h内的变化,光照强度:0~10000Lux(勒克斯);(v)加药系统包括:试剂瓶;变频蠕动计量泵;PLC模块以及加液管道。控制机柜内部的接线端子、数据采集模块、PLC和继电器相连接加药系统,工控机设置运行参数,控制其向回流水箱中加酸、碱或试剂。
(2)造浪和光照系统:用于制造沉积物/水界面风浪和实验水槽上方的日光。造浪和光照系统光照的示意图如图3所示。造浪泵(5000型;德国伊罕公司功率:5w;频率:50HZ);固定在实验水槽器壁,可以在表层水(0~30cm)中进行高度调节,模拟风浪效应,制造表层沉积物的再悬浮。光照灯具(LED):色温:400k;功率:150W;广州迈光电子科技有限公司):接近太阳光谱性能,能自动模拟一天24h内的变化,光照强度:0~10000Lux(勒克斯),也可以设定固定的光照强度。控制机柜的工控机能设置运行参数,控制造浪和光照系统运行,同时显示屏展示光照系统的在线参数。
(3)自动加药和曝气装置:实验水槽支架下方还设置加药模块(图3),用于控制水体环境参数pH和DO,也可加入污染物或絮凝剂。加药模块包括:放置酸、碱和药剂的试剂瓶3个(体积:2L);变频蠕动计量泵(型号:BW-100;中国河北省保定创锐泵业有限公司);PLC模块以及加液管道(三个),材质:FEP(全氟乙烯丙烯共聚物)。加液管道一端和计量泵相连,一端放在回流水箱中。控制机柜的工控机设置目标参数值(设定的实验水槽pH值或加药剂量),PLC控制变频蠕动计量泵以一定流量(0~10ml/min)向实验水槽的加酸碱或药剂;直至实验水槽的在线监测模块测试的水体pH达到设置目标值时或达到加药剂量,自动中止加药。自动加药模块与控制柜连接,预先设置目标pH值;根据设置目标pH值以及在线监测仪反馈的pH,控制变频蠕动计量泵的开关和流量,实验水槽水体pH达目标值或污染物加入量达到目标值时,自动中止加酸碱或试剂。曝气装置包括:空气泵和曝气头(型号:200-3702,德国伊罕公司)、实验室集中供气系统(氩气/纯氧)、氩气/纯氧钢瓶、气路(不锈钢管;BA级)、流量计、控制阀门、减压阀门等。空气泵的最大排气量为400L/min;功率:3.5W;用于实验水槽的水体。盘式曝气头的材质:乙烯丙烯橡胶(EPDM)。曝气装置的PLC和变频器与控制柜连接,根据工控机设置的DO目标值以及在线监测仪反馈的数据控制曝气的开关和流量,达到目标值就中止曝气。自动加药和曝气装置的运行状态以及参数都自动在工控机屏幕上显示。
(4)环境条件参数在线监测仪:用来实时监测水体的pH/DO/Eh/电导率;包括:在线测定水体环境参数(pH/Eh/DO/盐度)的监测探头(图4),包 括:pH电极(型号:PD1R1;Hach,美国)、荧光法溶氧传感器(型号:LDOII;Hach,美国)、电导率电极(型号:3725E2T;Hach,美国),Eh电极(型号:HQ30D;Hach,美国)、SC1000多参数通用控制器、多参数壁挂表头、不锈钢传感器固定架、铝合金标尺架。四参数测量范围:pH:1-14;DO:0-20mg/L;Eh:铂电极与Ag-AgCl参比电极于一体,-1999~1999mv;电导率:0-2000000μs/cm。上述传感器探头固定在实验水槽器壁,采用铝合金标尺架调整其在水中的深度,在线测定表层、中层和底层水环境条件参数,垂直空间分辨率为1.0cm。在线监测的环境参数数据输入控制机柜(PLC),工控机实时保存并在线显示四个环境条件参数随时间的变化曲线;同时,四个环境参数也在工控机屏幕的电极图像位置上自动显示。
(5)在线水体水质指标分析仪:用于实时监测水体水质指标:总氮、总磷、铵氮、CODcr,并且在线测试数据能传输至控制机柜的工控机,实时保存并在线显示上述参数随时间的变化曲线;同时,参数也在工控机屏幕的分析析图像位置上自动显示。水质指标分析仪选用Hach国际品牌,包括:氨氮(美国哈希,Amtax sc100),总磷/总氮(美国哈希,NPW160H)以及CODcr自动监测仪(美国哈希,CODmax plus sc)等三个监测装置,实现氨氮、总磷总氮、CODcr实时准确的检测分析。实验水槽的回流水箱中设置进样口,潜水泵提供动力,通过采样杯的进出水管将水样导入在线水体水质指标分析仪;控制机柜的控制系统对电磁阀编程控制,实现进入在线分析仪的水样具备典型性和实时性。控制机柜的智能控制系统(可编程逻辑控制器PLC和工控机)控制水质指标分析仪,能实现四个实验水槽的单次测定(仅分析一次)和循环测定(一天连续分析二至六次)。
(i)氨氮自动分析仪(如图5所示)采用氨气敏电极法进行氨氮快速测定,测试量程:0-5~500mg/L。最低检测限为0.02mg/L,精度高;具有自动清洗、自动标定和自动诊断功能,维护工作量小。数据传输:sc1000多参数通用控制器配有数据线。组块包括:外壳,压缩机,收集盘,湿度传感器,电极组件(电极体,电极,密封盖,膜帽,接头),电解液置换瓶,取样管,溢流容器,过滤器,空气管,试剂,标准溶液(高/低标准),清洗液,试剂泵(阀泵),泵头活塞泵(10毫升),排放管,加热排放管,FILTRAX取样管,排放管等。
(ii)总磷/总氮自动分析仪(如图6所示)的消解基于GB11893-89:过硫酸钾做氧化剂,在120℃条件下消解水样30min,将磷化物传化成磷酸根离子,钼蓝法吸光光度法(测量波长:700nm);总氮:过硫酸钾做氧化剂(符合GB11893-89):过硫酸钾做氧化剂,在120℃条件下消解30min;将氮化物传化成硝酸根离子,样品溶液的pH调节为2~3;紫外光吸光光度法检测(测量波长:220nm,275nm;浊度补正:A=A220-A275×2)。总磷或总氮的测试量程:0.00~0.5/20.00/50.00/100.00mg/L或0.00~2.00/50.00/100.00/200.00mg/L;最低检出限:0.01mg/L。其分析单元包括:消解单元,检测器(紫外可见光分光光度计),阀单元,显示计量泵,计量管,试剂泵,加热分解装置,量程校准液槽,试剂槽,溶液罐,纯水槽,废液槽,纯水,试剂(过硫酸钾,氢氧化钠,盐酸,钼酸铵,抗坏血酸)和标准溶液(TN/TP)。此外,还有操作面板和显示屏。
(iii)CODCr自动分析仪(如图7所示)采用重铬酸钾法测定CODCr,原理:水样、重铬酸钾、硫酸银溶液(催化剂使直链芳香烃化合物氧化更充分)和浓硫酸的混合液在消解池中被加热到175℃,在此期间铬离子作为氧化剂从VI价被还原成III价而改变了颜色,颜色的改变度与样品中有机化合物的含量成对应关系,仪器通过比色换算直接将样品的CODCr显示出来。CODmax II重铬酸钾法CODCr速测仪进行废水CODCr检测时的主要干扰物为氯化物,可加入硫酸汞形成络合物去除。CODCr自动分析仪的测量范围:10-5000mg/L。其分析单元包括:进样管,活塞泵,消解单元,分光光度计,高液位光度计,低液位光度计,阀单元,计量管,试剂(重铬酸钾溶液,硫酸汞溶液,硫酸);标准溶液。此外,还有操作面板和显示屏。
上述三个监测设备的水样采集采用设备配管系统,控制机柜的工控机设定采样时间频率等;通过潜水泵,电磁阀和回流水箱附近的采样杯,自动从四个实验水槽采集样品,输入到上述三个自动监测仪中,测试四水质指标。三个自动监测仪均有操作界面,可以执行手动菜单界面,实现参数设定,校正、清洗、操作、管理、警报等功能;也可以通过现场总线控制来实现自动化运行。也就是通过4芯电缆以及RS485/RS232接口和工控柜的智能控制系统(PLC和数据读取器)相连接,工控机上设定测试参数, 控制监测仪的自动运行。工控机选择一个或多个实验水槽,设定测定时间,单次或循环测试等,然后引发三个自动监测仪的运行,实时反馈测试数据至工控机并进行保存,显示屏在线显示四个参数,水质指标随时间变化曲线。
(6)水样自动采样装置:一共设置2台水样自动采样装置,采用Isco4700冰箱式采样仪(美国Teledyne Isco 4700),如图8所示。全自动水样采样器可以控制和编程,采样快速、简单、容易操作;控制器能够灵活的控制和显示采样温度,并能在4℃下保存24个水样;蠕动泵产生负压采集样品,并通过控制器分配到采样瓶。自动采样装置包括:吸水管-线性FEP(全氟乙烯丙烯共聚物)、蠕动采样泵、采样管、液体探测器、分配臂、泵过滤器、控制器、样品瓶(24个1L聚乙烯瓶;自动压缩机控制样瓶保存温度)。水质自动采样装置通过4芯电缆以及RS485接口和与控制机拒的PLC和数据采集模块相连接,可以在工控机上设置采样频率和体积,采样实验水槽或回流水箱的水样、单次或循环采样;自动采样装置自动运行,取出水样暂时放置在采水器的冷藏柜。通过控制系统对电磁阀和水质自动采样装置编程可以实现单次采样(仅采样一次)和循环采样(一天多至六次)。
(7)离线分析仪:包括:用于重金属、氮、磷和有机物分析的仪器:SpectraMaxM2/M2e多功能酶标仪、Agilent/安捷伦GC/MS仪;Agilent/安捷伦ICP-MS;用于沉积物粒度测定的新帕泰克激光粒度分析仪;用于沉积物微界面环境条件测定的丹麦Unisense微电极;平面光极系统(PO)。
(8)管道,阀门和泵:管道用来连接各个实验水槽、进水箱、回流水箱、在线水体水质指标分析仪以及水样自动采样装置,控制进水、排水、溢流、回流、取水等。本装置的管道分为圆柱形的PVC(硬聚氯乙烯)硬管、PU(聚氨酯)软管和PVC波纹软管。
实验水槽下方支架空腔内的回流管以及溢流管都是PVC硬管(内径:1.5或3.0cm),溢流管在实验水槽底部以下连接一个变径管(两个开口分别为:3.0或4.0cm;长度:3cm)和PVC波纹软管(长度:9cm;内径:4cm)。潜水泵出水口连接一段PU软管(内径:2cm;长度:5cm),上面安装一个阀门(德国宝德),这段PU软管末端接一个三通(材质:硬PVC),三 通的两个开口分别连接两个PU软管(内径:2cm),它们分别与在线水体水质测试仪采样杯进水口或回流管道的变径管(两个开口内径:1.5或2cm;长度:2cm)相连接。实验水槽底部排泥管材质为PVC波纹软管(内径:4cm;长度:12cm),上面安装一个阀门。总排水管、总进水管、进水管、排水分管、进水分管、串联管道、采样杯的出水管、水样自动采样装置的取水管以及串联管道均为PVC硬管(内径:2.0cm)。总进水管和进水管相连接处是一个四通,由附近的阀门控制进出水走向。其中,总排水管、总进水管、进水管和串联管道的PVC硬管与蠕动泵接近区域,是一段PU软管(内径:2cm;长度:15cm),PU软管中部安置在蠕动泵凹槽中,两端与上述PVC硬管接口连接;排水分管和进水分管全部是PVC硬管,不与PU软管或蠕动泵连接。
实验水槽下方的采样杯是立方体(5×5×10cm),安装两个电磁阀(型号:CWX-25S;24V DN20铜;功率:5W;中国上海新骄阀门有限公司),控制采样杯的进出水;采样杯下方的出水管是PVC硬管(内径:0.5cm;长度:2m),与在线水体水质指标分析仪连接,采样杯进水口连接一段PU软管(内径:2cm;长度:12cm),它与潜流泵出水三通一个开口连接,潜水泵将回流水箱的水通入三通、PU软管和电磁阀导入采样杯,再通过另一个电磁阀和出水管(PVC硬管)通入在线水体水质指标分析仪。采样杯侧面还安装一个排液管(材质:PVC硬管直径:0.5cm;长度:0.5m),用于将采样杯残液排至下水道。两个电磁阀由工控机程序控制,清洗采样杯时,只开启控制出水的阀门,采样杯残余的水从排液管排出;然后,同时开启另一个阀门,潜水泵的水通入进出水管和采样杯,然后进入在线水质分析仪。
实验水槽进水或排水也可采用PU软管(内径:2.0cm;长度:3.0m)进行人工操作:将PU软管中间的一部分(长度:12cm)放置在蠕动泵凹槽中,PU软管一端放在实验水槽中,另一端连接进水箱或水桶,实现实验水槽进水。或是将PU软管的另一端放在下水道,直接排水。除了上述的管道阀门(德国宝德)和电磁阀以外,还配备弯头、三通、四通、变径、闷头等零部件,用于上述管道的连接,转弯,变直径,封闭等。
实验水槽支架下面安装两种类型的泵,为整个实验水槽的实验提供动能以及传输水和沉积物。包括:(1)两个变频蠕动计量泵(型号:BW-100或CT1000;中国河北省保定创锐泵业有限公司),流量分别为:0.04~36ml/min或0.4~360ml/min;两种型号的泵分别用于:(i)自动加药模块或者(ii)实验水槽和进水箱的进/排水,实验水槽的串联或排泥;(2)一个潜水泵(型号HQB-4500;功率:100W;流量:0.4~75ml/min;中国浙江省森森实业有限公司),放置在回流水箱,既能将回流水箱的水返回至实验水槽,又能向在线水体水质测试仪的进出水管导水。造浪装置安装在实验水槽上部侧面,其主体装置是一个造浪泵(型号:劲浪+5000;德国伊罕),最大功率:800w;频率:50Hz。
(9)自动化控制模块:也就是智能管理系统,安装在控制机柜(如图9所示),由PLC(可编程逻辑控制器)、工控机(工业控制计算机)及显示屏、交换机、数据采集块(数据读取器)、智能管理软件等组成。自动化控制模块采用PLC控制系统,设置人机交互界面,通过数据采集块实现传感器、小型装置、检测设备的数据通信、数据采集与处理、参数设置和在线展示各项参数和数据变化的功能。传感器将检测信号输出到PLC模块,PLC编程控制泵阀的开启度以及各项装置的运行,达到控制部分管路的开关和流量、造浪、光照、自动加药、曝气、水质自动采样、在线水体水质指标分析,实时收集环境条件参数在线监测仪以及上述各项装置的数据。各子系统具备完整的独立控制功能,互不干扰。智能管理软件具备如下功能:数据采集;设置工艺参数、保存数据、实时显示数据以及参数随时间的变化曲线、身份识别、远程控制。工控机触屏页面能展示主要装置结构,设置参数,实时显示在线监测数据,以及环境参数和水质指标随时间的变化曲线。
(10)模拟装置的使用方法
“底泥污染过程与控制智能模拟装置”的启动步骤如下所示:加沉积物→加水→启动造浪系统→启动光照系统→启动环境条件参数分析仪→启动水质指标分析仪→启动水样自动采样装置→控制环境条件(曝气或加药)→模拟实验,包括:环境条件参数/水质指标的在线分析,离线分析水体样品,沉积物样品的采集与测试等)→中止实验→排水→排泥→准备下一 次模拟实验。由于模拟装置有四个实验水槽和对应的进水箱,通常情况下,可以平行做四个实验水槽或只做一个实验水槽的模拟实验,实验方法基本一样。如有特别实验要求,也将串联管道,蠕动泵和阀门打开,完成二个以上实验水槽表层水的串联流动和闭合回流。
本实施例中,一个实验水槽对应的模拟实验步骤如下所示:
加沉积物:桶装沉积物和水混合物,可采用蠕动泵(型号:CT1000;中国河北省保定创锐泵业有限公司)和PU软管(内径:4cm;长度:2.0m)将其注入实验水槽。装沉积物的塑料桶容积为50L。桶装沉积物也可通过导流板从实验水槽上部直接倒入。最后将实验水槽底部沉积物摊平。若有水生植物植被恢复实验,可以在沉积物中种植水生植物幼苗。
加水:进水箱内的实验用水可通过蠕动泵(型号:CT1000;中国河北省保定创锐泵业有限公司)、进水管(材质:PVC硬管;内径:2.0cm)和阀门将水通入实验水槽。实验室内的桶装实验用水可采用蠕动泵和PU软管(内径:2.0cm)直接通入实验水槽;实验水槽的水超过溢流堰,会通过溢流管通入下方的回流水箱,当回流水箱的水面超过潜流泵时,打开潜流泵,使回流水箱的水能通过回流管通入实验水槽。直至液面接近回流水箱高度时,中止实验水槽的进水。装实验用水的塑料圆桶容积为100L。也可以在实验水槽中自配实验用水:实验室自来水的管口与总进水管口连接,通过总进水管、进水管、蠕动泵和阀门将自来水直接通入实验水槽以及回流水箱,中止进水后,控制机柜的工控机上打开加药装置,在潜流泵,溢流管和回流管的作用下,酸/碱或试剂能在回流水箱和实验水槽之间多次循环,混合均匀。可以采用PU软管将桶装实验水通入进水箱及其回流水箱,然后,采用上述方法将进水箱的水通入实验水槽。
造浪:控制机柜的工控机能打开造浪系统,根据实验要求,调节造浪泵转速(0~100转/min),使水体具有类似于湖泊的波浪。
光照:工控机上打开光照灯具开关,设置24h规律照射的日光照度,实验水槽上方日光一天内的变化和湖泊一致;或是输入固定的光照强度。
启动环境条件参数在线监测仪:通过铝合金标尺架和不锈钢传感器固定架调整环境参数传感器探头(pH/Eh/DO/电导率)的高度,控制监测探头在水体层的深度,工控机显示屏显示上述四个环境参数数据和随时间的数 据变化曲线,同时能实时保存数据。为了研究沉积物/水界面环境条件参数的~100μm的空间分布特征,可采用微电极或平面光极(PO)在界面进行测试,获得pH/Eh/DO的一维垂直分布或pH/DO的二维空间分布图像。
启动水质指标分析仪:总磷总氮在线分析仪、氨氮在线分析仪和CODCr在线分析仪能通过信号电缆线与控制机柜的数据采集模块和PLC相连接,其供电线路和控制机柜的开关连接。工控机显示屏页面上设置测试和校准参数,然后点击“水质指标分析仪模块”的按纽,确定四个实验水槽的测试方式;可以选择一个或多个实验水槽;以及“单次“或“循环”测试方式;这样可以设置实验水槽四个水质指标的单次或一天之内的多次测定;最多可以设置一天12次的循环测定。每个实验水槽的环境条件参数、水质指标和其它数据随时间变化的曲线能在工控机显示屏上自动显示,并且能保存数据在工控机。
启动水样自动采样装置:两台水样自动采样装置通过微型电磁阀、采样器取样管路(4路)采集实验水槽或回流水箱的水,电磁阀信号电缆和采样器控制线与控制机柜的数据采集模块、开关和PLC相连接;控制柜可以设置“单次“或“循环”方式,实现单次或一天之内的多次采样,最多可设置一天循环采水样12次,每次采样体积:50~400mL;自动采样装置的冷藏柜可以在4℃下保存24瓶水样。离线监测仪进行后续分析测试,分析水样氮磷重金属有机质等。
控制环境条件(曝气或加药):根据模拟实验的水体DO目标值以及环境条件参数在线监测仪反馈至工控机的DO在线数据,可选择曝气装置的三种方式(空气、氩气和纯氧)之一,工控机设置DO目标值,然后启动曝气系统;工控机在线显示的DO达到设置值,曝气头自动中止曝气。根据模拟实验的水体pH目标值以及在线反馈至工控机的pH在线数据,工控机选择加酸(HCl)还是加碱液(NaOH)以及加药量,设置pH目标值,然后启动加药装置;工控机在线显示的pH达到设置值时,自动中止加药。若模拟实验要求加药剂,工控机设置“污染物”的加药时间,试剂加至目标值,自动结束加药。
模拟实验:水环境条件、光照、曝气、风浪条件以及各类在线测试仪和水样采样仪运行平稳后,沉积物/水界面分层稳定,水生植物生长达到 要求。这时可以进行模拟实验,例如:(1)沉积物氮磷迁移释放机制实验;(2)研究沉水植物根际氮磷过程以及植物提取机制的实验;或者(3)沉积物钝化实验及氮磷生态修复机制研究。所需要的实验或启动的装置包括:自动加药或曝气装置控制水体pH或DO;自动加药装置向水体投放净水试剂或人工在沉积物表层加钝化剂;光照或造浪装置控制光照或水力扰动条件;环境条件参数在线监测仪和在线水体水质指标分析仪测定水环境参数以及水质指标;水样自动采样装置的水样采集和保存;采用离线监测仪测定水样(氮磷形态;重金属元素;有机物)。工控机保存上述在线数据,用于研究水体和沉积物/水界面的氮磷生物有效性以及界面循环特征。人工采集沉积物和水生植物样品,分析沉积物氮磷重金属总量和形态,有机质含量,水生植物组织重量,元素含量以及根表面积。沉积物或水生植物根际还可以进行原位测试(DGT,Peeper,微电极,平面光极),能后续分析测试获得沉积物或水生植物根际元素或环境条件参数的一维或二维高空间分辨率分布(100μm~mm)。综合在线参数和水质指标以及离线分析理化性质指标,揭示不同环境条件下,沉积物氮磷内源负荷形成机制,水生植物根际氮磷迁移转化过程以及沉积物钝化机制以及技术工艺。
中止实验:完成上述模拟实验,取出沉积物/水界面原位测试装置(DGT,Peeper,微电极,平面光极),控制机柜的工控机用来关闭造浪装置、光照装置、回流水箱的潜水泵、环境条件参数在线监测仪、在线水体水质指标分析仪以及水样自动采样装置,使上述装置处于待机状态。然后采用铝合金标尺架将环境参数传感器探头从水中提出,将电极放置在保护液中。
排水:实验水槽的水可以通过蠕动泵、阀门、排水分管和总排水管排至下道。实验水槽的水也可以通过蠕动泵、阀门、排水分管、总进水管和进水分管导入进水箱中保存。直至实验水槽无水时,关闭蠕动泵和阀门,结束排水。回流水箱的水可以通过蠕动泵和PU软管,将其排入下水道或进水箱。若要排去进水箱及其回流水箱的水,可以采用蠕动泵和PU软管,将其排入下水道。
排泥:实验水槽下部沉积物可加入少量水,人工搅拌成稀浆后,打开实验水槽的排泥管,将其排入贮泥桶;或者直接用排泥泵和PU软管将实 验水槽的沉积物抽出,排入贮泥桶。最后用水冲洗实验水槽,再采用上述的操作,将实验水槽的泥水混合物排入贮泥桶。
准备下一次模拟实验:重新开启模拟系统,根据上述步骤,进行新的实验。
特别地,若要同时进行两个或多个实验水槽的模拟实验,可以先对第一个实验水槽进行“加沉积物、加水、造浪、启动环境条件参数在线监测仪“等四项操作,然后,依次对第二或更多的实验水槽采用上述操作;完成所有实验水槽上述操作后,再依次启动水质指标分析仪和水样自动采样装置,控制环境条件(曝气或加药),实验水槽沉积物/水界面稳定后,分别进行所有实验水槽的模拟实验。等某个实验水槽模拟实验结束时,进行“中止实验,排水,排泥”操作,然后依次进行其它实验水槽的“中止实验,排水,排泥”操作。若其它实验水槽实验未结束,仍可继续进行实验。注意:上述实验水槽的“加水,排水”时,正确开通或关闭总排水管和总进水管的阀门,确保水不通入其它实验水槽或排水箱。
实施例二
基于本实施例模拟装置,可以进行“湖泊缺氧沉积物氨氮/硝氮/磷迁移释放机制和内源负荷评估研究”所对应的实验;实验主要包括:(1)模拟装置沉积物/水界面环境条件的调控;(2)基于DGT(梯度扩散薄膜)和Peeper装置的沉积物/水界面的测试;(3)沉积物氨氮/硝氮/磷迁移释放机制以及内源负荷评估;具体包括如下步骤:
(1)采集沉积物和水样:模拟实验所用的沉积物和水来源于中国内蒙古自治区达理湖。采样船上使用抓斗采样器采集达理湖沉积物200L,用水桶采集800L水;然后将沉积物和水样分别装进50L或100L的圆形塑料桶中,运至实验室,分析测试沉积物和水样的氮磷重金属等理化性质。用蠕动泵和PU软管将桶装实验用水通入一个进水箱,等水位(98cm)达到进水箱溢流堰以上,并且水通过溢流管导入回流水箱,达到回流水箱液位时,启动潜水泵,回流管和溢流管实现进水箱和回流水箱之间的水循环,中止桶装水向进水箱的导入。
(2)加沉积物:采集的湿沉积物从实验水槽上部倒入一个实验水槽;每铺5cm厚,就加少量水(5L)使沉积物湿润,并使沉积物尽量保持平整状 态;沉积物一共铺4次,共使用192L的沉积物。最后的沉积物厚度大约20cm。
(3)加水:加沉积物后,进水箱的水通过进水管,蠕动泵和阀门通入实验水槽,保持流速为4L/min,实验水槽共注入768L水,厚度为92cm,水位超过溢流堰,同时下方的回流水达到液位,启动潜流泵,使进实验水槽和回流水箱之间实现水循环。此时,继续加水,直至实验水槽水位达到98cm,中止通水。
(4)启动自动化控制模块,开启造浪系统和光照系统:待沉积物/水界面稳定后,启动自动化控制模块,工控机上能显示模拟装置示意图和参数框;然后,工控机上开启造浪装置,使实验水槽表层水形成一定的波动,同时设置光照装置自动变化的24h规律照射的日光照度,实验水槽上方日光一天内的变化和自然湖泊一致。
(5)环境条件参数在线监测仪的启动:通过铝合金标尺架和不锈钢传感器固定架调整环境参数传感器探头(pH/Eh/DO/电导率)的高度,控制监测探头在水体中层水深度(40cm)。工控机启动环境条件参数在线监测仪,监测水环境参数(pH/Eh/DO/电导率),并将数据传输至工控机,工控机屏幕实时展示每15分钟的环境参数变化曲线。当上述四个环境参数连续三天,保持稳定时(RSD<5%;n=15;相同间隔时间采集的15个数据),可以进行下面的实验。实验水槽做模拟实验前,水体稳定时,pH=8.0,DO=8.5mg/L,Eh=231.1mv,电导率=322.8μs/s。
(6)启动水质指标在线分析仪:工控机启动NPW160总氮总磷在线分析仪、CODPlus COD在线分析仪和AmtaxSC氨氮在线分析仪,设置为一天采样测定2次,每12小时分析1次。工控机采集数据,在线显示随时间变化的水质指标曲线。
(7)启动水样自动采样装置:工控机启动水样自动采样装置,设置为一天采样测定2次,每12小时分析1次。每个水体自动采样装置内部冰箱可保存24瓶水样。多余水样转移保存在实验室冰箱。
(8)环境条件的控制(曝气+加药):基于环境条件参数在线监测仪测定的水体环境条件参数,并且根据实验要求,调节水体环境条件的目标值:pH=8.50,DO=2.2mg/L。方法:工控机启动曝气和加药装置。曝气装置采 用曝氩气的方式进行水体的缺氧化处理,直至DO至2.2mg/L为止;加药装置采用加碱液(NaOH)的方式进行水体的碱性化处理,直至pH达到8.50为止。环境条件参数在线监测仪实时监测中层水的pH/DO等参数,实时反馈至工控机,当DO或pH达到目标值时,工控机立即中止曝气和加药装置运行。若DO或pH偏离目标值时,就继续曝氩气或纯氧(DO高于或低于2.2mg/L);或加碱液(NaOH)或酸液(HCl)(pH低于或高于8.50),直至DO或pH达到目标值为止。
(9)模拟实验:采用环境条件参数在线监测仪测定中层水的环境参数(每15分钟监测一次),水质指标在线分析仪分析中层水四个指标(1天2次);水样自动采样装置和离线监测仪分析表层水其它水质指标(1天2次);然后分析上述数据,连续五天,各类参数的RSD<5%(n=7)时,沉积物/水界面环境条件和氮磷循环达到稳定状态。可以进行沉积物/水界面氨氮,硝氮和磷的原位DGT测试。
氨氮,硝氮和磷迁移释放机制实验:将两个双面DGT探针:
AMP-TH&ZrO-chelex和Zr-oxide&AgI DGT以及一个HR-Peeper探针水平相距2cm面对面地垂直插入沉积物/水界面,上覆水部分的DGT探针和Peeper窗口为2cm或5cm,沉积物分别为13或15cm。DGT和HR-Peeper探针测试时间分别为:24和48h。然后将DGT和HR-Peeper探针取回,进行后续分析。同时,用柱状沉积物采样器采集DGT和HR-Peeper测试的沉积物柱样,用于及DGT和HR-Peeper的后续分析。
(10)后续DGT和HR-Peeper探针分析:取出两个双面DGT探针的AMP-TH、ZrO-chelex、Zr-oxide和AgI吸附膜,AMP-TH或ZrO-chelex采用陶瓷排刀切割器以2mm的垂直分辨率进行切割,胶条放在离心试管中加洗酸或碱液洗脱,然后采用酶标仪进行分析:磷钼蓝分光光度分析磷、水杨酸-次氯酸盐比色分析氨氮、紫外分光光度分析硝氮,绘制氨氮、硝氮和磷的一维DGT浓度剖面。Zr-oxide和AgI吸附膜干燥后,平板扫描仪扫描其图像,计算机成像密度计量法(CID)运算磷或硫DGT浓度的二维空间分布图像,然后,将DGT-磷和DGT-硫转化为水平方向一致的二维分布图像。HR-Peeper的每个小室的溶液(400μL)抽取至离心试管中,同时加20μL的盐酸(0.1mol/L)保存。仍采用采用酶标仪进行分析:紫外磷 钼蓝光度分析磷、水杨酸-次氯酸盐比色分析氨氮、紫外分光光度分析硝氮,邻菲啰啉分光光度测Fe(II),绘制沉积物空隙水的氨氮、硝氮、铁和磷浓度一维剖面以及硫和磷的二维图像。
(11)柱状沉积物的测试:将取出的柱沉积物的PVC管侧壁的橡皮塞打开,用微型电极探头(德国Presens公司)测试柱状沉积物(0~-15cm)的pH/DO,其垂直空间分辨率为1.0cm,获得沉积物空隙水的DO剖面。将沉积物柱样(0~-18cm)进行切割,分成15段,干燥,研磨,过100μm筛,然后测定氮磷重金属(铁铝钙)总量和分级含量,同时分析有机质。
(12)氮氮、硝氮和磷地球化学过程研究:基于氨氮/硝氮/磷的DGT浓度剖面,以及它们的空隙水剖面(Peeper),获得上述元素沉积物再补给参数(R)剖面,结合沉积物DO剖面以及沉积物分层理化性质,评估沉积物固相氮磷贮库的再补给能力;对比分析氨氮/硝氮/磷/铁的DGT剖面之间,以及上述DGT剖面与DO剖面或沉积物铁铝钙有机质,揭示缺氧沉积物层氨氮/硝氮/磷的迁移释放规律,地球化学过程和形成机制,以及铁铝钙有机质对上氨氮/硝氮/磷释放的影响机制。同时,分析磷和硫的DGT二维图像以及DGT-铁剖面,对比磷铁硫三元素的空间变化规律,研究三者的耦合地球化学反应导致的磷释放。分析沉积物磷微生境分布规律,研究缺氧沉积物中磷微生境形成机制。
(13)氮氮、硝氮和磷内源负荷估算与评估
基于氮氮/硝氮/磷的沉积物/上覆水DGT剖面,以及下列运算公式(1~2),
可以估算沉积物/水界面营养元素的扩散通量以及内源负荷。

W=F×A×t              公式2
F是沉积物/水界面的表观扩散通量(μg m-2d或mg m-2d);Fs和Fw是表层沉积物和上覆水层中的扩散通量(μg m-2d或mg m-2d);沉积物的扩散系数Ds(cm s-1)由水中分子扩散通量和沉积物空隙率(φ)的运算导出。 分别是表层沉积物和上覆水层的扩散梯度。W(μg a-1)是模拟装置沉积物的内源负荷;A是沉积物面积(m2);t是一年的365天。
需要说明的是,对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种底泥污染过程与控制智能模拟装置,其特征在于:包括:
    实验水槽,所述实验水槽能够用于沉积物/水界面氮磷过程模拟,所述实验水槽连接有进水箱以及回流水箱,所述进水箱能够保存实验用水,并能够向所述实验水槽内加水;所述回流水箱与所述实验水槽连接,能够实现实验水槽与回流水箱水体之间的回流;
    造浪系统,所述造浪系统安装于所述实验水槽的内壁上部,所述造浪系统能够制造沉积物/水界面风浪;
    光照系统,所述光照系统安装于所述实验水槽的正上方,所述光照系统能够模拟光照;
    加药系统,所述加药系统安装于所述实验水槽的下方,所述加药系统能够将实验药剂加入所述实验水槽内,用于控制所述实验水槽内水体的pH或加入污染物或絮凝剂;
    曝气系统,所述曝气系统安装于所述实验水槽的内壁上部,所述曝气系统能够对所述实验水槽内的水体进行曝气处理,控制实验水槽水体的溶解氧;
    环境条件参数在线监测仪,所述环境条件参数在线监测仪安装于所述实验水槽的内壁上,并能够伸入所述实验水槽的水体内的不同深度,在线测定水体环境参数,所述环境参数包括pH、Eh、DO和电导率;
    在线水体水质指标分析仪,所述在线水体水质指标分析仪能够实时监测水体水质指标,所述水体水质指标包括总氮、氨氮、总磷和CODcr;
    水样自动采样装置,所述水样自动采样装置与所述实验水槽或回流水箱连接,能够按照单次或循环模式自动采集水样;
    离线分析仪,所述离线分析仪能够用于测定所采集水样的水质指标或沉积物理化指标;
    自动化控制模块,所述造浪系统、所述光照系统、所述加药系统、所述曝气系统、所述环境条件参数在线监测仪、所述在线水体水质指标分析仪、所述水样自动采样装置以及所述离线分析仪均与所述自动化控制模块 连接,由自动控制化块指挥上述各分体装置按照设置参数运行并在线收集数据。
  2. 根据权利要求1所述的底泥污染过程与控制智能模拟装置,其特征在于:所述实验水槽以及所述进水箱均安装于支架上,所述支架下方设置有支架空腔,所述支架空腔能够用于容纳实验装置,所述实验装置包括蠕动泵、阀门、管道、回流水箱,电磁阀、采样杯和三通;所述实验水槽通过回流管连接有一回流水箱,所述实验水槽上还设置有溢流堰,所述溢流堰通过溢流管与所述回流水箱连接。
  3. 根据权利要求2所述的底泥污染过程与控制智能模拟装置,其特征在于:所述实验水槽与所述进水箱均对应设置有四个,四个所述实验水槽能够独立运行;或者,四个所述实验水槽串联连接后水体流通运行。
  4. 根据权利要求1所述的底泥污染过程与控制智能模拟装置,其特征在于:所述造浪系统的主体装置是造浪泵,所述造浪泵固定在所述实验水槽的内壁上,所述造浪泵能够在表层水中进行高度调节;
    所述光照系统的主体装置是光照灯具,所述光照灯具的色温为400k、功率为150W、光照强度为0~10000Lux,所述光照灯具能够自动模拟一天24小时内的太阳光照变化,并能够设定固定的光照强度。
  5. 根据权利要求2所述的底泥污染过程与控制智能模拟装置,其特征在于:所述加药系统包括试剂瓶,所述试剂瓶设置有三个,三个所述试剂瓶分别能够放置酸、碱和药剂,所述试剂瓶通过加药管道与所述回流水箱连接,所述加药管道上连接有计量泵;
    所述曝气系统包括曝气头,所述曝气头通过气路连接有供气系统,所述气路还连接有空气泵,所述气路上设置有流量计、控制阀门和减压阀门。
  6. 根据权利要求2所述的底泥污染过程与控制智能模拟装置,其特征在于:所述环境条件参数在线监测仪包括监测探头,所述监测探头包括pH电极、荧光法溶氧传感器、电导率电极和Eh电极,所述监测探头固定在所述实验水槽的内壁上,通过铝合金标尺架能够调整所述监测探头在水体中的深度。
  7. 根据权利要求1所述的底泥污染过程与控制智能模拟装置,其特征 在于:所述在线水体水质指标分析仪包括氨氮自动分析仪、总磷总氮自动分析仪和CODCr自动分析仪,所述在线水体水质指标分析仪与所述实验水槽连接。
  8. 根据权利要求1所述的底泥污染过程与控制智能模拟装置,其特征在于:所述水样自动采样装置设置有两个,所述水样自动采样装置采用冰箱式采样仪,所述水样自动采样装置能够与所述回流水箱或实验水槽的水体相连接;
    所述离线分析仪包括多功能酶标仪、GC/MS分析仪、ICP-MS分析仪、激光粒度分析仪、Unisense微电极和平面光极系统。
  9. 根据权利要求1所述的底泥污染过程与控制智能模拟装置,其特征在于:所述自动化控制模块采用PLC,PLC为可编程逻辑控制器控制系统,所述自动化控制模块安装于控制机柜;所述自动化控制模块的工控机触屏页面能够展示智能模拟装置的结构以及运行状况,实时显示在线监测数以及环境参数和水质指标随时间的变化曲线。
  10. 一种基于权利要求1-9任一项所述的底泥污染过程与控制智能模拟装置的实验方法,其特征在于:包括以下步骤:
    步骤一、采集沉积物和水样;
    步骤二、向实验水槽加入沉积物;
    步骤三、向实验水槽加入水样;
    步骤四、启动自动化控制模块,开启造浪系统和光照系统;
    步骤五、启动环境条件参数在线监测仪,在线测定水体环境参数;
    步骤六、启动在线水体水质指标分析仪,实时监测水体水质指标;
    步骤七、启动水样自动采样装置;
    步骤八、控制环境条件;
    步骤九、开始模拟实验;
    步骤十、模拟实验完成后,中止实验;排水、排沉积物;
    步骤十一、准备下一次模拟实验。
PCT/CN2023/080125 2022-03-14 2023-03-07 底泥污染过程与控制智能模拟装置及实验方法 WO2023174109A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210243865.5A CN114814131B (zh) 2022-03-14 2022-03-14 底泥污染过程与控制智能模拟装置及实验方法
CN202210243865.5 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023174109A1 true WO2023174109A1 (zh) 2023-09-21

Family

ID=82528282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080125 WO2023174109A1 (zh) 2022-03-14 2023-03-07 底泥污染过程与控制智能模拟装置及实验方法

Country Status (2)

Country Link
CN (1) CN114814131B (zh)
WO (1) WO2023174109A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147234A (zh) * 2023-11-01 2023-12-01 北京建工环境修复股份有限公司 一种水污染治理用稳定采样装置
CN117330136A (zh) * 2023-12-01 2024-01-02 南京中网卫星通信股份有限公司 一种水利湖泊遥感综合监测管理系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114814131B (zh) * 2022-03-14 2023-02-28 中国环境科学研究院 底泥污染过程与控制智能模拟装置及实验方法
CN117630338B (zh) * 2024-01-25 2024-04-09 云南大学 耦合地表及地下的水陆交错带污染物运输模拟装置及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477106A (zh) * 2009-01-13 2009-07-08 中国科学院武汉岩土力学研究所 温度-水力耦合作用下河渠污染物传输的物理模拟试验装置
CN102937637A (zh) * 2012-10-22 2013-02-20 中国环境科学研究院 水体实验装置及方法
CN104075872A (zh) * 2014-04-28 2014-10-01 上海大学 一种模拟往复流作用下沉积物再悬浮的循环直水槽装置
CN104326558A (zh) * 2014-11-11 2015-02-04 南京大学 模拟原位河道底泥厌氧氨氧化过程装置及使用方法和应用
CN105585129A (zh) * 2016-01-12 2016-05-18 南京大学 一种模拟原位河道生态系统氮素归趋的装置及方法
CN207946410U (zh) * 2018-04-02 2018-10-09 三峡大学 一种用于模拟水体沉积物氮磷释放的实验装置
CN108645758A (zh) * 2018-05-29 2018-10-12 河北省水利水电勘测设计研究院 一种底泥污染物动态释放性分析方法
CN114814131A (zh) * 2022-03-14 2022-07-29 中国环境科学研究院 底泥污染过程与控制智能模拟装置及实验方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101441207B (zh) * 2008-12-23 2012-07-11 浙江大学 沉积物采样与分层梯度研究的一体化装置
CN109490084B (zh) * 2018-11-29 2019-12-06 中国海洋大学 一种模拟波浪作用下海洋沉积物中内源污染物释放量的原位测试装置及方法
CN209961753U (zh) * 2019-05-07 2020-01-17 上海城市水资源开发利用国家工程中心有限公司 模拟环境因素对水源水库沉积物中污染物释放影响的装置
CN211626551U (zh) * 2019-12-31 2020-10-02 浙江微兰环境科技有限公司 一种微型地表水环境质量检测设备
CN111766181B (zh) * 2020-06-29 2023-05-12 东北电力大学 原位水生态营养盐沉积物-上覆水界面迁移转化模拟系统
CN113292200A (zh) * 2021-05-12 2021-08-24 朱学红 污水处理过程中的在线多参数水质自动快速检测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101477106A (zh) * 2009-01-13 2009-07-08 中国科学院武汉岩土力学研究所 温度-水力耦合作用下河渠污染物传输的物理模拟试验装置
CN102937637A (zh) * 2012-10-22 2013-02-20 中国环境科学研究院 水体实验装置及方法
CN104075872A (zh) * 2014-04-28 2014-10-01 上海大学 一种模拟往复流作用下沉积物再悬浮的循环直水槽装置
CN104326558A (zh) * 2014-11-11 2015-02-04 南京大学 模拟原位河道底泥厌氧氨氧化过程装置及使用方法和应用
CN105585129A (zh) * 2016-01-12 2016-05-18 南京大学 一种模拟原位河道生态系统氮素归趋的装置及方法
CN207946410U (zh) * 2018-04-02 2018-10-09 三峡大学 一种用于模拟水体沉积物氮磷释放的实验装置
CN108645758A (zh) * 2018-05-29 2018-10-12 河北省水利水电勘测设计研究院 一种底泥污染物动态释放性分析方法
CN114814131A (zh) * 2022-03-14 2022-07-29 中国环境科学研究院 底泥污染过程与控制智能模拟装置及实验方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117147234A (zh) * 2023-11-01 2023-12-01 北京建工环境修复股份有限公司 一种水污染治理用稳定采样装置
CN117147234B (zh) * 2023-11-01 2024-01-05 北京建工环境修复股份有限公司 一种水污染治理用稳定采样装置
CN117330136A (zh) * 2023-12-01 2024-01-02 南京中网卫星通信股份有限公司 一种水利湖泊遥感综合监测管理系统
CN117330136B (zh) * 2023-12-01 2024-03-29 南京中网卫星通信股份有限公司 一种水利湖泊遥感综合监测管理系统

Also Published As

Publication number Publication date
CN114814131B (zh) 2023-02-28
CN114814131A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023174109A1 (zh) 底泥污染过程与控制智能模拟装置及实验方法
CN101477034B (zh) 一种水体痕量元素的在线高光谱监测仪
CN101865833A (zh) 一种水质总磷总氮在线监测方法及监测系统
CN102092908B (zh) 一种底泥污染物释放的模拟装置及其操作方法
CN210604376U (zh) 一种多参数水质监测装置
CN102841060B (zh) 一种在线水质快速检测系统
CN105044370B (zh) 一种无人值守的重金属污水监测设备
CN202794022U (zh) 一种在线水质快速检测系统
CN208588728U (zh) 一种水利用水质监测及远程监督设备
CN2921830Y (zh) 总镉、总铅、总锌、总锰在线自动监测仪
CN202403944U (zh) 一种废水在线监测多点采样系统
CN205388542U (zh) 多参数地表径流采样及测量装置
CN203630085U (zh) 水质在线重金属总量监测仪
CN206161639U (zh) 一种水质监测系统
CN113292200A (zh) 污水处理过程中的在线多参数水质自动快速检测装置
CN202024965U (zh) 一种实时在线检测海水中硝酸根离子浓度的装置
CN204731089U (zh) 一种在线监测cod、tp水样预处理装置
CN208224234U (zh) 一种水质污染源在线监控装置
CN214096724U (zh) 一种cod水质在线检测仪
CN115266233A (zh) 一种轻便智能化低扰动采样设备
CN105784954B (zh) 一种模拟河流有机氮矿化的实验装置
KR200395649Y1 (ko) 활성 슬러지 부피 자동 측정 장치
CN100509649C (zh) 集成管网、污水厂和河流于一体的水处理与控制实验系统
CN206515225U (zh) 一种基于光谱分析的多参数水质检测仪
CN202953874U (zh) 一种新型节能一体化污水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769615

Country of ref document: EP

Kind code of ref document: A1