WO2023173893A1 - 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置 - Google Patents

一种应用于智慧大棚的高压空气碳捕集、解析一体化装置 Download PDF

Info

Publication number
WO2023173893A1
WO2023173893A1 PCT/CN2022/142816 CN2022142816W WO2023173893A1 WO 2023173893 A1 WO2023173893 A1 WO 2023173893A1 CN 2022142816 W CN2022142816 W CN 2022142816W WO 2023173893 A1 WO2023173893 A1 WO 2023173893A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
adsorption column
adsorption
pressure
carbon
Prior art date
Application number
PCT/CN2022/142816
Other languages
English (en)
French (fr)
Inventor
张屹
林嘉豪
罗文剑
颜猛
李一芒
孟启
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023173893A1 publication Critical patent/WO2023173893A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G9/00Cultivation in receptacles, forcing-frames or greenhouses; Edging for beds, lawn or the like
    • A01G9/18Greenhouses for treating plants with carbon dioxide or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption

Definitions

  • the invention relates to the technical field of carbon capture, specifically a high-pressure air carbon capture and analysis integrated device used in smart greenhouses.
  • the technical problem to be solved by the present invention is: in order to overcome the problem in the prior art that the air flow rate passing into the adsorption column cannot be controlled and affects the overall adsorption effect, a high-pressure air carbon capture and analysis integrated device for smart greenhouses is now provided chemical device.
  • a high-pressure air carbon capture and analysis integrated device used in smart greenhouses including an air compressor one, an adsorption column one, an adsorption column two and a vortex fan connected in sequence.
  • Exhaust pump, adsorption column one and adsorption column two are placed vertically.
  • the air outlet of air compressor one is connected to the bottom of adsorption column one.
  • the top of adsorption column one is connected to the top of adsorption column two through a connecting pipe.
  • the bottom of adsorption column two is connected to the vortex fan.
  • the air inlet of the exhaust pump is connected, and the bottom of adsorption column one and adsorption column two is connected to air compressor two.
  • the connecting pipeline between air compressor two and adsorption column one and adsorption column two is in a "Y" shape, so The connecting pipe is provided with a high carbon air outlet;
  • Each adsorption column is equipped with a number of adsorption components distributed at intervals.
  • Each group of adsorption components includes two adsorbent placement plates. The solid adsorbent is placed between two adjacent groups of adsorption components, that is, the lower layer of the upper adsorption component. Between the adsorbent placement plate and the upper adsorbent placement plate of the adsorption component located below, a heating element is installed between the two adsorbent placement plates.
  • Each group of adsorption components is provided with a number of through holes, and each through hole is installed with a heating element.
  • the device performs an adsorption cycle.
  • the air compressor works, it delivers high-pressure air to the interior of the adsorption column.
  • the internal variable pressure blades adjust the opening and closing angle and adjust the air flow inside the adsorption column so that the air and adsorbent are placed on the solid surface on the plate.
  • the adsorbent fully reacts, and the solid adsorbent captures carbon dioxide in the air, and then enters the adsorption column 2.
  • the adsorbent in the adsorption column 2 is placed on the solid adsorbent plate to capture the carbon dioxide in the air again, and finally the low-carbon air passes through
  • the vortex fan exhaust pump is pumped out and discharged to the outside of the greenhouse;
  • the heating element works to heat the adsorbent
  • the air compressor 2 works
  • the air in the shed enters the inside of the adsorption column 1 and the adsorption column 2
  • the opening and closing angle of the pressure variable blade is adjusted
  • the carbon dioxide is released from the solid adsorbent out, thereby discharging the high-carbon air into the greenhouse through the high-carbon air outlet.
  • the above technical solution uses adsorption column one and adsorption column two to extend the contact time between the solid adsorbent and the air, and uses variable pressure blades to dynamically adjust the opening and closing angle to adjust the size of the through holes, change the air flow rate and pressure in the adsorption column, and make the air Full contact with the adsorbent improves the carbon adsorption effect per unit time.
  • high-concentration carbon dioxide air is introduced to promote the growth of plant roots and seedlings in the shed. The thickness of the leaves increases, the transpiration rate is reduced, and the water use efficiency is improved. , while promoting the growth of plants, promoting ethylene biosynthesis, and enhancing the antioxidant capacity of plants.
  • the first and second adsorption columns are equipped with a humidity detector and a number of atomization nozzles.
  • the atomization nozzles are distributed at the top of the first adsorption column, the top and bottom of the second adsorption column, and the bottom of each adsorption component.
  • the atomizing nozzle is adjustable.
  • the atomizing nozzle sprays water evenly inside the adsorption column.
  • the water has a ductile effect and can relatively retain the same air, prolonging the reaction time of the same air and the same solid adsorbent.
  • the water has a ductile effect.
  • a relative humidity of 40% to 60% can accelerate the catalytic reaction between the same air and the same solid adsorbent, further improving the overall effect of high-pressure air carbon capture and analysis per unit time.
  • the atomizing nozzle at the bottom of the adsorption component atomizes and sprays water to bring the relative humidity in the adsorption column to 50% to 60% in the shortest possible time;
  • the atomizing nozzles at the bottom of adsorption column one and the top of adsorption column two atomize and spray water to control the relative humidity in the entire adsorption column at 40% to 60%.
  • the atomizing nozzle atomizes water in the same direction as the high-pressure air circulation direction. Consistent to ensure that the relative humidity in the adsorption column remains stable during the adsorption reaction.
  • the high-carbon air outlet is equipped with an exhaust fan.
  • the heating element in the adsorption column heats the solid adsorbent, and the air in the adsorption column is heated and rises.
  • the small exhaust fan is combined with the low-power The cooperation of air compressor 2 can achieve energy saving and avoid additional energy loss.
  • the air outlet of the second air compressor is equipped with a thermal resistance wire
  • the top of the adsorption column is equipped with a temperature detector; when the analysis cycle starts, the incoming air is heated in advance, and the heating element only needs to set the heating temperature. is 70°C.
  • the thermal resistance wire With the support of the thermal resistance wire, the adsorption column can reach above 85°C in a short time, reaching the carbon dioxide desorption temperature. On the one hand, it reduces the heating temperature of the heating element, and on the other hand, it effectively shortens the preheating and heating time. , improve the carbon analysis effect of the device per unit time.
  • the air outlets of the first air compressor and the second air compressor are equipped with dust removal filters, and a dust removal filter is also installed between the adsorption column one and the high carbon air outlet.
  • the dust removal filters can block impurities. into the adsorption column, thus effectively preventing impurities from entering the greenhouse and preventing dust from covering the crops, affecting photosynthesis and causing pathological changes.
  • an electronically controlled air pressure valve is installed between the first air compressor and the first adsorption column, and between the second adsorption column and the vortex fan exhaust pump.
  • the high carbon air outlet, the second air compressor and the adsorption column are
  • An electronically controlled air pressure valve 2 is installed between air compressor 1 and adsorption column 2; when the electronically controlled air pressure valve 1 is opened, the air is compressed by air compressor 1 and then enters adsorption column 1 and adsorption column 2 in turn. , the solid adsorbent adsorbs carbon dioxide in the air, and the low-carbon air is discharged by the vortex fan exhaust pump.
  • the device is in the adsorption state; when the electronically controlled air pressure valve 2 is opened, the air is compressed by the air compressor 2 and divided into two paths. Enter adsorption column one and adsorption column two respectively.
  • the heating elements in adsorption column one and adsorption column two heat the adsorbent.
  • Carbon dioxide is released from the solid adsorbent. The released carbon dioxide and air enter the shed through the high-carbon air outlet.
  • the air outlet of the first air compressor, the top of the second adsorption column and the bottom of the first adsorption column are all equipped with air pressure detectors.
  • the air outlet of the first air compressor is equipped with an adjustable voltage stabilizer. According to the air pressure detector According to the detection results, the air pressure entering the pipeline is dynamically adjusted to achieve dynamic adjustment of high and low air pressure, improving the effect of high-pressure air carbon capture and analysis per unit time.
  • a carbon dioxide detector is installed at the air inlet of the exhaust pump of the vortex fan.
  • the adsorption capacity of the solid adsorbent decreases.
  • a carbon dioxide detector is installed to detect the discharge. The carbon content in the air is used to determine whether a new solid adsorbent needs to be replaced. This design ensures that the carbon capture capacity of the device is stably exerted.
  • the heating element is a graphene heating film, which has a high thermal conversion rate and uniform heating.
  • the present invention uses adsorption column one and adsorption column two to extend the contact time between the solid adsorbent and the air, and uses variable pressure blades to dynamically adjust the opening and closing angle to adjust the size of the through holes and change the air in the adsorption column.
  • the flow rate and pressure ensure full contact between the air and the adsorbent, thereby improving the carbon adsorption effect per unit time.
  • Figure 1 is a schematic diagram of the overall structure of the present invention.
  • Figure 2 is a schematic diagram of the internal structure of the present invention.
  • Figure 3 is a front view of the present invention.
  • Figure 4 is a structural diagram of the adsorption assembly of the present invention.
  • Figure 5 is an exploded view of the adsorption assembly of the present invention.
  • Figure 6 is a schematic diagram of the adsorption cycle and analysis cycle of the present invention.
  • Figure 7 is a flow chart of the adsorption cycle of the present invention.
  • Figure 8 is a flow chart of the analysis cycle of the present invention.
  • the present invention is an integrated high-pressure air carbon capture and analysis device used in smart greenhouses, including an air compressor 5, an adsorption column 10, an adsorption column 2 11 and a vortex connected in sequence.
  • the fan exhaust pump 6, the adsorption column 10 and the adsorption column 2 11 are all placed vertically.
  • the air outlet of the air compressor 5 is connected to the bottom of the adsorption column 10.
  • the top of the adsorption column 10 is connected to the top of the adsorption column 2 11 through a connecting pipe.
  • the connecting pipe is an arc structure
  • the bottom of the adsorption column 11 is connected with the air inlet of the vortex fan exhaust pump 6, and the bottoms of the adsorption column 10 and the adsorption column 2 11 are connected with an air compressor 2 8, and the air compressor 2 8 is connected with the air inlet of the exhaust pump 6.
  • the connecting pipe between adsorption column one 10 and adsorption column two 11 is in a "Y" shape, and a high-carbon air outlet is provided on the connecting pipe.
  • the power of air compressor one 5 is greater than the power of air compressor two 8;
  • An electronically controlled air pressure valve 31 is installed between the air compressor one 5 and the adsorption column 10, and between the adsorption column 2 11 and the vortex fan exhaust pump 6.
  • An electronically controlled air pressure valve 2 32 is installed between the air compressor 2 8 and the adsorption column 2 11 , and between the air compressor 2 8 and the adsorption column 2 11 , the gas on/off can be controlled through the electronically controlled air pressure valve 1 31 and the electronically controlled air pressure valve 2 32 ;
  • Each adsorption column is equipped with a number of adsorption components distributed at intervals.
  • Each group of adsorption components includes two adsorbent placement plates 1.
  • the solid adsorbent is placed between two adjacent groups of adsorption components, that is, between the upper adsorption components.
  • a heating element 2 is installed between the two adsorbent placement plates 1.
  • the heating element 2 is a graphene heating film, and the heat conversion The efficiency is high and the heating is uniform.
  • Each set of adsorption components is provided with a number of through holes.
  • Each through hole is equipped with a pressure-changing blade 14 that can be opened and closed.
  • the motor 18 can drive the voltage-changing blade 14 to open and close to adjust the pressure of the through hole. size, thereby changing the air flow rate and pressure in the adsorption column, making the air fully contact with the adsorbent, and improving the carbon adsorption effect per unit time.
  • the adsorption column one 10 and the adsorption column two 11 are equipped with a humidity detector 13 and a plurality of atomization nozzles 12 inside.
  • the atomization nozzles 12 are distributed at the top of the adsorption column one 10, the top and bottom of the second adsorption column and each adsorption column.
  • the atomizing nozzle 12 is adjustable.
  • the atomizing nozzle 12 sprays water evenly inside the adsorption column.
  • the water has a ductile effect, which can relatively retain the same air and extend the time between the same air and the same solid adsorbent.
  • Reaction time on the other hand, a relative humidity of 40% to 60% can accelerate the catalytic reaction between the same air and the same solid adsorbent, further improving the overall effect of high-pressure air carbon capture and analysis per unit time.
  • the atomizing nozzle 12 at the bottom of the adsorption component atomizes and sprays water to bring the relative humidity in the adsorption column to 50% to 60% in the shortest possible time;
  • the atomizing nozzle 12 at the bottom of the adsorption column 10 and the top of the adsorption column 2 11 atomizes and sprays water, so that the relative humidity in the entire adsorption column is controlled at 40% to 60%.
  • the atomizing nozzle 12 atomizes the water in the same direction.
  • the high-pressure air flows in the same direction to ensure that the relative humidity in the adsorption column remains stable during the adsorption reaction.
  • the water spray volume of the atomizing nozzle 12 is controlled in advance to reduce the relative humidity in the adsorption column and control the relative humidity in the device in advance.
  • the high-carbon air outlet is equipped with an exhaust fan 9.
  • the heating element 2 in the adsorption column heats the solid adsorbent.
  • the air in the adsorption column is heated and rises.
  • the small exhaust fan 9 is connected with the low-power
  • the combination of air compressor 2 and 8 can achieve energy saving and avoid additional energy loss.
  • the air outlet of the air compressor 8 is equipped with a thermal resistance wire 17, and the top of the adsorption column 10 is provided with a temperature detector 7; when the analysis cycle starts, the incoming air is heated in advance, and the heating element inside the adsorption column It is only necessary to set the heating temperature to 70°C. With the support of the thermal resistance wire 17, the adsorption column can reach more than 85°C in a short time and reach the carbon dioxide desorption temperature. On the one hand, it reduces the heating temperature of the heating element, and on the other hand, it effectively The preheating and heating time is shortened, and the carbon analysis effect per unit time of the device is improved.
  • the air outlets of the air compressor one 5 and the air compressor two 8 are equipped with dust removal filters 15.
  • a dust removal filter 15 is also installed between the adsorption column one 10 and the high carbon air outlet.
  • the dust removal filter 15 can It can prevent impurities from entering the adsorption column, thereby effectively preventing impurities from entering the greenhouse and preventing dust from covering crops, affecting photosynthesis and causing disease.
  • the air outlet of the air compressor one 5 is provided with a pressure detector three 163, the top of the adsorption column two 11 is provided with a pressure detector one 161, and the bottom of the adsorption column one 10 is provided with a pressure detector two 162.
  • the air compressor The air outlet of one 5 is installed with an adjustable voltage stabilizer 19.
  • the air pressure detector 2 162 and the air pressure detector 3 163 are respectively located on the upstream side and the downstream side of the adjustable voltage stabilizer 19. According to the detection results of the air pressure detector, the air pressure detector is dynamically adjusted.
  • the air pressure flowing into the pipeline realizes dynamic adjustment of high and low air pressure, improving the effect of high-pressure air carbon capture and analysis per unit time.
  • a carbon dioxide detector 4 is installed at the air inlet of the exhaust pump 6 of the vortex fan. When the device is in the adsorption cycle mode, with the frequent use of the solid adsorbent, the adsorption capacity of the solid adsorbent decreases. A carbon dioxide detector 4 is installed to detect the discharge. The carbon content in the air is used to determine whether a new solid adsorbent needs to be replaced. This design ensures that the carbon capture capacity of the device is stably exerted.
  • the adsorption cycle is carried out, two electronically controlled air pressure valves 31 are opened, three electronically controlled air pressure valves 232 are closed, the atomizing nozzle 12 atomizes and sprays water, the humidity detector 13 monitors the humidity in the adsorption column, and adjusts the relative humidity in the adsorption column.
  • the humidity is controlled at 40%, the air compressor one 5 is working, the high-pressure air is filtered through the dust filter 15 first, and then passes through the air pressure detector three 163, and then the air pressure of the input pipe is adjusted through the adjustable voltage regulator 19, and the air pressure is detected according to the Whether the second instrument 162 reaches the predetermined air pressure value, the adjustable voltage regulator 19 is repeatedly adjusted, and then the air is transported to the inside of the adsorption column 10.
  • the humidity detector 13 detects the humidity in the column, adjusts the atomizing nozzle 12, and accurately controls the internal humidity, reducing the Humidity range, the opening and closing angle of the variable pressure blade 14 is roughly adjusted, the air enters the perforated adsorbent placement plate 1 and reacts with the solid adsorbent, the solid adsorbent captures carbon dioxide in the air, and the variable pressure is finely adjusted according to the air pressure detector 161
  • the blade 14 opens and closes, and then the air passes through the dust filter 15 to filter the gas, and enters the adsorption column 2 11 through the connecting pipe.
  • the solid adsorbent in the adsorbent placement plate 1 in the adsorption column 2 11 captures the carbon dioxide in the air again.
  • the low-carbon air is extracted and discharged outside the greenhouse through the vortex fan exhaust pump 6.
  • the carbon dioxide detector 4 continuously detects the carbon dioxide content in the low-carbon air;
  • the amount of atomized water sprayed by the atomizing nozzle 12 at the bottom of the adsorption column controls the relative humidity in the adsorption column at 5%.
  • the graphene heating film is initially set to a heating temperature of 70°C, and the thermal resistance wire 17 is heated.
  • the air compressor 28 works, the air filters the gas through the dust filter 15, and the air is input to the adsorption column through the "Y" shaped pipe
  • the humidity detector 13 detects the humidity in the column, adjusts the atomization nozzle 12, accurately controls the internal humidity, uses the temperature detector 7 to detect the temperature in the column, adjusts the temperature of the graphene heating film, and accurately heats
  • the air pressure detector detects the air pressure in the adsorption column, and adjusts the opening and closing angle of the variable pressure blade 14.
  • the carbon dioxide is released from the solid adsorbent, and the carbon dioxide is released from the solid adsorbent.
  • the carbon dioxide is discharged together by the exhaust fan 9, thereby discharging the air containing high concentration of carbon dioxide into the greenhouse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

本发明涉及碳捕集技术领域,具体为一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,包括依次连接的空气压缩机一、吸附柱一、吸附柱二及漩涡风机排气泵,且吸附柱一及吸附柱二底部连接有空气压缩机二,每个吸附柱内部均设有若干间隔分布的吸附组件,每组吸附组件均包括两个吸附剂放置板,两个吸附剂放置板之间安装有加热件,每组吸附组件均开设有若干通孔,每个通孔内均安装有可开合的变压叶片;本发明利用吸附柱一及吸附柱二延长了固态吸附剂与空气的接触时间,且利用变压叶片动态调节开合角度,来调节通孔大小,改变吸附柱内空气流速和压强,使空气与吸附剂充分接触,提升单位时间内碳吸附效果。

Description

一种应用于智慧大棚的高压空气碳捕集、解析一体化装置 技术领域
本发明涉及碳捕集技术领域,具体为一种应用于智慧大棚的高压空气碳捕集、解析一体化装置。
背景技术
在大棚种植中,为了提升作物产量,通常需要定期或不定期在大棚内通入含有二氧化碳的空气,一方面可以提高大棚里的温度,另一方面二氧化碳作为光合作用的原料,可促进作物光合作用,促进植物生长进而使得植物增产。
一般会连续的向吸附柱内通入大量高压空气,利用吸附剂与空气反应来捕集空气中的二氧化碳,然后将吸附的二氧化碳释放后通入大棚。因为同一空气的二氧化碳含量为330mg/L,含量低,如果通入吸附柱内的空气流速太慢,即使与固体吸附剂充分反应,捕集时间太长,效果差,无法达到预期效果。因此必须在相对高压的空气流速前提下作业,但空气流速太快容易导致同一空气未能在较短时间内与同一固态吸附剂进行充分反应,进而容易导致空气内的二氧化碳未能很好的被固态吸附剂吸附,影响装置的整体吸附效果。
发明内容
本发明要解决的技术问题是:为了克服现有技术中通入吸附柱内的空气流速无法控制,影响整体吸附效果的问题,现提供一种应用于智慧大棚的高压空气碳捕集、解析一体化装置。
为解决上述技术问题,本发明采用如下技术方案:一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,包括依次连接的空气压缩机一、吸附柱一、吸附柱二及漩涡风机排气泵,吸附柱一及吸附柱二均竖直放置,空气压缩机一 的出气口与吸附柱一底部连通,吸附柱一顶部与吸附柱二顶部通过连通管连通,吸附柱二底部与漩涡风机排气泵的进气口连通,且吸附柱一及吸附柱二底部连接有空气压缩机二,空气压缩机二与吸附柱一及吸附柱二之间的连接管路呈“Y”字型,所述连通管上开设有高碳空气出口;
每个吸附柱内部均设有若干间隔分布的吸附组件,每组吸附组件均包括两个吸附剂放置板,固体吸附剂放置在相邻两组吸附组件之间,即位于上方的吸附组件的下层吸附剂放置板与位于下方的吸附组件的上层吸附剂放置板之间,两个吸附剂放置板之间安装有加热件,每组吸附组件均开设有若干通孔,每个通孔内均安装有可开合的变压叶片,电机可驱动变压叶片开合来调节通孔的大小,从而调节通过的空气流量。
首先装置进行吸附循环工作,空气压缩机一工作,将高压空气输送至吸附柱一的内部,内部变压叶片调节开合角度,调节吸附柱内部空气流量,使空气与吸附剂放置板上的固态吸附剂充分反应,固态吸附剂捕集空气中的二氧化碳,然后进入到吸附柱二内,吸附柱二内的吸附剂放置板上的固态吸附剂再次捕集空气中的二氧化碳,最后低碳空气通过漩涡风机排气泵被抽出排出到大棚外;
然后进行解析循环工作,加热件工作对吸附剂进行加热,空气压缩机二工作,棚内空气进入吸附柱一和吸附柱二的内部,调整变压叶片开合角度,二氧化碳从固态吸附剂内释放出来,从而将含高碳空气通过高碳空气出口排入到大棚内。
上述技术方案利用吸附柱一及吸附柱二延长了固态吸附剂与空气的接触时间,且利用变压叶片动态调节开合角度,来调节通孔大小,改变吸附柱内空气流速和压强,使空气与吸附剂充分接触,提升单位时间内碳吸附效果,在棚内植物光合作用时,通入高浓度二氧化碳空气促进棚内植物根、幼苗的生长,叶 片厚度增加,降低蒸腾速率,提高水分利用效率,同时促进植物的生长,促进乙烯生物合成,增强植物的抗氧化能力。
进一步的,所述吸附柱一与吸附柱二内部均安装有湿度检测仪及若干雾化喷头,所述雾化喷头分布在吸附柱一顶部、第二吸附顶部与底部及每个吸附组件底部,且雾化喷头为可调节式,雾化喷头将水均匀喷洒在吸附柱内部,一方面水分具备延展性效果,能相对性的滞留同一空气,延长同一空气与同一固态吸附剂反应时间,另一方面40%~60%的相对湿度能加速催化同一空气与同一固态吸附剂反应,从整体上进一步提升单位时间内高压空气碳捕集、解析的效果。
吸附循环开始前吸附组件底部的雾化喷头雾化喷水,在尽可能短的时间内使吸附柱内相对湿度达到50%~60%;
吸附循环过程中吸附柱一底部及吸附柱二顶部的雾化喷头雾化喷水,使整个吸附柱内相对湿度控制在40%~60%,雾化喷头雾化喷水方向与高压空气流通方向一致,确保吸附反应过程中吸附柱内相对湿度保持稳定,最后在吸附循环结束前,提前控制雾化喷头喷水量,降低吸附柱内相对湿度,使装置内相对湿度提前控制在5%~10%,确保下面的解析循环阶段,提升装置的碳解析能力,解析循环时,调整吸附柱一及吸附柱二底部雾化喷头的雾化喷水量使吸附柱内相对湿度达到5%~10%之间,进一步提升碳解析效果。
进一步的,所述高碳空气出口安装有排气扇,当装置处于解析循环模式时,吸附柱内的加热件对固体吸附剂加热,吸附柱内空气受热上升,小型排气扇与低功率的空气压缩机二配合,可实现节能,避免额外的能量损耗。
进一步的,所述空气压缩机二的出气口安装有热电阻丝,所述吸附柱一顶部设有温度检测仪;解析循环开始时,将通入的空气提前加热,加热件仅需设置加热温度为70℃,在热电阻丝加持下,吸附柱内能在短时间内达到85℃以上, 达到二氧化碳解析温度,一方面降低了加热件的加热温度,另一方面有效的缩短预热和加热时间,提升装置单位时间碳解析效果。
进一步的,所述空气压缩机一及空气压缩机二的出气口均安装有除尘过滤网,所述吸附柱一与高碳空气出口之间也安装有除尘过滤网,除尘过滤网能够可阻碍杂质进入吸附柱内,从而有效防止了杂质进入大棚,避免了灰尘覆盖农作物影响光合作用和发生病变。
进一步的,所述空气压缩机一与吸附柱一之间,及吸附柱二及漩涡风机排气泵之间均安装有电控气压阀门一,所述高碳空气出口、空气压缩机二与吸附柱一之间,及空气压缩机二与吸附柱二之间均安装有电控气压阀门二;当开启电控气压阀门一时,空气经空气压缩机一压缩后,依次进入吸附柱一及吸附柱二,固体吸附剂吸附空气中的二氧化碳,低碳空气由漩涡风机排气泵排出,此时装置处于吸附状态;当开启电控气压阀门二时,空气经空气压缩机二压缩后,分为两路,分别进入吸附柱一及吸附柱二,吸附柱一及吸附柱二内的加热件对吸附剂进行加热,二氧化碳从固态吸附剂中释放,释放的二氧化碳与空气一起由高碳空气出口进入棚内。
进一步的,所述空气压缩机一的出气口、吸附柱二顶部及吸附柱一底部均设有气压检测仪,所述空气压缩机一的出气口安装有可调式稳压器,根据气压检测仪的检测结果,动态调整通入管道的空气压力,实现高低气压动态调节,提升单位时间内高压空气碳捕集、解析的效果。
进一步的,所述漩涡风机排气泵进气口安装有二氧化碳检测仪,当装置处于吸附循环模式时,随着固态吸附剂的频繁使用,固态吸附剂吸附能力下降,设置二氧化碳检测仪,通过检测排出的空气中碳含量来确定是否需要更换新的固态吸附剂,该设计确保了装置的碳捕集能力稳定发挥。
进一步的,所述加热件为石墨烯加热膜,热转化率较高且加热均匀。
本发明的有益效果是:本发明利用吸附柱一及吸附柱二延长了固态吸附剂与空气的接触时间,且利用变压叶片动态调节开合角度,来调节通孔大小,改变吸附柱内空气流速和压强,使空气与吸附剂充分接触,提升单位时间内碳吸附效果。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明的整体结构示意图;
图2为本发明的内部结构示意图;
图3为本发明的主视图;
图4为本发明吸附组件的结构图;
图5为本发明吸附组件的爆炸图;
图6为本发明的吸附循环和解析循环的原理图;
图7为本发明吸附循环工作流程图;
图8为本发明解析循环工作流程图。
图中:1、吸附剂放置板;2、加热件;31、电控气压阀门一;32、电控气压阀门二;4、二氧化碳检测仪;5、空气压缩机一;6、漩涡风机排气泵;7、温度检测仪;8、空气压缩机二;9、排气扇;10、吸附柱一;11、吸附柱二;12、雾化喷头;13、湿度检测仪;14、变压叶片;15、除尘过滤网;161、气压检测仪一;162、气压检测仪二;163、气压检测仪三;17、热电阻丝;18、电机;19、可调式稳压器。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图, 仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成,方向和参照(例如,上、下、左、右、等等)可以仅用于帮助对附图中的特征的描述。因此,并非在限制性意义上采用以下具体实施方式,并且仅仅由所附权利要求及其等同形式来限定所请求保护的主题的范围。
实施例一:
如图1-8所示,本发明是一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,包括依次连接的空气压缩机一5、吸附柱一10、吸附柱二11及漩涡风机排气泵6,吸附柱一10及吸附柱二11均竖直放置,空气压缩机一5的出气口与吸附柱一10底部连通,吸附柱一10顶部与吸附柱二11顶部通过连通管连通,连通管为弧形结构,吸附柱二11底部与漩涡风机排气泵6的进气口连通,且吸附柱一10及吸附柱二11底部连接有空气压缩机二8,空气压缩机二8与吸附柱一10及吸附柱二11之间的连接管路呈“Y”字型,所述连通管上开设有高碳空气出口,空气压缩机一5的功率大于空气压缩机二8的功率;
所述空气压缩机一5与吸附柱一10之间,及吸附柱二11及漩涡风机排气泵6之间均安装有电控气压阀门一31,所述高碳空气出口、空气压缩机二8与吸附柱一10之间,及空气压缩机二8与吸附柱二11之间均安装有电控气压阀门二32,通过电控气压阀门一31及电控气压阀门二32可控制气体通断;
每个吸附柱内部均设有若干间隔分布的吸附组件,每组吸附组件均包括两个吸附剂放置板1,固体吸附剂放置在相邻两组吸附组件之间,即位于上方的吸附组件的下层吸附剂放置板1与位于下方的吸附组件的上层吸附剂放置板1之间,两个吸附剂放置板1之间安装有加热件2,所述加热件2为石墨烯加热膜,热转化率较高且加热均匀,每组吸附组件均开设有若干通孔,每个通孔内均安装有可开合的变压叶片14,电机18可驱动变压叶片14开合来调节通孔的大小, 从而改变吸附柱内空气流速和压强,使空气与吸附剂充分接触,提升单位时间内碳吸附效果。
所述吸附柱一10与吸附柱二11内部均安装有湿度检测仪13及若干雾化喷头12,所述雾化喷头12分布在吸附柱一10顶部、第二吸附顶部与底部及每个吸附组件底部,且雾化喷头12为可调节式,雾化喷头12将水均匀喷洒在吸附柱内部,一方面水分具备延展性效果,能相对性的滞留同一空气,延长同一空气与同一固态吸附剂反应时间,另一方面40%~60%的相对湿度能加速催化同一空气与同一固态吸附剂反应,从整体上进一步提升单位时间内高压空气碳捕集、解析的效果。
吸附循环开始前吸附组件底部的雾化喷头12雾化喷水,在尽可能短的时间内使吸附柱内相对湿度达到50%~60%;
吸附循环过程中吸附柱一10底部及吸附柱二11顶部的雾化喷头12雾化喷水,使整个吸附柱内相对湿度控制在40%~60%,雾化喷头12雾化喷水方向与高压空气流通方向一致,确保吸附反应过程中吸附柱内相对湿度保持稳定,最后在吸附循环结束前,提前控制雾化喷头12喷水量,降低吸附柱内相对湿度,使装置内相对湿度提前控制在5%~10%,确保下面的解析循环阶段,提升装置的碳解析能力,解析循环时,调整吸附柱一10及吸附柱二11底部雾化喷头12的雾化喷水量使吸附柱内相对湿度达到5%~10%之间,进一步提升碳解析效果。
所述高碳空气出口安装有排气扇9,当装置处于解析循环模式时,吸附柱内的加热件2对固体吸附剂加热,吸附柱内空气受热上升,小型排气扇9与低功率的空气压缩机二8配合,可实现节能,避免额外的能量损耗。
所述空气压缩机二8的出气口安装有热电阻丝17,所述吸附柱一10顶部设有温度检测仪7;解析循环开始时,将通入的空气提前加热,吸附柱内部的加热 件仅需设置加热温度为70℃,在热电阻丝17加持下,吸附柱内能在短时间内达到85℃以上,达到二氧化碳解析温度,一方面降低了加热件的加热温度,另一方面有效的缩短了预热和加热时间,提升装置单位时间碳解析效果。
所述空气压缩机一5及空气压缩机二8的出气口均安装有除尘过滤网15,所述吸附柱一10与高碳空气出口之间也安装有除尘过滤网15,除尘过滤网15能够可阻碍杂质进入吸附柱内,从而有效防止了杂质进入大棚,避免了灰尘覆盖农作物影响光合作用和发生病变。
所述空气压缩机一5的出气口设有气压检测仪三163、吸附柱二11顶部设有气压检测仪一161,吸附柱一10底部均设有气压检测仪二162,所述空气压缩机一5的出气口安装有可调式稳压器19,气压检测仪二162及气压检测仪三163分别位于可调式稳压器19的上游侧及下游侧,根据气压检测仪的检测结果,动态调整通入管道的空气压力,实现高低气压动态调节,提升单位时间内高压空气碳捕集、解析的效果。
所述漩涡风机排气泵6进气口安装有二氧化碳检测仪4,当装置处于吸附循环模式时,随着固态吸附剂的频繁使用,固态吸附剂吸附能力下降,设置二氧化碳检测仪4,通过检测排出的空气中碳含量来确定是否需要更换新的固态吸附剂,该设计确保了装置的碳捕集能力稳定发挥。
工作原理:
首先进行吸附循环工作,打开两个电控气压阀门一31,关闭三个电控气压阀门二32,雾化喷头12雾化喷水,湿度检测仪13监测吸附柱内湿度,将吸附柱内相对湿度控制在40%,空气压缩机一5工作,将高压空气先通过除尘过滤网15过滤气体,再经过气压检测仪三163,然后通过可调式稳压器19调节输入管道的气压,根据气压检测仪二162是否达到预定气压值反复调节可调式稳压器 19,然后将空气输送至吸附柱一10的内部,湿度检测仪13检测柱内湿度,调节雾化喷头12,精确控制内部湿度,缩小湿度范围,变压叶片14粗调开合角度,空气进入带孔的吸附剂放置板1上与固态吸附剂反应,固态吸附剂捕集空气中的二氧化碳,根据气压检测仪一161精调变压叶片14开合角度,然后空气通过除尘过滤网15过滤气体,通过连通管进入到吸附柱二11内,吸附柱二11内的吸附剂放置板1中的固态吸附剂再次捕集空气中的二氧化碳,最后低碳空气通过漩涡风机排气泵6被抽出排出到大棚外,过程中二氧化碳检测仪4持续检测低碳空气中的二氧化碳含量;
然后进行解析循环工作,吸附柱底部的雾化喷头12的雾化喷水量使吸附柱内相对湿度控制在5%,同时石墨烯加热膜工作初步设置加热温度为70℃,热电阻丝17加热,打开三个电控气压阀门二32,关闭两个电控气压阀门一31,空气压缩机二8工作,空气通过除尘过滤网15过滤气体,将空气通过“Y”状的管道输入到吸附柱一10和吸附柱二11的内部,湿度检测仪13检测柱内湿度,调节雾化喷头12,精确控制内部湿度,使用温度检测仪7检测柱内温度,调整石墨烯加热膜温度,精确加热使吸附柱内温度达到要求,气压检测仪检测吸附柱内气压,调整变压叶片14开合角度,以上装置反复调节达到最佳效果后,二氧化碳从固态吸附剂内释放出来,将固态吸附剂内释放的二氧化碳一起由排气扇9排出,从而将含高浓度二氧化碳的空气排入到大棚内。
上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

  1. 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:包括依次连接的空气压缩机一(5)、吸附柱一(10)、吸附柱二(11)及漩涡风机排气泵(6),且吸附柱一(10)及吸附柱二(11)底部连接有空气压缩机二(8),吸附柱一(10)及吸附柱二(11)顶部连接有连通管,所述连通管上开设有高碳空气出口;
    每个吸附柱内部均设有若干间隔分布的吸附组件,每组吸附组件均包括两个吸附剂放置板(1),两个吸附剂放置板(1)之间安装有加热件(2),每组吸附组件均开设有若干通孔,每个通孔内均安装有可开合的变压叶片(14)。
  2. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述吸附柱一(10)与吸附柱二(11)内部均安装有湿度检测仪(13)及若干雾化喷头(12)。
  3. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述高碳空气出口安装有排气扇(9)。
  4. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述空气压缩机二(8)的出气口安装有热电阻丝(17),所述吸附柱一(10)顶部设有温度检测仪(7)。
  5. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述空气压缩机一(5)及空气压缩机二(8)的出气口均安装有除尘过滤网(15),所述吸附柱一(10)与高碳空气出口之间也安装有除尘过滤网(15)。
  6. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述空气压缩机一(5)与吸附柱一(10)之间,及吸附柱二(11)与漩涡风机排气泵(6)之间均安装有电控气压阀门一(31),所 述高碳空气出口、空气压缩机二(8)与吸附柱一(10)之间,及空气压缩机二(8)与吸附柱二(11)之间均安装有电控气压阀门二(32)。
  7. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述空气压缩机一(5)的出气口安装有可调式稳压器(19),且所述空气压缩机一(5)的出气口、吸附柱二(11)顶部及吸附柱一(10)底部均设有气压检测仪。
  8. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述漩涡风机排气泵(6)进气口安装有二氧化碳检测仪(4)。
  9. 根据权利要求1所述的一种应用于智慧大棚的高压空气碳捕集、解析一体化装置,其特征在于:所述加热件(2)为石墨烯加热膜。
PCT/CN2022/142816 2022-11-29 2022-12-28 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置 WO2023173893A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211507455.3A CN115738591A (zh) 2022-11-29 2022-11-29 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置
CN202211507455.3 2022-11-29

Publications (1)

Publication Number Publication Date
WO2023173893A1 true WO2023173893A1 (zh) 2023-09-21

Family

ID=85339853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142816 WO2023173893A1 (zh) 2022-11-29 2022-12-28 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置

Country Status (2)

Country Link
CN (1) CN115738591A (zh)
WO (1) WO2023173893A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117700042A (zh) * 2024-01-04 2024-03-15 广东工业大学 一种隧道岩溶水重金属处理用的吸附分离装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117379921A (zh) * 2023-12-08 2024-01-12 成都泰盟软件有限公司 一种麻醉废气收集方法、装置、设备及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202438245U (zh) * 2012-01-19 2012-09-19 中国矿业大学 变压吸附分离燃煤烟气中二氧化碳的装置
CN103071364A (zh) * 2012-12-25 2013-05-01 国电新能源技术研究院 一种多级捕集烟道气中二氧化碳的系统和方法
CN105435581A (zh) * 2015-12-28 2016-03-30 天津大学 一种太阳能光伏驱动变压吸附空气碳捕集系统及控制方法
CN105582782A (zh) * 2015-12-28 2016-05-18 天津大学 一种太阳能光伏驱动变电吸附空气碳泵系统及控制方法
CN210905560U (zh) * 2019-10-24 2020-07-03 杭州嘉隆气体设备有限公司 一种气流扩散装置
CN111411004A (zh) * 2020-03-31 2020-07-14 广东石油化工学院 一种利用变压吸附原理高效提纯沼气的方法和装置
US20220266193A1 (en) * 2019-06-28 2022-08-25 Korea Research Institute Of Chemical Technology Carbon dioxide capturing apparatus and capturing method
CN217410255U (zh) * 2022-04-20 2022-09-13 西安热工研究院有限公司 一种耦合新能源发电实现空气直接碳捕集系统
CN115669427A (zh) * 2022-11-03 2023-02-03 姜小羽 一种可自动吸收利用二氧化碳的温室大棚系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202438245U (zh) * 2012-01-19 2012-09-19 中国矿业大学 变压吸附分离燃煤烟气中二氧化碳的装置
CN103071364A (zh) * 2012-12-25 2013-05-01 国电新能源技术研究院 一种多级捕集烟道气中二氧化碳的系统和方法
CN105435581A (zh) * 2015-12-28 2016-03-30 天津大学 一种太阳能光伏驱动变压吸附空气碳捕集系统及控制方法
CN105582782A (zh) * 2015-12-28 2016-05-18 天津大学 一种太阳能光伏驱动变电吸附空气碳泵系统及控制方法
US20220266193A1 (en) * 2019-06-28 2022-08-25 Korea Research Institute Of Chemical Technology Carbon dioxide capturing apparatus and capturing method
CN210905560U (zh) * 2019-10-24 2020-07-03 杭州嘉隆气体设备有限公司 一种气流扩散装置
CN111411004A (zh) * 2020-03-31 2020-07-14 广东石油化工学院 一种利用变压吸附原理高效提纯沼气的方法和装置
CN217410255U (zh) * 2022-04-20 2022-09-13 西安热工研究院有限公司 一种耦合新能源发电实现空气直接碳捕集系统
CN115669427A (zh) * 2022-11-03 2023-02-03 姜小羽 一种可自动吸收利用二氧化碳的温室大棚系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117700042A (zh) * 2024-01-04 2024-03-15 广东工业大学 一种隧道岩溶水重金属处理用的吸附分离装置
CN117700042B (zh) * 2024-01-04 2024-06-11 广东工业大学 一种隧道岩溶水重金属处理用的吸附分离装置

Also Published As

Publication number Publication date
CN115738591A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2023173893A1 (zh) 一种应用于智慧大棚的高压空气碳捕集、解析一体化装置
WO2011016847A3 (en) Evaporative pre-cooler for air cooled heat exchangers
CN208542028U (zh) 一种布气装置及应用该布气装置的生物滴滤塔
CN214528139U (zh) 一种节能型制氧装置
CN209702461U (zh) 一种可通过过滤和蒸发技术结合的污水处理装置
CN2798000Y (zh) 一种分子筛式除湿干燥装置
CN107441910A (zh) 一种具有湿式脱硫生物质燃料燃烧的废气净化装置
CN210220058U (zh) 一种空气淋洗冷却净化系统
CN205731253U (zh) 一种具有气体保护功能的搅拌式反应釜
CN204434571U (zh) 脱除合成气及天然气中co2的分离系统
CN204945812U (zh) 一种超视距控制制氧机
CN2876652Y (zh) 可调式雾化喷嘴
CN209726861U (zh) 一种横流式变流量冷却塔
CN209968081U (zh) 一种文丘里脱硫装置
CN208320447U (zh) 利用芬顿氧化处理有机废气的装置
CN208886965U (zh) 一种室内净化装置
CN207507240U (zh) 一种具有湿式脱硫生物质燃料燃烧的废气净化装置
CN208933017U (zh) 一种利用热风浓缩-闪蒸处理废水的组合试验装置
CN211716787U (zh) 一种超洁净空气净化新风装置
CN101441029A (zh) 气体压缩升温制冷喷雾浓缩干燥塔
CN220237771U (zh) 一种连续操作浓缩机
CN110972774A (zh) 一种新型温室大棚用灌溉系统
CN220317457U (zh) 一种用于浓缩高盐废水的简易低温蒸发装置
CN212855287U (zh) 一种生物过滤舱
CN215352746U (zh) 一种垃圾处理设备中的除尘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931898

Country of ref document: EP

Kind code of ref document: A1