WO2023173767A1 - 一种GaN-MOCVD制程尾气提取H2与NH3全温程模拟旋转移动床变压吸附工艺 - Google Patents

一种GaN-MOCVD制程尾气提取H2与NH3全温程模拟旋转移动床变压吸附工艺 Download PDF

Info

Publication number
WO2023173767A1
WO2023173767A1 PCT/CN2022/130758 CN2022130758W WO2023173767A1 WO 2023173767 A1 WO2023173767 A1 WO 2023173767A1 CN 2022130758 W CN2022130758 W CN 2022130758W WO 2023173767 A1 WO2023173767 A1 WO 2023173767A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
adsorption
pressure swing
swing adsorption
pressure
Prior art date
Application number
PCT/CN2022/130758
Other languages
English (en)
French (fr)
Inventor
钟娅玲
汪兰海
陈运
唐金财
钟雨明
蔡跃明
Original Assignee
浙江天采云集科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天采云集科技股份有限公司 filed Critical 浙江天采云集科技股份有限公司
Publication of WO2023173767A1 publication Critical patent/WO2023173767A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/12Separation of ammonia from gases and vapours
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to the field of pressure swing adsorption (PSA) separation and purification of gases containing hydrogen (H 2 ) and ammonia (NH 3 ) in the semiconductor industry, and more specifically to a gallium nitride metal oxide chemical vapor deposition (GaN -MOCVD) process tail gas extraction H 2 /NH 3 full temperature process simulated rotating moving bed pressure swing adsorption process.
  • PSA pressure swing adsorption
  • NH 3 ammonia
  • the MOCVD (metal oxide chemical vapor deposition) process (equipment) is used in the manufacture of light-emitting diodes, lasers, detectors, and high-efficiency solar cells based on gallium nitride (GaN) compound semiconductor materials.
  • GaN gallium nitride
  • photocathode and other products it is an indispensable method and equipment for the optoelectronics and semiconductor industry.
  • blue and purple LEDs widely used in the market are produced using gallium nitride (GaN)-based materials.
  • the MOCVD epitaxial process uses high-purity metal oxide (MO) as the MO source, such as trimethylgallium (TMGa), carried by electronic-grade carrier gases hydrogen (H 2 ) and/or nitrogen (N 2 ). Enter the MOCVD reactor with electronic-grade ammonia (NH 3 ), and control the gaseous metal oxide trimethylgallium (TMGa) on a sapphire (Al 2 O 3 ) substrate heated to an appropriate temperature.
  • MO metal oxide
  • TMGa trimethylgallium
  • NH 3 electronic-grade ammonia
  • the semiconductor thin film epitaxial material GaN with specific composition, specific thickness, specific electrical and optical parameters is grown.
  • Typical LED-GaN MOCVD epitaxial exhaust gas composition is: H 2 : 55% (v/v, similar below), N 2 : 25%, NH 3 : 14%, and the rest includes a small or trace amount of metal ions , particulate matter, methane (CH 4 ), oxygen (O 2 ) and oxygen-containing substances, such as carbon monoxide (CO), carbon dioxide (CO 2 ), water (H 2 O), etc.
  • the exhaust gas of the GaN-MOCVD process for LED preparation contains highly corrosive NH 3 , flammable and explosive H 2 , metal ions and oxide-containing impurities, it becomes quite difficult to purify and recycle NH 3 and return it to the LED manufacturing process. difficulty.
  • most LED chip manufacturers first remove or convert corrosive NH 3 into ammonia, ammonium fertilizer, etc. for recycling through water washing, catalytic conversion, adsorption, distillation, etc., which are used in the LED-MOCVD process.
  • NH 3 still needs to be supplied by specialized gas companies.
  • the tail gas after deamination has a low H 2 concentration and contains a large amount of N 2 . It is generally further processed, such as catalytic fuel or acid-base washing to remove harmful and toxic impurity components, and then enters the hydrogen emission system or is directly vented, or used
  • a conventional axial flow fixed bed PSA is used to recover H 2 .
  • the temperature swing adsorption (TSA) method is only suitable for deamination purification of tail gas with low ammonia concentration.
  • the purified gas meets the emission requirements and is discharged.
  • the desorbed gas after adsorption is enriched with ammonia, or is absorbed by water, etc. It can be made into ammonia water, ammonia fertilizer, etc. for use, or through catalytic combustion, the ammonia, hydrogen, methane and other combustible components in the exhaust gas can be catalytically oxidized at high temperature, and the emissions can be met after subsequent treatment, but the ammonia cannot be directly recovered for reuse.
  • the catalytic ammonia decomposition method is to catalytically decompose ammonia into H 2 and N 2 at high temperature in tail gas with a high ammonia concentration, and then recover H2 or N2 after treatment, and ammonia cannot be recovered and reused.
  • the residual concentration of ammonia is relatively high, which causes the hydrogen extraction efficiency of the second stage PSA to drop significantly.
  • Water washing must be added to absorb the residual ammonia and temperature swing adsorption (TSA) purification.
  • TSA temperature swing adsorption
  • the removal of trace amounts of ammonia results in a relatively long process, high investment, and a large area of space.
  • the number of program control valves and regulating valve groups used in the second-stage axial flow fixed-bed PSA process is too large, which greatly affects the performance of the device. Stable operation and cost.
  • the ammonia yield reaches 98%, the H 2 yield is only 75 to 85%, and the "double high" of high purity and high yield of simultaneous recovery of H 2 /NH 3 cannot be achieved.
  • the present invention proposes a new process of Full Temperature range Simulated Rotated Moving Pressure Swing Adsorption (FTrSRMPSA) for the separation and extraction of H 2 and NH 3 from the tail gas of the GaN-MOCVD process. It is a method based on Based on pressure swing adsorption (PSA), it makes full use of the temperature and pressure of the exhaust gas of the GaN-MOCVD process.
  • FTrSRMPSA Full Temperature range Simulated Rotated Moving Pressure Swing Adsorption
  • the components of H 2 -N 2 and the main adsorbate NH 3 in the raw gas are in the temperature range of 60 to 130°C, and 0.2 to
  • the difference in adsorption separation coefficient and physical and chemical properties within the 4.0MPa pressure range will be placed in the center of two upper and lower multi-channel rotary valves and multiple axial flow fixed-bed adsorption towers will be placed on a circular rotating tray around them.
  • the medium-high temperature pressure swing adsorption ammonia concentration system and the intermediate gas pressure swing adsorption hydrogen extraction system are composed of pipeline connections and mechanisms for regulating the rotation direction and speed, and the annular rotating tray rotation direction and speed, together with the compressor, condensation and refrigeration system.
  • the machine, heat exchanger, buffer tank and process pipes form a system, so that the pipes flowing through the rotary valve channel and the inlet and outlet ends of the channel are connected to the inlet and outlet ends of the adsorption tower on the annular rotating tray and the rotating and moving adsorbent in the adsorption tower.
  • the gas in the bed continuously passes through the inlet and outlet of each adsorption tower and each adsorption bed rotates while completing its own adsorption and desorption steps, thereby forming a pressure change that "simulates a rotating moving bed"
  • the adsorption process realizes a simulated rotating moving bed pressure swing adsorption process based on axial flow fixed bed pressure swing adsorption, allowing multi-step cyclic operation of adsorption and desorption to obtain H 2 and NH 3 products with high purity and high yield, and Return to the GaN-MOCVD process for recycling.
  • the specific plan is as follows:
  • a full-temperature simulated rotating moving bed pressure swing adsorption process for extracting H 2 and NH 3 from GaN-MOCVD exhaust gas includes an n(4 ⁇ A multi-tower medium-temperature pressure swing adsorption concentration system (including driving mechanism) with n ⁇ 40 natural integer) adsorption towers, and a multi-tower medium-temperature pressure swing adsorption system with n' (4 ⁇ n' ⁇ 40 natural integer) adsorption towers.
  • H 2 product gas H 2 PG
  • raw gas F
  • intermediate gas IG
  • nitrogen-rich desorption gas N 2 D
  • liquid ammonia product storage tank raw gas It consists of compressor 1/intermediate gas compressor 2, raw gas heat exchange 1 (heating)/ammonia concentrated gas heat exchange 2 (cooling)/condensation and freezing, and corresponding material and process pipelines.
  • n are loaded with various adsorption
  • n' adsorption tower The intermediate gas pressure swing adsorption hydrogen extraction system of the axial flow fixed composite bed adsorption tower (referred to as "n' adsorption tower") is composed of n adsorption tower and n' adsorption tower evenly spaced in a rotating speed of ⁇ 2 ( seconds/turnover) (n+n') adsorption towers and corresponding driving mechanisms, m (5 ⁇ m ⁇ 36 natural integer) channels and m'(5 ⁇ m' ⁇ 36 natural integer) on the annular rotating tray Integer) channels and are placed in the center of the annular tray and have two independently rotating upper and lower multi-channel rotary valves with rotation speeds of ⁇ 1 (seconds/revolution) and ⁇ 1 ' (seconds/revolution) respectively.
  • m channel rotary valve The upper rotary valve Referred to as “m channel rotary valve”, the following rotary valve is referred to as “m' channel rotary valve”.
  • m channel rotary valve The inlet and outlet ends of the m and m' channels pass through the built-in pipeline of the annular rotating tray and the corresponding n adsorption tower/n' adsorption respectively.
  • the inlet and outlet of the tower are connected to H2 product gas/raw gas/intermediate gas/nitrogen-rich desorption gas buffer tank and raw gas compressor 1/heat exchanger 1/intermediate gas compressor 2/ammonia concentrated gas heat exchanger 2/ammonia
  • the condensed and frozen materials and process pipelines are respectively connected to the inlet and outlet of the m/m' channel rotary valve, the inlet and outlet of the built-in pipeline of the rotating tray, and the inlet and outlet of the n/n' adsorption tower.
  • the process flow is as follows, produced in the GaN-MOCVD epitaxial process
  • the tail gas is used as raw material gas (F), and its typical main components are 55% (v/v, the same below) hydrogen (H 2 ), 25% nitrogen (N 2 ), 20% ammonia (NH 3 ), and the rest Including small or trace amounts of metal ions, particulate matter, methane (CH 4 ), oxygen (O 2 ), and oxides including carbon monoxide (CO), carbon dioxide (CO 2 ), and water (H 2 O), temperature
  • the temperature is 25 ⁇ 40°C, and the pressure is normal pressure or slightly positive pressure. It flows out from the raw gas buffer tank and is heated to 80 ⁇ 120°C by heat exchanger 1.
  • the raw gas (F) compressor 1 pressurizes it to 0.6 ⁇ 0.8MPa and enters the medium.
  • the m-channel rotary valve channel in the high-temperature pressure swing adsorption ammonia concentration system and the built-in pipeline connected to the annular rotating tray enter one of the n adsorption towers for medium-high temperature pressure swing adsorption ammonia concentration, and are continuously produced from the system.
  • the non-condensable gas enters the intermediate gas (IG) buffer tank as low-pressure intermediate gas (LPIG), and the non-adsorbed phase gas flowing out of the medium and high-temperature pressure swing adsorption ammonia concentration system enters the intermediate gas (IG) buffer tank as low-pressure intermediate gas (LPIG), and It flows out of the buffer tank together with the non-condensable gas as low-pressure intermediate gas (LPIG) and is pressurized to 2.0 ⁇ 3.0MPa by the intermediate gas (IG) compressor 2 to form high-pressure intermediate gas (HPIG), which enters the intermediate gas pressure swing adsorption hydrogen extraction system.
  • LPIG low-pressure intermediate gas
  • HPIG high-pressure intermediate gas
  • the m' channel rotary valve channel and the built-in pipeline connected to the annular rotating tray enter an adsorption tower among the n' adsorption towers for pressure swing adsorption and hydrogen extraction of the intermediate gas, and continuously produce non-adsorbed phase hydrogen products (H 2 PG), with a purity of 99.99 to 99.999% and a yield of 92 to 95%.
  • the nitrogen-rich desorption gas of the adsorption phase continuously flows out from the system.
  • N 2 D enters the nitrogen-rich desorption gas (N 2 D) buffer tank and flows out, or is directly discharged, or enters cryogenic nitrogen production and recovery of H 2 , or enters membrane separation and recovery of H 2 , thus forming a complete
  • FTrSRMPSA full-temperature simulated rotating moving bed pressure swing adsorption
  • the described GaN-MOCVD exhaust gas extracts H 2 and NH 3 in a full-temperature simulated rotating moving bed pressure swing adsorption process.
  • the described GaN-MOCVD exhaust gas extracts H 2 and NH 3 in a full-temperature simulated rotating moving bed pressure swing adsorption process.
  • A adsorption
  • ED forward discharge
  • PP forward discharge
  • D reverse discharge
  • P flushing
  • ER average pressure rise
  • FR final charge
  • adsorption and desorption cycle operation steps in which the number of pressure equalization is up to 2 times, including primary pressure equalization drop (E1D)/primary pressure equalization rise (E1R) and secondary pressure equalization drop (E2D)/secondary equalization
  • E1D primary pressure equalization drop
  • E1R primary pressure equalization drop
  • E2D secondary pressure equalization drop
  • the pressure rise (E2R), sequential discharge (PP) and waiting (-) steps need to be flexibly arranged according to the alternation sequence of each adsorption tower during the pressure swing adsorption cycle operation.
  • n adsorption towers alternately undergo the pressure swing adsorption cycle operation.
  • the step is to adjust and match the rotation direction of the annular rotating tray and its rotation speed ( ⁇ 1 and ⁇ 2 ) through the m-channel rotary valve in the medium-high temperature pressure swing adsorption ammonia concentration system, and the m-channel rotary valve.
  • Each channel alternately and regularly switches the flowing materials and process gases during the pressure swing adsorption cycle operation and enters the n adsorption tower for pressure swing adsorption cycle operation.
  • the described GaN-MOCVD exhaust gas extracts H 2 and NH 3 in a full-temperature simulated rotating moving bed pressure swing adsorption process.
  • the adsorption towers alternately undergo adsorption (A)-average pressure drop (ED)/sequential discharge (PP)-reverse discharge (D)/flushing (P)-average pressure rise (ER)/waiting area (-)-final
  • the adsorption and desorption cycle operation steps of charging (FR) in which the number of pressure equalization is up to 3 times, including one pressure equalization drop (E1D)/one pressure equalization rise (E1R), two pressure equalization drops (E2D)/two times
  • the equal pressure rise (E2R), three equal pressure drops (E3D)/three equal pressure rises (E3R), sequential release (PP) and waiting (-) steps need to be based on the alternating sequence of each adsorption tower during the pressure swing adsorption
  • n' adsorption towers alternately undergo pressure swing adsorption cycles.
  • the operation steps are to control the rotation direction and rotation speed of the m' channel rotary valve and annular rotating tray in the intermediate gas pressure swing adsorption hydrogen extraction system.
  • the regulation and control matching between ( ⁇ 1 ' and ⁇ 2 ), and each channel in the m' channel rotary valve alternately and timely switches the flowing materials and process gases during the pressure swing adsorption cycle operation and enter the n' adsorption tower for change. Pressure adsorption cycle operation.
  • the described full-temperature simulated rotating moving bed pressure swing adsorption process for extracting H 2 and NH 3 from GaN-MOCVD exhaust gas is mainly characterized in that the medium-high temperature pressure swing adsorption ammonia concentration system and the intermediate
  • flushing is carried out in batches through one or more openings in the rotary valve channel (channel), the number of openings is at most 4, preferably the bleed air (PP) from the system is used as the flushing gas (P).
  • the described full-temperature simulated rotating moving bed pressure swing adsorption process for extracting H 2 and NH 3 from GaN-MOCVD exhaust gas is mainly characterized in that the medium-high temperature pressure swing adsorption ammonia concentration system and the intermediate
  • the reverse release (D) step of the gas pressure swing adsorption hydrogen extraction system uses vacuuming for desorption.
  • the additional vacuum pump is either connected to the logistics pipeline through which the desorbed gas (D) flows out of the rotary valve, or is connected to the annular rotating tray.
  • the external pipeline connected to the outlet end of the adsorption tower is directly connected and is provided with a control valve on the external pipeline. It is preferably directly connected to the external pipeline connected to the outlet end of the adsorption tower on the annular rotating tray and is provided with a control valve. valve.
  • the described full-temperature simulated rotating moving bed pressure swing adsorption process for extracting H 2 and NH 3 from GaN-MOCVD exhaust gas is mainly characterized in that the medium-high temperature pressure swing adsorption ammonia concentration system and the intermediate The final gas (FR) in the pressure swing adsorption cycle operation of the gas pressure swing adsorption hydrogen extraction system, or the feed gas (F) or intermediate gas (IG) or ammonia concentrated gas (NH 3 CG) or H 2 product from outside the system Gas (H 2 PG), when the purity of H 2 product gas (H 2 PG) is greater than 99.99%, it is preferred to use H 2 product gas (H 2 PG) as the final charge (FR).
  • the described GaN-MOCVD exhaust gas extracts H 2 and NH 3 in a full-temperature simulated rotating moving bed pressure swing adsorption process.
  • the medium-high temperature pressure swing adsorption ammonia concentration and intermediate gas change The n adsorption tower and n' adsorption tower of the pressure adsorption hydrogen extraction system are respectively loaded with one or more combined adsorbents of activated calcium chloride, activated carbon, and molecular sieves, and are loaded with aluminum trioxide, silica gel, activated carbon, molecular sieves, One or more combined adsorbents of carbon molecular sieves.
  • the adsorption towers in the two systems are loaded with two or more combined adsorbents to form a composite adsorbent bed.
  • the adsorption and desorption cycle operation mode of the traditional full-temperature fixed composite bed PSA can be simulated into a full-temperature rotating wheel moving bed PSA process, which achieves better rotation than a fixed bed or a typical fan-shaped adsorption chamber.
  • the purity of the H 2 product gas is greater than or equal to 99.99 ⁇ 99.999%
  • the yield is greater than or equal to 92 ⁇ 95%
  • the purity of the liquid ammonia product is greater than or equal to 99.9 ⁇ 99.99 %
  • the yield is greater than or equal to 98-99%.
  • the present invention uses the rotation direction and rotation speed ( ⁇ 1 / ⁇ 1 ) of the m and m' channel rotary valves and the annular rotating tray of the medium and high temperature pressure swing adsorption ammonia concentration system and the intermediate gas pressure swing adsorption hydrogen extraction system.
  • the control and matching between ' and ⁇ 2 ) can realize multi-combination and multi-step adsorption and desorption PSA cycle operations on the traditional fixed-bed PSA process, and can be flexibly carried out according to the technical index requirements of the product H 2 /NH 3 Adjusts and covers existing moving bed PSA processes including multi-channel rotary valves and traditional fixed bed PSA combination processes, as well as typical sector-shaped adsorption chamber rotating wheel PSA or fast wheel PSA moving bed processes, making the process from GaN-MOCVD
  • the FTrSRMPSA process in which the tail gas is the raw material gas can smoothly and continuously extract and recover H 2 /NH 3 with high purity and high yield, and return it to the GaN-MOCVD process for recycling, reducing tail gas emissions, and the waste gas has been recycled, further reducing the The GaN-MOCVD process consumes costs.
  • the present invention uses some operations during the operation of the FTrSRMPSA system, such as the ammonia-containing flushing waste gas (NH 3 PW) generated by the purge gas (PP) of the ammonia concentrated adsorption phase as the flushing gas (P) as the ammonia concentrated gas (NH 3 CG), so that the ammonia recovery rate reaches 98-99%.
  • the nitrogen-containing flushing waste gas (N 2 PW) generated by the nitrogen-containing adsorption phase purge gas (PP) is used as the flushing gas (P).
  • the rotation speed of the channel rotary valve is appropriately adjusted between ⁇ 1 and ⁇ 1 ', and the m' channel rotary valve with ammonia-containing adsorption phase has a common channel 3' with two through holes for low-pressure intermediate gas (LPIG).
  • LPIG low-pressure intermediate gas
  • the yield of H 2 product gas also reaches a high level of 92 to 95%, which greatly reduces energy consumption and desorption gas emissions, and achieves high performance in GaN-MOCVD.
  • the process exhaust gas simultaneously achieves high and low pressure (i.e., "partial concentration" relative to the hydrogen in the non-adsorbed phase) adsorption and the axial PSA process of extracting H 2 and NH 3 products from the adsorbed phase and non-adsorbed phase gases.
  • high and low pressure i.e., "partial concentration” relative to the hydrogen in the non-adsorbed phase
  • the axial PSA process of extracting H 2 and NH 3 products from the adsorbed phase and non-adsorbed phase gases.
  • the present invention greatly reduces the number of program control valves and regulating valves of the traditional axial flow fixed bed PSA or FTrPSA H 2 /NH 3 extraction device. It also reduces the complexity of manufacturing the fast wheel PSA device and can Substituting foreign imports, further reducing investment and production costs.
  • the present invention adapts to the GaN-MOCVD process exhaust gas through the regulation and matching between the rotation direction and rotation speed ( ⁇ 1 / ⁇ 1 ' and ⁇ 2 ) of the m/m' multi-channel rotary valve and the annular rotating tray.
  • Large fluctuation working conditions, including fluctuations in components, concentration, pressure, flow, etc., have greater operational flexibility and do not require expensive structured adsorbents required by rotating wheel or fast wheel PSA processes.
  • Conventional particle adsorption can be used agent and form a composite adsorbent bed.
  • the present invention adjusts the multi-channel rotary valves and annular rotating trays of each subsystem in the process.
  • Figure 1 is a schematic flow diagram of Embodiment 1 of the present invention.
  • FIG. 2 is a schematic flow diagram of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic flow diagram of Embodiment 1 of the present invention.
  • the described full-temperature simulated rotating moving bed pressure swing adsorption process for extracting H 2 and NH 3 from GaN-MOCVD tail gas is a full-temperature simulated rotating moving bed pressure swing adsorption (FTrSRMPSA) system.
  • FTrSRMPSA full-temperature simulated rotating moving bed pressure swing adsorption
  • the 7-channel rotary valve (upper) rotates at a speed of ⁇ 1 is 210 ⁇ 300s
  • the rotation speed ⁇ 1 ' of the 6' channel rotary valve (lower) is 320 ⁇ 400s
  • the rotation speed ⁇ 2 of the annular rotating tray is 0, and the functions of the six channels in the 6' channel rotary valve are, respectively, 1
  • the final inflation (FR) of the inflation (FR) is used.
  • the nitrogen-rich desorption gas (N 2 D) flowing out of the outlet end of the rotary valve of the m channel flows through the material pipeline connected to the nitrogen-containing desorption gas (N 2 D) buffer tank. Either enter the buffer tank or be discharged directly.
  • the ammonia-containing reverse gas (D) flowing out from the outlet of the m' channel rotary valve and the ammonia-containing flushing exhaust gas (NH 3 PW) form the ammonia concentrated gas (NH 3 CG) that flows through and exchanges heat 2 (cooler) is a material pipeline connected to the condensing freezer.
  • the low-pressure intermediate gas (LPIG) flowing out of the outlet of the rotary valve of the m' channel flows through the intermediate gas (IG) buffer tank, compressor 2 and the high-pressure rotary valve of the m' channel.
  • the condensate flowing out of the condensing freezer is liquid ammonia product (NH 3 PL).
  • the non-condensable gas flows through the non-condensable gas outlet end of the condensing freezer and the inlet of the intermediate gas (IG) buffer tank.
  • the charge (H 2 FR) flows through the material pipeline connected between the hydrogen product gas (H 2 PG) buffer tank and the corresponding channel inlet end of the rotary valve, and the ammonia-containing final charge (NH 3 FR) flow flowing into the inlet end of the m' channel rotary valve
  • the raw material gas (F) buffer tank, heat exchanger 1 (heating) and compressor 1 is epitaxial material from the gallium nitride metal oxide chemical vapor deposition (GaN-MOCVD) epitaxial process.
  • Low-pressure adsorption is performed in the adsorption tower 1'.
  • the pressurized high-pressure intermediate gas HPIG
  • HPIG high-pressure intermediate gas
  • the outlet is connected to the internal pipeline of the annular tray and the process pipeline formed by the inlet end of the adsorption tower 1 enters the adsorption tower 1 and performs a high-pressure adsorption (HPA) step.
  • the adsorption pressure is 2 to 3MPa, and the adsorbent is nitrogen (N 2 ), a small amount of ammonia (NH 3 ) and hydrogen (H 2 ) remaining in the dead space in the adsorption tower 2.
  • the non-adsorbed phase gas flows out from the outlet end of the adsorption tower 1 and passes through the annular, circular
  • Buffer tank the purity of the product hydrogen (H 2 PG) is greater than or equal to 99.99%, the pressure is 2 ⁇ 3MPa, it can be exported or entered into the hydrogen purification section of the gallium nitride epitaxial production process, purified and returned to the GaN-MOCVD epitaxial process.
  • HPA high-pressure adsorption
  • LPA low-pressure adsorption
  • the downstream gas (PP) generated by the adsorption tower 2 is used as a flushing gas (P) to flush the adsorption tower 3 in the flushing (P) step, and the generated nitrogen-containing flushing waste gas (N 2 PW) is used as a low-pressure intermediate gas.
  • the material and process pipelines connected to the built-in pipes of the annular rotating tray and the adsorption tower 3 flow out from the m' channel rotary valve m' to the outlet end of the 3' channel, and enter the low-pressure intermediate gas (IG) buffer tank for recycling.
  • the adsorption tower 4' enters the equal pressure rise (ER) and final filling (FR) steps of the ammonia-containing adsorption phase, and comes from the average pressure drop gas generated by the adsorption tower 2' which is in the equal pressure drop (ED) step of the ammonia-containing adsorption phase.
  • the materials and process pipelines are used to final charge (FR) the adsorption tower 4', so that the adsorption pressure in the adsorption tower 4' reaches the adsorption pressure 0.6 ⁇ 0.8MPa required for the low pressure adsorption (LPA) step, thus forming an adsorption tower.
  • PSA pressure swing adsorption
  • LPA low pressure adsorption
  • ED pressure drop
  • PP forward release
  • D forward release
  • P flush
  • ER pressure equalization
  • FR final charging
  • the material gases and process gases are also continuously rotated through the m' channel rotary valve during the closed-loop cyclic operation of adsorption and desorption in the adsorption tower 1' to switch the inlet and outlet positions of the materials or process gases in each adsorption tower for corresponding adsorption and desorption.
  • the pressure swing adsorption (PSA) closed-loop cycle operation of the adsorption phase that is, high-pressure adsorption (HPA)-primary average pressure drop (E1D)/secondary average pressure drop (E2D)/forward discharge (PP)-reverse discharge (D) / Flushing (P) - Secondary pressure equalization rise (E2R) / Primary pressure equalization rise / Waiting area - Final charging (FR) step, and then the adsorption tower 1 enters the next closed-loop cycle operation process of adsorption and desorption, and
  • the corresponding material gases and process gases entering and exiting adsorption towers 2, 3, 4 and 5 are also continuously rotated through the m-channel rotary valve to switch the materials or processes of each adsorption tower during the closed-loop cyclic operation of adsorption and desorption in adsorption tower 1.
  • the gas inlet and outlet positions perform corresponding closed-loop cycle operation steps of adsorption and desorption.
  • the operation step is to continuously produce H 2 product gas (H 2 PG) with a hydrogen (H 2 ) concentration greater than or equal to 99.99% (v/v) from the GaN-MOCVD process tail gas as raw material gas.
  • the H 2 product gas The yield is greater than or equal to 92-95%, thus significantly reducing energy consumption and desorption gas emissions, and achieving both high and low pressure (i.e., relative to the non-adsorbed phase hydrogen) in the GaN-MOCVD process exhaust gas.
  • High purity and high yield of the simulated rotating PSA process based on the axial flow fixed bed of the PSA process for the adsorption and extraction of H 2 and NH 3 products from the adsorbed phase and non-adsorbed phase gases The "double high", the obtained H 2 and NH 3 are returned to the GaN-MOCVD process for recycling, so that the exhaust gas of the GaN-MOCVD process is reused.
  • the vacuum (V) desorption step is used to replace the reverse release (D) step of the ammonia concentration adsorption phase in the medium and high temperature pressure swing adsorption ammonia concentration system, and the vacuum (V) is formed
  • the maximum vacuum degree is -0.08MPa.
  • the corresponding original reverse degassing (D) channel in the corresponding 6' channel rotary valve becomes an empty channel, and when subsequent flushing (P) is performed with forward purging (PP) as the flushing gas (P), the generated ammonia-rich flushing waste gas (NH 3 PW) enters the empty channel, It successively forms ammonia concentrated gas (NH 3 CG) with ammonia-rich desorption gas (NH 3 D), undergoes heat exchange 2 (cooling), and then enters condensation and freezing.
  • the purity of the obtained liquid ammonia product (NH 3 PL) is greater than or equal to 99.995%, and is collected The rate is greater than or equal to 99%.
  • the purge gas (PP) serves as the flushing gas (P) and also plays the role of filling the vacuum state of the adsorption tower, causing the n' adsorption tower to return to normal pressure or slightly positive pressure.
  • the purge gas (PP) serves as the flushing gas (P) and also plays the role of filling the vacuum state of the adsorption tower, causing the n' adsorption tower to return to normal pressure or slightly positive pressure.
  • IG non-adsorbed phase intermediate gas
  • LPIG low-pressure intermediate gas
  • the vacuum (V) desorption step is used to replace the reverse release (D) step of the ammonia concentrated adsorption phase in the intermediate gas pressure swing adsorption hydrogen extraction system, and the vacuum (V )
  • the maximum vacuum degree is -0.08MPa.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

一种GaN-MOCVD尾气提取H2与NH3的全温程模拟旋转移动床变压吸附工艺,包括置于上下两个多通道旋转阀中央且在其周围安置于一圆环形旋转托盘上的多个轴向流固定床吸附塔与旋转速度机构构成的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统,流经旋转阀通道及吸附塔进出口端管道及吸附床层的气体,在每个吸附塔进出口的位置及每个吸附床层在旋转同时完成各自的吸附与解吸步骤的传质,形成了模拟旋转移动床的变压吸附过程,实现了轴向流固定床变压吸附基础上的模拟旋转移动床变压吸附过程,而高纯度高收率地获得H2与NH3产品,并返回GaN-MOCVD制程中循环使用。

Description

一种GaN-MOCVD制程尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺 技术领域
本发明涉及半导体行业含氢气(H 2)与氨气(NH 3)气体的变压吸附(PSA)分离及提纯领域,更具体的说是涉及一种氮化镓金属氧化物化学气相沉积(GaN-MOCVD)制程尾气提取H 2/NH 3的全温程模拟旋转移动床变压吸附工艺。
背景技术
MOCVD(金属氧化物化学气相沉积)制程(设备)作为化合物半导体材料研究与生产的现代化方法与手段,在制造基于氮化镓(GaN)化合物半导体材料的发光二极管、激光器、探测器、高效太阳能电池、光电阴极等产品中,是光电子与半导体产业不可或缺的一种方法及设备。比如,市场上广泛应用的蓝光及紫光LED,都是采用氮化镓(GaN)基材料生产出来的。其中,MOCVD外延过程是以高纯金属氧化物(MO)作为MO源,比如三甲基镓(TMGa),在电子级的载气氢气(H 2)及/或氮气(N 2)携带下,与电子级的氨气(NH 3)进入MOCVD反应釜中,在一块加热至适当温度的蓝宝石(Al 2O 3)衬底基片上,气态的金属氧化物三甲基镓(TMGa),有控制地输送到蓝宝石衬底表面,生长出具有特定组分、特定厚度、特定电学和光学参数的半导体薄膜外延材料GaN。为保证在MOCVD反应腔内反应完全,H 2/N 2及NH 3都过量,进而产生含较多的H 2/N 2与NH 3的MOCVD制程尾气。典型的LED-GaN的MOCVD外延尾气组成为,H 2:55%(v/v,以下类同),N 2:25%,NH 3:14%,其余包括少量或微量或痕量的金属离子、颗粒物、甲烷(CH 4)、氧气(O 2)及含氧化物,比如一氧 化碳(CO)、二氧化碳(CO 2)、水(H 2O)等。
由于LED制备的GaN-MOCVD工艺尾气中含有腐蚀性较强的NH 3、易燃易爆的H 2,金属离子及含氧化物等杂质,使得NH 3提纯回收再返回到LED制程中变得相当困难。目前,大多数的LED芯片制造厂商都是将腐蚀性的NH 3先通过水洗、催化转化、吸附、精馏等各种途径脱除或转化为氨水、铵肥等回收,LED-MOCVD制程所使用的NH 3仍需专门的气体公司供应。脱氨后的尾气,H 2浓度较低,加之其中含有大量的N 2,一般经进一步处理,比如催化燃料或酸碱洗涤处理掉有害有毒杂质组分后进入氢排放系统或直接放空,或采用传统的轴向流固定床PSA加以回收H 2
现有传统的几种主要从含氨废气中分别回收NH 3的方法,比如,主要包括冷冻法、水洗涤法(水洗)法、硫酸吸收法、磷酸(铵)吸收与精馏耦合法、有机溶剂吸收法、吸附法(TSA为主)、吸附与精馏耦合法,以及催化燃烧法、催化氨分解法等,大多是流程较长并且只能变成工业氨水或胺肥等中间产品加以利用,无法直接回收氨气并返回到GaN-MOCVD制程中循环使用。而变温吸附(TSA)法仅适用于氨浓度较低的尾气进行脱氨净化,净化后的净化气符合排放要求加以排放,但吸附后的解吸气富集了氨,或是通过水吸收等制成氨水、氨肥等加以利用,或是通过催化燃烧,将尾气中的氨、氢气、甲烷等可燃组分进行高温催化氧化,并进行后续处理后达标排放,但无法直接回收氨气再利用;催化氨分解法是对氨浓度较高的尾气进行高温下催化分解氨为H 2和N 2,再经过处理后回收H2或N2,也不能对氨回收再利用。
从GaN-MOCVD制程尾气中回收H 2与NH 3的现有新技术中,典型的包括中国专利“一种LED-MOCVD制程尾气全温程变压吸附全组分回收再利用方法 (CA 201810532108.0)”、美国专利“Methods of Extracting and Recycling Hydrogen from MOCVD Process Exhaust Gas by FTrPSA(US 16/423,167)”以及“Methods of Extracting and Recycling Ammonia from MOCVD Process Exhaust Gas by FTrPSA(US 16/423,181)”等,其工艺为,一段由5~6个吸附塔组成的氨浓缩变压吸附工序,其浓缩度最大为90%左右,而留在二段由5~6个吸附塔组成的H 2提纯工序中的由氨浓缩工序产生的非吸附相气体作为进入第二段PSA提氢原料气的氨残留浓度比较高,使得二段PSA提氢效率大幅度下降,必须增设水洗吸收残留氨与变温吸附(TSA)净化脱除微量的氨,进而导致流程比较长、投资高、占地大,尤其是二段的轴向流固定床PSA工艺配套使用的程序控制阀与调节阀组数量过于庞大,极大地影响装置的稳定性操作与成本,同时,在氨的收率达到98%下H 2收率仅为75~85%,无法实现H 2/NH 3同时回收的高纯度与高收率的“双高”。
发明内容
本发明提出了一种全温程模拟旋转移动变压吸附(Full Temperature range Simulated Rotated Moving PSA——FTrSRMPSA)新工艺用于GaN-MOCVD制程尾气分离与提取H 2与NH 3方法,是一种以变压吸附(PSA)为基础,充分利用GaN-MOCVD制程尾气自带的温度与压力、原料气体中H 2-N 2与主要吸附质NH 3组分在60~130℃温度范围,以及0.2~4.0MPa压力范围内的吸附分离系数及物理化学性质的差异性,将置于上下两个多通道旋转阀中央且在其周围安置于一圆环形旋转托盘上多个轴向流固定床吸附塔并通过管道连接以及调控旋转方向与旋转速度、圆环形旋转托盘旋转方向与旋转速度机构所构成的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统,与压缩机、冷凝冷冻机、换热器、缓 冲罐及工艺管道组成一个系统,使得流经旋转阀通道及通道进出口端与圆环形旋转托盘上的吸附塔进出口端连接的管道及吸附塔中旋转移动的吸附床层的气体,在不断地通过进出每个吸附塔进出口的位置及每个吸附床层在旋转同时完成各自的吸附与解吸步骤的传质,进而形成了“模拟旋转移动床”的变压吸附过程,实现了轴向流固定床变压吸附基础上的模拟旋转移动床变压吸附过程,使得吸附与解吸多步骤的循环操作而高纯度高收率地获得H 2与NH 3产品,并返回GaN-MOCVD制程中循环使用,具体方案如下:
一种GaN-MOCVD尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的全温程模拟旋转移动床变压吸附系统,包括一n(4≤n≤40自然整数)个吸附塔的多塔中温变压吸附浓缩系统(含驱动机构)、一n’(4≤n’≤40自然整数)个吸附塔的多塔中低温中间气变压吸附系统(含驱动机构)、H 2产品气(H 2PG)/原料气(F)/中间气(IG)/富氮解吸气(N 2D)缓冲罐、液氨产品储罐、原料气压缩机1/中间气压缩机2、原料气换热1(加热)/氨浓缩气换热2(冷却)/冷凝冷冻以及相应的物料与工艺管道所组成,其中,n个装载有多种吸附剂且有一定高径比的轴向流固定复合床吸附塔(简称“n吸附塔”)的中高温变压吸附氨浓缩系统与n’个装载有多种吸附剂且有一定高径比的轴向流固定复合床吸附塔(简称“n’吸附塔”)的中间气变压吸附提氢系统,是由n吸附塔与n’吸附塔分别均匀间隔安置在一个以旋转速度为ω 2(秒/周转)的圆环形旋转托盘上的(n+n’)个吸附塔及相应的驱动机构、m(5≤m≤36自然整数)个通道与m’(5≤m’≤36自然整数)个通道并安置在圆环形托盘中央且分别以旋转速度为ω 1(秒/周转)与ω 1’(秒/周转)的上下两个独立旋转的多通道旋转阀,上面的旋转阀简称“m通道旋转阀”,下面的旋转阀简称“m’ 通道旋转阀”,其m与m’通道进出口端分别通过与圆环形旋转托盘内置管道及对应的n吸附塔/n’吸附塔进出口端相连,连接H 2产品气/原料气/中间气/富氮解吸气缓冲罐及原料气压缩机1/换热1/中间气压缩机2/氨浓缩气换热2/氨冷凝冷冻的物料及工艺管道分别与m/m’通道旋转阀进出口、旋转托盘内置管道进出口及n/n’吸附塔进出口端相连,其工艺流程为,在GaN-MOCVD外延制程中产生的尾气作为原料气(F),其典型主要组分为55%(v/v,以下类同)氢气(H 2)、25%氮气(N 2)、20%氨气(NH 3),其余包括少量或微量或痕量的金属离子、颗粒物、甲烷(CH 4)、氧气(O 2)以及包括一氧化碳(CO)、二氧化碳(CO 2)、水(H 2O)在内的氧化物,温度为25~40℃,压力为常压或微正压,从原料气缓冲罐流出并经换热1加热至80~120℃及原料气(F)压缩机1加压至0.6~0.8MPa进入中高温变压吸附氨浓缩系统中的m通道旋转阀通道以及连接于圆环形旋转托盘内置管道进入n吸附塔中的某个吸附塔进行中高温变压吸附氨浓缩,从系统中连续产出的由富氨逆放气(NH 3D)与富氨冲洗废气(NH 3PW)形成的氨浓缩气(NH 3CG),氨浓度为大于等于90~95%,经换热2冷却至25~40℃后进入氨冷凝冷冻单元,由此产生的冷凝液为液氨产品(NH 3PL),浓度为99.99~99.999%,收率为98~99%,输入液氨产品罐,由此产生的不凝气体作为低压中间气(LPIG)进入中间气(IG)缓冲罐,从中高温变压吸附氨浓缩系统流出的非吸附相气体为低压中间气(LPIG)进入中间气(IG)缓冲罐,并与不凝气体作为低压中间气(LPIG)一起流出缓冲罐且经中间气(IG)压缩机2增压至2.0~3.0MPa形成高压中间气(HPIG)进入中间气变压吸附提氢系统中的m’通道旋转阀通道以及连接于圆环形旋转托盘内置管道进入n’吸附塔中的某个吸附塔进行中间气变压吸附提氢,从系统中连续产出非吸附相的氢气产品(H 2PG),其纯度为 99.99~99.999%,收率为92~95%,从系统中连续流出的吸附相的富氮解吸气
(N 2D)进入富氮解吸气(N 2D)缓冲罐并流出,或直接排放,或进入深冷制氮及回收H 2,或进入膜分离回收H 2,由此,构成一个完整的以GaN-MOCVD制程尾气为原料气“高纯度、高收率”的制取H 2与NH3的全温程模拟旋转移动床变压吸附(FTrSRMPSA)分离与净化工艺,从GaN-MOCVD制程尾气中获得纯度大于等于99.99%、收率大于等于92%的高纯度H 2产品气(H 2PG)与纯度大于等于99.99%、收率大于等于98%的液氨产品(NH 3PL),并返回到GaN-MOCVD制程中循环使用。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统中的m及m’通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1、ω 1’与ω 2)之间的调控匹配,包括,1)同向同步,顺时针或逆时针方向同向旋转,且,ω 1=ω 1’=ω 2/≠0,2)同向异步,顺时针或逆时针方向同向旋转,且,或ω 1≠0≥ω 1’≠0/ω 2=0,或ω 1≠0≤ω 1’≠0/ω 2=0,或ω 1=ω 1’=0/ω 2≠0,优选的,同向异步的顺时针或逆时针方向的同向旋转且ω 1≠0≤ω 1’≠0/ω 2=0。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统中的n个吸附塔先后交替经历吸附(A)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/等待区(-)-终充(FR)的吸附与解吸循环操作步骤,其中,均压次数最多为2次,包括一次均压降(E1D)/一次均压升(E1R)与二次均压降(E2D)/二次均压升(E2R),顺放(PP)与等待(-)步骤需依据变 压吸附循环操作过程中的每个吸附塔交替时序灵活安置,其中,n个吸附塔先后交替经历变压吸附循环操作步骤是通过中高温变压吸附氨浓缩系统中的m通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1、与ω 2)之间的调控匹配,以及m通道旋转阀中每个通道交替定时切换变压吸附循环操作过程中的流经的物料与工艺气体而进入n吸附塔进行变压吸附循环操作。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中间气变压吸附提氢系统中的n’个吸附塔先后交替经历吸附(A)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/等待区(-)-终充(FR)的吸附与解吸循环操作步骤,其中,均压次数最多为3次,包括一次均压降(E1D)/一次均压升(E1R)、二次均压降(E2D)/二次均压升(E2R)、三次均压降(E3D)/三次均压升(E3R),顺放(PP)与等待(-)步骤需依据变压吸附循环操作过程中的每个吸附塔交替时序灵活安置,其中,n’个吸附塔先后交替经历变压吸附循环操作步骤是通过中间气变压吸附提氢系统中的m’通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1’与ω 2)之间的调控匹配,以及m’通道旋转阀中每个通道交替定时切换变压吸附循环操作过程中的流经的物料与工艺气体而进入n’吸附塔进行变压吸附循环操作。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的冲洗气(P),或来自系统内的顺放气(PP)/中间气(IG),或来自系统外的H 2产品气(H2PG)/氨浓缩气(NH 3CG),通过 旋转阀通道(槽道)中一个或多个的开孔实现分批次进行冲洗,开孔数至多为4个,优选的来自系统内的顺放气(PP)作为冲洗气(P)。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的逆放(D)步骤采用抽真空方式进行解吸,增设的真空泵,或与解吸气(D)流出旋转阀的物流管道相连,或与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门,优选的与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的变压吸附循环操作中的终充气(FR),或来自系统外的原料气(F)或中间气(IG)或氨浓缩气(NH 3CG)或H 2产品气(H 2PG),在H 2产品气(H 2PG)纯度大于99.99%工况下,优选的采用H 2产品气(H 2PG)作为终充气(FR)。
更进一步的,所述的一种GaN-MOCVD尾气提取H 2与NH 3全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩与中间气变压吸附提氢系统的n吸附塔及n’吸附塔中,分别装载有活性氯化钙、活性炭、分子筛的一种或多种组合吸附剂,以及装载有三氧化二铝、硅胶、活性炭、分子筛、碳分子筛的一种或多种组合吸附剂,优选的,两个系统中的吸附塔内装载二种及以上的多种组合吸附剂形成复合吸附剂床层。
本发明的有益效果是:
(1)通过本发明可将传统的全温程固定复合床层PSA的吸附与解吸循环操作模式模拟变成全温程旋转轮移动床PSA工艺,获得比固定床层或典型的扇形吸附室旋转轮PSA效率更高的产品H 2与NH 3的纯度与收率,突破了常规与全温程固定吸附床层所具有的“纯度与收率呈反比关系”的技术限制,又大幅度降低了包括旋转轮在内的其它移动床PSA工艺与装备制造复杂性及成本,并从GaN-MOCVD制程尾气PSA分离过程中的吸附相与非吸附相中同时高收率地获得高纯度H 2产品气与液氨产品,并返回到GaN-MOCVD外延制程中循环使用,其中,H 2产品气纯度大于等于99.99~99.999%,收率大于等于92~95%,液氨产品的纯度大于等于99.9~99.99%,收率大于等于98~99%。
(2)本发明通过对中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的m与m’通道旋转阀与圆环形旋转托盘的旋转方向与旋转速度(ω 11’与ω 2)之间的调控匹配,能够在传统的固定床PSA工艺上实现多组合多步骤的吸附与解吸的PSA循环操作,并能灵活地根据产品H 2/NH 3的技术指标要求进行调节且含盖了包括多通道旋转阀与传统的固定床PSA组合工艺以及典型的扇形吸附室旋转轮PSA或快轮PSA的移动床工艺等现有的移动床PSA工艺,使得从GaN-MOCVD制程尾气为原料气的FTrSRMPSA工艺过程得以顺利连续高纯度与高收率地提取回收H 2/NH 3,并返回到GaN-MOCVD制程循环使用,减少了尾气排放,废气得到了循环利用,进一步降低了GaN-MOCVD制程消耗成本。
(3)本发明通过FTrSRMPSA系统运转中一些操作,比如氨浓缩吸附相的 顺放气(PP)作为冲洗气(P)而产生的含氨冲洗废气(NH 3PW)作为氨浓缩气(NH 3CG)而使得氨回收率达到98~99%,含氮吸附相的顺放气(PP)作为冲洗气(P)而产生的含氮冲洗废气(N 2PW),经上下两个m与m’通道旋转阀的旋转速度ω 1与ω 1’之间的适宜调配而与含氨吸附相的m’通道旋转阀开设有2个通孔的供低压中间气(LPIG)使用的共用通道3’而返回到中间气(IG)缓冲罐循环使用,使得H 2产品气的收率也达到92~95%的高水平,大幅度减少了能耗与解吸气的排放,实现了在GaN-MOCVD制程尾气中同时实现了高低压(即,相对于非吸附相的氢气而言是“分浓度”)吸附与从吸附相与非吸附相气体提取H 2与NH 3产品的PSA工艺过程的轴向流固定床层基础上进行的模拟旋转PSA工艺的高纯度与高收率的“双高”,所获取的H 2与NH 3再返回到GaN-MOCVD制程中循环使用,使得GaN-MOCVD制程尾气得到了再利用。
(4)本发明大幅度降低了传统的轴向流固定床PSA或FTrPSA提取H 2/NH 3装置的程序控制阀门及调节阀门的数量,同时也减少了快轮PSA装置制造的复杂性并能替代国外进口,进一步降低了投资与生产成本。
(5)本发明通过m/m’多通道旋转阀与圆环形旋转托盘的旋转方向与旋转速度(ω 11’与ω 2)之间的调控匹配来适应于GaN-MOCVD制程尾气较大的波动工况,包括组分、浓度、压力、流量等的波动,操作弹性较大,并无需旋转轮或快轮PSA工艺所需的昂贵的规整式吸附剂,可采用常规的颗粒吸附剂并组成复合吸附剂床层。
(6)本发明根据GaN-MOCVD制程尾气为原料气及其波动工况和产品 H 2/NH 3技术指标的要求,通过调节工艺中各个子系统的多通道旋转阀及圆环形旋转托盘的旋转方向及旋转速度之间的匹配以及吸附压力与温度,对吸附塔的高径比进行调整与设计,使得轴向流固定床中的径向扩散忽略不计而满足轴向流固定床成熟的传质模型,而轴向流扩散随着圆环形旋转托盘旋转速度的加快以及高径比的减少,其影响越来越小,进而使得吸附塔内的传质过程更加趋近循环床为代表的移动床所具有的“稳态”效应,H 2/NH 3产品的纯度与收率更趋向于“双高”。
附图说明
图1为本发明实施例1流程示意图。
图2为本发明实施例1流程示意图。
图3为本发明实施例1流程示意图。
具体实施方式
为了使本领域的技术人员更好地理解本发明,下面将结合本发明实施例中的附图对本发明实施例中的技术方案进行清楚、完整的描述。
实施例1
如图1所示,所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其中,全温程模拟旋转移动床变压吸附(FTrSRMPSA)系统是由装载有分子筛与活性炭的4个(n’=4’)轴向流且高径比为3的固定复合床层吸附塔以及由装载有三氧化二铝、硅胶、活性炭、分子筛/碳分子筛的5个(n=5)轴向流且高径比为4的固定复合床层吸附塔安置在一个以旋转速度为ω 2=0的圆环形旋转托盘上的吸附塔(n’+n=9)及相应的驱动机构、有通道数分别为(m’=6与m=7)并安置在圆环形托盘中央且分别以旋转速度为ω 1’ =320~400s与ω 1=210~300s的上下两个独立旋转的旋转阀、原料气(F)压缩机1与中间气(IG)压缩机2、氨浓缩气(NH 3CG)冷凝冷却器、原料气(F)/中间气(IG)/H 2产品气(H 2PG)/富氮解吸气(N 2D)缓冲罐、m/m’通道旋转阀与由原料气(F)、H 2产品气(H 2PG)、高/低压中间气(H/LPIG)、产品氢气/原料气终充气(H 2/F的FR)、富氨逆放气(NH 3D)与含氨冲洗废气(NH 3PW)形成的氨浓缩气(NH 3CG)、不凝气、富氮逆放气(D)形成的富氮解吸气(N 2D)及连接m/m’通道旋转阀进出口与氢产品气(H 2PG)、原料气(F)、高/低压中间气(H/LPIG)缓冲罐及氨浓缩气(NH 3CG)冷凝冷却器相连的物料与工艺气体进出的物料管道以及连接于经圆环形旋转托盘内置管道至n/n’吸附塔上下与上下两个m/m’通道旋转阀之间的工艺管道所构成而形成一个FTrSRMPSA系统,其中,7通道旋转阀(上)旋转速度ω 1为210~300s,6’通道旋转阀(下)旋转速度ω 1’为320~400s,圆环形旋转托盘旋转速度ω 2为0,6’通道旋转阀中6个通道的作用分别为,1个通道(m’=4’)供经加压的原料气(F),1个开设有2个通孔的共用通道(m’=3’)供低压中间气(LPIG),1个共用通道(m’=5’)供浓缩氨吸附相的均压降(ED)与均压升(ER),1个共用通道(m’=6’)供浓缩氨吸附相的顺放(PP)与冲洗气(P),1个开设有2个通孔共用通道(m’=2’)供浓缩氨吸附相逆放气(NH 3D)与含氨冲洗废气(NH 3PW)形成的氨浓缩气(NH 3CG),1个共用通道(m’=1’)供以加压的原料气(F)为终充气(FR)的终充气(FR)使用,7通道旋转阀中7个通道的作用分别为,1个通道(m=4)供加压后的高压中间气(HPIG),1个通道(m=3)供氢气产品气(H 2PG),一个共用通道(m=2)供含氮吸附相的一次均压降(E1D)与均压升(E1R),1个共用通道(m=5)供含氮吸附相的二次均压降(E2D) 与均压升(E2R),1个共用通道(m=6)供含氢顺放气(PP)为含氮吸附相的冲洗气(P),形成的冲洗废气(N2PW)与m’=3’通道共用,1个通道(m=1)供富氮逆放气(N 2D)形成的富氮解吸气(N 2D),1个通道(m=7)供氢气产品气(H 2PG)为终充气(FR)的终充气(FR)使用,m通道的旋转阀出口端流出的富氮解吸气(N 2D)流经与含氮解吸气(N 2D)缓冲罐相连的物料管道或进入缓冲罐或直接排放,m’通道旋转阀出口端流出的含氨逆放气(D)与含氨冲洗废气(NH 3PW)形成的氨浓缩气(NH 3CG)流经与换热2(冷却器)与冷凝冷冻器相连的物料管道,m’通道的旋转阀出口端流出的低压中间气(LPIG)流经与中间气(IG)缓冲罐、压缩机2及m通道旋转阀高压中间气(HPIG)进口端相连的物料管道,冷凝冷冻器流出的冷凝液为液氨产品(NH 3PL),不凝气流经冷凝冷冻器不凝气出口端与中间气(IG)缓冲罐进口连接的物料管道,m通道旋转阀出口端流出的氢气产品气(H 2PG)流经与氢气产品气(H 2PG)缓冲罐相连的物料管道,m通道旋转阀进口端流入的含氢终充气(H 2FR)流经氢气产品气(H 2PG)缓冲罐与旋转阀相应的通道进口端连接的物料管道,m’通道旋转阀进口端流入的含氨终充气(NH 3FR)流经与原料气(F)缓冲罐、换热1(加热)及压缩机1相连的物料管道,原料气(F)为来自氮化镓金属氧化物化学气相沉积(GaN-MOCVD)外延工艺的外延尾气,其典型组分为55%氢气(H 2)、25%氮气(N 2)、20%氨气(NH 3),常温常压,经连接于原料气(F)缓冲罐、换热1(加热至80~120℃)、原料气(F)压缩机1(加压至0.6~0.8MPa)及旋转阀通道进口通孔物料管道进入m’通道旋转阀原料气(F)的物料通道如m’=4’,并经该通道的出口连接于圆环形托盘内置管道及连接于吸附塔1’的进口端所形成的工艺管道进入吸附塔1’并进行低压吸附(LA)步骤,其中, 吸附压力为0.6~0.8MPa,吸附温度为80~120℃,原料气(F)中的NH 3作为吸附质被吸附浓缩,H 2与N 2为非吸附相气体作为中间气(IG)从吸附塔1’的出口端流出并经过连接于吸附塔1’、圆环形旋转托盘内置管道及m’通道旋转阀物料通道(如m’=3’)通孔组成的工艺管道,从m’通道旋转阀出口端流出进入低压中间气(LPIG)缓冲罐并经中间气(IG)压缩机2加压至2~3MPa作为吸附塔1的原料气,在吸附塔1’进行低压吸附(LPA)步骤的同时,加压后的高压中间气(HPIG)作为原料气经连接于m通道旋转阀通道进口通孔物料管道(如m=4)随着m通道旋转阀顺时针方向旋转并经该通道出口连接于圆环形托盘内置管道及连接于吸附塔1的进口端所形成的工艺管道进入吸附塔1并进行高压吸附(HPA)步骤,吸附压力为2~3MPa,吸附质为氮气(N 2)与少量的氨气(NH 3)与残留在吸附塔2中死空间里的氢气(H 2),非吸附相气体从吸附塔1的出口端流出并经过连接于吸附塔1、圆环形旋转托盘内置管道及m通道旋转阀物料通道(如m=3)通孔组成的工艺管道,从m通道旋转阀出口端流出作为氢气产品气(H 2PG)输入氢气产品气(H 2PG)缓冲罐,产品氢气(H 2PG)的纯度大于等于99.99%,压力为2~3MPa,或外输或进入氮化镓外延生产工序中的氢气纯化工段纯化后返回至GaN-MOCVD外延制程中循环使用,吸附塔1进行高压吸附(HPA)步骤的同时,连接m’通道旋转阀与结束低压吸附(LPA)步骤的吸附塔1’的工艺及物料管道随着m’通道旋转阀顺时针方向同步旋转至如图1中的吸附塔2’(n’=2’)位置与吸附塔2’对接,使得该吸附塔2’进入氨浓缩吸附相的均压降(ED)与顺放(PP)步骤,其产生的均压降气(ED)流经m’通道旋转阀中的共用通道(如m’=5’)及与相应的圆环形旋转托盘内置管道与吸附塔4’相连接的工艺管道,对处于氨浓缩吸附相的均压升(ER) 步骤的吸附塔4’(n’=4’)进行均压,其吸附塔2’内的压力降至为0.3~0.4MPa,接着进行顺放(PP)所产生的顺放气(PP)流经m’通道旋转阀中的共用通道(如m’=6’)及与相应的圆环形旋转托盘内置管道与吸附塔3’相连接的工艺管道,对处于氨浓缩吸附相的冲洗(P)步骤的吸附塔3’(n’=3’)进行冲洗,在吸附塔2’进行氨浓缩吸附相的顺放(PP)与冲洗(P)步骤的同时,随着m通道旋转阀顺时针方向同步旋转至如图1中的吸附塔2(n=2)位置,吸附塔2进入富氮吸附相的一次均压降(E1D)、二次均压降(E2D)与顺放(PP)步骤,其产生的一次均压降气(E1D)与二次均压降气(E2D)先后流经m通道旋转阀中的共用通道(如m=2与5)及与相应的圆环形旋转托盘内置管道与吸附塔2相连接的工艺管道,对处于含氮吸附相的一次与二次均压升(E1R与E2R)步骤的吸附塔4(n=4)进行均压,其吸附塔2内的压力降至为0.3~0.4MPa,接着进行顺放(PP)所产生的顺放气(PP)流经m通道旋转阀中的共用通道(如m=6)及与相应的圆环形旋转托盘内置管道与吸附塔3相连接的工艺管道,对处于含氮吸附相的冲洗(P)步骤的吸附塔3(n=3)进行冲洗,随着m通道旋转阀顺时针方向同步旋转至如图1中的吸附塔3(n=3)位置,吸附塔3进入含氮吸附相的逆放(D)与冲洗(P)步骤,其中,逆放气(D)作为富氮解吸气(N 2D)流经m通道旋转阀中的共用通道(如m=1)及与相应的圆环形旋转托盘内置管道与吸附塔3相连接的物料与工艺管道,从m通道旋转阀m=1通道的出口端流出进入富氮解吸气(N 2D)缓冲罐后排放,接着来自处于顺放(PP)步骤的吸附塔2所产生的顺放气(PP)作为冲洗气(P)对处于冲洗(P)步骤的吸附塔3进行冲洗(P),所产生的含氮冲洗废气(N 2PW)作为低压中间气(LPIG)流经正好处于n’通道旋转阀中的开设有2个通孔的供中间气(IG)使用的共用通 道(如m’=3’)中的一个通孔及与相应的圆环形旋转托盘内置管道与吸附塔3相连接的物料与工艺管道,从m’通道旋转阀m’为3’通道的出口端流出,进入低压中间气(IG)缓冲罐循环使用,在含氮吸附相的n=2与n=3的吸附塔2与3进行相应解吸步骤的同时,随着m’通道旋转阀顺时针方向旋转至如图1中的吸附塔3’(n’=3’)位置,吸附塔3’进入氨浓缩吸附相的逆放(D)与冲洗(P)步骤,其中,逆放(D)产生的富氨(浓缩)逆放气(NH 3D)与紧接着进行的以来自处于顺放(PP)步骤的吸附塔2’流出的含氨顺放气(PP)进行冲洗(P)后产生的富氨冲洗废气(NH 3PW)作为氨浓缩气(NH 3CG)先后流经n’通道旋转阀中的共用通道(如m’=2’)及与相应的圆环形旋转托盘内置管道与吸附塔3’相连接的物料与工艺管道,从n’通道旋转阀n’为2’通道的出口端流出,并经换热2(冷却)与冷凝冷冻器形成的冷凝液为氨纯度为大于等于99.99%的液氨产品(NH 3PL)输出使用,形成的不凝气流经物料管道返回至低压中间气(IG)缓冲罐循环使用,在吸附塔3’进行相应的含氨吸附相的解吸步骤的同时,随着m通道旋转阀顺时针方向旋转至如图1中的吸附塔4(n=4)位置,吸附塔4进入含氮吸附相的二次均压升(E2R)与一次均压升(E1R)步骤,其先后与处于一次均压降(E1D)与二次均压降(E2D)步骤的吸附塔2进行一次与二次均压升(E1R与E2R),所用的m通道旋转阀中的共用通道分别为m=2与5,在吸附塔4进行二次均压升(E1R与E2R)步骤与等待区等待的同时,随着m’通道旋转阀顺时针方向旋转至如图8中的吸附塔4’(n’=4’)位置,吸附塔4’进入含氨吸附相的均压升(ER)与终充(FR)步骤,来自处于含氨吸附相的均压降(ED)步骤的吸附塔2’产生的均压降气(ED)流经m’通道旋转阀共用通道(如m’=5’)及与相应的圆环形旋转托盘内置管道与吸 附塔4’相连接的物料与工艺管道,对吸附塔4’进行均压,随后以原料气(F)为终充气(FR)流经m’通道旋转阀通道(如m’=1’)及与相应的圆环形旋转托盘内置管道与吸附塔4’相连接的物料与工艺管道,对吸附塔4’进行终充(FR),使得吸附塔4’中的吸附压力达到低压吸附(LPA)步骤所需的吸附压力0.6~0.8MPa,由此构成了吸附塔1’完整的氨浓缩吸附相的变压吸附(PSA)闭环式循环操作,即,低压吸附(LPA)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/终充(FR)步骤,然后该吸附塔1’再进入下一个吸附与解吸的闭环式循环操作过程,而相应的进出吸附塔2’、3’与4’的物料气体及工艺气体,也在吸附塔1’吸附与解吸的闭环式循环操作过程中经由m’通道旋转阀连续转动切换各个吸附塔的物料或及工艺气体进出位置进行相应的吸附与解吸的闭环式循环操作步骤,4(n’=4’)个吸附塔中的每一个吸附塔的闭环式循环操作步骤都对应着其它3个吸附塔各自的闭环式循环操作步骤,由此,从GaN-MOCVD制程尾气为原料气中连续地生产出氨浓度大于等于99.99%(v/v)的液氨产品(NH 3PL),液氨产品的收率为98~99%,同时,在吸附塔4’进行终充(FR)过程中,随着m通道旋转阀顺时针方向旋转至如图1中的吸附塔5(n=5)位置,吸附塔5进入富氮吸附相的终充(FR)步骤,以氢气产品气(H 2PG)为终充气(FR)流经m通道旋转阀通道(如m=7)及与相应的圆环形旋转托盘内置管道与吸附塔5相连接的物料与工艺管道,对吸附塔5进行终充(FR),使得吸附塔5中的吸附压力达到高压吸附(HPA)步骤所需的吸附压力2~3MPa,由此构成了吸附塔1完整的含氮吸附相的变压吸附(PSA)闭环式循环操作,即,高压吸附(HPA)-一次均压降(E1D)/二次均压降(E2D)/顺放(PP)-逆放(D)/冲洗(P)-二次均压升(E2R)/一次均压升/等待区-终 充(FR)步骤,然后该吸附塔1再进入下一个吸附与解吸的闭环式循环操作过程,而相应的进出吸附塔2、3、4与5的物料气体及工艺气体,也在吸附塔1吸附与解吸的闭环式循环操作过程中经由m通道旋转阀连续转动切换各个吸附塔的物料或及工艺气体进出位置进行相应的吸附与解吸的闭环式循环操作步骤,5(n=5)个吸附塔中的每一个吸附塔的闭环式循环操作步骤都对应着其它4个吸附塔各自的闭环式循环操作步骤,由此,从GaN-MOCVD制程尾气为原料气中连续地生产出氢气(H 2)浓度大于等于99.99%(v/v)的H 2产品气(H 2PG),H 2产品气收率大于等于92~95%,由此,大幅度减少了能耗与解吸气的排放,实现了在GaN-MOCVD制程尾气中同时实现了高低压(即,相对于非吸附相的氢气而言是“分浓度”)吸附与从吸附相与非吸附相气体提取H 2与NH 3产品的PSA工艺过程的轴向流固定床层基础上进行的模拟旋转PSA工艺的高纯度与高收率的“双高”,所获取的H 2与NH 3再返回到GaN-MOCVD制程中循环使用,使得GaN-MOCVD制程尾气得到了再利用。
实施例2
如图2所示,在实施例1基础上,在中高温变压吸附氨浓缩系统中采用抽真空(V)解吸步骤替代氨浓缩吸附相的逆放(D)步骤,抽真空(V)形成的解吸气(D)从n’(如n’=3’)吸附塔出口端流出并流经与圆环形旋转托盘上的吸附塔出口端连接的外置管道且在外置管道上设有真空泵及控制阀门控制流量后进入富氨(浓缩)解吸气(NH 3D)缓冲罐,最大真空度为-0.08MPa,相应的6’通道旋转阀中原来的逆放气(D)通道(如m’=2’)变为空道,而随后的以顺放气(PP)为冲洗气(P)进行冲洗(P)时,产生的富氨冲洗废气(NH 3PW)进入空道,先后与富氨解吸气(NH 3D)形成氨浓缩气(NH 3CG)经换热2(冷 却)后进入冷凝冷冻,得到的液氨产品(NH 3PL)纯度大于等于99.995%,收率大于等于99%,除此之外,顺放气(PP)为冲洗气(P)还起到了填充吸附塔的真空状态作用,使得n’吸附塔回到常压或微正压状态,同时,也相应地减少了非吸附相中间气(IG)及冷凝冷冻(机)流出的不凝气体作为低压中间气(LPIG)中氨含量的大幅度下降,使得中间气变压吸附提氢系统的吸附剂使用寿命及中高温变压吸附氨浓缩系统的吸附剂使用寿命大幅度延长。
实施例3
如图3所示,在实施例1与2基础上,在中间气变压吸附提氢系统中采用抽真空(V)解吸步骤替代氨浓缩吸附相的逆放(D)步骤,抽真空(V)形成的富氮解吸气(N 2D)从n(如n=3)吸附塔出口端流出并流经与圆环形旋转托盘上的吸附塔出口端连接的外置管道且在外置管道上设有真空泵及控制阀门控制流量后进入富氮解吸气(N 2D)缓冲罐,最大真空度为-0.08MPa,相应的7通道旋转阀中原来的逆放气(D)通道(如m=1)变为空道,n吸附塔中的吸附剂解吸完全,得到的H 2产品气(H 2PG)纯度大于等于99.999%,收率大于等于95%,吸附剂使用寿命进一步延长。
显而易见的,上面所述的实施例仅仅是本发明实施例中的一部分,而不是全部。基于本发明记载的实施例,本领域技术人员在不付出创造性劳动的情况下得到的其它所有实施例,或在本发明的启示下做出的结构变化,凡是与本发明具有相同或相近的技术方案,均落入本发明的保护范围之内。

Claims (8)

  1. 一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的全温程模拟旋转移动床变压吸附(FTrSRMPSA)系统,括一n(4≤n≤40自然整数)个吸附塔的多塔中温变压吸附浓缩系统(含驱动机构)、一n’(4≤n’≤40自然整数)个吸附塔的多塔中低温中间气变压吸附系统(含驱动机构)、H 2产品气(H 2PG)/原料气(F)/中间气(IG)/富氮解吸气(N 2D)缓冲罐、液氨产品储罐、原料气压缩机1/中间气压缩机2、原料气换热1(加热)/氨浓缩气换热2(冷却)/冷凝冷冻以及相应的物料与工艺管道所组成,其中,n个装载有多种吸附剂且有一定高径比的轴向流固定复合床吸附塔(简称“n吸附塔”)的中高温变压吸附氨浓缩系统与n’个装载有多种吸附剂且有一定高径比的轴向流固定复合床吸附塔(简称“n’吸附塔”)的中间气变压吸附提氢系统,是由n吸附塔与n’吸附塔分别均匀间隔安置在一个以旋转速度为ω 2(秒/周转)的圆环形旋转托盘上的(n+n’)个吸附塔及相应的驱动机构、m(5≤m≤36自然整数)个通道与m’(5≤m’≤36自然整数)个通道并安置在圆环形托盘中央且分别以旋转速度为ω 1(秒/周转)与ω 1’(秒/周转)的上下两个独立旋转的多通道旋转阀,上面的旋转阀简称“m通道旋转阀”,下面的旋转阀简称“m’通道旋转阀”,其m与m’通道进出口端分别通过与圆环形旋转托盘内置管道及对应的n吸附塔/n’吸附塔进出口端相连,连接H 2产品气/原料气/中间气/富氮解吸气缓冲罐及原料气压缩机1/换热1/中间气压缩机2/氨浓缩气换热2/氨冷凝冷冻的物料及工艺管道分别与m/m’通道旋转阀进出口、旋转托盘内置管道进出口及n/n’吸附塔进出口端相连,其工艺流程为,在GaN-MOCVD外延制程中产生的尾气作为原料气(F),其典型主要组分为55%(v/v,以下类同)氢气(H 2)、25% 氮气(N 2)、20%氨气(NH 3),其余包括少量或微量或痕量的金属离子、颗粒物、甲烷(CH 4)、氧气(O 2)以及包括一氧化碳(CO)、二氧化碳(CO 2)、水(H 2O)在内的氧化物,温度为25~40℃,压力为常压或微正压,从原料气缓冲罐流出并经换热1加热至80~120℃及原料气(F)压缩机1加压至0.6~0.8MPa进入中高温变压吸附氨浓缩系统中的m通道旋转阀通道以及连接于圆环形旋转托盘内置管道进入n吸附塔中的某个吸附塔进行中高温变压吸附氨浓缩,从系统中连续产出的由富氨逆放气(NH 3D)与富氨冲洗废气(NH 3PW)形成的氨浓缩气(NH 3CG),氨浓度为大于等于90~95%,经换热2冷却至25~40℃后进入氨冷凝冷冻单元,由此产生的冷凝液为液氨产品(NH 3PL),浓度为99.99~99.999%,收率为98~99%,输入液氨产品罐,由此产生的不凝气体作为低压中间气(LPIG)进入中间气(IG)缓冲罐,从中高温变压吸附氨浓缩系统流出的非吸附相气体为低压中间气(LPIG)进入中间气(IG)缓冲罐,并与不凝气体作为低压中间气(LPIG)一起流出缓冲罐且经中间气(IG)压缩机2增压至2.0~3.0MPa形成高压中间气(HPIG)进入中间气变压吸附提氢系统中的m’通道旋转阀通道以及连接于圆环形旋转托盘内置管道进入n’吸附塔中的某个吸附塔进行中间气变压吸附提氢,从系统中连续产出非吸附相的氢气产品(H 2PG),其纯度为99.99~99.999%,收率为92~95%,从系统中连续流出的吸附相的富氮解吸气(N 2D)进入富氮解吸气(N 2D)缓冲罐并流出,或直接排放,或进入深冷制氮及回收H 2,或进入膜分离回收H 2,由此,构成一个完整的以GaN-MOCVD制程尾气为原料气“高纯度、高收率”的制取H 2与NH3的全温程模拟旋转移动床变压吸附(FTrSRMPSA)分离与净化工艺,从GaN-MOCVD制程尾气中获得纯度大 于等于99.99%、收率大于等于92%的高纯度H 2产品气(H 2PG)与纯度大于等于99.99%、收率大于等于98%的液氨产品(NH 3PL),并返回到GaN-MOCVD制程中循环使用。
  2. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统中的m及m’通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1、ω 1’与ω 2)之间的调控匹配,包括,1)同向同步,顺时针或逆时针方向同向旋转,且,ω 1=ω 1’=ω 2/≠0,2)同向异步,顺时针或逆时针方向同向旋转,且,或ω 1≠0≥ω 1’≠0/ω 2=0,或ω 1≠0≤ω 1’≠0/ω 2=0,或ω 1=ω 1’=0/ω 2≠0,优选的,同向异步的顺时针或逆时针方向的同向旋转且ω 1≠0≤ω 1’≠0/ω 2=0。
  3. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统中的n个吸附塔先后交替经历吸附(A)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/等待区(-)-终充(FR)的吸附与解吸循环操作步骤,其中,均压次数最多为2次,包括一次均压降(E1D)/一次均压升(E1R)与二次均压降(E2D)/二次均压升(E2R),顺放(PP)与等待(-)步骤需依据变压吸附循环操作过程中的每个吸附塔交替时序灵活安置,其中,n个吸附塔先后交替经历变压吸附循环操作步骤是通过中高温变压吸附氨浓缩系统中的m通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1、与ω 2)之间的调控匹配,以及m通道旋转阀中每个通道交替定时切换变压吸附循环操作过程中的流经的物料与工艺气体而进入n吸附塔进行变 压吸附循环操作。
  4. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中间气变压吸附提氢系统中的n’个吸附塔先后交替经历吸附(A)-均压降(ED)/顺放(PP)-逆放(D)/冲洗(P)-均压升(ER)/等待区(-)-终充(FR)的吸附与解吸循环操作步骤,其中,均压次数最多为3次,包括一次均压降(E1D)/一次均压升(E1R)、二次均压降(E2D)/二次均压升(E2R)、三次均压降(E3D)/三次均压升(E3R),顺放(PP)与等待(-)步骤需依据变压吸附循环操作过程中的每个吸附塔交替时序灵活安置,其中,n’个吸附塔先后交替经历变压吸附循环操作步骤是通过中间气变压吸附提氢系统中的m’通道旋转阀及圆环形旋转托盘旋转方向及其调控其旋转速度(ω 1’与ω 2)之间的调控匹配,以及m’通道旋转阀中每个通道交替定时切换变压吸附循环操作过程中的流经的物料与工艺气体而进入n’吸附塔进行变压吸附循环操作。
  5. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的冲洗气(P),或来自系统内的顺放气(PP)/中间气(IG),或来自系统外的H 2产品气(H2PG)/氨浓缩气(NH 3CG),通过旋转阀通道(槽道)中一个或多个的开孔实现分批次进行冲洗,开孔数至多为4个,优选的来自系统内的顺放气(PP)作为冲洗气(P)。
  6. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的逆放(D)步骤采用抽真空方式进行解吸, 增设的真空泵,或与解吸气(D)流出旋转阀的物流管道相连,或与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门,优选的与圆环形旋转托盘上的吸附塔出口端连接的外置管道直接相连且在外置管道上设有控制阀门。
  7. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩系统与中间气变压吸附提氢系统的变压吸附循环操作中的终充气(FR),或来自系统外的原料气(F)或中间气(IG)或氨浓缩气(NH 3CG)或H 2产品气(H 2PG),在H 2产品气(H 2PG)纯度大于99.99%工况下,优选的采用H 2产品气(H 2PG)作为终充气(FR)。
  8. 如权利要求1所述的一种GaN-MOCVD尾气提取H 2与NH 3的全温程模拟旋转移动床变压吸附工艺,其主要特征在于,所述的中高温变压吸附氨浓缩与中间气变压吸附提氢系统的n吸附塔及n’吸附塔中,分别装载有活性氯化钙、活性炭、分子筛的一种或多种组合吸附剂,以及装载有三氧化二铝、硅胶、活性炭、分子筛、碳分子筛的一种或多种组合吸附剂,优选的,两个系统中的吸附塔内装载二种及以上的多种组合吸附剂形成复合吸附剂床层。
PCT/CN2022/130758 2022-03-16 2022-11-09 一种GaN-MOCVD制程尾气提取H2与NH3全温程模拟旋转移动床变压吸附工艺 WO2023173767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210259581.5A CN114570162B (zh) 2022-03-16 2022-03-16 一种GaN-MOCVD尾气提取H2与NH3的全温程模拟旋转移动床变压吸附工艺
CN202210259581.5 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023173767A1 true WO2023173767A1 (zh) 2023-09-21

Family

ID=81780164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130758 WO2023173767A1 (zh) 2022-03-16 2022-11-09 一种GaN-MOCVD制程尾气提取H2与NH3全温程模拟旋转移动床变压吸附工艺

Country Status (2)

Country Link
CN (1) CN114570162B (zh)
WO (1) WO2023173767A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114570162B (zh) * 2022-03-16 2023-07-21 浙江天采云集科技股份有限公司 一种GaN-MOCVD尾气提取H2与NH3的全温程模拟旋转移动床变压吸附工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705627A (en) * 1982-02-04 1987-11-10 Toray Industries, Inc. Absorption apparatus including rotary valve
US6063161A (en) * 1996-04-24 2000-05-16 Sofinoy Societte Financiere D'innovation Inc. Flow regulated pressure swing adsorption system
US20180229177A1 (en) * 2017-02-15 2018-08-16 Exxonmobil Research And Engineering Company Fast cycle gas phase simulated moving bed apparatus and process
CN108609583A (zh) * 2018-05-29 2018-10-02 四川天采科技有限责任公司 一种led-mocvd制程高浓度含氨尾气全温程变压吸附制氢再利用方法
CN108658042A (zh) * 2018-05-29 2018-10-16 四川天采科技有限责任公司 一种led-mocvd制程尾气全温程变压吸附全组分回收再利用方法
CN108744882A (zh) * 2018-05-29 2018-11-06 浙江天采云集科技股份有限公司 一种led-mocvd制程废气全温程变压吸附提氨再利用的方法
US20190366259A1 (en) * 2018-05-29 2019-12-05 Zhejiang Tiancaiyunji Technology Co.,Ltd. Methods For Extracting And Recycling Hydrogen From MOCVD Process Exhaust Gas By FTrPSA
CN114570162A (zh) * 2022-03-16 2022-06-03 浙江天采云集科技股份有限公司 一种GaN-MOCVD尾气提取H2与NH3的全温程模拟旋转移动床变压吸附工艺
CN114588749A (zh) * 2022-03-16 2022-06-07 浙江天采云集科技股份有限公司 一种从合成氨驰放气中提取h2与nh3的全温程模拟旋转移动床变压吸附工艺
CN114748980A (zh) * 2022-03-16 2022-07-15 四川天采科技有限责任公司 合成气分离提取h2/co的全温程模拟旋转移动床变压吸附工艺

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6293999B1 (en) * 1999-11-30 2001-09-25 Uop Llc Process for separating propylene from propane
CN104511183B (zh) * 2013-09-29 2016-08-24 中国石油化工股份有限公司 一种模拟移动床吸附分离方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4705627A (en) * 1982-02-04 1987-11-10 Toray Industries, Inc. Absorption apparatus including rotary valve
US6063161A (en) * 1996-04-24 2000-05-16 Sofinoy Societte Financiere D'innovation Inc. Flow regulated pressure swing adsorption system
US20180229177A1 (en) * 2017-02-15 2018-08-16 Exxonmobil Research And Engineering Company Fast cycle gas phase simulated moving bed apparatus and process
CN108609583A (zh) * 2018-05-29 2018-10-02 四川天采科技有限责任公司 一种led-mocvd制程高浓度含氨尾气全温程变压吸附制氢再利用方法
CN108658042A (zh) * 2018-05-29 2018-10-16 四川天采科技有限责任公司 一种led-mocvd制程尾气全温程变压吸附全组分回收再利用方法
CN108744882A (zh) * 2018-05-29 2018-11-06 浙江天采云集科技股份有限公司 一种led-mocvd制程废气全温程变压吸附提氨再利用的方法
US20190366260A1 (en) * 2018-05-29 2019-12-05 Zhejiang Tiancaiyunji Technology Co.,Ltd. Methods For Extracting And Recycling Ammonia From MOCVD Process Exhaust Gas By FTrPSA
US20190366259A1 (en) * 2018-05-29 2019-12-05 Zhejiang Tiancaiyunji Technology Co.,Ltd. Methods For Extracting And Recycling Hydrogen From MOCVD Process Exhaust Gas By FTrPSA
CN114570162A (zh) * 2022-03-16 2022-06-03 浙江天采云集科技股份有限公司 一种GaN-MOCVD尾气提取H2与NH3的全温程模拟旋转移动床变压吸附工艺
CN114588749A (zh) * 2022-03-16 2022-06-07 浙江天采云集科技股份有限公司 一种从合成氨驰放气中提取h2与nh3的全温程模拟旋转移动床变压吸附工艺
CN114748980A (zh) * 2022-03-16 2022-07-15 四川天采科技有限责任公司 合成气分离提取h2/co的全温程模拟旋转移动床变压吸附工艺

Also Published As

Publication number Publication date
CN114570162B (zh) 2023-07-21
CN114570162A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
TWI787509B (zh) 一種led-mocvd製程廢氣全溫程變壓吸附提氫再利用的方法
TWI707718B (zh) 一種led金屬氧化物化學氣相沉積(mocvd)製程尾氣全溫程變壓吸附全組分回收再利用方法
CN108744882B (zh) 一种led-mocvd制程废气全温程变压吸附提氨再利用的方法
CN210340328U (zh) 一种一体式连续制氧制氮装置
CN109260902B (zh) Led-mocvd制程尾气膜与吸附耦合提氨再利用的方法
WO2023173767A1 (zh) 一种GaN-MOCVD制程尾气提取H2与NH3全温程模拟旋转移动床变压吸附工艺
CN114748979B (zh) 一种全温程模拟旋转移动床变压吸附FTrSRMPSA气体分离与净化方法
CN110015647A (zh) 一种从mocvd制程尾气提氢解吸气中提氮再利用的方法
CN110040700B (zh) 一种mocvd制程氢氮混合尾气的分离提纯再利用方法
CN114588749B (zh) 一种从合成氨驰放气中提取h2与nh3的全温程模拟旋转移动床变压吸附工艺
CN110510636B (zh) 一种工业氨水及高纯氨联产系统及工艺
CN111013382A (zh) 一种己二酸生产装置尾气处理装置及方法
US20220168683A1 (en) Energy-saving process system for purifying and recycling oxygen from high-temperature oxygen-enriched flue gas and process thereof
CN116196734A (zh) 一种水泥全氧燃烧耦合烟气二氧化碳捕集提纯装置
CN214456868U (zh) 一种基于变压吸附制氮协同化学链空分制氧装置
CN114665132A (zh) 带有变压吸附制氧装置的质子交换膜燃料电池发电系统
CN212142124U (zh) 一种己二酸生产装置尾气处理装置
CN113209779B (zh) 一种无需增压的溶剂/水合组合气体分离工艺
CN217490338U (zh) 一种撬装甲醇式制氢加注一体站二氧化碳捕集装置
CN217426810U (zh) 带有变压吸附制氧装置的质子交换膜燃料电池发电系统
CN111960435B (zh) 一种新型氨气浓缩及分离工艺
CN115382350A (zh) 一种从混合气中回收co2的全温程模拟旋转移动床变压吸附工艺
CN117065526A (zh) 一种基于膜分离的氨分解制氢系统及制氢方法
CN114804026A (zh) 一种甲烷重整气制备高纯氢的装置系统及方法
CN116294430A (zh) 一种液氮洗联产装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931780

Country of ref document: EP

Kind code of ref document: A1