WO2023173658A1 - 电能表动态误差测量装置、系统及方法 - Google Patents

电能表动态误差测量装置、系统及方法 Download PDF

Info

Publication number
WO2023173658A1
WO2023173658A1 PCT/CN2022/110229 CN2022110229W WO2023173658A1 WO 2023173658 A1 WO2023173658 A1 WO 2023173658A1 CN 2022110229 W CN2022110229 W CN 2022110229W WO 2023173658 A1 WO2023173658 A1 WO 2023173658A1
Authority
WO
WIPO (PCT)
Prior art keywords
test signal
electric energy
current
energy value
meter
Prior art date
Application number
PCT/CN2022/110229
Other languages
English (en)
French (fr)
Inventor
马建
胡涛
王学伟
陈克绪
吴迪
赵燕
邓高峰
刘强
杨爱超
黄颜琳子
Original Assignee
国网江西省电力有限公司供电服务管理中心
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国网江西省电力有限公司供电服务管理中心, 北京化工大学 filed Critical 国网江西省电力有限公司供电服务管理中心
Priority to US18/052,580 priority Critical patent/US20240085510A1/en
Publication of WO2023173658A1 publication Critical patent/WO2023173658A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio

Definitions

  • the present application relates to the technical field of electric energy meter detection, and specifically relates to a dynamic error measurement device, system and method for an electric energy meter.
  • Detecting the dynamic error of the meter under inspection usually requires the measuring device to output an AC current signal with changing amplitude, and then measure the measurement error of the meter under inspection under the changing current signal (or power signal).
  • the dynamic accuracy of the measuring device itself is generally required to be 2 levels higher than the meter under inspection.
  • To obtain the dynamic error index of the measuring device itself it is usually necessary to carry out dynamic traceability testing of the measuring device.
  • the general method of testing is to use a standard meter with a dynamic accuracy two levels higher than that of the measuring device. Under the dynamic test signal output by the measuring device, measure the electric energy at the same time as the measuring device. Then, by comparing the difference in measured electric energy between the two, we get Dynamic errors of measuring devices.
  • embodiments of the present application provide a dynamic error measurement device, system and method for an electric energy meter, aiming to overcome or partially overcome the above technical problems.
  • a dynamic error measurement device for an electric energy meter including a test signal generation unit, a measurement unit, a current addition unit and a calculation control unit; wherein,
  • a test signal generation unit is used to generate a voltage test signal and a secondary current test signal according to the control of the calculation control unit, output the voltage test signal to the measurement unit, and output the secondary current test signal to the current addition unit and the measurement unit;
  • a measuring unit used to determine the secondary electrical energy value based on the received voltage test signal and secondary current test signal, and output the secondary electrical energy value to the calculation control unit;
  • the current addition unit is used to determine the combined current signal based on the two current test signals
  • the calculation control unit is used to determine the total electric energy value based on the secondary electric energy value.
  • the test signal generation unit is used to generate a single-phase voltage test signal and a second-circuit single-phase current test signal according to the control of the calculation control unit, output the single-phase voltage test signal to the measurement unit, and output the second-circuit single-phase current test signal to the measurement unit.
  • a measuring unit used to determine the second-circuit single-phase electric energy value based on the received single-phase voltage test signal and the second-circuit single-phase current test signal, and output the second-circuit single-phase electric energy value to the calculation control unit;
  • the current addition unit is used to determine the single-phase combined current signal based on the two single-phase current test signals
  • the calculation control unit is used to determine the total single-phase electric energy value based on the two-circuit single-phase electric energy value.
  • the test signal generation unit is used to generate a three-phase voltage test signal and a two-circuit three-phase current test signal according to the control of the calculation control unit, output the three-phase voltage test signal to the measurement unit, and generate the two-circuit three-phase current test signal.
  • a measuring unit used to determine the second-circuit three-phase electric energy value based on the received three-phase voltage test signal and the second-circuit three-phase current test signal, and output the second-circuit three-phase electric energy value to the calculation control unit;
  • the current addition unit is used to determine the three-phase combined current signal based on the two-circuit three-phase current test signal;
  • the calculation control unit is used to determine the total three-phase electric energy value based on the two-circuit three-phase electric energy value.
  • the second return current test signal includes: a first return current test signal and a second return current test signal;
  • the second return energy value includes: a first return energy value and a second return energy value;
  • the measuring unit is used to determine the first return energy value according to the voltage test signal and the first return current test signal, and determine the second return energy value according to the voltage test signal and the second return current test signal; and combine the first return energy value and the second return current test signal.
  • the second recharge energy value is output to the calculation control unit;
  • the calculation control unit is used to determine the total electric energy value based on the sum of the first electric energy value and the second electric energy value.
  • a dynamic error calibration system for an electric energy meter dynamic error measurement device including: a standard meter and the above electric energy meter dynamic error measurement device; wherein,
  • the standard meter is used to receive the voltage test signal and combined current signal output by the dynamic error measurement device of the electric energy meter, and determine the standard electric energy value based on the voltage test signal and the combined current signal; the steady-state accuracy of the standard meter is higher than the dynamic error of the electric energy meter. dynamic accuracy of the measuring device;
  • the calculation control unit or the error calculator of the standard meter is also used to calibrate the dynamic error of the electric energy meter dynamic error measuring device according to the standard electric energy value and the total electric energy value.
  • a dynamic error calibration method of a dynamic error measurement device for an electric energy meter is provided, which is implemented by the dynamic error calibration system of the dynamic error measurement device for an electric energy meter.
  • the method includes:
  • the test signal generation unit generates a voltage test signal and a secondary current test signal according to the control of the calculation control unit;
  • the test signal generating unit outputs the voltage test signal and the secondary current test signal to the measurement unit, so that the measurement unit determines the secondary electrical energy value based on the voltage test signal and the secondary current test signal;
  • the test signal generating unit outputs the voltage test signal to the standard meter, and the current adding unit outputs the combined current signal to the standard meter, so that the standard meter determines the standard electric energy value based on the voltage test signal and the combined current signal;
  • the calculation control unit or the error calculator of the standard meter calibrates the dynamic error of the dynamic error measuring device of the electric energy meter based on the total electric energy value and the standard electric energy value.
  • the first current test signal and the second current test signal among the two current test signals form a mirror image change pair.
  • the formed mirror image change pair uses a power frequency steady-state signal as a reference signal, and the two current test signals
  • the waveform of the relative reference signal is constantly changing, and at any time, the ratio of the sum of the instantaneous values of the first return current test signal and the second return current test signal to the instantaneous value of the reference signal at that time remains unchanged.
  • a dynamic error measurement system for an electric energy meter including: a meter to be inspected and the above dynamic error measurement device for an electric energy meter; wherein,
  • the meter to be inspected is used to receive the voltage test signal and the combined current signal output by the dynamic error measurement device of the electric energy meter, and determine the electric energy value to be inspected based on the voltage test signal and the combined current signal;
  • the calculation control unit is also used to determine the dynamic error of the meter being tested based on the electric energy value to be tested and the total electric energy value.
  • a method for testing the dynamic error of the meter under inspection using an electric energy meter dynamic error measurement device is provided, which is implemented by the above electric energy meter dynamic error measurement system.
  • the method includes:
  • the test signal generating unit outputs the voltage test signal and the secondary current test signal to the measurement unit, so that the measurement unit determines the secondary electrical energy value based on the voltage test signal and the secondary current test signal;
  • the test signal generating unit outputs the secondary current test signal to the current adding unit, so that the current adding unit determines the combined current signal based on the secondary current test signal;
  • the test signal generating unit outputs the secondary electrical energy value to the calculation control unit, so that the calculation control unit determines the total electrical energy value based on the secondary electrical energy value;
  • the test signal generating unit outputs the voltage test signal to the meter under test, and the current adding unit outputs the combined current signal to the meter under test, so that the meter under test determines the test signal to be tested based on the voltage test signal and the combined current signal.
  • Electric energy value
  • the calculation control unit determines the dynamic error of the meter being tested based on the total electric energy value and the electric energy value to be tested.
  • the first return current test signal and the second return current test signal among the two return current test signals form a same-image changing pair, and both are power frequency signals.
  • the first return current test signal and the second return current test signal The effective power frequency value of the return current test signal changes with time, and the waveform always remains consistent.
  • This application provides a dynamic error measurement device, system and method for an electric energy meter.
  • a conventional electric energy meter that only guarantees steady-state indicators can be used as a standard meter, which solves the current problem of lack of high dynamic accuracy standard meters;
  • the measuring device performs dynamic error calibration, the theoretical value of the standard electric energy value measured by the standard meter and the total electric energy value determined by the measuring device are equal in any time period, so that the dynamic error calibration can be achieved in the shortest theoretical time; then Yes, the dynamic error test of the meter under test and the dynamic error calibration of the measuring device have the same hardware configuration and wiring method, which can greatly reduce the uncertainty factors that affect the test results.
  • Figure 1 shows a schematic structural diagram of a dynamic error measurement device for an electric energy meter according to an embodiment of the present application
  • Figure 2 shows a schematic structural diagram of the current summation unit of the electric energy meter dynamic error measurement device according to one embodiment of the present application
  • Figure 3 shows a schematic structural diagram of the dynamic error calibration system of the electric energy meter dynamic error measurement device according to one embodiment of the present application
  • Figure 5 shows the waveform diagram of the a-phase voltage test signal, the first return current test signal and the second return current test signal during dynamic error calibration of the electric energy meter dynamic error measurement device according to one embodiment of the present application;
  • Figure 6 shows a schematic structural diagram of an electric energy meter dynamic error measurement system according to another embodiment of the present application.
  • FIG. 7 shows a schematic flowchart of a method for testing the dynamic error of the meter under inspection by an electric energy meter dynamic error measuring device according to another embodiment of the present application.
  • the concept of this application is to provide a dynamic error measurement device, system and method for an electric energy meter.
  • a conventional electric energy meter that only guarantees steady-state indicators can be used as a standard meter.
  • the electric energy meter dynamic error measuring device When using the electric energy meter dynamic error measuring device to test the dynamic error of the meter under inspection, continue the same hardware configuration and wiring method as the dynamic error calibration of the measuring device. This solves the current problem of lack of high dynamic accuracy standard tables when performing dynamic error calibration of measurement devices, while ensuring that there are fewer uncertainty factors affecting test results and the dynamic error calibration time is shorter.
  • An electric energy meter dynamic error measurement device 100 provided by an embodiment of the present application includes a test signal generation unit 101, a measurement unit 102, a current addition unit 103 and a calculation control unit 104.
  • the test signal generation unit 101 is used to generate a voltage test signal and a secondary current test signal according to the control of the calculation control unit 104, output the voltage test signal to the measurement unit 102, and output the secondary current test signal to the current adding unit 103 and Measurement unit 102.
  • the measurement unit 102 is configured to determine the secondary electrical energy value according to the received voltage test signal and secondary current test signal, and output the secondary electrical energy value to the calculation control unit 104 .
  • the current adding unit 103 is used to determine the combined current signal based on the two current test signals.
  • the calculation control unit 104 is used to determine the total electric energy value according to the two electric energy values.
  • the calculation control unit 104 plays the following roles in the electric energy meter dynamic error measurement device 100: First, the calculation control unit 104 can realize human-computer interaction, that is, the user sends instructions to the calculation control unit 104, causing the calculation control unit 104 to control the generation of test signals. Unit 101 generates and outputs a voltage test signal and a secondary current test signal. Second, the calculation control unit 104 can implement data transmission, including receiving the secondary electrical energy value output by the measurement unit 102 in the form of electrical energy pulses. Third, the calculation control unit 104 can implement data calculation functions, including determining the total electrical energy value based on the secondary electrical energy values.
  • the electric energy meter dynamic error measurement device 100 may be a single-phase measurement device.
  • the test signal generation unit 101 is used to generate a single-phase voltage test signal and a two-circuit single-phase current test signal according to the control of the calculation control unit 104, output the single-phase voltage test signal to the measurement unit 102, and output the two-circuit single-phase current test signal.
  • the measuring unit 102 determines the second-circuit single-phase electric energy value according to the received single-phase voltage test signal and the second-circuit single-phase current test signal, and outputs the second-circuit single-phase electric energy value.
  • the current addition unit 103 determines the single-phase combined current signal based on the two-circuit single-phase current test signals;
  • the calculation control unit 104 determines the single-phase total electric energy value based on the two-circuit single-phase electric energy values.
  • the electric energy meter dynamic error measurement device 100 may also be a three-phase measurement device.
  • the test signal generation unit 101 is used to generate a three-phase voltage test signal and a two-circuit three-phase current test signal according to the control of the calculation control unit 104, output the three-phase voltage test signal to the measurement unit 102, and output the two-circuit three-phase current test signal.
  • the measuring unit 102 determines the second-circuit three-phase electric energy value according to the received three-phase voltage test signal and the second-circuit three-phase current test signal, and outputs the second-circuit three-phase electric energy value.
  • the current addition unit 103 determines the three-phase combined current signal based on the two-circuit three-phase current test signals;
  • the calculation control unit 104 determines the three-phase total electric energy value based on the two-circuit three-phase electric energy values.
  • the measurement unit 102 determines the first return energy value according to the voltage test signal and the first return current test signal. , determine the second recharge energy value according to the voltage test signal and the second recycle current test signal, and output the first recycle energy value and the second recycle energy value to the calculation control unit 104, so that the calculation control unit 104 The sum of the electric energy value and the second electric energy value determines the total electric energy value.
  • the voltage test signal may be a single-phase voltage test signal or a three-phase voltage test signal
  • the secondary current test signal may be the secondary single-phase current test signal or the secondary three-phase current test signal, Specifically, it includes: a first return current test signal and a second return current test signal
  • the second return electric energy value may be the second return single-phase electric energy value or the second return three-phase electric energy value.
  • FIG. 1 shows a dynamic error measurement device for an electric energy meter according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of a current adding unit of a dynamic error measurement device for an electric energy meter according to an embodiment of the present application.
  • the test signal generation unit 101 is connected to the calculation control unit 104 through the data line A, and generates and outputs a three-phase voltage test signal and a two-circuit three-phase current test signal under the control of the calculation control unit 104.
  • the four terminals Ua, Ub, Uc and Un of the voltage output interface of the test signal generation unit 101 respectively output the voltage test signals of phase a, phase b, phase c and the neutral point; the terminals Ia1 + and Ia1 - of the current output interface It is used to output the first current test signal of phase a.
  • the Ia2 + and Ia2 - terminals are used to output the second current test signal of phase a.
  • the Ib1 + and Ib1 - terminals are used to output the first current test signal of phase b.
  • Ib2 + , Ib2 - terminal is used to output the second current test signal of phase b
  • Ic1 + , Ic1 - terminal is used to output the first current test signal of phase c
  • Ic2 + , Ic2 - terminal is used to output the second current test signal of phase c Signal.
  • the output three-phase voltage test signals are connected in parallel to corresponding terminals of the voltage input interface of the measurement unit 102 .
  • the output two-circuit three-phase current test signals are connected in series to the corresponding terminals of the current input interface of the current adding unit 103 and to the corresponding terminals of the current input interface of the measuring unit 102 .
  • the current adding unit 103 receives two three-phase current test signals, and performs in-phase addition on each phase of the two current test signals to obtain a three-phase combined current signal.
  • the a-phase first return current test signal received by the current input interface Ia1 + and Ia1 - terminals of the current adding unit 103 and the a-phase second return current test signal received by the Ia2 + and Ia2 - terminals pass through the precision current transformer.
  • the second phase current test signal is combined into the Ib + and Ib - terminals to output the b-phase combined current signal through the precision current transformer
  • the current input interface Ic1 + and Ic1 - terminals of the current addition unit 103 receive the c-phase first loop
  • the current test signal and the c-phase second return current test signal received by the Ic2 + and Ic2 - terminals are combined into the Ic + and Ic - terminals to output the c-phase combined current signal through the precision current transformer.
  • the measurement unit 102 is connected to the calculation control unit 104 via the data line B.
  • the measuring unit 102 measures the first return current energy value according to the voltage test signal and the first return current test signal (for example, the first return current test signal including the above-mentioned a-phase, b-phase, and c-phase), and converts the first return current energy value into Through the data line B, or in the form of electric energy pulse, through the electric energy pulse 1 signal line, it is output to the calculation control unit 104; according to the voltage test signal and the second return current test signal (for example, including the above-mentioned a-phase, b-phase and c-phase) The second return current test signal) is measured to obtain the second return energy value, and the second return energy value is output to the calculation control unit 104 through the data line B, or in the form of an electric energy pulse, through the electric energy pulse 2 signal line.
  • the first return current test signal including the above-mentioned a-phase, b-phase, and c-phase
  • the calculation control unit 104 receives the first recharge energy value and the second recycle energy value respectively through the data line B, or through the power pulse 1 signal line and the power pulse 2 signal line, and converts the first recycle energy value and the second recycle energy value.
  • the electric energy values are added to obtain the total electric energy value (for example, the three-phase total electric energy value).
  • the test signal generation unit 101, the measurement unit 102, the current addition unit 103 and the calculation control unit 104 can respectively be one or more processors, controllers or controllers with communication interfaces capable of implementing communication protocols.
  • the chip if necessary, may also include memory and related interfaces, system transmission buses, etc.; the processor, controller or chip executes program-related codes to implement corresponding functions.
  • the data acquisition unit and the mode determination unit share an integrated chip or devices such as a processor, a controller, and a memory.
  • the shared processor, controller or chip executes program-related codes to implement corresponding functions.
  • FIG. 3 shows the dynamic error calibration system of the electric energy meter dynamic error measurement device according to one embodiment of the present application.
  • This system can be used to implement the dynamic error calibration method of the electric energy meter dynamic error measurement device, including: a standard meter 300 and the above-mentioned electric energy table dynamic error measurement device 100.
  • the standard meter 300 is used to receive the voltage test signal and the combined current signal output by the electric energy meter dynamic error measurement device 100, and determine the standard electric energy value based on the voltage test signal and the combined current signal; the steady-state accuracy of the standard meter 300 is higher than that of the electric energy represents the dynamic accuracy of the dynamic error measurement device 100.
  • the calculation control unit 104 of the electric energy meter dynamic error measuring device 100 is also used to calibrate the dynamic error of the electric energy meter dynamic error measuring device 100 according to the standard electric energy value and the total electric energy value.
  • the voltage test signal generated by the test signal generation unit 101 is output to the corresponding terminal of the voltage input interface of the standard meter 300 in addition to the measurement unit 102 .
  • the current test signal output by the current adding unit 103 is output to the corresponding terminal of the current input interface of the standard meter 300 .
  • the electric energy meter dynamic error measurement device 100 When the electric energy meter dynamic error measurement device 100 is a three-phase measurement device, the four terminals Ua, Ub, Uc and Un of the voltage output interface of the test signal generation unit 101 output phase a, phase b, phase c and the neutral point respectively.
  • the voltage test signal is connected in parallel and output to the corresponding terminal of the voltage input interface of the standard meter 300; the current addition unit 103 outputs a phase combined current signal to the corresponding current input interface of the standard meter 300 through the Ia + and Ia - terminals.
  • the b-phase combined current signal is output to the corresponding terminal of the current input interface of the standard meter 300, and through the Ic + and Ic - terminals, the c-phase combined current signal is output to the corresponding current input interface of the standard meter 300. terminal.
  • the standard meter 300 determines the standard electric energy value according to the voltage test signal and the combined current signal it receives, and outputs it to the calculation control unit 104 through the electric energy pulse 3 signal line.
  • the calculation control unit 104 calibrates the dynamic error of the electric energy meter dynamic error measuring device 100 according to the standard electric energy value and the total electric energy value.
  • the steady-state accuracy of the standard meter 300 is two levels higher than the dynamic accuracy of the electric energy meter dynamic error measurement device 100 .
  • the dynamic error calibration of the electric energy meter dynamic error measurement device 100 can also be implemented through the error calculator of the standard meter.
  • the calculation control unit 104 no longer assumes the role of calibrating the dynamic error of the electric energy meter dynamic error measuring device 100, but outputs the total electric energy value to the error calculator of the standard meter, and the standard meter also The standard electric energy value is no longer output to the calculation control unit 104 (in the standard table, the standard electric energy value must be output to the error calculator of the standard table).
  • the error calculator of the standard table compares the total electric energy value and the standard electric energy. The difference in value is used to calibrate the dynamic error of the electric energy meter dynamic error measuring device 100 .
  • FIG. 4 shows a schematic flowchart of a dynamic error calibration method of an electric energy meter dynamic error measurement device according to an embodiment of the present application.
  • the dynamic error calibration method is implemented by the electric energy meter dynamic error measurement system shown in FIG. 3 .
  • the method includes:
  • Step S401 The test signal generating unit generates a voltage test signal and a secondary current test signal according to the control of the calculation control unit.
  • Step S402 The test signal generating unit outputs the voltage test signal and the secondary current test signal to the measurement unit, so that the measurement unit determines the secondary electrical energy value based on the voltage test signal and the secondary current test signal.
  • step S403 the test signal generating unit outputs the secondary current test signal to the current adding unit, so that the current adding unit determines the combined current signal based on the secondary current test signal.
  • Step S404 The measurement unit outputs the secondary electrical energy value to the calculation control unit, so that the calculation control unit determines the total electrical energy value based on the secondary electrical energy value.
  • Step S405 the test signal generating unit outputs the voltage test signal to the standard meter, and the current adding unit outputs the combined current signal to the standard meter, so that the standard meter determines the standard electric energy based on the voltage test signal and the combined current signal. magnitude.
  • Step S406 The calculation control unit or the error calculator of the standard meter calibrates the dynamic error of the electric energy meter dynamic error measuring device according to the total electric energy value and the standard electric energy value.
  • the first current test signal and the second current test signal among the two current test signals form a mirror image change pair
  • the formed mirror image change pair uses a power frequency steady-state signal as a reference signal.
  • the waveforms of the first return current test signal and the second return current test signal are constantly changing relative to the reference signal, and at any time, the sum of the instantaneous values of the first return current test signal and the second return current test signal is equal to the sum of the instantaneous values of the reference signal at that time.
  • the ratio of instantaneous values remains unchanged.
  • Power frequency steady-state signal refers to a power frequency sine wave signal or power frequency steady-state distortion signal whose amplitude, frequency and phase remain unchanged.
  • the power frequency steady-state distortion signal contains the power frequency fundamental wave signal and its finite-order harmonic signals.
  • the electric energy meter dynamic error measurement device as a three-phase measurement device as an example, the signals generated by the test signal generation unit will be described in detail.
  • the following formulas (1), (2) and (3) are respectively the phase a voltage test signal u a (t), the first phase a current test signal i a 1 (t) and the second phase a current test signal i
  • the mathematical expression of a 2(t); the following formulas (4), (5), and (6) are respectively the b-phase voltage test signal u b (t) and the b-phase first return current test signal i b 1(t) and the mathematical expression of phase b second return current test signal i b 2(t);
  • the following formulas (7), (8), and (9) are respectively c phase voltage test signal u c (t), c phase first Mathematical expressions of the return current test signal i c 1 (t) and the c-phase second return current test signal i c 2 (t).
  • phase A secondary current test signal Take the phase A secondary current test signal as an example to illustrate the mirror image change requirements it meets.
  • the first return current test signal of phase i a 1(t)a and the second return current test signal of phase a of i a 2(t) constitute a mirror image change pair of phase a.
  • the two current test signals are based on the power frequency steady-state signal As reference signals, therefore, the two current test signals have the following characteristics:
  • Figure 5 shows the waveform diagrams of the a-phase voltage test signal, the a-phase first return current test signal and the a-phase second return current test signal during dynamic error calibration of the electric energy meter dynamic error measurement device.
  • the corresponding waveform of phase b is the same except that the initial phase difference is -120°
  • the corresponding waveform of phase c is the same as the waveform of phase a, except that the initial phase difference is 120°.
  • the image change requirements for phase b and phase c current test signals are similar to those of phase a and will not be described again here.
  • FIG. 6 shows an electric energy meter dynamic error measurement system according to another embodiment of the present application.
  • This system can be used to implement a method for the electric energy meter dynamic error measurement device to test the dynamic error of the meter under inspection, including: the meter under inspection 600 and the above-mentioned electric energy table dynamic error measurement device 100.
  • the meter to be tested 600 is used to receive the voltage test signal and the combined current signal output by the electric energy meter dynamic error measurement device 100, and determine the electric energy value to be tested based on the voltage test signal and the combined current signal.
  • the calculation control unit 104 of the electric energy meter dynamic error measuring device 100 is also used to determine the dynamic error of the meter 600 to be tested based on the electric energy value to be tested and the total electric energy value.
  • the voltage test signal generated by the test signal generation unit 101 is output to the corresponding terminal of the voltage input interface of the meter 600 in addition to the measurement unit 102 .
  • the current test signal output by the current adding unit 103 is output to the corresponding terminal of the current input interface of the meter 600 under test.
  • the electric energy meter dynamic error measurement device 100 When the electric energy meter dynamic error measurement device 100 is a three-phase measurement device, the four terminals Ua, Ub, Uc and Un of the voltage output interface of the test signal generation unit 101 output phase a, phase b, phase c and the neutral point respectively.
  • the voltage test signal is connected in parallel to the corresponding terminal of the voltage input interface of the meter under test 600; the current addition unit 103 outputs a phase combined current signal to the current input interface of the meter under test 600 through the Ia + and Ia - terminals.
  • the corresponding terminals of the terminal output the b-phase combined current signal to the corresponding terminal of the current input interface of the meter 600 through the Ib + and Ib - terminals, and output the phase c combined current signal to the current of the meter 600 through the Ic + and Ic - terminals.
  • the corresponding terminal of the input interface The corresponding terminal of the input interface.
  • the meter 600 under test determines the electric energy value to be tested based on the voltage test signal and the combined current signal it receives, and outputs it to the calculation control unit 104 through the electric energy pulse 4 signal line.
  • the calculation control unit 104 determines the dynamic error of the meter being tested based on the electric energy value to be tested and the total electric energy value.
  • Figure 7 shows a schematic flowchart of a method for testing the dynamic error of the meter under test by an electric energy meter dynamic error measurement device according to another embodiment of the present application.
  • the method for testing dynamic error is provided by the electric energy meter dynamic error measurement system shown in Figure 6 accomplish.
  • the method includes:
  • Step S701 The test signal generating unit generates a voltage test signal and a secondary current test signal according to the control of the calculation control unit.
  • Step S702 The test signal generating unit outputs the voltage test signal and the secondary current test signal to the measurement unit, so that the measurement unit determines the secondary electrical energy value based on the voltage test signal and the secondary current test signal.
  • step S703 the test signal generating unit outputs the secondary current test signal to the current adding unit, so that the current adding unit determines the combined current signal based on the secondary current test signal.
  • Step S704 The measurement unit outputs the secondary electrical energy value to the calculation control unit, so that the calculation control unit determines the total electrical energy value based on the secondary electrical energy value.
  • Step S705 the test signal generating unit outputs the voltage test signal to the meter under test, and the current adding unit outputs the combined current signal to the meter under test, so that the meter under test determines the voltage to be measured based on the voltage test signal and the combined current signal. Check the power value.
  • Step S706 The calculation control unit determines the dynamic error of the meter being tested based on the total electric energy value and the electric energy value to be tested.
  • the first return current test signal and the second return current test signal among the two return current test signals form a same-image change pair, and both are power frequency signals.
  • the first return current test signal The power frequency effective value of the second return current test signal changes continuously with time, and the waveform always remains consistent.
  • the electric energy meter dynamic error measurement device as a three-phase measurement device as an example, the signals generated by the test signal generation unit will be described in detail.
  • the following formulas (10), (11), and (12) are respectively the phase a voltage test signal u a (t), the first phase a current test signal i a 1 (t), and the second phase a current test signal i
  • the mathematical expression of a 2(t); the following formulas (13), (14), and (15) are respectively the b-phase voltage test signal u b (t) and the b-phase first return current test signal i b 1(t) and the mathematical expression of the second return current test signal of phase b i b 2(t);
  • the following formulas (16), (17), and (18) are respectively the phase c voltage test signal u c (t) and the first phase of c Mathematical expressions of the return current test signal i c 1 (t) and the c-phase second return current test signal i c 2 (t).
  • the first return current test signal of phase i a 1(t)a and the second return current test signal of phase a of i a 2(t) constitute a same-image change pair of phase a. It can be seen from equations (11) and (12) that the two current test signals are actually the same signal, both of which are composed of power frequency carrier signals with a frequency of 50Hz.
  • the modulated signal is formed after amplitude modulation by the amplitude modulation function 0.25 ⁇ sin (2 ⁇ 5 ⁇ t+0). Therefore, the two current test signals are both power frequency signals, and their effective power frequency values continuously change with time, and the waveforms of the two current test signals always remain consistent.
  • Equation (10) is the same as Equation (1)
  • Equation (11) and Equation (12) are the same as Equation (2)
  • the waveforms corresponding to Equation (1) and Equation (2) are shown in Figure 5 , so the instructions will not be repeated.
  • the corresponding waveform of phase b is the same except that the initial phase difference is -120°
  • the corresponding waveform of phase c is the same as the waveform of phase a, except that the initial phase difference is 120°.
  • the same-image change requirements for the b-phase and c-phase current test signals are similar to those of a, and will not be described again here.
  • the above-mentioned electric energy meter dynamic error measurement system is used to test the dynamic error of the meter under test.
  • the hardware configuration and wiring method used to calibrate the dynamic error of the electric energy meter dynamic error measurement system are the same, which can greatly reduce the uncertainty factors that affect the test results.
  • embodiments of the present application may be provided as methods, systems or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

一种电能表动态误差测量装置(100)、系统及方法。测量装置(100)包括测试信号产生单元(101),用于产生电压测试信号和二回电流测试信号,将电压测试信号输出至测量单元(102),将二回电流测试信号输出至测量单元(102)和电流相加单元(103);测量单元(102)用于根据电压测试信号和二回电流测试信号确定二回电能量值,将二回电能量值输出至计算控制单元(104);电流相加单元(103)用于根据二回电流测试信号确定合并电流信号;计算控制单元(104)用于根据二回电能量值确定总电能量值。测量系统包括标准表(300)和测量装置(100),利用测量系统标定测量装置(100)的动态误差实现理论上的时间最短,解决了缺乏高动态准确度标准表的问题。测量系统还包括被检表(600),利用测量系统测量被检表(600)的动态误差大大降低影响测试结果的不确定性因素。

Description

电能表动态误差测量装置、系统及方法 技术领域
本申请涉及电能表检测技术领域,具体涉及一种电能表动态误差测量装置、系统及方法。
背景技术
检测被检表的动态误差,通常需要测量装置输出幅值变化的交流电流信号,然后测量被检表在变化的电流信号(或功率信号)下的计量误差。要准确测量被检表的动态误差,一般要求测量装置本身的动态准确度高于被检表2个等级。而要得到测量装置本身的动态误差指标,通常需要对测量装置开展动态溯源测试。测试的一般方法是,采用动态准确度高于测量装置2个等级的标准表,在测量装置输出的动态测试信号下,与测量装置同时计量电能,然后通过比对两者计量电能的差异,得到测量装置的动态误差。可见,要按常规方法开展测量装置的动态溯源测试,就必须使用高动态准确度的标准表。但目前现有的标准表,其各项基本误差指标都是使用电能表检定装置,在稳态正弦信号下进行测试得到的稳态指标,不包含动态指标,因此,目标尚没有可使用的高动态准确度标准表。
发明内容
为解决上述问题,本申请实施例提供了一种电能表动态误差测量装置、系统及方法,旨在克服或者部分克服上述技术问题。
本申请实施例采用下述技术方案:
第一方面,提供了一种电能表动态误差测量装置,包括测试信号产生单元、测量单元、电流相加单元和计算控制单元;其中,
测试信号产生单元,用于根据计算控制单元的控制产生电压测试信号和二回电流测试信号,将电压测试信号输出至测量单元,将二回电流测试信号输出至电流相加单元和测量单元;
测量单元,用于根据接收的电压测试信号和二回电流测试信号确定二回电能量值,并将二回电能量值输出至计算控制单元;
电流相加单元,用于根据二回电流测试信号确定合并电流信号;
计算控制单元,用于根据二回电能量值确定总电能量值。
可选的,测试信号产生单元用于根据计算控制单元的控制产生单相电压测试信号和二回单相电流测试信号,将单相电压测试信号输出至测量单元,将二回单相电流测试信号输出至电流相加单元和测量单元;
测量单元,用于根据接收的单相电压测试信号和二回单相电流测试信号确定二回单相电能量值, 并将二回单相电能量值输出至计算控制单元;
电流相加单元,用于根据二回单相电流测试信号确定单相合并电流信号;
计算控制单元,用于根据二回单相电能量值确定单相总电能量值。
可选的,测试信号产生单元用于根据计算控制单元的控制产生三相电压测试信号和二回三相电流测试信号,将三相电压测试信号输出至测量单元,将二回三相电流测试信号输出至电流相加单元和测量单元;
测量单元,用于根据接收的三相电压测试信号和二回三相电流测试信号确定二回三相电能量值,并将二回三相电能量值输出至计算控制单元;
电流相加单元,用于根据二回三相电流测试信号确定三相合并电流信号;
计算控制单元,用于根据二回三相电能量值确定三相总电能量值。
可选的,所述二回电流测试信号包括:第一回电流测试信号和第二回电流测试信号;所述二回电能量值包括:第一回电能量值和第二回电能量值;测量单元用于根据电压测试信号和第一回电流测试信号确定第一回电能量值,根据电压测试信号和第二回电流测试信号确定第二回电能量值;将第一回电能量值和第二回电能量值输出至计算控制单元;
计算控制单元用于根据第一回电能量值和第二回电能量值的和确定总电能量值。
第二方面,提供了一种电能表动态误差测量装置的动态误差标定系统,包括:标准表和上述电能表动态误差测量装置;其中,
标准表,用于接收电能表动态误差测量装置输出的电压测试信号和合并电流信号,并根据电压测试信号和合并电流信号确定标准电能量值;标准表的稳态准确度高于电能表动态误差测量装置的动态准确度;
计算控制单元或所述标准表的误差运算器,还用于根据标准电能量值和总电能量值标定电能表动态误差测量装置的动态误差。
第三方面,提供了一种电能表动态误差测量装置的动态误差标定方法,由上述电能表动态误差测量装置的动态误差标定系统实现,方法包括:
所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号;
所述测试信号产生单元将电压测试信号和二回电流测试信号输出至测量单元,以使测量单元根据电压测试信号和二回电流测试信号确定二回电能量值;
所述测试信号产生单元将二回电流测试信号输出至电流相加单元,以使电流相加单元根据二回电流测试信号确定合并电流信号;
所述测量单元将二回电能量值输出至计算控制单元,以使计算控制单元根据二回电能量值确定总电能量值;
所述测试信号产生单元将电压测试信号输出至标准表,所述电流相加单元将所述合并电流信号输出至标准表,以使标准表根据电压测试信号和合并电流信号确定标准电能量值;
所述计算控制单元或所述标准表的误差运算器根据总电能量值和标准电能量值标定电能表动态误差测量装置的动态误差。
可选的,二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成镜像变化对,构成的镜像变化对以一个工频稳态信号作为参考信号,两个电流测试信号相对参考信号的波形不断变化,且在任意时刻下所述第一回电流测试信号和所述第二回电流测试信号的瞬时值之和与该时刻参考信号的瞬时值的比值不变。
第四方面,提供了一种电能表动态误差测量系统,包括:被检表和上述电能表动态误差测量装置;其中,
被检表,用于接收电能表动态误差测量装置输出的电压测试信号和合并电流信号,根据电压测试信号和合并电流信号确定待检电能量值;
计算控制单元,还用于根据待检电能量值和总电能量值确定被检表的动态误差。
第五方面,提供了一种电能表动态误差测量装置测试被检表动态误差的方法,由上述电能表动态误差测量系统实现,方法包括:
所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号;
所述测试信号产生单元将电压测试信号和二回电流测试信号输出至测量单元,以使测量单元根据电压测试信号和二回电流测试信号确定二回电能量值;
所述测试信号产生单元将二回电流测试信号输出至电流相加单元,以使电流相加单元根据二回电流测试信号确定合并电流信号;
所述测试信号产生单元将二回电能量值输出至计算控制单元,以使计算控制单元根据二回电能量值确定总电能量值;
所述测试信号产生单元将电压测试信号输出至被检表,所述电流相加单元将所述合并电流信号输出至被检表,以使被检表根据电压测试信号和合并电流信号确定待检电能量值;
所述计算控制单元根据总电能量值和待检电能量值确定被检表的动态误差。
可选的,二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成同像变化对,且都为工频信号,所述第一回电流测试信号和所述第二回电流测试信号的工频有效值随时间不断变化,且波形始终保持一致。
本申请实施例采用的上述至少一个技术方案能够达到以下有益效果:
本申请提供了一种电能表动态误差测量装置、系统及方法。首先,利用该测量装置及系统进行测量装置的动态误差标定时,可以采用常规的、仅保证稳态指标的电能表作为标准表,解决了目前缺乏高动态准确度标准表的问题;其次,对测量装置进行动态误差标定时,标准表计量的标准电能量值与测量装置确定的总电能量值,在任意时间段上的理论值都相等,使得动态误差标定可实现理论上的时间最短;再有,进行被检表的动态误差测试与测量装置的动态误差标定,二者的硬件配置和接线方式相同,能够大大降低影响测试结果的不确定性因素。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1示出根据本申请的一个实施例的电能表动态误差测量装置的结构示意图;
图2示出根据本申请的一个实施例的电能表动态误差测量装置的电流相加单元的结构示意图;
图3示出根据本申请的一个实施例的电能表动态误差测量装置的动态误差标定系统的结构示意图;
图4示出根据本申请的一个实施例的电能表动态误差测量装置的动态误差标定方法的流程示意图;
图5示出根据本申请的一个实施例的电能表动态误差测量装置的动态误差标定时的a相电压测试信号、第一回电流测试信号和第二回电流测试信号波形图;
图6示出根据本申请的另一个实施例的电能表动态误差测量系统的结构示意图;
图7示出根据本申请的另一个实施例的电能表动态误差测量装置测试被检表动态误差的方法的流程示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请具体实施例及相应的附图对本申请技术方案进行清楚、完整地描述。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下结合附图,详细说明本申请各实施例提供的技术方案。
本申请的构思在于,提供一种电能表动态误差测量装置、系统及方法,在对电能表动态误差测量装置的动态误差标定时,能够使用常规的、仅保证稳态指标的电能表作为标准表;在利用电能表动态误差测量装置测试被检表的动态误差时,延续与测量装置的动态误差标定相同的硬件配置和接线方式。从而解决目前对测量装置进行动态误差标定时,缺乏高动态准确度标准表的问题,同时保证影响测试结果的不确定度因素更少、动态误差标定时间更短。
本申请的一个实施例提供的电能表动态误差测量装置100,包括测试信号产生单元101、测量单元102、电流相加单元103和计算控制单元104。测试信号产生单元101,用于根据计算控制单元104的控制产生电压测试信号和二回电流测试信号,将电压测试信号输出至测量单元102,将二回电流测试信号输出至电流相加单元103和测量单元102。测量单元102,用于根据接收的电压测试信号和二回电流测试信号确定二回电能量值,并将二回电能量值输出至计算控制单元104。电流相加单元103,用于根据二回电流测试信号确定合并电流信号。计算控制单元104,用于根据二回电能量值确定总电能量值。
计算控制单元104在电能表动态误差测量装置100中承担如下作用:第一、计算控制单元104能够实现人机互动,即用户通过对计算控制单元104发送指令,使计算控制单元104控制测试信号产生单元101产生并输出电压测试信号和二回电流测试信号。第二、计算控制单元104能够实现数据传输作用,包括以电能脉冲形式,接收测量单元102输出的二回电能量值。第三、计算控制单元104能够实现数据计算功能,包括根据二回电能量值确定总电能量值。
电能表动态误差测量装置100可以是单相测量装置。测试信号产生单元101用于根据计算控制单元104的控制产生单相电压测试信号和二回单相电流测试信号,将单相电压测试信号输出至测量单元102,将二回单相电流测试信号输出至电流相加单元103和测量单元102;测量单元102,根据接收的单相电压测试信号和二回单相电流测试信号确定二回单相电能量值,并将二回单相电能量值输出至计算控制单元104;电流相加单元103,根据二回单相电流测试信号确定单相合并电流信号;计算控制单元104,根据二回单相电能量值确定单相总电能量值。
电能表动态误差测量装置100也可以是三相测量装置。测试信号产生单元101用于根据计算控制单元104的控制产生三相电压测试信号和二回三相电流测试信号,将三相电压测试信号输出至测量单元102,将二回三相电流测试信号输出至电流相加单元103和测量单元102;测量单元102,根据接收的三相电压测试信号和二回三相电流测试信号确定二回三相电能量值,并将二回三相电能量值输出至计算控制单元104;电流相加单元103,根据二回三相电流测试信号确定三相合并电流信号;计算控制单元104,根据二回三相电能量值确定三相总电能量值。
作为一种可选的实施方式,不论电能表动态误差测量装置100是单相测量装置或是三相测量装置,测量单元102根据电压测试信号和第一回电流测试信号确定第一回电能量值,根据电压测试信号和第二回电流测试信号确定第二回电能量值,将第一回电能量值和第二回电能量值输出至计算控制单元104,使计算控制单元104根据第一回电能量值和第二回电能量值的和确定总电能量值。
其中,所述电压测试信号可以是单相电压测试信号或三相电压测试信号;所述二回电流测试信号可以是所述二回单相电流测试信号或所述二回三相电流测试信号,具体包括:第一回电流测试信号和第二回电流测试信号;所述二回电能量值可以是所述二回单相电能量值或所述二回三相电能量值,具体,包括:第一回电能量值和第二回电能量值;对应地,所述总电能量值可以是单相总电能量值或三相总电能量值。
图1示出了根据本申请的一个实施例的电能表动态误差测量装置,图2示出了根据本申请的一个实施例的电能表动态误差测量装置的电流相加单元的结构示意图。结合图1及图2,以下以三相的电能表动态误差测量装置100为例进行详细说明。
如图1所示,测试信号产生单元101通过数据线A连接计算控制单元104,通过计算控制单元104的控制产生并输出三相电压测试信号和二回三相电流测试信号。测试信号产生单元101的电压输出接口的四个端子Ua、Ub、Uc和Un,分别输出a相、b相、c相和中性点的电压测试信号;电流输出接口的Ia1 +、Ia1 -端子用于输出a相第一回电流测试信号,Ia2 +、Ia2 -端子用于输出a相第二回 电流测试信号,Ib1 +、Ib1 -端子用于输出b相第一回电流测试信号,Ib2 +、Ib2 -端子用于输出b相第二回电流测试信号,Ic1 +、Ic1 -端子用于输出c相第一回电流测试信号,Ic2 +、Ic2 -端子用于输出c相第二回电流测试信号。
输出的三相电压测试信号以并联方式,连接输出至测量单元102的电压输入接口的对应端子。输出的二回三相电流测试信号以串联方式,连接输出至电流相加单元103的电流输入接口的对应端子,以及测量单元102的电流输入接口的对应端子。
结合图2所示,电流相加单元103接二回三相电流测试信号,对二回电流测试信号的各相进行同相相加,得到三相合并电流信号。其中,电流相加单元103的电流输入接口Ia1 +、Ia1 -端子接收的a相第一回电流测试信号和Ia2 +、Ia2 -端子接收的a相第二回电流测试信号,通过精密电流互感器合并为Ia +、Ia -端子输出a相合并电流信号;电流相加单元103的电流输入接口Ib1 +、Ib1 -端子接收的b相第一回电流测试信号和Ib2 +、Ib2 -端子接收的b相第二回电流测试信号,通过精密电流互感器合并为Ib +、Ib -端子输出b相合并电流信号;电流相加单元103的电流输入接口Ic1 +、Ic1 -端子接收的c相第一回电流测试信号和Ic2 +、Ic2 -端子接收的c相第二回电流测试信号,通过精密电流互感器合并为Ic +、Ic -端子输出c相合并电流信号。
测量单元102通过数据线B连接计算控制单元104。测量单元102根据电压测试信号和第一回电流测试信号(例如包括上述a相、b相和c相的第一回电流测试信号)计量得到第一回电能量值,将第一回电能量值通过数据线B,或者以电能脉冲形式,经电能脉冲1信号线,输出至计算控制单元104;根据电压测试信号和第二回电流测试信号(例如包括上述a相、b相和c相的第二回电流测试信号)计量得到第二回电能量值,将第二回电能量值通过数据线B,或者以电能脉冲形式,经电能脉冲2信号线,输出至计算控制单元104。
计算控制单元104通过数据线B,或者通过电能脉冲1信号线和电能脉冲2信号线,分别接收第一回电能量值和第二回电能量值,将第一回电能量值和第二回电能量值相加,得到总电能量值(例如三相总电能量值)。
在本申请的实施例中,测试信号产生单元101、测量单元102、电流相加单元103和计算控制单元104,分别可以是具有通信接口能够实现通信协议的一个或多个处理器、控制器或者芯片,如有需要还可以包括存储器及相关的接口、系统传输总线等;所述处理器、控制器或者芯片执行程序相关的代码实现相应的功能。或者,可替换的方案为,所述数据获取单元,模式判定单元共享一个集成芯片或者共享处理器、控制器、存储器等设备。所述共享的处理器、控制器或者芯片执行程序相关的代码实现相应的功能。
图3示出了本申请的一个实施例的电能表动态误差测量装置的动态误差标定系统,该系统可以用于实现电能表动态误差测量装置的动态误差标定方法,包括:标准表300和上述电能表动态误差测量装置100。标准表300,用于接收电能表动态误差测量装置100输出的电压测试信号和合并电流信号,并根据电压测试信号和合并电流信号确定标准电能量值;标准表300的稳态准确度高于电能 表动态误差测量装置100的动态准确度。电能表动态误差测量装置100的计算控制单元104,还用于根据标准电能量值和总电能量值标定电能表动态误差测量装置100的动态误差。
在该系统中,测试信号产生单元101产生的电压测试信号,除输出至测量单元102外还输出至标准表300的电压输入接口的对应端子。电流相加单元103输出的电流测试信号输出至标准表300的电流输入接口的对应端子。
当电能表动态误差测量装置100为三相测量装置时,测试信号产生单元101的电压输出接口的四个端子Ua、Ub、Uc和Un,分别输出a相、b相、c相和中性点的电压测试信号,以并联方式连接输出至标准表300的电压输入接口的对应端子;电流相加单元103通过Ia +、Ia -端子输出a相合并电流信号至标准表300的电流输入接口的对应端子,通过Ib +、Ib -端子输出b相合并电流信号至标准表300的电流输入接口的对应端子,通过Ic +、Ic -端子输出c相合并电流信号至标准表300的电流输入接口的对应端子。
标准表300根据其接收的电压测试信号和合并电流信号确定标准电能量值,并通过电能脉冲3信号线输出至计算控制单元104。计算控制单元104根据标准电能量值和总电能量值标定电能表动态误差测量装置100的动态误差。
作为一种优选的实施方式,标准表300的稳态准确度高于电能表动态误差测量装置100的动态准确度2个等级。
作为一种可选的实施方式,对电能表动态误差测量装置100的动态误差标定也可以通过标准表的误差运算器实现。当采用标准表的误差运算器时,计算控制单元104不再承担标定电能表动态误差测量装置100的动态误差的作用,而是将总电能量值输出给标准表的误差运算器,标准表也不再将标准电能量值输出至计算控制单元104(在标准表内,标准电能量值必然输出至标准表的误差运算器),由标准表的误差运算器比较总电能量值和标准电能量值的差异,从而标定电能表动态误差测量装置100的动态误差。
图4示出了根据本申请的一个实施例的电能表动态误差测量装置的动态误差标定方法的流程示意图,该动态误差标定方法由图3示出的电能表动态误差测量系统实现。该方法包括:
步骤S401,所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号。
步骤S402,所述测试信号产生单元将电压测试信号和二回电流测试信号输出至测量单元,以使测量单元根据电压测试信号和二回电流测试信号确定二回电能量值。
步骤S403,所述测试信号产生单元将二回电流测试信号输出至电流相加单元,以使电流相加单元根据二回电流测试信号确定合并电流信号。
步骤S404,所述测量单元将二回电能量值输出至计算控制单元,以使计算控制单元根据二回电能量值确定总电能量值。
步骤S405,所述测试信号产生单元将电压测试信号输出至标准表,所述电流相加单元将所述合 并电流信号输出至标准表,以使标准表根据电压测试信号和合并电流信号确定标准电能量值。
步骤S406,所述计算控制单元或所述标准表的误差运算器根据总电能量值和标准电能量值标定电能表动态误差测量装置的动态误差。
作为一种可选的实施方式,二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成镜像变化对,构成的镜像变化对以一个工频稳态信号作为参考信号,第一回电流测试信号与第二回电流测试信号相对参考信号的波形不断变化,且在任意时刻下第一回电流测试信号与第二回电流测试信号的瞬时值之和与该时刻参考信号的瞬时值的比值不变。工频稳态信号,是指幅值、频率和相位都保持不变的工频正弦波信号或工频稳态畸变信号。工频稳态畸变信号含有工频基波信号及其有限次的谐波信号。
以下,以电能表动态误差测量装置为三相测量装置为例,对测试信号产生单元产生的信号进行详细说明。
下式(1)、(2)、(3)分别为a相电压测试信号u a(t)、a相第一回电流测试信号i a1(t)和a相第二回电流测试信号i a2(t)的数学表达式;下式(4)、(5)、(6)分别为b相电压测试信号u b(t)、b相第一回电流测试信号i b1(t)和b相第二回电流测试信号i b2(t)的数学表达式;下式(7)、(8)、(9)分别为c相电压测试信号u c(t)、c相第一回电流测试信号i c1(t)和c相第二回电流测试信号i c2(t)的数学表达式。
Figure PCTCN2022110229-appb-000001
Figure PCTCN2022110229-appb-000002
Figure PCTCN2022110229-appb-000003
Figure PCTCN2022110229-appb-000004
Figure PCTCN2022110229-appb-000005
Figure PCTCN2022110229-appb-000006
Figure PCTCN2022110229-appb-000007
Figure PCTCN2022110229-appb-000008
Figure PCTCN2022110229-appb-000009
以a相二回电流测试信号为例,说明其满足的镜像变化要求。i a1(t)a相第一回电流测试信号和i a2(t)a相第二回电流测试信号构成a相的镜像变化对。该两个电流测试信号以工频稳态信号
Figure PCTCN2022110229-appb-000010
作为参考信号, 因此,该两个电流测试信号存在如下特征:
第一、由式(2)和式(3)可见,该两个电流测试信号实际上是参考信号经过2个调幅函数0.25·sin(2π·5·t+0)和-0.25·sin(2π·5·t+0)分别调幅后,形成的两个调制信号,因此该两个电流测试信号的波形相对参考信号的波形是不断变化的。
第二、由于
Figure PCTCN2022110229-appb-000011
因此在任意时刻,该两个电流测试信号的瞬时值相加之和,与该时刻参考信号
Figure PCTCN2022110229-appb-000012
Figure PCTCN2022110229-appb-000013
的瞬时值的比值,始终都是2,保持不变。
图5示出了电能表动态误差测量装置的动态误差标定时的a相电压测试信号、a相第一回电流测试信号和a相第二回电流测试信号波形图。b相的相应波形图与a相的波形图相比,除初始相位相差-120°外其他相同;c相的相应波形图与a相的波形图相比,除初始相位相差120°外其他相同。对于b相和c相电流测试信号满足的镜像变化要求与a相类似,此处不再赘述。
利用上述电能表动态误差测量系统进行测量装置的动态误差标定时,可以采用常规的、仅保证稳态指标的电能表作为标准表,解决了目前缺乏高动态准确度标准表的问题;标准表计量的标准电能量值与测量装置确定的总电能量值,在任意时间段上的理论值都相等,使得动态误差标定可实现理论上的时间最短。
图6示出了本申请的另一个实施例的电能表动态误差测量系统,该系统可以用于实现电能表动态误差测量装置测试被检表动态误差的方法,包括:被检表600和上述电能表动态误差测量装置100。被检表600,用于接收电能表动态误差测量装置100输出的电压测试信号和合并电流信号,并根据电压测试信号和合并电流信号确定待检电能量值。电能表动态误差测量装置100的计算控制单元104,还用于根据待检电能量值和总电能量值确定被检表600的动态误差。
在该系统中,测试信号产生单元101产生的电压测试信号,除输出至测量单元102外还输出至被检表600的电压输入接口的对应端子。电流相加单元103输出的电流测试信号输出至被检表600的电流输入接口的对应端子。
当电能表动态误差测量装置100为三相测量装置时,测试信号产生单元101的电压输出接口的四个端子Ua、Ub、Uc和Un,分别输出a相、b相、c相和中性点的电压测试信号,以并联方式连接输出至被检表600的电压输入接口的对应端子;电流相加单元103通过Ia +、Ia -端子输出a相合并电流信号至被检表600的电流输入接口的对应端子,通过Ib +、Ib -端子输出b相合并电流信号至被检表600的电流输入接口的对应端子,通过Ic +、Ic -端子输出c相合并电流信号至被检表600的电流输入接口的对应端子。
被检表600根据其接收的电压测试信号和合并电流信号确定待检电能量值,并通过电能脉冲4 信号线输出至计算控制单元104。计算控制单元104根据待检电能量值和总电能量值确定被检表的动态误差。
图7示出了根据本申请的另一个实施例的电能表动态误差测量装置测试被检表动态误差的方法的流程示意图,该测试动态误差的方法由图6示出的电能表动态误差测量系统实现。该方法包括:
步骤S701,所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号。
步骤S702,所述测试信号产生单元将电压测试信号和二回电流测试信号输出至测量单元,以使测量单元根据电压测试信号和二回电流测试信号确定二回电能量值。
步骤S703,所述测试信号产生单元将二回电流测试信号输出至电流相加单元,以使电流相加单元根据二回电流测试信号确定合并电流信号。
步骤S704,所述测量单元将二回电能量值输出至计算控制单元,以使计算控制单元根据二回电能量值确定总电能量值。
步骤S705,所述测试信号产生单元将电压测试信号输出至被检表,所述电流相加单元将合并电流信号输出至被检表,以使被检表根据电压测试信号和合并电流信号确定待检电能量值。
步骤S706,所述计算控制单元根据总电能量值和待检电能量值确定被检表的动态误差。
作为一种可选的实施方式,二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成同像变化对,且都为工频信号,所述第一回电流测试信号和所述第二回电流测试信号的工频有效值随时间不断变化,且波形始终保持一致。
以下,以电能表动态误差测量装置为三相测量装置为例,对测试信号产生单元产生的信号进行详细说明。
下式(10)、(11)、(12)分别为a相电压测试信号u a(t)、a相第一回电流测试信号i a1(t)和a相第二回电流测试信号i a2(t)的数学表达式;下式(13)、(14)、(15)分别为b相电压测试信号u b(t)、b相第一回电流测试信号i b1(t)和b相第二回电流测试信号i b2(t)的数学表达式;下式(16)、(17)、(18)分别为c相电压测试信号u c(t)、c相第一回电流测试信号i c1(t)和c相第二回电流测试信号i c2(t)的数学表达式。
Figure PCTCN2022110229-appb-000014
Figure PCTCN2022110229-appb-000015
Figure PCTCN2022110229-appb-000016
Figure PCTCN2022110229-appb-000017
Figure PCTCN2022110229-appb-000018
Figure PCTCN2022110229-appb-000019
Figure PCTCN2022110229-appb-000020
Figure PCTCN2022110229-appb-000021
Figure PCTCN2022110229-appb-000022
以二回a相电流测试信号为例,说明其满足的同像变化要求。i a1(t)a相第一回电流测试信号和i a2(t)a相第二回电流测试信号构成a相的同像变化对。由式(11)和式(12)可见,该两个电流测试信号实际上是同一个信号,都是由频率为50Hz的工频载波信号
Figure PCTCN2022110229-appb-000023
Figure PCTCN2022110229-appb-000024
经调幅函数0.25·sin(2π·5·t+0)调幅后,形成的调制信号。因此该两个电流测试信号都是工频信号,其工频有效值都随时间不断变化,且该两个电流测试信号的波形始终保持一致。
由于式(10)与式(1)相同,式(11)和式(12)与式(2)相同,而式(1)和式(2)所对应的波形图已在图5中示出,因此不再重复示意。b相的相应波形图与a相的波形图相比,除初始相位相差-120°外其他相同;c相的相应波形图与a相的波形图相比,除初始相位相差120°外其他相同。对于b相和c相电流测试信号满足的同像变化要求与a相类似,此处不再赘述。
利用上述电能表动态误差测量系统进行被检表的动态误差测试,其与进行电能表动态误差测量系统标定动态误差的硬件配置和接线方式相同,能够大大降低影响测试结果的不确定性因素。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
以上所述仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (10)

  1. 一种电能表动态误差测量装置,其特征在于,包括测试信号产生单元、测量单元、电流相加单元和计算控制单元;其中,
    所述测试信号产生单元,用于根据所述计算控制单元的控制产生电压测试信号和二回电流测试信号,将所述电压测试信号输出至所述测量单元,将所述二回电流测试信号输出至所述电流相加单元和所述测量单元;
    所述测量单元,用于根据接收的所述电压测试信号和所述二回电流测试信号确定二回电能量值,并将所述二回电能量值输出至所述计算控制单元;
    所述电流相加单元,用于根据所述二回电流测试信号确定合并电流信号;
    所述计算控制单元,用于根据所述二回电能量值确定总电能量值。
  2. 根据权利要求1所述的电能表动态误差测量装置,其特征在于,所述测试信号产生单元用于根据所述计算控制单元的控制产生单相电压测试信号和二回单相电流测试信号,将所述单相电压测试信号输出至所述测量单元,将所述二回单相电流测试信号输出至所述电流相加单元和所述测量单元;
    所述测量单元,用于根据接收的所述单相电压测试信号和所述二回单相电流测试信号确定二回单相电能量值,并将所述二回单相电能量值输出至所述计算控制单元;
    所述电流相加单元,用于根据所述二回单相电流测试信号确定单相合并电流信号;
    所述计算控制单元,用于根据所述二回单相电能量值确定单相总电能量值。
  3. 根据权利要求1所述的电能表动态误差测量装置,其特征在于,所述测试信号产生单元用于根据所述计算控制单元的控制产生三相电压测试信号和二回三相电流测试信号,将所述三相电压测试信号输出至所述测量单元,将所述二回三相电流测试信号输出至所述电流相加单元和所述测量单元;
    所述测量单元,用于根据接收的所述三相电压测试信号和所述二回三相电流测试信号确定二回三相电能量值,并将所述二回三相电能量值输出至所述计算控制单元;
    所述电流相加单元,用于根据所述二回三相电流测试信号确定三相合并电流信号;
    所述计算控制单元,用于根据所述二回三相电能量值确定三相总电能量值。
  4. 根据权利要求1-3任一项所述的电能表动态误差测量装置,其特征在于,所述二回电流测试信号包括:第一回电流测试信号和第二回电流测试信号;所述二回电能量值包括:第一回电能量值和第二回电能量值;
    所述测量单元用于根据所述电压测试信号和所述第一回电流测试信号确定第一回电能 量值,根据所述电压测试信号和所述第二回电流测试信号确定第二回电能量值;将所述第一回电能量值和所述第二回电能量值输出至所述计算控制单元;
    所述计算控制单元用于根据所述第一回电能量值和所述第二回电能量值的和确定所述总电能量值。
  5. 一种电能表动态误差测量装置的动态误差标定系统,其特征在于,包括:标准表和权利要求1-4中任一项所述的电能表动态误差测量装置;其中,
    所述标准表,用于接收所述电能表动态误差测量装置输出的电压测试信号和合并电流信号,并根据所述电压测试信号和所述合并电流信号确定标准电能量值;所述标准表的稳态准确度高于所述电能表动态误差测量装置的动态准确度;
    所述计算控制单元或所述标准表的误差运算器,还用于根据所述标准电能量值和所述总电能量值标定所述电能表动态误差测量装置的动态误差。
  6. 一种电能表动态误差测量装置的动态误差标定方法,其特征在于,由权利要求5的电能表动态误差测量装置的动态误差标定系统实现,所述方法包括:
    所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号;
    所述测试信号产生单元将所述电压测试信号和所述二回电流测试信号输出至测量单元,以使所述测量单元根据所述电压测试信号和所述二回电流测试信号确定二回电能量值;
    所述测试信号产生单元将所述二回电流测试信号输出至所述电流相加单元,以使所述电流相加单元根据所述二回电流测试信号确定合并电流信号;
    所述测量单元将所述二回电能量值输出至所述计算控制单元,以使所述计算控制单元根据所述二回电能量值确定总电能量值;
    所述测试信号产生单元将所述电压测试信号输出至标准表,所述电流相加单元将所述合并电流信号输出至标准表,以使所述标准表根据所述电压测试信号和所述合并电流信号确定标准电能量值;
    所述计算控制单元或所述标准表的误差运算器根据所述总电能量值和所述标准电能量值标定电能表动态误差测量装置的动态误差。
  7. 根据权利要求6所述的电能表动态误差测量装置的动态误差标定方法,其特征在于,所述二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成镜像变化对,构成的镜像变化对以一个工频稳态信号作为参考信号,所述第一回电流测试信号和所述第二回电流测试信号相对所述参考信号的波形不断变化,且在任意时刻下所述第一回电流测试信号与所述第二回电流测试信号的瞬时值之和与该时刻所述参考信号的瞬时值的比值不 变。
  8. 一种电能表动态误差测量系统,其特征在于,包括:被检表和权利要求1-4任一项所述的电能表动态误差测量装置;其中,
    所述被检表,用于接收所述电能表动态误差测量装置输出的电压测试信号和合并电流信号,根据所述电压测试信号和所述合并电流信号确定待检电能量值;
    所述计算控制单元,还用于根据所述待检电能量值和所述总电能量值确定所述被检表的动态误差。
  9. 一种电能表动态误差测量装置的测试被检表动态误差的方法,其特征在于,由权利要求8的电能表动态误差测量系统实现,所述方法包括:
    所述测试信号产生单元根据计算控制单元的控制产生电压测试信号和二回电流测试信号;
    所述测试信号产生单元将所述电压测试信号和所述二回电流测试信号输出至测量单元,以使所述测量单元根据所述电压测试信号和所述二回电流测试信号确定二回电能量值;
    所述测试信号产生单元将所述二回电流测试信号输出至电流相加单元,以使所述电流相加单元根据所述二回电流测试信号确定合并电流信号;
    所述测量单元将所述二回电能量值输出至所述计算控制单元,以使所述计算控制单元根据所述二回电能量值确定总电能量值;
    所述测试信号产生单元将所述电压测试信号输出至被检表,所述电流相加单元将所述合并电流信号输出至被检表,以使所述被检表根据所述电压测试信号和所述合并电流信号确定待检电能量值;
    所述计算控制单元根据所述总电能量值和所述待检电能量值确定被检表的动态误差。
  10. 根据权利要求9所述的电能表动态误差测量装置的测试被检表动态误差的方法,其特征在于,所述二回电流测试信号中的第一回电流测试信号与第二回电流测试信号构成同像变化对,且都为工频信号,所述第一回电流测试信号和所述第二回电流测试信号的工频有效值随时间不断变化,且波形始终保持一致。
PCT/CN2022/110229 2022-03-15 2022-08-04 电能表动态误差测量装置、系统及方法 WO2023173658A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/052,580 US20240085510A1 (en) 2022-03-15 2022-11-04 Dynamic error measurement apparatus, system, method for electricity meter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210263818.7 2022-03-15
CN202210263818.7A CN114779155A (zh) 2022-03-15 2022-03-15 电能表动态误差测量装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/052,580 Continuation US20240085510A1 (en) 2022-03-15 2022-11-04 Dynamic error measurement apparatus, system, method for electricity meter

Publications (1)

Publication Number Publication Date
WO2023173658A1 true WO2023173658A1 (zh) 2023-09-21

Family

ID=82424647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110229 WO2023173658A1 (zh) 2022-03-15 2022-08-04 电能表动态误差测量装置、系统及方法

Country Status (3)

Country Link
US (1) US20240085510A1 (zh)
CN (1) CN114779155A (zh)
WO (1) WO2023173658A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114779155A (zh) * 2022-03-15 2022-07-22 国网江西省电力有限公司供电服务管理中心 电能表动态误差测量装置及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367182A (ja) * 1989-08-04 1991-03-22 Toshiba Corp 電力量誤差測定装置
CN101718853A (zh) * 2009-11-20 2010-06-02 深圳市科陆电子科技股份有限公司 单相双回路计量电能表检定装置及方法
CN103913716A (zh) * 2012-12-31 2014-07-09 浙江万胜电力仪表有限公司 一种应用于电能表的动态校准方法
CN104569900A (zh) * 2013-10-14 2015-04-29 北京化工大学 智能电能表动态误差测试方法与装置
CN111562537A (zh) * 2020-04-21 2020-08-21 北京化工大学 电能表动态误差的同步测量方法
CN212646969U (zh) * 2019-12-26 2021-03-02 国网江西省电力有限公司电力科学研究院 一种电能表动态响应时间特性的校验装置
CN114779155A (zh) * 2022-03-15 2022-07-22 国网江西省电力有限公司供电服务管理中心 电能表动态误差测量装置及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0367182A (ja) * 1989-08-04 1991-03-22 Toshiba Corp 電力量誤差測定装置
CN101718853A (zh) * 2009-11-20 2010-06-02 深圳市科陆电子科技股份有限公司 单相双回路计量电能表检定装置及方法
CN103913716A (zh) * 2012-12-31 2014-07-09 浙江万胜电力仪表有限公司 一种应用于电能表的动态校准方法
CN104569900A (zh) * 2013-10-14 2015-04-29 北京化工大学 智能电能表动态误差测试方法与装置
CN212646969U (zh) * 2019-12-26 2021-03-02 国网江西省电力有限公司电力科学研究院 一种电能表动态响应时间特性的校验装置
CN111562537A (zh) * 2020-04-21 2020-08-21 北京化工大学 电能表动态误差的同步测量方法
CN114779155A (zh) * 2022-03-15 2022-07-22 国网江西省电力有限公司供电服务管理中心 电能表动态误差测量装置及系统

Also Published As

Publication number Publication date
CN114779155A (zh) 2022-07-22
US20240085510A1 (en) 2024-03-14

Similar Documents

Publication Publication Date Title
WO2023173658A1 (zh) 电能表动态误差测量装置、系统及方法
Cataliotti et al. A virtual instrument for the measurement of IEEE Std. 1459-2000 power quantities
CN102495389A (zh) 电工测量仪器模型校准方法及系统
RU2240567C2 (ru) Способ и система измерения зависящих от частоты электрических параметров
KR20130133138A (ko) 신호 생성 장치 및 신호 생성 방법
CN109541516B (zh) 一种电压互感器宽频误差测量方法
CN107861091B (zh) 一种基于动态电能校准器的动态性能溯源方法
CN109581265B (zh) 一种基于功率误差的电流互感器抗直流性能检测方法
KR20080037136A (ko) 코사인 필터와 사인 필터의 이득차를 이용한 주파수 측정방법
Marzetta An evaluation of the three-voltmeter method for AC power measurement
CN109188074B (zh) 互检电路及方法、电流检测系统、电能计量系统及芯片
CN110927452B (zh) 一种基于瞬时无功功率的相位差测量方法及装置
CN211576217U (zh) 电容传感器的微弱电容变化测量电路
CN114779153A (zh) 电能表动态误差测量装置、系统及动态误差标定方法
Olencki et al. Power network parameters standards with implements IEEE-1459 Power Definitions.
CN110221238A (zh) 分压电路参数的检测电路、方法及电能计量芯片
CN214375934U (zh) 一种宽范围信号发生器装置
CN214750514U (zh) 一种具有零序电流补偿功能的负序电流检测装置
CN112285637B (zh) 一种考核尖顶波对电能计量影响的实验方法
CN216248297U (zh) 一种宽频带电压传感器测量性能校准装置
CN109884388B (zh) 一种基于半周期移相法的电网频率计量、测量装置及方法
Slomovitz et al. A power standard system for calibration of power analyzers
Demerdziev et al. Reactive Power and Energy Instrument’s Performance in Non-Sinusoidal Conditions Regarding Different Power Theories
Guamán et al. Design of a Low-Cost Phasor Measurement Unit (PMU) for Three-Phase Distribution Power Systems according IEEE C37. 118.1
CN210427784U (zh) 分压电路参数的检测电路及电能计量芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931680

Country of ref document: EP

Kind code of ref document: A1