WO2023173301A1 - 反向散射通信的方法、终端设备和网络设备 - Google Patents

反向散射通信的方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2023173301A1
WO2023173301A1 PCT/CN2022/081037 CN2022081037W WO2023173301A1 WO 2023173301 A1 WO2023173301 A1 WO 2023173301A1 CN 2022081037 W CN2022081037 W CN 2022081037W WO 2023173301 A1 WO2023173301 A1 WO 2023173301A1
Authority
WO
WIPO (PCT)
Prior art keywords
time domain
signal
domain resource
backscattering
domain resources
Prior art date
Application number
PCT/CN2022/081037
Other languages
English (en)
French (fr)
Inventor
崔胜江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/081037 priority Critical patent/WO2023173301A1/zh
Publication of WO2023173301A1 publication Critical patent/WO2023173301A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communications, and more specifically, to a backscatter communication method, terminal equipment and network equipment.
  • Embodiments of the present application provide a backscatter communication method, terminal equipment, and network equipment, which can reduce backscatter communication conflicts and interference problems.
  • Embodiments of the present application provide a method for backscatter communication, including:
  • the terminal device determines one or more backscatter time domain resources associated with the received first signal
  • the terminal device performs backscatter communication based on the one or more backscatter time domain resources.
  • Embodiments of the present application provide a method for backscatter communication, including:
  • the network device sends a first signal on a first signal time domain resource, and the first signal is associated with one or more backscatter time domain resources.
  • An embodiment of the present application provides a terminal device, including:
  • a processing module configured to determine one or more backscatter time domain resources associated with the received first signal
  • a backscatter module configured to perform backscatter communication based on the one or more backscatter time domain resources.
  • An embodiment of the present application provides a network device, including: a sending module configured to send a first signal on a first signal time domain resource, where the first signal is associated with one or more backscattering time domain resources.
  • An embodiment of the present application provides a terminal device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device performs the above-mentioned backscatter communication method.
  • An embodiment of the present application provides a network device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device performs the above-mentioned backscatter communication method.
  • An embodiment of the present application provides a chip for implementing the above backscatter communication method.
  • the chip includes: a processor, configured to call and run a computer program from a memory, so that the device installed with the chip performs the above-mentioned backscatter communication method.
  • Embodiments of the present application provide a computer-readable storage medium for storing a computer program, which when the computer program is run by a device, causes the device to perform the above-mentioned backscatter communication method.
  • An embodiment of the present application provides a computer program product, including computer program instructions, which cause the computer to perform the above-mentioned backscatter communication method.
  • An embodiment of the present application provides a computer program that, when run on a computer, causes the computer to perform the above-mentioned backscatter communication method.
  • the terminal device determines the backscattering time domain resource associated with the received first signal, and performs backscattering communication based on the backscattering time domain resource, thereby achieving an effective backscattering communication process. control, thereby reducing backscatter communication collision and interference problems.
  • Figure 1 is a schematic diagram of the principle of zero-power communication.
  • Figure 2 is a schematic diagram of the backscatter communication principle.
  • Figure 3 is a schematic flowchart of a backscatter communication method 300 according to an embodiment of the present application.
  • Figures 4A-4E are schematic diagrams of a first signal-related backscatter time domain resource according to an embodiment of the present application.
  • Figures 5A-5E are schematic diagrams of first signal time domain resources and backscattering time domain resources in the first time domain resource set according to an embodiment of the present application.
  • FIG. 6A is a schematic diagram 1 of implementation method 1 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • FIG. 6B is a second schematic diagram of implementation method 1 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • FIG. 6C is a schematic diagram of Implementation Mode 2 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • Figure 6D is a schematic diagram of implementation method 3 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • FIG. 6E is a schematic diagram of implementation method 4 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • FIG. 6F is a schematic diagram of implementation mode 5 of the correlation between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • FIGS 7A-7F are schematic diagrams of association rules between first signal time domain resources and backscattering time domain resources according to embodiments of the present disclosure.
  • Figure 8 is a schematic flowchart of a backscatter communication method 800 according to an embodiment of the present application.
  • Figure 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • Figure 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • Figure 11 is a schematic block diagram of a communication device according to an embodiment of the present application.
  • Figure 12 is a schematic block diagram of a chip according to an embodiment of the present application.
  • Figure 13 is a schematic block diagram of a communication system according to an embodiment of the present application.
  • a typical zero-power device is Radio Frequency Identification (RFID) equipment, which is a technology that uses the spatial coupling of wireless radio frequency signals to achieve contactless automatic transmission and identification of tag information.
  • RFID tags are also called radio frequency tags or electronic tags.
  • the types of electronic tags classified according to different power supply methods can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, mean that the energy for the operation of the electronic tag is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag. Different from the passive radio frequency activation method, it passes through the battery until the battery is replaced. Set the frequency band to send messages.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • a passive electronic tag When a passive electronic tag is close to a reader, the tag is within the near field range formed by the radiation of the reader's antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-active electronic tags inherit the advantages of passive electronic tags such as small size, light weight, low price and long service life.
  • the built-in battery only provides power for a few circuits in the chip when there is no reader/writer access. When the reader is accessing, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • RFID is a wireless communication technology.
  • the most basic RFID system is composed of two parts: electronic tag (TAG) and reader/writer (Reader/Writer).
  • Electronic tags are composed of coupling components and chips. Each electronic tag has a unique electronic code and is placed on the target to mark the target object.
  • the reader/writer can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
  • Figure 1 is a schematic diagram of the principle of zero-power communication. As shown in Figure 1, after the electronic tag enters the electromagnetic field, it receives the radio frequency signal from the reader.
  • the passive electronic tag or passive electronic tag uses the energy obtained from the electromagnetic field generated in space.
  • the information stored in the electronic tag is transmitted, and the reader/writer reads the information and decodes it to identify the electronic tag.
  • a typical zero-power communication system includes a reader/writer and a zero-power terminal.
  • the reader emits radio waves that are used to provide energy to zero-power terminals.
  • the energy collection module installed in the zero-power terminal can collect the energy carried by radio waves in space (shown in Figure 1 is the radio wave emitted by the reader), and is used to drive the low-power computing module of the zero-power terminal.
  • Implement backscatter communication After the zero-power terminal obtains energy, it can receive control commands from the reader and send data to the reader in a backscattering manner based on control signaling.
  • the data sent can come from the data stored in the zero-power terminal itself (such as identification or pre-written information, such as the product's production date, brand, manufacturer, etc.).
  • Zero-power terminals can also be loaded with various sensors to report data collected by various sensors based on a zero-power mechanism.
  • FIG. 2 is a schematic diagram of the backscatter communication principle.
  • the zero-power device receives the carrier signal sent by the backscatter reader, collects energy through the energy collection module, and then Functionally control the low-power processing module (logic processing module in Figure 2), modulate the incoming signal, and perform backscattering.
  • the main characteristics of backscatter communication are as follows:
  • the terminal does not actively transmit signals, but implements backscatter communication by modulating the incoming wave signal
  • the terminal does not rely on traditional active power amplifier transmitters and uses low-power computing units to greatly reduce hardware complexity;
  • the energy supply signal in the zero-power communication system from the perspective of the energy supply signal carrier, can be a base station, a smartphone, a smart gateway, a charging station, a micro base station, etc.; from the perspective of the frequency band, the radio wave used as the energy supply signal can be They are low frequency, medium frequency, high frequency and other radio waves; from the waveform point of view, the radio waves used as energy supply signals can be sine waves, square waves, triangle waves, pulses, rectangular waves and other radio waves.
  • the functional signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the energy supply may be a certain signal specified in the 3GPP standard, such as the sounding reference signal (SRS), the physical uplink shared channel (PUSCH), and the physical random access channel (PRACH).
  • SRS sounding reference signal
  • PUSCH physical uplink shared channel
  • PRACH physical random access channel
  • the trigger signal in the zero-power communication system can be a base station, a smartphone, a smart gateway, etc. from the perspective of the trigger signal carrier; from the frequency band perspective, the radio wave used as the trigger signal can be a low-frequency, medium-frequency, high-frequency radio, etc. Wave; from the waveform point of view, the radio waves used as trigger signals can be sine waves, square waves, triangle waves, pulses, rectangular waves and other radio waves. In addition, the trigger signal can be a continuous wave or a discontinuous wave (that is, a certain time interruption is allowed).
  • the trigger signal may be a certain signal specified in the 3GPP standard, such as SRS, PUSCH, PRACH, PUCCH, PDCCH, PDSCH, PBCH, etc., or it may be a new signal.
  • the "instruction” mentioned in the embodiments of this application may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • correlate can mean that there is a direct correspondence or indirect correspondence between the two, it can also mean that there is an associated relationship between the two, or it can mean indicating and being instructed, configuration and being. Configuration and other relationships.
  • the network device may be a device used to communicate with mobile devices, and the network device may be an access point (Access Point, AP) in WLAN, GSM or
  • the base station (Base Transceiver Station, BTS) in CDMA can also be the base station (NodeB, NB) in WCDMA, or the evolutionary base station (Evolutional Node B, eNB or eNodeB) in LTE, or a relay station or access point , or vehicle equipment, wearable devices, network equipment (gNB) in NR networks or network equipment in future evolved PLMN networks, etc.
  • network equipment provides services for a cell
  • terminal equipment communicates with the network equipment through transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell may be a network equipment (for example, base station), the cell can belong to the macro base station, or it can belong to the base station corresponding to the small cell (Small cell).
  • the small cell here can include: urban cell (Metro cell), micro cell (Micro cell), pico cell (Pico) Cell), femto cell (Femto cell), etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-rate data transmission services.
  • the terminal equipment may also be called user equipment, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, Terminal, wireless communication equipment, user agent or user device, etc.
  • the terminal device can be a station (ST) in the WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, or a personal digital processing unit.
  • ST station
  • SIP Session Initiation Protocol
  • WLL wireless Local Loop
  • PDA Personal Digital Assistant
  • handheld devices with wireless communication capabilities computing devices or other processing devices connected to wireless modems
  • vehicle-mounted devices wearable devices
  • next-generation communication systems such as terminal devices in NR networks or Terminal equipment in the future evolved Public Land Mobile Network (Public Land Mobile Network, PLMN) network, or zero-power consumption equipment, etc.
  • PLMN Public Land Mobile Network
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices. It is a general term for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories. Wearable devices are not just hardware devices, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized devices that can achieve complete or partial functions without relying on smartphones, such as smart watches or smart glasses, and those that only focus on a certain type of application function and need to cooperate with other devices such as smartphones.
  • a zero-power consumption device may be understood as a device whose power consumption is lower than a preset power consumption. For example, it includes passive terminals and even semi-passive terminals.
  • the zero-power device is a radio frequency identification (Radio Frequency Identification, RFID) tag, which is a technology that uses the spatial coupling of radio frequency signals to achieve contactless automatic transmission and identification of tag information.
  • RFID tags are also called "radio frequency tags" or “electronic tags”.
  • the types of electronic tags classified according to different power supply methods can be divided into active electronic tags, passive electronic tags and semi-passive electronic tags.
  • Active electronic tags also known as active electronic tags, mean that the energy for the operation of the electronic tag is provided by the battery.
  • the battery, memory and antenna together constitute an active electronic tag. Different from the passive radio frequency activation method, it passes through the battery until the battery is replaced. Set the frequency band to send messages.
  • Passive electronic tags also known as passive electronic tags, do not support built-in batteries.
  • a passive electronic tag When a passive electronic tag is close to a reader, the tag is within the near field range formed by the radiation of the reader's antenna.
  • the electronic tag antenna generates an induced current through electromagnetic induction. , the induced current drives the electronic tag chip circuit.
  • the chip circuit sends the identification information stored in the tag to the reader through the electronic tag antenna.
  • Semi-passive electronic tags also known as semi-active electronic tags, inherit the advantages of passive electronic tags such as small size, light weight, low price and long service life.
  • the built-in battery can be used when there is no reader access. It only provides power to a few circuits in the chip. Only when the reader is accessed, the built-in battery supplies power to the RFID chip to increase the reading and writing distance of the tag and improve the reliability of communication.
  • the RFID system is a wireless communication system.
  • the RFID system is composed of two parts: electronic tag (TAG) and reader/writer (Reader/Writer).
  • Electronic tags include coupling components and chips. Each electronic tag has a unique electronic code and is placed on the target to mark the target object.
  • the reader/writer can not only read the information on the electronic tag, but also write the information on the electronic tag, and at the same time provide the electronic tag with the energy required for communication.
  • the above terminal device can be a zero-power consumption device (such as a passive terminal or even a semi-passive terminal), or even a non-zero power consumption device, such as an ordinary terminal.
  • the ordinary terminal can be used in some situations. backscatter communication.
  • the zero-power communication process is not controlled in related technologies, serious backscatter communication conflicts and mutual interference problems may occur.
  • a zero-power terminal device can be referred to as a terminal device for short
  • the backscatter communication signals sent by each zero-power device may conflict due to uncertainty at what time the backscatter communication is performed. and mutual interference issues.
  • the embodiment of the present application proposes a correlation method between the scheduling signal (or the scheduling signal time domain resource) and the backscattering (or the backscattering time domain resource) in zero-power communication for triggering or scheduling the backscattering communication signal, so as to facilitate Network devices control the zero-power communication process.
  • FIG 3 is a schematic flowchart of a backscatter communication method 300 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 and 2, but is not limited thereto. The method includes at least part of the following.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal
  • the terminal device performs backscattering communication based on the one or more backscattering time domain resources.
  • the first signal has at least one of the following functions:
  • zero-power terminal equipment since zero-power terminal equipment (hereinafter referred to as terminal equipment) does not have battery power, energy collection first needs to be performed, which can be based on radio frequency signals to obtain energy for communication, or based on environmental energy (such as kinetic energy, thermal energy, solar energy, etc.) to obtain energy for communication. Then the corresponding communication process is performed based on backscattering.
  • a signal for energy harvesting can be provided through a network device or a dedicated energy node.
  • the signal for energy harvesting is hereinafter referred to as an energy supply signal.
  • the control information provided by the network device can be the above-mentioned first signal; the first signal can also be called a scheduling signal or a trigger signal.
  • the first signal and the energy supply signal may be the same signal, or they may be two independent signals.
  • the terminal device When the terminal device communicates, it needs a carrier that can carry the communication.
  • the carrier can be a signal that is independent of the energy supply signal and the first signal, or it can be the same signal as the energy supply signal, or the same signal as the first signal.
  • a signal. This carrier wave can also be called a carrier signal.
  • the frequency bands of the energy supply signal, the carrier signal, and the first signal may be completely different, identical, or partially identical.
  • the energy supply signal can be sent continuously or intermittently in a certain frequency band.
  • the terminal device uses the energy supply signal to collect energy. After obtaining the energy, it performs the corresponding communication process (such as measurement, channel/signal reception, channel/signal send, etc.).
  • different terminal devices may have different energy collection capabilities.
  • different terminal devices are located in different locations. Since the energy supply signal is attenuated and the energy reaches different locations, the time it takes for different terminal devices to obtain the energy required for communication through energy harvesting may be different.
  • the embodiment of this application provides the time domain resource design and mapping relationship between the first signal and the backscattered communication signal in zero-power communication.
  • the time domain resources used to carry the first signal are called first signal time domain resources or scheduling signal time domain resources, and the resources used to carry backscattered communication signals are called backscattered time domain resources. domain resources.
  • the terminal device when receiving the first signal, determines the backscattering time domain resource associated with the first signal, and performs backscattering communication on the backscattering time domain resource, This enables control of the time domain resources occupied by backscatter communications and greatly reduces backscatter communication conflicts and mutual interference problems.
  • the zero-power consumption terminal can first perform energy collection, and then perform the monitoring of the first signal and the backscattering communication process; it can also perform energy collection based on the first signal, and then perform backscattering. communication process.
  • the first signal time domain resource may be specifically the first signal transmission opportunity, or it may be called a backscatter control opportunity (BCO, BackScatter Control Occasion).
  • BCO BackScatter Control Occasion
  • the backscatter time domain resource can be specifically a backscatter communication opportunity, or simply a backscatter opportunity (BO, BackScatter Occasion).
  • the embodiments of the present application can realize at least two correlation methods between the first signal (or first signal time domain resource) and backscattering (or backscattering time domain resource). Including: Method 1: each first signal is associated with one or more backscatter communication opportunities; Method 2: Association of the first signal and backscatter communication opportunities based on the first time domain resource set configuration.
  • each first signal is associated with one or more backscatter communication opportunities.
  • the first signal time domain resources (such as the first signal transmission timing) and the backscattering time domain resources (such as the backscattering communication timing) themselves are not limited and do not need to be located at a specific location in the time domain resources.
  • the network device can dynamically send the first signal.
  • the backscatter time domain resource can be an uplink time domain resource or a downlink time domain resource or a flexible time domain resource used for other channel communications in New Radio (NR, New Radio).
  • the first signal may have at least one of the following functions:
  • Figure 4A shows a scheduling signal (or scheduling signal time domain resource) associated backscattering according to an embodiment of the present application.
  • a schematic diagram of time domain resources is shown in Figure 4A, taking the scheduling signal time domain resource as scheduling signal transmission/monitoring timing and the backscattering time domain resource as backscattering communication timing as an example.
  • Figure 4A shows two scheduling signal sending opportunities, namely BCO1 and BCO2; each scheduling signal sending opportunity is associated with a backscatter communication opportunity, for example, BCO1 is associated with BO1, and BCO2 is associated with BO2.
  • BCO1 and BCO2 are dynamically selected by the network device when sending scheduling signals.
  • the terminal device monitors the scheduling signal on any time domain resource. For example, when the terminal device monitors and receives the scheduling signal on BCO1, the backscatter associated with BCO1 can be determined based on the correlation between BCO1 and the backscatter communication opportunity.
  • the communication opportunity is BO1, and the terminal device can perform backscatter communication on BO1 for the scheduling signal, such as sending a backscatter communication signal.
  • the network device sends a scheduling signal on BCO1
  • the network device can determine that the backscatter communication opportunity associated with BCO1 is BO1 based on the association between BCO1 and the backscatter communication opportunity, then the network device will be on BO1. Monitor backscatter communication, and when the backscatter communication signal is monitored and received on BO1, the backscatter communication signal is processed.
  • the terminal device may determine one or more backscattering time domain resources associated with the received first signal according to at least one of the following:
  • the first signal time domain resource where the first signal is located
  • the number of backscattering time domain resources associated with the first signal is the number of backscattering time domain resources associated with the first signal
  • the interval between two adjacent backscatter time domain resources associated with the first signal is the interval between two adjacent backscatter time domain resources associated with the first signal.
  • the terminal device can determine one or more backscattering time domain resources associated with the received first signal. These backscattering time domain resources can be in the first signal where the first signal is located. after the time domain resource; alternatively, these backscattered time domain resources may be behind the first signal time domain resource where the first signal is located or overlap with the position of the first signal time domain resource where the first signal is located.
  • the terminal device may determine one or more backscatter time domain resources associated with the first signal through a starting point of the backscatter time domain resource. For example, multiple backscattering time domain resources are configured in the time domain in advance, and the terminal device determines one or more backscattering time domain resources starting from the starting point as the first according to the starting point of the backscattering time domain resource. Signal-correlated backscatter time domain resources.
  • the network device may use the first signal to indicate the starting point of the backscattering time domain resource to the terminal device, or may use other signals to indicate the starting point of the backscattering time domain resource to the terminal device.
  • the terminal device may also determine one or more backscatter time domain resources associated with the first signal according to the duration of the backscatter time domain resource.
  • the starting point of the backscattering communication opportunity or the duration of the backscattering time domain resource may be specified by the protocol; and/or the starting point of the backscattering communication opportunity or the duration of the backscattering time domain resource may be configured by the network device .
  • the network device may be configured via the first signal.
  • the first signal is associated with one or more backscatter time domain resources.
  • the correlation between the first signal and a backscatter time domain resource can be determined through a time domain offset.
  • BCO1 (or the first signal sent at BCO1) has an associated relationship with BO1, and the associated relationship is determined by the time domain offset of BO1 relative to BCO1 (T1 in Figure 4A). If the terminal device receives the first signal at BCO1, based on the time domain offset T1, the specific location of BO1 associated with BCO1 can be determined, and backscatter communication can be performed on BO1. Similarly, if the network device sends the first signal on BCO1, the specific location of BO1 associated with BCO1 can also be determined based on the time domain offset T1, and the backscatter communication can be monitored on BO1.
  • the terminal device may also determine the backscattering time domain resource associated with the first signal based on the duration of the backscattering time domain resource, such as determining the time length of BO1 associated with BCO1 in Figure 4A.
  • the duration of the time domain offset or the backscatter time domain resource may be specified by the protocol; and/or the duration of the time domain offset or the backscatter time domain resource may be configured by the network device.
  • the network device may be configured via the first signal.
  • the correlation between the first signal and multiple backscattering time domain resources may be determined through one or more time domain offsets.
  • the correlation between the first signal and multiple backscattering time domain resources can be determined through multiple time domain offsets, and each time domain offset is used to determine a link that is associated with the first signal. Relational backscatter time domain resources.
  • BCO2 (or the first signal sent in BCO2) has a correlation relationship with BO2 and BO3. These two correlation relationships are respectively through the time domain offset of BO2 relative to BCO2 (T2 in Figure 4B) and The time domain offset of BO3 relative to BCO2 (T3 in Figure 4B) is determined. If the terminal device receives the first signal at BCO2, it can determine the specific positions of BO2 and BO3 associated with BCO2 based on the time domain offsets T2 and T3, and perform backscatter communication on BO2 and/or BO3.
  • the network device sends the first signal on BCO2, it can also determine the specific positions of BO2 and BO3 associated with BCO2 based on the time domain offsets T2 and T3, and monitor backscattering on BO2 and/or BO3 communication. Further, the terminal device can also determine the backscatter time domain resource associated with the first signal based on the duration of the backscatter time domain resource, such as determining the time length of BO2 and BO3 associated with BCO2 in Figure 4B. Specifically, the durations of multiple time domain offsets or backscattering time domain resources may be specified by the protocol; and/or the durations of multiple time domain offsets or backscattering time domain resources may be configured by the network device. For example, the network device may be configured via the first signal.
  • the correlation between the first signal and multiple backscattered time domain resources may be determined by a time domain offset and the number of backscattered time domain resources associated with the first signal.
  • the specific location of the domain resource i.e.
  • the terminal device can listen for backscatter traffic on BO2 and/or BO3. Further, the terminal device can also determine the backscatter time domain resource associated with the first signal according to the duration of the backscatter time domain resource, such as determining the time length of BO2 and BO3 associated with BCO2 in Figure 4C.
  • the time domain offset, the number of backscattered time domain resources associated with the first signal, or the duration of the backscattered time domain resource may be specified by the protocol; and/or, the time domain offset, the first signal associated
  • the number of backscattering time domain resources or the duration of the backscattering time domain resources can be configured by the network device.
  • the network device may be configured via the first signal.
  • the correlation between the first signal and multiple backscattered time domain resources is determined by a time domain offset, the number of backscattered time domain resources associated with the first signal, and the number of backscattered time domain resources associated with the first signal.
  • the separation between two adjacent backscattered time domain resources is determined.
  • the specific location of the first backscattering time domain resource (ie BO2) associated with BCO2 can be determined based on the time domain offset T2; and then based on the specific location of BO2 and The interval between two adjacent backscattering time domain resources associated with the first signal ( ⁇ T in Figure 4D) determines the second backscattering time domain resource associated with the first signal (as shown in Figure 4D The specific location of BO3).
  • the end device can thereby monitor backscatter communications on BO2 and/or BO3.
  • the terminal device can also determine the backscatter time domain resource associated with the first signal according to the duration of the backscatter time domain resource, such as determining the time length of BO2 and BO3 associated with BCO2 in Figure 4D.
  • the time domain offset, the number of backscattered time domain resources associated with the first signal, the interval between two adjacent backscattered time domain resources associated with the first signal, or the number of backscattered time domain resources associated with the first signal The duration may be specified by the protocol; and/or, the time domain offset, the number of backscattering time domain resources associated with the first signal, and the interval between two adjacent backscattering time domain resources associated with the first signal Or the duration of the backscatter time domain resource can be configured by the network device.
  • the network device may be configured via the first signal.
  • the interval between two adjacent backscattering time domain resources associated with the first signal in this embodiment can be configured in the time domain.
  • the backscatter time domain resource is expressed as a multiple of the period.
  • ⁇ T in FIG. 4D can take a value of 2, indicating that one out of every two backscattering time domain resources in the time domain is selected as the backscattering time domain resource associated with the first signal.
  • ⁇ T 2
  • ⁇ T in Figure 4D can also be directly taken as the time interval between BO2 and BO3.
  • BCO1 and BCO2 can be dynamically selected by the network device when sending the first signal.
  • the terminal device monitors the first signal on any time domain resource. For example, when the terminal device monitors and receives the first signal on BCO1, it can determine the backscatter associated with BCO1 based on the correlation between BCO1 and the backscattering communication opportunity.
  • the backscattering communication opportunity is BO1, and the terminal device can perform backscattering communication on BO1 for the first signal, such as sending a backscattering communication signal.
  • the network device sends the first signal on BCO1
  • the network device can determine that the backscatter communication opportunity associated with BCO1 is BO1 based on the correlation between BCO1 and the backscatter communication opportunity, then the network device will be on BO1
  • the backscatter communication signal is monitored on BO1.
  • the backscatter communication signal is processed.
  • the terminal device monitors and receives the first signal on BCO2, based on the correlation between BCO2 and backscatter communication opportunities, it can be determined that the backscatter communication opportunities associated with BCO2 are BO2 and BO3, then the terminal device You can select BO2 or BO3 for backscatter communications, or have backscatter communications on both BO2 and BO3.
  • the network device sends the first signal on BCO2, and the network device can determine that the backscatter communication opportunities associated with BCO2 are BO2 and BO3 based on the correlation between BCO2 and backscatter communication opportunities, then the network device can Monitoring of backscatter communications is performed on BO2 and/or BO3.
  • At least one of the time domain offsets of all first signals, the number of associated backscatter time domain resources, and the intervals between adjacent backscatter time domain resources may be uniformly configured. , that is, each first signal is configured with at least one of the same time domain offset, the number of associated backscatter time domain resources, and the interval between adjacent backscatter time domain resources; or,
  • At least one of the time domain offsets of all first signals, the number of associated backscattered time domain resources, and the intervals between adjacent backscattered time domain resources may be based on groups, respectively. Uniformly configured, that is, each first signal in the same group (for example, in the same time domain resource set) is configured with the same time domain offset, the number of associated backscattering time domain resources, and adjacent backscattering at least one of the intervals between time domain resources; or,
  • At least one of the time domain offsets of all first signals, the number of associated backscatter time domain resources, and the spacing between adjacent backscatter time domain resources is determined for each th
  • a signal is independently configured, that is, each first signal can independently configure at least one of the time domain offset, the number of associated backscatter time domain resources, and the interval between adjacent backscatter time domain resources.
  • the number of backscatter time domain resources associated with the scheduling signal may be determined according to the format of the scheduling signal.
  • the format of the first signal includes at least one of a first format, a second format and a third format: where,
  • the first signal in the first format is associated with one or more backscatter time domain resources.
  • the first signal in the second format is associated with a backscattered time domain resource
  • the first signal in the third format is associated with a plurality of backscattered time domain resources.
  • the terminal device When the terminal device receives the first signal, it can determine the number of backscattering time domain resources associated with the first signal according to the format of the first signal, and determine the backscattering time domain resources associated with the first signal in combination with the other information mentioned above. .
  • one or more backscattering time domain resources associated with the first signal received by the terminal device are located behind the scheduling signal time domain resource where the received first signal is located, and/or are related to the received first signal.
  • the positions of the first signal time domain resources where the received scheduling signals are located overlap.
  • the backscatter communication opportunity associated with the first signal may be located behind the first signal transmission opportunity, and/or at the same position as the first signal transmission opportunity.
  • the first signal time domain resource where the received first signal is located is not allowed to overlap with one or more backscattering time domain resources associated with other first signals.
  • Figure 4E is a schematic diagram of another first signal (or first signal time domain resource) associated with backscattering time domain resources according to an embodiment of the present application.
  • the scheduling signal transmission opportunity BCO1 It is associated with the backscatter communication opportunity BO1
  • the scheduling signal transmission opportunity BCO2 is associated with the backscatter communication opportunity BO2.
  • BO1 may overlap or partially overlap with BCO2.
  • the units of the above-mentioned time domain offset include: microseconds, milliseconds, seconds, OFDM symbols, time slots, subframes, frames or basic time units of backscatter communication.
  • the time domain offset includes an offset from the first reference point to the second reference point; wherein,
  • the first reference point may be associated with the received first signal
  • the second reference point may be associated with the backscatter time domain resource.
  • the first reference point may include the starting point of the received first signal, the end point of the received first signal, the starting point of the time unit where the received first signal is located, and the end point of the time unit where the received first signal is located. at least one of them.
  • the second reference point may include the starting point of the backscattering time domain resource, the end point of the backscattering time domain resource, the starting point of the time unit where the backscattering time domain resource is located, and the end point of the time unit where the backscattering time domain resource is located. at least one of them.
  • the time unit may include Orthogonal Frequency Division Multiplexing (OFDM, Orthogonal Frequency Division Multiplexing) symbols, time slots, subframes, frames or basic time units of backscatter communication.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the time domain offsets corresponding to all first signals are configured uniformly or independently. For example, if the time domain offsets corresponding to all first signals are configured uniformly, then the time domain offsets corresponding to all first signals are the same; or if the time domain offsets corresponding to all first signals are configured independently, then all first signals have the same time domain offsets.
  • the time domain offsets corresponding to the signals can be the same or different.
  • the backscattering time domain resources associated with different scheduling signals are completely the same, completely different, or partially the same.
  • the durations of different backscattering time domain resources are the same or different.
  • the above introduces the first way of correlating the first signal (or first signal time domain resource) and backscattering (or backscattering time domain resource), that is, each first signal is associated with one or more backscattering communication opportunities. Correlation method, and the backscatter communication method of the terminal device in this method.
  • the embodiment of the present application also proposes a second way of correlating the first signal (or first signal time domain resource) and backscattering (or backscattering time domain resource), specifically as follows:
  • the method 2 is more standardized and can semi-statically configure the first signal transmission timing and the backscattering communication timing in the first time domain resource.
  • the network device can only send the scheduled signal at the first signal sending opportunity in the first time domain resource.
  • Figure 5A is a schematic diagram of a first signal time domain resource and a backscattering time domain resource in a first time domain resource set according to an embodiment of the present application.
  • the first signal time domain resource is specifically a scheduling signal.
  • the transmission timing and backscattering time domain resources are specifically the backscattering communication timing as an example for explanation.
  • Figure 5A shows a first time domain resource set, which includes a plurality of basic communication units.
  • the basic communication unit may be a component unit of the first time domain resource set, and the first time domain resource set may be determined based on the number and/or time length of the basic communication units.
  • the basic communication units in the first time domain resource set can be used as scheduling signal sending opportunities for the transmission of the first signal; another part of the basic communication units can be used as backscattering communication opportunities for the transmission of backscattering signals;
  • the first time domain resource set may also include partially blank basic communication units that transmit neither the first signal nor the backscattered signal.
  • the basic communication unit of zero-power communication can be defined.
  • the first time domain resource set may be determined based on the number of basic communication units for zero power consumption communication or based on an absolute time length (eg, microseconds, milliseconds, seconds, etc.).
  • the first time domain resource set may include one or more first signal time domain resources, such as one or more scheduling signal transmission opportunities; the first time domain resource set may include one or more backscattering Time domain resources, such as one or more backscatter communication opportunities.
  • the network device may pre-configure the location information of the first signal time domain resource and/or the backscattering time domain resource in the first time domain resource set.
  • the terminal device receives the first signal time domain resource and/or the backscattering resource.
  • the location information may include a starting location and/or duration.
  • the first time domain resource set includes a first type of first time domain resource set and a second type of first time domain resource set
  • the first type of first time domain resource set includes a first signal time domain resource. and/or a first time domain resource set of backscatter time domain resources.
  • the second type of first time domain resource set is a first time domain resource that does not include the first signal time domain resource and does not include the backscatter time domain resource. gather;
  • the location information of the first signal time domain resource and/or the backscattering time domain resource in the first time domain resource set may include:
  • Periodic distribution information of the first type of first time domain resource set and the second type of first time domain resource set, each cycle includes at least one first type of first time domain resource set and/or at least one second type of first time domain resource set Time domain resource collection.
  • FIG. 5B is a schematic diagram of scheduling signal time domain resources and backscattering time domain resources in another first time domain resource set according to an embodiment of the present application.
  • the scheduling signal time domain resource is specifically used for scheduling signal transmission.
  • Timing and backscatter time domain resources are specifically described as backscatter communication timing as an example.
  • the first time domain resource set 1 and the first time domain resource set 3 belong to the above-mentioned first type of first time domain resource set.
  • the first time domain resource set 1 and the first time domain resource set 3 include scheduling signal transmission timing and Backscatter communication opportunities; the first time domain resource set 2 belongs to the above-mentioned second type of first time domain resource set, and the first time domain resource set 2 includes neither scheduling signal transmission opportunities nor backscatter communication opportunities.
  • the first type of first time domain resource set and the second type of first time domain resource set are distributed periodically, and each cycle includes 1 first type of first time domain resource set and 1 second type of time domain resource set.
  • the first-class time-domain resource set has the same distribution in different cycles.
  • backscatter communication opportunities are periodically distributed, that is, one appears in every three basic communication units. Backscatter communication opportunities.
  • the distribution information of the first signal time domain resources and/or the backscattering time domain resources included in the first time domain resource set may be represented by patterns, and the patterns of different first time domain resource sets may be the same or different.
  • all first signal time domain resources in the first time domain resource set precede any backscattering time domain resource in the first time domain resource set; or,
  • the first time domain resource set includes first signal time domain resources and backscattering time domain resources that occupy the same basic communication unit.
  • x and y are the indices of the basic time units. This method can be seen in Figure 5A for details.
  • the first signal sending opportunities are located after the backscattering communication opportunities. That is, it is not required that all first signal sending opportunities are equal.
  • the second first signal transmission opportunity in the first time domain resource set is located after a backscatter communication opportunity.
  • part of the first signal transmission opportunities and part of the backscattering communication opportunities occupy the same basic communication unit.
  • the backscattering time domain resources associated with different first signal time domain resources may be completely the same, completely different, or partially the same.
  • the same first signal is allowed to be sent on different first signal time domain resources in the same first time domain resource set.
  • the embodiment of the present application may also configure a second time domain resource set, and the second time domain resource set may include multiple first time domain resource sets.
  • the number of the first time domain resource set in the second time domain resource set may be specified by a protocol or configured by a network device. Specifically, the network device may configure the number of the first time domain resource set in the second time domain resource set through the first signal or other signals.
  • the first time domain resource set included in the second time domain resource set may all be the first type of first time domain resource set
  • the first time domain resource set included in the second time domain resource set may be a first type of first time domain resource set or a second type of first time domain resource set; in other words, the second time domain resource set may include consecutive Multiple first time domain resource collections.
  • the second time domain resource set includes two consecutive first time domain resource sets.
  • the first time domain resource set included in the second time domain resource set may be the above-mentioned first type of first time domain resource set and/or the second type of first time domain resource set.
  • the terminal device monitors the first signal on the first set of time domain resources.
  • the correlation between the first signal and the backscattering time domain resource has at least the following implementation methods:
  • the first signal is associated with all backscattered time domain resources located after the first signal in the first set of time domain resources; or,
  • the first signal is associated with all backscattered time domain resources in the first time domain resource set that are located behind and overlap with the first signal; or,
  • the first signal is associated with all backscattered time domain resources located after the first signal in the second time domain resource set; or,
  • the first signal is associated with all backscattered time domain resources located behind and overlapping with the first signal in the second time domain resource set.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal, including:
  • the terminal device determines all backscattering time domain resources located after the first signal in the first time domain resource set, and uses the determined backscattering time domain resources as one or more backscattering associated with the first signal. time domain resources; or,
  • the terminal device determines all backscattered time domain resources located after the first signal and overlapping with the first signal in the first time domain resource set, and uses the determined backscattered time domain resources as associated with the first signal.
  • One or more backscatter time domain resources are a schematic diagram 1 of the implementation method 1 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically a scheduling signal.
  • the transmission timing and backscattering time domain resources are specifically introduced as the backscattering communication timing as an example.
  • the terminal device can determine that the location in the first time domain resource set is All backscatter communication opportunities after the first signal are backscatter communication opportunities associated with the first signal.
  • the terminal device can use some or all of these associated backscatter time domain resources to perform backscatter communication. .
  • the terminal device may determine that all backscatter communication opportunities located after and overlapping with the first signal in the first time domain resource set are backscatter communication opportunities associated with the first signal.
  • the network device can also use the same method to determine the backscatter time domain resources associated with the first signal, and monitor the backscatter signal sent by the terminal device on some or all of these backscatter time domain resources. .
  • the terminal device determines one or more backscatter time domain resources associated with the received first signal, including:
  • the terminal device determines all backscattering time domain resources located after the first signal in the second time domain resource set, and uses the determined backscattering time domain resources as one or more backscattering associated with the first signal. time domain resources; or,
  • the terminal device determines all backscattered time domain resources located after the first signal and overlapping with the first signal in the second time domain resource set, and uses the determined backscattered time domain resources as those associated with the first signal. one or more backscatter time domain resources;
  • the second time domain resource set includes multiple first time domain resource sets.
  • Figure 6B is a schematic diagram 2 of the implementation method 1 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically a scheduling signal.
  • the transmission timing and backscattering time domain resources are specifically introduced as the backscattering communication timing as an example.
  • the terminal device can determine that the second time domain resource set is located in All backscatter communication opportunities after the first signal are backscatter communication opportunities associated with the first signal.
  • the terminal device can use some or all of these associated backscatter time domain resources to perform backscatter communication. .
  • the terminal device may determine that all backscatter communication opportunities located after and overlapping with the first signal in the second time domain resource set are backscatter communication opportunities associated with the first signal.
  • the network device can also use the same method to determine the backscatter time domain resources associated with the first signal, and monitor the backscatter signal sent by the terminal device on some or all of these backscatter time domain resources. .
  • the implementation method 1 of the association relationship does not specifically limit the number of backscattering time domain resources associated with the first signal, but limits the number of backscattering time domain resources associated with the first signal. The location of domain resources is restricted.
  • the first signal is associated with N1 backscatter time domain resources located after the first signal; or,
  • the first signal is associated with N1 backscatter time domain resources that are not located before the first signal (including those located after the first signal and overlapping with the first signal).
  • N1 is a positive integer.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal, including:
  • the terminal device determines N1 backscattering time domain resources that meet the first condition, and uses the determined backscattering time domain resources as the backscattering time domain resources associated with the first signal; N1 is a positive integer;
  • the first condition includes:
  • the backscatter time domain resource is located after the first signal; or,
  • the backscatter time domain resource is located behind or overlapping the first signal.
  • Figure 6C is a schematic diagram of the implementation method 2 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically used for scheduling signal transmission. Timing and backscatter time domain resources are specifically introduced as the backscatter communication timing as an example.
  • the terminal device receives the first signal at the first scheduling signal transmission opportunity in the first time domain resource set shown in Figure 6C, and determines that the three backscattering communication opportunities after the first signal are related to the first signal. Signal-correlated backscatter communication opportunities.
  • the terminal device may determine three backscatter communication opportunities located behind or overlapping with the first signal.
  • the network device can also use the same method to determine three backscatter communication opportunities associated with the first signal, and monitor the backscatter signal sent by the terminal device at these backscatter communication opportunities.
  • implementation mode 2 of the association relationship limits the number of backscattering time domain resources associated with the first signal.
  • the above N1 is a preset value; or, N1 is configured by the network device.
  • N1 may adopt the first signal configuration or other signal configurations by the network device.
  • both the number of backscattering time domain resources associated with the first signal and the location of the backscattering time domain resources associated with the first signal can be limited.
  • the first signal is limited to be associated with N2 backscattering time domain resources at most.
  • N2 backscattering time domain resources When the number of backscattering time domain resources that meet the location condition is greater than or equal to N2, it can be determined that the first signal is associated with N2 backscattering time domain resources. ;
  • the number of backscattering time domain resources that meet the foregoing location conditions is less than N2, determine the first signal to associate L (L is the number of backscattering time domain resources that meet the foregoing location conditions) backscattering time domain resources.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal, including:
  • the terminal device determines N2 or less than N2 backscattering time domain resources that meet the second condition (which may be the aforementioned location condition), and uses the determined backscattering time domain resources as the backscattering associated with the first signal.
  • Time domain resources; the N2 is a positive integer.
  • the terminal device uses the N2 backscattering time domain resources that satisfy the second condition as the backscattering associated with the first signal. time domain resources; or,
  • the terminal device uses all backscattered time domain resources that satisfy the second condition as backscattered time domain resources associated with the first signal.
  • the aforementioned second condition may include:
  • the backscattering time domain resource is within the first time domain resource set where the first signal is located and is located after the first signal; or,
  • the backscattered time domain resource is within the first time domain resource set where the first signal is located, and is located behind or overlapping with the first signal.
  • the aforementioned second condition may include:
  • the backscattered time domain resource is within the second time domain resource set to which the first time domain resource set where the first signal is located belongs, and is located after the first signal; or,
  • the backscattered time domain resource is within the second time domain resource set to which the first time domain resource set where the first signal is located belongs, and is located behind the first signal or overlaps with the first signal.
  • Figure 6D is a schematic diagram of implementation method 3 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically used for scheduling signal transmission. Timing and backscatter time domain resources are specifically introduced as the backscatter communication timing as an example.
  • the terminal device receives the first signal at the first scheduling signal transmission opportunity in the first time domain resource set shown in Figure 6D, and determines that the four backscatter communication opportunities located after the first signal are related to the first signal.
  • Backscatter communication opportunities associated with the first signal there are 5 backscatter communication opportunities within the first time domain resource set and after the first signal.
  • the terminal device selects the first 4 as the backscatter communication opportunity associated with the first signal).
  • the terminal device receives the first signal at the second scheduling signal sending opportunity in the first time domain resource set shown in Figure 6D, and there are three locations within the first time domain resource set located at the first signal For subsequent backscatter communication opportunities, the terminal device regards these three backscatter communication opportunities as the backscatter communication opportunities associated with the first signal.
  • the above N2 is a preset value; or, N2 is configured by the network device.
  • N2 may adopt the first signal configuration or other signal configurations by the network device.
  • association rules may be used to limit the backscattering time domain resources associated with the first signal.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal, including:
  • the terminal device determines N3 backscattering time domain resources that satisfy the association rules, and uses the determined backscattering time domain resources as the backscattering time domain resources associated with the first signal; N3 is the first backscattering time domain resource associated with the first signal. The number of backscattering time domain resources that have an associated relationship with the signal time domain resource, and N3 is indicated by the association rule.
  • the above association rules can be set in advance or configured by the network device.
  • the network device may use the first signal to configure the association rule.
  • the association rule may be represented by a bitmap.
  • Figure 6E is a schematic diagram of the implementation method 4 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically used for scheduling signal transmission.
  • Timing and backscatter time domain resources are specifically introduced as the backscatter communication timing as an example.
  • the association rule of the first scheduling signal transmission timing in the first time domain resource set shown in Figure 6E is represented by the bitmap "1010", and each bit in the bitmap corresponds to the first A backscatter communication opportunity within a collection of time-domain resources.
  • bit value corresponding to a certain backscattering communication opportunity is "1" it means that the backscattering communication opportunity is associated with the first scheduling signal sending opportunity; when the bit value corresponding to a certain backscattering communication opportunity is When "0”, it means that the backscatter communication opportunity is not related to the first scheduling signal transmission opportunity.
  • bit values "1" and "0" can be reversed.
  • the terminal device receives the first signal at the first scheduling signal sending opportunity in the first time domain resource set shown in Figure 6E.
  • the association rules of the first scheduling signal sending opportunity using the bitmap "1010" represents
  • it is possible to determine the two backscattering communication opportunities associated with the first scheduling signal sending opportunity, that is, N3 (N3 2) backscattering communication opportunities that satisfy the correlation relationship (i.e., the first one in Figure 6E and the third backscatter communication opportunity)
  • the determined backscatter communication opportunity is used as the backscatter communication opportunity associated with the first signal.
  • association rules may be used to limit both the backscattering time domain resources associated with the first signal and the location of the backscattering time domain resources associated with the first signal.
  • the association rule is restricted to determine the backscattering time domain resource associated with the first signal.
  • N3 the number of backscattering time domain resources that are associated with the first signal time domain resource where the first signal is located as indicated by the association rule.
  • the terminal device determines one or more backscattering time domain resources associated with the received first signal, including:
  • the terminal device determines N3 or less than N3 backscattering time domain resources that satisfy the association rules, and uses the determined backscattering time domain resources as the backscattering time domain resources associated with the first signal; N3 is the backscattering time domain resource associated with the first signal. The number of backscattering time domain resources that are associated with the first signal time domain resource, and N3 is indicated by the association rule.
  • the restriction on the above location may be: restricting the backscattering communication opportunities associated with the first signal within the first time domain resource set where the first signal is located, or restricting the backscattering communication opportunities associated with the first signal within the first time domain resource set where the first signal is located. Within the second time domain resource set where it is located.
  • the terminal device when the number of backscattering time domain resources that satisfy the association rules in the first time domain resource set is greater than or equal to N3, the terminal device will use N3 backscattering time domain resources that satisfy the association rules. As the backscattering time domain resource associated with the first signal;
  • the terminal device treats all backscattered time-domain resources that satisfy the association rules as the backscattered time-domain resources associated with the first signal. Scattering time domain resources.
  • the terminal device when the number of backscattered time domain resources that satisfy the association rule in the second time domain resource set to which the first time domain resource set belongs is greater than or equal to N3, the terminal device will satisfy the association
  • the regular N3 backscattering time domain resources are used as the backscattering time domain resources associated with the first signal
  • the terminal device treats all backscattered time-domain resources that satisfy the association rules as The backscatter time domain resource associated with the first signal.
  • the association rules may be preset or configured by the network device.
  • the network device may use the first signal to configure the association rule.
  • the association rules can be represented by bitmaps.
  • Figure 6F is a schematic diagram of the implementation method 5 of the association between the first signal and the backscattering time domain resource according to an embodiment of the present application.
  • the first signal time domain resource is specifically used for scheduling signal transmission.
  • Timing and backscatter time domain resources are specifically introduced as the backscatter communication timing as an example.
  • the association rule of the first scheduling signal transmission timing in the first time domain resource set shown in Figure 6F is represented by the bitmap "1010", and each bit in the bitmap corresponds to an inverse Scatter communication timing.
  • bit value corresponding to a certain backscattering communication opportunity is "1" it means that the backscattering communication opportunity is associated with the first scheduling signal sending opportunity; when the bit value corresponding to a certain backscattering communication opportunity is When "0”, it means that the backscatter communication opportunity is not related to the first scheduling signal transmission opportunity.
  • the terminal device receives the first signal at the first scheduling signal sending opportunity in the first time domain resource set shown in Figure 6F, and the association rule of the first scheduling signal sending opportunity is represented by the bitmap "1010", Indicates that the first and third backscattering communication opportunities after the first scheduling signal sending opportunity satisfy the association rule; and, the first and third backscattering communication opportunities after the first scheduling signal sending opportunity
  • the communication opportunities are all located in the first time domain resource set where the first signal is located, so the terminal device determines that these two backscatter communication opportunities are backscatter communication opportunities associated with the first signal.
  • the terminal device receives the first signal at the second scheduling signal sending opportunity in the first time domain resource set shown in Figure 6F, and the association rule of the second scheduling signal sending opportunity is represented by the bitmap "0101" , indicating that the second and fourth backscattering communication opportunities after the second scheduling signal sending opportunity satisfy the association rule; further, as shown in Figure 6F, the second scheduling signal sending opportunity after the second The backscattering communication opportunity is located in the first time domain resource set where the second signal is located, and the fourth backscattering communication opportunity after the second scheduling signal sending opportunity is located in the first time domain where the second signal is located. is outside the resource set, so the terminal device determines that the second backscatter communication opportunity after the second scheduling signal transmission opportunity is the backscatter communication opportunity associated with the first signal.
  • an association rule is used to represent the backscattering time domain resource that is associated with the first signal time domain resource.
  • the association rule can be represented by a bitmap.
  • the embodiments of this application propose multiple representation methods of association rules.
  • the third condition may include:
  • the first time domain resource set where the first signal time domain resource is located and located behind the first signal time domain resource or overlapping with the first signal time domain resource.
  • the bitmap includes M2 bits, each bit corresponding to X2 basic communication units or X2 backscattering time domain resources; the X2 or the M2 is a positive integer.
  • the bitmap includes M3 bits, each bit corresponding to X3 backscattering time domain resources or X3 basic communication units; or, one bit of the bitmap corresponds to Y3 backscattering time domain resources.
  • the T3 represents the number of backscattering time domain resources or the number of basic communication units that meet the fourth condition in the consecutive K first time domain resource sets;
  • T3 represents the number of backscattering time domain resources or the number of basic communication units that satisfy the fourth condition among the K consecutive first time domain resource sets containing backscattering time domain resources.
  • the above fourth condition may include:
  • association rules In addition to the association rules shown in Figure 6E, embodiments of the present disclosure also propose a variety of expression methods for association rules.
  • 7A-7F are schematic diagrams of association rules between first signal time domain resources and backscattering time domain resources according to embodiments of the present disclosure.
  • the first signal time domain resource is specifically the scheduling signal transmission opportunity
  • the backscatter time domain resource is specifically the backscatter communication opportunity.
  • the first time domain resource set includes 8 backscatter communication opportunities.
  • a bit length of 4 bits can be used for any scheduling signal transmission opportunity in the first time domain resource set.
  • the figure shows whether each backscatter communication opportunity in the first time domain resource set is associated with the scheduling signal transmission opportunity, where one bit is used to indicate two backscatter communication opportunities in the first time domain resource set. For example, when the value of any bit is 1, it indicates association; when the value is 0, it indicates no association. Alternatively, it can also be set so that a value of 1 indicates no association, and a value of 0 indicates association.
  • the sequence numbers of the eight backscatter communication opportunities in the first time domain resource set are 1, 2, 3, 4, 5, 6, 7, and 8 respectively.
  • the first bit in the bitmap corresponds to the backscatter communication. Opportunity 1 and backscatter communication opportunity 2.
  • the second bit in the bitmap corresponds to backscatter communication opportunity 3 and backscatter communication opportunity 4.
  • the third bit in the bitmap corresponds to backscatter communication opportunity 5 and backscatter communication opportunity.
  • Backscatter communication opportunity 6 the fourth bit in the bitmap corresponds to backscatter communication opportunity 7 and backscatter communication opportunity 8. It can be seen that the minimum unit of this correlation is two backscattering communication opportunities.
  • a bitmap "1010" is used to represent the backscattering communication opportunity associated with the first scheduling signal transmission opportunity in the first time domain resource set. , that is, the backscatter communication opportunity 1, backscatter communication opportunity 2, backscatter communication opportunity 5, and backscatter communication opportunity 6 in the first time domain resource set are associated with the first scheduling signal transmission opportunity.
  • the remaining backscatter communication opportunities in a time domain resource set are not associated with the first scheduling signal transmission opportunity.
  • backscatter communication opportunity 3 backscatter communication opportunity 4
  • backscatter communication opportunity 7 backscatter communication opportunity 8
  • the second schedule in the first time domain resource set The signal sending timing is associated, and the remaining backscattering communication opportunities in the first time domain resource set are not associated with the second scheduling signal sending timing.
  • the first signal time domain resource is specifically the scheduling signal transmission opportunity
  • the backscattering time domain resource is specifically the backscattering communication opportunity.
  • the first time domain resource set includes 9 backscatter communication opportunities. For any one of the first time domain resource set to schedule a signal transmission opportunity, if a bitmap with a length of 4 bits is used To indicate whether each backscatter communication opportunity in the first time domain resource set is associated with the scheduling signal transmission opportunity, each of the three bits can be used to indicate respectively the backscatter communication opportunities in the first time domain resource set. 2 backscatter communication opportunities, and the remaining one bit is used to indicate 3 backscatter communication opportunities in the first time domain resource set.
  • bitmap of the embodiment there is a special bit, which indicates a different number of backscattering communication opportunities than other bits; the position of the special bit can be set in advance, such as the first bit in the bitmap. bit, the last bit, or other preset position characteristics as the special bit.
  • the value of any bit is 1, it indicates association; when the value is 0, it indicates no association.
  • it can also be set so that a value of 1 indicates no association, and a value of 0 indicates association.
  • the sequence numbers of the nine backscattering communication opportunities in the first time domain resource set are 1, 2, 3, 4, 5, 6, 7, 8, and 9 respectively;
  • the bitmap includes 4 bits, The fourth bit is used as the above-mentioned special bit, that is, the first bit corresponds to backscatter communication opportunity 1 and backscatter communication opportunity 2, and the second bit in the bitmap corresponds to backscatter communication opportunity 3 and backscatter communication opportunity 4.
  • the third bit in the bitmap corresponds to backscatter communication opportunity 5 and backscatter communication opportunity 6.
  • the fourth bit in the bitmap corresponds to backscatter communication opportunity 7, backscatter communication opportunity 8 and reverse Scatter communication opportunities 9.
  • a bitmap "1010" is used to represent the backscattering communication opportunity associated with the first scheduling signal transmission opportunity in the first time domain resource set. , that is, the backscatter communication opportunity 1, backscatter communication opportunity 2, backscatter communication opportunity 5, and backscatter communication opportunity 6 in the first time domain resource set are associated with the first scheduling signal transmission opportunity. The remaining backscatter communication opportunities in a time domain resource set are not associated with the first scheduling signal transmission opportunity.
  • "0101" is used to represent backscatter communication opportunity 3, backscatter communication opportunity 4, backscatter communication opportunity 7, backscatter communication opportunity 8, and backscatter communication in the first time domain resource set.
  • Opportunity 9 is associated with the second scheduling signal sending opportunity, and the remaining backscattering communication opportunities in the first time domain resource set are not associated with the second scheduling signal sending opportunity.
  • the number of bitmaps (the value is 4 in this example) is equal to the number of backscatter time domain resources in the first time domain resource set (the value is 9 in this example). ) and the first ratio of the number of backscattering time domain resources (2 in this example) indicated by each bit in the bitmap except the special bit, rounded down.
  • the first time domain resource is specifically the scheduling signal transmission opportunity
  • the backscattering time domain resource is specifically the backscattering communication opportunity.
  • the first time domain resource set includes 7 backscatter communication opportunities. For any one of the first time domain resource set to schedule a signal transmission opportunity, if a bitmap with a length of 4 bits is used To indicate whether each backscatter communication opportunity in the first time domain resource set is associated with the scheduling signal transmission opportunity, each of the 3 bits can be used to indicate 2 of the first time domain resource set respectively. The backscatter communication opportunity is used, and the remaining 1 bit is used to indicate a backscatter communication opportunity in the first time domain resource set.
  • bitmap of the embodiment there is a special bit, which indicates a different number of backscattering communication opportunities than other bits; the position of the special bit can be set in advance, such as the first bit in the bitmap. bit, the last bit, or other preset position characteristics as the special bit.
  • the value of any bit is 1, it indicates association; when the value is 0, it indicates no association.
  • it can also be set so that a value of 1 indicates no association, and a value of 0 indicates association.
  • the sequence numbers of the seven backscattering communication opportunities in the first time domain resource set are 1, 2, 3, 4, 5, 6, and 7 respectively;
  • the bitmap includes 4 bits, and the first bit As the above special bits, that is, the first bit corresponds to backscatter communication opportunity 1, the second bit in the bitmap corresponds to backscatter communication opportunity 2 and backscatter communication opportunity 3, and the third bit in the bitmap corresponds to Backscatter communication opportunity 4 and backscatter communication opportunity 5, the fourth bit in the bitmap corresponds to backscatter communication opportunity 6 and backscatter communication opportunity 7.
  • a bitmap "1010" is used to represent the backscattering communication opportunity associated with the first scheduling signal transmission opportunity in the first time domain resource set. , that is, backscatter communication opportunity 1, backscatter communication opportunity 4, and backscatter communication opportunity 5 in the first time domain resource set are associated with the first scheduling signal transmission opportunity, and the remaining time domain resource set in the first time domain resource set are associated with the first scheduling signal transmission opportunity.
  • the backscatter communication opportunity is not associated with the first scheduling signal transmission opportunity.
  • the first signal time domain resource is specifically the scheduling signal transmission opportunity
  • the backscattering time domain resource is specifically the backscattering communication opportunity.
  • the first time domain resource set of Figure 7D there are 4 backscattering communication opportunities after the first scheduling signal sending opportunity. Therefore, a length of 4 can be used for the first scheduling signal sending opportunity.
  • there are also 4 backscattering communication opportunities after the second scheduling signal sending opportunity Therefore, the length of 4 bits can also be used for the second scheduling signal sending opportunity.
  • Each backscatter communication opportunity in this figure occupies a basic unit of time. In other embodiments, one backscatter communication opportunity may also occupy multiple basic time units. In other embodiments, the number of basic time units occupied by each backscatter communication opportunity may be the same or different.
  • one bit in the bitmap may also be used to indicate whether at least two backscatter communication opportunities after the scheduling signal transmission opportunity are associated with the scheduling signal transmission opportunity.
  • the first signal time domain resource is specifically the scheduling signal transmission opportunity
  • the backscattering time domain resource is specifically the backscattering communication opportunity.
  • the first time domain resource set includes 9 backscatter communication opportunities.
  • a bitmap can be used to represent the first time domain resource set.
  • any backscattering communication opportunity in the time domain resource set after the scheduling signal sending opportunity is associated with the scheduling signal sending opportunity, where one bit is used to indicate 2 backscattering communication opportunities in the first time domain resource set .
  • one bit is used to indicate 2 backscattering communication opportunities in the first time domain resource set .
  • it indicates association; when the value is 0, it indicates no association.
  • it can also be set so that a value of 1 indicates no association, and a value of 0 indicates association.
  • a bitmap with a length of 4 bits can be used to represent the first scheduling Whether each backscatter communication opportunity after the signal transmission opportunity is related.
  • the bitmap used to indicate the association relationship of the first scheduling signal sending opportunity can have a value of "1010", which is used to indicate whether each backscattering communication opportunity after the first scheduling signal sending opportunity is consistent with the first scheduling signal sending opportunity. association. It can be seen that the minimum unit of this correlation is two backscattering communication opportunities.
  • a method similar to the above-mentioned Figure 7B and Figure 7C can also be used.
  • a special bit in the bitmap is used to indicate Y backscatter communication opportunities, and the remaining bits indicate X backscatter communication opportunities respectively.
  • the number of bits contained in the bitmap is the same as after the scheduling signal transmission opportunity.
  • the number of backscatter communication opportunities that exist is equal to the upper or lower round of the ratio of X. For example, there are 7 backscatter communication opportunities after the first scheduling signal transmission opportunity, and their sequence numbers are 1, 2, 3, 4, 5, 6, and 7 respectively.
  • a bitmap with a length of 4 bits can be used for indication. For example, the first bit indicates whether backscatter communication opportunities 1 and 2 are associated with the first scheduling signal transmission opportunity, the second bit indicates whether backscatter communication opportunities 3 and 4 are associated with the first scheduling signal transmission opportunity, and the Three bits indicate whether the backscatter communication opportunities 5 and 6 are associated with the first scheduling signal transmission opportunity, and the fourth bit indicates whether the backscatter communication opportunity 7 is associated with the first scheduling signal transmission opportunity.
  • the first signal time domain resource is specifically the scheduling signal transmission opportunity
  • the backscattering time domain resource is specifically the backscattering communication opportunity.
  • the first time domain resource set includes 10 basic communication units. Each basic communication unit can be used to transmit scheduling signals (that is, as a scheduling signal sending opportunity), or can also be used to transmit backscattered communication signals. (that is, as a backscatter communication opportunity), or no signal is transmitted (that is, as a blank basic communication unit), then for any scheduled signal transmission opportunity in the first time domain resource set, a length of A 10-bit bitmap is used to indicate whether each basic communication unit in the first time domain resource set meets the following two requirements:
  • the backscatter communication timing existing on the basic communication unit is associated with the scheduling signal sending timing.
  • any bit when the value of any bit is 1, it means that the above two requirements are met; when the value is 0, it means that either one of the above two requirements is not met, or only one of the above two requirements is met. Require. Alternatively, it can also be set to a value of 0 to indicate that the above two requirements are met.
  • the bitmap "0000100100” is used to represent the backscattering communication opportunity associated with the first scheduling signal transmission opportunity in the first time domain resource set,
  • Each bit of this bitmap is used to indicate a basic communication unit.
  • the fifth bit in the bitmap has a value of 1, indicating that there is a backscattering time domain resource on the fifth basic communication unit in the first time domain resource set, and the backscattering time domain resource is the same as The first scheduling signal sending timing is associated.
  • the number of backscattering time domain resources associated with each first signal time domain resource is configured independently (such as each BCO is configured independently); or, all first signal time domain resources in each first time domain resource set are configured independently.
  • the number of backscattering time domain resources associated with the domain resources is uniformly configured (for example, each first time domain resource set is configured separately).
  • the backscattering time domain resource associated with the first signal time domain resource is located after the first signal time domain resource
  • the backscattering time domain resource associated with the first signal time domain resource is located behind the first signal time domain resource or at a position overlapping with the first signal time domain resource.
  • the terminal device monitors the first signal on the first time domain resource set, including:
  • the terminal device monitors all first signal time domain resources in the first time domain resource set; or,
  • the terminal device determines the first signal time domain resource that needs to be monitored in the first time domain resource set according to the user equipment (UE, User Equipment) identification (ID, Identification) (which can also be the terminal group identification (UE group ID)). Monitor the first signal time domain resource that needs to be monitored; or,
  • the terminal device determines the first signal time domain resource that needs to be monitored in the first time domain resource set according to the UE ID (which can also be the UE group ID) and the cell ID, and monitors the first signal time domain resource that needs to be monitored.
  • the UE ID which can also be the UE group ID
  • the cell ID which can also be the UE group ID
  • the first signal sent by the network device to any terminal device can be transmitted on all first signal time domain resources in the first time domain resource set.
  • the terminal device can transmit on all first signal time domain resources in the first time domain resource set. All first signal time domain resources monitor the first signal.
  • the first signal time domain resources in the first time domain resource set are divided into at least two parts, each part corresponding to some terminal devices.
  • the network device sends a first signal to a terminal device, it determines which first signal time domain resources the terminal device corresponds to, and then sends the first signal for the terminal device using these first signal time domain resources; accordingly, the terminal device When monitoring the sending signal, it only monitors the first signal sending timing corresponding to itself. That is, the network device determines the first signal time domain resource available to the terminal device in the first time domain resource set based on the user equipment (UE, User Equipment) identification (ID, Identification) (which can also be the terminal group identification).
  • UE User Equipment
  • ID User Equipment
  • a signal time domain resource is used to send the first signal; or, the network device determines the first time domain resource set based on the user equipment (UE, User Equipment) identification (ID, Identification) (which can also be the terminal group identification) and the cell ID.
  • the first signal time domain resource available to the terminal device is used to transmit the first signal in the first signal time domain resource.
  • the network device sends the first signal to the terminal device, it determines which part of the backscatter communication opportunity is used to transmit the first signal according to the UE ID of the terminal device, and uses the determined backscatter communication opportunity to transmit the first signal. Send the first signal directed to the terminal device; accordingly, the terminal device also determines the corresponding backscatter communication opportunity according to its own UE ID, and monitors the first signal at the determined backscatter communication opportunity.
  • the network device when the network device sends the first signal to the terminal device, it determines which part of the backscatter communication opportunity is used to transmit the first signal based on the UE ID of the terminal device and the cell ID of the cell where it is located, and determines which part of the backscattering communication opportunity is used to transmit the first signal.
  • the first signal for the terminal device is sent at the backscattering communication opportunity; accordingly, the terminal device also determines the corresponding backscattering communication opportunity based on its own UE ID and the cell ID of the cell where it is located, and performs the determined backscattering communication opportunity on the determined backscattering communication opportunity.
  • the first signal is monitored on the scatter communication machine.
  • the above UE ID can also be replaced with the group ID (group ID) of the UE group (UE Group) where the terminal device is located, etc.
  • the terminal device is based on the group ID of the UE group where the terminal device is located, or based on the group ID of the UE group where the terminal device is located. and the cell ID of the cell where the terminal device is located, etc., to determine the first signal time domain resource that needs to be monitored.
  • the network device may also use the terminal device according to the group identifier of the UE group to which the terminal device belongs, or the group identifier of the UE group to which the terminal device belongs and the cell ID of the cell where the terminal device is located. etc., determine the first signal time domain resources corresponding to different terminal devices, and transmit the first signal of the corresponding terminal device on the determined first signal time domain resources.
  • the backscattering time domain resources associated with different first signal time domain resources may be completely the same, completely different, or partially the same.
  • the same first signal control information is allowed to be sent on different first signal time domain resources in the same first time domain resource set.
  • the above describes two ways of correlating the first signal (or first signal time domain resource) and backscattering (or backscattering time domain resource), as well as the operation modes of terminal equipment and network equipment in different ways.
  • the terminal device determines that the received first signal is associated with multiple backscatter time domain resources, one or more of them may be selected for backscatter communication, for example:
  • the terminal device randomly selects one backscattering time domain resource from the plurality of backscattering time domain resources, and uses the selected backscattering time domain resource to perform backscattering communication; or,
  • the terminal device selects one backscattering time domain resource from the plurality of backscattering time domain resources based on the UE ID, and uses the selected backscattering time domain resource to perform backscattering communication; or,
  • the terminal device selects one backscattering time domain resource from the plurality of backscattering time domain resources based on the UE ID and the cell ID, and uses the selected backscattering time domain resource to perform backscattering communication; or,
  • the terminal device selects one backscattering time domain resource from the plurality of backscattering time domain resources based on the group identifier, and uses the selected backscattering time domain resource to perform backscattering communication; or,
  • the terminal device selects one backscattering time domain resource from the plurality of backscattering time domain resources based on the group identifier and the cell ID, and uses the selected backscattering time domain resource to perform backscattering communication.
  • FIG. 8 is a schematic flowchart of a backscatter communication method 800 according to an embodiment of the present application. This method can optionally be applied to the systems shown in Figures 1 and 2, but is not limited thereto. The method includes at least part of the following.
  • the network device sends the first signal on the first signal time domain resource, and the first signal is associated with one or more backscattering time domain resources.
  • the first signal has at least one of the following functions:
  • the method further includes: the network device monitors backscatter communications on one or more backscatter time domain resources associated with the first signal.
  • one or more backscattering time domain resources associated with the first signal are behind the first signal time domain resource where the first signal is located, and/or are with the first signal time domain resource where the first signal is located.
  • the positions of signal time domain resources overlap.
  • the first signal time domain resource where the first signal is located overlaps with one or more backscatter time domain resources associated with other first signals; or,
  • the first signal time domain resource where the first signal is located does not overlap with one or more backscattering time domain resources associated with other first signals.
  • the time interval between the first signal time domain resource where the first signal is located and the backscattering time domain resource associated with the first signal is a time domain offset
  • the unit of the time domain offset is Including: microsecond, millisecond, second, OFDM symbol, time slot, subframe, frame or basic time unit of backscatter communication.
  • the time domain offset includes an offset from a first reference point to a second reference point; wherein,
  • the first reference point is associated with the first signal
  • the second reference point is associated with the backscatter time domain resource.
  • the first reference point includes the starting point of the first signal, the end point of the first signal, the starting point of the time unit where the first signal is located, and the end point of the time unit where the first signal is located. at least one of them.
  • the second reference point includes the starting point of the backscattering time domain resource, the end point of the backscattering time domain resource, the starting point of the time unit where the backscattering time domain resource is located, and the starting point of the backscattering time domain resource. At least one of the end points of the time unit where the backscattering time domain resource is located.
  • the time unit includes an OFDM symbol, slot, subframe, frame, or backscatter communication basic time unit.
  • the time domain offsets corresponding to the first signal are configured uniformly or independently.
  • the first signal is associated with one or more backscatter time domain resources.
  • the correlation between the first signal and a backscatter time domain resource is determined by a time domain offset.
  • the correlation between the first signal and the plurality of backscattered time domain resources is determined by one or more time domain offsets.
  • each of the time domain offsets is used to determine an associated relationship with the There is a backscatter time domain resource that is correlated with the first signal.
  • the correlation between the first signal and multiple backscatter time domain resources is determined by a time domain offset and the number of backscatter time domain resources associated with the first signal. .
  • the correlation between the first signal and multiple backscattering time domain resources is determined by a time domain offset, the number of backscattering time domain resources associated with the first signal, and The interval between two adjacent backscattered time domain resources associated with the first signal is determined.
  • the above method further includes: the network device configures the time domain offset, the number of backscattering time domain resources associated with the first signal, or two adjacent backscattered time domain resources associated with the first signal. The spacing between scattering time domain resources.
  • the network device configures the time domain offset, the number of backscattering time domain resources associated with the first signal, or two adjacent time domain resources associated with the first signal through the first signal. The separation between backscatter time domain resources.
  • the format of the first signal includes at least one of a first format, a second format and a third format: wherein,
  • the first signal in the first format is associated with one or more backscatter time domain resources.
  • the first signal in the second format is associated with a backscatter time domain resource
  • the first signal in the third format is associated with a plurality of backscatter time domain resources.
  • the backscattering time domain resources associated with different first signals are exactly the same, completely different, or partially the same.
  • the durations of different backscattering time domain resources are the same or different.
  • the network device sends the first signal on the first signal time domain resource, including:
  • the network device determines the first signal time domain resource in the first time domain resource set according to the UE ID of the terminal device that needs to communicate, and sends the first signal on the first signal time domain resource; or,
  • the network device determines the first signal time domain resource in the first time domain resource set according to the UE ID and cell ID of the terminal device that needs to communicate, and sends the first signal on the first signal time domain resource; or,
  • the network device determines the first signal time domain resource in the first time domain resource set according to the group identifier of the terminal device that needs to communicate, and sends the first signal on the first signal time domain resource; or,
  • the network device determines the first signal time domain resource in the first time domain resource set according to the group identity and cell ID of the terminal device that needs to communicate, and sends the first signal on the first signal time domain resource.
  • the above method further includes: the network device configuring the number of backscattering time domain resources associated with the first signal.
  • the network device uses the first signal to configure the number of backscatter time domain resources associated with the first signal.
  • the above method may further include: the network device configuring an association rule between the first signal and the backscattering time domain resource.
  • the association rules are represented by bitmaps.
  • the third condition includes:
  • the first time domain resource set where the first signal time domain resource is located and located behind the first signal time domain resource or overlapping with the first signal time domain resource.
  • the bitmap includes M2 bits, each bit corresponding to X2 basic communication units or X2 backscattering time domain resources; the X2 or the M2 is a positive integer.
  • the bitmap includes M3 bits, each bit corresponding to X3 backscattering time domain resources or X3 basic communication units; or, one bit of the bitmap corresponds to Y3 backscattering time domain resources.
  • the T3 represents the number of backscattering time domain resources or the number of basic communication units that meet the fourth condition in the consecutive K first time domain resource sets;
  • T3 represents the number of backscattering time domain resources or the number of basic communication units that satisfy the fourth condition among the K consecutive first time domain resource sets containing backscattering time domain resources.
  • the above fourth condition may include:
  • the method further includes: the network device configures a second time domain resource set, where the time domain resource set includes a plurality of first time domain resource sets.
  • the network device may configure the second time domain resource set through the first signal.
  • the number of backscattering time domain resources associated with each first signal time domain resource is configured independently; or, the number of backscattering time domain resources associated with all first signal time domain resources in each first time domain resource set is configured independently.
  • the number of time domain resources is configured uniformly.
  • the backscattering time domain resource associated with the first signal time domain resource is located behind the first signal time domain resource; or, the backscattering time domain resource associated with the first signal time domain resource is located behind the first signal time domain resource. The position after the first signal time domain resource or overlapping with the first signal time domain resource.
  • the first time domain resource set includes one or more first signal time domain resources.
  • the first set of time domain resources includes one or more backscattering time domain resources.
  • the above method may also include the network device sending location information of the first signal time domain resource and/or backscattering time domain resource in the first time domain resource set; the location information includes a starting location and/or a duration time.
  • the first time domain resource set includes a first type of first time domain resource set and a second type of first time domain resource set, and the first type of first time domain resource set includes a first type of time domain resource set.
  • a first time domain resource set of signal time domain resources and/or backscatter time domain resources, and the second type of first time domain resource set does not include the first signal time domain resources and does not include backscatter time domain resources.
  • the location information of the first signal time domain resource and/or the backscattering time domain resource in the first time domain resource set includes:
  • the periodic distribution information of the first type of first time domain resource set and the second type of first time domain resource set, each period includes at least one first type of first time domain resource set and/or at least one first time domain resource set.
  • the second type of first time domain resource collection includes at least one first type of first time domain resource set and/or at least one first time domain resource set.
  • the patterns of different first time domain resource sets are the same or different; the patterns include the first signal time domain resource and/or the backscatter time domain in the first time domain resource set. Resource distribution information.
  • all first signal time domain resources in the first time domain resource set are before any backscattering time domain resource in the first time domain resource set; or,
  • first signal time domain resource located after the backscattering time domain resource in the first time domain resource set in the first time domain resource set; or,
  • the first time domain resource set includes first signal time domain resources and backscattering time domain resources that occupy the same basic communication unit.
  • the basic communication unit is a component unit of the first time domain resource set
  • the first time domain resource set is determined based on the number and/or time length of the basic communication units.
  • the backscattering time domain resources associated with different first signal time domain resources are exactly the same, completely different, or partially the same.
  • the same first signal is allowed to be sent on different first signal time domain resources in the same first time domain resource set.
  • the backscattered time domain resources include backscattered communication opportunities.
  • the first signal time domain resource includes a first signal transmission opportunity.
  • the backscatter communication method proposed in the embodiment of this application proposes a correlation method between the scheduling signal transmission timing and the backscatter communication timing in zero-power communication, and at least the following two methods are proposed.
  • each scheduling signal is associated with one or more backscatter communication opportunities.
  • the association between the scheduling signal and the backscatter communication opportunity is set based on the first time domain resource set.
  • the network device can determine the backscattering timing associated with the scheduling signal transmission timing based on the time domain offset; on the other hand, for semi-statically configured resources, the scheduling can be determined in the first time domain resource set Signaling opportunities and their associated backscatter communication opportunities.
  • network equipment can be facilitated to control the zero-power communication process, and the timing relationship and mapping relationship between scheduling signals and backscatter communication opportunities are clarified. It can effectively reduce the conflict and collision problems of zero-power devices during backscatter communication.
  • FIG. 9 is a schematic block diagram of a terminal device 900 according to an embodiment of the present application.
  • the terminal device 900 may include:
  • Processing module 910 configured to determine one or more backscatter time domain resources associated with the received first signal
  • the backscatter module 920 is configured to perform backscatter communication based on the one or more backscatter time domain resources.
  • the terminal device 900 in the embodiment of the present application can implement the corresponding functions of the terminal device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the terminal device 900 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the terminal device 900 in the embodiment of the application can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same module. Module (submodule, unit or component, etc.) implementation.
  • FIG. 10 is a schematic block diagram of a network device 1000 according to an embodiment of the present application.
  • the network device 1000 may include:
  • the sending module 1010 is configured to send a first signal on a first signal time domain resource, where the first signal is associated with one or more backscattering time domain resources.
  • the network device 1000 in the embodiment of the present application can implement the corresponding functions of the network device in the foregoing method embodiment.
  • each module (sub-module, unit or component, etc.) in the network device 1000 please refer to the corresponding description in the above method embodiment, and will not be described again here.
  • the functions described for each module (sub-module, unit or component, etc.) in the network device 1000 of the application embodiment can be implemented by different modules (sub-module, unit or component, etc.), or can be implemented by the same Module (submodule, unit or component, etc.) implementation.
  • Figure 11 is a schematic structural diagram of a communication device 1100 according to an embodiment of the present application.
  • the communication device 1100 includes a processor 1110, and the processor 1110 can call and run a computer program from the memory, so that the communication device 1100 implements the method in the embodiment of the present application.
  • the communication device 1100 may further include a memory 1120.
  • the processor 1110 can call and run the computer program from the memory 1120, so that the communication device 1100 implements the method in the embodiment of the present application.
  • the memory 1120 may be a separate device independent of the processor 1110, or may be integrated into the processor 1110.
  • the communication device 1100 may also include a transceiver 1130, and the processor 1110 may control the transceiver 1130 to communicate with other devices. Specifically, the communication device 1100 may send information or data to, or receive data from, other devices. Information or data sent.
  • the transceiver 1130 may include a transmitter and a receiver.
  • the transceiver 1130 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1100 may be a network device according to the embodiment of the present application, and the communication device 1100 may implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • the communication device 1100 can be a terminal device in the embodiment of the present application, and the communication device 1100 can implement the corresponding processes implemented by the terminal device in each method of the embodiment of the present application. For simplicity, in This will not be described again.
  • FIG 12 is a schematic structural diagram of a chip 1200 according to an embodiment of the present application.
  • the chip 1200 includes a processor 1210, and the processor 1210 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1200 may also include a memory 1220.
  • the processor 1210 can call and run the computer program from the memory 1220 to implement the method executed by the terminal device or network device in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or may be integrated into the processor 1210.
  • the chip 1200 may also include an input interface 1230.
  • the processor 1210 can control the input interface 1230 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1200 may also include an output interface 1240.
  • the processor 1210 can control the output interface 1240 to communicate with other devices or chips. Specifically, it can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, this chip is not mentioned here. Again.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding processes implemented by the terminal device in the various methods of the embodiment of the present application. For the sake of brevity, this is not mentioned here. Again.
  • the chips used in network equipment and terminal equipment can be the same chip or different chips.
  • chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
  • the processor mentioned above can be a general-purpose processor, a digital signal processor (DSP), an off-the-shelf programmable gate array (FPGA), an application specific integrated circuit (ASIC), or Other programmable logic devices, transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • FPGA off-the-shelf programmable gate array
  • ASIC application specific integrated circuit
  • the above-mentioned general processor may be a microprocessor or any conventional processor.
  • non-volatile memory may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM).
  • the memory in the embodiment of the present application can also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, memories in embodiments of the present application are intended to include, but are not limited to, these and any other suitable types of memories.
  • FIG. 13 is a schematic block diagram of a communication system 1300 according to an embodiment of the present application.
  • the communication system 1300 includes a terminal device 1310 and a network device 1320.
  • the terminal device 1310 can be used to implement the corresponding functions implemented by the terminal device in the above method
  • the network device 1320 can be used to implement the corresponding functions implemented by the network device in the above method.
  • no further details will be given here.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted over a wired connection from a website, computer, server, or data center (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website, computer, server or data center.
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)), etc.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及反向散射通信的方法、终端设备和网络设备,其中方法包括:终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源;所述终端设备基于所述一个或多个反向散射时域资源进行反向散射通信。本申请能够减少反向散射通信冲突和干扰问题。

Description

反向散射通信的方法、终端设备和网络设备 技术领域
本申请涉及通信领域,更具体地,涉及一种反向散射通信的方法、终端设备和网络设备。
背景技术
在零功耗通信中,随着工业的发展,接入网络的设备数量激增,应用在蜂窝系统中的零功耗设备的数量也将十分巨大。相关技术中由于不对零功耗通信的反向散射通信过程进行有效控制,导致可能出现严重的反向散射通信冲突和相互之间的干扰问题。
发明内容
本申请实施例提供一种反向散射通信的方法、终端设备和网络设备,可以减少反向散射通信冲突和干扰问题。
本申请实施例提供一种反向散射通信的方法,包括:
终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源;
所述终端设备基于该一个或多个反向散射时域资源进行反向散射通信。
本申请实施例提供一种反向散射通信的方法,包括:
网络设备在第一信号时域资源上发送第一信号,该第一信号关联一个或多个反向散射时域资源。
本申请实施例提供一种终端设备,包括:
处理模块,用于确定接收到的第一信号所关联的一个或多个反向散射时域资源;
反向散射模块,用于基于所述一个或多个反向散射时域资源进行反向散射通信。
本申请实施例提供一种网络设备,包括:发送模块,用于在第一信号时域资源上发送第一信号,该第一信号关联一个或多个反向散射时域资源。
本申请实施例提供一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该终端设备执行上述的反向散射通信的方法。
本申请实施例提供一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该网络设备执行上述的反向散射通信的方法。
本申请实施例提供一种芯片,用于实现上述的反向散射通信的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的反向散射通信的方法。
本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,当该计算机程序被设备运行时使得该设备执行上述的反向散射通信的方法。
本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的反向散射通信的方法。
本申请实施例提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述的反向散射通信的方法。
本申请实施例,通过终端设备确定接收到的第一信号所关联的反向散射时域资源,并基于该反向散射时域资源进行反向散射通信,可以实现对反向散射通信过程的有效控制,从而减少反向散射通信冲突和干扰问题。
附图说明
图1是零功耗通信的原理示意图。
图2是反向散射通信原理示意图。
图3是根据本申请一实施例的反向散射通信的方法300的示意性流程图。
图4A-4E是根据本申请实施例的一种第一信号关联反向散射时域资源的示意图。
图5A-5E是根据本申请实施例的第一时域资源集合中第一信号时域资源与反向散射时域资源的示意图。
图6A是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式1的示意图一。
图6B是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式1的示意图二。
图6C是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式2的示意图。
图6D是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式3的示意图。
图6E是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式4的示意图。
图6F是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式5的示意图。
图7A-7F是根据本公开实施例的第一信号时域资源与反向散射时域资源的关联规则的示意图。
图8是根据本申请一实施例的反向散射通信的方法800的示意性流程图。
图9是根据本申请一实施例的终端设备的示意性框图。
图10是根据本申请一实施例的网络设备的示意性框图。
图11是根据本申请实施例的通信设备示意性框图。
图12是根据本申请实施例的芯片的示意性框图。
图13是根据本申请实施例的通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于零功耗通信系统。一种典型的零功耗设备是射频识别(RFID,Radio Frequency Identification)设备,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为射频标签或电子标签。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签、无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半主动式电子标签继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID是一种无线通信技术。最基本的RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签由耦合组件及芯片构成,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。图1是零功耗通信的原理示意图,如图1所示,电子标签进入电磁场后,接收读写器发出的射频信号,无源电子标签或者被动电子标签利用空间中产生的电磁场得到的能量,将电子标签存储的信息传送出去,读写器读取信息并且进行解码,从而识别电子标签。
零功耗通信的关键技术包括能量采集和反向散射通信以及低功耗计算。如图1所示,一个典型的零功耗通信系统包括读写器和零功耗终端。读写器发射无线电波,用于向零功耗终端提供能量。安装在零功耗终端的能量采集模块可以采集空间中的无线电波携带的能量(图1中所示为读写器发射的无线电波),用于驱动零功耗终端的低功耗计算模块和实现反向散射通信。零功耗终端获得能量后,可以接收读写器的控制命令并基于控制信令基于后向散射的方式向读写器发送数据。所发送的数据可以来自于零功耗终端自身存储的数据(如身份标识或预先写入的信息,如商品的生产日期、品牌、生产厂家等)。零功耗终端也可以加载各类传感器,从而基于零功耗机制将各类传感器采集的数据上报。
图2是反向散射通信原理示意图,如图2所示,零功耗设备(图2中的反向散射标签)接收反向散射读写器发送的载波信号,通过能量采集模块采集能量,进而对低功耗处理模块(图2中的逻辑处理模块)进行功能控制,对来波信号进行调制,并进行反向散射。反向散射通信的主要特征如下:
(1)终端不主动发射信号,而是通过调制来波信号来实现反向散射通信;
(2)终端不依赖传统的有源功放发射机,同时使用低功耗计算单元,极大降低硬件复杂度;
(3)结合能量采集可实现免电池通信。
零功耗通信系统中的供能信号,从供能信号载体上看,可以是基站、智能手机、智能网关、充电站、微基站等;从频段上看,用作供能信号的无线电波可以是低频、中频、高频等无线电波;从波形上看,用作供能信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等无线电波。此外,功能信号可以是连续波,也可以是非连续波(即允许一定的时间中断)。供能可能是3GPP标准中规定的某一信号,例如探测信号(SRS,Sounding Reference Signal),物理上行共享信道(PUSCH,Physical Uplink Shared Channel)、物理随机接入信道(PRACH,Physical Random Access CHannel)、物理上行控制信道(PUCCH,Physical Uplink Control CHannel)、物理下行控制信道(PDCCH,Physical Downlink Control CHannel)、物理下行共享信道(PDSCH,Physical Downlink Shared CHannel)、物理广播信道(PBCH,Physical Broadcast Channel)等。
零功耗通信系统中的触发信号,从触发信号载体上看,可以是基站、智能手机、智能网关等;从频段上看,用作触发信号的无线电波可以是低频、中频、高频等无线电波;从波形上看,用作触发信号的无线电波可以是正弦波、方波、三角波、脉冲、矩形波等无线电波。此外,触发信号可以是连续波, 也可以是非连续波(即允许一定的时间中断)。触发信号可能是3GPP标准中规定的某一信号,例如SRS、PUSCH、PRACH、PUCCH、PDCCH、PDSCH、PBCH等,也可能是一种新的信号。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的实施例中提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例的描述中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例结合终端设备和网络设备描述了各个实施例,其中:网络设备可以是用于与移动设备通信的设备,网络设备可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信,该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
在本申请实施例中,终端设备(User Equipment,UE)也可以称为用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备,又或者是零功耗设备等。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
应理解的是,零功耗设备可以被理解为功耗低于预设功耗的设备。例如包括无源终端,甚至还包括半无源终端等。
示例性地,零功耗设备是无线射频识别(Radio Frequency Identification,RFID)标签,它是利用无线射频信号空间耦合的方式,实现无接触的标签信息自动传输与识别的技术。RFID标签又称为“射频标签”或“电子标签”。根据供电方式的不同来划分的电子标签的类型,可以分为有源电子标签,无源电子标签和半无源电子标签。有源电子标签,又称为主动式电子标签,是指电子标签工作的能量由电池提供,电池、内存与天线一起构成有源电子标签,不同于被动射频的激活方式,在电池更换前一直通过设定频段发送信息。无源电子标签,又称为被动式电子标签,其不支持内装电池,无源电子标签接近读写器时,标签处于读写器天线辐射形成的近场范围内电子标签天线通过电磁感应产生感应电流,感应电流驱动电子标签芯片电路。芯片电路通过电子标签天线将存储在标签中的标识信息发送给读写器。半无源电子标签,又被称为半主动式电子标签,其继承了无源电子标签体积小、重量轻、价格低、使用寿命长的优点,内置的电池在没有读写器访问的时候,只为芯片内很少的电路提供电源,只有在读写器访问时,内置电池向RFID芯片供电,以增加标签的读写距离较远,提高通信的可靠性。
RFID系统是一种无线通信系统。RFID系统是由电子标签(TAG)和读写器(Reader/Writer)两部分构成。电子标签包括耦合组件及芯片,每个电子标签都有独特的电子编码,放在被测目标上以达到标记目标物体的目的。读写器不仅能够读取电子标签上的信息,而且还能够写入电子标签上的信息,同时为电子标签提供通信所需要的能量。
应当理解的是,上述终端设备可以是零功耗设备(如无源终端,甚至是半无源终端),甚至该终端设备可以是非零功耗设备,如普通终端,但是该普通终端可以在有些情况下进行反向散射通信。
为便于理解本申请实施例的技术方案,以下对本申请实施例的相关技术进行说明,以下相关技术作为可选方案与本申请实施例的技术方案可以进行任意结合,其均属于本申请实施例的保护范围。
在零功耗通信中,随着工业的发展,接入网络的设备数量激增,应用在蜂窝系统中的零功耗设备的数量也将十分巨大。在一些典型场景例如物流仓储管理、超市购物、工业传感网等,需要接入的标签数很多。
由于相关技术中未对零功耗通信过程进行控制,导致可能出现严重的反向散射通信冲突和相互之间的干扰问题。例如,零功耗终端设备(可以简称为终端设备)在接收到调度信号时,由于不确定在什么时刻进行反向散射通信,可能会导致各个零功耗设备所发送的反向散射通信信号冲突和相互干扰的问题。本申请实施例提出了用于触发或调度反向散射通信的信号零功耗通信中调度信号(或调度信号时域资源)与反向散射(或反向散射时域资源)的关联方式,便于网络设备对零功耗通信过程进行控制。
图3是根据本申请一实施例的反向散射通信的方法300的示意性流程图。该方法可选地可以应用于图1和图2所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S310:终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源;
S330:终端设备基于该一个或多个反向散射时域资源进行反向散射通信。
在一些实施方式中,第一信号具有以下功能中的至少一种:
触发进行反向散射通信;
对反向散射通信进行调度;
携带进行反向散射通信的时域资源的指示信息。
在零功耗通信中,由于零功耗终端设备(以下简称终端设备)没有电池供电,首先需要进行能量采集,可以是基于射频信号获得用于通信的能量,或者是基于环境能量(例如动能、热能、太阳能等)获得用于通信的能量。然后基于反向散射进行相应的通信过程。
典型地,当基于射频信号进行能量采集时,可以通过网络设备或者专用能量节点提供用于能量采集的信号,以下将该用于能量采集的信号称为供能信号。
在基于调度进行通信时,需要网络设备提供控制信息,进行信息传输的调度,网络设备提供的控制信息可以为上述的第一信号;第一信号也可以称为调度信号或触发信号。第一信号与供能信号可以是同一个信号,也可以是两个独立的信号。在终端设备进行通信时,需要有能够承载通信的载波,该载波可以是一个独立于供能信号、第一信号的信号,也可以与供能信号是同一个信号,或者与第一信号是同一个信号。该载波又可以称为载波信号。
供能信号、载波信号、第一信号的频段可以完全不同,或者完全相同,或者部分相同。供能信号可以是在某个频段持续或者间歇性发送的,终端设备利用供能信号进行能量采集,在获得能量之后,进行相应的通信过程(如测量、信道/信号的接收、信道/信号的发送等)。
在零功耗通信中,不同终端设备的能量采集能力可能不同,对于同一能量源(可以是网络设备、基站、智能终端、智能网关、或者专用供能节点等),不同终端设备位于不同位置,由于供能信号受到衰减,到达不同位置时的能量不同,因此不同终端设备通过能量采集得到用于通信所需能量的时间可能不同。
本申请实施例给出了零功耗通信中第一信号和反向散射通信信号的时域资源设计和映射关系。
在本申请实施例中,将用于承载第一信号的时域资源称为第一信号时域资源或调度信号时域资源,将用于承载反向散射通信信号的资源称为反向散射时域资源。
由本申请实施例的上述内容可见,终端设备在接收到第一信号时,确定该第一信号所关联的反向散射时域资源,并在该反向散射时域资源上进行反向散射通信,从而能够实现对反向散射通信所占据的时域资源的控制,极大地降低反向散射通信冲突和相互之间的干扰问题。
需要注意的是,在本文实施例中,零功耗终端可以先进行能量采集,之后进行第一信号的监听以及反向散射通信过程;也可以基于第一信号进行能量采集,之后进行反向散射通信过程。
在一种实施方式中,第一信号时域资源可以具体为第一信号发送时机,或者称为反向散射控制时机(BCO,BackScatter Control Occasion)。反向散射时域资源可以具体为反向散射通信时机,或者简称为反向散射时机(BO,BackScatter Occasion)。
本申请实施例至少可以实现第一信号(或第一信号时域资源)与反向散射(或反向散射时域资源)的两种关联方式。包括:方式一:每个第一信号关联一个或多个反向散射通信时机;方式二:基于第一时域资源集合配置的第一信号与反向散射通信时机的关联。以下结合附图,分别介绍上述两种方式。
方式一:
在本方式中,每个第一信号关联一个或多个反向散射通信时机。第一信号时域资源(如第一信号发送时机)和反向散射时域资源(如反向散射通信时机)本身没有限制,不需要位于时域资源中的特定位置,网络设备可以动态发送第一信号。反向散射时域资源可以是新无线(NR,New Radio)中用于其他信道通信的上行时域资源或者下行时域资源或者灵活时域资源。
第一信号可以具有以下功能中的至少一种:
触发进行反向散射通信;
对反向散射通信进行调度;
携带进行反向散射通信的时域资源的指示信息。
以第一信号具体为调度信号、第一信号时域资源具体为调度信号时域资源为例,图4A是根据本申请实施例的一种调度信号(或调度信号时域资源)关联反向散射时域资源的示意图,在图4A中,以调度信号时域资源具体为调度信号发送/监听时机、反向散射时域资源具体为反向散射通信时机为例进行说明。图4A中示出两个调度信号发送时机,即BCO1、BCO2;各个调度信号发送时机分别关联一个反向散射通信时机,如BCO1关联BO1,BCO2关联BO2。
BCO1、BCO2是由网络设备在发送调度信号时动态选择的。终端设备在任意时域资源上监听调度信号,例如,当终端设备在BCO1上监听并接收到调度信号时,根据BCO1与反向散射通信时机的关联关系,能够确定出BCO1所关联的反向散射通信时机是BO1,则终端设备可以在BO1上针对该调度信号进行反向散射通信,如发送反向散射通信信号。相应地,如果网络设备在BCO1上发送了调度信号,网络设备根据BCO1与反向散射通信时机的关联关系,能够确定出BCO1所关联的反向散射通信时机是BO1,则网络设备将在BO1上进行反向散射通信的监听,当在BO1上监听并接收到反向散射通信信号时,对该反向散射通信信号进行处理。
在一些实施方式中,终端设备可以根据以下至少一项,确定接收到的第一信号所关联的一个或多个反向散射时域资源:
反向散射时域资源的起点;
第一信号所在的第一信号时域资源;
时域偏移;
反向散射时域资源的持续时间;
第一信号的格式;
第一信号关联的反向散射时域资源的个数;
第一信号关联的两个相邻反向散射时域资源之间的间隔。
根据上述信息中的至少一项,终端设备可以确定接收到的第一信号所关联的一个或多个反向散射时域资源,这些反向散射时域资源可以在第一信号所在的第一信号时域资源之后;或者,这些反向散射时域资源可以在第一信号所在的第一信号时域资源之后或与第一信号所在的第一信号时域资源的位置重叠。
在一些实施方式中,终端设备可以通过反向散射时域资源的起点确定与第一信号关联的一个或多个反向散射时域资源。例如,预先在时域上配置了多个反向散射时域资源,终端设备根据反向散射时域资源的起点,确定从该起点开始的一个或多个反向散射时域资源为该第一信号关联的反向散射时域资源。网络设备可以采用第一信号向终端设备指示该反向散射时域资源的起点,也可以采用其他信号向终端设备指示该反向散射时域资源的起点。进一步地,终端设备还可以根据反向散射时域资源的持续时间确定与第一信号关联的一个或多个反向散射时域资源。具体地,反向散射通信时机的起点或反向散射时域资源的持续时间可以由协议规定;和/或反向散射通信时机的起点或反向散射时域资源的持续时间可以由网络设备配置。例如,网络设备可以通过第一信号进行配置。
在一些实施方式中,第一信号与一个或多个反向散射时域资源存在关联关系。
例如,第一信号与一个反向散射时域资源之间的关联关系可以通过一个时域偏移确定。
以图4A为例,BCO1(或者在BCO1发送的第一信号)与BO1存在关联关系,该关联关系通过BO1相对于BCO1的时域偏移(如图4A中的T1)确定。如果终端设备在BCO1接收到第一信号,则根据该时域偏移T1,能够确定出与BCO1关联的BO1的具体位置,并在BO1上进行反向散射通信。同样的,如果网络设备在BCO1上发送第一信号,也可以根据该时域偏移T1确定出与BCO1关联的BO1的具体位置,并在BO1上监听反向散射通信。进一步地,终端设备还可以根据反向散射时域资源的持续时间确定与第一信号关联的反向散射时域资源,如确定图4A中与BCO1所关联的BO1的时间长度。具体地,时域偏移或反向散射时域资源的持续时间可以由协议规定;和/或,时域偏移或反向散射时域资源的持续时间可以由网络设备配置。例如,网络设备可以通过第一信号进行配置。
又如,第一信号与多个反向散射时域资源之间的关联关系可以通过一个或多个时域偏移确定。
在一些实施方式中,第一信号与多个反向散射时域资源之间的关联关系可以通过多个时域偏移确定时,每个时域偏移用于确定一个与第一信号存在关联关系的反向散射时域资源。
以图4B为例,BCO2(或者在BCO2发送的第一信号)与BO2和BO3存在关联关系,这两个关联关系分别通过BO2相对于BCO2的时域偏移(如图4B中的T2)和BO3相对于BCO2的时域偏移(如图4B中的T3)确定。如果终端设备在BCO2接收到第一信号,则根据时域偏移T2和T3,能够确定出与BCO2关联的BO2和BO3的具体位置,并在BO2和/或BO3上进行反向散射通信。同样的,如果网络设备在BCO2上发送第一信号,也可以根据时域偏移T2和T3,确定出与BCO2关联的BO2和BO3的具体位置,并在BO2和/或BO3上监听反向散射通信。进一步地,终端设备还可以根据反向散射时域资源的持续时间确定与第一信号关联的反向散射时域资源,如确定图4B中与BCO2所关联的BO2和BO3的时间长度。具体地,多个时域偏移或反向散射时域资源的持续时间可以由协议规定;和/或,多个时域偏移或反向散射时域资源的持续时间可以由网络设备配置。例如,网络设备可以通过第一信号进行配置。
在一些实施方式中,第一信号与多个反向散射时域资源之间的关联关系可以通过一个时域偏移、以及第一信号关联的反向散射时域资源的个数确定。
以图4C为例,BCO2(或者在BCO2发送的第一信号)与2个反向散射时域资源存在关联关系(如图4C中BCO2对应的反向散射时域资源的个数N=2),其中BCO2关联的第一个反向散射时域资源(如图4C中的BO2)由BO2相对于BCO2的时域偏移(如图4C中的T2)确定。由于预先在时域上配置有多个反向散射时域资源,如果终端设备在BCO2接收到第一信号,则根据时域偏移T2,能够确定出与BCO2关联的第一个反向散射时域资源(即BO2)的具体位置;再根据该个数N=2,能够确定出从BO2开始,存在2个与BCO2关联的反向散射时域资源,即包括BO2和BO3,从而终端设备可以在BO2和/或BO3上监听反向散射通信。进一步地,终端设备还可以根据反向散射时域资源的持续时间确定与第一信号关联的反向散射时域资源,如确定图4C中与BCO2所关联的BO2和BO3的时间长度。具体地,时域偏移、第一信号关联的反向散射时域资源的个数或反向散射时域资源的持续时间可以由协议规定;和/或,时域偏移、第一信号关联的反向散射时域资源的个数或反向散射时域资源的持续时间可以由网络设备配置。例如,网络设备可以通过第一信号进行配置。
在一些实施方式中,第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、第一信号关联的反向散射时域资源的个数、以及与第一信号关联的两个相邻反向散射时域资源之间的间隔确定。
以图4D为例,BCO2(或者在BCO2发送的第一信号)与2个反向散射时域资源存在关联关系(如图4D中BCO2对应的反向散射时域资源的个数N=2),其中BCO2关联的第一个反向散射时域资源(如图4D中的BO2)由BO2相对于BCO2的时域偏移(如图4D中的T2)确定。如果终端设备在BCO2接收到第一信号,则根据时域偏移T2,能够确定出与BCO2关联的第一个反向散射时域资源(即BO2)的具体位置;再根据BO2的具体位置以及第一信号关联的两个相邻反向散射时域资源之间的间隔(如图4D中的ΔT),确定与第一信号关联的第二个反向散射时域资源(如图4D中的BO3)的具体位置。从而终端设备可以在BO2和/或BO3上监听反向散射通信。进一步地,终端设备还可以根据反向散射时域资源的持续时间确定与第一信号关联的反向散射时域资源,如确定图4D中与BCO2所关联的BO2和BO3的时间长度。具体地,时域偏移、第一信号关联的反向散射时域资源的个数、第一信号关联的两个相邻反向散射时域资源之间的间隔或反向散射时域资源的持续时间可以由协议规定;和/或,时域偏移、第一信号关联的反向散射时域资源的个数、第一信号关联的两个相邻反向散射时域资源之间的间隔或反向散射时域资源的持续时间可以由网络设备配置。例如,网络设备可以通过第一信号进行配置。
此外,针对在时域上周期性配置反向散射时域资源的情况,本实施例中的第一信号关联的两个相邻反向散射时域资源之间的间隔可以采用时域上配置的反向散射时域资源的周期的倍数来表示。例如,图4D中的ΔT可以取值为2,表示在时域上每2个反向散射时域资源中选取一个作为第一信号关联的反向散射时域资源。或者在反向散射时域资源并不是周期性配置的情况下,也可以通过ΔT=2来配置,此时表示时域上每2个反向散射时域资源中选取一个作为第一信号关联的反向散射时域资源。当然,图4D中的ΔT也可以直接取值为BO2和BO3之间的时间间隔。
如图4D所示,BCO1、BCO2可以由网络设备在发送第一信号时动态选择。终端设备在任意时域资源上监听第一信号,例如,当终端设备在BCO1上监听并接收到第一信号时,根据BCO1与反向散射通信时机的关联关系,能够确定出BCO1所关联的反向散射通信时机是BO1,则终端设备可以在BO1上针对该第一信号进行反向散射通信,如发送反向散射通信信号。相应地,如果网络设备在BCO1上发送了第一信号,网络设备根据BCO1与反向散射通信时机的关联关系,能够确定出BCO1所关联的反向散射通信时机是BO1,则网络设备将在BO1上进行反向散射通信的监听,当在BO1上监听并接收到反向散射通信信号时,对该反向散射通信信号进行处理。又如,当终端设备在BCO2上监听并接收 到第一信号时,根据BCO2与反向散射通信时机的关联关系,能够确定出BCO2所关联的反向散射通信时机是BO2和BO3,则终端设备可以选择BO2或BO3进行反向散射通信,或者在BO2和BO3上都进行反向散射通信。相应地,如果网络设备在BCO2上发送了第一信号,网络设备根据BCO2与反向散射通信时机的关联关系,能够确定出BCO2所关联的反向散射通信时机是BO2和BO3,则网络设备可以在BO2和/或BO3上进行反向散射通信的监听。
在一些实施方式中,所有第一信号的时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一可以是统一配置的,即每个第一信号都配置相同的时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一;或者,
在一些实施方式中,所有第一信号的时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一可以是按照组分别进行统一配置的,即在同一组(例如在同一时域资源集合中)每个第一信号都配置相同的时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一;或者,
在一些实施方式中,所有第一信号的时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一是针对每个第一信号独立配置的,即每个第一信号可以独立配置时域偏移、关联的反向散射时域资源的个数和相邻反向散射时域资源之间的间隔中的至少之一。
或者,在一些实施方式中,可以根据调度信号的格式来确定该调度信号所关联的反向散射时域资源的个数。
例如,第一信号的格式包括第一格式、第二格式和第三格式中的至少一项:其中,
第一格式的第一信号与一个或多个反向散射时域资源关联。
第二格式的第一信号与一个反向散射时域资源关联;
第三格式的第一信号与多个反向散射时域资源关联。
当终端设备接收到第一信号时,可以根据该第一信号的格式确定其关联的反向散射时域资源的个数,结合上述其他信息,确定该第一信号关联的反向散射时域资源。
在一些实施方式中,终端设备接收到的第一信号所关联的一个或多个反向散射时域资源位于该接收到的第一信号所在的调度信号时域资源之后,和/或与该接收到的调度信号所在的第一信号时域资源的位置重叠。例如,第一信号关联的反向散射通信时机可以位于该第一信号发送时机的后面,和/或,位于与该第一信号发送时机相同的位置。
在一些实施方式中,终端设备接收到的第一信号所在的第一信号时域资源允许与其他第一信号所关联的一个或多个反向散射时域资源重叠;或者,
接收到的第一信号所在的第一信号时域资源不允许与其他第一信号所关联的一个或多个反向散射时域资源重叠。
如图4E所示,图4E是根据本申请实施例的另一种第一信号(或第一信号时域资源)关联反向散射时域资源的示意图,在图4E中,调度信号发送时机BCO1与反向散射通信时机BO1关联,调度信号发送时机BCO2与反向散射通信时机BO2关联,BO1可以与BCO2重叠或部分重叠。
在一些实施方式中,上述时域偏移的单位包括:微秒、毫秒、秒、OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
在一些实施方式中时域偏移包括第一参考点到第二参考点的偏移;其中,
第一参考点可以与接收到的第一信号关联;
第二参考点可以与反向散射时域资源关联。
具体地,第一参考点可以包括接收到的第一信号的起点、接收到的第一信号的终点、接收到的第一信号所在时间单元的起点和接收到的第一信号所在时间单元的终点中的至少一项。
具体地,第二参考点可以包括反向散射时域资源的起点、反向散射时域资源的终点、反向散射时域资源所在时间单元的起点和反向散射时域资源所在时间单元的终点中的至少一项。
其中,该时间单元可以包括正交频分复用(OFDM,Orthogonal Frequency Division Multiplexing)符号、时隙、子帧、帧或反向散射通信基本时间单元。
在一些实施方式中,所有第一信号对应的所述时域偏移统一配置或独立配置。例如,所有第一信号对应的时域偏移统一进行配置,则所有第一信号所对应的时域偏移相同;或者,所有第一信号对应的时域偏移独立进行配置,则所有第一信号所对应的时域偏移可以相同或不同。
在一些实施方式中,不同调度信号所关联的反向散射时域资源完全相同、完全不同或部分相同。
在一些实施方式中,不同反向散射时域资源的持续时间相同或不同。
以上介绍了第一信号(或第一信号时域资源)与反向散射(或反向散射时域资源)的关联方式一,即每个第一信号关联一个或多个反向散射通信时机的关联方式,以及终端设备在该方式下的反向散射通 信方式。本申请实施例还提出第一信号(或第一信号时域资源)与反向散射(或反向散射时域资源)的关联方式二,具体如下:
方式二:
在本方式中,提出基于第一时域资源集合的第一信号与反向散射通信时机的关联。相较于上述方式一,方式二更加规范化,可以半静态配置第一时域资源中的第一信号发送时机和反向散射通信时机。网络设备只能在第一时域资源中的第一信号发送时机进行调度信号的发送。
图5A是根据本申请实施例的一种第一时域资源集合中第一信号时域资源与反向散射时域资源的示意图,在图5A中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行说明。图5A中示出一个第一时域资源集合,第一时域资源集合中包括多个基本通信单元。在一些实施方式中,基本通信单元可以为第一时域资源集合的组成单元,第一时域资源集合可以基于基本通信单元的数目和/或时间长度确定。该第一时域资源集合中的部分基本通信单元可以作为调度信号发送时机,用于第一信号的传输;另一部分基本通信单元可以作为反向散射通信时机,用于反向散射信号的传输;第一时域资源集合中还可以包括部分空白的基本通信单元,既不传输第一信号也不传输反向散射信号。
在进行零功耗通信设计时,可以定义零功耗通信的基本通信单元。可以基于零功耗通信的基本通信单元的数目或者基于绝对时间长度(例如微秒、毫秒、秒等)确定第一时域资源集合。
具体地,第一时域资源集合中可以包括一个或多个第一信号时域资源,如包括一个或多个调度信号发送时机;第一时域资源集合中可以包括一个或多个反向散射时域资源,如包括一个或多个反向散射通信时机。
网络设备可以预先配置第一信号时域资源和/或反向散射时域资源在第一时域资源集合中的位置信息,相应地,终端设备接收第一信号时域资源和/或反向散射时域资源在第一时域资源集合中的位置信息,该位置信息可以包括起始位置和/或持续时间。
在一些实施方式中,第一时域资源集合包括第一类第一时域资源集合和第二类第一时域资源集合,第一类第一时域资源集合为包含第一信号时域资源和/或反向散射时域资源的第一时域资源集合,第二类第一时域资源集合为不包含第一信号时域资源且不包含反向散射时域资源的第一时域资源集合;
相应地,第一信号时域资源和/或反向散射时域资源在第一时域资源集合中的位置信息可以包括:
第一信号时域资源和/或反向散射时域资源在所述第一类第一时域资源集合中的分布信息;和/或,
第一类第一时域资源集合和第二类第一时域资源集合的周期性分布信息,每个周期包括至少一个第一类第一时域资源集合和/或至少一个第二类第一时域资源集合。
以下以图5B为例进行说明。图5B是根据本申请实施例的另一种第一时域资源集合中调度信号时域资源与反向散射时域资源的示意图,在图5B中,以调度信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行说明。第一时域资源集合1和第一时域资源集合3属于上述的第一类第一时域资源集合,第一时域资源集合1和第一时域资源集合3中包含调度信号发送时机和反向散射通信时机;第一时域资源集合2属于上述第二类第一时域资源集合,第一时域资源集合2中既不包含调度信号发送时机也不包含反向散射通信时机。由图5B可见,第一类第一时域资源集合和第二类第一时域资源集合周期性地进行分布,每个周期包括1个第一类第一时域资源集合和1个第二类第一时域资源集合,不同周期中的第一类第一时域资源集合的分布相同。在第一类第一时域资源集合(如第一时域资源集合1或第一时域资源集合2)中,反向散射通信时机周期性进行分布,即每3个基本通信单元中出现一个反向散射通信时机。
第一时域资源集合中包含的第一信号时域资源和/或反向散射时域资源的分布信息可以用图样表示,不同第一时域资源集合的图样可以相同或不同。
在一些实施方式中,第一时域资源集合中的所有第一信号时域资源均在第一时域资源集合中的任意反向散射时域资源之前;或者,
第一时域资源集合中存在位于该第一时域资源集合中的反向散射时域资源之后的第一信号时域资源;或者,
第一时域资源集合存在占用相同基本通信单元的第一信号时域资源和反向散射时域资源。
例如,第一时域资源集合中同时存在第一信号发送时机和反向散射通信时机时,第一信号发送时机可以均位于第一时域资源集合中的第x个基本通信单元(或称为基本时间单元)前;反向散射通信时机可以均位于第一时域资源集合中的第y(y>=x)个基本时间单元后。换言之,所有第一信号发送时机位于所有反向散射通信时机之前。其中x和y为基本时间单元的索引。该方式可详见图5A。
又如,第一时域资源集合中同时存在信号发送时机和反向散射通信时机时,存在第一信号发送时机位于反向散射通信时机之后的情况,即不要求所有的第一信号发送时机均位于所有的反向散射通信时机 之前。如图5C所示,第一时域资源集合中的第二个第一信号发送时机位于一个反向散射通信时机之后。
又如,如图5D所示,在图5D所示的第一时域资源集合中,部分第一信号发送时机与部分反向散射通信时机占用相同的基本通信单元。
在一些实施方式中,不同第一信号时域资源关联的反向散射时域资源可以完全相同、完全不同或部分相同。
在一些实施方式中,同一第一时域资源集合中的不同第一信号时域资源上允许发送相同的第一信号。
本申请实施例还可以配置第二时域资源集合,第二时域资源集合可以包括多个第一时域资源集合。
在一些实施方式中,第二时域资源集合中的第一时域资源集合的个数可以由协议规定或由网络设备配置。具体地,网络设备可以通过第一信号或其他信号配置第二时域资源集合中的第一时域资源集合的个数。
第二时域资源集合中包括的第一时域资源集合可以均为第一类第一时域资源集合;
或者,第二时域资源集合中包括的第一时域资源集合可以是第一类第一时域资源集合或第二类第一时域资源集合;换言之,第二时域资源集合可以包括连续多个第一时域资源集合。
如图5E所示,第二时域资源集合包括连续2个第一时域资源集合。第二时域资源集合中包含的第一时域资源集合可以是上述第一类第一时域资源集合和/或第二类第一时域资源集合。
在一些实施方式中,终端设备在第一时域资源集合上监听第一信号。
第一信号与反向散射时域资源的关联关系至少有以下几种实现方式:
方式1:
第一信号与第一时域资源集合中位于该第一信号之后的所有反向散射时域资源关联;或者,
第一信号与第一时域资源集合中位于该第一信号之后及与该第一信号重叠的所有反向散射时域资源关联;或者,
第一信号与第二时域资源集合中位于该第一信号之后的所有反向散射时域资源关联;或者,
第一信号与第二时域资源集合中位于该第一信号之后及与该第一信号重叠的所有反向散射时域资源关联。
相应地,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定第一时域资源集合中位于该第一信号之后的所有反向散射时域资源,将确定出的反向散射时域资源作为该第一信号所关联的一个或多个反向散射时域资源;或者,
终端设备确定第一时域资源集合中位于该第一信号之后及与该第一信号重叠的所有反向散射时域资源,将确定出的反向散射时域资源作为该第一信号所关联的一个或多个反向散射时域资源。以图6A为例,图6A是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式1的示意图一,图6A中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行介绍。如图6A所示,终端设备在图6A所示的第一时域资源集合中的第一个调度信号发送时机上接收到第一信号,则终端设备可以确定该第一时域资源集合中位于该第一信号之后的所有反向散射通信时机均为与该第一信号关联的反向散射通信时机,终端设备可以采用这些关联的反向散射时域资源中的部分或全部进行反向散射通信。或者,终端设备可以确定该第一时域资源集合中位于该第一信号之后及与该第一信号重叠的所有反向散射通信时机均为与该第一信号关联的反向散射通信时机。相应地,网络设备也可以采用同样的方法确定与该第一信号关联的反向散射时域资源,并在这些反向散射时域资源中的部分或全部上监听终端设备发送的反向散射信号。
或者,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定第二时域资源集合中位于该第一信号之后的所有反向散射时域资源,将确定出的反向散射时域资源作为该第一信号所关联的一个或多个反向散射时域资源;或者,
终端设备确定第二时域资源集合中位于该第一信号之后及与所述第一信号重叠的所有反向散射时域资源,将确定出的反向散射时域资源作为该第一信号所关联的一个或多个反向散射时域资源;
其中,第二时域资源集合包括多个第一时域资源集合。具体特征如上所述,这里不再赘述。
以图6B为例,图6B是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式1的示意图二,图6B中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行介绍。如图6B所示,终端设备在图6B所示的第二时域资源集合中的第一个调度信号发送时机上接收到第一信号,则终端设备可以确定该第二时域资源集合中位于该第一信号之后的所有反向散射通信时机均为与该第一信号关联的反向散射通信时机,终端设备可以采用这些关联的反向散射时域资源中的部分或全部进行反向散射通信。或者,终端设备可以确定该第二时域资源集合中位于 该第一信号之后及与该第一信号重叠的所有反向散射通信时机均为与该第一信号关联的反向散射通信时机。相应地,网络设备也可以采用同样的方法确定与该第一信号关联的反向散射时域资源,并在这些反向散射时域资源中的部分或全部上监听终端设备发送的反向散射信号。
由图6A和图6B所示的示例可见,关联关系的实现方式1不具体限制第一信号所关联的反向散射时域资源的个数,而是对第一信号所关联的反向散射时域资源的位置进行限制。
方式2:
第一信号与位于该第一信号之后的N1个反向散射时域资源关联;或者,
第一信号与不位于该第一信号之前的(包括位于第一信号之后及与第一信号重叠的)N1个反向散射时域资源关联。N1为正整数。
相应地,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定满足第一条件的N1个反向散射时域资源,将确定出的反向散射时域资源作为该第一信号所关联的反向散射时域资源;N1为正整数;
该第一条件包括:
反向散射时域资源位于第一信号之后;或者,
反向散射时域资源位于第一信号之后或与第一信号重叠。
以图6C为例,图6C是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式2的示意图,图6C中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行介绍。图6C所示的示例中,第一信号与3个反向散射时域资源关联,即N1=3。终端设备在图6C所示的第一时域资源集合中的第一个调度信号发送时机上接收到第一信号,确定位于该第一信号之后的3个反向散射通信时机为与该第一信号关联的反向散射通信时机。或者,终端设备可以确定位于该第一信号之后或与该第一信号重叠的3个反向散射通信时机。相应地,网络设备也可以采用同样的方法确定与该第一信号关联的3个反向散射通信时机,并在这些反向散射通信时机上监听终端设备发送的反向散射信号。
由图6C所示的示例可见,关联关系的实现方式2限制第一信号所关联的反向散射时域资源的个数。
在一些实施方式中,上述N1为预先设定的值;或者,N1由网络设备配置。
具体地,N1可以由网络设备采用第一信号配置、或者采用其他信号配置。
方式3:
在方式3中,可以既限制第一信号所关联的反向散射时域资源的个数、又限制第一信号所关联的反向散射时域资源的位置。例如,限制第一信号最多关联N2个反向散射时域资源,当满足位置条件的反向散射时域资源的数量大于或等于N2时,可以确定第一信号关联N2个反向散射时域资源;当满足前述位置条件的反向散射时域资源的数量小于N2时,确定第一信号关联L(L为满足前述位置条件的反向散射时域资源的数量)个反向散射时域资源。
相应地,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定满足第二条件(可以为前述位置条件)的N2个或小于N2个反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的反向散射时域资源;所述N2为正整数。
其中,在满足第二条件的反向散射时域资源的数量大于或等于N2的情况下,终端设备将满足第二条件的N2个反向散射时域资源作为第一信号所关联的反向散射时域资源;或者,
在满足第二条件的反向散射时域资源的数量小于N2的情况下,终端设备将满足第二条件的所有反向散射时域资源作为所第一信号所关联的反向散射时域资源。
在一些实施方式中,前述第二条件可以包括:
反向散射时域资源在第一信号所在的第一时域资源集合之内,并且位于该第一信号之后;或者,
反向散射时域资源在第一信号所在的第一时域资源集合之内,并且位于该第一信号之后或与该第一信号重叠。
在另一些实施方式中,前述第二条件可以包括:
反向散射时域资源在第一信号所在的第一时域资源集合所属的第二时域资源集合之内,并且位于该第一信号之后;或者,
反向散射时域资源在第一信号所在的第一时域资源集合所属的第二时域资源集合之内,并且位于第一信号之后或与第一信号重叠。
以图6D为例,图6D是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式3的示意图,图6D中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散 射通信时机为例进行介绍。图6D所示的示例中,第一信号与4个反向散射时域资源关联,即N2=4,并且与第一信号关联的反向散射通信时机需满足在第一信号所在的第一时域资源集合之内、并且位于该第一信号之后。
例如,终端设备在图6D所示的第一时域资源集合中的第一个调度信号发送时机上接收到第一信号,确定位于该第一信号之后的4个反向散射通信时机为与该第一信号关联的反向散射通信时机(该第一时域资源集合之内、并且在该第一信号之后存在5个反向散射通信时机,受N2=4的限制,终端设备选取前4个作为与该第一信号关联的反向散射通信时机)。
又如,终端设备在图6D所示的第一时域资源集合中的第二个调度信号发送时机上接收到第一信号,在第一时域资源集合之内存在3个位于该第一信号之后的反向散射通信时机,则终端设备将这3个反向散射通信时机作为与该第一信号关联的反向散射通信时机。
在一些实施方式中,上述N2为预先设定的值;或者,N2由网络设备配置。
具体地,N2可以由网络设备采用第一信号配置、或者采用其他信号配置。
方式4:
在方式4中,可以采用关联规则限制第一信号所关联的反向散射时域资源。
相应地,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定满足关联规则的N3个反向散射时域资源,将确定出的反向散射时域资源作为第一信号所关联的反向散射时域资源;N3为与第一信号所在的第一信号时域资源存在关联关系的反向散射时域资源的个数,N3由该关联规则指示。
上述关联规则可以预先设定,或者由网络设备配置。例如,网络设备可以采用第一信号配置该关联规则。
在一些实施方式中,该关联规则可以采用位图表示。
以图6E为例,图6E是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式4的示意图,图6E中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行介绍。图6E所示的示例中,图6E所示的第一时域资源集合中的第一个调度信号发送时机的关联规则采用位图“1010”表示,该位图中的每个比特对应该第一时域资源集合内的一个反向散射通信时机。当对应某个反向散射通信时机的比特取值为“1”时,表示该反向散射通信时机与第一个调度信号发送时机关联;当对应某个反向散射通信时机的比特取值为“0”时,表示该反向散射通信时机与第一个调度信号发送时机不关联。当然,比特值为“1”和“0”的含义可以对调。
例如,终端设备在图6E所示的第一时域资源集合中的第一个调度信号发送时机上接收到第一信号,根据第一个调度信号发送时机的关联规则(采用位图“1010”表示),可以确定与第一个调度信号发送时机关联的2个反向散射通信时机,也就是满足关联关系的N3(N3=2)个反向散射通信时机(即图6E中的第一个和第三个反向散射通信时机),将确定出的反向散射通信时机作为该第一信号所关联的反向散射通信时机。
方式5:
在方式5中,可以既采用关联规则限制第一信号所关联的反向散射时域资源,又限制第一信号所关联的反向散射时域资源的位置。例如,限制采用关联规则确定第一信号所关联的反向散射时域资源,当满足该关联规则的反向散射通信时机的个数大于或等于N3时,可以确定第一信号关联N3个反向散射时域资源;当满足该关联规则的反向散射通信时机的小于N3时,可以确定第一信号关联L(L为满足关联规则的反向散射时域资源的数量)个反向散射时域资源。N3为该关联规则所指示的与第一信号所在的第一信号时域资源存在关联关系的反向散射时域资源的个数。
相应地,在一些实施方式中,终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
终端设备确定满足关联规则的N3个或小于N3个反向散射时域资源,将确定出的反向散射时域资源作为第一信号所关联的反向散射时域资源;N3为与第一信号所在的第一信号时域资源存在关联关系的反向散射时域资源的个数,N3由该关联规则指示。
上述位置的限制可以为:限制第一信号关联的反向散射通信时机在该第一信号所在的第一时域资源集合内、或者限制第一信号关联的反向散射通信时机在该第一信号所在的第二时域资源集合内。
在一些实施方式中,在第一时域资源集合内满足关联规则的反向散射时域资源的个数大于或等于N3的情况下,终端设备将满足关联规则的N3个反向散射时域资源作为该第一信号所关联的反向散射时域资源;
在第一时域资源集合内满足关联规则的反向散射时域资源的个数小于N3的情况下,终端设备将满 足关联规则的所有反向散射时域资源作为该第一信号所关联的反向散射时域资源。
或者,在一些实施方式中,在第一时域资源集合所属的第二时域资源集合内满足关联规则的反向散射时域资源的个数大于或等于N3的情况下,终端设备将满足关联规则的N3个反向散射时域资源作为该第一信号所关联的反向散射时域资源;
在第一时域资源集合所属的第二时域资源集合内满足关联规则的反向散射时域资源的个数小于N3的情况下,终端设备将满足关联规则的所有反向散射时域资源作为该第一信号所关联的反向散射时域资源。
在一些实施方式中,关联规则可以预先设定,或者由网络设备配置。例如,网络设备可以采用第一信号配置该关联规则。
该关联规则可以采用位图表示。
以图6F为例,图6F是根据本申请实施例的第一信号与反向散射时域资源的关联关系实现方式5的示意图,图6F中,以第一信号时域资源具体为调度信号发送时机、反向散射时域资源具体为反向散射通信时机为例进行介绍。图6F所示的示例中,图6F所示的第一时域资源集合中的第一个调度信号发送时机的关联规则采用位图“1010”表示,该位图中的每个比特对应一个反向散射通信时机。当对应某个反向散射通信时机的比特取值为“1”时,表示该反向散射通信时机与第一个调度信号发送时机关联;当对应某个反向散射通信时机的比特取值为“0”时,表示该反向散射通信时机与第一个调度信号发送时机不关联。
例如,终端设备在图6F所示的第一时域资源集合中的第一个调度信号发送时机上接收到第一信号,第一个调度信号发送时机的关联规则采用位图“1010”表示,表示位于该第一个调度信号发送时机之后的第一个和第三个反向散射通信时机满足该关联规则;并且,第一个调度信号发送时机之后的第一个和第三个反向散射通信时机均位于该第一信号所在的第一时域资源集合内,因此终端设备确定这2个反向散射通信时机为与该第一信号关联的反向散射通信时机。
又如,终端设备在图6F所示的第一时域资源集合中的第二个调度信号发送时机上接收到第一信号,第二个调度信号发送时机的关联规则采用位图“0101”表示,表示位于该第二个调度信号发送时机之后的第二个和第四个反向散射通信时机满足该关联规则;进一步地,如图6F所示,第二个调度信号发送时机之后的第二个反向散射通信时机位于该第二信号所在的第一时域资源集合内,而第二个调度信号发送时机之后的第四个反向散射通信时机位于该第二信号所在的第一时域资源集合之外,因此终端设备确定第二个调度信号发送时机之后的第二个反向散射通信时机为与该第一信号关联的反向散射通信时机。
在上述方式4和方式5中,采用了一种关联规则,用于表示与第一信号时域资源存在关联关系的反向散射时域资源,该关联规则可以采用位图表示。本申请实施例提出多种关联规则的表示方式。
例如,在一些实施方式中,位图包括M1个比特,每个比特对应第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;或者,所述位图的一个比特对应所述第一信号时域资源所在的第一时域资源集合内的Y1个反向散射时域资源或基本通信单元,所述位图的剩余比特中的各个比特分别对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;所述M1和所述X1之间的关系满足M1=T1/X1、
Figure PCTCN2022081037-appb-000001
或者
Figure PCTCN2022081037-appb-000002
其中T1表示所述第一信号时域资源所在的第一时域资源集和中满足第三条件的反向散射时域资源的个数或基本通信单元的个数。
在一些实施方式中,该第三条件可以包括:
在所述第一信号时域资源所在的第一时域资源集合中的任意位置;或者,
在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
在一些实施方式中,所述位图包括M2个比特,每个比特对应X2个基本通信单元或X2个反向散射时域资源;所述X2或所述M2为正整数。
在一些实施方式中,所述位图包括M3个比特,每个比特对应X3个反向散射时域资源或X3个基本通信单元;或者,所述位图的一个比特对应Y3个反向散射时域资源或Y3个基本通信单元,所述位图的剩余比特中的各个比特分别对应X3个反向散射时域资源或X3个基本通信单元;所述M3和所述X3之间的关系满足M3=T3/X3、
Figure PCTCN2022081037-appb-000003
或者
Figure PCTCN2022081037-appb-000004
其中T3表示K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数,K为正整数。
在一些实施方式中,所述T3表示连续K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数;
或者,所述T3表示连续K个包含反向散射时域资源的第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数。
上述第四条件可以包括:
在所述K个第一时域资源集合中的任意位置;或者,
在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
除了图6E所示的关联规则以外,本公开实施例还提出多种关联规则的表示方式。如图7A-7F是根据本公开实施例的第一信号时域资源与反向散射时域资源的关联规则的示意图。
在图7A中,第一信号时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7A所示,第一时域资源集合中包括8个反向散射通信时机,针对该第一时域资源集合中的任意一个调度信号发送时机,均可以采用一个长度为4个比特的位图来表示该第一时域资源集合中的各个反向散射通信时机是否与该调度信号发送时机关联,其中一个比特用于指示第一时域资源集合中的2个反向散射通信时机。例如,当任意一个比特的取值为1时,表示关联;取值为0时,表示不关联。或者,也可以设置为取值为1时表示不关联,取值为0时表示关联。例如,第一时域资源集合中8个反向散射通信时机的序列号分别为1、2、3、4、5、6、7、8,位图中的第一个比特对应反向散射通信时机1和反向散射通信时机2,位图中的第二个比特对应反向散射通信时机3和反向散射通信时机4,位图中的第三个比特对应反向散射通信时机5和反向散射通信时机6,位图中的第四个比特对应反向散射通信时机7和反向散射通信时机8。可见,该关联关系的最小单位为两个反向散射通信时机。
如图7A所示,在图7A的第一时域资源集合中,采用位图“1010”来表示该第一时域资源集合中的第一个调度信号发送时机所关联的反向散射通信时机,即该第一时域资源集合中的反向散射通信时机1、反向散射通信时机2、反向散射通信时机5、反向散射通信时机6与第一个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第一个调度信号发送时机关联。同样的,采用“0101”来表示该第一时域资源集合中的反向散射通信时机3、反向散射通信时机4、反向散射通信时机7、反向散射通信时机8与第二个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第二个调度信号发送时机关联。
以图7B为例,在图7B中,第一信号时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7B所示,第一时域资源集合中包括9个反向散射通信时机,针对该第一时域资源集合中的任意一个调度信号发送时机,如果采用一个长度为4个比特的位图来表示该第一时域资源集合中的各个反向散射通信时机是否与该调度信号发送时机关联,则可以采用其中的3个比特中的各个比特分别用于指示第一时域资源集合中的2个反向散射通信时机,并采用剩余的一个比特指示第一时域资源集合中的3个反向散射通信时机。可见,在实施例的位图中,存在一个特殊的比特,该比特与其他比特指示的反向散射通信时机的个数不同;该特殊比特的位置可以预先设定,如位图中的第一个比特、最后一个比特、或者其他预设位置的特征作为该特殊比特。当任意一个比特的取值为1时,表示关联;取值为0时,表示不关联。或者,也可以设置为取值为1时表示不关联,取值为0时表示关联。
在图7B中,第一时域资源集合中9个反向散射通信时机的序列号分别为1、2、3、4、5、6、7、8、9;位图包括4个比特,将第四个比特作为上述特殊比特,即第一个比特对应反向散射通信时机1和反向散射通信时机2,位图中的第二个比特对应反向散射通信时机3和反向散射通信时机4,位图中的第三个比特对应反向散射通信时机5和反向散射通信时机6,位图中的第四个比特对应反向散射通信时机7、反向散射通信时机8和反向散射通信时机9。
如图7B所示,在图7B的第一时域资源集合中,采用位图“1010”来表示该第一时域资源集合中的第一个调度信号发送时机所关联的反向散射通信时机,即该第一时域资源集合中的反向散射通信时机1、反向散射通信时机2、反向散射通信时机5、反向散射通信时机6与第一个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第一个调度信号发送时机关联。同样的,采用“0101”来表示该第一时域资源集合中的反向散射通信时机3、反向散射通信时机4、反向散射通信时机7、反向散射通信时机8、反向散射通信时机9与第二个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第二个调度信号发送时机关联。可见,在图7B所示的实施例中,位图的个数(本示例中取值为4)等于第一时域资源集合中的反向散射时域资源的个数(本示例中为9)与位图中除特殊比特之外的其他各个比特所指示的反向散射时域资源的个数(本示例中为2)的第一比值的下取整。
以图7C为例,在图7C中,第一时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7C所示,第一时域资源集合中包括7个反向散射通信时机,针对该第一时域资 源集合中的任意一个调度信号发送时机,如果采用一个长度为4个比特的位图来表示该第一时域资源集合中的各个反向散射通信时机是否与该调度信号发送时机关联,则可以采用其中的3个比特中的各个比特分别指示第一时域资源集合中的2个反向散射通信时机,并采用剩余的1个比特指示第一时域资源集合中的1个反向散射通信时机。可见,在实施例的位图中,存在一个特殊的比特,该比特与其他比特指示的反向散射通信时机的个数不同;该特殊比特的位置可以预先设定,如位图中的第一个比特、最后一个比特、或者其他预设位置的特征作为该特殊比特。当任意一个比特的取值为1时,表示关联;取值为0时,表示不关联。或者,也可以设置为取值为1时表示不关联,取值为0时表示关联。
在图7C中,第一时域资源集合中7个反向散射通信时机的序列号分别为1、2、3、4、5、6、7;位图包括4个比特,将第一个比特作为上述特殊比特,即第一个比特对应反向散射通信时机1,位图中的第二个比特对应反向散射通信时机2和反向散射通信时机3,位图中的第三个比特对应反向散射通信时机4和反向散射通信时机5,位图中的第四个比特对应反向散射通信时机6和反向散射通信时机7。
如图7C所示,在图7C的第一时域资源集合中,采用位图“1010”来表示该第一时域资源集合中的第一个调度信号发送时机所关联的反向散射通信时机,即该第一时域资源集合中的反向散射通信时机1、反向散射通信时机4、反向散射通信时机5与第一个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第一个调度信号发送时机关联。同样的,采用“0101”来表示该第一时域资源集合中的反向散射通信时机2、反向散射通信时机3、反向散射通信时机6、反向散射通信时机7与第二个调度信号发送时机关联,该第一时域资源集合中其余的反向散射通信时机不与第二个调度信号发送时机关联。可见,在图7C所示的实施例中,位图的个数(本示例中取值为4)等于第一时域资源集合中的反向散射时域资源的个数(本示例中为7)与位图中除特殊比特之外的其他各个比特所指示的反向散射时域资源的个数(本示例中为2)的第一比值的上取整。
以图7D为例,在图7D中,第一信号时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7D所示,在图7D的第一时域资源集合中,第一个调度信号发送时机之后存在4个反向散射通信时机,则针对第一个调度信号发送时机可以采用长度为4个比特的位图,用于表示第一个调度信号发送时机之后的各个反向散射通信时机是否与第一个调度信号发送时机关联。同样的,在图7D的第一时域资源集合中,第二个调度信号发送时机之后也存在4个反向散射通信时机,则针对第二个调度信号发送时机也可以采用长度为4个比特的位图,用于表示第二个调度信号发送时机之后的各个反向散射通信时机是否与第二个调度信号发送时机关联。本图中的每个反向散射通信时机均占用了一个基本时间单元。在其他实施例中,一个反向散射通信时机也可以占用多个基本时间单元。在另一些实施例中,每个反向散射通信时机占用的基本时间单元的个数可以相同或不同。
与图7A类似,也可以采用位图中的一个比特来指示调度信号发送时机之后的至少两个反向散射通信时机是否与该调度信号发送时机关联。以图7E为例,在图7E中,第一信号时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7E所示,第一时域资源集合中包括9个反向散射通信时机,针对该第一时域资源集合中的任意一个调度信号发送时机,均可以采用一个位图来表示该第一时域资源集合中在该调度信号发送时机之后的任意一个反向散射通信时机是否与该调度信号发送时机关联,其中一个比特用于指示第一时域资源集合中的2个反向散射通信时机。例如,当任意一个比特的取值为1时,表示关联;取值为0时,表示不关联。或者,也可以设置为取值为1时表示不关联,取值为0时表示关联。在图7E中,第一时域资源集合中的第一个调度信号发送时机之后存在8个反向散射通信时机,则可以采用一个长度为4个比特的位图,用于表示第一个调度信号发送时机之后的各个反向散射通信时机是否其关联。例如,图7E中,用于指示第一个调度信号发送时机的关联关系的位图可以取值为“1010”,用于表示第一个调度信号发送时机之后的各个反向散射通信时机是否与其关联。可见,该关联关系的最小单位为两个反向散射通信时机。
对于调度信号发送时机之后存在的反向散射通信时机的个数与位图中的一个比特所指示的反向散射通信时机的个数不能整除的情况,也可以采用类似于上述图7B和图7C所示的方式,如采用位图中的一个特殊比特来指示Y个反向散射通信时机,剩余的各个比特分别指示X个反向散射通信时机,位图包含的比特数目与调度信号发送时机之后存在的反向散射通信时机的个数与X的比值的上取整或下取整相等。例如,第一个调度信号发送时机之后存在7个反向散射通信时机,其序列号分别为1、2、3、4、5、6、7,可以采用长度为4比特的位图进行指示,如第一个比特指示反向散射通信时机1、2是否与第一个调度信号发送时机关联、第二个比特指示反向散射通信时机3、4是否与第一个调度信号发送时机关联、第三个比特指示反向散射通信时机5、6是否与第一个调度信号发送时机关联、第四个比特指示反向散射通信时机7是否与第一个调度信号发送时机关联。
以图7F为例,在图7F中,第一信号时域资源具体为调度信号发送时机,反向散射时域资源具体为反向散射通信时机。如图7F所示,第一时域资源集合中包括10个基本通信单元,每个基本通信单 元可以用于传输调度信号(即作为调度信号发送时机)、也可以用于传输反向散射通信信号(即作为反向散射通信时机)、也可以不传输任何信号(即作为空白的基本通信单元),则针对该第一时域资源集合中的任意一个调度信号发送时机,均可以采用一个长度为10个比特的位图来表示该第一时域资源集合中的各个基本通信单元是否满足如下2个要求:
1)基本通信单元上存在反向散射通信时机;
2)基本通信单元上存在的反向散射通信时机与该调度信号发送时机关联。
例如,当任意一个比特的取值为1时,表示满足上述2个要求;取值为0时,表示不满足上述2个要求中的任意之一、或者仅满足上述2个要求中的1个要求。或者,也可以设置为取值为0时表示满足上述2个要求。
如图7F所示,在图7F的第一时域资源集合中,采用位图“0000100100”来表示该第一时域资源集合中与第一个调度信号发送时机关联的反向散射通信时机,该位图的每个比特用于指示一个基本通信单元。例如,该位图中的第5个比特取值为1,表示该第一时域资源集合中的第5个基本通信单元上存在反向散射时域资源,并且该反向散射时域资源与第一个调度信号发送时机关联。
在一些实施方式中,各个第一信号时域资源关联的反向散射时域资源的个数独立配置(如各个BCO单独配置);或者,每个第一时域资源集合中所有第一信号时域资源关联的反向散射时域资源的个数统一配置(如各个第一时域资源集合单独配置)。
在一些实施方式中,第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后;
或者,第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠的位置。
在一些实施方式中,终端设备在第一时域资源集合上监听第一信号,包括:
终端设备对第一时域资源集合中的所有第一信号时域资源进行监听;或者,
终端设备根据用户设备(UE,User Equipment)标识(ID,Identification)(也可以是终端组标识(UE group ID)),确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听;或者,
终端设备根据UE ID(也可以是UE group ID)和小区ID,确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听。
例如,网络设备向任意终端设备发送的第一信号均可以在第一时域资源集合中的所有第一信号时域资源上进行传输,相应地,终端设备可以在第一时域资源集合中的所有第一信号时域资源监听第一信号。
或者,将第一时域资源集合中的第一信号时域资源划分为至少两部分,每部分对应一些终端设备。网络设备向一个终端设备发送第一信号时,确定该终端设备对应哪些第一信号时域资源,则在这些第一信号时域资源发送针对该终端设备的第一信号;相应地,终端设备在监听发送信号时,只在自身对应的第一信号发送时机上进行监听。即网络设备根据用户设备(UE,User Equipment)标识(ID,Identification)(也可以是终端组标识),确定第一时域资源集合中该终端设备可用的第一信号时域资源,在该第一信号时域资源进行第一信号的发送;或者,网络设备根据用户设备(UE,User Equipment)标识(ID,Identification)(也可以是终端组标识)和小区ID,确定第一时域资源集合中该终端设备可用的第一信号时域资源,在该第一信号时域资源进行第一信号的发送。
例如,将第一时域资源集合中的第一信号发送时机划分为第一部分和第二部分,预先设定各部分与终端设备的UE ID的对应关系,如果(UE ID)mod 2=1,则该终端设备对应第一部分第一信号发送时机,如果(UE ID)mod 2=0,则该终端设备对应第二部分第一信号发送时机。根据该设定,网络设备在向终端设备发送第一信号时,根据该终端设备的UE ID确定采用哪一部分反向散射通信时机进行第一信号的传输,并在确定出的反向散射通信时机上发送针对该终端设备的第一信号;相应地,终端设备也根据自身的UE ID确定对应的反向散射通信时机,并在确定出的反向散射通信时机上进行第一信号的监听。
又如,将第一时域资源集合中的第一信号发送时机划分为第一部分和第二部分,预先设定各部分与终端设备的UE ID和小区ID的对应关系,如果(UE ID+小区ID)mod 2=1,则该终端设备对应第一部分第一信号发送时机,如果(UE ID+小区ID)mod 2=0,则该终端设备对应第二部分第一信号发送时机。根据该设定,网络设备在向终端设备发送第一信号时,根据该终端设备的UE ID和所在小区的小区ID确定采用哪一部分反向散射通信时机进行第一信号的传输,并在确定出的反向散射通信时机上发送针对该终端设备的第一信号;相应地,终端设备也根据自身的UE ID和所在小区的小区ID确定对应的反向散射通信时机,并在确定出的反向散射通信时机上进行第一信号的监听。
上述UE ID还可以替换为终端设备所在的UE组(UE Group)的组标识(group ID)等,如终端设备根据该终端设备所在UE组的组标识、或者根据终端设备所在UE组的组标识和终端设备所在小区的 小区ID等,确定需要监听的第一信号时域资源。相应地,网络设备在发送第一信号时,也可以根据终端设备根据该终端设备根据该终端设备所在UE组的组标识、或者根据终端设备所在UE组的组标识和终端设备所在小区的小区ID等,确定不同终端设备对应的第一信号时域资源,并在确定出的第一信号时域资源上传输相应终端设备的第一信号。
在一些实施方式中,不同第一信号时域资源关联的反向散射时域资源可以完全相同、完全不同或部分相同。
在一些实施方式中,同一第一时域资源集合中的不同第一信号时域资源上允许发送相同的第一信号控制信息。
以上介绍了第一信号(或第一信号时域资源)与反向散射(或反向散射时域资源)的两种关联方式、以及不同方式下终端设备和网络设备的操作方式。
在终端设备确定出接收到的第一信号关联多个反向散射时域资源的情况下,可以选择其中的一个或多个进行反向散射通信,例如:
所述终端设备随机从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
所述终端设备基于UE ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
所述终端设备基于UE ID和小区ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
所述终端设备基于组标识,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
所述终端设备基于组标识和小区ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信。
本申请实施例还提出一种反向散射通信的方法,该反向散射通信的方法可以应用于网络设备。图8是根据本申请一实施例的反向散射通信的方法800的示意性流程图。该方法可选地可以应用于图1和图2所示的系统,但并不仅限于此。该方法包括以下内容的至少部分内容。
S810:网络设备在第一信号时域资源上发送第一信号,该第一信号关联一个或多个反向散射时域资源。
在一些实施方式中,第一信号具有以下功能中的至少一种:
触发进行反向散射通信;
对反向散射通信进行调度;
携带进行反向散射通信的时域资源的指示信息。
在一些实施方式中,还包括:网络设备在所述第一信号关联的一个或多个反向散射时域资源上进行反向散射通信的监听。
在一些实施方式中,第一信号关联的一个或多个反向散射时域资源在所述第一信号所在的第一信号时域资源之后,和/或与所述第一信号所在的第一信号时域资源的位置重叠。
在一些实施方式中,第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源重叠;或者,
所述第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源不重叠。
在一些实施方式中,第一信号所在的第一信号时域资源与所述第一信号关联的反向散射时域资源之间的时间间隔为时域偏移,所述时域偏移的单位包括:微秒、毫秒、秒、OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
在一些实施方式中,时域偏移包括第一参考点到第二参考点的偏移;其中,
所述第一参考点与所述第一信号关联;
所述第二参考点与所述反向散射时域资源关联。
在一些实施方式中,所述第一参考点包括所述第一信号的起点、所述第一信号的终点、所述第一信号所在时间单元的起点和所述第一信号所在时间单元的终点中的至少一项。
在一些实施方式中,所述第二参考点包括所述反向散射时域资源的起点、所述反向散射时域资源的终点、所述反向散射时域资源所在时间单元的起点和所述反向散射时域资源所在时间单元的终点中的至少一项。
在一些实施方式中,时间单元包括OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
在一些实施方式中,第一信号对应的所述时域偏移统一配置或独立配置。
在一些实施方式中,第一信号与一个或多个反向散射时域资源存在关联关系。
在一些实施方式中,第一信号与一个反向散射时域资源之间的关联关系通过一个时域偏移确定。
在一些实施方式中,第一信号与多个反向散射时域资源之间的关联关系通过一个或多个时域偏移确定。
在一些实施方式中,当所述第一信号与多个反向散射时域资源之间的关联关系通过多个时域偏移确定时,每个所述时域偏移用于确定一个与所述第一信号存在关联关系的反向散射时域资源。
在一些实施方式中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、以及所述第一信号关联的反向散射时域资源的个数确定。
在一些实施方式中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、所述第一信号关联的反向散射时域资源的个数、以及与所述第一信号关联的两个相邻反向散射时域资源之间的间隔确定。
在一些实施方式中,上述方法还包括:网络设备配置所述时域偏移、所述第一信号关联的反向散射时域资源的个数或所述第一信号关联的两个相邻反向散射时域资源之间的间隔。
在一些实施方式中,网络设备通过所述第一信号配置所述时域偏移、所述第一信号关联的反向散射时域资源的个数或所述第一信号关联的两个相邻反向散射时域资源之间的间隔。
在一些实施方式中,所述第一信号的格式包括第一格式、第二格式和第三格式中的至少一项:其中,
所述第一格式的第一信号与一个或多个反向散射时域资源关联。
所述第二格式的第一信号与一个反向散射时域资源关联;
所述第三格式的第一信号与多个反向散射时域资源关联。
在一些实施方式中,不同第一信号所关联的反向散射时域资源完全相同、完全不同或部分相同。
在一些实施方式中,不同反向散射时域资源的持续时间相同或不同。
在一些实施方式中,所述网络设备在第一信号时域资源上发送第一信号,包括:
网络设备根据需要通信的终端设备的UE ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
网络设备根据需要通信的终端设备的UE ID和小区ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
网络设备根据需要通信的终端设备的组标识确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
网络设备根据需要通信的终端设备的组标识和小区ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号。
在一些实施方式中,上述方法还包括:所述网络设备配置与所述第一信号关联的反向散射时域资源的个数。
在一些实施方式中,所述网络设备采用所述第一信号配置与所述第一信号关联的反向散射时域资源的个数。
上述方法还可以包括:所述网络设备配置所述第一信号与所述反向散射时域资源的关联规则。
在一些实施方式中,所述关联规则采用位图表示。
在一些实施方式中,所述位图包括M1个比特,每个比特对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;或者,所述位图的一个比特对应所述第一信号时域资源所在的第一时域资源集合内的Y1个反向散射时域资源或基本通信单元,所述位图的剩余比特中的各个比特分别对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;所述M1和所述X1之间的关系满足M1=T1/X1、
Figure PCTCN2022081037-appb-000005
或者
Figure PCTCN2022081037-appb-000006
其中T1表示所述第一信号时域资源所在的第一时域资源集合中满足第三条件的反向散射时域资源的个数或基本通信单元的个数。
在一些实施方式中,所述第三条件包括:
在所述第一信号时域资源所在的第一时域资源集合中的任意位置;或者,
在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
在一些实施方式中,所述位图包括M2个比特,每个比特对应X2个基本通信单元或X2个反向散射时域资源;所述X2或所述M2为正整数。
在一些实施方式中,所述位图包括M3个比特,每个比特对应X3个反向散射时域资源或X3个基 本通信单元;或者,所述位图的一个比特对应Y3个反向散射时域资源或Y3个基本通信单元,所述位图的剩余比特中的各个比特分别对应X3个反向散射时域资源或X3个基本通信单元;所述M3和所述X3之间的关系满足M3=T3/X3、
Figure PCTCN2022081037-appb-000007
或者
Figure PCTCN2022081037-appb-000008
其中T3表示K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数,K为正整数。
在一些实施方式中,所述T3表示连续K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数;
或者,所述T3表示连续K个包含反向散射时域资源的第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数。
其中,上述第四条件可以包括:
在所述K个第一时域资源集合中的任意位置;或者,
在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
在一些实施方式中,该方法还包括:网络设备配置第二时域资源集合,该时域资源集合包括多个第一时域资源集合。
具体地,网络设备可以通过第一信号配置第二时域资源集合。
在一些实施方式中,各个第一信号时域资源关联的反向散射时域资源的个数独立配置;或者,每个第一时域资源集合中所有第一信号时域资源关联的反向散射时域资源的个数统一配置。
在一些实施方式中,第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后;或者,第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠的位置。
在一些实施方式中,第一时域资源集合中包括一个或多个第一信号时域资源。
在一些实施方式中,第一时域资源集合中包括一个或多个反向散射时域资源。
上述方法还可以包括,网络设备发送第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息;所述位置信息包括起始位置和/或持续时间。
在一些实施方式中,所述第一时域资源集合包括第一类第一时域资源集合和第二类第一时域资源集合,所述第一类第一时域资源集合为包含第一信号时域资源和/或反向散射时域资源的第一时域资源集合,所述第二类第一时域资源集合为不包含第一信号时域资源且不包含反向散射时域资源的第一时域资源集合;
所述第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息,包括:
所述第一信号时域资源和/或反向散射时域资源在所述第一类第一时域资源集合中的分布信息;和/或,
所述第一类第一时域资源集合和所述第二类第一时域资源集合的周期性分布信息,每个周期包括至少一个第一类第一时域资源集合和/或至少一个第二类第一时域资源集合。
在一些实施方式中,不同所述第一时域资源集合的图样相同或不同;所述图样包括所述第一时域资源集合中所述第一信号时域资源和/或反向散射时域资源的分布信息。
在一些实施方式中,所述第一时域资源集合中的所有第一信号时域资源均在所述第一时域资源集合中的任意反向散射时域资源之前;或者,
所述第一时域资源集合中存在位于所述第一时域资源集合中的反向散射时域资源之后的第一信号时域资源;或者,
所述第一时域资源集合存在占用相同基本通信单元的第一信号时域资源和反向散射时域资源。
在一些实施方式中,所述基本通信单元为所述第一时域资源集合的组成单元;
所述第一时域资源集合基于所述基本通信单元的数目和/或时间长度确定。
在一些实施方式中,不同第一信号时域资源关联的反向散射时域资源完全相同、完全不同或部分相同。
在一些实施方式中,同一所述第一时域资源集合中的不同第一信号时域资源上允许发送相同的所述第一信号。
在一些实施方式中,所述反向散射时域资源包括反向散射通信时机。
在一些实施方式中,所述第一信号时域资源包括第一信号发送时机。
综上可见,本申请实施例提出的反向散射通信的方法,提出了零功耗通信中调度信号发送时机与反向散射通信时机的关联方式,至少提出了以下两种方式。第一种,每个调度信号关联一个或多个反向散 射通信时机。第二种,基于第一时域资源集合设置调度信号与反向散射通信时机的关联。基于上述两种关联方式,一方面网络设备可以基于时域偏移确定调度信号发送时机关联的反向散射时机;另一方面对于半静态配置的资源,可以在第一时域资源集合中确定调度信号发送时机和其关联的反向散射通信时机。基于本申请实施例,能够便于网络设备对零功耗通信过程进行控制,明确了调度信号与反向散射通信时机的时序关系和映射关系。可以有效减少零功耗设备在反向散射通信过程中的冲突、碰撞问题。
图9是根据本申请一实施例的终端设备900的示意性框图。该终端设备900可以包括:
处理模块910,用于确定接收到的第一信号所关联的一个或多个反向散射时域资源;
反向散射模块920,用于基于所述一个或多个反向散射时域资源进行反向散射通信。
本申请实施例的终端设备900能够实现前述的方法实施例中的终端设备的对应功能。该终端设备900中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的终端设备900中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图10是根据本申请一实施例的网络设备1000的示意性框图。该网络设备1000可以包括:
发送模块1010,用于在第一信号时域资源上发送第一信号,该第一信号关联一个或多个反向散射时域资源。
本申请实施例的网络设备1000能够实现前述的方法实施例中的网络设备的对应功能。该网络设备1000中的各个模块(子模块、单元或组件等)对应的流程、功能、实现方式以及有益效果,可参见上述方法实施例中的对应描述,在此不再赘述。需要说明,关于申请实施例的网络设备1000中的各个模块(子模块、单元或组件等)所描述的功能,可以由不同的模块(子模块、单元或组件等)实现,也可以由同一个模块(子模块、单元或组件等)实现。
图11是根据本申请实施例的通信设备1100示意性结构图。该通信设备1100包括处理器1110,处理器1110可以从存储器中调用并运行计算机程序,以使通信设备1100实现本申请实施例中的方法。
在一种可能的实现方式中,通信设备1100还可以包括存储器1120。其中,处理器1110可以从存储器1120中调用并运行计算机程序,以使通信设备1100实现本申请实施例中的方法。
其中,存储器1120可以是独立于处理器1110的一个单独的器件,也可以集成在处理器1110中。
在一种可能的实现方式中,通信设备1100还可以包括收发器1130,处理器1110可以控制该收发器1130与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1130可以包括发射机和接收机。收发器1130还可以进一步包括天线,天线的数量可以为一个或多个。
在一种可能的实现方式中,该通信设备1100可为本申请实施例的网络设备,并且该通信设备1100可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该通信设备1100可为本申请实施例的终端设备,并且该通信设备1100可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
图12是根据本申请实施例的芯片1200的示意性结构图。该芯片1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一种可能的实现方式中,芯片1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中由终端设备或者网络设备执行的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
在一种可能的实现方式中,该芯片1200还可以包括输入接口1230。其中,处理器1210可以控制该输入接口1230与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一种可能的实现方式中,该芯片1200还可以包括输出接口1240。其中,处理器1210可以控制该输出接口1240与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
在一种可能的实现方式中,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应用于网络设备和终端设备的芯片可以是相同的芯片或不同的芯片。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
上述提及的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、现成可编程门阵列(field programmable gate array,FPGA)、专用集成电路(application specific integrated circuit, ASIC)或者其他可编程逻辑器件、晶体管逻辑器件、分立硬件组件等。其中,上述提到的通用处理器可以是微处理器或者也可以是任何常规的处理器等。
上述提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图13是根据本申请实施例的通信系统1300的示意性框图。该通信系统1300包括终端设备1310和网络设备1320。
其中,该终端设备1310可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1320可以用于实现上述方法中由网络设备实现的相应的功能。为了简洁,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行该计算机程序指令时,全部或部分地产生按照本申请实施例中的流程或功能。该计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以该权利要求的保护范围为准。

Claims (126)

  1. 一种反向散射通信的方法,包括:
    终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源;
    所述终端设备基于所述一个或多个反向散射时域资源进行反向散射通信。
  2. 根据权利要求1所述的方法,其中,所述第一信号具有以下功能中的至少一种:
    触发进行反向散射通信;
    对反向散射通信进行调度;
    携带进行反向散射通信的时域资源的指示信息。
  3. 根据权利要求1或2所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备根据以下至少一项,确定所述接收到的第一信号所关联的一个或多个反向散射时域资源:
    反向散射时域资源的起点;
    所述第一信号所在的第一信号时域资源;
    时域偏移;
    反向散射时域资源的持续时间;
    所述第一信号的格式;
    所述第一信号关联的反向散射时域资源的个数;
    所述第一信号关联的两个相邻反向散射时域资源之间的间隔。
  4. 根据权利要求1-3任一所述的方法,其中,所述接收到的第一信号所关联的一个或多个反向散射时域资源位于所述接收到的第一信号所在的第一信号时域资源之后,和/或与所述接收到的第一信号所在的第一信号时域资源的位置重叠。
  5. 根据权利要求1-4任一项所述的方法,其中,
    所述接收到的第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源重叠;或者,
    所述接收到的第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源不重叠。
  6. 根据权利要求3所述的方法,其中,所述时域偏移的单位包括:微秒、毫秒、秒、OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
  7. 根据权利要求3或6所述的方法,其中,所述时域偏移包括第一参考点到第二参考点的偏移;其中,
    所述第一参考点与所述接收到的第一信号关联;
    所述第二参考点与所述反向散射时域资源关联。
  8. 根据权利要求7所述的方法,其中,
    所述第一参考点包括所述接收到的第一信号的起点、所述接收到的第一信号的终点、所述接收到的第一信号所在时间单元的起点和所述接收到的第一信号所在时间单元的终点中的至少一项。
  9. 根据权利要求7或8所述的方法,其中,
    所述第二参考点包括所述反向散射时域资源的起点、所述反向散射时域资源的终点、所述反向散射时域资源所在时间单元的起点和所述反向散射时域资源所在时间单元的终点中的至少一项。
  10. 根据权利要求8或9所述的方法,其中,所述时间单元包括正交频分复用OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
  11. 根据权利要求3、6-10任一所述的方法,其中,所有第一信号对应的所述时域偏移统一配置或独立配置。
  12. 根据权利要求3、6-11任一所述的方法,其中,所述第一信号与一个或多个反向散射时域资源存在关联关系。
  13. 根据权利要求12所述的方法,其中,所述第一信号与一个反向散射时域资源之间的关联关系通过一个时域偏移确定。
  14. 根据权利要求12所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个或多个时域偏移确定。
  15. 根据权利要求14所述的方法,其中,当所述第一信号与多个反向散射时域资源之间的关联关系通过多个时域偏移确定时,每个所述时域偏移用于确定一个与所述第一信号存在关联关系的反向散射时域资源。
  16. 根据权利要求14所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、以及所述第一信号关联的反向散射时域资源的个数确定。
  17. 根据权利要求14所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、所述第一信号关联的反向散射时域资源的个数、以及与所述第一信号关联的两个相邻反向散射时域资源之间的间隔确定。
  18. 根据权利要求3、6-17任一所述的方法,其中,
    所述反向散射时域资源的起点、所述反向散射时域资源的持续时间、所述第一信号关联的反向散射时域资源的个数和所述第一信号关联的两个相邻反向散射时域资源之间的间隔至少之一由协议规定;和/或,
    所述反向散射时域资源的起点、所述反向散射时域资源的持续时间、所述第一信号关联的反向散射时域资源的个数和所述第一信号关联的两个相邻反向散射时域资源之间的间隔至少之一由网络设备配置。
  19. 根据权利要求18所述的方法,其中,
    所述反向散射时域资源的起点、所述反向散射时域资源的持续时间、所述第一信号关联的反向散射时域资源的个数和所述第一信号关联的两个相邻反向散射时域资源之间的间隔至少之一由网络设备通过所述第一信号配置。
  20. 根据权利要求1至19中任一所述的方法,其中,所述第一信号的格式包括第一格式、第二格式和第三格式中的至少一项:其中,
    所述第一格式的第一信号与一个或多个反向散射时域资源关联;
    所述第二格式的第一信号与一个反向散射时域资源关联;
    所述第三格式的第一信号与多个反向散射时域资源关联。
  21. 根据权利要求1至20中任一所述的方法,其中,不同第一信号所关联的反向散射时域资源完全相同、完全不同或部分相同。
  22. 根据权利要求1至21中任一所述的方法,其中,不同反向散射时域资源的持续时间相同或不同。
  23. 根据权利要求1所述的方法,所述方法还包括,
    所述终端设备在第一时域资源集合上监听第一信号。
  24. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定所述第一时域资源集合中位于所述第一信号之后的所有反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的一个或多个反向散射时域资源;或者,
    所述终端设备确定所述第一时域资源集合中位于所述第一信号之后及与所述第一信号重叠的所有反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的一个或多个反向散射时域资源。
  25. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定第二时域资源集合中位于所述第一信号之后的所有反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的一个或多个反向散射时域资源;或者,
    所述终端设备确定第二时域资源集合中位于所述第一信号之后及与所述第一信号重叠的所有反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的一个或多个反向散射时域资源;
    其中,所述第二时域资源集合包括多个所述第一时域资源集合。
  26. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定满足第一条件的N1个反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的反向散射时域资源;所述N1为正整数;
    所述第一条件包括:
    所述反向散射时域资源位于所述第一信号之后;或者,
    所述反向散射时域资源位于所述第一信号之后或与所述第一信号重叠。
  27. 根据权利要求26所述的方法,其中,所述N1为预先设定的值;或者,所述N1由网络设备配置。
  28. 根据权利要求27所述的方法,其中,所述N1由网络设备通过所述第一信号配置。
  29. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定满足第二条件的N2个或小于N2个反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的反向散射时域资源;所述N2为正整数。
  30. 根据权利要求29所述的方法,其中,
    在满足所述第二条件的反向散射时域资源的数量大于或等于所述N2的情况下,所述终端设备将满足所述第二条件的N2个反向散射时域资源作为所述第一信号所关联的反向散射时域资源;或者,
    在满足所述第二条件的反向散射时域资源的数量小于所述N2的情况下,所述终端设备将满足所述第二条件的所有反向散射时域资源作为所述第一信号所关联的反向散射时域资源。
  31. 根据权利要求29或30所述的方法,其中,所述第二条件包括:
    所述反向散射时域资源在所述第一时域资源集合之内,并且位于所述第一信号之后;或者,
    所述反向散射时域资源在所述第一时域资源集合之内,并且位于所述第一信号之后或与所述第一信号重叠。
  32. 根据权利要求29或30所述的方法,其中,所述第二条件包括:
    所述反向散射时域资源在所述第一时域资源集合所属的第二时域资源集合之内,并且位于所述第一信号之后;或者,
    所述反向散射时域资源在所述第一时域资源集合所属的第二时域资源集合之内,并且位于所述第一信号之后或与所述第一信号重叠;
    所述第二时域资源集合包括多个所述第一时域资源集合。
  33. 根据权利要求29-32任一所述的方法,其中,所述N2为预先设定的值;或者,所述N2由网络设备配置。
  34. 根据权利要求33所述的方法,其中,所述N2由网络设备通过所述第一信号配置。
  35. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定满足关联规则的N3个反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的反向散射时域资源;所述N3为与所述第一信号所在的第一信号时域资源存在关联关系的反向散射时域资源的个数,所述N3由所述关联规则指示。
  36. 根据权利要求23所述的方法,其中,所述终端设备确定接收到的第一信号所关联的一个或多个反向散射时域资源,包括:
    所述终端设备确定满足关联规则的N3个或小于N3个反向散射时域资源,将确定出的反向散射时域资源作为所述第一信号所关联的反向散射时域资源;所述N3为与所述第一信号所在的第一信号时域资源存在关联关系的反向散射时域资源的个数,所述N3由所述关联规则指示。
  37. 根据权利要求36所述的方法,其中,
    在所述第一时域资源集合内满足所述关联规则的反向散射时域资源的个数大于或等于所述N3的情况下,所述终端设备将满足所述关联规则的N3个反向散射时域资源作为所述第一信号所关联的反向散射时域资源;
    在所述第一时域资源集合内满足所述关联规则的反向散射时域资源的个数小于所述N3的情况下,所述终端设备将满足所述关联规则的所有反向散射时域资源作为所述第一信号所关联的反向散射时域资源。
  38. 根据权利要求36所述的方法,其中,
    在所述第一时域资源集合所属的第二时域资源集合内满足所述关联规则的反向散射时域资源的个数大于或等于N3的情况下,所述终端设备将满足所述关联规则的N3个反向散射时域资源作为所述第一信号所关联的反向散射时域资源;
    在所述第一时域资源集合所属的第二时域资源集合内满足所述关联规则的反向散射时域资源的个数小于N3的情况下,所述终端设备将满足所述关联规则的所有反向散射时域资源作为所述第一信号所关联的反向散射时域资源;
    所述第二时域资源集合包括多个所述第一时域资源集合。
  39. 根据权利要求25、32或38所述的方法,其中,所述第二时域资源集合中的所述第一时域资源集合的个数由协议规定或由网络设备配置。
  40. 根据权利要求39所述的方法,其中,所述第二时域资源集合中的所述第一时域资源集合的个数由网络设备通过所述第一信号配置。
  41. 根据权利要求35-38任一所述的方法,其中,所述N3或所述关联规则为预先设定的;或者,所述N3或所述关联规则由网络设备配置。
  42. 根据权利要求41所述的方法,其中,所述N3或所述关联规则由网络设备通过所述第一信号配 置。
  43. 根据权利要求35-42任一所述的方法,其中,所述关联规则采用位图表示。
  44. 根据权利要求43所述的方法,其中,所述位图包括M1个比特,每个比特对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;或者,所述位图的一个比特对应所述第一信号时域资源所在的第一时域资源集合内的Y1个反向散射时域资源或基本通信单元,所述位图的剩余比特中的各个比特分别对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;所述M1和所述X1之间的关系满足M1=T1/X1、
    Figure PCTCN2022081037-appb-100001
    或者
    Figure PCTCN2022081037-appb-100002
    其中T1表示所述第一信号时域资源所在的第一时域资源集合中满足第三条件的反向散射时域资源的个数或基本通信单元的个数。
  45. 根据权利要求44所述的方法,其中,所述第三条件包括:
    在所述第一信号时域资源所在的第一时域资源集合中的任意位置;或者,
    在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
    在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
  46. 根据权利要求43所述的方法,其中,
    所述位图包括M2个比特,每个比特对应X2个基本通信单元或X2个反向散射时域资源;所述X2或所述M2为正整数。
  47. 根据权利要求43所述的方法,其中,
    所述位图包括M3个比特,每个比特对应X3个反向散射时域资源或X3个基本通信单元;或者,所述位图的一个比特对应Y3个反向散射时域资源或Y3个基本通信单元,所述位图的剩余比特中的各个比特分别对应X3个反向散射时域资源或X3个基本通信单元;所述M3和所述X3之间的关系满足M3=T3/X3、
    Figure PCTCN2022081037-appb-100003
    或者
    Figure PCTCN2022081037-appb-100004
    其中T3表示K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数,K为正整数。
  48. 根据权利要求47所述的方法,其中,
    所述T3表示连续K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数;
    或者,所述T3表示连续K个包含反向散射时域资源的第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数。
  49. 根据权利要求47或48所述的方法,其中,所述第四条件包括:
    在所述K个第一时域资源集合中的任意位置;或者,
    在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
    在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
  50. 根据权利要求35-49任一所述的方法,其中,
    各个第一信号时域资源关联的反向散射时域资源的个数独立配置;或者,每个第一时域资源集合中所有第一信号时域资源关联的反向散射时域资源的个数统一配置。
  51. 根据权利要求35-50任一所述的方法,其中,
    第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后;
    第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠的位置。
  52. 根据权利要求23至51中任一所述的方法,其中,所述第一时域资源集合中包括一个或多个第一信号时域资源。
  53. 根据权利要求23至52中任一所述的方法,其中,所述第一时域资源集合中包括一个或多个反向散射时域资源。
  54. 根据权利要求23至53中任一所述的方法,还包括,接收第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息;所述位置信息包括起始位置和/或持续时间。
  55. 根据权利要求54所述的方法,其中,所述第一时域资源集合包括第一类第一时域资源集合和第二类第一时域资源集合,所述第一类第一时域资源集合为包含第一信号时域资源和/或反向散射时域资源的第一时域资源集合,所述第二类第一时域资源集合为不包含第一信号时域资源且不包含反向散射时域资源的第一时域资源集合;
    所述第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息,包括:
    所述第一信号时域资源和/或反向散射时域资源在所述第一类第一时域资源集合中的分布信息;和/或,
    所述第一类第一时域资源集合和所述第二类第一时域资源集合的周期性分布信息,每个周期包括至少一个第一类第一时域资源集合和/或至少一个第二类第一时域资源集合。
  56. 根据权利要求23至55中任一所述的方法,其中,不同第一时域资源集合的图样相同或不同;所述图样包括所述第一时域资源集合中所述第一信号时域资源和/或反向散射时域资源的分布信息。
  57. 根据权利要求35-51任一所述的方法,其中,
    所述第一时域资源集合中的所有第一信号时域资源均在所述第一时域资源集合中的任意反向散射时域资源之前;或者,
    所述第一时域资源集合中存在位于所述第一时域资源集合中的反向散射时域资源之后的第一信号时域资源;或者,
    所述第一时域资源集合存在占用相同基本通信单元的第一信号时域资源和反向散射时域资源。
  58. 根据权利要求43-49、57任一所述的方法,其中,所述基本通信单元为所述第一时域资源集合的组成单元;
    所述第一时域资源集合基于所述基本通信单元的数目和/或时间长度确定。
  59. 根据权利要求35-50任一所述的方法,其中,不同第一信号时域资源关联的反向散射时域资源完全相同、完全不同或部分相同。
  60. 根据权利要求35-50、59任一所述的方法,其中,同一第一时域资源集合中的不同第一信号时域资源上允许发送相同的所述第一信号。
  61. 根据权利要求23-60任一所述的方法,其中,所述终端设备在第一时域资源集合上监听第一信号,包括:
    所述终端设备对第一时域资源集合中的所有第一信号时域资源进行监听;或者,
    所述终端设备根据用户设备UE标识ID,确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听;或者,
    所述终端设备根据UE ID和小区ID,确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听;或者,
    所述终端设备根据终端组标识,确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听;或者,
    所述终端设备根据终端组标识和小区ID,确定第一时域资源集合中需要监听的第一信号时域资源,对所述需要监听的第一信号时域资源进行监听。
  62. 根据权利要求23-61任一所述的方法,其中,所述终端设备在第一时域资源集合上监听第一信号包括:所述终端设备在能量采集时或完成能量采集后监听第一信号。
  63. 根据权利要求23-62任一所述的方法,其中,在终端设备确定出接收到的第一信号所关联的多个反向散射时域资源的情况下,所述终端设备基于所述一个或多个反向散射时域资源进行反向散射通信,包括:
    所述终端设备随机从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
    所述终端设备基于UE ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
    所述终端设备基于UE ID和小区ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
    所述终端设备基于组标识,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信;或者,
    所述终端设备基于组标识和小区ID,从所述多个反向散射时域资源中选择一个反向散射时域资源,并采用选择的反向散射时域资源进行反向散射通信。
  64. 根据权利要求1-63任一所述的方法,其中,所述反向散射时域资源包括反向散射通信时机。
  65. 根据权利要求3、35-51、57-60任一所述的方法,其中,所述第一信号时域资源包括第一信号发送时机。
  66. 一种反向散射通信的方法,包括:
    网络设备在第一信号时域资源上发送第一信号,所述第一信号关联一个或多个反向散射时域资源。
  67. 根据权利要求66所述的方法,其中,所述第一信号具有以下功能中的至少一种:
    触发进行反向散射通信;
    对反向散射通信进行调度;
    携带进行反向散射通信的时域资源的指示信息。
  68. 根据权利要求66或67所述的方法,还包括:
    所述网络设备在所述第一信号关联的一个或多个反向散射时域资源上进行反向散射通信的监听。
  69. 根据权利要求68所述的方法,其中,所述第一信号关联的一个或多个反向散射时域资源在所述第一信号所在的第一信号时域资源之后,和/或与所述第一信号所在的第一信号时域资源的位置重叠。
  70. 根据权利要求68所述的方法,其中,
    所述第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源重叠;或者,
    所述第一信号所在的第一信号时域资源与其他第一信号所关联的一个或多个反向散射时域资源不重叠。
  71. 根据权利要求68-70任一所述的方法,其中,所述第一信号所在的第一信号时域资源与所述第一信号关联的反向散射时域资源之间的时间间隔为时域偏移,所述时域偏移的单位包括:微秒、毫秒、秒、OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
  72. 根据权利要求71所述的方法,其中,所述时域偏移包括第一参考点到第二参考点的偏移;其中,
    所述第一参考点与所述第一信号关联;
    所述第二参考点与所述反向散射时域资源关联。
  73. 根据权利要求72所述的方法,其中,
    所述第一参考点包括所述第一信号的起点、所述第一信号的终点、所述第一信号所在时间单元的起点和所述第一信号所在时间单元的终点中的至少一项。
  74. 根据权利要求72或73所述的方法,其中,
    所述第二参考点包括所述反向散射时域资源的起点、所述反向散射时域资源的终点、所述反向散射时域资源所在时间单元的起点和所述反向散射时域资源所在时间单元的终点中的至少一项。
  75. 根据权利要求73或74所述的方法,其中,所述时间单元包括OFDM符号、时隙、子帧、帧或反向散射通信基本时间单元。
  76. 根据权利要求71-75任一所述的方法,其中,所有第一信号对应的所述时域偏移统一配置或独立配置。
  77. 根据权利要求72-76任一所述的方法,其中,所述第一信号与一个或多个反向散射时域资源存在关联关系。
  78. 根据权利要求77所述的方法,其中,所述第一信号与一个反向散射时域资源之间的关联关系通过一个时域偏移确定。
  79. 根据权利要求78所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个或多个时域偏移确定。
  80. 根据权利要求79所述的方法,其中,当所述第一信号与多个反向散射时域资源之间的关联关系通过多个时域偏移确定时,每个所述时域偏移用于确定一个与所述第一信号存在关联关系的反向散射时域资源。
  81. 根据权利要求77所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、以及所述第一信号关联的反向散射时域资源的个数确定。
  82. 根据权利要求77所述的方法,其中,所述第一信号与多个反向散射时域资源之间的关联关系通过一个时域偏移、所述第一信号关联的反向散射时域资源的个数、以及与所述第一信号关联的两个相邻反向散射时域资源之间的间隔确定。
  83. 根据权利要求82所述的方法,还包括:
    所述网络设备配置所述时域偏移、所述第一信号关联的反向散射时域资源的个数或所述第一信号关联的两个相邻反向散射时域资源之间的间隔。
  84. 根据权利要求83所述的方法,其中,
    所述网络设备通过所述第一信号配置所述时域偏移、所述第一信号关联的反向散射时域资源的个数或所述第一信号关联的两个相邻反向散射时域资源之间的间隔。
  85. 根据权利要求66-84任一所述的方法,其中,所述第一信号的格式包括第一格式、第二格式和第三格式中的至少一项:其中,
    所述第一格式的第一信号与一个或多个反向散射时域资源关联;
    所述第二格式的第一信号与一个反向散射时域资源关联;
    所述第三格式的第一信号与多个反向散射时域资源关联。
  86. 根据权利要求66-85任一所述的方法,其中,不同第一信号所关联的反向散射时域资源完全相同、完全不同或部分相同。
  87. 根据权利要求66-86任一所述的方法,其中,不同反向散射时域资源的持续时间相同或不同。
  88. 根据权利要求66或67所述的方法,其中,所述网络设备在第一信号时域资源上发送第一信号,包括:
    网络设备根据需要通信的终端设备的UE ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
    网络设备根据需要通信的终端设备的UE ID和小区ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
    网络设备根据需要通信的终端设备的组标识确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号;或者,
    网络设备根据需要通信的终端设备的组标识和小区ID确定第一时域资源集合中的第一信号时域资源,并在所述第一信号时域资源上发送第一信号。
  89. 根据权利要求66-88任一所述的方法,还包括:所述网络设备配置与所述第一信号关联的反向散射时域资源的个数。
  90. 根据权利要求89所述的方法,其中,所述网络设备通过所述第一信号配置与所述第一信号关联的反向散射时域资源的个数。
  91. 根据权利要求66-90任一所述的方法,还包括:所述网络设备配置所述第一信号与所述反向散射时域资源的关联规则。
  92. 根据权利要求91所述的方法,其中,所述关联规则采用位图表示。
  93. 根据权利要求92所述的方法,其中,
    所述位图包括M1个比特,每个比特对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;或者,所述位图的一个比特对应所述第一信号时域资源所在的第一时域资源集合内的Y1个反向散射时域资源或基本通信单元,所述位图的剩余比特中的各个比特分别对应所述第一信号时域资源所在的第一时域资源集合内的X1个反向散射时域资源或基本通信单元;所述M1和所述X1之间的关系满足M1=T1/X1、
    Figure PCTCN2022081037-appb-100005
    或者
    Figure PCTCN2022081037-appb-100006
    其中T1表示所述第一信号时域资源所在的第一时域资源集合中满足第三条件的反向散射时域资源的个数或基本通信单元的个数。
  94. 根据权利要求93所述的方法,其中,所述第三条件包括:
    在所述第一信号时域资源所在的第一时域资源集合中的任意位置;或者,
    在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
    在所述第一信号时域资源所在的第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠。
  95. 根据权利要求92所述的方法,其中,
    所述位图包括M2个比特,每个比特对应X2个基本通信单元或X2个反向散射时域资源;所述X2或所述M2为正整数。
  96. 根据权利要求92所述的方法,其中,
    所述位图包括M3个比特,每个比特对应X3个反向散射时域资源或X3个基本通信单元;或者,所述位图的一个比特对应Y3个反向散射时域资源或Y3个基本通信单元,所述位图的剩余比特中的各个比特分别对应X3个反向散射时域资源或X3个基本通信单元;所述M3和所述X3之间的关系满足M3=T3/X3、
    Figure PCTCN2022081037-appb-100007
    或者
    Figure PCTCN2022081037-appb-100008
    其中T3表示K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数,K为正整数。
  97. 根据权利要求96所述的方法,其中,
    所述T3表示连续K个第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数;
    或者,所述T3表示连续K个包含反向散射时域资源的第一时域资源集合中满足第四条件的反向散射时域资源的个数或基本通信单元的个数。
  98. 根据权利要求96或97所述的方法,其中,所述第四条件包括:
    在所述K个第一时域资源集合中的任意位置;或者,
    在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后;或者,
    在所述K个第一时域资源集合中、并且位于所述第一信号时域资源之后或者与所述第一信号时域 资源重叠。
  99. 根据权利要求66-98任一所述的方法,还包括:所述网络设备配置第二时域资源集合,所述第二时域资源集合包括多个第一时域资源集合。
  100. 根据权利要求99所述的方法,其中,所述网络设备通过所述第一信号配置所述第二时域资源集合。
  101. 根据权利要求81-84、89、90任一所述的方法,其中,
    各个第一信号时域资源关联的反向散射时域资源的个数独立配置;或者,每个第一时域资源集合中所有第一信号时域资源关联的反向散射时域资源的个数统一配置。
  102. 根据权利要求88、96-101任一所述的方法,其中,
    第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后;或者,
    第一信号时域资源所关联的反向散射时域资源位于所述第一信号时域资源之后或者与所述第一信号时域资源重叠的位置。
  103. 根据权利要求88、96-101中任一所述的方法,其中,所述第一时域资源集合中包括一个或多个第一信号时域资源。
  104. 根据权利要求88、96-101任一所述的方法,其中,所述第一时域资源集合中包括一个或多个反向散射时域资源。
  105. 根据权利要求88、96-104任一所述的方法,还包括,网络设备发送第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息;所述位置信息包括起始位置和/或持续时间。
  106. 根据权利要求105所述的方法,其中,所述第一时域资源集合包括第一类第一时域资源集合和第二类第一时域资源集合,所述第一类第一时域资源集合为包含第一信号时域资源和/或反向散射时域资源的第一时域资源集合,所述第二类第一时域资源集合为不包含第一信号时域资源且不包含反向散射时域资源的第一时域资源集合;
    所述第一信号时域资源和/或反向散射时域资源在所述第一时域资源集合中的位置信息,包括:
    所述第一信号时域资源和/或反向散射时域资源在所述第一类第一时域资源集合中的分布信息;和/或,
    所述第一类第一时域资源集合和所述第二类第一时域资源集合的周期性分布信息,每个周期包括至少一个第一类第一时域资源集合和/或至少一个第二类第一时域资源集合。
  107. 根据权利要求88、96-106任一所述的方法,其中,不同所述第一时域资源集合的图样相同或不同;所述图样包括所述第一时域资源集合中所述第一信号时域资源和/或反向散射时域资源的分布信息。
  108. 根据权利要求85、96-107任一所述的方法,其中,
    所述第一时域资源集合中的所有第一信号时域资源均在所述第一时域资源集合中的任意反向散射时域资源之前;或者,
    所述第一时域资源集合中存在位于所述第一时域资源集合中的反向散射时域资源之后的第一信号时域资源;或者,
    所述第一时域资源集合存在占用相同基本通信单元的第一信号时域资源和反向散射时域资源。
  109. 根据权利要求94-97任一所述的方法,其中,所述基本通信单元为所述第一时域资源集合的组成单元;
    所述第一时域资源集合基于所述基本通信单元的数目和/或时间长度确定。
  110. 根据权利要求66-109任一所述的方法,其中,不同第一信号时域资源关联的反向散射时域资源完全相同、完全不同或部分相同。
  111. 根据权利要求88、96-108任一所述的方法,其中,同一所述第一时域资源集合中的不同第一信号时域资源上允许发送相同的所述第一信号。
  112. 根据权利要求68-84任一所述的方法,其中,所述反向散射时域资源包括反向散射通信时机。
  113. 根据权利要求66-111任一所述的方法,其中,所述第一信号时域资源包括第一信号发送时机。
  114. 一种终端设备,包括:
    处理模块,用于确定接收到的第一信号所关联的一个或多个反向散射时域资源;
    反向散射模块,用于基于所述一个或多个反向散射时域资源进行反向散射通信。
  115. 一种网络设备,包括:
    发送模块,用于在第一信号时域资源上发送第一信号,所述第一信号关联一个或多个反向散射时域资源。
  116. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用 并运行所述存储器中存储的计算机程序,以使所述终端设备执行如权利要求1至65中任一项所述的方法。
  117. 一种网络设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,以使所述网络设备执行如权利要求66至113中任一项所述的方法。
  118. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至65中任一项所述的方法。
  119. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求66至113中任一项所述的方法。
  120. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求1至65中任一项所述的方法。
  121. 一种计算机可读存储介质,用于存储计算机程序,当所述计算机程序被设备运行时使得所述设备执行如权利要求66至113中任一项所述的方法。
  122. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至65中任一项所述的方法。
  123. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求66至113中任一项所述的方法。
  124. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至65中任一项所述的方法。
  125. 一种计算机程序,所述计算机程序使得计算机执行如权利要求66至113中任一项所述的方法。
  126. 一种通信系统,包括:
    终端设备,用于执行如权利要求1至65中任一项所述的方法;
    网络设备,用于执行如权利要求66至113中任一项所述的方法。
PCT/CN2022/081037 2022-03-15 2022-03-15 反向散射通信的方法、终端设备和网络设备 WO2023173301A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081037 WO2023173301A1 (zh) 2022-03-15 2022-03-15 反向散射通信的方法、终端设备和网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/081037 WO2023173301A1 (zh) 2022-03-15 2022-03-15 反向散射通信的方法、终端设备和网络设备

Publications (1)

Publication Number Publication Date
WO2023173301A1 true WO2023173301A1 (zh) 2023-09-21

Family

ID=88022107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/081037 WO2023173301A1 (zh) 2022-03-15 2022-03-15 反向散射通信的方法、终端设备和网络设备

Country Status (1)

Country Link
WO (1) WO2023173301A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113207174A (zh) * 2021-03-19 2021-08-03 西安电子科技大学 一种反向散射通信方法、装置及系统
CN113746505A (zh) * 2020-05-29 2021-12-03 罗伯特·博世有限公司 反向散射通信系统
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746505A (zh) * 2020-05-29 2021-12-03 罗伯特·博世有限公司 反向散射通信系统
CN113207174A (zh) * 2021-03-19 2021-08-03 西安电子科技大学 一种反向散射通信方法、装置及系统
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备
CN113891356A (zh) * 2021-09-29 2022-01-04 中国信息通信研究院 一种无线通信数据信息传输方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Updated views on Passive IoT", 3GPP DRAFT; RP-212135, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. TSG RAN, no. Electronic Meeting; 20210913 - 20210917, 6 September 2021 (2021-09-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052049420 *

Similar Documents

Publication Publication Date Title
CN112637857B (zh) 一种共生网络中载波的调度方法、装置及存储介质
WO2018041001A1 (zh) 一种与射频设备通信的方法、装置及系统
US11470459B2 (en) Bandwidth selection for enhanced machine-type-communications
US11937254B2 (en) Wireless communcation method, terminal device, and network device
US20220053468A1 (en) Wireless communication method, terminal device and network device
CN111052802B (zh) 一种非授权频谱上的载波切换方法、基站及终端设备
WO2019238007A1 (zh) 检测波束的方法和装置
CN116830766A (zh) 通信方法和通信装置
US20170019906A1 (en) Method for Mitigating Interference Between Two or More Wide Body Area Networks
WO2023151045A1 (zh) 反向散射通信的方法及设备
WO2023173301A1 (zh) 反向散射通信的方法、终端设备和网络设备
WO2023000175A1 (zh) 无线通信方法、第一设备和第二设备
WO2023168721A1 (zh) 配置资源的方法、终端以及网络设备
US20240137194A1 (en) Method and device for wireless communication
WO2023168699A1 (zh) 上报uci的方法、终端设备和网络设备
WO2023168698A1 (zh) 信息传输方法、终端设备和网络设备
WO2023168715A1 (zh) 确定时域资源的方法、终端设备及网络设备
WO2023004583A1 (zh) 无线通信的方法和终端设备
US20240155565A1 (en) Wireless communication method, terminal device and communication device
WO2023173438A1 (zh) 数据传输方法、第一设备和第二设备
WO2024098424A1 (zh) 无线通信的方法及设备
WO2023010341A1 (zh) 无线通信方法、终端设备和网络设备
WO2023000209A1 (zh) 无线通信方法、终端设备和网络设备
WO2024065267A1 (zh) 无线通信的方法和设备
WO2023039709A1 (zh) 资源配置方法、网络设备和零功耗终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931340

Country of ref document: EP

Kind code of ref document: A1