WO2023173253A1 - 一种能源交易过程中的数据共享方法、设备及存储介质 - Google Patents

一种能源交易过程中的数据共享方法、设备及存储介质 Download PDF

Info

Publication number
WO2023173253A1
WO2023173253A1 PCT/CN2022/080678 CN2022080678W WO2023173253A1 WO 2023173253 A1 WO2023173253 A1 WO 2023173253A1 CN 2022080678 W CN2022080678 W CN 2022080678W WO 2023173253 A1 WO2023173253 A1 WO 2023173253A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
database
data
block
carbon emission
Prior art date
Application number
PCT/CN2022/080678
Other languages
English (en)
French (fr)
Inventor
王化
Original Assignee
深圳技术大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳技术大学 filed Critical 深圳技术大学
Priority to PCT/CN2022/080678 priority Critical patent/WO2023173253A1/zh
Publication of WO2023173253A1 publication Critical patent/WO2023173253A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/27Replication, distribution or synchronisation of data between databases or within a distributed database system; Distributed database system architectures therefor

Definitions

  • This application relates to the field of energy trading technology, and in particular to a data sharing method, equipment and storage medium in the energy trading process.
  • energy can be divided into traditional energy and green energy; traditional energy can include but is not limited to coal, oil and natural gas, and green energy can include but is not limited to wind energy, hydrogen energy, solar energy, ocean energy and geothermal energy.
  • energy trading platform there are usually two types of objects, one is the energy trading platform, and the other is the purchaser of energy trading with the energy trading platform; among them, for the energy trading platform, it involves a variety of data, such as Energy production data, energy storage data, geographical data, etc.; for buyers, it also involves a variety of data, such as personal information and historical data on energy purchases.
  • energy trading is risky.
  • This application provides a data sharing method, equipment and storage medium in the energy trading process, aiming to solve the problem of poor sharing between the data involved in the energy trading platform and the data involved in the purchaser in related technologies.
  • the first aspect of the embodiment of the present application provides a data sharing method in the energy trading process, including:
  • the energy database includes multiple first blocks, and the multiple first blocks respectively correspond to different energy trading platforms; wherein the first blocks are used to store corresponding Energy data transmitted by the energy trading platform;
  • the customer database includes a plurality of second blocks, and the plurality of second blocks respectively correspond to different customers; wherein the second block is used to store corresponding Customer data transmitted by said customer;
  • the carbon emission database includes a plurality of third blocks, and the plurality of third blocks respectively correspond to the plurality of first blocks; wherein, the third block The third block is used to store carbon emission data corresponding to the energy data in the first block;
  • the second aspect of the embodiment of the present application provides an electronic device, including a storage device and at least one processor; the storage device is used to store at least one program, and when the at least one program is executed by the at least one processor , causing the at least one processor to execute the data sharing method in the energy trading process as described in the first aspect of the embodiment of this application.
  • the third aspect of the embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores executable instructions. When the executable instructions are executed, they are executed as described in the first aspect of the embodiment of the present application. Data sharing methods in the energy trading process.
  • Figure 1 is an architectural diagram of the alliance chain network provided by the embodiment of this application.
  • FIG. 2 is a schematic diagram of the operating mechanism of the smart contract provided by the embodiment of this application.
  • FIG. 3 is a schematic flowchart of the data sharing method in the energy trading process provided by the embodiment of the present application.
  • Figure 4 is a module block diagram of an electronic device provided by an embodiment of the present application.
  • Figure 5 is a module block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • blockchain technology can effectively manage green energy. contract and ensure the smooth execution of the contract.
  • the application of blockchain can speed up my country's commodity trading market. Combined with the technical characteristics of blockchain decentralization and trustlessness, exploring models and systems based on blockchain technology in the field of green energy trading can significantly reduce suspicious transactions. Reduce regulatory costs and promote coordinated development of the market. At the same time, blockchain can essentially be considered a carrier for capital flow and value exchange. The above two characteristics can bring about great changes in the operation of existing society and enterprises, and even lead to changes in the future economic pattern. With the new round of global technological revolution and industrial transformation deepening, as the cornerstone of the next generation value Internet, the blockchain field has become a competitive highland for global information technology innovation. At present, blockchain technology is still in the initial stage of gradually implementing application scenarios. There are still many technical problems that need to be solved urgently. Application scenarios in the field of commodity trading markets are even more lacking, and many specific practices will be needed in the future.
  • the financial market represented by digital assets has the characteristics of a combination of finance and blockchain technology. It has the risk characteristics of both financial attributes and innovative technology. The relevant risks are in various financial trading platforms across regions and organizations. Especially easy to gather.
  • the current various blockchains can easily create information islands, making it more difficult to combine blockchain with the financial field.
  • Cheng Hua and others analyzed the application prospects of blockchain technology in the field of commercial banks; Jiang Kunliang used game theory methods to study the application of blockchain in transaction models in the field of Internet consumer finance; in addition, Ren Xiaocong, Zhao Zengkui and others studied the application of blockchain in the field of Internet consumer finance.
  • this application proposes a distributed information sharing platform and system for smart contracts in the green energy trading market, relying on the development of blockchain technology to address the pain points and difficulties in information sharing in the green energy trading market.
  • the trade ecology of green energy involves multiple links in the industry, including warehouses, traders, exchanges, banks, etc. A key part of this is the construction of credible digital warehouse receipts, which not only requires collaboration, but also requires cooperation from the industry. We will make overall efforts in associations and policies and regulations to develop online alliance chains.
  • the alliance chain online platform of this application uses blockchain technology.
  • the alliance chain is between the private chain and the public chain in the blockchain. It is a blockchain that requires registration permission. It is limited to members with permission in the alliance to participate in the reading and writing of the ledger, and the role and function division of nodes in the network. It needs to be set in advance, and the consensus, operation and maintenance and access in the network are all controlled by preset nodes.
  • alliance chains are suitable for cross-institutional transactions, settlements, collaborative offices, and certificate deposits. After a transaction is completed, each participant on the blockchain first verifies the transaction. Once all participants reach a consensus, the transaction information is stamped with a timestamp indicating the order in which the transaction occurred. The timestamp function ensures the traceability of transactions.
  • the application of blockchain technology solves the pain points of high credit risk in traditional transactions and improves transaction security.
  • each participant in the blockchain has a complete set of ledgers, which has unique advantages in reconciliation, which reduces the cost of reconciliation and improves the efficiency of liquidation.
  • blockchain technology which has the characteristics of decentralization, trustlessness, and time stamping, makes all transaction information open and transparent and cannot be tampered with, greatly reducing the occurrence of operational risks and credit risks, making transactions safer.
  • the off-site green energy market applicable to this application can be well used in alliance chains.
  • Blockchain systems are generally divided into public chains, alliance chains and private chains based on different application scenarios and design systems.
  • Each node of the public chain can freely join and exit the network, and participate in the reading and writing of data on the chain. It is interconnected in a flat topology during operation, and there is no centralized server node in the network.
  • the write permissions of each node in the private chain are under internal control, while the read permissions can be selectively opened to the outside world on demand.
  • the private chain still has the general structure of multi-node operation of the blockchain and is suitable for internal data management and auditing of specific institutions.
  • the energy storage information of green energy is particularly important.
  • the information of traditional energy production and energy storage is closely related to the information of green energy.
  • the information on traditional energy production and energy storage is uploaded to the blockchain system, and the energy storage information of green energy is also uploaded to the blockchain through enterprises and related business platforms.
  • a decentralized blockchain information sharing model a real-time Comprehensive energy information in the region, as well as an energy storage information platform.
  • blockchain technology with features such as decentralization, trustlessness, and timestamps makes all relevant information open, transparent, and cannot be tampered with, greatly reducing the occurrence of operational risks and credit risks. Make online information sharing more secure.
  • this application uses blockchain smart contract technology to perform machine learning on energy storage information to grasp the changing trends of energy storage, share information and release machine learning model training tasks in the form of smart contracts on the blockchain.
  • This project A task management smart contract will be deployed to record and manage all smart contracts for publishing tasks.
  • the running node will obtain the smart contract for publishing tasks from the task management smart contract.
  • the smart contract that publishes the task will specify the model calculation graph, training data set, test data set, and accuracy requirements.
  • the data files will be stored in a centralized or decentralized file system.
  • the smart contract will store its hash value and the path to get it.
  • a blockchain-based platform As a commodity trading platform for transactions and circulation.
  • the blockchain platform forms a shared online platform based on the alliance chain of the trading platform.
  • the user wallet uses the alliance chain transaction wallet and system, and each transaction node does not use cash for transactions.
  • Fund settlement is uniformly supervised, guaranteed and settled by third-party financial institutions to ensure the safety of funds of all parties to the transaction and the legitimacy of the platform.
  • the trading platform initiates the opening of a commodity position, and consumers or traders buy commodity positions.
  • the blockchain platform it is to open an account and create a wallet, and then the platform confirms it as a transaction voucher. At the same time, all transaction information is recorded on the chain to achieve traceability.
  • the trading platform After a period of time, the commodity price fluctuates with time, the commodity warehouse receipt expires, and the trading platform initiates liquidation.
  • the blockchain platform automatically recovers the relevant positions and the warehouse receipt is completed.
  • the third-party financial institution will settle the funds (including the interest difference amount) and return it to the buyer in accordance with the agreed agreement.
  • the blockchain green energy trading platform on the chain also has a good effect on the management and control of futures-like platforms.
  • Local commodity trading platforms have a promoting effect, especially for forward transactions and other platforms that are not easy to supervise. It has a very effective effect. , not only promotes commodity exchanges, but also promotes local trading platforms, and also plays a role in transaction interoperability for trading platforms in different regions.
  • the design purpose of the blockchain is to allow all nodes to jointly participate in the system of maintaining a public data ledger, making the data ledger open and transparent.
  • the infrastructure of blockchain can be divided into six layers (as shown in Figure 1).
  • Blockchain systems generally consist of data layer, network layer, consensus layer, incentive layer, contract layer and application layer.
  • the data layer is used to construct data blocks, encrypt and sign data, and add timestamps;
  • the network layer includes a distributed peer-to-peer network for communication and data verification between nodes;
  • the consensus layer implements various consensus algorithms;
  • the incentive layer mainly uses It is not necessary to formulate corresponding incentive mechanisms in alliance chains and private chains, because the incentives have been confirmed outside the system;
  • the contract layer mainly encapsulates various scripts, algorithms and smart contracts, and is the basis of the programmable features of the blockchain;
  • the application layer is various applications based on blockchain technology.
  • Blockchain technology will provide underlying technical support for warehouse receipt services: the application delivery business in the delivery business involves the registration, cancellation and conversion of futures warehouse receipts, which is an important link in the convergence of futures and spot prices.
  • Blockchain technology based on smart contracts closely links futures exchanges, delivery warehouses, inspection departments, banks and futures companies, which can improve process operation efficiency, shorten the capital circulation cycle, and monitor the warehouse receipt process in real time.
  • Warehouse receipt services can better meet the needs of industrial customers, reduce delivery risks, and promote linkage between futures and spot markets.
  • Blockchain technology can effectively improve the efficiency and quality of warehouse receipt services, serve all market participants well, and provide a transparent and efficient market environment. .
  • a trading system based on blockchain technology can reduce the cost and complexity of transactions and settlements and improve transaction efficiency.
  • the technical architecture of blockchain application in commodity transactions can be divided into: user-oriented application layer, middle layer and bottom layer.
  • the application layer mainly includes transaction records, clearing, and settlement networks based on blockchain;
  • the middle layer mainly includes encryption algorithms, transaction accelerators, and financial contract middleware;
  • the bottom layer mainly includes distributed networks and consensus algorithms.
  • the core of the technology is a multi-node architecture network of a decentralized system.
  • the platform implements smart contracts through distributed network, encryption algorithms and other technologies, and directly records and clears accounts on the blockchain.
  • the financial reference data at the current point, various risk calculations, etc. are recorded in it, and will be updated and cash flow accounting will be performed when the future block is generated and verified.
  • a trigger event such as expiration or when the execution price is reached, the contract is automatically executed according to the programmed terms.
  • the smart contract of the financial derivative is successfully executed and the relevant parties are notified.
  • the status of the smart contract is Opportunity to judge the status of the contract to which it belongs.
  • the conditions contained in each smart contract, the agreement amount and cash flow direction, trigger conditions, etc. will be implemented and tested on the blockchain.
  • the contract's status is marked as completed and its smart contract will be finalized and terminated from the block. If the future transaction has not been completely completed, it will continue to be verified when the next block is generated.
  • the overall transaction blockchain will be spread by each node through a unified identification and stored in the blockchain. The accounts and contracts of green energy traders are written into the blockchain in the form of code. The individuals are anonymous, but the contract records in the chain.
  • a smart contract has two attributes: value and status.
  • the smart contract uses statements such as If-Then and What-If to preset the corresponding trigger scenarios and response rules of the contract terms, and the transaction verification is effective. It is then packaged into a new data block, and the new block is linked to the main chain of the blockchain after being certified by the consensus algorithm.
  • the process of all updates taking effect includes two parts, as follows:
  • Packaging part The application verifies the endorsement node, confirms that the received transaction proposals are consistent, submits the transaction to the node, forms the data block, and broadcasts the data block to all nodes connected to it;
  • Validating part Nodes verify the transactions in the data blocks one by one to ensure that the transactions are signed and endorsed by all corresponding organizations in strict accordance with the predetermined endorsement policy; after the verification is passed, all Peer nodes add new data blocks to the current blockchain At the end, the ledger is updated.
  • the product reference data at the current point, various risk calculations, etc. will be recorded in it, and will be updated and cash flow accounting will be performed at the point when the future block is generated and verified.
  • the entire process is automatically completed by the smart contract system built into the blockchain, making the entire process transparent and unchangeable.
  • a trigger event such as expiration or when the execution price is reached, the contract is automatically executed according to the programmed terms.
  • the smart contract of the product is successfully executed and the relevant parties are notified.
  • the status machine of the smart contract determines the status of the contract.
  • Physical layer Encapsulates all infrastructure that supports the implementation of smart contracts and their derivative applications, including distributed ledgers and their key technologies, development environments and trusted data sources, etc.;
  • Contract layer Encapsulates static contract data, including the contract terms agreed upon by all parties to the contract, the scenario-response rules after the contract terms are coded, and the interaction guidelines between the contract and the outside world and between contracts specified by the contract creator, etc. .
  • the contract layer can be regarded as a static database of smart contracts, encapsulating all smart contract calling, execution, and communication rules;
  • Application layer The specific application layer of blockchain and smart contracts. Helps the distributed architecture of blockchain to be implanted in different scenarios; by storing core legal provisions, business logic and intention agreements in smart contracts, various types of Such decentralized applications.
  • the data characteristics of this application are different from existing data structures such as green energy product ledgers.
  • the blockchain ledger of this application is a transaction ledger, while the traditional green energy product market is an account ledger.
  • the blockchain accounting method used in this application is based on consensus mechanism accounting, while the traditional green energy product market product accounting is based on double-entry accounting.
  • the blockchain account in this application is an anonymous ledger, and all transaction details are public. However, the traditional green energy product market product ledger transaction information is not public.
  • This application proposes the application concept and model of applying blockchain smart contracts to green energy commodity product transactions, and designs a specific application method for a distributed blockchain (alliance chain) transaction information sharing platform for green energy on the blockchain chain. .
  • the alliance chain online platform of this application uses blockchain technology.
  • the alliance chain is between the private chain and the public chain in the blockchain. It is a blockchain that requires registration permission. It is limited to members with permission in the alliance to participate in the reading and writing of the ledger, and the role and function division of nodes in the network. It needs to be set in advance, and the consensus, operation and maintenance and access in the network are all controlled by preset nodes.
  • alliance chains are suitable for cross-institutional transactions, settlements, collaborative offices, and certificate deposits. After a transaction is completed, each participant on the blockchain first verifies the transaction. Once all participants reach a consensus, the transaction information is stamped with a timestamp indicating the order in which the transaction occurred. The timestamp function ensures the traceability of transactions.
  • the application of blockchain technology solves the pain points of high credit risk in traditional transactions and improves transaction security.
  • each participant in the blockchain has a complete set of ledgers, which has unique advantages in reconciliation, which reduces the cost of reconciliation and improves the efficiency of liquidation.
  • blockchain technology which has the characteristics of decentralization, trustlessness, and time stamping, makes all transaction information open and transparent and cannot be tampered with, greatly reducing the occurrence of operational risks and credit risks, making transactions safer.
  • the off-site green energy market applicable to this application can be well used in alliance chains.
  • the smart contract transaction rules for green energy commodity products proposed in this application can effectively put green energy information into the conditions, scope and obligations agreed by the smart contract.
  • the agreement is formalized in digital form and machine-readable code.
  • the rights and obligations stipulated are automatically enforced through the computer network once the parties reach an agreement and execute it.
  • the characteristics of smart contracts are self-verification, self-execution, and tamper-proof, ensuring a higher degree of security, reducing dependence on intermediaries, and reducing transaction costs.
  • Through the transaction method of smart contracts traditional off-site green energy information asymmetry and black-box operations can also be effectively controlled. This model effectively combines the numerous platforms in the green energy market and the decentralized nature of transactions, enables contracts to be specifically applied to the market, and effectively integrates different types of green energy products.
  • This application also innovatively establishes a green energy product database with a blockchain-generated alliance chain.
  • Databases can be effectively linked with blockchain smart contracts. Construction and execution of smart contracts: The conditions contained in each smart contract, the agreement amount and cash flow direction, triggering conditions, etc. will be tested on the blockchain, and its transactions and credit risk evaluation will be adjusted and warned in a timely manner.
  • the derivatives contract of the smart contract clarifies the obligations of the parties to the contract from contract creation to signing to contract delivery and settlement, such as the direction of future cash flow, the guarantee of the payer when paying the recipient, etc., and the distributed nature of the blockchain
  • the network can ensure higher efficiency and will not be subject to human intervention and termination.
  • this application provides a data sharing method in the energy trading process.
  • FIG. 3 is a schematic flowchart of a data sharing method in an energy trading process provided by an embodiment of the present application.
  • the data sharing method in the energy trading process provided by the embodiment of this application includes the following steps 301 to 304.
  • Step 301 Construct an energy database in the alliance chain network.
  • an energy database is first constructed in the alliance chain network, and the energy database includes multiple first blocks, and the multiple first blocks respectively correspond to different energy trading platforms; where, the first block is To store the energy data transmitted by the corresponding energy trading platform.
  • the energy traded on the energy trading platform includes green energy and traditional energy, so the energy data includes the production data, energy storage data and regional data of green energy and traditional energy; among them, regional data Can be a specific geographical location.
  • Step 302 Construct a customer database in the alliance chain network.
  • the customer database includes multiple second blocks, and the multiple second blocks respectively correspond to different Customer; among them, the second block is used to store customer data transmitted by the corresponding customer.
  • Step 303 Construct a carbon emission database in the alliance chain network.
  • the carbon emission database includes multiple third blocks, and the multiple third blocks respectively correspond to Multiple first blocks; wherein, the third block is used to store carbon emission data corresponding to the energy data in the corresponding first block.
  • the energy traded on the energy trading platform includes green energy such as wind energy, hydrogen energy, solar energy, ocean energy and geothermal energy, as well as traditional energy such as coal, oil and natural gas, regardless of whether it is traditional energy or green energy.
  • Corresponding carbon emissions will inevitably be generated during production and utilization. It can be understood that since carbon emissions are a key factor in determining global warming, it is necessary to establish a carbon emissions database in the alliance chain network.
  • Step 304 Establish a data sharing mechanism between the energy database, customer database and carbon emission database through federated machine learning and the shared smart contract provided by the alliance chain network.
  • the embodiment of this application first constructs an energy database including multiple first blocks in the alliance chain network; then constructs a customer database including multiple second blocks in the alliance chain network; and then constructs a customer database including multiple second blocks in the alliance chain network.
  • the carbon emission database of the third block finally, through federated machine learning and shared smart contracts provided by the alliance chain network, a data sharing mechanism between the energy database, customer database and carbon emission database is established; among them, multiple first blocks are respectively Corresponds to different energy trading platforms, and the first block is used to store energy data transmitted by the corresponding energy trading platform; multiple second blocks correspond to different customers, and the second block is used to store the energy data transmitted by the corresponding customer.
  • Customer data multiple third blocks respectively correspond to multiple first blocks, and the third blocks are used to store carbon emission data corresponding to the energy data in the corresponding first blocks.
  • the data sharing mechanism between the energy data involved in all energy trading platforms, between the customer data involved in all customers, and between the energy data involved in all energy trading platforms and the corresponding carbon emission data, And the energy data involved in all energy trading platforms, the customer data involved in all customers and the corresponding carbon emission data of the energy data involved in all energy trading platforms are shared, thus effectively improving the efficiency of the energy trading process.
  • Data sharing and integration due to the existence of the data sharing mechanism, between the energy data involved in all energy trading platforms, between the customer data involved in all customers, and between the energy data involved in all energy trading platforms and the corresponding carbon emission data, And the energy data involved in all energy trading platforms, the customer data involved in all customers and the corresponding carbon emission data of the energy data involved in all energy trading platforms are shared, thus effectively improving the efficiency of the energy trading process. Data sharing and integration.
  • the energy database may include multiple energy sub-databases; wherein multiple first blocks in the same energy sub-database store the same regional data, which means that the multiple energy sub-databases respectively correspond to energy sources. of different geographical areas.
  • step 304 may include: linking multiple first blocks in each energy sub-database through the first shared smart contract provided by the alliance chain network; establishing all energy sub-databases through federated machine learning The first data sharing mechanism between each other; through the second shared smart contract provided by the alliance chain network, multiple second blocks in the customer database are linked; through the third shared smart contract provided by the alliance chain network, carbon emissions Multiple third blocks in the database are linked; through federated machine learning, a second data sharing mechanism is established between the energy database, customer database and carbon emission database.
  • step 301 it may also include: performing machine learning on the energy storage data stored in each first block through the first learning smart contract provided by the alliance chain network, and obtaining the energy storage data stored in each first block.
  • the changing trend of the stored energy storage data; according to the changing trend of the energy storage data stored in each first block, the energy storage data stored in each first block is updated.
  • step 303 it may also include: performing machine learning on the carbon emission data stored in each third block through the second learning smart contract provided by the alliance chain network to obtain the carbon emissions data stored in each third block.
  • the changing trend of emission data; the carbon emission data stored in each third block is updated according to the changing trend of the carbon emission data stored in each third block.
  • the target first block is obtained from the management smart contract provided by the alliance chain network. Get the first list; the target first block selects the target first learning smart contract from the first list; the target first block gets the second list from the target first learning smart contract; the target first block selects the target first learning smart contract from the second list. Select the target machine learning task from the list; the target first learning smart contract performs machine learning on the energy storage data stored in the target first block according to the target machine learning task; among them, the first list indicates that it is currently allowed to provide machine learning services
  • the first learning smart contract and the second list indicate the target machine learning tasks provided by the first learning smart contract. It can be understood that the specific process of machine learning on the carbon emission data stored in each third block through the second learning smart contract provided by the alliance chain network is similar to what is described in this paragraph, and this implementation method will no longer Repeat.
  • step 304 may also include: analyzing the energy data stored in the energy database and the carbon emission data stored in the carbon emission database to obtain the interaction between the energy data and the carbon emission data; determining the carbon emission Whether the carbon emission data stored in the database exceeds the preset threshold; if the carbon emission data stored in the carbon emission database exceeds the preset threshold, an adjustment plan for the energy market will be output based on the interaction.
  • the amount of carbon emissions cannot be too large (for example, it cannot exceed a preset threshold). Then when the carbon emission data stored in the carbon emission database exceeds the preset threshold, we Based on the interaction between energy data and carbon emission data, adjustment plans for the energy market can be output (such as restricting energy trading on certain energy trading platforms, or restricting the production and utilization of certain energy sources) to reduce the carbon emission database
  • the stored carbon emission data is used to achieve a healthy balance between the energy market and the carbon emission market.
  • step 304 it may also include: performing energy transactions between the first block and the second block; wherein the energy transactions are supervised by a third-party financial institution.
  • conducting energy transactions between the first block and the second block may include: establishing an energy position in the target first block; buying an energy position in the target second block and obtaining the corresponding warehouse receipt; holding a position After the order reaches the preset period, the alliance chain network recovers the position of the energy position purchased in the second block of the target; the third-party financial institution returns the spread amount in the position to the second block of the target; among them, the price of the energy position changes over time Fluctuations, warehouse receipts have preset expiry dates.
  • FIG. 4 is a module block diagram of an electronic device provided by an embodiment of the present application.
  • the embodiment of the present application also provides an electronic device 400, including a storage device 410 and at least one processor 420; wherein the storage device 410 is used to store at least one program, and when at least one program is processed by at least one When the processor 420 is executed, at least one processor 420 is caused to execute the data sharing method in the energy trading process provided by the embodiment of the present application.
  • the electronic device 400 may also include a bus 440 for communication between the storage device 410 and the at least one processor 420 .
  • FIG. 5 is a module block diagram of a computer-readable storage medium provided by an embodiment of the present application.
  • this embodiment of the present application also provides a computer-readable storage medium 500.
  • the computer-readable storage medium 500 stores executable instructions 510.
  • the embodiment of the present application is executed. Provides data sharing methods in the energy trading process.
  • RAM random access memory
  • ROM read-only memory
  • electrically programmable ROM electrically erasable programmable ROM
  • registers hard disks, removable disks, CD-ROMs, or anywhere in the field of technology. any other known form of storage media.
  • a computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g.
  • Coaxial cable, optical fiber, digital subscriber line) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Databases & Information Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种能源交易过程中的数据共享方法、设备及存储介质,其中,能源交易过程中的数据共享方法包括:在联盟链网络中构建包括多个第一区块的能源数据库;在联盟链网络中构建包括多个第二区块的客户数据库;在联盟链网络中构建包括多个第三区块的碳排放数据库;通过联邦机器学习和联盟链网络提供的共享智能合约,建立能源数据库、客户数据库与碳排放数据库之间的数据共享机制;其中,第一区块用于存储相应能源交易平台传输的能源数据;第二区块用于存储相应客户传输的客户数据;第三区块用于存储相应第一区块中的能源数据相应的碳排放数据。该能源交易过程中的数据共享方法能够有效地提升能源交易过程中的数据共享性和统合性。

Description

一种能源交易过程中的数据共享方法、设备及存储介质 技术领域
本申请涉及能源交易技术领域,尤其涉及一种能源交易过程中的数据共享方法、设备及存储介质。
背景技术
相关技术中,能源可以分为传统能源和绿色能源;其中,传统能源可以包括但不限于煤炭、石油和天然气,绿色能源可以包括但不限于风能、氢能、太阳能、海洋能和地热能。在能源交易的过程中,通常包括两类对象,其一为能源交易平台,其二为与能源交易平台进行能源交易的购买者;其中,对于能源交易平台而言,其涉及多种数据,比如能源的生产数据、储能数据和所处的地域数据等;对于购买者而言,其亦涉及多种数据,比如个人信息和购买能源的历史数据等。然而,由于能源交易平台所涉及的数据与购买者所涉及的数据之间的共享性较差,从而导致能源交易的风险性较高。
因此,有必要对能源交易过程中的数据共享方法进行设计。
技术问题
本申请提供了一种能源交易过程中的数据共享方法、设备及存储介质,旨在解决相关技术中能源交易平台所涉及的数据与购买者所涉及的数据之间的共享性较差的问题。
技术解决方案
为了解决上述技术问题,本申请实施例第一方面提供了一种能源交易过程中的数据共享方法,包括:
在联盟链网络中构建能源数据库;所述能源数据库包括多个第一区块,所述多个第一区块分别对应于不同的能源交易平台;其中,所述第一区块用于存储相应所述能源交易平台传输的能源数据;
在所述联盟链网络中构建客户数据库;所述客户数据库包括多个第二区块,所述多个第二区块分别对应于不同的客户;其中,所述第二区块用于存储相应所述客户传输的客户数据;
在所述联盟链网络中构建碳排放数据库;所述碳排放数据库包括多个第三区块,所述多个第三区块分别对应于所述多个第一区块;其中,所述第三区块用于存储相应所述第一区块中的所述能源数据相应的碳排放数据;
通过联邦机器学习和所述联盟链网络提供的共享智能合约,建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的数据共享机制。
本申请实施例第二方面提供了一种电子设备,包括存储装置和至少一个处理器;所述存储装置用于存储至少一个程序,且当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器执行如本申请实施例第一方面所述的能源交易过程中的数据共享方法。
本申请实施例第三方面提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有可执行指令,所述可执行指令被执行时执行如本申请实施例第一方面所述的能源交易过程中的数据共享方法。
有益效果
从上述描述可知,与相关技术相比,本申请的有益效果在于:
先在联盟链网络中构建包括多个第一区块的能源数据库;再在联盟链网络中构建包括多个第二区块的客户数据库;之后在联盟链网络中构建包括多个第三区块的碳排放数据库;最后通过联邦机器学习和联盟链网络提供的共享智能合约,建立能源数据库、客户数据库与碳排放数据库之间的数据共享机制;其中,多个第一区块分别对应于不同的能源交易平台,且第一区块用于存储相应能源交易平台传输的能源数据;多个第二区块分别对应于不同的客户,且第二区块用于存储相应客户传输的客户数据;多个第三区块分别对应于多个第一区块,且第三区块用于存储相应第一区块中的能源数据相应的碳排放数据。可以理解,由于数据共享机制的存在,所以所有能源交易平台所涉及的能源数据之间、所有客户所涉及的客户数据之间、所有能源交易平台所涉及的能源数据相应的碳排放数据之间,以及所有能源交易平台所涉及的能源数据、所有客户所涉及的客户数据与所有能源交易平台所涉及的能源数据相应的碳排放数据之间都是共享的,从而能够有效地提升能源交易过程中的数据共享性和统合性。
附图说明
为了更清楚地说明相关技术或本申请实施例中的技术方案,下面将对相关技术或本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,而并非是全部实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的联盟链网络的架构图;
图2为本申请实施例提供的智能合约的运行机制示意图;
图3为本申请实施例提供的能源交易过程中的数据共享方法的流程示意图;
图4为本申请实施例提供的电子设备的模块框图;
图5为本申请实施例提供的计算机可读存储介质的模块框图。
本发明的实施方式
为了使本申请的目的、技术方案以及优点更加的明显和易懂,下面将结合本申请实施例以及相应的附图,对本申请进行清楚、完整地描述,其中,自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。应当理解的是,下面所描述的本申请的各个实施例仅仅用以解释本申请,并不用于限定本申请,也即基于本申请的各个实施例,本领域的普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。此外,下面所描述的本申请的各个实施例中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。
据中国物流与采购联合会统计,国内绿色能源类电子交易市场有1300家以上。在相关法律法规体系有待完善的情况下,绿色能源交易市场发展迅猛,但行业的问题也逐渐显现。比如昆明泛亚有色金属交易所操纵市场、篡改交易数据;又如“上海钢贸业崩塌”事件,就是由于仓单信息不准确、一单多押、货不对单所引发的。而区块链技术的去中心化、防篡改等能够有效地解决上述问题,以促进绿色能源交易市场行业的健康发展。
由于区块链的信息共享、去中心以及去中介的特性,再加上其智能合约机制与现代商业各交易方通过协商、执行合约的交易过程非常契合,区块链技术可以有效地管理绿色能源的合约,并确保合约的顺利执行。
通过区块链应用可以加快我国商品交易市场,结合区块链去中心化、去信任等技术特点来看,在绿色能源交易领域探索基于区块链技术的模式和系统,可以大幅减少可疑交易,降低监管成本,促进市场协同发展。同时,区块链本质上可以认为是一个资本流动和价值交换的载体。以上两个特性能使现有社会和企业的运行产生很大的改变,甚至导致未来经济格局的变化。随着全球新一轮科技革命和产业变革深入,作为下一代价值互联网的基石,区块链领域已然成为全球信息技术创新的竞争高地。目前区块链技术仍处于应用场景逐渐落地的初级阶段,尚有许多技术问题急需解决,在商品交易市场领域的应用场景更加缺乏,未来还需要众多的具体实践。
以数字资产为代表的金融市场具有金融与区块链技术的结合体特征,既有金融属性的风险特征,又有创新科技的风险特征,相关风险在跨地区,跨组织的各类金融交易平台尤易聚集。目前的各式区块链易造成信息孤岛,增大了将区块链和金融领域进行结合的难度。例如:程华等分析区块链技术在商业银行领域的运用前景;蒋坤良采用博弈论方法研究区块链在互联网消费金融领域交易模式中的应用;此外,任晓聪、赵增奎等研究了区块链在互联网金融领域的发展前景和推动其稳健发展的路径。但是,他们都没有涉及如何将智能合约具体应用于绿色能源交易市场,以及如何有效统合绿色能源交易相关产品等,也没有现有应用设计联盟链机制有效地服务于绿色能源交易市场。
针对以上问题,本申请提出针对绿色能源交易市场的信息共享上的痛点与难点,依托区块链技术的发展,提出智能合约在绿色能源交易市场的分布式信息共享平台以及系统。绿色能源的贸易生态涉及到产业的多个环节,包括仓储商、贸易商、交易所、银行等,其中的关键一环就是构建可信的数字化仓单,这一点不仅需要协作,还需要从产业协会和政策法规方面整体发力,在线上联盟链进行开拓。
本申请的联盟链线上平台运用了区块链技术。联盟链介于区块链中的私有链与公有链之间,是一种需要注册许可的区块链,仅限于联盟中具有权限的成员参与账本的读写,网络中节点的角色及功能划分需预先设定,且网络中的共识、运维和接入均由预先设定的节点控制。一般来说,联盟链适合于跨机构的交易、结算、协同办公及存证等。交易达成后,首先由区块链上的各个参与者对交易进行验证,一旦所有的参与者达成共识,该条交易信息盖上表明交易发生的先后顺序的时间戳。时间戳功能保证了交易的可追溯性。区块链技术的应用解决了传统交易信用风险高的痛点,提高了交易的安全性。同时区块链每个参与者都有一套完整的账本,在对账方面具有得天独厚的优势,这就降低了对账的成本,提高了清算的效率。产品具有去中心化、去信任、时间戳等特征的区块链技术作为平台架构的底层技术,使得所有的交易信息公开透明、不可被篡改,大大降低了操作风险及信用风险的发生,使交易更加安全。本申请适用的场外绿色能源市场能很好的用于联盟链。
区块链系统根据应用场景和设计体系的不同,一般分为公有链、联盟链和私有链。公有链的各个节点可以自由加入和退出网络,并参加链上数据的读写,运行时以扁平的拓扑结构互联互通,网络中不存在任何中心化的服务端节点。私有链的各个节点的写入权限收归内部控制,而读取权限可使需求有选择性地对外开放。私有链仍然具备区块链多节点运行的通用结构,适用于特定机构的内部数据管理与审计。
绿色能源的储能信息尤为重要,同时,传统能源的生产与储能的信息对于绿色能源的信息有着很大的关联关系。传统能源的生产与储能的信息上入区块链系统中,绿色能源的储能信息也通过企业,以及相关业务的平台上链,通过去中心化的区块链信息共享模式,建立起实时的地区的综合性能源信息,以及储能信息平台。区块链具有去中心化、去信任、时间戳等特征的区块链技术作为平台架构的底层技术,使得所有的相关信息公开透明、不可被篡改,大大降低了操作风险及信用风险的发生,使线上信息共享更加安全。
同时,本申请运用了区块链智能合约技术,对于储能信息进行机器学习来掌握储能的变化趋势,信息共享并在区块链上以智能合约的形式发布机器学习模型训练任务,该项目将部署一个任务管理智能合约用于记录和管理所有发布任务的智能合约,运行节点将从任务管理智能合约获取发布任务的智能合约,通过智能合约提供的API接口,节点可以读取任务列表,并可以选择参与感兴趣的训练任务。发布任务的智能合约将指定模型计算图,训练数据集,测试数据集,准确度要求,考虑到智能合约不合适存储较大文件,其中数据文件将存储在中心化或去中心化文件系统中,智能合约将存储其哈希值以及获取路径。
绿色能源商品交易平台的业务流程简要介绍如下:
1)通过搭建基于区块链平台作为商品交易的平台进行交易与流通。区块链平台基于交易平台的联盟链形成共享的线上平台。用户钱包使用联盟链交易钱包与系统,各个交易节点不使用现金进行交易。资金结算统一由第三方金融机构进行监管、担保及结算,保障交易各方的资金安全及平台的合法性。
2)绿色能源的交易品种的线上平台发布,在联盟链的各个平台和节点进行产品和客户信息公开和信息共享。
3)交易平台发起商品建仓,消费者或贸易商买入商品仓位。对于区块链平台来讲,就是开户创建钱包,然后平台证实后作为交易凭证。同时,所有的交易信息都上链记账,实现可溯源。
4)经过一段时间,商品价格随时间进行波动,商品仓单到期,交易平台发起平仓。区块链平台自动回收相关头寸,仓单结束。第三方金融机构按照约定协议进行资金结算(含利差金额)归还购买者。
5)购买者购买仓单后可以通过转账交易进行自由转单,也可以选择仓单到期兑换实物商品。实现真正的商品自由交易。
链上的区块链绿色能源交易平台对类期货的平台的管控也有好的作用,地方性商品交易平台有着推动的作用,尤其对于远期交易等,不容易进行监管的平台有着很有效的作用,不仅仅对于商品交易所,也且对于地方性交易平台也有着推动的作用,对于不同的区域的交易平台也有着交易互通的作用。
区块链的设计目的是让所有节点共同参与维护公共数据账本的系统,让数据账本公开透明。区块链的基础架构可以分成六层(如图1所示)。区块链系统一般由数据层、网络层、共识层、激励层、合约层和应用层组成。数据层用于构建数据区块,对数据进行加密签名,增加时间戳;网络层包括分布式对等网络,用于节点间的通信和数据验证;共识层实现各类共识算法;激励层主要用于制定相应的激励机制,在联盟链和私有链中并不需要,因为激励在系统外就已经确认;合约层主要封装各类脚本、算法和智能合约,是区块链可编程特性的基础;应用层则是基于区块链技术的各类应用。
区块链技术将为仓单服务提供底层技术支持:交割业务中的应用交割业务涉及期货仓单的注册、注销与转换,是期现货价格收敛的重要环节。基于智能合约的区块链技术将期货交易所、交割仓库、检验部门、银行以及期货公司紧密联系起来,可以提高流程运转效率,缩短资金流转周期,实时监控仓单流程。仓单服务可以更好满足产业客户需求,降低交割风险,促进期现货市场联动,区块链技术能够有效地提升仓单服务效率和质量,服务好市场参与各方,提供透明、高效的市场环境。基于区块链技术的交易系统能够降低交易、结算的成本和复杂性,提高交易效率。在基于区块链技术的交易系统中,交易被确认的同时进行结算、审计活动,并将交易、结算和审计结果等数据向系统网络实时广播。与中心化交易结算系统相比,提高了交易效率。可编程金融实际上是可自动执行的计算机指令,指令执行错误的情况不可能完全避免。可编程金融技术还存在一些漏洞,如逃逸漏洞、逻辑漏洞、资源运用不当漏洞。数据层的区块数据的信息真实性、完整性可能会受到侵害,增大交易的风险。验证机制存在无法全面验证的风险。硬件设施的升级,技术水平的提高,制定交易安全策略是降低这些风险的有效途径。
区块链在商品交易上应用的技术架构可以分为:面向用户的应用层、中间层和底层。应用层主要有基于区块链的交易记录、清算、结算网络;中间层主要有加密算法,交易加速器和金融合同中间件;底层主要有分布式网络和共识算法。技术的核心是无中心化系统的多节点架构网络,平台通过分布式网络、加密算法等技术实现智能合约,并直接在区块链上记账、清算。
商品交易的用户可以通过平台入口提交信息及融资需求,然后将信息写入区块链,进入平台后,平台将用户的交易需求与信息公开,吸引交易对手方进行交易,从而实现了交易的动态循环。交割与结算环节是由实体柜台负责,风险大幅降低。
在本申请的智能合约中,现时点的金融参照数据,各项风险测算等记录在其中,在未来区块生成并检验的时点中回更新并进行现金流的核算。当扳机事件触发时,比如到期、执行价格达到,合约按照编程的条款自动执行,在多数节点达成共识后,成功执行所在金融衍生品的智能合约并通知相关方,同时智能合约自带的状态机会判断所属合约的状态.每个智能合约所包含的条件,协议金额与现金流走向,触发条件等等,将在区块链上进行实现与检验。合约的所有未来交易都已经完成,则将合约的状态标记为完成,并将完结并从区块中终结其智能合。如果未来交易尚未完全结束,将继续在下次区块生成时进行验证。整体交易区块链将通过统一的标识由各个节点扩散并存入区块链,绿色能源交易者的账户以及合同被以代码的形式写入区块链,其中的个体是匿名的,但合同记录在链条之中。
在本申请中,智能合约的构建与执行:对于金融衍生品来说,每个智能合约所包含的条件,协议金额与现金流走向,触发条件等等,将由区块链上进行检验。智能合约的运行机制如图2所示,智能合约具有值和状态两个属性,例如智能合约用If-Then和What-If等语句预置了合约条款的相应触发场景和响应规则,交易验证有效后被打包进新数据区块,新区块经共识算法认证后链接到区块链主链,所有更新生效过程包括两个部分,如下:
Packaging部分:应用程序验证背书节点,确认所收到的交易提议一致,将交易提交给节点,形成数据区块后将数据区块广播给所有与之相连节点;
Validating部分:节点逐一验证数据区块中的交易,确保交易严格依照事先确定的背书策略由所有对应的组织签名背书;验证通过后,所有Peer节点将新的数据区块添加至当前区块链的末端,更新账本。
基于此,在智能合约中,现时点的品参照数据,各项风险测算等会记录在其中,在未来区块生成并检验的时点中回更新并进行现金流的核算。处理全程都由区块链内置的智能合约系统自动完成,全程透明、不可攥改。当扳机事件触发时,比如到期、执行价格达到,合约按照编程的条款自动执行。经由检验并在多数节点达成共识后,成功执行所在产品的智能合约并通知相关方,同时智能合约自带的状态机会判断所属合约的状态.。智能合约的所有交易都若完成,则将合约的状态标记为完成,并将完结并从区块中终结其智能合约,如果未来交易尚未完全结束,将继续在下次区块生成时进行验证。多方之间的定期交付合同被以代码的形式写入区块链。其中的个体是匿名的,但合同记录在公共账本中。整体产品交易区块链将通过统一的标识由各个节点扩散并存入联盟链的区块链平台,交易者的账户以及合同被以代码的形式写入区块链,其中的个体是匿名的,但合同记录在公共账本中。监管者可以通过这个区块链了解市场上的活动,同时维护个体成员的隐私。
智能合约应用于绿色能源产品的层级设计如下:
物理层:封装了支持智能合约及其衍生应用实现的所有基础设施,包括分布式账本及其关键技术、开发环境和可信数据源等;
合约层:封装了静态的合约数据,包括合约各方达成一致的合约条款、合约条款代码化后的情景-应对型规则和合约创建者指定的合约与外界以及合约与合约之间的交互准则等.合约层可看作是智能合约的静态数据库,封装了所有智能合约调用、执行、通信规则;
程序开发等软件工程技术将以自然语言描述的合约内容编码为区块链上可运行的“If-Then”或“What-If”式情景-应对型规则,并按照平台特性和立契者意愿补充必要的智能合约与用户之间、智能合约与智能合约之间的访问权限与通信方式等;
应用层:区块链及智能合约的具体应用层.帮助区块链的分布式架构植入不同场景;通过将核心的法律条文、商业逻辑和意向协定存储在智能合约中,可产生各种各样的去中心化应用。
本申请的数据特征与现有的绿色能源产品账本等数据结构不同。本申请区块链账本是交易型账本,传统的绿色能源产品市场是账户型账本。本申请区块链记账方式是基于共识机制式记账,传统绿色能源产品市场产品记账是基于复式记账。本申请区块链账户是匿名的账本,交易细节则全部公开,而传统绿色能源产品市场产品账本交易信息并不公开。
本申请提出了应用区块链智能合约在绿色能源商品产品交易上的应用理念与模式,并设计区块链链上绿色能源的分布式区块链(联盟链)交易信息共享平台的具体应用方式。
本申请的联盟链线上平台运用了区块链技术。联盟链介于区块链中的私有链与公有链之间,是一种需要注册许可的区块链,仅限于联盟中具有权限的成员参与账本的读写,网络中节点的角色及功能划分需预先设定,且网络中的共识、运维和接入均由预先设定的节点控制。一般来说,联盟链适合于跨机构的交易、结算、协同办公及存证等。交易达成后,首先由区块链上的各个参与者对交易进行验证,一旦所有的参与者达成共识,该条交易信息盖上表明交易发生的先后顺序的时间戳。时间戳功能保证了交易的可追溯性。区块链技术的应用解决了传统交易信用风险高的痛点,提高了交易的安全性。同时区块链每个参与者都有一套完整的账本,在对账方面具有得天独厚的优势,这就降低了对账的成本,提高了清算的效率。产品具有去中心化、去信任、时间戳等特征的区块链技术作为平台架构的底层技术,使得所有的交易信息公开透明、不可被篡改,大大降低了操作风险及信用风险的发生,使交易更加安全。本申请适用的场外绿色能源市场能很好的用于联盟链。
本申请提出的绿色能源商品产品的智能合约交易规则能将绿色能源信息有效放入智能合约同意的条件,范围和义务,该协议以数字形式,机器可读代码形式化。规定的权利和义务通过计算机网络自动执行,一旦双方达成协议并执行。智能合约的特征是是自我验证、自执行、防篡改,保证更高程度的安全性,减少对中介方的依赖,降低交易成本。通过智能合约的交易方式,传统的场外绿色能源信息不对成问题以及暗箱操作也可以得到有效控制。本模式有效结合绿色能源市场的平台林立,交易的非中心化特点,能合约具体应用于市场,以及有效统合不同种类的绿色能源产品。
本申请也创新性地建立有区块链生成的联盟链的绿色能源产品数据库。数据库可以与区块链智能合约进行有效地链接。智能合约的构建与执行:每个智能合约所包含的条件,协议金额与现金流走向,触发条件等等,将由区块链上进行检验,对其交易以及信用风险的评价进行及时的调整警示。
智能合约在绿色能源商品产品市场的应用并不只是技术上的应用,更应该是与现有的绿色能源场外平台的有机结合,而这正是以区块链为首的金融科技应用于金融市场上的重点。与传统的集中式商业模式不同,智能合约促进了建立在信任基础上的新型商业关系。区块链属性中的显式编程算法(如分散,透明度,防欺诈等)使智能合约成为建立业务关系和执行交易的可靠替代方案。智能合约的衍生品合约从合约创建到签署再到合约交割清算,明确合约各方的义务,例如在未来的现金流的方向,支付方向收取方支付时的担保等,而区块链的分布式网络在执行智能合约的过程中,可以保证效率更高,不会被人为干预和终止。
综上所述,本申请提供了一种能源交易过程中的数据共享方法。具体地,请参阅图3,图3为本申请实施例提供的能源交易过程中的数据共享方法的流程示意图。本申请实施例提供的能源交易过程中的数据共享方法包括如下步骤301至304。
步骤301、在联盟链网络中构建能源数据库。
在本申请实施例中,先在联盟链网络中构建能源数据库,且能源数据库包括多个第一区块,多个第一区块分别对应于不同的能源交易平台;其中,第一区块用于存储相应能源交易平台传输的能源数据。此处,有必要进行说明,能源交易平台所交易的能源包括绿色能源和传统能源,那么能源数据便包括绿色能源和传统能源的生产数据、储能数据和所处的地域数据;其中,地域数据可以为具体的地理位置。
步骤302、在联盟链网络中构建客户数据库。
在本申请实施例中,在联盟链网络中构建能源数据库后,还需要在联盟链网络中构建客户数据库,且客户数据库包括多个第二区块,多个第二区块分别对应于不同的客户;其中,第二区块用于存储相应客户传输的客户数据。
步骤303、在联盟链网络中构建碳排放数据库。
在本申请实施例中,在联盟链网络中构建客户数据库后,还需要在联盟链网络中构建碳排放数据库,且碳排放数据库包括多个第三区块,多个第三区块分别对应于多个第一区块;其中,第三区块用于存储相应第一区块中的能源数据相应的碳排放数据。前文中提到,能源交易平台所交易的能源包括诸如风能、氢能、太阳能、海洋能和地热能等绿色能源,以及诸如煤炭、石油和天然气等传统能源,而不管是传统能源还是绿色能源,在生产和利用时不可避免地会产生相应的碳排放。可以理解,由于碳排放是决定全球变暖的关键因素,所以在联盟链网络中建立碳排放数据库是必要的。
步骤304、通过联邦机器学习和联盟链网络提供的共享智能合约,建立能源数据库、客户数据库与碳排放数据库之间的数据共享机制。
在本申请实施例中,在联盟链网络中构建碳排放数据库后,还需要通过联邦机器学习和联盟链网络提供的共享智能合约,建立能源数据库、客户数据库与碳排放数据库之间的数据共享机制,以使所有能源交易平台所涉及的能源数据之间、所有客户所涉及的客户数据之间、所有能源交易平台所涉及的能源数据相应的碳排放数据之间,以及所有能源交易平台所涉及的能源数据、所有客户所涉及的客户数据与所有能源交易平台所涉及的能源数据相应的碳排放数据之间都是共享的。
本申请实施例先在联盟链网络中构建包括多个第一区块的能源数据库;再在联盟链网络中构建包括多个第二区块的客户数据库;之后在联盟链网络中构建包括多个第三区块的碳排放数据库;最后通过联邦机器学习和联盟链网络提供的共享智能合约,建立能源数据库、客户数据库与碳排放数据库之间的数据共享机制;其中,多个第一区块分别对应于不同的能源交易平台,且第一区块用于存储相应能源交易平台传输的能源数据;多个第二区块分别对应于不同的客户,且第二区块用于存储相应客户传输的客户数据;多个第三区块分别对应于多个第一区块,且第三区块用于存储相应第一区块中的能源数据相应的碳排放数据。可以理解,由于数据共享机制的存在,所以所有能源交易平台所涉及的能源数据之间、所有客户所涉及的客户数据之间、所有能源交易平台所涉及的能源数据相应的碳排放数据之间,以及所有能源交易平台所涉及的能源数据、所有客户所涉及的客户数据与所有能源交易平台所涉及的能源数据相应的碳排放数据之间都是共享的,从而能够有效地提升能源交易过程中的数据共享性和统合性。
作为一种实施方式,能源数据库可以包括多个能源子数据库;其中,同一能源子数据库中的多个第一区块所存储的地域数据相同,这就意味着多个能源子数据库分别对应着能源的不同地理区域。
作为一种实施方式,步骤304可以包括:通过联盟链网络提供的第一共享智能合约,对每个能源子数据库中的多个第一区块进行链接;通过联邦机器学习,建立所有能源子数据库之间的第一数据共享机制;通过联盟链网络提供的第二共享智能合约,对客户数据库中的多个第二区块进行链接;通过联盟链网络提供的第三共享智能合约,对碳排放数据库中的多个第三区块进行链接;通过联邦机器学习,建立能源数据库、客户数据库与碳排放数据库之间的第二数据共享机制。
作为一种实施方式,步骤301之后还可以包括:通过联盟链网络提供的第一学习智能合约,对每个第一区块所存储的储能数据进行机器学习,得到每个第一区块所存储的储能数据的变化趋势;根据每个第一区块所存储的储能数据的变化趋势,对每个第一区块所存储的储能数据进行更新。同理,步骤303之后还可以包括:通过联盟链网络提供的第二学习智能合约,对每个第三区块所存储的碳排放数据进行机器学习,得到每个第三区块所存储的碳排放数据的变化趋势;根据每个第三区块所存储的碳排放数据的变化趋势,对每个第三区块所存储的碳排放数据进行更新。
具体地,通过联盟链网络提供的第一学习智能合约,对每个第一区块所存储的储能数据进行机器学习,可以包括:目标第一区块从联盟链网络提供的管理智能合约中获取第一列表;目标第一区块从第一列表中选择出目标第一学习智能合约;目标第一区块从目标第一学习智能合约中获取第二列表;目标第一区块从第二列表中选择出目标机器学习任务;目标第一学习智能合约根据目标机器学习任务,对目标第一区块所存储的储能数据进行机器学习;其中,第一列表指示当前被允许提供机器学习服务的第一学习智能合约,第二列表指示目标第一学习智能合约所提供的机器学习任务。可以理解,通过联盟链网络提供的第二学习智能合约,对每个第三区块所存储的碳排放数据进行机器学习的具体流程与本段所描述的内容相似,本实施方式对此不再赘述。
作为一种实施方式,步骤304之后还可以包括:对能源数据库所存储的能源数据与碳排放数据库所存储的碳排放数据进行分析,得到能源数据与碳排放数据之间的相互作用;判断碳排放数据库所存储的碳排放数据是否超过预设阈值;若碳排放数据库所存储的碳排放数据超过预设阈值,则根据相互作用,输出针对能源市场的调节方案。
可以理解,由于能源的生产和利用是碳排放产生的主要原因,所以能源数据库所存储的能源数据与碳排放数据库所存储的碳排放数据之间具有一定的关联关系,那么我们通过对能源数据库所存储的能源数据与碳排放数据库所存储的碳排放数据进行分析,便可以得到能源数据与碳排放数据之间的相互作用。
进一步地,由于碳排放是决定全球变暖的关键因素,所以碳排放的量不能过大(比如不能超过预设阈值),那么在碳排放数据库所存储的碳排放数据超过预设阈值时,我们便可以根据能源数据与碳排放数据之间的相互作用,输出针对能源市场的调节方案(比如限制某些能源交易平台的能源交易,或者限制某些能源的生产与利用),以降低碳排放数据库所存储的碳排放数据,从而实现能源市场与碳排放市场之间的良性平衡。
作为一种实施方式,步骤304之后还可以包括:在第一区块与第二区块之间进行能源交易;其中,能源交易由第三方金融机构进行监管。
具体地,在第一区块与第二区块之间进行能源交易,可以包括:目标第一区块建立能源仓位;目标第二区块买入能源仓位,并获得相应的仓单;当仓单到达预设期限后,联盟链网络回收目标第二区块买入能源仓位的头寸;第三方金融机构将头寸中的利差金额归还于目标第二区块;其中,能源仓位的价格随时间波动,仓单具有预设期限。
应当理解的是,上述实施方式仅作为本申请实施例的优选实现,并非是本申请实施例对步骤301、304的具体流程,以及步骤301至304以外的附加流程的唯一限定;对此,本领域技术人员可以在本申请实施例的基础上,根据实际应用场景进行灵活设定。
请参阅图4,图4为本申请实施例提供的电子设备的模块框图。
如图4所示,本申请实施例还提供了一种电子设备400,包括存储装置410和至少一个处理器420;其中,存储装置410用于存储至少一个程序,且当至少一个程序被至少一个处理器420执行时,使得至少一个处理器420执行本申请实施例提供的能源交易过程中的数据共享方法。
在一些实施例中,电子设备400还可以包括总线440,用于存储装置410与至少一个处理器420之间的通信连接。
请参阅图5,图5为本申请实施例提供的计算机可读存储介质的模块框图。
如图5所示,本申请实施例还提供了一种计算机可读存储介质500,该计算机可读存储介质500上存储有可执行指令510,该可执行指令510被执行时执行本申请实施例提供的能源交易过程中的数据共享方法。
结合本文中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程ROM、电可擦除可编程ROM、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid  State Disk)等。
需要说明的是,本申请内容中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。对于产品类实施例而言,由于其与方法类实施例相似,所以描述的比较简单,相关之处参见方法类实施例的部分说明即可。
还需要说明的是,在本申请内容中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括“、“包含“或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……“限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请内容。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本申请内容中所定义的一般原理可以在不脱离本申请内容的精神或范围的情况下,在其它实施例中实现。因此,本申请内容将不会被限制于本申请内容所示的这些实施例,而是要符合与本申请内容所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种能源交易过程中的数据共享方法,其特征在于,包括:
    在联盟链网络中构建能源数据库;所述能源数据库包括多个第一区块,所述多个第一区块分别对应于不同的能源交易平台;其中,所述第一区块用于存储相应所述能源交易平台传输的能源数据;
    在所述联盟链网络中构建客户数据库;所述客户数据库包括多个第二区块,所述多个第二区块分别对应于不同的客户;其中,所述第二区块用于存储相应所述客户传输的客户数据;
    在所述联盟链网络中构建碳排放数据库;所述碳排放数据库包括多个第三区块,所述多个第三区块分别对应于所述多个第一区块;其中,所述第三区块用于存储相应所述第一区块中的所述能源数据相应的碳排放数据;
    通过联邦机器学习和所述联盟链网络提供的共享智能合约,建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的数据共享机制。
  2. 如权利要求1所述的能源交易过程中的数据共享方法,其特征在于,所述能源交易平台所交易的能源包括绿色能源和传统能源;所述能源数据包括所述绿色能源和所述传统能源的生产数据、储能数据和所处的地域数据;
    所述能源数据库包括多个能源子数据库;其中,同一所述能源子数据库中的多个所述第一区块所存储的所述地域数据相同。
  3. 如权利要求2所述的能源交易过程中的数据共享方法,其特征在于,所述通过联邦机器学习和所述联盟链网络提供的共享智能合约,建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的数据共享机制,包括:
    通过所述联盟链网络提供的第一共享智能合约,对每个所述能源子数据库中的多个所述第一区块进行链接;
    通过联邦机器学习,建立所有所述能源子数据库之间的第一数据共享机制;
    通过所述联盟链网络提供的第二共享智能合约,对所述客户数据库中的多个所述第二区块进行链接;
    通过所述联盟链网络提供的第三共享智能合约,对所述碳排放数据库中的多个所述第三区块进行链接;
    通过联邦机器学习,建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的第二数据共享机制。
  4. 如权利要求2所述的能源交易过程中的数据共享方法,其特征在于,所述在联盟链网络中构建能源数据库之后,还包括:
    通过所述联盟链网络提供的第一学习智能合约,对每个所述第一区块所存储的所述储能数据进行机器学习,得到每个所述第一区块所存储的所述储能数据的变化趋势;
    根据每个所述第一区块所存储的所述储能数据的变化趋势,对每个所述第一区块所存储的所述储能数据进行更新;
    所述在所述联盟链网络中构建碳排放数据库之后,还包括:
    通过所述联盟链网络提供的第二学习智能合约,对每个所述第三区块所存储的所述碳排放数据进行机器学习,得到每个所述第三区块所存储的所述碳排放数据的变化趋势;
    根据每个所述第三区块所存储的所述碳排放数据的变化趋势,对每个所述第三区块所存储的所述碳排放数据进行更新。
  5. 如权利要求4所述的能源交易过程中的数据共享方法,其特征在于,所述通过所述联盟链网络提供的第一学习智能合约,对每个所述第一区块所存储的所述储能数据进行机器学习,包括:
    目标第一区块从所述联盟链网络提供的管理智能合约中获取第一列表;其中,所述第一列表指示当前被允许提供机器学习服务的第一学习智能合约;
    所述目标第一区块从所述第一列表中选择出目标第一学习智能合约;
    所述目标第一区块从所述目标第一学习智能合约中获取第二列表;其中,所述第二列表指示所述目标第一学习智能合约所提供的机器学习任务;
    所述目标第一区块从所述第二列表中选择出目标机器学习任务;
    所述目标第一学习智能合约根据所述目标机器学习任务,对所述目标第一区块所存储的所述储能数据进行机器学习。
  6. 如权利要求2所述的能源交易过程中的数据共享方法,其特征在于,所述建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的数据共享机制之后,还包括:
    对所述能源数据库所存储的所述能源数据与所述碳排放数据库所存储的所述碳排放数据进行分析,得到所述能源数据与所述碳排放数据之间的相互作用;
    判断所述碳排放数据库所存储的所述碳排放数据是否超过预设阈值;
    若所述碳排放数据库所存储的所述碳排放数据超过所述预设阈值,则根据所述相互作用,输出针对能源市场的调节方案。
  7. 如权利要求1所述的能源交易过程中的数据共享方法,其特征在于,所述建立所述能源数据库、所述客户数据库与所述碳排放数据库之间的数据共享机制之后,还包括:
    在所述第一区块与所述第二区块之间进行能源交易;其中,所述能源交易由第三方金融机构进行监管。
  8. 如权利要求7所述的能源交易过程中的数据共享方法,其特征在于,所述在所述第一区块与所述第二区块之间进行能源交易,包括:
    目标第一区块建立能源仓位;其中,所述能源仓位的价格随时间波动;
    目标第二区块买入所述能源仓位,并获得相应的仓单;其中,所述仓单具有预设期限;
    当所述仓单到达所述预设期限后,所述联盟链网络回收所述目标第二区块买入所述能源仓位的头寸;
    所述第三方金融机构将所述头寸中的利差金额归还于所述目标第二区块。
  9. 一种电子设备,其特征在于,包括存储装置和至少一个处理器;所述存储装置用于存储至少一个程序,且当所述至少一个程序被所述至少一个处理器执行时,使得所述至少一个处理器执行如权利要求1-8任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有可执行指令,所述可执行指令被执行时执行如权利要求1-8任一项所述的方法。
PCT/CN2022/080678 2022-03-14 2022-03-14 一种能源交易过程中的数据共享方法、设备及存储介质 WO2023173253A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080678 WO2023173253A1 (zh) 2022-03-14 2022-03-14 一种能源交易过程中的数据共享方法、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/080678 WO2023173253A1 (zh) 2022-03-14 2022-03-14 一种能源交易过程中的数据共享方法、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2023173253A1 true WO2023173253A1 (zh) 2023-09-21

Family

ID=88022017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/080678 WO2023173253A1 (zh) 2022-03-14 2022-03-14 一种能源交易过程中的数据共享方法、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2023173253A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108564471A (zh) * 2018-04-17 2018-09-21 南京邮电大学 基于区块链技术的能源互联网安全智能交易系统及其方法
US20190236598A1 (en) * 2018-01-31 2019-08-01 Salesforce.Com, Inc. Systems, methods, and apparatuses for implementing machine learning models for smart contracts using distributed ledger technologies in a cloud based computing environment
CN111078791A (zh) * 2019-12-09 2020-04-28 华北电力大学 一种基于区块链的综合能源市场化交易架构及方法
CN112116352A (zh) * 2020-09-28 2020-12-22 贵州大学 一种保护用户账户隐私的分布式能源交易方法
CN112714050A (zh) * 2020-12-22 2021-04-27 齐鲁工业大学 一种基于区块链和联邦学习的数据共享与隐私保护方法
CN113626765A (zh) * 2021-08-02 2021-11-09 上海创能国瑞新能源科技股份有限公司 一种能源数据处理方法、装置、设备及存储介质
CN113886890A (zh) * 2021-11-22 2022-01-04 北京恒华伟业科技股份有限公司 一种数字化资源共建共享方法及装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190236598A1 (en) * 2018-01-31 2019-08-01 Salesforce.Com, Inc. Systems, methods, and apparatuses for implementing machine learning models for smart contracts using distributed ledger technologies in a cloud based computing environment
CN108564471A (zh) * 2018-04-17 2018-09-21 南京邮电大学 基于区块链技术的能源互联网安全智能交易系统及其方法
CN111078791A (zh) * 2019-12-09 2020-04-28 华北电力大学 一种基于区块链的综合能源市场化交易架构及方法
CN112116352A (zh) * 2020-09-28 2020-12-22 贵州大学 一种保护用户账户隐私的分布式能源交易方法
CN112714050A (zh) * 2020-12-22 2021-04-27 齐鲁工业大学 一种基于区块链和联邦学习的数据共享与隐私保护方法
CN113626765A (zh) * 2021-08-02 2021-11-09 上海创能国瑞新能源科技股份有限公司 一种能源数据处理方法、装置、设备及存储介质
CN113886890A (zh) * 2021-11-22 2022-01-04 北京恒华伟业科技股份有限公司 一种数字化资源共建共享方法及装置

Similar Documents

Publication Publication Date Title
Al Sadawi et al. A comprehensive hierarchical blockchain system for carbon emission trading utilizing blockchain of things and smart contract
Adeyemi et al. Blockchain technology applications in power distribution systems
Cong et al. Blockchain disruption and smart contracts
Andoni et al. Blockchain technology in the energy sector: A systematic review of challenges and opportunities
Guo et al. A blockchain and IoT-based lightweight framework for enabling information transparency in supply chain finance
CN110199308B (zh) 用于生成和提取存储在区块链上的用户相关数据的计算机实现的系统和方法
Martinsons Relationship‐based e‐commerce: theory and evidence from China
US20200118207A1 (en) Blockchain based invoice sales
Tang et al. Toward a distributed carbon ledger for carbon emissions trading and accounting for corporate carbon management
TW202407626A (zh) 用於建立物件的非同質化數位分身之方法及系統
Martins et al. Fostering customer bargaining and E-procurement through a decentralised marketplace on the blockchain
US11557008B2 (en) Creating, monitoring, and updating energy transactions using distributed ledger technology and contract codex
Liao et al. Blockchain-enabled integrated market platform for contract production
Shu et al. Blockchain-enhanced trading systems for construction industry to control carbon emissions
Fu et al. An intelligent cross-border transaction system based on consortium blockchain: A case study in Shenzhen, China
Chen et al. Research on the risk of block chain technology in Internet finance supported by wireless network
CN114626922A (zh) 一种基于区块链的自适应竞价多能源p2p交易平台
CN111784314A (zh) 一种区块链的数字货币生命周期监管方法及系统
Zubko et al. Determining the impact of digitalization on the economic security of trade
Yin Analysis of revenue incentive dynamic mechanism of financial supply chain from the perspective of the internet of things
Su et al. A blockchain‐based smart contract model for secured energy trading management in smart microgrids
WO2023173253A1 (zh) 一种能源交易过程中的数据共享方法、设备及存储介质
CN109934699A (zh) 一种显性供应链金融实现方法、系统及终端设备
Sayal et al. Blockchain: Its applications and challenges
KR20080106997A (ko) 부동산 개발 및 관리 시스템과 이를 이용한 부동산 개발 및 관리 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931293

Country of ref document: EP

Kind code of ref document: A1