WO2023171723A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2023171723A1
WO2023171723A1 PCT/JP2023/008897 JP2023008897W WO2023171723A1 WO 2023171723 A1 WO2023171723 A1 WO 2023171723A1 JP 2023008897 W JP2023008897 W JP 2023008897W WO 2023171723 A1 WO2023171723 A1 WO 2023171723A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
electric motor
current value
braking force
braking
Prior art date
Application number
PCT/JP2023/008897
Other languages
French (fr)
Japanese (ja)
Inventor
達也 浦野
照薫 浦岡
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2023171723A1 publication Critical patent/WO2023171723A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D63/00Brakes not otherwise provided for; Brakes combining more than one of the types of groups F16D49/00 - F16D61/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes

Definitions

  • the present invention relates to a brake control device.
  • Patent Document 1 discloses a control device that brakes a vehicle using the braking force generated by an electric parking braking device when the brake booster is in a functionally restricted state or in a non-functional state. That is, a configuration is disclosed in which the functional restriction or inability of the brake booster is compensated for by the electric parking braking device.
  • an electric parking brake device one in which a mechanism for converting the rotational motion of an electric motor into linear motion is applied to a brake caliper, as disclosed in Patent Document 2, for example, is known. More specifically, in the electric parking brake system disclosed in Patent Document 2, a linearly moving member to which the driving force of an electric motor is transmitted and linearly moves is arranged within a piston in a brake caliper.
  • a known electric parking brake device employs a self-locking mechanism as disclosed in Patent Document 2.
  • the self-locking mechanism is a mechanism in which the position of the translational member is maintained without the translational member moving even if a force acts on the translational member in the direction in which the translational member moves.
  • power to the electric motor is stopped and the self-locking mechanism moves the linearly moving member to a desired position. Hold position.
  • Patent No. 6563456 Japanese Patent Application Publication No. 2018-118524
  • a braking control device for solving the above problems includes a rotating member that rotates integrally with a wheel, a friction material that is pressed against the rotating member, a cylinder to which brake fluid is supplied, and a brake control device that operates according to the hydraulic pressure in the cylinder.
  • a piston that presses the friction material against the rotating member; a hydraulic braking device that generates a braking force on the wheel according to the load with which the friction material is pressed against the rotating member; an electric motor; It is composed of a conversion mechanism that converts the rotational motion of the electric motor into linear motion, and a linear motion member that is linearly moved by the conversion mechanism and is disposed within the cylinder, and the linear motion member and an electric parking braking device that presses the friction material against the rotating member via the piston to generate a load that presses the friction material against the rotating member, and the vehicle A brake control device that is applied to the vehicle capable of generating a braking force by the hydraulic braking device and controls the electric parking brake device, the motor outputting a drive signal for driving the electric motor.
  • a control unit that executes assistance control in which the linear motion member assists the friction material pressed against the rotating member so that the electric parking brake system generates a load corresponding to the difference between the braking force and the , wherein, in the assisting control, the assisting control unit performs an application process of applying a voltage to the electric motor to drive the electric motor in a direction that increases the load with which the direct-acting member is pressed against the piston. The gist thereof is to perform the apply processing even after the actual braking force actually acting on the vehicle reaches the target braking force.
  • the electric motor is energized even after the difference between the target braking force and the hydraulic braking force is eliminated by the assist control.
  • the state in which the electric motor is de-energized does not continue while the assisting control is being performed. Therefore, responsiveness can be ensured when the position of the direct-acting member is moved as the target braking force increases or decreases during execution of assisting control.
  • FIG. 1 is a schematic diagram showing an embodiment of a brake control device and a vehicle to be controlled by the brake control device.
  • FIG. 2 is a flowchart showing the flow of assistance control processing executed by the brake control device.
  • FIG. 3 is a diagram illustrating the value of the current flowing through the electric motor in a state where the braking force is maintained in the assistance control executed by the braking control device.
  • FIG. 4 is a diagram illustrating the current value flowing through the electric motor in a state where the braking force is increased in the assistance control executed by the braking control device.
  • FIG. 5 is a diagram showing changes in the current value and changes in the load that are adjusted by the assistance control executed by the brake control device.
  • FIG. 6 is a diagram showing changes in current value and load when assistance is provided by an electric parking brake system as a comparative example.
  • FIG. 7 is a diagram illustrating the state of the electric parking brake device and the corresponding load when assistance is provided by the electric parking brake device as a comparative example.
  • FIG. 1 shows a control device 10 as a brake control device and a vehicle 90 to which the control device 10 is applied.
  • Vehicle 90 is, for example, a four-wheeled vehicle.
  • FIG. 1 illustrates one wheel 91 among the wheels included in a vehicle 90.
  • the vehicle 90 includes a hydraulic braking device 80.
  • the hydraulic braking device 80 is used as a service brake.
  • the vehicle 90 includes a brake operation member 92 that can be operated by the driver of the vehicle 90.
  • the brake operating member 92 is a brake pedal.
  • the driver can generate a braking force via the hydraulic braking device 80 to brake the vehicle 90.
  • the operation of the brake operation member 92 corresponds to a brake request by the driver.
  • the vehicle 90 includes an electric parking brake device 70.
  • the electric parking brake device 70 can be used as a parking brake.
  • the hydraulic braking device 80 includes a hydraulic pressure generating device.
  • the hydraulic braking device 80 includes a hydraulic actuator 84.
  • the hydraulic braking device 80 includes a braking mechanism corresponding to each wheel. The braking mechanism can apply braking force to the corresponding wheel.
  • the braking mechanism is composed of a rotating member 89 that rotates integrally with the wheel 91 and a brake caliper 85.
  • the brake caliper 85 includes a wheel cylinder 86, a piston 87 disposed within the wheel cylinder 86, and a friction material 88 that can be pressed against a rotating member 89.
  • a friction material 88 is attached to the surface of the piston 87 facing the rotating member 89.
  • a supply/discharge hole 86a for supplying brake fluid into the wheel cylinder 86 is formed in the wheel cylinder 86.
  • An example of a braking mechanism is a disc brake.
  • the braking mechanism can generate frictional braking force on the wheels 91 according to the hydraulic pressure in the wheel cylinders 86.
  • the hydraulic pressure within the wheel cylinder 86 may also be referred to as WC pressure.
  • the braking mechanism is configured such that the higher the WC pressure, the greater the force pressing the friction material 88 against the rotating member 89. That is, the braking mechanism can apply a greater braking force to the wheels 91 as the WC pressure is higher.
  • the force with which the friction material 88 is pressed against the rotating member 89 in response to the WC pressure will be referred to as hydraulic load Pb.
  • the hydraulic braking device 80 includes a booster 81, a master cylinder 82, and a reservoir tank 83 in which brake fluid is stored.
  • the hydraulic pressure generator includes a booster 81, a master cylinder 82, and a reservoir tank 83.
  • the booster 81 can assist the operation of the brake operating member 92 and transmit the assisted operating force to the master cylinder 82.
  • a known booster can be appropriately employed.
  • examples of the booster include a negative pressure booster, a hydraulic booster, an electric booster, and the like.
  • the master cylinder 82 generates hydraulic pressure in response to the operation of the brake operation member 92.
  • the hydraulic pressure generated by the master cylinder 82 may also be referred to as MC pressure.
  • the master cylinder 82 pumps brake fluid in an amount corresponding to the MC pressure to the hydraulic actuator 84 .
  • the hydraulic actuator 84 is arranged between the master cylinder 82 and the wheel cylinder 86. Brake fluid is supplied from master cylinder 82 to wheel cylinder 86 via hydraulic actuator 84 .
  • the hydraulic actuator 84 includes a flow path for brake fluid.
  • the brake fluid flow path is connected to a wheel cylinder corresponding to each wheel.
  • the hydraulic actuator 84 includes, for example, a plurality of electromagnetic valves disposed in the flow path, a pump disposed in the flow path, a pump drive motor for driving the pump, and the like.
  • the electric parking brake device 70 shares a part of the structure with the brake mechanism in the hydraulic brake device 80.
  • the electric parking brake device 70 includes an electric motor 71.
  • the electric parking brake device 70 includes an output shaft 74 that rotates in accordance with the drive of an electric motor 71.
  • the electric parking brake device 70 includes a transmission mechanism 72 that transmits the driving force of an electric motor 71 to an output shaft 74.
  • a rotating shaft 71a of an electric motor 71 is connected to the transmission mechanism 72 as an input shaft.
  • the transmission mechanism 72 includes, for example, a speed reduction mechanism.
  • the electric parking brake device 70 includes a conversion mechanism 73.
  • the conversion mechanism 73 is a mechanism that converts the rotational motion of the electric motor 71 into linear motion.
  • An example of the conversion mechanism 73 will be explained.
  • the electric parking brake device 70 includes, for example, a linear motion member 75 that constitutes a conversion mechanism 73.
  • the conversion mechanism 73 includes an output shaft 74 and a linear motion member 75.
  • a male thread is formed on the outer peripheral surface of the output shaft 74.
  • a linear motion member 75 is attached to the output shaft 74.
  • the linear motion member 75 is, for example, cylindrical and has a female thread formed on its inner peripheral surface. The male thread of the output shaft 74 and the female thread of the linear motion member 75 are engaged.
  • the linear motion member 75 moves in the direction extending along the output shaft 74.
  • the linear motion member 75 is linearly moved by the conversion mechanism 73.
  • the direction in which the translation member 75 moves is determined by one or the other of the directions extending along the output shaft 74, depending on the rotation direction of the output shaft 74.
  • the conversion mechanism 73 includes a self-locking mechanism.
  • the self-locking mechanism when the rotation of the output shaft 74 is stopped, the position of the linearly moving member 75 is maintained even if a force is applied to the linearly moving member 75 in the direction in which the linearly moving member 75 moves linearly. It is a mechanism that The self-locking mechanism is realized, for example, by the frictional force caused by the engagement between the male thread of the output shaft 74 and the female thread of the direct-acting member 75.
  • the linear motion member 75 is arranged within the wheel cylinder 86.
  • the direct-acting member 75 presses the friction material 88 against the rotating member 89 via the piston 87, thereby generating a load that causes the friction material 88 to be pressed against the rotating member 89.
  • this load will be referred to as EPB load Pc.
  • the electric parking brake device 70 is not limited to a configuration in which the direct-acting member 75 directly contacts the piston 87 when the EPB load Pc is applied.
  • the electric parking brake device 70 may have a configuration in which a pusher is interposed between the linear motion member 75 and the piston 87.
  • the pusher can be separated from the linear motion member 75 and the piston 87.
  • Another example of the presser is attached to the tip of the translational member 75.
  • the electric parking brake device 70 is configured such that the linear motion member 75 moves in a direction toward the piston 87 when the rotating shaft 71a of the electric motor 71 rotates in the first direction.
  • the electric parking brake device 70 moves the linear motion member 75 in a direction away from the piston 87. It is configured as follows.
  • the direction in which the direct-acting member 75 approaches the piston 87 in the direction extending along the output shaft 74 will be referred to as the pressing direction.
  • the electric parking brake device 70 is provided, for example, in each brake mechanism corresponding to a rear wheel among the wheels included in the vehicle 90.
  • the electric parking brake device 70 may be provided in each brake mechanism corresponding to a front wheel among the wheels included in the vehicle 90.
  • the electric parking brake device 70 may be provided in all braking mechanisms, or may be provided in one braking mechanism.
  • the electric parking brake device 70 includes a control unit 30.
  • the control unit 30 can control the EPB load Pc.
  • the control unit 30 includes peripheral circuits.
  • the control unit 30 includes the control device 10 and peripheral circuits.
  • the drive circuit 20 shown in FIG. 1 is an example of a peripheral circuit included in the control unit 30.
  • the drive circuit 20 is a circuit that supplies power to the electric motor 71.
  • the drive circuit 20 is connected to an on-vehicle battery mounted on a vehicle 90.
  • the drive circuit 20 is controlled by the control device 10.
  • the drive circuit 20 may include means for detecting the current value Im flowing through the electric motor 71.
  • the drive circuit 20 may include a current sensor.
  • the drive circuit 20 may include a current detection circuit.
  • the drive circuit 20 may include means for detecting the voltage value applied to the electric motor 71.
  • the drive circuit 20 may include a voltage sensor.
  • the drive circuit 20 may include a voltage detection circuit.
  • FIG. 1 shows an operation amount sensor SE1, a pressure sensor SE2, and a rotation angle sensor SE3 as examples of various sensors. Detection signals from various sensors are input to the control device 10.
  • the operation amount sensor SE1 is a sensor that detects the operation amount of the brake operation member 92. Based on the detection signal from the operation amount sensor SE1, the control device 10 can acquire the operation amount of the brake operation member 92.
  • An example of the operation amount is the displacement amount of the brake operation member 92 that is displaced by the driver's operation.
  • Another example of the operation amount is the operation force applied to the brake operation member 92 by the driver.
  • the pressure sensor SE2 is a sensor that detects hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80.
  • pressure sensor SE2 is a sensor that detects MC pressure.
  • pressure sensor SE2 is a sensor that detects WC pressure. Based on the detection signal from the pressure sensor SE2, the control device 10 can acquire the hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80.
  • the rotation angle sensor SE3 is a sensor that detects the rotation angle of the electric motor 71. Based on the detection signal from the rotation angle sensor SE3, the control device 10 can acquire the rotation angle of the electric motor 71. Based on the rotation angle of the electric motor 71, the motor rotation speed Nm can be calculated.
  • Vehicle 90 may also include other control units.
  • a vehicle 90 may include a hydraulic pressure control unit 40.
  • Vehicle 90 may include support control unit 50 .
  • Each control unit is connected to be able to communicate with each other via an in-vehicle network 99.
  • Each control unit includes a processing circuit for realizing each function.
  • the support control unit 50 can perform driving support control that automatically adjusts the traveling speed of the vehicle 90.
  • driving support control include automatic driving, automatic parking, adaptive cruise control, lane keep assist, downhill assist, and collision avoidance braking.
  • the hydraulic control unit 40 can control the hydraulic braking device 80.
  • the hydraulic control unit 40 has a function of determining whether or not the hydraulic braking device 80 has malfunctioned.
  • the hydraulic control unit 40 can detect a failure of the booster 81. For example, if the hydraulic braking force BPP is smaller than the target braking force BPT and the difference between the target braking force BPT and the hydraulic braking force BPP is larger than the determination value, a failure has occurred. There is a way to determine if there is.
  • the target braking force BPT is a value corresponding to a braking request.
  • Target braking force BPT is a target value of braking force to be applied to vehicle 90.
  • the target braking force BPT can be calculated based on the amount of operation of the brake operation member 92.
  • the hydraulic braking force BPP is an estimated value of the braking force applied by the hydraulic braking device 80.
  • the hydraulic braking force BPP can be calculated based on the detection signal from the pressure sensor SE2.
  • As the determination value a value calculated in advance through experiments or the like can be used.
  • the hydraulic control unit 40 may have a function of controlling the hydraulic actuator 84. For example, there is a function to control the brake fluid supplied to each wheel cylinder 86 and adjust each WC pressure individually.
  • the hydraulic pressure control unit 40 may have a function of adjusting the WC pressure according to driving support control executed by the support control unit 50.
  • the control device 10 is a processing circuit made up of a plurality of functional units that perform various controls.
  • FIG. 1 shows an acquisition section 11, a motor control section 12, and an assistance control section 13 as examples of functional sections.
  • Each functional unit included in the control device 10 is capable of transmitting and receiving information to and from each other.
  • the acquisition unit 11 can acquire state quantities for controlling the electric parking brake device 70. For example, the acquisition unit 11 calculates the state quantity.
  • the acquisition unit 11 may acquire state quantities calculated by other functional units, other processing circuits, and the like.
  • state quantity examples include target braking force BPT, hydraulic braking force BPP, current value Im, motor rotational speed Nm, and information on whether or not a failure has occurred in hydraulic braking device 80.
  • the motor control unit 12 drives the electric motor 71 by PWM (Pulse Width Modulation) control. That is, the motor control unit 12 generates a drive signal and outputs the drive signal to the drive circuit 20.
  • the electric motor 71 is driven by switching the drive circuit 20 according to the drive signal.
  • the motor control unit 12 sets a target current value Imt as a target value of the current value Im of the electric motor 71.
  • the motor control unit 12 calculates the duty ratio of the drive signal based on the target current value Imt.
  • the motor control unit 12 generates a drive signal based on the duty ratio.
  • Processes for driving the electric motor 71 include apply processing and release processing.
  • the apply process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft 71a of the electric motor 71 rotates in the first direction. That is, the apply process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that increases the load with which the linear motion member 75 is pressed against the piston 87 .
  • the release process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft 71a of the electric motor 71 rotates in the second direction.
  • the release process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that reduces the load with which the linear motion member 75 is pressed against the piston 87 .
  • a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that reduces the load with which the linear motion member 75 is pressed against the piston 87 .
  • a positive voltage is applied to the electric motor 71.
  • a negative voltage is applied to the electric motor 71 in the release process.
  • the assistance control unit 13 can perform assistance control.
  • the assistance control when braking the vehicle 90, the electric parking brake device 70 is operated, and the braking force by the electric parking brake device 70 can be applied to the vehicle 90.
  • the friction material 88 pressed against the rotating member 89 is assisted by the linear motion member 75 .
  • the assistance control unit 13 calculates a target current value Imt as a target value of the current value Im flowing through the electric motor 71 through the apply process.
  • the assistance control section 13 causes the motor control section 12 to drive the electric motor 71 based on the calculated target current value Imt.
  • the assistance control unit 13 calculates the target current value Imt as follows.
  • the assisting control unit 13 calculates the difference between the target braking force BPT and the hydraulic braking force BPP as a difference Dp.
  • the assist control unit 13 calculates a target value of the EPB load Pc so that a braking force corresponding to the difference Dp can be applied by the EPB load Pc.
  • the assisting control unit 13 calculates a target current value Imt at which the target value of the EPB load Pc can be applied.
  • step S101 the assisting control unit 13 determines whether or not the starting condition for assisting control is satisfied.
  • the assistance control unit 13 determines that the start condition is satisfied when the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device 80 during braking of the vehicle 90.
  • the assistance control unit 13 determines that the start condition is satisfied when the hydraulic braking device 80 has malfunctioned.
  • An example of failure of the hydraulic braking device 80 is failure of the booster 81. Whether or not a failure has occurred in the hydraulic braking device 80 can be determined, for example, by obtaining the result of failure determination performed by the hydraulic pressure control unit 40.
  • the assistance control unit 13 acquires the values of the target braking force BPT and the hydraulic braking force BPP during braking, and determines that the start condition is satisfied when a discrepancy occurs between the target braking force BPT and the hydraulic braking force BPP. It can also be determined that For example, whether or not there is a deviation between the target braking force BPT and the hydraulic braking force BPP can be determined based on whether or not the width of the deviation is larger than a determination value.
  • the determination value used here may be the same value as the determination value used when determining failure of the hydraulic braking device 80, or may be a different value.
  • the assistance control unit 13 temporarily ends this processing routine. If the start condition is satisfied (S101: YES), the assistance control unit 13 moves the process to step S102.
  • step S102 the assistance control unit 13 determines whether the current value Im is less than or equal to the target current value Imt. For example, if the current value Im within the determination time after starting to apply voltage to the electric motor 71 is equal to or less than the target current value Imt (S102: YES), the assistance control unit 13 shifts the process to step S103. That is, if the current value Im is equal to the target current value Imt, or if the current value Im is smaller than the target current value Imt, the assistance control unit 13 shifts the process to step S103. Note that, in consideration of the inrush current flowing through the electric motor 71, it is determined here whether the current value Im after the inrush current converges is equal to or less than the target current value Imt within the determination time. For example, a value calculated in advance through experiments or the like can be used as the determination time.
  • the assistance control unit 13 causes the motor control unit 12 to perform an apply process. For example, the assistance control unit 13 outputs one pulse at each prescribed interval. More specifically, the assist control unit 13 calculates a duty ratio at which the motor rotation speed Nm becomes "0" when the current value Im reaches the target current value Imt, and outputs a pulse based on the duty ratio.
  • An example of the prescribed interval is a constant value.
  • the prescribed interval may be a value that changes depending on the situation. For example, it is conceivable to adjust the specified interval based on road surface ⁇ , vehicle speed, etc.
  • the assistance control unit 13 moves the process to step S105.
  • the assistance control unit 13 shifts the process to step S104. For example, if the current value Im within the determination time after starting to apply voltage to the electric motor 71 becomes larger than the target current value Imt, the assisting control unit 13 shifts the process to step S104.
  • step S104 the assistance control unit 13 causes the motor control unit 12 to perform a release process.
  • release processing An example of release processing will be explained.
  • the assistance control unit 13 outputs one pulse as a release process. More specifically, one pulse is output as a release process when a predetermined interval has elapsed from the output point of the pulse output in the apply process.
  • step S104 the assistance control unit 13 moves the process to step S105.
  • step S105 the assistance control unit 13 determines whether the conditions for ending assistance control are satisfied.
  • the assistance control unit 13 can determine that the termination condition is satisfied when the vehicle 90 has stopped.
  • stopping the vehicle 90 means, for example, that the vehicle speed of the vehicle 90 changes from a state where the vehicle 90 is running to a state of "0". Stopping the vehicle 90 may include a state where the vehicle speed is just before reaching "0" and the vehicle speed is slightly higher than "0". It is also possible to determine whether the vehicle 90 has stopped based not only on the vehicle speed but also on the wheel speed, longitudinal acceleration of the vehicle 90, and the like.
  • the assistance control unit 13 can also determine that the termination condition is satisfied, for example, when the braking request is canceled. For example, when the operation of the brake operation member 92 is canceled, it can be determined that the brake request is canceled.
  • the assistance control unit 13 terminates this processing routine. On the other hand, if the termination condition is not satisfied (S105: NO), the assistance control unit 13 shifts the process to step S102 again.
  • the assist control is ended when the end condition is satisfied.
  • the assistance control unit 13 ends the assistance control. Thereafter, the assistance control unit 13 sets the EPB load Pc to "0" by performing a release process.
  • the assistance control unit 13 sets the EPB load Pc to "0" by performing a release process.
  • the assistance control section 13 can continue to apply the EPB load Pc by the self-lock mechanism without performing the release process thereafter.
  • FIG. 3 illustrates a case where the load on the electric motor 71 is constant during the illustrated period.
  • the linear motion member 75 assists the piston 87 to generate the EPB load Pc, and the target braking force BPT is constant.
  • the assistance control unit 13 performs an apply process at regular intervals so that the current value Im flowing through the electric motor 71 becomes the target current value Imt, thereby controlling the energization and energization of the electric motor 71. Stop and repeat.
  • an inrush current flows at the start of output in each of the four pulses illustrated. In each pulse, the current value Im reaches the target current value Imt within the determination time after the inrush current converges.
  • FIG. 4 illustrates a case where the load on the electric motor 71 increases over time from a low load state.
  • this is an example in which the linear moving member 75 starts to be pressed against the piston 87 from a state where the linear moving member 75 is not in contact with the piston 87, and the EPB load Pc gradually increases.
  • the current value Im that flows after the inrush current converges is small and does not reach the target current value Imt.
  • the current value Im also increases.
  • the release processing is performed following the apply processing in which the current value Im becomes larger than the target current value Imt.
  • the electric motor 71 is driven so as to keep the position of the direct-acting member 75 constant while the difference Dp is constant.
  • the electric motor 71 is driven so that the piston load follows the change in the difference Dp. Furthermore, the electric motor 71 is energized even after the current value Im reaches the target current value Imt, that is, after the actual braking force actually acting on the vehicle 90 reaches the target braking force BPT.
  • FIG. 5 shows changes in the current value Im and the piston load when assisting control is executed when the booster 81 has failed.
  • assistance control is started from timing t11.
  • the hydraulic load Pb generated by the hydraulic braking device 80 in accordance with the braking request is the load P11.
  • an inrush current flows at timing t11. After the rush current converges, the current value Im remains at the steady current Imb until timing t12.
  • the direct-acting member 75 and the piston 87 come into contact at timing t12.
  • the load on the electric motor 71 increases. Therefore, after timing t12, the current value Im gradually increases, as shown in FIG. 5(a).
  • the EPB load Pc is applied after timing t12.
  • the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa.
  • the current value Im increases to the target current value Imt at timing t13.
  • the piston load Pa reaches the load P12.
  • the target braking force BPT starts increasing at timing t14.
  • the amount of operation of the brake operation member 92 is increased.
  • the hydraulic load Pb is increased after timing t14.
  • the hydraulic braking force BPP is increased. That is, the piston 87 is moving in the pressing direction. Also in this case, according to the control device 10, the electric motor 71 is driven so that the current value Im flowing through the electric motor 71 becomes the target current value Imt, as shown in FIG. 5(a). As a result, after timing t14, the linearly moving member 75 is also moving in the pressing direction. Therefore, even after timing t14, the sum of the hydraulic load Pb and the EPB load Pc is the piston load Pa. After that, the piston load Pa reaches the load P13.
  • the operation of the brake operation member 92 is canceled at timing t15 after the piston load Pa reaches the load P13. Furthermore, the vehicle 90 is stopped at timing t15. This completes the assistance control. Therefore, as shown in FIG. 5A, after timing t15, the electric motor 71 is no longer energized. After timing t15, the electric parking brake device 70 operates as a parking brake. That is, the position of the linearly moving member 75 is held by the self-locking mechanism.
  • the example shown in FIG. 5 is an example in which the braking request is canceled with the vehicle 90 stopped at timing t15.
  • the example shown in FIG. 5 is an example in which the self-lock mechanism continues to apply the EPB load Pc after timing t15 after the end of the assisting control.
  • the comparative example is similar to the present embodiment in that the electric parking brake system is operated to compensate for the target braking force BPT.
  • the comparative example differs from the present embodiment in that the position of the translational member is held by a self-locking mechanism.
  • assistance control is started from timing t21.
  • an inrush current flows at timing t21.
  • the current value Im remains at the steady current Imb until timing t22.
  • the hydraulic load Pb generated in accordance with the braking request is the load P21.
  • the direct-acting member and the piston come into contact at timing t22.
  • the load on the electric motor increases as the direct-acting member is pressed against the piston. Therefore, after timing t22, the current value Im gradually increases, as shown in FIG. 6(a).
  • the EPB load Pc is applied after timing t22.
  • the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa.
  • the current value Im increases to the target current value Imt at timing t23.
  • the piston load Pa reaches the load P22.
  • the increase in target braking force BPT is started at timing t24.
  • the hydraulic load Pb is increased after timing t24.
  • the hydraulic braking force BPP is increased. That is, the piston is moving in the pressing direction.
  • the EPB load Pc decreases after timing t24. Energization of the electric motor is restarted at timing t25.
  • the load on the electric motor increases as the direct-acting member is pressed against the piston. Therefore, after timing t27, the current value Im gradually increases, as shown in FIG. 6(a).
  • the EPB load Pc is applied after timing t27.
  • the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa again.
  • the current value Im reaches the target current value Imt at timing t28, and the energization of the electric motor is temporarily terminated.
  • FIG. 7 is a schematic diagram showing an electric parking brake device in a state where the piston 101, which is a component in a hydraulic brake device of a comparative example, is assisted by the electric parking brake device, and the piston load in that state. are doing.
  • FIG. 7 shows a piston 101 that supplies brake fluid to a fluid chamber 102, an output shaft 103 that is rotated by an electric motor, and a linear motion member 104 that is a linear motion member that moves linearly in accordance with the rotation of the output shaft 103. and is illustrated.
  • solid line arrows indicating the pressing direction by the piston 101 are displayed.
  • a friction material is attached to the piston 101.
  • the piston 101 presses the friction material against the rotating member by the piston load. That is, a friction material and a rotating member are arranged in this order on the side of the piston 101 in the pressing direction.
  • illustration of the friction material and the rotating member is omitted.
  • the EPB load Pc which is the load generated by the electric parking brake system
  • a hydraulic load Pb which is a load caused by hydraulic pressure
  • the total load of the EPB load Pc and the hydraulic load Pb corresponds to the pressing force with which the piston 101 presses the friction material against the rotating member.
  • the pressing force corresponds to the braking force applied to the wheels.
  • FIG. 7(a) shows a state in which the end of the linear motion member 104 on the pressing direction side is in contact with the piston 101. As shown by the white arrow, the EPB load Pc and the hydraulic load Pb are reflected in the piston load. The sum of the EPB load Pc and the hydraulic load Pb in the state shown in FIG. 7(a), that is, the value of the piston load, is indicated as a first load P1.
  • the electric parking brake system of the comparative example is in the state shown in FIG. 7(a).
  • the position of the end of the translation member 104 in the pressing direction in the state shown in FIG. 7A is shown as an initial nut position Xn.
  • the position of the end of the piston 101 in the pressing direction in the state shown in FIG. 7A is shown as an initial piston position Xc.
  • FIG. 7(b) shows a state where the hydraulic pressure is higher than the state illustrated in FIG. 7(a).
  • the position of the translational member 104 is maintained at the same position as in FIG. 7(a).
  • the hydraulic load Pb has increased compared to the state shown in FIG. 7(a).
  • the EPB load Pc decreases as the hydraulic load Pb increases. That is, the total of the EPB load Pc and the hydraulic load Pb does not vary from the first load P1.
  • the end of the piston 101 remains at the initial piston position Xc.
  • FIG. 7C shows a state in which the end of the piston 101 has moved from the initial piston position Xc.
  • FIG. 7(d) shows a state in which the linear motion member 104 is moved from the initial nut position Xn in the pressing direction from the state shown in FIG. 7(c).
  • the EPB load Pc is generated again due to the contact between the direct-acting member 104 and the piston 101.
  • the magnitude of the hydraulic load Pb is equal to the state shown in FIG. 7(c).
  • the EPB load Pc is added to the hydraulic load Pb, so that the piston load has reached the second load P2, which is larger than the first load P1.
  • the electric parking brake system of the comparative example is in the state shown in FIG. 7(d).
  • the braking force does not increase even if the hydraulic pressure starts to increase, as illustrated in FIG. 7(b). Therefore, there is a period from timing t24 to timing t26 illustrated in FIG. 6 in which the piston load Pa does not increase.
  • the assistance by the EPB load Pc is not responsive to fluctuations in fluid pressure. There were times when I could't do it well.
  • the apply process is repeatedly executed until the termination condition is satisfied (S102, S103, and S105). ). Therefore, until the end condition is satisfied, the electric motor 71 is continued to be energized even if the current value Im reaches the target current value Imt. Until the termination condition is satisfied, the electric motor 71 continues to be energized even if the difference Dp is resolved. Until the termination condition is satisfied, the electric motor 71 continues to be energized while the position of the linear motion member 75 is maintained.
  • the load corresponding to the difference Dp can continue to be applied to the piston 87 without continuing the state in which the electric motor 71 is de-energized during execution of the assisting control.
  • the linearly moving member 75 can be moved quickly.
  • the linear member 75 can be moved to follow the piston 87, which moves as the hydraulic load Pb increases. That is, responsiveness to fluctuations in the difference Dp can be ensured.
  • the electric motor 71 may be continuously energized by high frequency duty control so that the current value Im becomes the target current value Imt.
  • High frequency duty control is control in which the duty ratio is changed to be smaller than the normal duty ratio, and the frequency of PWM control is increased.
  • the drive circuit 20 includes a high frequency generator, high frequency duty control can be performed.
  • the control device 10 may have a function of learning the time from when an inrush current occurs until it converges.
  • the control device 10 may have a function of learning the magnitude of the inrush current.
  • the control device 10 may adjust the prescribed interval based on the learning result. For example, by using the inrush current learning results, it becomes possible to shorten the interval at which the application process is performed without moving the direct-acting member 75. Thereby, it is possible to improve the accuracy of setting the motor rotation speed Nm to "0" when the current value Im is the target current value Imt.
  • the case where there is a failure in the booster 81 has been described as an example in which the conditions for starting the assist control are satisfied.
  • the starting conditions are not limited to these. For example, even if a failure occurs in a portion of the hydraulic braking device 80 other than the booster 81, it may be determined that the start condition is satisfied.
  • the control that adjusts the traveling speed of the vehicle 90 by the braking force of the hydraulic braking device 80 is an example of control that has a braking request. That is, even when the braking request of driving support control cannot be satisfied, it can be determined that the start condition is satisfied. If driving support control is being performed, ending the driving support control corresponds to cancellation of the braking request. For example, it can be determined that the end condition is satisfied when the vehicle 90 reaches the target point set by the driving support control.
  • any control that can intervene in adjusting the hydraulic braking force by setting a target value of the hydraulic braking force can be said to be a braking request. Even when the braking request cannot be satisfied by these controls, it can be determined that the start condition is satisfied. That is, the assistance control in the above embodiment can be applied.
  • the control device 10 which is a processing circuit, the processing circuit included in the hydraulic pressure control unit 40, and the processing circuit included in the support control unit 50 may have any of the configurations [a] to [c] below.
  • the processor includes a processing device. Examples of processing devices are CPUs, DSPs, GPUs, and the like.
  • the processor includes memory. Examples of memory are RAM, ROM, flash memory, and the like.
  • the memory stores program code or instructions configured to cause the processing device to perform operations.
  • Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer.
  • ASIC Application Specific Integrated Circuit
  • CPLD Complex Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • a part or all of the functions realized by the processing circuit included in the hydraulic control unit 40 and the processing circuit included in the support control unit 50 may be realized by the control device 10.
  • Some of the functions realized by the control device 10 may be realized by other processing circuits connected to the control device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Braking Systems And Boosters (AREA)
  • Regulating Braking Force (AREA)
  • Braking Arrangements (AREA)

Abstract

A control device 10 is applied to a vehicle 90 that has a hydraulic braking device 80 and an electric parking braking device 70. The control device 10 is provided with an assist control unit 13 that, if a braking requirement cannot be satisfied by the braking force of the hydraulic braking device 80, executes an assist control for causing the electric parking braking device 70 to generate a load corresponding to the difference between a target braking force and the braking force applied by the hydraulic braking device 80. The assist control unit 13 performs apply processing for applying, to an electric motor 71, a voltage for causing the electric motor 71 to drive in a direction for increasing the load from the electric parking braking device 70, the assist control unit performing the apply processing even after the actual braking force has reached the target braking force.

Description

制動制御装置Brake control device
 本発明は、制動制御装置に関する。 The present invention relates to a brake control device.
 特許文献1には、ブレーキ倍力装置が機能制約の状態または機能不能の状態である場合に、電動駐車制動装置によって発生される制動力によって車両を制動させる制御装置が開示されている。すなわち、ブレーキ倍力装置の機能制約または機能不能を、電動駐車制動装置によって補償する構成が開示されている。 Patent Document 1 discloses a control device that brakes a vehicle using the braking force generated by an electric parking braking device when the brake booster is in a functionally restricted state or in a non-functional state. That is, a configuration is disclosed in which the functional restriction or inability of the brake booster is compensated for by the electric parking braking device.
 電動駐車制動装置としては、たとえば特許文献2に開示されているような、電気モータの回転運動を直線運動に変換する機構をブレーキキャリパに適用したものが知られている。より詳しくは、特許文献2に開示されている電動駐車制動装置では、電気モータの駆動力が伝達されて直線運動される直動部材は、ブレーキキャリパにおけるピストン内に配置されている。 As an electric parking brake device, one in which a mechanism for converting the rotational motion of an electric motor into linear motion is applied to a brake caliper, as disclosed in Patent Document 2, for example, is known. More specifically, in the electric parking brake system disclosed in Patent Document 2, a linearly moving member to which the driving force of an electric motor is transmitted and linearly moves is arranged within a piston in a brake caliper.
 電動駐車制動装置では、特許文献2に開示されているようにセルフロック機構が採用されているものが公知である。セルフロック機構は、直動部材が移動する方向に直動部材に対して力が作用しても直動部材が動くことなく直動部材の位置が保持される機構である。このようなセルフロック機構を備える電動駐車制動装置では、電気モータの駆動によって直動部材を所望の位置に移動させた後は、電気モータへの通電を停止してセルフロック機構によって直動部材の位置を保持させる。 A known electric parking brake device employs a self-locking mechanism as disclosed in Patent Document 2. The self-locking mechanism is a mechanism in which the position of the translational member is maintained without the translational member moving even if a force acts on the translational member in the direction in which the translational member moves. In an electric parking brake system equipped with such a self-locking mechanism, after the linearly moving member is moved to a desired position by driving the electric motor, power to the electric motor is stopped and the self-locking mechanism moves the linearly moving member to a desired position. Hold position.
特許第6563456号公報Patent No. 6563456 特開2018-118524号公報Japanese Patent Application Publication No. 2018-118524
 特許文献2に開示されているような電動駐車制動装置において特許文献1のように電動駐車制動装置を用いて車両の制動を補償する制御を行うと、下記のような問題がある。
 電動駐車制動装置による補償を行っている場合に、たとえば液圧が増大されると、直動部材によるピストンの助勢を続けるためには直動部材を移動させる必要が生じる。このとき、直動部材の位置がセルフロック機構によって保持されていると、液圧が変動してから電気モータへの通電を開始しても、液圧の変動から直動部材が動き始めるまでには遅延時間が発生する。すなわち、セルフロック機構によって直動部材の位置を保持しており電気モータへの通電を停止している場合には、直動部材による助勢を液圧の変動に応じて応答性よく行うことができない場合があった。
When the electric parking brake device as disclosed in Patent Document 2 performs control to compensate for braking of the vehicle using the electric parking brake device as in Patent Document 1, the following problems occur.
If, for example, the hydraulic pressure is increased while compensation is being performed by the electric parking brake system, it becomes necessary to move the linearly moving member in order to continue assisting the piston with the linearly moving member. At this time, if the position of the linear moving member is held by the self-lock mechanism, even if the electric motor starts to be energized after the fluid pressure fluctuates, the linear moving member will not start moving due to the fluid pressure fluctuation. will cause a delay time. In other words, if the position of the linearly moving member is held by a self-locking mechanism and the electric motor is not energized, assistance by the linearly moving member cannot be provided in a responsive manner in response to fluctuations in hydraulic pressure. There was a case.
 このように、電動駐車制動装置を用いて車両の制動を補償する場合には、制動力の応答性に改良の余地があった。 As described above, when using an electric parking brake system to compensate for the braking of a vehicle, there is room for improvement in the responsiveness of the braking force.
 上記課題を解決するための制動制御装置は、車輪と一体に回転する回転部材と、前記回転部材に押し付けられる摩擦材と、ブレーキ液が供給されるシリンダと、前記シリンダ内の液圧に応じて前記摩擦材を前記回転部材に押し付けるピストンと、によって構成されており、前記回転部材に前記摩擦材が押し付けられる荷重に応じて前記車輪に制動力を発生させる液圧制動装置と、電気モータと、前記電気モータの回転運動を直線運動に変換する変換機構と、前記変換機構によって直線運動されるものであり前記シリンダ内に配置されている直動部材と、によって構成されており、前記直動部材が前記ピストンを介して前記回転部材に前記摩擦材を押し付けることで前記回転部材に前記摩擦材が押し付けられる荷重を生じさせる電動駐車制動装置と、を有している車両であり、制動要求に応じて前記液圧制動装置によって制動力を発生させることができる前記車両に適用され、前記電動駐車制動装置を制御する制動制御装置であって、前記電気モータを駆動するための駆動信号を出力するモータ制御部と、前記車両の制動中に前記液圧制動装置によって付与される制動力によって前記制動要求に対応する目標制動力を満たせない場合に、前記目標制動力と、前記液圧制動装置によって付与される制動力と、の差分に対応する荷重を前記電動駐車制動装置によって生じさせるように、前記回転部材に押し付けられる前記摩擦材を前記直動部材によって助勢させる助勢制御を実行する助勢制御部と、を備え、前記助勢制御部は、前記助勢制御では、前記直動部材が前記ピストンに押し付けられる荷重を増加させる方向に前記電気モータを駆動させる電圧を前記電気モータに印加するアプライ処理を行うものであり、前記車両に実際に作用する実制動力が前記目標制動力に達した後も前記アプライ処理を行うことをその要旨とする。 A braking control device for solving the above problems includes a rotating member that rotates integrally with a wheel, a friction material that is pressed against the rotating member, a cylinder to which brake fluid is supplied, and a brake control device that operates according to the hydraulic pressure in the cylinder. a piston that presses the friction material against the rotating member; a hydraulic braking device that generates a braking force on the wheel according to the load with which the friction material is pressed against the rotating member; an electric motor; It is composed of a conversion mechanism that converts the rotational motion of the electric motor into linear motion, and a linear motion member that is linearly moved by the conversion mechanism and is disposed within the cylinder, and the linear motion member and an electric parking braking device that presses the friction material against the rotating member via the piston to generate a load that presses the friction material against the rotating member, and the vehicle A brake control device that is applied to the vehicle capable of generating a braking force by the hydraulic braking device and controls the electric parking brake device, the motor outputting a drive signal for driving the electric motor. a control unit; and when the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device during braking of the vehicle, the target braking force and the braking force applied by the hydraulic braking device; an assistance control unit that executes assistance control in which the linear motion member assists the friction material pressed against the rotating member so that the electric parking brake system generates a load corresponding to the difference between the braking force and the , wherein, in the assisting control, the assisting control unit performs an application process of applying a voltage to the electric motor to drive the electric motor in a direction that increases the load with which the direct-acting member is pressed against the piston. The gist thereof is to perform the apply processing even after the actual braking force actually acting on the vehicle reaches the target braking force.
 上記構成によれば、助勢制御によって目標制動力と液圧制動力との差分が解消された後も電気モータに通電を行うことになる。すなわち、助勢制御の実行中において電気モータへの通電を停止した状態が継続されない。このため、助勢制御の実行中において目標制動力の増減に伴って直動部材の位置を移動させる場合に応答性を確保することができる。 According to the above configuration, the electric motor is energized even after the difference between the target braking force and the hydraulic braking force is eliminated by the assist control. In other words, the state in which the electric motor is de-energized does not continue while the assisting control is being performed. Therefore, responsiveness can be ensured when the position of the direct-acting member is moved as the target braking force increases or decreases during execution of assisting control.
図1は、制動制御装置の一実施形態と、同制動制御装置の制御対象である車両と、を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a brake control device and a vehicle to be controlled by the brake control device. 図2は、同制動制御装置が実行する助勢制御の処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of assistance control processing executed by the brake control device. 図3は、同制動制御装置が実行する助勢制御において制動力を保持している状態での電気モータに流れる電流値を説明する図である。FIG. 3 is a diagram illustrating the value of the current flowing through the electric motor in a state where the braking force is maintained in the assistance control executed by the braking control device. 図4は、同制動制御装置が実行する助勢制御において制動力を増大させている状態での電気モータに流れる電流値を説明する図である。FIG. 4 is a diagram illustrating the current value flowing through the electric motor in a state where the braking force is increased in the assistance control executed by the braking control device. 図5は、同制動制御装置が実行する助勢制御によって調整される電流値の推移と、荷重の推移とを示す図である。FIG. 5 is a diagram showing changes in the current value and changes in the load that are adjusted by the assistance control executed by the brake control device. 図6は、比較例として、電動駐車制動装置による助勢が行われている場合の電流値および荷重の推移を示す図である。FIG. 6 is a diagram showing changes in current value and load when assistance is provided by an electric parking brake system as a comparative example. 図7は、比較例として、電動駐車制動装置による助勢が行われている場合における電動駐車制動装置の状態を示す模式図と、対応する荷重と、を説明する図である。FIG. 7 is a diagram illustrating the state of the electric parking brake device and the corresponding load when assistance is provided by the electric parking brake device as a comparative example.
 以下、制動制御装置の一実施形態について、図1~図5を参照して説明する。
 図1は、制動制御装置としての制御装置10と、制御装置10が適用される車両90と、を示す。
Hereinafter, one embodiment of a brake control device will be described with reference to FIGS. 1 to 5.
FIG. 1 shows a control device 10 as a brake control device and a vehicle 90 to which the control device 10 is applied.
 車両90は、たとえば、四輪の車両である。図1には、車両90が備える車輪のうち一つの車輪91を例示している。
 車両90は、液圧制動装置80を備えている。液圧制動装置80は、常用ブレーキとして用いられる。車両90は、車両90の運転者によって操作が可能な制動操作部材92を備えている。たとえば、制動操作部材92は、ブレーキペダルである。運転者は、制動操作部材92を操作することによって、液圧制動装置80を介して制動力を発生させて車両90を制動することができる。制動操作部材92の操作は、運転者による制動要求に相当する。
Vehicle 90 is, for example, a four-wheeled vehicle. FIG. 1 illustrates one wheel 91 among the wheels included in a vehicle 90.
The vehicle 90 includes a hydraulic braking device 80. The hydraulic braking device 80 is used as a service brake. The vehicle 90 includes a brake operation member 92 that can be operated by the driver of the vehicle 90. For example, the brake operating member 92 is a brake pedal. By operating the brake operation member 92, the driver can generate a braking force via the hydraulic braking device 80 to brake the vehicle 90. The operation of the brake operation member 92 corresponds to a brake request by the driver.
 車両90は、電動駐車制動装置70を備えている。電動駐車制動装置70は、駐車ブレーキとして用いることができる。
 〈液圧制動装置〉
 液圧制動装置80は、液圧発生装置を備えている。液圧制動装置80は、液圧アクチュエータ84を備えている。液圧制動装置80は、各車輪に対応した制動機構を備えている。制動機構は、対応する車輪に制動力を付与することができる。
The vehicle 90 includes an electric parking brake device 70. The electric parking brake device 70 can be used as a parking brake.
<Hydraulic braking device>
The hydraulic braking device 80 includes a hydraulic pressure generating device. The hydraulic braking device 80 includes a hydraulic actuator 84. The hydraulic braking device 80 includes a braking mechanism corresponding to each wheel. The braking mechanism can apply braking force to the corresponding wheel.
 制動機構は、車輪91と一体回転する回転部材89と、ブレーキキャリパ85と、によって構成されている。ブレーキキャリパ85は、ホイールシリンダ86と、ホイールシリンダ86内に配置されているピストン87と、回転部材89に対して押し付けることができる摩擦材88と、によって構成されている。ピストン87において回転部材89に向かい合う面には、摩擦材88が取り付けられている。ホイールシリンダ86には、ホイールシリンダ86内にブレーキ液を供給する給排孔86aが形成されている。制動機構の一例は、ディスクブレーキである。 The braking mechanism is composed of a rotating member 89 that rotates integrally with the wheel 91 and a brake caliper 85. The brake caliper 85 includes a wheel cylinder 86, a piston 87 disposed within the wheel cylinder 86, and a friction material 88 that can be pressed against a rotating member 89. A friction material 88 is attached to the surface of the piston 87 facing the rotating member 89. A supply/discharge hole 86a for supplying brake fluid into the wheel cylinder 86 is formed in the wheel cylinder 86. An example of a braking mechanism is a disc brake.
 制動機構は、ホイールシリンダ86内の液圧に応じて車輪91に摩擦制動力を発生させることができる。以下では、ホイールシリンダ86内の液圧のことをWC圧ということもある。制動機構は、WC圧が高いほど、回転部材89に対して摩擦材88を押し付ける力が大きくなるように構成されている。すなわち、制動機構は、WC圧が高いほど大きな制動力を車輪91に付与することができる。以下では、WC圧に応じて回転部材89に対して摩擦材88が押し付けられる力のことを、液圧荷重Pbという。 The braking mechanism can generate frictional braking force on the wheels 91 according to the hydraulic pressure in the wheel cylinders 86. Hereinafter, the hydraulic pressure within the wheel cylinder 86 may also be referred to as WC pressure. The braking mechanism is configured such that the higher the WC pressure, the greater the force pressing the friction material 88 against the rotating member 89. That is, the braking mechanism can apply a greater braking force to the wheels 91 as the WC pressure is higher. Hereinafter, the force with which the friction material 88 is pressed against the rotating member 89 in response to the WC pressure will be referred to as hydraulic load Pb.
 液圧制動装置80は、倍力装置81、マスタシリンダ82、およびブレーキ液が貯留されているリザーバタンク83を備えている。液圧発生装置は、倍力装置81、マスタシリンダ82、およびリザーバタンク83によって構成されている。 The hydraulic braking device 80 includes a booster 81, a master cylinder 82, and a reservoir tank 83 in which brake fluid is stored. The hydraulic pressure generator includes a booster 81, a master cylinder 82, and a reservoir tank 83.
 倍力装置81は、制動操作部材92の操作を助勢して、助勢された操作力をマスタシリンダ82に伝達することができる。倍力装置81としては、公知の倍力装置を適宜採用することができる。たとえば、倍力装置としては、負圧ブースタ、ハイドロリックブースタ、電動ブースタ等が挙げられる。 The booster 81 can assist the operation of the brake operating member 92 and transmit the assisted operating force to the master cylinder 82. As the booster 81, a known booster can be appropriately employed. For example, examples of the booster include a negative pressure booster, a hydraulic booster, an electric booster, and the like.
 マスタシリンダ82は、制動操作部材92の操作に応じて液圧を発生させる。以下では、マスタシリンダ82が発生させる液圧のことをMC圧ということもある。マスタシリンダ82は、MC圧に応じた量のブレーキ液を液圧アクチュエータ84に圧送する。 The master cylinder 82 generates hydraulic pressure in response to the operation of the brake operation member 92. Hereinafter, the hydraulic pressure generated by the master cylinder 82 may also be referred to as MC pressure. The master cylinder 82 pumps brake fluid in an amount corresponding to the MC pressure to the hydraulic actuator 84 .
 液圧アクチュエータ84は、マスタシリンダ82とホイールシリンダ86との間に配置されている。液圧アクチュエータ84を介してマスタシリンダ82からホイールシリンダ86にブレーキ液が供給される。液圧アクチュエータ84は、ブレーキ液の流路を備えている。ブレーキ液の流路は、各車輪に対応するホイールシリンダに接続されている。液圧アクチュエータ84は、たとえば、流路に配置されている複数の電磁弁、流路に配置されているポンプ、およびポンプを駆動するためのポンプ駆動モータ等によって構成されている。 The hydraulic actuator 84 is arranged between the master cylinder 82 and the wheel cylinder 86. Brake fluid is supplied from master cylinder 82 to wheel cylinder 86 via hydraulic actuator 84 . The hydraulic actuator 84 includes a flow path for brake fluid. The brake fluid flow path is connected to a wheel cylinder corresponding to each wheel. The hydraulic actuator 84 includes, for example, a plurality of electromagnetic valves disposed in the flow path, a pump disposed in the flow path, a pump drive motor for driving the pump, and the like.
 〈電動駐車制動装置〉
 電動駐車制動装置70は、液圧制動装置80における制動機構と一部の構成を共用している。
<Electric parking brake device>
The electric parking brake device 70 shares a part of the structure with the brake mechanism in the hydraulic brake device 80.
 電動駐車制動装置70は、電気モータ71を備えている。電動駐車制動装置70は、電気モータ71の駆動に応じて回転する出力軸74を備えている。電動駐車制動装置70は、電気モータ71の駆動力を出力軸74に伝達する伝達機構72を備えている。伝達機構72には、入力軸として電気モータ71の回転軸71aが接続されている。伝達機構72は、たとえば、減速機構を備えている。 The electric parking brake device 70 includes an electric motor 71. The electric parking brake device 70 includes an output shaft 74 that rotates in accordance with the drive of an electric motor 71. The electric parking brake device 70 includes a transmission mechanism 72 that transmits the driving force of an electric motor 71 to an output shaft 74. A rotating shaft 71a of an electric motor 71 is connected to the transmission mechanism 72 as an input shaft. The transmission mechanism 72 includes, for example, a speed reduction mechanism.
 電動駐車制動装置70は、変換機構73を備えている。変換機構73は、電気モータ71の回転運動を直線運動に変換する機構である。
 変換機構73の一例を説明する。電動駐車制動装置70は、たとえば、変換機構73を構成する直動部材75を備えている。変換機構73は、出力軸74と直動部材75とによって構成されている。出力軸74の外周面には、雄ねじが形成されている。出力軸74には、直動部材75が取り付けられている。直動部材75は、たとえば、筒状であり内周面に雌ねじが形成されている。出力軸74の雄ねじと直動部材75の雌ねじとが噛み合わされている。このため、出力軸74が回転すると、出力軸74に沿って延びる方向に直動部材75が移動する。直動部材75は、変換機構73によって直線運動されるものである。直動部材75が移動する方向は、出力軸74の回転方向に応じて、出力軸74に沿って延びる方向のうち一方または他方に定まる。
The electric parking brake device 70 includes a conversion mechanism 73. The conversion mechanism 73 is a mechanism that converts the rotational motion of the electric motor 71 into linear motion.
An example of the conversion mechanism 73 will be explained. The electric parking brake device 70 includes, for example, a linear motion member 75 that constitutes a conversion mechanism 73. The conversion mechanism 73 includes an output shaft 74 and a linear motion member 75. A male thread is formed on the outer peripheral surface of the output shaft 74. A linear motion member 75 is attached to the output shaft 74. The linear motion member 75 is, for example, cylindrical and has a female thread formed on its inner peripheral surface. The male thread of the output shaft 74 and the female thread of the linear motion member 75 are engaged. Therefore, when the output shaft 74 rotates, the linear motion member 75 moves in the direction extending along the output shaft 74. The linear motion member 75 is linearly moved by the conversion mechanism 73. The direction in which the translation member 75 moves is determined by one or the other of the directions extending along the output shaft 74, depending on the rotation direction of the output shaft 74.
 変換機構73は、セルフロック機構を備えている。セルフロック機構は、出力軸74の回転が停止している状態では、直動部材75が直線運動する方向に直動部材75に対して力が作用しても直動部材75の位置が保持される機構である。セルフロック機構は、たとえば、出力軸74の雄ねじと直動部材75の雌ねじとの噛み合わせによる摩擦力によって実現されている。 The conversion mechanism 73 includes a self-locking mechanism. In the self-locking mechanism, when the rotation of the output shaft 74 is stopped, the position of the linearly moving member 75 is maintained even if a force is applied to the linearly moving member 75 in the direction in which the linearly moving member 75 moves linearly. It is a mechanism that The self-locking mechanism is realized, for example, by the frictional force caused by the engagement between the male thread of the output shaft 74 and the female thread of the direct-acting member 75.
 電動駐車制動装置70では、直動部材75は、ホイールシリンダ86内に配置されている。電動駐車制動装置70では、直動部材75がピストン87を介して回転部材89に摩擦材88を押し付けることで、回転部材89に摩擦材88が押し付けられる荷重を生じさせることができる。以下では、当該荷重のことをEPB荷重Pcという。 In the electric parking brake device 70, the linear motion member 75 is arranged within the wheel cylinder 86. In the electric parking brake device 70, the direct-acting member 75 presses the friction material 88 against the rotating member 89 via the piston 87, thereby generating a load that causes the friction material 88 to be pressed against the rotating member 89. Hereinafter, this load will be referred to as EPB load Pc.
 なお、電動駐車制動装置70としては、EPB荷重Pcが作用する際に直動部材75がピストン87に直接接触する構成に限らない。電動駐車制動装置70としては、直動部材75とピストン87との間に介在する押圧子が配置されている構成でもよい。たとえば、押圧子は、直動部材75およびピストン87と分離が可能である。押圧子の他の例は、直動部材75の先端に取り付けられている。 Note that the electric parking brake device 70 is not limited to a configuration in which the direct-acting member 75 directly contacts the piston 87 when the EPB load Pc is applied. The electric parking brake device 70 may have a configuration in which a pusher is interposed between the linear motion member 75 and the piston 87. For example, the pusher can be separated from the linear motion member 75 and the piston 87. Another example of the presser is attached to the tip of the translational member 75.
 電動駐車制動装置70は、電気モータ71の回転軸71aが第1方向に回転することによって直動部材75がピストン87に近づく方向に移動するように構成されている。一方で、電気モータ71の回転軸71aが第1方向とは反対の方向である第2方向に回転することによって、電動駐車制動装置70は、直動部材75がピストン87から離れる方向に移動するように構成されている。以下では、出力軸74に沿って延びる方向において直動部材75がピストン87に近づく方向のことを押圧方向という。 The electric parking brake device 70 is configured such that the linear motion member 75 moves in a direction toward the piston 87 when the rotating shaft 71a of the electric motor 71 rotates in the first direction. On the other hand, when the rotating shaft 71a of the electric motor 71 rotates in a second direction that is opposite to the first direction, the electric parking brake device 70 moves the linear motion member 75 in a direction away from the piston 87. It is configured as follows. Hereinafter, the direction in which the direct-acting member 75 approaches the piston 87 in the direction extending along the output shaft 74 will be referred to as the pressing direction.
 電動駐車制動装置70は、たとえば、車両90が備える車輪のうち後輪に対応する各制動機構に設けられている。電動駐車制動装置70は、車両90が備える車輪のうち前輪に対応する各制動機構に設けられていてもよい。電動駐車制動装置70は、全ての制動機構に設けられていてもよいし、一つの制動機構に設けられていてもよい。 The electric parking brake device 70 is provided, for example, in each brake mechanism corresponding to a rear wheel among the wheels included in the vehicle 90. The electric parking brake device 70 may be provided in each brake mechanism corresponding to a front wheel among the wheels included in the vehicle 90. The electric parking brake device 70 may be provided in all braking mechanisms, or may be provided in one braking mechanism.
 電動駐車制動装置70は、制御ユニット30を備えている。制御ユニット30は、EPB荷重Pcを制御することができる。制御ユニット30は、周辺回路を備えている。制御ユニット30は、制御装置10と周辺回路とによって構成されている。図1に示す駆動回路20は、制御ユニット30が備える周辺回路の一例である。 The electric parking brake device 70 includes a control unit 30. The control unit 30 can control the EPB load Pc. The control unit 30 includes peripheral circuits. The control unit 30 includes the control device 10 and peripheral circuits. The drive circuit 20 shown in FIG. 1 is an example of a peripheral circuit included in the control unit 30.
 駆動回路20は、電気モータ71に電力を供給する回路である。駆動回路20は、車両90に搭載されている車載バッテリに接続されている。駆動回路20は、制御装置10によって制御される。 The drive circuit 20 is a circuit that supplies power to the electric motor 71. The drive circuit 20 is connected to an on-vehicle battery mounted on a vehicle 90. The drive circuit 20 is controlled by the control device 10.
 駆動回路20は、電気モータ71に流れる電流値Imを検出できる手段を備えていてもよい。たとえば、駆動回路20は、電流センサを備えていてもよい。駆動回路20は、電流検出回路を備えていてもよい。 The drive circuit 20 may include means for detecting the current value Im flowing through the electric motor 71. For example, the drive circuit 20 may include a current sensor. The drive circuit 20 may include a current detection circuit.
 駆動回路20は、電気モータ71に印加される電圧値を検出できる手段を備えていてもよい。たとえば、駆動回路20は、電圧センサを備えていてもよい。駆動回路20は、電圧検出回路を備えていてもよい。 The drive circuit 20 may include means for detecting the voltage value applied to the electric motor 71. For example, the drive circuit 20 may include a voltage sensor. The drive circuit 20 may include a voltage detection circuit.
 〈各種センサ〉
 車両90は、各種センサを備えている。図1には、各種センサの一例として、操作量センサSE1、圧力センサSE2、および回転角センサSE3を示している。各種センサからの検出信号は、制御装置10に入力される。
<Various sensors>
Vehicle 90 is equipped with various sensors. FIG. 1 shows an operation amount sensor SE1, a pressure sensor SE2, and a rotation angle sensor SE3 as examples of various sensors. Detection signals from various sensors are input to the control device 10.
 操作量センサSE1は、制動操作部材92の操作量を検出するセンサである。操作量センサSE1からの検出信号に基づいて、制御装置10は、制動操作部材92の操作量を取得することができる。操作量の一例は、運転者による操作によって変位する制動操作部材92の変位量である。操作量の他の例は、運転者によって制動操作部材92に加えられる操作力である。 The operation amount sensor SE1 is a sensor that detects the operation amount of the brake operation member 92. Based on the detection signal from the operation amount sensor SE1, the control device 10 can acquire the operation amount of the brake operation member 92. An example of the operation amount is the displacement amount of the brake operation member 92 that is displaced by the driver's operation. Another example of the operation amount is the operation force applied to the brake operation member 92 by the driver.
 圧力センサSE2は、液圧制動装置80によって付与させる制動力に対応する液圧を検出するセンサである。たとえば、圧力センサSE2は、MC圧を検出するセンサである。たとえば、圧力センサSE2は、WC圧を検出するセンサである。圧力センサSE2からの検出信号に基づいて、制御装置10は、液圧制動装置80によって付与させる制動力に対応する液圧を取得することができる。 The pressure sensor SE2 is a sensor that detects hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80. For example, pressure sensor SE2 is a sensor that detects MC pressure. For example, pressure sensor SE2 is a sensor that detects WC pressure. Based on the detection signal from the pressure sensor SE2, the control device 10 can acquire the hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80.
 回転角センサSE3は、電気モータ71の回転角を検出するセンサである。回転角センサSE3からの検出信号に基づいて、制御装置10は、電気モータ71の回転角を取得することができる。電気モータ71の回転角に基づいて、モータ回転数Nmを算出することができる。 The rotation angle sensor SE3 is a sensor that detects the rotation angle of the electric motor 71. Based on the detection signal from the rotation angle sensor SE3, the control device 10 can acquire the rotation angle of the electric motor 71. Based on the rotation angle of the electric motor 71, the motor rotation speed Nm can be calculated.
 〈他の制御ユニット〉
 車両90は、他の制御ユニットを備えていてもよい。たとえば、図1に示すように、車両90は、液圧制御ユニット40を備えていてもよい。車両90は、支援制御ユニット50を備えていてもよい。各制御ユニットは、車載ネットワーク99を介して相互に通信可能に接続されている。各制御ユニットは、各機能を実現するための処理回路を備えている。
<Other control units>
Vehicle 90 may also include other control units. For example, as shown in FIG. 1, a vehicle 90 may include a hydraulic pressure control unit 40. Vehicle 90 may include support control unit 50 . Each control unit is connected to be able to communicate with each other via an in-vehicle network 99. Each control unit includes a processing circuit for realizing each function.
 支援制御ユニット50は、車両90の走行速度を自動的に調整する運転支援制御を実行することができる。運転支援制御としては、たとえば、自動運転、自動駐車、アダプティブクルーズコントロール、レーンキープアシスト、ダウンヒルアシストおよび衝突回避ブレーキ等が挙げられる。 The support control unit 50 can perform driving support control that automatically adjusts the traveling speed of the vehicle 90. Examples of driving support control include automatic driving, automatic parking, adaptive cruise control, lane keep assist, downhill assist, and collision avoidance braking.
 液圧制御ユニット40は、液圧制動装置80を制御することができる。
 液圧制御ユニット40は、一例として、液圧制動装置80に機能失陥が生じているか否かを判定する機能を備えている。たとえば、液圧制御ユニット40は、倍力装置81の失陥を検出することができる。判定する方法としては、たとえば、目標制動力BPTに対して液圧制動力BPPが小さく、目標制動力BPTと液圧制動力BPPとの差が判定値よりも大きくなった場合に、失陥が生じていると判定する方法がある。ここで、目標制動力BPTは、制動要求に対応する値である。目標制動力BPTは、車両90に付与する制動力の目標値である。たとえば、目標制動力BPTは、制動操作部材92の操作量に基づいて算出することができる。液圧制動力BPPは、液圧制動装置80によって付与される制動力の推定値である。たとえば、液圧制動力BPPは、圧力センサSE2からの検出信号に基づいて算出することができる。判定値は、予め実験等によって算出した値を用いることができる。
The hydraulic control unit 40 can control the hydraulic braking device 80.
For example, the hydraulic control unit 40 has a function of determining whether or not the hydraulic braking device 80 has malfunctioned. For example, the hydraulic control unit 40 can detect a failure of the booster 81. For example, if the hydraulic braking force BPP is smaller than the target braking force BPT and the difference between the target braking force BPT and the hydraulic braking force BPP is larger than the determination value, a failure has occurred. There is a way to determine if there is. Here, the target braking force BPT is a value corresponding to a braking request. Target braking force BPT is a target value of braking force to be applied to vehicle 90. For example, the target braking force BPT can be calculated based on the amount of operation of the brake operation member 92. The hydraulic braking force BPP is an estimated value of the braking force applied by the hydraulic braking device 80. For example, the hydraulic braking force BPP can be calculated based on the detection signal from the pressure sensor SE2. As the determination value, a value calculated in advance through experiments or the like can be used.
 液圧制御ユニット40は、液圧アクチュエータ84を制御する機能を備えていてもよい。たとえば、各ホイールシリンダ86に供給するブレーキ液を制御して各WC圧を各別に調整する機能が挙げられる。 The hydraulic control unit 40 may have a function of controlling the hydraulic actuator 84. For example, there is a function to control the brake fluid supplied to each wheel cylinder 86 and adjust each WC pressure individually.
 液圧制御ユニット40は、支援制御ユニット50が実行する運転支援制御に従ってWC圧を調整する機能を備えていてもよい。
 〈制御装置〉
 制御装置10は、各種の制御を実行する複数の機能部によって構成されている処理回路である。図1には、機能部の一例として、取得部11、モータ制御部12、および助勢制御部13を示している。制御装置10が備える各機能部は、互いに情報の送受信が可能である。
The hydraulic pressure control unit 40 may have a function of adjusting the WC pressure according to driving support control executed by the support control unit 50.
<Control device>
The control device 10 is a processing circuit made up of a plurality of functional units that perform various controls. FIG. 1 shows an acquisition section 11, a motor control section 12, and an assistance control section 13 as examples of functional sections. Each functional unit included in the control device 10 is capable of transmitting and receiving information to and from each other.
 取得部11は、電動駐車制動装置70を制御するための状態量を取得することができる。たとえば、取得部11は、状態量を算出する。取得部11は、他の機能部および他の処理回路等によって算出された状態量を取得してもよい。 The acquisition unit 11 can acquire state quantities for controlling the electric parking brake device 70. For example, the acquisition unit 11 calculates the state quantity. The acquisition unit 11 may acquire state quantities calculated by other functional units, other processing circuits, and the like.
 状態量の例を説明する。状態量としては、目標制動力BPT、液圧制動力BPP、電流値Im、モータ回転数Nm、および、液圧制動装置80に失陥が生じているか否かの情報等が挙げられる。 An example of state quantity will be explained. Examples of the state quantities include target braking force BPT, hydraulic braking force BPP, current value Im, motor rotational speed Nm, and information on whether or not a failure has occurred in hydraulic braking device 80.
 モータ制御部12は、PWM(Pulse Width Modulation)制御によって、電気モータ71を駆動させる。すなわち、モータ制御部12は、駆動信号を生成して、当該駆動信号を駆動回路20に出力する。駆動信号に応じて駆動回路20が切り換えられることで、電気モータ71が駆動される。モータ制御部12は、電気モータ71の電流値Imの目標値として目標電流値Imtを設定する。モータ制御部12は、目標電流値Imtに基づいて駆動信号におけるデューティ比を算出する。モータ制御部12は、デューティ比に基づいて駆動信号を生成する。 The motor control unit 12 drives the electric motor 71 by PWM (Pulse Width Modulation) control. That is, the motor control unit 12 generates a drive signal and outputs the drive signal to the drive circuit 20. The electric motor 71 is driven by switching the drive circuit 20 according to the drive signal. The motor control unit 12 sets a target current value Imt as a target value of the current value Im of the electric motor 71. The motor control unit 12 calculates the duty ratio of the drive signal based on the target current value Imt. The motor control unit 12 generates a drive signal based on the duty ratio.
 電気モータ71を駆動させる処理として、アプライ処理およびリリース処理がある。アプライ処理は、電気モータ71の回転軸71aが第1方向に回転するように電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。すなわち、アプライ処理は、直動部材75がピストン87に押し付けられる荷重を増加させる方向に電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。リリース処理は、電気モータ71の回転軸71aが第2方向に回転するように電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。すなわち、リリース処理は、直動部材75がピストン87に押し付けられる荷重を減少させる方向に電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。たとえば、アプライ処理では、電気モータ71に正電圧が印加される。この場合には、リリース処理では、電気モータ71に負電圧が印加される。 Processes for driving the electric motor 71 include apply processing and release processing. The apply process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft 71a of the electric motor 71 rotates in the first direction. That is, the apply process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that increases the load with which the linear motion member 75 is pressed against the piston 87 . The release process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft 71a of the electric motor 71 rotates in the second direction. That is, the release process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that reduces the load with which the linear motion member 75 is pressed against the piston 87 . For example, in the apply process, a positive voltage is applied to the electric motor 71. In this case, a negative voltage is applied to the electric motor 71 in the release process.
 助勢制御部13は、助勢制御を実行することができる。助勢制御は、車両90を制動する際に電動駐車制動装置70を作動させて、電動駐車制動装置70による制動力を車両90に付与することができる。助勢制御では、回転部材89に押し付けられる摩擦材88を直動部材75によって助勢させる。 The assistance control unit 13 can perform assistance control. In the assistance control, when braking the vehicle 90, the electric parking brake device 70 is operated, and the braking force by the electric parking brake device 70 can be applied to the vehicle 90. In the assistance control, the friction material 88 pressed against the rotating member 89 is assisted by the linear motion member 75 .
 助勢制御の一例では、助勢制御部13は、アプライ処理によって電気モータ71に流れる電流値Imの目標値として目標電流値Imtを算出する。助勢制御部13は、算出した目標電流値Imtに基づいて、モータ制御部12によって電気モータ71を駆動させる。 In an example of assistance control, the assistance control unit 13 calculates a target current value Imt as a target value of the current value Im flowing through the electric motor 71 through the apply process. The assistance control section 13 causes the motor control section 12 to drive the electric motor 71 based on the calculated target current value Imt.
 たとえば、助勢制御部13は、次のように目標電流値Imtを算出する。助勢制御部13は、目標制動力BPTと、液圧制動力BPPと、の差分を差分Dpとして算出する。助勢制御部13は、差分Dpに相当する制動力をEPB荷重Pcによって付与することができるように、EPB荷重Pcの目標値を算出する。助勢制御部13は、EPB荷重Pcの目標値を作用させることができる目標電流値Imtを算出する。 For example, the assistance control unit 13 calculates the target current value Imt as follows. The assisting control unit 13 calculates the difference between the target braking force BPT and the hydraulic braking force BPP as a difference Dp. The assist control unit 13 calculates a target value of the EPB load Pc so that a braking force corresponding to the difference Dp can be applied by the EPB load Pc. The assisting control unit 13 calculates a target current value Imt at which the target value of the EPB load Pc can be applied.
 〈助勢制御〉
 図2を用いて、助勢制御部13が助勢制御を実行する処理の流れの一例を説明する。本処理ルーチンは、車両90の制動中に所定の周期毎に繰り返し実行される。
<Assistance control>
An example of the flow of processing in which the assistance control unit 13 executes assistance control will be described with reference to FIG. 2. This processing routine is repeatedly executed at predetermined intervals while the vehicle 90 is braking.
 本処理ルーチンが開始されると、まずステップS101では、助勢制御部13は、助勢制御の開始条件が成立しているか否かを判定する。助勢制御部13は、車両90の制動中に液圧制動装置80によって付与される制動力によって制動要求に対応する目標制動力を満たせない場合に、開始条件が成立していると判定する。 When this processing routine is started, first in step S101, the assisting control unit 13 determines whether or not the starting condition for assisting control is satisfied. The assistance control unit 13 determines that the start condition is satisfied when the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device 80 during braking of the vehicle 90.
 開始条件の一例を説明する。たとえば、助勢制御部13は、液圧制動装置80に機能失陥が生じている場合に開始条件が成立していると判定する。液圧制動装置80の失陥の一例は、倍力装置81の失陥である。液圧制動装置80に失陥が生じているか否かは、たとえば、液圧制御ユニット40が行う失陥判定の結果を取得することによって判定できる。 An example of starting conditions will be explained. For example, the assistance control unit 13 determines that the start condition is satisfied when the hydraulic braking device 80 has malfunctioned. An example of failure of the hydraulic braking device 80 is failure of the booster 81. Whether or not a failure has occurred in the hydraulic braking device 80 can be determined, for example, by obtaining the result of failure determination performed by the hydraulic pressure control unit 40.
 たとえば、助勢制御部13は、制動中に目標制動力BPTおよび液圧制動力BPPの値を取得して、目標制動力BPTと液圧制動力BPPとの乖離が生じている場合に開始条件が成立していると判定することもできる。たとえば、目標制動力BPTと液圧制動力BPPとが乖離しているか否かは、その乖離幅が判定値よりも大きいか否かによって判定できる。ここで用いる判定値は、液圧制動装置80の失陥を判定する際に用いられる判定値と同じ値でもよいし異なる値を採用してもよい。 For example, the assistance control unit 13 acquires the values of the target braking force BPT and the hydraulic braking force BPP during braking, and determines that the start condition is satisfied when a discrepancy occurs between the target braking force BPT and the hydraulic braking force BPP. It can also be determined that For example, whether or not there is a deviation between the target braking force BPT and the hydraulic braking force BPP can be determined based on whether or not the width of the deviation is larger than a determination value. The determination value used here may be the same value as the determination value used when determining failure of the hydraulic braking device 80, or may be a different value.
 開始条件が成立していない場合には(S101:NO)、助勢制御部13は、本処理ルーチンを一旦終了する。開始条件が成立している場合には(S101:YES)、助勢制御部13は、処理をステップS102に移行する。 If the start condition is not satisfied (S101: NO), the assistance control unit 13 temporarily ends this processing routine. If the start condition is satisfied (S101: YES), the assistance control unit 13 moves the process to step S102.
 ステップS102では、助勢制御部13は、電流値Imが目標電流値Imt以下であるか否かを判定する。たとえば、電気モータ71に電圧を印加し始めてから判定時間以内における電流値Imが目標電流値Imt以下である場合には(S102:YES)、助勢制御部13は、処理をステップS103に移行する。すなわち、電流値Imが目標電流値Imtに等しい場合、または電流値Imが目標電流値Imtよりも小さい場合には、助勢制御部13は、処理をステップS103に移行する。なお、ここでは、電気モータ71に流れる突入電流を考慮して、突入電流が収束してからの電流値Imが判定時間以内において目標電流値Imt以下であるか否かを判定する。判定時間は、たとえば、予め実験等によって算出した値を採用することができる。 In step S102, the assistance control unit 13 determines whether the current value Im is less than or equal to the target current value Imt. For example, if the current value Im within the determination time after starting to apply voltage to the electric motor 71 is equal to or less than the target current value Imt (S102: YES), the assistance control unit 13 shifts the process to step S103. That is, if the current value Im is equal to the target current value Imt, or if the current value Im is smaller than the target current value Imt, the assistance control unit 13 shifts the process to step S103. Note that, in consideration of the inrush current flowing through the electric motor 71, it is determined here whether the current value Im after the inrush current converges is equal to or less than the target current value Imt within the determination time. For example, a value calculated in advance through experiments or the like can be used as the determination time.
 ステップS103では、助勢制御部13は、モータ制御部12にアプライ処理を実施させる。たとえば、助勢制御部13は、規定間隔毎に一回のパルスを出力させる。より詳しくいえば、助勢制御部13は、電流値Imが目標電流値Imtに達した時点でのモータ回転数Nmが「0」となるデューティ比を算出して、デューティ比に基づいてパルスを出力させる。規定間隔の一例は、一定の値である。規定間隔は、状況に応じて変化する値としてもよい。たとえば、路面μ、車速等に基づいて規定間隔を調整することが考えられる。 In step S103, the assistance control unit 13 causes the motor control unit 12 to perform an apply process. For example, the assistance control unit 13 outputs one pulse at each prescribed interval. More specifically, the assist control unit 13 calculates a duty ratio at which the motor rotation speed Nm becomes "0" when the current value Im reaches the target current value Imt, and outputs a pulse based on the duty ratio. let An example of the prescribed interval is a constant value. The prescribed interval may be a value that changes depending on the situation. For example, it is conceivable to adjust the specified interval based on road surface μ, vehicle speed, etc.
 ステップS103の処理によってアプライ処理を実施させると、助勢制御部13は、処理をステップS105に移行する。
 一方で、ステップS102の処理において、電流値Imが目標電流値Imtよりも大きい場合には(S102:NO)、助勢制御部13は、処理をステップS104に移行する。たとえば、助勢制御部13は、電気モータ71に電圧を印加し始めてから判定時間以内における電流値Imが目標電流値Imtよりも大きくなった場合には、処理をステップS104に移行する。
After executing the apply process through the process in step S103, the assistance control unit 13 moves the process to step S105.
On the other hand, in the process of step S102, if the current value Im is larger than the target current value Imt (S102: NO), the assistance control unit 13 shifts the process to step S104. For example, if the current value Im within the determination time after starting to apply voltage to the electric motor 71 becomes larger than the target current value Imt, the assisting control unit 13 shifts the process to step S104.
 ステップS104では、助勢制御部13は、モータ制御部12にリリース処理を実施させる。リリース処理の一例を説明する。たとえば、助勢制御部13は、リリース処理として一回のパルスを出力させる。より詳しくいえば、アプライ処理において出力されたパルスの出力時点から規定間隔が経過したときに、リリース処理として一回のパルスを出力させる。 In step S104, the assistance control unit 13 causes the motor control unit 12 to perform a release process. An example of release processing will be explained. For example, the assistance control unit 13 outputs one pulse as a release process. More specifically, one pulse is output as a release process when a predetermined interval has elapsed from the output point of the pulse output in the apply process.
 ステップS104の処理によってリリース処理を実施させると、助勢制御部13は、処理をステップS105に移行する。
 ステップS105では、助勢制御部13は、助勢制御の終了条件が成立しているか否かを判定する。
After executing the release process through the process in step S104, the assistance control unit 13 moves the process to step S105.
In step S105, the assistance control unit 13 determines whether the conditions for ending assistance control are satisfied.
 終了条件の一例について説明する。助勢制御部13は、たとえば、車両90が停止した場合に終了条件が成立したと判定することができる。ここでの車両90の停止とは、たとえば、車両90が走行している状態から車両90の車速が「0」の状態になることである。車両90の停止には、車速が「0」になる直前であり車速が「0」よりも僅かに大きい状態を含んでいてもよい。車速に限らず、車輪速度、車両90の前後加速度等に基づいて車両90が停止したか否かを判定することもできる。 An example of termination conditions will be explained. For example, the assistance control unit 13 can determine that the termination condition is satisfied when the vehicle 90 has stopped. Here, stopping the vehicle 90 means, for example, that the vehicle speed of the vehicle 90 changes from a state where the vehicle 90 is running to a state of "0". Stopping the vehicle 90 may include a state where the vehicle speed is just before reaching "0" and the vehicle speed is slightly higher than "0". It is also possible to determine whether the vehicle 90 has stopped based not only on the vehicle speed but also on the wheel speed, longitudinal acceleration of the vehicle 90, and the like.
 助勢制御部13は、たとえば、制動要求が解消された場合に終了条件が成立したと判定することもできる。たとえば、制動操作部材92の操作が解消された場合に制動要求が解消されたと判定することができる。 The assistance control unit 13 can also determine that the termination condition is satisfied, for example, when the braking request is canceled. For example, when the operation of the brake operation member 92 is canceled, it can be determined that the brake request is canceled.
 終了条件が成立している場合には(S105:YES)、助勢制御部13は、本処理ルーチンを終了する。一方、終了条件が成立していない場合には(S105:NO)、助勢制御部13は、再びステップS102に処理を移行する。 If the termination condition is satisfied (S105: YES), the assistance control unit 13 terminates this processing routine. On the other hand, if the termination condition is not satisfied (S105: NO), the assistance control unit 13 shifts the process to step S102 again.
 終了条件が成立して助勢制御を終了する際の例を説明する。
 一例として、制動要求が解消された際に車速が「0」ではない場合、すなわち車両90が走行中である場合には、助勢制御部13は、助勢制御を終了する。その後、助勢制御部13は、リリース処理を行うことでEPB荷重Pcを「0」にする。他の例として、車両90が停止した場合には、助勢制御部13は、助勢制御を終了する。その後、助勢制御部13は、リリース処理を行うことでEPB荷重Pcを「0」にする。あるいは、車両90が停止した場合に助勢制御を終了した際には、助勢制御部13は、その後にリリース処理を行うことなくセルフロック機構によってEPB荷重Pcを作用させ続けることもできる。
An example in which the assist control is ended when the end condition is satisfied will be described.
As an example, if the vehicle speed is not "0" when the braking request is canceled, that is, if the vehicle 90 is running, the assistance control unit 13 ends the assistance control. Thereafter, the assistance control unit 13 sets the EPB load Pc to "0" by performing a release process. As another example, when the vehicle 90 stops, the assistance control unit 13 ends the assistance control. Thereafter, the assistance control unit 13 sets the EPB load Pc to "0" by performing a release process. Alternatively, when the assistance control ends when the vehicle 90 stops, the assistance control section 13 can continue to apply the EPB load Pc by the self-lock mechanism without performing the release process thereafter.
 ここで、図3および図4を用いて、助勢制御において行われるアプライ処理の例を説明する。
 図3は、図示している期間において電気モータ71の負荷が一定である場合を例示している。たとえば、直動部材75がピストン87を助勢してEPB荷重Pcが生じている状態であり、且つ目標制動力BPTが一定である場合の例である。図3に示すように、助勢制御部13は、電気モータ71に流れる電流値Imが目標電流値Imtとなるようにアプライ処理を規定間隔毎に実施することによって、電気モータ71に対する通電と通電の停止とを繰り返す。なお、図3に示す例では、例示している四回の各パルスにおける出力開始時点において突入電流が流れている。各パルスでは、突入電流が収束してから判定時間以内に電流値Imが目標電流値Imtに達している。
Here, an example of an apply process performed in assistance control will be described using FIGS. 3 and 4.
FIG. 3 illustrates a case where the load on the electric motor 71 is constant during the illustrated period. For example, this is an example where the linear motion member 75 assists the piston 87 to generate the EPB load Pc, and the target braking force BPT is constant. As shown in FIG. 3, the assistance control unit 13 performs an apply process at regular intervals so that the current value Im flowing through the electric motor 71 becomes the target current value Imt, thereby controlling the energization and energization of the electric motor 71. Stop and repeat. In the example shown in FIG. 3, an inrush current flows at the start of output in each of the four pulses illustrated. In each pulse, the current value Im reaches the target current value Imt within the determination time after the inrush current converges.
 図4は、電気モータ71の負荷が小さい状態から時間経過に伴って負荷が増大している場合を例示している。たとえば、直動部材75がピストン87に接していない状態から直動部材75がピストン87に押し付けられ始めて、徐々にEPB荷重Pcが増大している場合の例である。図4に示すように、助勢制御部13は、電気モータ71の負荷が小さい時点では、突入電流が収束してから流れる電流値Imが小さく、目標電流値Imtに到達していない。電気モータ71の負荷が増大することに応じて電流値Imも大きくなる。電流値Imが目標電流値Imtよりも大きくなった場合には、上述のように、電流値Imが目標電流値Imtよりも大きくなったアプライ処理に続いてリリース処理が実施される。 FIG. 4 illustrates a case where the load on the electric motor 71 increases over time from a low load state. For example, this is an example in which the linear moving member 75 starts to be pressed against the piston 87 from a state where the linear moving member 75 is not in contact with the piston 87, and the EPB load Pc gradually increases. As shown in FIG. 4, when the load on the electric motor 71 is small, the current value Im that flows after the inrush current converges is small and does not reach the target current value Imt. As the load on the electric motor 71 increases, the current value Im also increases. When the current value Im becomes larger than the target current value Imt, as described above, the release processing is performed following the apply processing in which the current value Im becomes larger than the target current value Imt.
 上記助勢制御が実行される結果、差分Dpが一定である間は、直動部材75の位置を一定に保持するように電気モータ71が駆動される。一方で、差分Dpが変動する場合には、差分Dpの変動にピストン荷重が追従するように電気モータ71が駆動される。また、電気モータ71への通電は、電流値Imが目標電流値Imtに達した後、すなわち車両90に実際に作用する実制動力が目標制動力BPTに達した後も行われる。 As a result of executing the above-mentioned assisting control, the electric motor 71 is driven so as to keep the position of the direct-acting member 75 constant while the difference Dp is constant. On the other hand, when the difference Dp changes, the electric motor 71 is driven so that the piston load follows the change in the difference Dp. Furthermore, the electric motor 71 is energized even after the current value Im reaches the target current value Imt, that is, after the actual braking force actually acting on the vehicle 90 reaches the target braking force BPT.
 〈作用および効果〉
 本実施形態の作用および効果について説明する。
 図5は、倍力装置81に失陥が発生している場合に助勢制御が実行される際の電流値Imおよびピストン荷重の推移を示す。図5に示す例では、タイミングt11から助勢制御が開始されている。
<Action and effect>
The operation and effects of this embodiment will be explained.
FIG. 5 shows changes in the current value Im and the piston load when assisting control is executed when the booster 81 has failed. In the example shown in FIG. 5, assistance control is started from timing t11.
 タイミングt12までの期間では、図5の(b)に示すように、制動要求に従って液圧制動装置80によって発生されている液圧荷重Pbは、荷重P11である。
 図5の(a)に示すように、タイミングt11において突入電流が流れている。突入電流が収束するとタイミングt12までは、電流値Imは定常電流Imbで推移している。
In the period up to timing t12, as shown in FIG. 5(b), the hydraulic load Pb generated by the hydraulic braking device 80 in accordance with the braking request is the load P11.
As shown in FIG. 5(a), an inrush current flows at timing t11. After the rush current converges, the current value Im remains at the steady current Imb until timing t12.
 図5に示す例では、タイミングt12において、直動部材75とピストン87とが接触する。タイミングt12以降では、直動部材75がピストン87に押し付けられることに伴って電気モータ71の負荷が大きくなる。このため、タイミングt12以降では、図5の(a)に示すように、電流値Imが徐々に増加している。これによって、図5の(b)に示すように、タイミングt12以降においてEPB荷重Pcが付加されている。タイミングt12以降では、液圧荷重PbとEPB荷重Pcとの合計がピストン荷重Paとなっている。図5の(a)に示すように、タイミングt13において電流値Imが目標電流値Imtまで増加している。図5の(b)に示すように、タイミングt13において、ピストン荷重Paが荷重P12に達している。 In the example shown in FIG. 5, the direct-acting member 75 and the piston 87 come into contact at timing t12. After timing t12, as the direct-acting member 75 is pressed against the piston 87, the load on the electric motor 71 increases. Therefore, after timing t12, the current value Im gradually increases, as shown in FIG. 5(a). As a result, as shown in FIG. 5(b), the EPB load Pc is applied after timing t12. After timing t12, the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa. As shown in FIG. 5(a), the current value Im increases to the target current value Imt at timing t13. As shown in FIG. 5(b), at timing t13, the piston load Pa reaches the load P12.
 タイミングt13からタイミングt14までの期間は、目標制動力BPTが一定に保持されている。このため、図5の(b)に示すように、ピストン荷重Paも荷重P12に保持されている。制御装置10によれば、タイミングt13以降においても、アプライ処理が規定間隔毎に行われることによって、図5の(a)に示すように電流値Imが一定に維持される。 During the period from timing t13 to timing t14, target braking force BPT is held constant. Therefore, as shown in FIG. 5(b), the piston load Pa is also maintained at the load P12. According to the control device 10, the apply process is performed at regular intervals even after timing t13, so that the current value Im is maintained constant as shown in FIG. 5(a).
 図5に示す例では、タイミングt14において、目標制動力BPTの増加が開始されている。たとえば、制動操作部材92の操作量が大きくされている。これに伴って、図5の(b)に示すように、タイミングt14以降において液圧荷重Pbが増大されている。 In the example shown in FIG. 5, the target braking force BPT starts increasing at timing t14. For example, the amount of operation of the brake operation member 92 is increased. Along with this, as shown in FIG. 5(b), the hydraulic load Pb is increased after timing t14.
 目標制動力BPTが増大されたことによって液圧制動力BPPが増大されている。すなわち、ピストン87が押圧方向に移動している。この場合においても、制御装置10によれば、図5の(a)に示すように、電気モータ71に流れる電流値Imが目標電流値Imtとなるように電気モータ71が駆動されている。これによって、タイミングt14以降では直動部材75も押圧方向に移動している。このため、タイミングt14以降においても、液圧荷重PbとEPB荷重Pcとの合計がピストン荷重Paとなっている。その後、ピストン荷重Paは、荷重P13に達している。 By increasing the target braking force BPT, the hydraulic braking force BPP is increased. That is, the piston 87 is moving in the pressing direction. Also in this case, according to the control device 10, the electric motor 71 is driven so that the current value Im flowing through the electric motor 71 becomes the target current value Imt, as shown in FIG. 5(a). As a result, after timing t14, the linearly moving member 75 is also moving in the pressing direction. Therefore, even after timing t14, the sum of the hydraulic load Pb and the EPB load Pc is the piston load Pa. After that, the piston load Pa reaches the load P13.
 図5に示す例では、ピストン荷重Paが荷重P13に達した後のタイミングt15において制動操作部材92の操作が解消されている。さらに、タイミングt15において車両90が停止している。これによって助勢制御が終了されている。このため、図5の(a)に示すように、タイミングt15以降では電気モータ71への通電が終了している。タイミングt15以降では、電動駐車制動装置70は、駐車ブレーキとして作動している。すなわち、セルフロック機構によって直動部材75の位置が保持されている。図5に示す例は、タイミングt15において車両90が停止した状態で制動要求が解消されている例である。図5に示す例は、助勢制御を終了してからタイミングt15以降ではセルフロック機構によってEPB荷重Pcを作用させ続けている例である。 In the example shown in FIG. 5, the operation of the brake operation member 92 is canceled at timing t15 after the piston load Pa reaches the load P13. Furthermore, the vehicle 90 is stopped at timing t15. This completes the assistance control. Therefore, as shown in FIG. 5A, after timing t15, the electric motor 71 is no longer energized. After timing t15, the electric parking brake device 70 operates as a parking brake. That is, the position of the linearly moving member 75 is held by the self-locking mechanism. The example shown in FIG. 5 is an example in which the braking request is canceled with the vehicle 90 stopped at timing t15. The example shown in FIG. 5 is an example in which the self-lock mechanism continues to apply the EPB load Pc after timing t15 after the end of the assisting control.
 次に、図6および図7を用いて、比較例について説明する。比較例は、目標制動力BPTを補償するために電動駐車制動装置を作動させる点では本実施形態と共通している。比較例は、直動部材の位置をセルフロック機構によって保持する点で本実施形態と異なる。 Next, a comparative example will be described using FIGS. 6 and 7. The comparative example is similar to the present embodiment in that the electric parking brake system is operated to compensate for the target braking force BPT. The comparative example differs from the present embodiment in that the position of the translational member is held by a self-locking mechanism.
 図6に示す例では、タイミングt21から助勢制御が開始されている。
 図6の(a)に示すように、タイミングt21において突入電流が流れている。突入電流が収束するとタイミングt22までは、電流値Imは定常電流Imbで推移している。タイミングt22までの期間では、図6の(b)に示すように、制動要求に従って発生されている液圧荷重Pbは、荷重P21である。
In the example shown in FIG. 6, assistance control is started from timing t21.
As shown in FIG. 6(a), an inrush current flows at timing t21. After the rush current converges, the current value Im remains at the steady current Imb until timing t22. In the period up to timing t22, as shown in FIG. 6(b), the hydraulic load Pb generated in accordance with the braking request is the load P21.
 図6に示す例では、タイミングt22において、直動部材とピストンとが接触する。タイミングt22以降では、直動部材がピストンに押し付けられることに伴って電気モータの負荷が大きくなる。このため、タイミングt22以降では、図6の(a)に示すように、電流値Imが徐々に増加している。これによって、図6の(b)に示すように、タイミングt22以降においてEPB荷重Pcが付加されている。タイミングt22以降では、液圧荷重PbとEPB荷重Pcとの合計がピストン荷重Paとなっている。図6の(a)に示すように、タイミングt23において電流値Imが目標電流値Imtまで増加している。図6の(b)に示すように、タイミングt23において、ピストン荷重Paが荷重P22に達している。 In the example shown in FIG. 6, the direct-acting member and the piston come into contact at timing t22. After timing t22, the load on the electric motor increases as the direct-acting member is pressed against the piston. Therefore, after timing t22, the current value Im gradually increases, as shown in FIG. 6(a). As a result, as shown in FIG. 6(b), the EPB load Pc is applied after timing t22. After timing t22, the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa. As shown in FIG. 6A, the current value Im increases to the target current value Imt at timing t23. As shown in FIG. 6(b), at timing t23, the piston load Pa reaches the load P22.
 比較例では、図6の(a)に示すように、タイミングt23において電流値Imが目標電流値Imtに達したことで、電気モータへの通電が一旦終了される。タイミングt23からタイミングt24までの期間は、目標制動力BPTが一定に保持されている。このため、図6の(b)に示すように、ピストン荷重Paも荷重P22に保持されている。 In the comparative example, as shown in FIG. 6A, when the current value Im reaches the target current value Imt at timing t23, the energization of the electric motor is temporarily terminated. During the period from timing t23 to timing t24, target braking force BPT is held constant. Therefore, as shown in FIG. 6(b), the piston load Pa is also maintained at the load P22.
 図6に示す例では、タイミングt24において、目標制動力BPTの増加が開始されている。これに伴って、図6の(b)に示すように、タイミングt24以降において液圧荷重Pbが増大されている。 In the example shown in FIG. 6, the increase in target braking force BPT is started at timing t24. Along with this, as shown in FIG. 6(b), the hydraulic load Pb is increased after timing t24.
 目標制動力BPTが増大されたことによって液圧制動力BPPが増大されている。すなわち、ピストンが押圧方向に移動している。このとき直動部材の位置は変わらないためタイミングt24以降ではEPB荷重Pcが減少していく。電気モータへの通電は、タイミングt25において再び開始される。タイミングt27以降では、直動部材がピストンに押し付けられることに伴って電気モータの負荷が大きくなる。このため、タイミングt27以降では、図6の(a)に示すように、電流値Imが徐々に増加している。これによって、図6の(b)に示すように、タイミングt27以降においてEPB荷重Pcが付加されている。タイミングt27以降では、再び液圧荷重PbとEPB荷重Pcとの合計がピストン荷重Paとなっている。図6の(a)に示すように、タイミングt28において電流値Imが目標電流値Imtに達したことで、電気モータへの通電が一旦終了されている。 By increasing the target braking force BPT, the hydraulic braking force BPP is increased. That is, the piston is moving in the pressing direction. At this time, since the position of the linearly moving member does not change, the EPB load Pc decreases after timing t24. Energization of the electric motor is restarted at timing t25. After timing t27, the load on the electric motor increases as the direct-acting member is pressed against the piston. Therefore, after timing t27, the current value Im gradually increases, as shown in FIG. 6(a). As a result, as shown in FIG. 6(b), the EPB load Pc is applied after timing t27. After timing t27, the sum of the hydraulic load Pb and the EPB load Pc becomes the piston load Pa again. As shown in (a) of FIG. 6, the current value Im reaches the target current value Imt at timing t28, and the energization of the electric motor is temporarily terminated.
 図7には、比較例の液圧制動装置における構成要素であるピストン101を電動駐車制動装置によって助勢している状態の電動駐車制動装置を示す模式図と、その状態におけるピストン荷重と、を例示している。 FIG. 7 is a schematic diagram showing an electric parking brake device in a state where the piston 101, which is a component in a hydraulic brake device of a comparative example, is assisted by the electric parking brake device, and the piston load in that state. are doing.
 図7には、液室102にブレーキ液が供給されるピストン101と、電気モータによって回転される出力軸103と、出力軸103の回転に応じて直線移動する直動部材である直動部材104と、を図示している。図7には、ピストン101による押圧方向を示す実線の矢印を表示している。ピストン101には摩擦材が取り付けられている。ピストン101は、ピストン荷重によって、摩擦材を回転部材に押し付けている。すなわち、ピストン101に対して押圧方向側には、摩擦材、回転部材が順に配置されている。図7では、摩擦材および回転部材の図示を省略している。 FIG. 7 shows a piston 101 that supplies brake fluid to a fluid chamber 102, an output shaft 103 that is rotated by an electric motor, and a linear motion member 104 that is a linear motion member that moves linearly in accordance with the rotation of the output shaft 103. and is illustrated. In FIG. 7, solid line arrows indicating the pressing direction by the piston 101 are displayed. A friction material is attached to the piston 101. The piston 101 presses the friction material against the rotating member by the piston load. That is, a friction material and a rotating member are arranged in this order on the side of the piston 101 in the pressing direction. In FIG. 7, illustration of the friction material and the rotating member is omitted.
 さらに図7には、電動駐車制動装置によって生じる荷重であるEPB荷重Pcを実線の白抜き矢印で表示している。液圧によって生じる荷重である液圧荷重Pbを破線の白抜き矢印で表示している。EPB荷重Pcと液圧荷重Pbとを合計した荷重は、ピストン101が摩擦材を回転部材に押圧する押圧力に相当する。当該押圧力は、車輪に付与される制動力に相当する。 Furthermore, in FIG. 7, the EPB load Pc, which is the load generated by the electric parking brake system, is indicated by a solid white arrow. A hydraulic load Pb, which is a load caused by hydraulic pressure, is indicated by a dashed white arrow. The total load of the EPB load Pc and the hydraulic load Pb corresponds to the pressing force with which the piston 101 presses the friction material against the rotating member. The pressing force corresponds to the braking force applied to the wheels.
 図7の(a)は、直動部材104における押圧方向側の端部がピストン101に接している状態を示している。白抜き矢印で示すように、ピストン荷重にはEPB荷重Pcと液圧荷重Pbとが反映されている。図7の(a)に示す状態におけるEPB荷重Pcと液圧荷重Pbとの合計、すなわちピストン荷重の値を第1荷重P1と表示している。 FIG. 7(a) shows a state in which the end of the linear motion member 104 on the pressing direction side is in contact with the piston 101. As shown by the white arrow, the EPB load Pc and the hydraulic load Pb are reflected in the piston load. The sum of the EPB load Pc and the hydraulic load Pb in the state shown in FIG. 7(a), that is, the value of the piston load, is indicated as a first load P1.
 図6に例示したタイミングt23からタイミングt24までの期間において、比較例の電動駐車制動装置は、図7の(a)に示す状態にある。
 図7には、図7の(a)の状態において、直動部材104における押圧方向側の端部の位置を初期ナット位置Xnとして表示している。図7には、図7の(a)の状態において、ピストン101における押圧方向側の端部の位置を初期ピストン位置Xcとして表示している。
In the period from timing t23 to timing t24 illustrated in FIG. 6, the electric parking brake system of the comparative example is in the state shown in FIG. 7(a).
In FIG. 7, the position of the end of the translation member 104 in the pressing direction in the state shown in FIG. 7A is shown as an initial nut position Xn. In FIG. 7, the position of the end of the piston 101 in the pressing direction in the state shown in FIG. 7A is shown as an initial piston position Xc.
 図7の(b)は、図7の(a)に例示した状態よりも液圧が高くなった状態を示している。直動部材104の位置は、図7の(a)と同じ位置に保持されている。白抜き矢印で示すように、図7の(a)に示す状態と比較して液圧荷重Pbが増大している。このとき、直動部材104の位置が初期ナット位置Xnに保持されているため、液圧荷重Pbの増大に伴ってEPB荷重Pcが減少する。すなわち、EPB荷重Pcと液圧荷重Pbとの合計は、第1荷重P1から変動しない。ピストン101の端部は、初期ピストン位置Xcに位置したままである。 FIG. 7(b) shows a state where the hydraulic pressure is higher than the state illustrated in FIG. 7(a). The position of the translational member 104 is maintained at the same position as in FIG. 7(a). As shown by the white arrow, the hydraulic load Pb has increased compared to the state shown in FIG. 7(a). At this time, since the position of the translational member 104 is maintained at the initial nut position Xn, the EPB load Pc decreases as the hydraulic load Pb increases. That is, the total of the EPB load Pc and the hydraulic load Pb does not vary from the first load P1. The end of the piston 101 remains at the initial piston position Xc.
 図7の(b)に示す状態から液圧荷重Pbがさらに増大されて液圧荷重Pbが第1荷重P1を超えると、ピストン101が押圧方向に移動し始める。すなわち、ピストン101の端部が初期ピストン位置Xcから押圧方向に移動する。ピストン101の端部が初期ピストン位置Xcから移動した状態を図7の(c)に示している。 When the hydraulic load Pb is further increased from the state shown in FIG. 7(b) and exceeds the first load P1, the piston 101 begins to move in the pressing direction. That is, the end of the piston 101 moves in the pressing direction from the initial piston position Xc. FIG. 7C shows a state in which the end of the piston 101 has moved from the initial piston position Xc.
 図7の(c)に示すように、ピストン101の移動によってピストン101と直動部材104とが離れると、EPB荷重Pcが「0」になる。図7の(c)に示す状態では、液圧荷重Pbがピストン荷重に等しくなっている。 As shown in FIG. 7(c), when the piston 101 and the direct-acting member 104 are separated by movement of the piston 101, the EPB load Pc becomes "0". In the state shown in FIG. 7(c), the hydraulic load Pb is equal to the piston load.
 図6に例示したタイミングt24からタイミングt26までの期間において、比較例の電動駐車制動装置は、図7の(b)に示す状態を経て図7の(c)に示す状態に至る。
 図7の(d)は、図7の(c)に示す状態から直動部材104を初期ナット位置Xnから押圧方向に移動させた状態を示す。直動部材104とピストン101との接触によってEPB荷重Pcが再び発生している。図7の(d)に示す状態では、液圧荷重Pbの大きさは図7の(c)に示す状態と等しい。図7の(d)に示す状態では、液圧荷重PbにEPB荷重Pcが加算されることによって、ピストン荷重が第1荷重P1よりも大きい第2荷重P2に達している。
In the period from timing t24 to timing t26 illustrated in FIG. 6, the electric parking brake system of the comparative example goes through the state shown in FIG. 7(b) and reaches the state shown in FIG. 7(c).
FIG. 7(d) shows a state in which the linear motion member 104 is moved from the initial nut position Xn in the pressing direction from the state shown in FIG. 7(c). The EPB load Pc is generated again due to the contact between the direct-acting member 104 and the piston 101. In the state shown in FIG. 7(d), the magnitude of the hydraulic load Pb is equal to the state shown in FIG. 7(c). In the state shown in FIG. 7(d), the EPB load Pc is added to the hydraulic load Pb, so that the piston load has reached the second load P2, which is larger than the first load P1.
 図6に例示したタイミングt27からタイミングt28までの期間において、比較例の電動駐車制動装置は、図7の(d)に示す状態にある。
 以上のように、比較例の場合には、電動駐車制動装置による助勢を行う際に、図7の(b)に例示したように、液圧が増え始めても制動力が増大しない期間がある。このため、図6に例示したタイミングt24からタイミングt26のようにピストン荷重Paが増大しない期間がある。すなわち、比較例のようにセルフロック機構によって直動部材の位置を保持しており電気モータへの通電を停止している場合には、液圧の変動に応じてEPB荷重Pcによる助勢を応答性よく行うことができない場合があった。
In the period from timing t27 to timing t28 illustrated in FIG. 6, the electric parking brake system of the comparative example is in the state shown in FIG. 7(d).
As described above, in the case of the comparative example, when assisting with the electric parking brake system, there is a period in which the braking force does not increase even if the hydraulic pressure starts to increase, as illustrated in FIG. 7(b). Therefore, there is a period from timing t24 to timing t26 illustrated in FIG. 6 in which the piston load Pa does not increase. In other words, when the position of the linearly moving member is held by the self-locking mechanism and the power supply to the electric motor is stopped as in the comparative example, the assistance by the EPB load Pc is not responsive to fluctuations in fluid pressure. There were times when I couldn't do it well.
 さらに、図7の(c)に例示したように、液圧が増え始めてから制動力が増大し始めるまでの間に、EPB荷重Pcが一旦解消される期間がある。EPB荷重Pcが解消されてから再び付加されるようになるため、図6に例示したタイミングt26からタイミングt28までの期間のように、ピストン荷重Paが荷重P22から荷重P24まで増加する態様が直線的ではなくなる。荷重P22から荷重P23まで一旦増加した後に荷重P24まで増加することになるため、車両90の挙動を不安定にするおそれがある。たとえば、車両90のピッチング運動が大きくなるようなおそれがある。 Further, as illustrated in FIG. 7(c), there is a period in which the EPB load Pc is temporarily eliminated after the hydraulic pressure starts to increase until the braking force starts to increase. Since the EPB load Pc is reapplied after being eliminated, the manner in which the piston load Pa increases from load P22 to load P24 is linear, as in the period from timing t26 to timing t28 illustrated in FIG. It will no longer be. Since the load increases once from load P22 to load P23 and then increases to load P24, there is a risk that the behavior of vehicle 90 may become unstable. For example, there is a possibility that the pitching motion of the vehicle 90 may increase.
 これに対して本実施形態の制御装置10によれば、電流値Imが目標電流値Imt以下である間は、終了条件が成立するまで、アプライ処理が繰り返し実行される(S102、S103、およびS105)。このため、終了条件が成立するまでは、電流値Imが目標電流値Imtに達しても電気モータ71への通電が継続される。終了条件が成立するまでは、差分Dpが解消しても電気モータ71への通電が継続される。終了条件が成立するまでは、直動部材75の位置を保持している間も電気モータ71への通電が継続される。このように、助勢制御の実行中に電気モータ71への通電を停止した状態を継続することなく、差分Dpに対応する荷重をピストン87に作用させ続けることができる。これによって、助勢制御の実行中に目標制動力BPTが増大された場合に、すみやかに直動部材75を移動させることができる。液圧荷重Pbの増大に従って移動するピストン87に追従するように直動部材75を移動させることができる。すなわち、差分Dpの変動に対する応答性を確保することができる。 On the other hand, according to the control device 10 of the present embodiment, while the current value Im is equal to or lower than the target current value Imt, the apply process is repeatedly executed until the termination condition is satisfied (S102, S103, and S105). ). Therefore, until the end condition is satisfied, the electric motor 71 is continued to be energized even if the current value Im reaches the target current value Imt. Until the termination condition is satisfied, the electric motor 71 continues to be energized even if the difference Dp is resolved. Until the termination condition is satisfied, the electric motor 71 continues to be energized while the position of the linear motion member 75 is maintained. In this way, the load corresponding to the difference Dp can continue to be applied to the piston 87 without continuing the state in which the electric motor 71 is de-energized during execution of the assisting control. Thereby, when the target braking force BPT is increased during execution of assisting control, the linearly moving member 75 can be moved quickly. The linear member 75 can be moved to follow the piston 87, which moves as the hydraulic load Pb increases. That is, responsiveness to fluctuations in the difference Dp can be ensured.
 制御装置10によれば、差分Dpの変動に対する応答性を確保することができる。このため、比較例として図7の(c)に例示したようなEPB荷重Pcが一旦解消される状態が生じにくくなる。これによって、比較例において図6に例示したタイミングt26からタイミングt28までの期間とは異なり、ピストン荷重Paをリニアに増大させやすくなる。これによって、助勢制御の実行中に車両90の挙動が不安定になることを抑制できる。 According to the control device 10, responsiveness to fluctuations in the difference Dp can be ensured. For this reason, a state in which the EPB load Pc is temporarily eliminated, as illustrated in FIG. 7C as a comparative example, is less likely to occur. This makes it easier to linearly increase the piston load Pa, unlike the period from timing t26 to timing t28 illustrated in FIG. 6 in the comparative example. This can prevent the behavior of the vehicle 90 from becoming unstable during execution of the assistance control.
 助勢制御の実行中に制動力を一定に保持する場合には、アプライ処理において行われる電圧の印加によって直動部材75を移動させないこと、すなわちEPB荷重Pcを変動させないことが好ましい。制御装置10によれば、制動力を保持している間に直動部材75が移動したとしても、電流値Imが目標電流値Imtよりも大きくなると、リリース処理が実行される(S104)。これによって、EPB荷重Pcが過大になることを抑制できる。 When the braking force is held constant during execution of assisting control, it is preferable not to move the linear member 75 due to the voltage application performed in the apply process, that is, to not vary the EPB load Pc. According to the control device 10, even if the linear motion member 75 moves while the braking force is maintained, when the current value Im becomes larger than the target current value Imt, a release process is executed (S104). This can prevent the EPB load Pc from becoming excessive.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Example of change)
This embodiment can be modified and implemented as follows. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記実施形態では、助勢制御におけるアプライ処理として規定間隔毎にパルス出力する例を示した。これに替えて、高周波デューティ制御によって電流値Imが目標電流値Imtとなるように電気モータ71への通電を続けるように構成してもよい。高周波デューティ制御は、通常のデューティ比と比較してデューティ比を小さく変更して、PWM制御の周波数を高くする制御である。たとえば、駆動回路20が高周波発生器を備えている場合には、高周波デューティ制御を行うことができる。 - In the above embodiment, an example was shown in which pulses are output at prescribed intervals as the apply process in assist control. Alternatively, the electric motor 71 may be continuously energized by high frequency duty control so that the current value Im becomes the target current value Imt. High frequency duty control is control in which the duty ratio is changed to be smaller than the normal duty ratio, and the frequency of PWM control is increased. For example, if the drive circuit 20 includes a high frequency generator, high frequency duty control can be performed.
 ・制御装置10は、突入電流が発生してから収束するまでの時間を学習する機能を備えていてもよい。制御装置10は、突入電流の大きさを学習する機能を備えていてもよい。制御装置10は、学習の結果に基づいて、規定間隔を調整するようにしてもよい。たとえば、突入電流の学習結果を用いると、直動部材75を移動させることなくアプライ処理を行う間隔を、短くすることが可能になる。これによって、電流値Imが目標電流値Imtであるときにモータ回転数Nmを「0」とする精度を向上させることができる。 - The control device 10 may have a function of learning the time from when an inrush current occurs until it converges. The control device 10 may have a function of learning the magnitude of the inrush current. The control device 10 may adjust the prescribed interval based on the learning result. For example, by using the inrush current learning results, it becomes possible to shorten the interval at which the application process is performed without moving the direct-acting member 75. Thereby, it is possible to improve the accuracy of setting the motor rotation speed Nm to "0" when the current value Im is the target current value Imt.
 ・上記実施形態では、助勢制御の開始条件が成立している例として、倍力装置81に失陥がある場合について説明した。開始条件は、これに限定されるものではない。たとえば、液圧制動装置80における倍力装置81以外の部分に失陥が生じている場合にも、開始条件が成立していると判定してもよい。 - In the above embodiment, the case where there is a failure in the booster 81 has been described as an example in which the conditions for starting the assist control are satisfied. The starting conditions are not limited to these. For example, even if a failure occurs in a portion of the hydraulic braking device 80 other than the booster 81, it may be determined that the start condition is satisfied.
 運転支援制御において液圧制動装置80による制動力によって車両90の走行速度を調整する制御は、制動要求を持つ制御の一例である。すなわち、運転支援制御の制動要求を満たせない場合も、開始条件が成立していると判定することができる。運転支援制御が行われている場合には、運転支援制御が終了することが制動要求の解消に相当する。たとえば、運転支援制御によって設定されている目標地点に車両90が到達した場合に終了条件が成立したと判定することができる。 In the driving support control, the control that adjusts the traveling speed of the vehicle 90 by the braking force of the hydraulic braking device 80 is an example of control that has a braking request. That is, even when the braking request of driving support control cannot be satisfied, it can be determined that the start condition is satisfied. If driving support control is being performed, ending the driving support control corresponds to cancellation of the braking request. For example, it can be determined that the end condition is satisfied when the vehicle 90 reaches the target point set by the driving support control.
 その他、液圧制動力の目標値を設定して液圧制動力の調整に介入し得る制御であれば制動要求があるといえる。これらの制御による制動要求を満たせない場合にも開始条件が成立していると判定することができる。すなわち、上記実施形態における助勢制御を適用できる。 In addition, any control that can intervene in adjusting the hydraulic braking force by setting a target value of the hydraulic braking force can be said to be a braking request. Even when the braking request cannot be satisfied by these controls, it can be determined that the start condition is satisfied. That is, the assistance control in the above embodiment can be applied.
 ・処理回路である制御装置10、液圧制御ユニット40が備える処理回路、および支援制御ユニット50が備える処理回路は、以下[a]~[c]のいずれかの構成であればよい。[a]コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備える回路。プロセッサは、処理装置を備える。処理装置の例は、CPU、DSPおよびGPU等である。プロセッサは、メモリを備える。メモリの例は、RAM、ROMおよびフラッシュメモリ等である。メモリは、処理を処理装置に実行させるように構成されたプログラムコードまたは指令を格納している。メモリすなわちコンピュータ可読媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。[b]各種処理を実行する一つ以上のハードウェア回路を備える回路。ハードウェア回路の例は、ASIC(Application Specific Integrated Circuit)、CPLD(Complex Programmable Logic Device)およびFPGA(Field Programmable Gate Array)等である。[c]各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうち残りの処理を実行するハードウェア回路と、を備える回路。 - The control device 10, which is a processing circuit, the processing circuit included in the hydraulic pressure control unit 40, and the processing circuit included in the support control unit 50 may have any of the configurations [a] to [c] below. [a] A circuit that includes one or more processors that execute various processes according to a computer program. The processor includes a processing device. Examples of processing devices are CPUs, DSPs, GPUs, and the like. The processor includes memory. Examples of memory are RAM, ROM, flash memory, and the like. The memory stores program code or instructions configured to cause the processing device to perform operations. Memory or computer-readable media includes any available media that can be accessed by a general purpose or special purpose computer. [b] A circuit that includes one or more hardware circuits that perform various processes. Examples of hardware circuits include ASIC (Application Specific Integrated Circuit), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). [c] A circuit that includes a processor that executes a part of various processes according to a computer program, and a hardware circuit that executes the remaining processes among the various processes.
 ・液圧制御ユニット40が備える処理回路、および支援制御ユニット50が備える処理回路が実現する機能の一部または全部は、制御装置10によって実現されてもよい。
 ・制御装置10が実現する機能の一部は、制御装置10と接続されている他の処理回路によって実現されてもよい。
- A part or all of the functions realized by the processing circuit included in the hydraulic control unit 40 and the processing circuit included in the support control unit 50 may be realized by the control device 10.
- Some of the functions realized by the control device 10 may be realized by other processing circuits connected to the control device 10.

Claims (3)

  1.  車輪と一体に回転する回転部材と、前記回転部材に押し付けられる摩擦材と、ブレーキ液が供給されるシリンダと、前記シリンダ内の液圧に応じて前記摩擦材を前記回転部材に押し付けるピストンと、によって構成されており、前記回転部材に前記摩擦材が押し付けられる荷重に応じて前記車輪に制動力を発生させる液圧制動装置と、
     電気モータと、前記電気モータの回転運動を直線運動に変換する変換機構と、前記変換機構によって直線運動されるものであり前記シリンダ内に配置されている直動部材と、によって構成されており、前記直動部材が前記ピストンを介して前記回転部材に前記摩擦材を押し付けることで前記回転部材に前記摩擦材が押し付けられる荷重を生じさせる電動駐車制動装置と、を有している車両であり、制動要求に応じて前記液圧制動装置によって制動力を発生させることができる前記車両に適用され、
     前記電動駐車制動装置を制御する制動制御装置であって、
     前記電気モータを駆動するための駆動信号を出力するモータ制御部と、
     前記車両の制動中に前記液圧制動装置によって付与される制動力によって前記制動要求に対応する目標制動力を満たせない場合に、前記目標制動力と、前記液圧制動装置によって付与される制動力と、の差分に対応する荷重を前記電動駐車制動装置によって生じさせるように、前記回転部材に押し付けられる前記摩擦材を前記直動部材によって助勢させる助勢制御を実行する助勢制御部と、を備え、
     前記助勢制御部は、前記助勢制御では、前記直動部材が前記ピストンに押し付けられる荷重を増加させる方向に前記電気モータを駆動させる電圧を前記電気モータに印加するアプライ処理を行うものであり、前記車両に実際に作用する実制動力が前記目標制動力に達した後も前記アプライ処理を行う
     制動制御装置。
    A rotating member that rotates together with the wheel, a friction material that is pressed against the rotating member, a cylinder that is supplied with brake fluid, and a piston that presses the friction material against the rotating member according to hydraulic pressure in the cylinder. a hydraulic braking device that generates a braking force on the wheel according to the load that the friction material is pressed against the rotating member;
    It is composed of an electric motor, a conversion mechanism that converts the rotational motion of the electric motor into linear motion, and a linear motion member that is linearly moved by the conversion mechanism and is disposed within the cylinder, an electric parking braking device in which the linearly moving member presses the friction material against the rotating member via the piston, thereby generating a load that causes the friction material to be pressed against the rotating member; Applied to the vehicle capable of generating a braking force by the hydraulic braking device in response to a braking request,
    A brake control device that controls the electric parking brake device,
    a motor control unit that outputs a drive signal for driving the electric motor;
    When the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device during braking of the vehicle, the target braking force and the braking force applied by the hydraulic braking device and an assistance control unit that executes assistance control in which the linear motion member assists the friction material pressed against the rotating member so that the electric parking brake device generates a load corresponding to the difference between
    In the assisting control, the assisting control unit performs an apply process of applying a voltage to the electric motor to drive the electric motor in a direction that increases the load with which the direct-acting member is pressed against the piston; A brake control device that performs the apply processing even after the actual braking force actually acting on the vehicle reaches the target braking force.
  2.  前記差分に対応する荷重を前記電気モータの駆動によって生じさせる電流値を目標電流値として、
     前記助勢制御部は、前記助勢制御において前記アプライ処理を行う際には、前記電気モータに流れる電流値が前記目標電流値となるように前記アプライ処理を規定間隔毎に実施することによって、前記電気モータに対する通電と通電の停止とを繰り返す
     請求項1に記載の制動制御装置。
    A current value that causes a load corresponding to the difference to be generated by driving the electric motor is set as a target current value,
    When performing the apply process in the support control, the assist control unit performs the apply process at regular intervals so that a current value flowing through the electric motor becomes the target current value. The brake control device according to claim 1, wherein the motor is repeatedly energized and de-energized.
  3.  前記助勢制御部は、
     前記電気モータに流れる電流値が前記目標電流値以下である場合には、前記アプライ処理を行う一方で、
     前記アプライ処理を実施したことによって前記電気モータに流れる電流値が前記目標電流値よりも大きくなった場合には、前記規定間隔毎に前記アプライ処理を実施することに替えて、前記直動部材が前記ピストンに押し付けられる荷重を減少させる方向に前記電気モータを駆動させる電圧を前記電気モータに印加するリリース処理を行う
     請求項2に記載の制動制御装置。
    The assistance control section includes:
    If the current value flowing through the electric motor is less than or equal to the target current value, while performing the apply process,
    If the current value flowing through the electric motor becomes larger than the target current value as a result of performing the apply process, instead of performing the apply process at each specified interval, the direct-acting member may The brake control device according to claim 2, wherein a release process is performed to apply a voltage to the electric motor to drive the electric motor in a direction that reduces the load pressed against the piston.
PCT/JP2023/008897 2022-03-08 2023-03-08 Braking control device WO2023171723A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-035073 2022-03-08
JP2022035073A JP2023130657A (en) 2022-03-08 2022-03-08 Braking control device

Publications (1)

Publication Number Publication Date
WO2023171723A1 true WO2023171723A1 (en) 2023-09-14

Family

ID=87935262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008897 WO2023171723A1 (en) 2022-03-08 2023-03-08 Braking control device

Country Status (2)

Country Link
JP (1) JP2023130657A (en)
WO (1) WO2023171723A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173056A (en) * 2008-01-21 2009-08-06 Toyota Motor Corp Brake control device
JP2020001523A (en) * 2018-06-27 2020-01-09 日立オートモティブシステムズ株式会社 Electric brake device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173056A (en) * 2008-01-21 2009-08-06 Toyota Motor Corp Brake control device
JP2020001523A (en) * 2018-06-27 2020-01-09 日立オートモティブシステムズ株式会社 Electric brake device

Also Published As

Publication number Publication date
JP2023130657A (en) 2023-09-21

Similar Documents

Publication Publication Date Title
KR102142028B1 (en) Brake system
JP5514805B2 (en) Brake control device
US10259439B2 (en) Electric parking brake control and method
EP2019010B1 (en) Hydraulic braking device
US20210031741A1 (en) Hydraulic motor vehicle braking system and method for operating same
US10005442B2 (en) Brake control device
EP2163445A2 (en) Brake control system
CN106256625B (en) Method for checking the braking force in a motor vehicle
CN111712412A (en) Electric brake device and electric brake control device
US10391988B2 (en) Method for operating an automated parking brake
JP2019130939A (en) Electric brake device
CN112041203B (en) Brake control device
JP2014097687A (en) Brake control device
CN110325414B (en) Vehicle brake control device
WO2021200459A1 (en) Electric brake device and electric brake control device
JP6221118B2 (en) Brake system
US11046297B2 (en) Method for checking the braking force in a vehicle
WO2023171723A1 (en) Braking control device
JP2019157921A (en) Electric brake device and electric brake control device
JP2018114940A (en) Brake system
WO2024043325A1 (en) Braking control device
JP6252804B2 (en) Vehicle stop maintenance device
CN108778871B (en) Method for providing braking force in a vehicle
JP5641324B2 (en) Brake control device
JP7459773B2 (en) Vehicle Braking System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766899

Country of ref document: EP

Kind code of ref document: A1