WO2024043325A1 - Braking control device - Google Patents

Braking control device Download PDF

Info

Publication number
WO2024043325A1
WO2024043325A1 PCT/JP2023/030659 JP2023030659W WO2024043325A1 WO 2024043325 A1 WO2024043325 A1 WO 2024043325A1 JP 2023030659 W JP2023030659 W JP 2023030659W WO 2024043325 A1 WO2024043325 A1 WO 2024043325A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
epb
control unit
hydraulic
parking brake
Prior art date
Application number
PCT/JP2023/030659
Other languages
French (fr)
Japanese (ja)
Inventor
邦彦 鈴木
諒 三浦
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2024043325A1 publication Critical patent/WO2024043325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/176Brake regulation specially adapted to prevent excessive wheel slip during vehicle deceleration, e.g. ABS

Definitions

  • the present invention relates to a braking control device for a vehicle.
  • Patent Document 1 discloses an electric parking brake device configured to press a friction material against a rotating body that rotates together with a wheel by driving an electric motor, and a control device for the electric parking brake device. .
  • the friction material is pressed against the rotating body in response to the movement of the linearly moving member that converts the rotational motion of the electric motor into a linear motion.
  • the control device disclosed in Patent Document 1 is configured to suppress excessive movement of the linearly moving member by estimating the position of the linearly moving member.
  • the electric parking brake device may be activated while the vehicle is running.
  • a load that presses the friction material against the rotating body may be generated with assistance from an electric parking brake device.
  • a load generated according to the hydraulic pressure is involved in pressing the friction material against the rotating body.
  • the position of the translational member and the magnitude of the EPB load may not necessarily correlate.
  • the position of the translational member where the EPB load begins to occur when no hydraulic pressure is generated is different from the position of the translational member where the EPB load begins to occur when the hydraulic pressure is generated.
  • Patent Document 1 does not consider the case where braking force is generated by both a hydraulic brake device and an electric parking brake device. Therefore, there is room for improvement in control when generating braking force by both the hydraulic braking device and the electric parking braking device.
  • a braking control device for solving the above problem applies a braking force to the wheel by adjusting the hydraulic pressure in the wheel cylinder to generate a load that presses a friction material against a rotating body that rotates together with the wheel.
  • a brake control device that is applied to a vehicle that has a hydraulic brake device that generates a load, and an electric parking brake device that generates a load that causes the friction material to be pressed against the rotating body in accordance with the rotational movement of an electric motor. The friction material is pressed against the rotating body so that a braking force is generated by a load generated by the electric parking brake device in addition to a load generated by the hydraulic brake device when braking the vehicle.
  • An assistance control unit that executes assistance control to be assisted by the electric parking brake device, and a load generated by the electric parking brake device as an EPB load, and a value corresponding to the EPB load is acquired to prevent generation of the EPB load.
  • a load detection unit that detects a deceleration slip of the wheel, and a slip detection unit that detects a deceleration slip of the wheel, and when the deceleration slip of the wheel is detected, the assistance control unit detects that the EPB load is detected. In this case, a release process is executed to drive the electric motor in a direction to reduce the EPB load, while the release process is not executed when the occurrence of the EPB load is not detected. shall be.
  • anti-lock brake control for example, is executed in order to suppress the wheel from locking. Even during execution of the assistance control, if deceleration slip of the wheels is detected, it is preferable to adjust the braking force in order to suppress the locking of the wheels.
  • the release process even if the release process is performed in a state where no EPB load is generated during execution of the assist control, the release process will not contribute to the reduction of the braking force. Not only that, but unnecessary release processing may cause the electric parking brake system to operate excessively in a direction that reduces the EPB load.
  • the release process if the occurrence of an EPB load is detected when deceleration slip of the wheel is detected, the release process is executed. On the other hand, even when deceleration slip of the wheels is detected, if the generation of EPB load is not detected, the release process is not executed. Therefore, release processing can be executed at an appropriate opportunity. This can prevent excessive release processing from being performed.
  • FIG. 1 is a schematic diagram showing an embodiment of a brake control device and a vehicle to be controlled by the brake control device.
  • FIG. 2 is a flowchart showing the flow of processing performed by the brake control device of FIG. 1 during execution of assistance control using the electric parking brake device.
  • FIG. 3 is a flowchart showing the flow of processing performed by the brake control device of FIG. 1 during execution of assistance control using the electric parking brake device.
  • FIG. 4 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control in a vehicle to which the brake control device of FIG. 1 is applied.
  • FIG. 5 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control for a vehicle to which the brake control device of FIG. 1 is applied.
  • FIG. 1 is a schematic diagram showing an embodiment of a brake control device and a vehicle to be controlled by the brake control device.
  • FIG. 2 is a flowchart showing the flow of processing performed by the brake control device of FIG. 1
  • FIG. 6 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control for a vehicle to which the brake control device of FIG. 1 is applied.
  • FIG. 7 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control with respect to a vehicle to which the brake control device of FIG. 1 is applied.
  • FIG. 1 shows a control device 10 as a brake control device and a vehicle 90 to which the control device 10 is applied.
  • Vehicle 90 is, for example, a four-wheeled vehicle.
  • FIG. 1 illustrates one wheel 91 among the wheels included in a vehicle 90.
  • the vehicle 90 includes a hydraulic braking device 80.
  • the hydraulic braking device 80 is used as a service brake.
  • the vehicle 90 includes a brake operation member 92 that can be operated by the driver of the vehicle 90.
  • the brake operating member 92 is a brake pedal.
  • the driver can generate a braking force via the hydraulic braking device 80 to brake the vehicle 90.
  • the operation of the brake operation member 92 corresponds to a brake request by the driver.
  • the vehicle 90 is equipped with an electric parking brake device 70.
  • the electric parking brake device 70 can be used as a parking brake.
  • the electric parking brake device 70 can also be operated while the vehicle 90 is traveling, as will be described later.
  • the hydraulic braking device 80 includes a hydraulic pressure generating device.
  • the hydraulic braking device 80 includes a hydraulic actuator 84.
  • the hydraulic braking device 80 includes a braking mechanism corresponding to each wheel. The braking mechanism can apply braking force to the corresponding wheel.
  • the braking mechanism is composed of a rotating body 89 that rotates integrally with the wheel 91, and a brake caliper 85.
  • the brake caliper 85 includes a wheel cylinder 86, a piston 87 disposed within the wheel cylinder 86, and a friction material 88 that can be pressed against a rotating body 89.
  • a friction material 88 is attached to the surface of the piston 87 facing the rotating body 89.
  • a supply/discharge hole 86a for supplying brake fluid into the wheel cylinder 86 is formed in the wheel cylinder 86.
  • An example of a braking mechanism is a disc brake.
  • the braking mechanism can generate frictional braking force on the wheels 91 according to the hydraulic pressure in the wheel cylinders 86.
  • the hydraulic pressure within the wheel cylinder 86 may also be referred to as WC pressure.
  • the braking mechanism is configured such that the higher the WC pressure, the greater the force that presses the friction material 88 against the rotating body 89. That is, the braking mechanism can apply a greater braking force to the wheels 91 as the WC pressure is higher.
  • the force with which the friction material 88 is pressed against the rotating body 89 in accordance with the WC pressure will be referred to as a hydraulic load.
  • the hydraulic braking device 80 includes a booster 81, a master cylinder 82, and a reservoir tank 83 in which brake fluid is stored.
  • the hydraulic pressure generator includes a booster 81, a master cylinder 82, and a reservoir tank 83.
  • the booster 81 can assist the operation of the brake operating member 92 and transmit the assisted operating force to the master cylinder 82.
  • a known booster can be appropriately employed.
  • examples of the booster include a negative pressure booster, a hydraulic booster, an electric booster, and the like.
  • the master cylinder 82 generates hydraulic pressure in response to the operation of the brake operation member 92.
  • the hydraulic pressure generated by the master cylinder 82 may also be referred to as MC pressure.
  • the master cylinder 82 pumps brake fluid in an amount corresponding to the MC pressure to the hydraulic actuator 84 .
  • the hydraulic actuator 84 is arranged between the master cylinder 82 and the wheel cylinder 86. Brake fluid is supplied from master cylinder 82 to wheel cylinder 86 via hydraulic actuator 84 .
  • the hydraulic actuator 84 includes a flow path for brake fluid.
  • the brake fluid flow path is connected to a wheel cylinder corresponding to each wheel.
  • the hydraulic actuator 84 includes, for example, a plurality of electromagnetic valves disposed in the flow path, a pump disposed in the flow path, a pump drive motor for driving the pump, and the like.
  • the electric parking brake device 70 shares a part of the structure with the brake mechanism in the hydraulic brake device 80.
  • the electric parking brake device 70 includes an electric motor 71.
  • the electric parking brake device 70 includes an output shaft member 74 that rotates in accordance with the drive of the electric motor 71.
  • the electric parking brake device 70 includes a transmission mechanism 72 that transmits the driving force of an electric motor 71 to an output shaft member 74.
  • a rotating shaft member 71a of the electric motor 71 is connected to the transmission mechanism 72 as an input shaft.
  • the transmission mechanism 72 includes, for example, a speed reduction mechanism.
  • the electric parking brake device 70 includes a conversion mechanism 73.
  • the conversion mechanism 73 is a mechanism that converts the rotational motion of the electric motor 71 into linear motion.
  • An example of the conversion mechanism 73 is a feed screw constituted by a screw shaft and a nut.
  • the electric parking brake device 70 includes, for example, a linear motion member 75 that constitutes a conversion mechanism 73.
  • the conversion mechanism 73 includes an output shaft member 74 and a linear motion member 75.
  • the output shaft member 74 corresponds to a screw shaft. That is, a male thread is formed on the outer peripheral surface of the output shaft member 74.
  • a linear motion member 75 is attached to the output shaft member 74.
  • the linear member 75 corresponds to a nut.
  • the linear motion member 75 has a cylindrical shape with a female thread formed on the inner peripheral surface.
  • the male thread of the output shaft member 74 and the female thread of the linear motion member 75 are engaged. Therefore, when the output shaft member 74 rotates, the linear motion member 75 moves in a direction extending along the axis of the output shaft member 74.
  • the linear motion member 75 is linearly moved by the conversion mechanism 73.
  • the direction in which the translational member 75 moves is determined by one or the other direction extending along the axis of the output shaft member 74, depending on the rotation direction of the output shaft member 74.
  • the conversion mechanism 73 includes a self-locking mechanism.
  • the self-locking mechanism maintains the position of the linearly moving member 75 even if a force acts on the linearly moving member 75 in the direction in which the linearly moving member 75 moves linearly when the rotation of the output shaft member 74 is stopped. This is the mechanism by which The self-locking mechanism is realized, for example, by the frictional force caused by the engagement between the male thread of the output shaft member 74 and the female thread of the linear motion member 75.
  • the linear motion member 75 is arranged within the wheel cylinder 86.
  • the direct-acting member 75 presses the friction material 88 against the rotating body 89 via the piston 87, thereby generating a load that causes the friction material 88 to be pressed against the rotating body 89.
  • the load generated by the electric parking brake device 70 in this manner may be referred to as an EPB load hereinafter.
  • the electric parking brake device 70 is not limited to a configuration in which the direct-acting member 75 directly contacts the piston 87 when the EPB load is applied.
  • the electric parking brake device 70 may have a configuration in which a pusher is interposed between the linear motion member 75 and the piston 87.
  • the pusher can be separated from the linear motion member 75 and the piston 87.
  • Another example of the presser is attached to the tip of the translational member 75.
  • the electric parking brake device 70 is configured such that the linear motion member 75 moves in a direction toward the piston 87 when the rotating shaft member 71a of the electric motor 71 rotates in the first direction.
  • the electric parking brake device 70 moves the linear motion member 75 in the direction away from the piston 87. is configured to do so.
  • the direction in which the direct-acting member 75 approaches the piston 87 in the direction extending along the axis of the output shaft member 74 will be referred to as the pressing direction.
  • the electric parking brake device 70 is provided, for example, in each brake mechanism corresponding to a rear wheel among the wheels included in the vehicle 90.
  • the electric parking brake device 70 may be provided in each brake mechanism corresponding to a front wheel among the wheels included in the vehicle 90.
  • the electric parking brake device 70 may be provided in all braking mechanisms, or may be provided in one braking mechanism.
  • the electric parking brake device 70 includes a control unit 30.
  • the control unit 30 can individually adjust the load generated on each wheel by the electric parking brake device 70.
  • the control unit 30 includes peripheral circuits.
  • the control unit 30 includes the control device 10 and peripheral circuits.
  • the drive circuit 20 shown in FIG. 1 is an example of a peripheral circuit included in the control unit 30.
  • the drive circuit 20 is a circuit that supplies power to the electric motor 71.
  • the drive circuit 20 is connected to an on-vehicle battery mounted on a vehicle 90.
  • the drive circuit 20 is controlled by the control device 10.
  • the drive circuit 20 includes means for detecting the current value Im flowing through the electric motor 71.
  • the drive circuit 20 includes a current detection circuit.
  • the drive circuit 20 may include a current sensor.
  • the drive circuit 20 may include means for detecting the voltage value applied to the electric motor 71.
  • the drive circuit 20 may include a voltage sensor.
  • the drive circuit 20 may include a voltage detection circuit.
  • FIG. 1 shows a wheel speed sensor SE1, a pressure sensor SE2, and a manipulated variable sensor SE3 as examples of various sensors. Detection signals from various sensors are input to the control device 10.
  • Wheel speed sensor SE1 is a sensor that detects wheel speed. Wheel speed sensor SE1 is provided at each wheel.
  • Pressure sensor SE2 is a sensor that detects hydraulic pressure corresponding to the braking force applied by hydraulic braking device 80.
  • An example of the pressure sensor SE2 is a sensor that detects MC pressure.
  • Another example of the pressure sensor SE2 is a sensor that detects WC pressure. Based on the detection signal from the pressure sensor SE2, the control device 10 can acquire the hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80.
  • the operation amount sensor SE3 is a sensor that detects the operation amount of the brake operation member 92. Based on the detection signal from the operation amount sensor SE3, the control device 10 can acquire the operation amount of the brake operation member 92.
  • An example of the operation amount is the displacement amount of the brake operation member 92 that is displaced by the driver's operation.
  • Another example of the operation amount is the operation force applied to the brake operation member 92 by the driver.
  • Vehicle 90 may also include other control units.
  • a vehicle 90 may include a hydraulic pressure control unit 40.
  • Vehicle 90 may include support control unit 50 .
  • Each control unit is connected to be able to communicate with each other via an in-vehicle network 99.
  • Each control unit includes a processing circuit for realizing each function.
  • the support control unit 50 can perform driving support control that automatically adjusts the traveling speed of the vehicle 90.
  • driving support control include automatic driving, automatic parking, adaptive cruise control, lane keep assist, downhill assist, and collision avoidance braking.
  • the hydraulic control unit 40 can control the hydraulic braking device 80.
  • the hydraulic control unit 40 has a function of determining whether or not the hydraulic braking device 80 has malfunctioned.
  • the hydraulic control unit 40 can detect a failure of the booster 81.
  • the target braking force BPT is a value corresponding to a braking request.
  • Target braking force BPT is a target value of braking force to be applied to vehicle 90.
  • the target braking force BPT can be calculated based on the amount of operation of the brake operation member 92.
  • the hydraulic braking force BPP is an estimated value of the braking force applied by the hydraulic braking device 80.
  • the hydraulic braking force BPP can be calculated based on the detection signal from the pressure sensor SE2.
  • As the determination value a value calculated in advance through experiments or the like can be used.
  • the hydraulic control unit 40 may have a function of controlling the hydraulic actuator 84. For example, there is a function to control the brake fluid supplied to each wheel cylinder 86 and adjust each WC pressure individually.
  • the hydraulic pressure control unit 40 may have a function of adjusting the WC pressure according to driving support control executed by the support control unit 50.
  • the hydraulic control unit 40 may have a function of calculating the wheel speed of each wheel 91 based on the detection signal from the wheel speed sensor SE1.
  • the hydraulic control unit 40 can also calculate the vehicle speed based on the speed of each wheel.
  • the vehicle speed indicates the traveling speed of the vehicle 90.
  • the hydraulic control unit 40 may have a function of calculating the slip amount of each wheel 91.
  • the amount of slip of the wheels 91 can be calculated based on the vehicle speed and the wheel speed.
  • the hydraulic control unit 40 may have a function of determining whether deceleration slip occurs in each wheel 91. For example, if the amount of slip exceeds a prescribed determination amount, it can be determined that deceleration slip has occurred.
  • the hydraulic control unit 40 can also perform anti-lock brake control.
  • anti-lock brake control will be referred to as ABS control.
  • ABS control is control that suppresses locking of wheels 91 by reducing the amount of slip of wheels 91 through adjustment of braking force when braking vehicle 90 .
  • the hydraulic control unit 40 can start ABS control when deceleration slip is detected.
  • the hydraulic control unit 40 operates the hydraulic braking device 80 to adjust the WC pressure according to the amount of slip.
  • the control device 10 is a processing circuit made up of a plurality of functional units that perform various controls.
  • FIG. 1 shows a slip detection section 11, a hydraulic pressure detection section 12, a load detection section 13, a motor control section 14, and an assistance control section 15 as examples of functional sections.
  • Each functional unit included in the control device 10 is capable of transmitting and receiving information to and from each other.
  • the slip detection unit 11 detects deceleration slip of the wheels 91. For example, the slip detection unit 11 can acquire information indicating whether deceleration slip has occurred. As another example, the slip detection unit 11 can also determine whether a deceleration slip has occurred. For example, the slip detection unit 11 can detect the occurrence of deceleration slip when the amount of slip exceeds a prescribed determination amount. As the slip amount, a value calculated by the hydraulic pressure control unit 40 can be obtained. The slip detection unit 11 may calculate the amount of slip.
  • the hydraulic pressure detection unit 12 detects the hydraulic pressure generated by the operation of the hydraulic braking device 80. For example, the hydraulic pressure detection unit 12 acquires the MC pressure. The hydraulic pressure detection unit 12 detects the occurrence of hydraulic pressure when the MC pressure is greater than "0". The hydraulic pressure detection unit 12 may be configured to acquire the WC pressure and detect the occurrence of hydraulic pressure when the WC pressure is greater than "0".
  • the load detection unit 13 detects the occurrence of an EPB load by acquiring a value corresponding to the EPB load. As an example, the load detection unit 13 acquires a current value Im flowing through the electric motor 71.
  • the load detection unit 13 is configured to detect the occurrence of an EPB load when the absolute value of the current value Im is larger than a current determination value Imth, which is a prescribed threshold value.
  • the current value Im corresponds to a value according to the EPB load.
  • the current determination value Imth is, for example, equal to the magnitude of the current flowing through the electric motor 71 when no EPB load is generated. That is, the no-load current value of the electric motor 71 can be adopted as the current determination value Imth.
  • the current determination value Imth may be a value larger than the current value flowing through the electric motor 71 when no EPB load is generated.
  • the value that the load detection unit 13 acquires as the current value Im takes into consideration the inrush current flowing through the electric motor 71, and is the value after the inrush current has converged. For example, the load detection unit 13 acquires the current value Im every time a voltage is applied to the electric motor 71. For example, the load detection unit 13 acquires the current value Im immediately before the voltage application is stopped.
  • the load detection unit 13 is configured to obtain a value corresponding to the EPB load based on the total load of the friction material 88 being pressed against the rotating body 89 and the hydraulic pressure detected by the hydraulic pressure detection unit 12. It's okay.
  • the value obtained by subtracting the hydraulic load from the total load corresponds to the EPB load.
  • the total load can be detected by a load sensor.
  • the motor control unit 14 drives the electric motor 71 by PWM (Pulse Width Modulation) control. That is, the motor control unit 14 generates a drive signal and outputs the drive signal to the drive circuit 20.
  • the electric motor 71 is driven by switching the drive circuit 20 according to the drive signal.
  • the motor control unit 14 sets a target current value Imt as a target value of the current value Im of the electric motor 71.
  • the motor control unit 14 calculates the duty ratio of the drive signal based on the target current value Imt.
  • the motor control unit 14 generates a drive signal based on the duty ratio.
  • Processes for driving the electric motor 71 include apply processing and release processing.
  • the apply process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft member 71a of the electric motor 71 rotates in the first direction. That is, the apply process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that increases the load with which the linear motion member 75 is pressed against the piston 87 . In other words, the apply process is a process in which the electric motor 71 is driven in a direction that increases the load that presses the friction material 88 against the rotating body 89.
  • the release process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft member 71a of the electric motor 71 rotates in the second direction. That is, the release process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that reduces the load with which the linear motion member 75 is pressed against the piston 87 . In other words, the release process is a process in which the electric motor 71 is driven in a direction that reduces the load pressing the friction material 88 against the rotating body 89. For example, in the apply process, a positive voltage is applied to the electric motor 71. In this case, a negative voltage is applied to the electric motor 71 in the release process.
  • the assistance control unit 15 can execute assistance control.
  • braking force can be generated by the load generated by the electric parking brake device 70 in addition to the load generated by the hydraulic brake device 80 when braking the vehicle 90.
  • the friction material 88 pressed against the rotary body 89 is assisted by the linear motion member 75 of the electric parking brake device 70 .
  • the assistance control is started by the assistance control unit 15, for example, when a start condition is satisfied.
  • the assistance control unit 15 determines that the start condition is satisfied when the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device 80 during braking of the vehicle 90.
  • the braking of the vehicle 90 is a state in which braking force is applied to the vehicle 90 while the vehicle 90 is running.
  • the assistance control unit 15 determines that the start condition is satisfied when the hydraulic braking device 80 has malfunctioned.
  • An example of failure of the hydraulic braking device 80 is failure of the booster 81. Whether or not a failure has occurred in the hydraulic braking device 80 can be determined, for example, by obtaining the result of failure determination performed by the hydraulic pressure control unit 40.
  • the assistance control unit 15 acquires the values of the target braking force BPT and the hydraulic braking force BPP during braking, and determines that the start condition is satisfied when there is a discrepancy between the target braking force BPT and the hydraulic braking force BPP. It can also be determined that For example, whether or not there is a deviation between the target braking force BPT and the hydraulic braking force BPP can be determined based on whether or not the width of the deviation is larger than a determination value.
  • the determination value used here may be the same value as the determination value used when determining failure of the hydraulic braking device 80, or may be a different value.
  • the assistance control may be started when the electric parking brake system 70 is allowed to operate while the vehicle 90 is running, regardless of whether the start condition is satisfied or not. For example, if the EPB switch is turned on, it can be determined that the electric parking brake system 70 is permitted to operate.
  • the EPB switch is, for example, a switch that can be operated by the driver of the vehicle 90.
  • the assistance control unit 15 calculates a target current value Imt as a target value of the current value Im flowing through the electric motor 71 through the apply process.
  • the assistance control section 15 causes the motor control section 14 to drive the electric motor 71 based on the calculated target current value Imt.
  • the assistance control unit 15 calculates the target current value Imt as follows.
  • the assisting control unit 15 calculates a difference by subtracting the hydraulic braking force BPP from the target braking force BPT.
  • the assist control unit 15 calculates a target value of the EPB load so that a braking force corresponding to the difference can be applied by the EPB load.
  • the assisting control unit 15 calculates a target current value Imt at which the target value of the EPB load can be applied.
  • the assistance control unit 15 executes the apply process when the current value Im is equal to or less than the target current value Imt.
  • the assistance control unit 15 can execute the release process when the current value Im is larger than the target current value Imt.
  • the assistance control is terminated by the assistance control unit 15, for example, when the termination condition is satisfied.
  • termination conditions will be explained.
  • the assistance control unit 15 can determine that the termination condition has been satisfied when the vehicle 90 has stopped.
  • stopping the vehicle 90 means, for example, that the vehicle body speed of the vehicle 90 changes from a state where the vehicle 90 is running to a state of "0". Stopping the vehicle 90 may include a state where the vehicle speed is just before reaching "0" and the vehicle body speed is slightly higher than "0". It is also possible to determine whether the vehicle 90 has stopped based not only on the vehicle body speed but also on the wheel speed, the longitudinal acceleration of the vehicle 90, and the like.
  • the assistance control unit 15 can also determine that the termination condition is satisfied when the vehicle speed becomes equal to or less than the determination speed. That is, the assistance control may be ended while the vehicle 90 is decelerating but has not yet come to a stop.
  • the assistance control unit 15 can also determine that the termination condition is satisfied, for example, when the braking request is canceled. For example, when the operation of the brake operation member 92 is canceled, it can be determined that the brake request is canceled.
  • the assistance control unit 15 has a function of controlling the electric parking brake system 70 to suppress locking of the wheels 91 when deceleration slip is detected during execution of assistance control.
  • FIG. 2 shows an example of the flow of processing executed by the assistance control unit 15 during execution of assistance control.
  • the processing routine shown in FIG. 2 is repeatedly executed at predetermined intervals during execution of assist control.
  • this processing routine is started, first in step S101, the assistance control unit 15 determines whether a deceleration slip is occurring. If a deceleration slip is not detected by the slip detection unit 11 (S101: NO), the assistance control unit 15 temporarily ends this processing routine. On the other hand, if the slip detection section 11 detects a deceleration slip (S101: YES), the assistance control section 15 shifts the process to step S102. Note that the electric motor 71 is not controlled using the target current value Imt from the start to the end of this processing routine.
  • step S102 the assistance control unit 15 determines whether or not hydraulic pressure is generated. If the hydraulic pressure is detected by the hydraulic pressure detection section 12 (S102: YES), the assistance control section 15 moves the process to step S103.
  • step S103 the assistance control unit 15 determines whether an EPB load is occurring. Specifically, when the load detection unit 13 determines that the absolute value of the current value Im is larger than the current determination value Imth, it is determined that the EPB load is occurring. That is, when the absolute value of the current value Im is larger than the current determination value Imth (S103: YES), the assistance control unit 15 moves the process to step S104.
  • step S104 the assistance control unit 15 performs a release process.
  • the linear member 75 moves in a direction in which the EPB load decreases.
  • the assisting control unit 15 ends the application of the voltage. Thereafter, the assistance control unit 15 ends this processing routine.
  • step S103 if the absolute value of the current value Im is less than or equal to the current determination value Imth, that is, if no EPB load is generated (S103: NO), the assisting control unit 15 skips the process to step S103. The process moves to S105.
  • step S105 the assistance control unit 15 puts the electric parking brake system 70 on standby without applying voltage to the electric motor 71. Thereafter, the assistance control unit 15 ends this processing routine.
  • step S102 if the hydraulic pressure is not detected by the hydraulic pressure detection unit 12 (S102: NO), the assistance control unit 15 moves the process to step S104. After executing the release process, the assistance control unit 15 ends this process routine.
  • the assistance control unit 15 can also end the assistance control if the deceleration slip continues during the execution of the assistance control.
  • FIG. 3 shows the flow of processing executed by the assistance control unit 15 during execution of assistance control. The processing routine shown in FIG. 3 is repeatedly executed at predetermined intervals during execution of the assistance control.
  • step S201 the assistance control unit 15 determines whether or not deceleration slip continues.
  • the continuation of the deceleration slip means, for example, that the deceleration slip is not resolved even if the release process is performed as the process in step S104 that is executed when the deceleration slip is detected.
  • the assistance control unit 15 can determine that the deceleration slip continues if the deceleration slip is not resolved even after repeating the release process a predetermined number of times.
  • the predetermined number of times is, for example, two or more times, although it is not particularly limited.
  • the assistance control unit 15 can also determine that the deceleration slip continues if a predetermined period of time has elapsed without the deceleration slip being resolved after the deceleration slip was detected. In this case, the assistance control unit 15 may keep the electric parking brake system 70 on standby as the process of step S105 until the predetermined time period elapses. That is, the assistance control unit 15 determines that the deceleration slip continues if the deceleration slip is not resolved even after a predetermined period of time has elapsed with the electric parking brake device 70 on standby after the deceleration slip was detected. It is also possible to judge.
  • step S201 If the deceleration slip is not continuing (S201: NO), the assistance control unit 15 temporarily ends this processing routine. On the other hand, in the process of step S201, if the deceleration slip continues (S201: YES), the assistance control unit 15 shifts the process to step S202. In step S202, the assistance control unit 15 ends the assistance control. In other words, generating the EPB load during braking ends. At this time, the assisting control unit 15 moves the linearly moving member 75 in the direction opposite to the pressing direction by the release process. The linear motion member 75 is moved, for example, to the initial position by the release process when the assisting control is ended.
  • the initial position of the linearly moving member 75 is, for example, a position where the linearly moving member 75 is moved by applying a voltage to the electric motor 71 for a predetermined time so as to move the linearly moving member 75 in a direction away from the piston 87. be.
  • the assistance control unit 15 completes the assistance control, it terminates this processing routine.
  • FIGS. 4 and 5 show changes in various states when deceleration slip occurs during apply processing in assist control.
  • FIGS. 6 and 7 show the transition of various states when deceleration slip occurs while executing the release process in assist control.
  • FIGS. 6 and 7 are examples in which, for example, the ratio of the hydraulic braking force BPP to the target braking force BPT is increasing.
  • the ratio of the hydraulic braking force BPP to the target braking force BPT is increasing when, for example, the hydraulic braking force BPP is increasing while the target braking force BPT is constant.
  • the state of the hydraulic braking device 80 is shown in FIG. 4(a), FIG. 5(a), FIG. 6(a), and FIG. 7(a). Specifically, the period in which the hydraulic pressure by the hydraulic braking device 80 is being detected is displayed as "hydraulic pressure present.” A period in which no hydraulic pressure is detected by the hydraulic braking device 80 is displayed as "no hydraulic pressure.”
  • FIG. 4(b), FIG. 5(b), FIG. 6(b), and FIG. 7(b) show control modes of the electric parking braking device 70. Specifically, the period during which the apply process is executed is displayed as “apply.” The period during which release processing is being executed is displayed as “release”. The period when neither the apply processing nor the release processing is being executed is displayed as "waiting".
  • FIG. 5(c), FIG. 6(c), and FIG. 7(c) show changes in the magnitude of the current flowing through the electric motor 71.
  • 4(d), FIG. 5(d), FIG. 6(d), and FIG. 7(d) display whether or not deceleration slip is detected. Specifically, a period in which a deceleration slip is detected is displayed as "deceleration slip present”. A period in which no deceleration slip is detected is displayed as "no deceleration slip.”
  • ABS control is started when deceleration slip is detected. That is, when deceleration slip is detected, the hydraulic braking device 80 is operated to adjust the WC pressure according to the amount of slip.
  • the apply process is performed during the period from timing t11 to timing t14.
  • the current value Im after the inrush current converges remains smaller than the current determination value Imth. That is, at this point, although the direct-acting member 75 is moving in the pressing direction due to the apply process, the direct-acting member 75 is not pressing the friction material 88 against the rotating body 89 via the piston 87, and the electric motor 71 is in a state where the load is small.
  • the translational member 75 moves in a direction that reduces the EPB load due to unnecessary release processing being performed, generation of the EPB load may be delayed when the next apply processing is performed. That is, there is a possibility that the responsiveness of the electric parking brake device 70 may decrease.
  • the apply process is performed during the period from timing t21 to timing t24, as shown in FIG. 5(b).
  • the current value Im after the inrush current converges remains smaller than the current determination value Imth until timing t22.
  • the hydraulic pressure is detected as shown in FIG. 5(a).
  • the current value Im gradually increases during the period from timing t22 to timing t24. In other words, the load on the electric motor 71 is increasing.
  • the magnitude of current value Im reaches current determination value Imth at timing t23. That is, the EPB load is detected at timing t23.
  • a deceleration slip is detected as shown in FIG. 5(d). That is, the amount of slip increases as the braking force increases.
  • the release process is performed during the period from timing t31 to timing t32, as shown in FIG. 6(b).
  • the current value Im after the inrush current converges remains smaller than the current determination value Imth.
  • the hydraulic pressure is detected after timing t31, as shown in FIG. 6(a).
  • the deceleration slip is detected after timing t32, as shown in FIG. 6(d).
  • the release process is performed during the period from timing t41 to timing t42.
  • the current value Im after the inrush current converges remains larger than the current determination value Imth.
  • the current value Im is gradually decreasing. This indicates that the EPB load gradually decreases and the load on the electric motor 71 gradually decreases during the period from timing t41 to timing t42. Further, the current value Im is also larger than the current determination value Imth at timing t42 when the release process ends. That is, the EPB load is generated also at timing t42.
  • the hydraulic pressure is detected after timing t41, as shown in FIG. 7(a).
  • the deceleration slip is detected after timing t42, as shown in FIG. 7(d).
  • the release process is performed at an appropriate opportunity. can be executed. That is, when deceleration slip occurs due to the EPB load, the amount of slip can be reduced by performing the release process. On the other hand, if deceleration slip occurs due to hydraulic load, unnecessary release processing can be suppressed. This can suppress excessive movement of the linear motion member 75. Further, it is possible to suppress the responsiveness of the electric parking brake device 70 from decreasing.
  • a disc brake was illustrated as the braking mechanism.
  • the braking mechanism is not limited to this, and may be a drum brake. If it is a drum brake to which an electric parking braking device configured to assist a friction material that is pressed against a rotating body according to hydraulic pressure, the control device 10 as in the above embodiment can be applied. I can do it.
  • the control device 10, which is a processing circuit, the processing circuit included in the hydraulic control unit 40, and the processing circuit included in the support control unit 50 can be configured as follows.
  • the processing circuit can be configured as a circuit that includes one or more processors that perform various processes according to a computer program.
  • the processing circuit can be configured as a circuit that includes one or more hardware circuits that perform various processes.
  • the processing circuit can be configured as a circuit that combines one or more processors that execute some of the various processes and one or more hardware circuits that execute the remaining of the various processes.
  • the processor includes a processing device such as a CPU.
  • the processor includes memory such as RAM and ROM.
  • the memory stores program code or instructions configured to cause the processing device to perform operations.
  • Memory, or storage media includes any available media that can be accessed by a general purpose or special purpose computer. Examples of the hardware circuit include an ASIC, which is an application-specific integrated circuit.
  • a part or all of the functions realized by the processing circuit included in the hydraulic control unit 40 and the processing circuit included in the support control unit 50 may be realized by the control device 10.
  • Some of the functions realized by the control device 10 may be realized by other processing circuits connected to the control device 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)

Abstract

A control device 10 is applied to a vehicle 90 having a hydraulic brake device 80 and an electric parking brake device 70. The present invention comprises an assist control unit 15 that executes assist control for assisting, by the electric parking brake device 70, a friction material 88 pressed against a rotating body 89 so that a braking force is generated during the braking of the vehicle 90 by an EPB load, which is a load generated by the electric parking brake device 70, in addition to a load generated by the hydraulic brake device 80. The assist control unit 15, when having detected deceleration slip, is configured to execute release processing for driving an electric motor 71 in a direction that reduces the EPB load if the occurrence of the EPB load is detected, and to not execute the release processing if the occurrence of the EPB load is not detected.

Description

制動制御装置Brake control device
 本発明は、車両の制動制御装置に関する。 The present invention relates to a braking control device for a vehicle.
 特許文献1には、車輪と一体に回転する回転体に対して、電気モータの駆動によって摩擦材を押し付けるように構成した電動駐車制動装置と、電動駐車制動装置の制御装置とが開示されている。摩擦材は、電気モータの回転運動を変換して直線運動される直動部材が移動することに応じて回転体に押し付けられる。 Patent Document 1 discloses an electric parking brake device configured to press a friction material against a rotating body that rotates together with a wheel by driving an electric motor, and a control device for the electric parking brake device. . The friction material is pressed against the rotating body in response to the movement of the linearly moving member that converts the rotational motion of the electric motor into a linear motion.
 特許文献1に開示されている制御装置は、直動部材の位置を推定することで、直動部材が過度に移動することを抑制するように構成されている。 The control device disclosed in Patent Document 1 is configured to suppress excessive movement of the linearly moving member by estimating the position of the linearly moving member.
特開2021-102413号公報JP 2021-102413 Publication
 電動駐車制動装置を備える車両では、車両の走行中に電動駐車制動装置を作動させることがある。たとえば、液圧制動装置による液圧によって摩擦材を回転体に押し付けることに加えて電動駐車制動装置による助勢によって摩擦材を回転体に押し付ける荷重を生じさせることがある。このような場合には、回転体に対する摩擦材の押し付けには電動駐車制動装置によって生じる荷重に加えて液圧に応じて生じる荷重が関与する。このため、直動部材の位置とEPB荷重の大きさとが必ずしも相関しないことがある。たとえば、液圧が発生していない状態でEPB荷重が生じ始める直動部材の位置は、液圧が発生している状態でEPB荷重が生じ始める直動部材の位置とは異なる。 In a vehicle equipped with an electric parking brake device, the electric parking brake device may be activated while the vehicle is running. For example, in addition to pressing the friction material against the rotating body using hydraulic pressure from a hydraulic braking device, a load that presses the friction material against the rotating body may be generated with assistance from an electric parking brake device. In such a case, in addition to the load generated by the electric parking brake device, a load generated according to the hydraulic pressure is involved in pressing the friction material against the rotating body. For this reason, the position of the translational member and the magnitude of the EPB load may not necessarily correlate. For example, the position of the translational member where the EPB load begins to occur when no hydraulic pressure is generated is different from the position of the translational member where the EPB load begins to occur when the hydraulic pressure is generated.
 特許文献1に開示されている制動制御装置では、液圧制動装置および電動駐車制動装置の両方によって制動力を発生させる場合について考慮されていない。このため、液圧制動装置および電動駐車制動装置の両方によって制動力を発生させる際の制御に改良の余地がある。 The brake control device disclosed in Patent Document 1 does not consider the case where braking force is generated by both a hydraulic brake device and an electric parking brake device. Therefore, there is room for improvement in control when generating braking force by both the hydraulic braking device and the electric parking braking device.
 上記課題を解決するための制動制御装置は、車輪と一体に回転する回転体に摩擦材が押し付けられる荷重をホイールシリンダ内の液圧を調整することによって生じさせることで、前記車輪に制動力を発生させる液圧制動装置と、前記回転体に前記摩擦材が押し付けられる荷重を電気モータの回転運動に応じて生じさせる電動駐車制動装置と、を有している車両に適用される制動制御装置であって、前記車両を制動する際に前記液圧制動装置によって生じさせる荷重に加えて前記電動駐車制動装置によって生じさせる荷重によって制動力を発生させるように、前記回転体に押し付けられる前記摩擦材を前記電動駐車制動装置によって助勢させる助勢制御を実行する助勢制御部と、前記電動駐車制動装置によって生じさせる荷重をEPB荷重として、該EPB荷重に応じた値を取得することで前記EPB荷重の発生を検出する荷重検出部と、前記車輪の減速スリップを検出するスリップ検出部と、を備え、前記車輪の減速スリップを検出した際に、前記助勢制御部は、前記EPB荷重の発生が検出されている場合には、前記EPB荷重を減少させる方向に前記電気モータを駆動させるリリース処理を実行する一方で、前記EPB荷重の発生が検出されていない場合には、前記リリース処理を実行しないことをその要旨とする。 A braking control device for solving the above problem applies a braking force to the wheel by adjusting the hydraulic pressure in the wheel cylinder to generate a load that presses a friction material against a rotating body that rotates together with the wheel. A brake control device that is applied to a vehicle that has a hydraulic brake device that generates a load, and an electric parking brake device that generates a load that causes the friction material to be pressed against the rotating body in accordance with the rotational movement of an electric motor. The friction material is pressed against the rotating body so that a braking force is generated by a load generated by the electric parking brake device in addition to a load generated by the hydraulic brake device when braking the vehicle. An assistance control unit that executes assistance control to be assisted by the electric parking brake device, and a load generated by the electric parking brake device as an EPB load, and a value corresponding to the EPB load is acquired to prevent generation of the EPB load. A load detection unit that detects a deceleration slip of the wheel, and a slip detection unit that detects a deceleration slip of the wheel, and when the deceleration slip of the wheel is detected, the assistance control unit detects that the EPB load is detected. In this case, a release process is executed to drive the electric motor in a direction to reduce the EPB load, while the release process is not executed when the occurrence of the EPB load is not detected. shall be.
 車輪の減速スリップを検出した場合には、車輪のロックを抑制するために、たとえばアンチロックブレーキ制御を実行することが知られている。助勢制御の実行中においても、車輪の減速スリップを検出した場合には、車輪のロックを抑制するために制動力を調整することが好ましい。ここで、仮に、助勢制御の実行中においてEPB荷重が発生していない状態からリリース処理を行ったとしても当該リリース処理は制動力の減少に寄与しない。それだけでなく、不要なリリース処理が行われることで、EPB荷重を減少させる方向に電動駐車制動装置が過度に作動するおそれがある。 It is known that when a deceleration slip of a wheel is detected, anti-lock brake control, for example, is executed in order to suppress the wheel from locking. Even during execution of the assistance control, if deceleration slip of the wheels is detected, it is preferable to adjust the braking force in order to suppress the locking of the wheels. Here, even if the release process is performed in a state where no EPB load is generated during execution of the assist control, the release process will not contribute to the reduction of the braking force. Not only that, but unnecessary release processing may cause the electric parking brake system to operate excessively in a direction that reduces the EPB load.
 上記構成によれば、車輪の減速スリップを検出した際にEPB荷重の発生が検出されている場合にはリリース処理が実行される。一方で、車輪の減速スリップを検出した際であってもEPB荷重の発生が検出されていない場合にはリリース処理が実行されない。このため、適当な機会にリリース処理を実行することができる。これによって、過度なリリース処理が行われることを抑制できる。 According to the above configuration, if the occurrence of an EPB load is detected when deceleration slip of the wheel is detected, the release process is executed. On the other hand, even when deceleration slip of the wheels is detected, if the generation of EPB load is not detected, the release process is not executed. Therefore, release processing can be executed at an appropriate opportunity. This can prevent excessive release processing from being performed.
図1は、制動制御装置の一実施形態と、同制動制御装置の制御対象である車両と、を示す模式図である。FIG. 1 is a schematic diagram showing an embodiment of a brake control device and a vehicle to be controlled by the brake control device. 図2は、電動駐車制動装置を用いた助勢制御の実行中に図1の制動制御装置が行う処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing the flow of processing performed by the brake control device of FIG. 1 during execution of assistance control using the electric parking brake device. 図3は、電動駐車制動装置を用いた助勢制御の実行中に図1の制動制御装置が行う処理の流れを示すフローチャートである。FIG. 3 is a flowchart showing the flow of processing performed by the brake control device of FIG. 1 during execution of assistance control using the electric parking brake device. 図4は、図1の制動制御装置が適用される車両に関して、助勢制御を実行している際に減速スリップが発生した場合における各種状態の推移を示すタイミングチャートである。FIG. 4 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control in a vehicle to which the brake control device of FIG. 1 is applied. 図5は、図1の制動制御装置が適用される車両に関して、助勢制御を実行している際に減速スリップが発生した場合における各種状態の推移を示すタイミングチャートである。FIG. 5 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control for a vehicle to which the brake control device of FIG. 1 is applied. 図6は、図1の制動制御装置が適用される車両に関して、助勢制御を実行している際に減速スリップが発生した場合における各種状態の推移を示すタイミングチャートである。FIG. 6 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control for a vehicle to which the brake control device of FIG. 1 is applied. 図7は、図1の制動制御装置が適用される車両に関して、助勢制御を実行している際に減速スリップが発生した場合における各種状態の推移を示すタイミングチャートである。FIG. 7 is a timing chart showing the transition of various states when deceleration slip occurs during execution of assistance control with respect to a vehicle to which the brake control device of FIG. 1 is applied.
 以下、制動制御装置の一実施形態である制御装置10について、図1~図7を参照して説明する。
 図1は、制動制御装置としての制御装置10と、制御装置10が適用される車両90と、を示す。
A control device 10, which is an embodiment of a brake control device, will be described below with reference to FIGS. 1 to 7.
FIG. 1 shows a control device 10 as a brake control device and a vehicle 90 to which the control device 10 is applied.
 車両90は、たとえば、四輪の車両である。図1には、車両90が備える車輪のうち一つの車輪91を例示している。
 車両90は、液圧制動装置80を備えている。液圧制動装置80は、常用ブレーキとして用いられる。車両90は、車両90の運転者によって操作が可能な制動操作部材92を備えている。たとえば、制動操作部材92は、ブレーキペダルである。運転者は、制動操作部材92を操作することによって、液圧制動装置80を介して制動力を発生させて車両90を制動することができる。制動操作部材92の操作は、運転者による制動要求に相当する。
Vehicle 90 is, for example, a four-wheeled vehicle. FIG. 1 illustrates one wheel 91 among the wheels included in a vehicle 90.
The vehicle 90 includes a hydraulic braking device 80. The hydraulic braking device 80 is used as a service brake. The vehicle 90 includes a brake operation member 92 that can be operated by the driver of the vehicle 90. For example, the brake operating member 92 is a brake pedal. By operating the brake operation member 92, the driver can generate a braking force via the hydraulic braking device 80 to brake the vehicle 90. The operation of the brake operation member 92 corresponds to a brake request by the driver.
 車両90は、電動駐車制動装置70を備えている。電動駐車制動装置70は、駐車ブレーキとして用いることができる。電動駐車制動装置70は、後述のように、車両90の走行中に作動させることもできる。 The vehicle 90 is equipped with an electric parking brake device 70. The electric parking brake device 70 can be used as a parking brake. The electric parking brake device 70 can also be operated while the vehicle 90 is traveling, as will be described later.
 <液圧制動装置>
 液圧制動装置80は、液圧発生装置を備えている。液圧制動装置80は、液圧アクチュエータ84を備えている。液圧制動装置80は、各車輪に対応した制動機構を備えている。制動機構は、対応する車輪に制動力を付与することができる。
<Hydraulic braking device>
The hydraulic braking device 80 includes a hydraulic pressure generating device. The hydraulic braking device 80 includes a hydraulic actuator 84. The hydraulic braking device 80 includes a braking mechanism corresponding to each wheel. The braking mechanism can apply braking force to the corresponding wheel.
 制動機構は、車輪91と一体回転する回転体89と、ブレーキキャリパ85と、によって構成されている。ブレーキキャリパ85は、ホイールシリンダ86と、ホイールシリンダ86内に配置されているピストン87と、回転体89に対して押し付けることができる摩擦材88と、によって構成されている。ピストン87において回転体89に向かい合う面には、摩擦材88が取り付けられている。ホイールシリンダ86には、ホイールシリンダ86内にブレーキ液を供給する給排孔86aが形成されている。制動機構の一例は、ディスクブレーキである。 The braking mechanism is composed of a rotating body 89 that rotates integrally with the wheel 91, and a brake caliper 85. The brake caliper 85 includes a wheel cylinder 86, a piston 87 disposed within the wheel cylinder 86, and a friction material 88 that can be pressed against a rotating body 89. A friction material 88 is attached to the surface of the piston 87 facing the rotating body 89. A supply/discharge hole 86a for supplying brake fluid into the wheel cylinder 86 is formed in the wheel cylinder 86. An example of a braking mechanism is a disc brake.
 制動機構は、ホイールシリンダ86内の液圧に応じて車輪91に摩擦制動力を発生させることができる。以下では、ホイールシリンダ86内の液圧のことをWC圧ということもある。制動機構は、WC圧が高いほど、回転体89に対して摩擦材88を押し付ける力が大きくなるように構成されている。すなわち、制動機構は、WC圧が高いほど大きな制動力を車輪91に付与することができる。以下では、WC圧に応じて回転体89に対して摩擦材88が押し付けられる力のことを、液圧荷重という。 The braking mechanism can generate frictional braking force on the wheels 91 according to the hydraulic pressure in the wheel cylinders 86. Hereinafter, the hydraulic pressure within the wheel cylinder 86 may also be referred to as WC pressure. The braking mechanism is configured such that the higher the WC pressure, the greater the force that presses the friction material 88 against the rotating body 89. That is, the braking mechanism can apply a greater braking force to the wheels 91 as the WC pressure is higher. Hereinafter, the force with which the friction material 88 is pressed against the rotating body 89 in accordance with the WC pressure will be referred to as a hydraulic load.
 液圧制動装置80は、倍力装置81、マスタシリンダ82、およびブレーキ液が貯留されているリザーバタンク83を備えている。液圧発生装置は、倍力装置81、マスタシリンダ82、およびリザーバタンク83によって構成されている。 The hydraulic braking device 80 includes a booster 81, a master cylinder 82, and a reservoir tank 83 in which brake fluid is stored. The hydraulic pressure generator includes a booster 81, a master cylinder 82, and a reservoir tank 83.
 倍力装置81は、制動操作部材92の操作を助勢して、助勢された操作力をマスタシリンダ82に伝達することができる。倍力装置81としては、公知の倍力装置を適宜採用することができる。たとえば、倍力装置としては、負圧ブースタ、ハイドロリックブースタ、電動ブースタ等が挙げられる。 The booster 81 can assist the operation of the brake operating member 92 and transmit the assisted operating force to the master cylinder 82. As the booster 81, a known booster can be appropriately employed. For example, examples of the booster include a negative pressure booster, a hydraulic booster, an electric booster, and the like.
 マスタシリンダ82は、制動操作部材92の操作に応じて液圧を発生させる。以下では、マスタシリンダ82が発生させる液圧のことをMC圧ということもある。マスタシリンダ82は、MC圧に応じた量のブレーキ液を液圧アクチュエータ84に圧送する。 The master cylinder 82 generates hydraulic pressure in response to the operation of the brake operation member 92. Hereinafter, the hydraulic pressure generated by the master cylinder 82 may also be referred to as MC pressure. The master cylinder 82 pumps brake fluid in an amount corresponding to the MC pressure to the hydraulic actuator 84 .
 液圧アクチュエータ84は、マスタシリンダ82とホイールシリンダ86との間に配置されている。液圧アクチュエータ84を介してマスタシリンダ82からホイールシリンダ86にブレーキ液が供給される。液圧アクチュエータ84は、ブレーキ液の流路を備えている。ブレーキ液の流路は、各車輪に対応するホイールシリンダに接続されている。液圧アクチュエータ84は、たとえば、流路に配置されている複数の電磁弁、流路に配置されているポンプ、およびポンプを駆動するためのポンプ駆動モータ等によって構成されている。 The hydraulic actuator 84 is arranged between the master cylinder 82 and the wheel cylinder 86. Brake fluid is supplied from master cylinder 82 to wheel cylinder 86 via hydraulic actuator 84 . The hydraulic actuator 84 includes a flow path for brake fluid. The brake fluid flow path is connected to a wheel cylinder corresponding to each wheel. The hydraulic actuator 84 includes, for example, a plurality of electromagnetic valves disposed in the flow path, a pump disposed in the flow path, a pump drive motor for driving the pump, and the like.
 <電動駐車制動装置>
 電動駐車制動装置70は、液圧制動装置80における制動機構と一部の構成を共用している。
<Electric parking brake device>
The electric parking brake device 70 shares a part of the structure with the brake mechanism in the hydraulic brake device 80.
 電動駐車制動装置70は、電気モータ71を備えている。電動駐車制動装置70は、電気モータ71の駆動に応じて回転する出力軸部材74を備えている。電動駐車制動装置70は、電気モータ71の駆動力を出力軸部材74に伝達する伝達機構72を備えている。伝達機構72には、入力軸として電気モータ71の回転軸部材71aが接続されている。伝達機構72は、たとえば、減速機構を備えている。 The electric parking brake device 70 includes an electric motor 71. The electric parking brake device 70 includes an output shaft member 74 that rotates in accordance with the drive of the electric motor 71. The electric parking brake device 70 includes a transmission mechanism 72 that transmits the driving force of an electric motor 71 to an output shaft member 74. A rotating shaft member 71a of the electric motor 71 is connected to the transmission mechanism 72 as an input shaft. The transmission mechanism 72 includes, for example, a speed reduction mechanism.
 電動駐車制動装置70は、変換機構73を備えている。変換機構73は、電気モータ71の回転運動を直線運動に変換する機構である。
 変換機構73の一例は、ねじ軸とナットとによって構成されている送りねじである。電動駐車制動装置70は、たとえば、変換機構73を構成する直動部材75を備えている。変換機構73は、出力軸部材74と直動部材75とによって構成されている。出力軸部材74は、ねじ軸に対応する。すなわち、出力軸部材74の外周面には、おねじが形成されている。出力軸部材74には、直動部材75が取り付けられている。直動部材75は、ナットに対応する。すなわち、直動部材75は、めねじが内周面に形成されている筒状である。変換機構73では、出力軸部材74のおねじと直動部材75のめねじとが噛み合わされている。このため、出力軸部材74が回転すると、出力軸部材74の軸心に沿って延びる方向に直動部材75が移動する。直動部材75は、変換機構73によって直線運動されるものである。直動部材75が移動する方向は、出力軸部材74の回転方向に応じて、出力軸部材74の軸心に沿って延びる方向のうち一方または他方に定まる。
The electric parking brake device 70 includes a conversion mechanism 73. The conversion mechanism 73 is a mechanism that converts the rotational motion of the electric motor 71 into linear motion.
An example of the conversion mechanism 73 is a feed screw constituted by a screw shaft and a nut. The electric parking brake device 70 includes, for example, a linear motion member 75 that constitutes a conversion mechanism 73. The conversion mechanism 73 includes an output shaft member 74 and a linear motion member 75. The output shaft member 74 corresponds to a screw shaft. That is, a male thread is formed on the outer peripheral surface of the output shaft member 74. A linear motion member 75 is attached to the output shaft member 74. The linear member 75 corresponds to a nut. That is, the linear motion member 75 has a cylindrical shape with a female thread formed on the inner peripheral surface. In the conversion mechanism 73, the male thread of the output shaft member 74 and the female thread of the linear motion member 75 are engaged. Therefore, when the output shaft member 74 rotates, the linear motion member 75 moves in a direction extending along the axis of the output shaft member 74. The linear motion member 75 is linearly moved by the conversion mechanism 73. The direction in which the translational member 75 moves is determined by one or the other direction extending along the axis of the output shaft member 74, depending on the rotation direction of the output shaft member 74.
 変換機構73は、セルフロック機構を備えている。セルフロック機構は、出力軸部材74の回転が停止している状態では、直動部材75が直線運動する方向に直動部材75に対して力が作用しても直動部材75の位置が保持される機構である。セルフロック機構は、たとえば、出力軸部材74のおねじと直動部材75のめねじとの噛み合わせによる摩擦力によって実現されている。 The conversion mechanism 73 includes a self-locking mechanism. The self-locking mechanism maintains the position of the linearly moving member 75 even if a force acts on the linearly moving member 75 in the direction in which the linearly moving member 75 moves linearly when the rotation of the output shaft member 74 is stopped. This is the mechanism by which The self-locking mechanism is realized, for example, by the frictional force caused by the engagement between the male thread of the output shaft member 74 and the female thread of the linear motion member 75.
 電動駐車制動装置70では、直動部材75は、ホイールシリンダ86内に配置されている。電動駐車制動装置70では、直動部材75がピストン87を介して回転体89に摩擦材88を押し付けることで、回転体89に摩擦材88が押し付けられる荷重を生じさせることができる。このように電動駐車制動装置70によって生じさせる荷重を、以下では、EPB荷重ということもある。 In the electric parking brake device 70, the linear motion member 75 is arranged within the wheel cylinder 86. In the electric parking brake device 70, the direct-acting member 75 presses the friction material 88 against the rotating body 89 via the piston 87, thereby generating a load that causes the friction material 88 to be pressed against the rotating body 89. The load generated by the electric parking brake device 70 in this manner may be referred to as an EPB load hereinafter.
 なお、電動駐車制動装置70としては、EPB荷重が作用する際に直動部材75がピストン87に直接接触する構成に限らない。電動駐車制動装置70としては、直動部材75とピストン87との間に介在する押圧子が配置されている構成でもよい。たとえば、押圧子は、直動部材75およびピストン87と分離が可能である。押圧子の他の例は、直動部材75の先端に取り付けられている。 Note that the electric parking brake device 70 is not limited to a configuration in which the direct-acting member 75 directly contacts the piston 87 when the EPB load is applied. The electric parking brake device 70 may have a configuration in which a pusher is interposed between the linear motion member 75 and the piston 87. For example, the pusher can be separated from the linear motion member 75 and the piston 87. Another example of the presser is attached to the tip of the translational member 75.
 電動駐車制動装置70は、電気モータ71の回転軸部材71aが第1方向に回転することによって直動部材75がピストン87に近づく方向に移動するように構成されている。一方で、電気モータ71の回転軸部材71aが第1方向とは反対の方向である第2方向に回転することによって、電動駐車制動装置70は、直動部材75がピストン87から離れる方向に移動するように構成されている。以下では、出力軸部材74の軸心に沿って延びる方向において直動部材75がピストン87に近づく方向のことを押圧方向という。 The electric parking brake device 70 is configured such that the linear motion member 75 moves in a direction toward the piston 87 when the rotating shaft member 71a of the electric motor 71 rotates in the first direction. On the other hand, as the rotating shaft member 71a of the electric motor 71 rotates in the second direction, which is the opposite direction to the first direction, the electric parking brake device 70 moves the linear motion member 75 in the direction away from the piston 87. is configured to do so. Hereinafter, the direction in which the direct-acting member 75 approaches the piston 87 in the direction extending along the axis of the output shaft member 74 will be referred to as the pressing direction.
 電動駐車制動装置70は、たとえば、車両90が備える車輪のうち後輪に対応する各制動機構に設けられている。電動駐車制動装置70は、車両90が備える車輪のうち前輪に対応する各制動機構に設けられていてもよい。電動駐車制動装置70は、全ての制動機構に設けられていてもよいし、一つの制動機構に設けられていてもよい。 The electric parking brake device 70 is provided, for example, in each brake mechanism corresponding to a rear wheel among the wheels included in the vehicle 90. The electric parking brake device 70 may be provided in each brake mechanism corresponding to a front wheel among the wheels included in the vehicle 90. The electric parking brake device 70 may be provided in all braking mechanisms, or may be provided in one braking mechanism.
 電動駐車制動装置70は、制御ユニット30を備えている。制御ユニット30は、電動駐車制動装置70によって各車輪に生じさせる荷重を各別に調整することができる。制御ユニット30は、周辺回路を備えている。制御ユニット30は、制御装置10と周辺回路とによって構成されている。図1に示す駆動回路20は、制御ユニット30が備える周辺回路の一例である。 The electric parking brake device 70 includes a control unit 30. The control unit 30 can individually adjust the load generated on each wheel by the electric parking brake device 70. The control unit 30 includes peripheral circuits. The control unit 30 includes the control device 10 and peripheral circuits. The drive circuit 20 shown in FIG. 1 is an example of a peripheral circuit included in the control unit 30.
 駆動回路20は、電気モータ71に電力を供給する回路である。駆動回路20は、車両90に搭載されている車載バッテリに接続されている。駆動回路20は、制御装置10によって制御される。 The drive circuit 20 is a circuit that supplies power to the electric motor 71. The drive circuit 20 is connected to an on-vehicle battery mounted on a vehicle 90. The drive circuit 20 is controlled by the control device 10.
 駆動回路20は、電気モータ71に流れる電流値Imを検出できる手段を備えている。一例として、駆動回路20は、電流検出回路を備えている。駆動回路20は、電流センサを備えていてもよい。 The drive circuit 20 includes means for detecting the current value Im flowing through the electric motor 71. As an example, the drive circuit 20 includes a current detection circuit. The drive circuit 20 may include a current sensor.
 駆動回路20は、電気モータ71に印加される電圧値を検出できる手段を備えていてもよい。たとえば、駆動回路20は、電圧センサを備えていてもよい。駆動回路20は、電圧検出回路を備えていてもよい。 The drive circuit 20 may include means for detecting the voltage value applied to the electric motor 71. For example, the drive circuit 20 may include a voltage sensor. The drive circuit 20 may include a voltage detection circuit.
 <各種センサ>
 車両90は、各種センサを備えている。図1には、各種センサの一例として、車輪速センサSE1、圧力センサSE2、および操作量センサSE3を示している。各種センサからの検出信号は、制御装置10に入力される。
<Various sensors>
Vehicle 90 is equipped with various sensors. FIG. 1 shows a wheel speed sensor SE1, a pressure sensor SE2, and a manipulated variable sensor SE3 as examples of various sensors. Detection signals from various sensors are input to the control device 10.
 車輪速センサSE1は、車輪速度を検出するセンサである。車輪速センサSE1は、各車輪に設けられている。
 圧力センサSE2は、液圧制動装置80によって付与させる制動力に対応する液圧を検出するセンサである。圧力センサSE2の一例は、MC圧を検出するセンサである。圧力センサSE2の他の例は、WC圧を検出するセンサである。圧力センサSE2からの検出信号に基づいて、制御装置10は、液圧制動装置80によって付与させる制動力に対応する液圧を取得することができる。
Wheel speed sensor SE1 is a sensor that detects wheel speed. Wheel speed sensor SE1 is provided at each wheel.
Pressure sensor SE2 is a sensor that detects hydraulic pressure corresponding to the braking force applied by hydraulic braking device 80. An example of the pressure sensor SE2 is a sensor that detects MC pressure. Another example of the pressure sensor SE2 is a sensor that detects WC pressure. Based on the detection signal from the pressure sensor SE2, the control device 10 can acquire the hydraulic pressure corresponding to the braking force applied by the hydraulic braking device 80.
 操作量センサSE3は、制動操作部材92の操作量を検出するセンサである。操作量センサSE3からの検出信号に基づいて、制御装置10は、制動操作部材92の操作量を取得することができる。操作量の一例は、運転者による操作によって変位する制動操作部材92の変位量である。操作量の他の例は、運転者によって制動操作部材92に加えられる操作力である。 The operation amount sensor SE3 is a sensor that detects the operation amount of the brake operation member 92. Based on the detection signal from the operation amount sensor SE3, the control device 10 can acquire the operation amount of the brake operation member 92. An example of the operation amount is the displacement amount of the brake operation member 92 that is displaced by the driver's operation. Another example of the operation amount is the operation force applied to the brake operation member 92 by the driver.
 <他の制御ユニット>
 車両90は、他の制御ユニットを備えていてもよい。たとえば、図1に示すように、車両90は、液圧制御ユニット40を備えていてもよい。車両90は、支援制御ユニット50を備えていてもよい。各制御ユニットは、車載ネットワーク99を介して相互に通信可能に接続されている。各制御ユニットは、各機能を実現するための処理回路を備えている。
<Other control units>
Vehicle 90 may also include other control units. For example, as shown in FIG. 1, a vehicle 90 may include a hydraulic pressure control unit 40. Vehicle 90 may include support control unit 50 . Each control unit is connected to be able to communicate with each other via an in-vehicle network 99. Each control unit includes a processing circuit for realizing each function.
 支援制御ユニット50は、車両90の走行速度を自動的に調整する運転支援制御を実行することができる。運転支援制御としては、たとえば、自動運転、自動駐車、アダプティブクルーズコントロール、レーンキープアシスト、ダウンヒルアシストおよび衝突回避ブレーキ等が挙げられる。 The support control unit 50 can perform driving support control that automatically adjusts the traveling speed of the vehicle 90. Examples of driving support control include automatic driving, automatic parking, adaptive cruise control, lane keep assist, downhill assist, and collision avoidance braking.
 液圧制御ユニット40は、液圧制動装置80を制御することができる。
 液圧制御ユニット40は、一例として、液圧制動装置80に機能失陥が生じているか否かを判定する機能を備えている。たとえば、液圧制御ユニット40は、倍力装置81の失陥を検出することができる。判定する方法としては、たとえば、目標制動力BPTに対して液圧制動力BPPが小さく、目標制動力BPTと液圧制動力BPPとの差が判定値よりも大きくなった場合に、失陥が生じていると判定する方法がある。ここで、目標制動力BPTは、制動要求に対応する値である。目標制動力BPTは、車両90に付与する制動力の目標値である。たとえば、目標制動力BPTは、制動操作部材92の操作量に基づいて算出することができる。液圧制動力BPPは、液圧制動装置80によって付与される制動力の推定値である。たとえば、液圧制動力BPPは、圧力センサSE2からの検出信号に基づいて算出することができる。判定値は、予め実験等によって算出した値を用いることができる。
The hydraulic control unit 40 can control the hydraulic braking device 80.
For example, the hydraulic control unit 40 has a function of determining whether or not the hydraulic braking device 80 has malfunctioned. For example, the hydraulic control unit 40 can detect a failure of the booster 81. For example, when the hydraulic braking force BPP is smaller than the target braking force BPT and the difference between the target braking force BPT and the hydraulic braking force BPP is larger than the judgment value, a failure has occurred. There is a way to determine if there is. Here, the target braking force BPT is a value corresponding to a braking request. Target braking force BPT is a target value of braking force to be applied to vehicle 90. For example, the target braking force BPT can be calculated based on the amount of operation of the brake operation member 92. The hydraulic braking force BPP is an estimated value of the braking force applied by the hydraulic braking device 80. For example, the hydraulic braking force BPP can be calculated based on the detection signal from the pressure sensor SE2. As the determination value, a value calculated in advance through experiments or the like can be used.
 液圧制御ユニット40は、液圧アクチュエータ84を制御する機能を備えていてもよい。たとえば、各ホイールシリンダ86に供給するブレーキ液を制御して各WC圧を各別に調整する機能が挙げられる。 The hydraulic control unit 40 may have a function of controlling the hydraulic actuator 84. For example, there is a function to control the brake fluid supplied to each wheel cylinder 86 and adjust each WC pressure individually.
 液圧制御ユニット40は、支援制御ユニット50が実行する運転支援制御に従ってWC圧を調整する機能を備えていてもよい。
 液圧制御ユニット40は、車輪速センサSE1からの検出信号に基づいて、各車輪91の車輪速度を算出する機能を備えていてもよい。液圧制御ユニット40は、各車輪速度に基づいて車体速度を算出することもできる。車体速度は、車両90の走行速度を示す。
The hydraulic pressure control unit 40 may have a function of adjusting the WC pressure according to driving support control executed by the support control unit 50.
The hydraulic control unit 40 may have a function of calculating the wheel speed of each wheel 91 based on the detection signal from the wheel speed sensor SE1. The hydraulic control unit 40 can also calculate the vehicle speed based on the speed of each wheel. The vehicle speed indicates the traveling speed of the vehicle 90.
 液圧制御ユニット40は、各車輪91のスリップ量を算出する機能を備えていてもよい。車輪91のスリップ量は、車体速度および車輪速度に基づいて算出することができる。
 液圧制御ユニット40は、各車輪91に減速スリップが発生しているか否かを判定する機能を備えていてもよい。たとえば、スリップ量が規定の判定量を超えている場合に、減速スリップが発生していると判定することができる。
The hydraulic control unit 40 may have a function of calculating the slip amount of each wheel 91. The amount of slip of the wheels 91 can be calculated based on the vehicle speed and the wheel speed.
The hydraulic control unit 40 may have a function of determining whether deceleration slip occurs in each wheel 91. For example, if the amount of slip exceeds a prescribed determination amount, it can be determined that deceleration slip has occurred.
 液圧制御ユニット40は、アンチロックブレーキ制御を実行することもできる。以下では、アンチロックブレーキ制御をABS制御という。ABS制御は、車両90を制動する際に制動力の調整を介して車輪91のスリップ量を小さくすることによって、車輪91のロックを抑制する制御である。液圧制御ユニット40は、たとえば、減速スリップを検出した場合にABS制御を開始することができる。液圧制御ユニット40は、ABS制御を開始すると、スリップ量に応じてWC圧を調整するように液圧制動装置80を作動させる。 The hydraulic control unit 40 can also perform anti-lock brake control. Hereinafter, anti-lock brake control will be referred to as ABS control. ABS control is control that suppresses locking of wheels 91 by reducing the amount of slip of wheels 91 through adjustment of braking force when braking vehicle 90 . For example, the hydraulic control unit 40 can start ABS control when deceleration slip is detected. When starting ABS control, the hydraulic control unit 40 operates the hydraulic braking device 80 to adjust the WC pressure according to the amount of slip.
 <制御装置>
 制御装置10は、各種の制御を実行する複数の機能部によって構成されている処理回路である。図1には、機能部の一例として、スリップ検出部11、液圧検出部12、荷重検出部13、モータ制御部14、および助勢制御部15を示している。制御装置10が備える各機能部は、互いに情報の送受信が可能である。
<Control device>
The control device 10 is a processing circuit made up of a plurality of functional units that perform various controls. FIG. 1 shows a slip detection section 11, a hydraulic pressure detection section 12, a load detection section 13, a motor control section 14, and an assistance control section 15 as examples of functional sections. Each functional unit included in the control device 10 is capable of transmitting and receiving information to and from each other.
 スリップ検出部11は、車輪91の減速スリップを検出する。たとえば、スリップ検出部11は、減速スリップが発生しているか否かを示す情報を取得することができる。他の例として、減速スリップが発生しているか否かをスリップ検出部11が判定することもできる。たとえば、スリップ検出部11は、スリップ量が規定の判定量を超えている場合に、減速スリップの発生を検出することができる。スリップ量は、液圧制御ユニット40が算出する値を取得することができる。スリップ検出部11は、スリップ量を算出してもよい。 The slip detection unit 11 detects deceleration slip of the wheels 91. For example, the slip detection unit 11 can acquire information indicating whether deceleration slip has occurred. As another example, the slip detection unit 11 can also determine whether a deceleration slip has occurred. For example, the slip detection unit 11 can detect the occurrence of deceleration slip when the amount of slip exceeds a prescribed determination amount. As the slip amount, a value calculated by the hydraulic pressure control unit 40 can be obtained. The slip detection unit 11 may calculate the amount of slip.
 液圧検出部12は、液圧制動装置80の作動によって発生する液圧を検出する。たとえば、液圧検出部12は、MC圧を取得する。液圧検出部12は、MC圧が「0」よりも大きい場合に液圧の発生を検出する。液圧検出部12は、WC圧を取得して、WC圧が「0」よりも大きい場合に液圧の発生を検出するように構成してもよい。 The hydraulic pressure detection unit 12 detects the hydraulic pressure generated by the operation of the hydraulic braking device 80. For example, the hydraulic pressure detection unit 12 acquires the MC pressure. The hydraulic pressure detection unit 12 detects the occurrence of hydraulic pressure when the MC pressure is greater than "0". The hydraulic pressure detection unit 12 may be configured to acquire the WC pressure and detect the occurrence of hydraulic pressure when the WC pressure is greater than "0".
 荷重検出部13は、EPB荷重に応じた値を取得することでEPB荷重の発生を検出する。
 一例として荷重検出部13は、電気モータ71に流れる電流値Imを取得する。荷重検出部13は、電流値Imの絶対値が規定のしきい値である電流判定値Imthよりも大きい場合にEPB荷重の発生を検出するように構成している。この例では、電流値ImがEPB荷重に応じた値に対応する。電流判定値Imthは、たとえば、EPB荷重が発生していない場合に電気モータ71に流れる電流の大きさに等しい。すなわち、電流判定値Imthには、電気モータ71の無負荷電流値を採用できる。電流判定値Imthは、EPB荷重が発生していない場合に電気モータ71に流れる電流値よりも大きい値でもよい。
The load detection unit 13 detects the occurrence of an EPB load by acquiring a value corresponding to the EPB load.
As an example, the load detection unit 13 acquires a current value Im flowing through the electric motor 71. The load detection unit 13 is configured to detect the occurrence of an EPB load when the absolute value of the current value Im is larger than a current determination value Imth, which is a prescribed threshold value. In this example, the current value Im corresponds to a value according to the EPB load. The current determination value Imth is, for example, equal to the magnitude of the current flowing through the electric motor 71 when no EPB load is generated. That is, the no-load current value of the electric motor 71 can be adopted as the current determination value Imth. The current determination value Imth may be a value larger than the current value flowing through the electric motor 71 when no EPB load is generated.
 なお、荷重検出部13が電流値Imとして取得する値は、電気モータ71に流れる突入電流を考慮して、突入電流が収束してからの値である。たとえば、荷重検出部13は、電気モータ71に電圧が印加される度に電流値Imを取得する。たとえば、荷重検出部13は、電圧の印加が停止される直前の電流値Imを取得する。 Note that the value that the load detection unit 13 acquires as the current value Im takes into consideration the inrush current flowing through the electric motor 71, and is the value after the inrush current has converged. For example, the load detection unit 13 acquires the current value Im every time a voltage is applied to the electric motor 71. For example, the load detection unit 13 acquires the current value Im immediately before the voltage application is stopped.
 他の例として荷重検出部13は、摩擦材88が回転体89に押し付けられる総荷重と、液圧検出部12が検出する液圧と、に基づいてEPB荷重に応じた値を取得するようにしてもよい。たとえば、総荷重から液圧荷重を減算した値がEPB荷重に相当する。たとえば、総荷重は、荷重センサによって検出することができる。 As another example, the load detection unit 13 is configured to obtain a value corresponding to the EPB load based on the total load of the friction material 88 being pressed against the rotating body 89 and the hydraulic pressure detected by the hydraulic pressure detection unit 12. It's okay. For example, the value obtained by subtracting the hydraulic load from the total load corresponds to the EPB load. For example, the total load can be detected by a load sensor.
 モータ制御部14は、PWM(Pulse Width Modulation)制御によって、電気モータ71を駆動させる。すなわち、モータ制御部14は、駆動信号を生成して、当該駆動信号を駆動回路20に出力する。駆動信号に応じて駆動回路20が切り換えられることで、電気モータ71が駆動される。モータ制御部14は、電気モータ71の電流値Imの目標値として目標電流値Imtを設定する。モータ制御部14は、目標電流値Imtに基づいて駆動信号におけるデューティ比を算出する。モータ制御部14は、デューティ比に基づいて駆動信号を生成する。 The motor control unit 14 drives the electric motor 71 by PWM (Pulse Width Modulation) control. That is, the motor control unit 14 generates a drive signal and outputs the drive signal to the drive circuit 20. The electric motor 71 is driven by switching the drive circuit 20 according to the drive signal. The motor control unit 14 sets a target current value Imt as a target value of the current value Im of the electric motor 71. The motor control unit 14 calculates the duty ratio of the drive signal based on the target current value Imt. The motor control unit 14 generates a drive signal based on the duty ratio.
 電気モータ71を駆動させる処理として、アプライ処理およびリリース処理がある。アプライ処理は、電気モータ71の回転軸部材71aが第1方向に回転するように電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。すなわち、アプライ処理は、直動部材75がピストン87に押し付けられる荷重を増加させる方向に電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。言い換えれば、アプライ処理は、摩擦材88を回転体89に押し付ける荷重を増加させる方向に電気モータ71を駆動させる処理である。リリース処理は、電気モータ71の回転軸部材71aが第2方向に回転するように電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。すなわち、リリース処理は、直動部材75がピストン87に押し付けられる荷重を減少させる方向に電気モータ71を駆動させる電圧を電気モータ71に印加する処理である。言い換えれば、リリース処理は、摩擦材88を回転体89に押し付ける荷重を減少させる方向に電気モータ71を駆動させる処理である。たとえば、アプライ処理では、電気モータ71に正電圧が印加される。この場合には、リリース処理では、電気モータ71に負電圧が印加される。 Processes for driving the electric motor 71 include apply processing and release processing. The apply process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft member 71a of the electric motor 71 rotates in the first direction. That is, the apply process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that increases the load with which the linear motion member 75 is pressed against the piston 87 . In other words, the apply process is a process in which the electric motor 71 is driven in a direction that increases the load that presses the friction material 88 against the rotating body 89. The release process is a process of applying a voltage to the electric motor 71 to drive the electric motor 71 so that the rotating shaft member 71a of the electric motor 71 rotates in the second direction. That is, the release process is a process in which a voltage is applied to the electric motor 71 to drive the electric motor 71 in a direction that reduces the load with which the linear motion member 75 is pressed against the piston 87 . In other words, the release process is a process in which the electric motor 71 is driven in a direction that reduces the load pressing the friction material 88 against the rotating body 89. For example, in the apply process, a positive voltage is applied to the electric motor 71. In this case, a negative voltage is applied to the electric motor 71 in the release process.
 助勢制御部15は、助勢制御を実行することができる。助勢制御は、車両90を制動する際に液圧制動装置80によって生じさせる荷重に加えて電動駐車制動装置70によって生じさせる荷重によって制動力を発生させることができる。助勢制御では、回転体89に押し付けられる摩擦材88を電動駐車制動装置70の直動部材75によって助勢させる。 The assistance control unit 15 can execute assistance control. In the assistance control, braking force can be generated by the load generated by the electric parking brake device 70 in addition to the load generated by the hydraulic brake device 80 when braking the vehicle 90. In the assistance control, the friction material 88 pressed against the rotary body 89 is assisted by the linear motion member 75 of the electric parking brake device 70 .
 <助勢制御>
 助勢制御について、より詳細に説明する。
 助勢制御は、たとえば、開始条件が成立している場合に助勢制御部15によって開始される。助勢制御部15は、車両90の制動中に液圧制動装置80によって付与される制動力によって制動要求に対応する目標制動力を満たせない場合に、開始条件が成立していると判定する。なお、車両90の制動中とは、車両90の走行中に車両90に制動力が付与されている状態である。
<Assistance control>
The assistance control will be explained in more detail.
The assistance control is started by the assistance control unit 15, for example, when a start condition is satisfied. The assistance control unit 15 determines that the start condition is satisfied when the target braking force corresponding to the braking request cannot be satisfied by the braking force applied by the hydraulic braking device 80 during braking of the vehicle 90. Note that the braking of the vehicle 90 is a state in which braking force is applied to the vehicle 90 while the vehicle 90 is running.
 開始条件の一例を説明する。たとえば、助勢制御部15は、液圧制動装置80に機能失陥が生じている場合に開始条件が成立していると判定する。液圧制動装置80の失陥の一例は、倍力装置81の失陥である。液圧制動装置80に失陥が生じているか否かは、たとえば、液圧制御ユニット40が行う失陥判定の結果を取得することによって判定できる。 An example of starting conditions will be explained. For example, the assistance control unit 15 determines that the start condition is satisfied when the hydraulic braking device 80 has malfunctioned. An example of failure of the hydraulic braking device 80 is failure of the booster 81. Whether or not a failure has occurred in the hydraulic braking device 80 can be determined, for example, by obtaining the result of failure determination performed by the hydraulic pressure control unit 40.
 たとえば、助勢制御部15は、制動中に目標制動力BPTおよび液圧制動力BPPの値を取得して、目標制動力BPTと液圧制動力BPPとの乖離が生じている場合に開始条件が成立していると判定することもできる。たとえば、目標制動力BPTと液圧制動力BPPとが乖離しているか否かは、その乖離幅が判定値よりも大きいか否かによって判定できる。ここで用いる判定値は、液圧制動装置80の失陥を判定する際に用いられる判定値と同じ値でもよいし異なる値を採用してもよい。 For example, the assistance control unit 15 acquires the values of the target braking force BPT and the hydraulic braking force BPP during braking, and determines that the start condition is satisfied when there is a discrepancy between the target braking force BPT and the hydraulic braking force BPP. It can also be determined that For example, whether or not there is a deviation between the target braking force BPT and the hydraulic braking force BPP can be determined based on whether or not the width of the deviation is larger than a determination value. The determination value used here may be the same value as the determination value used when determining failure of the hydraulic braking device 80, or may be a different value.
 また、助勢制御は、開始条件が成立しているか否かにかかわらず、車両90の走行中に電動駐車制動装置70を作動させることを許容されている場合に開始されてもよい。たとえば、EPBスイッチがONに操作されている場合に、電動駐車制動装置70を作動させることが許容されていると判定できる。EPBスイッチは、たとえば、車両90の運転者が操作できるスイッチである。 Furthermore, the assistance control may be started when the electric parking brake system 70 is allowed to operate while the vehicle 90 is running, regardless of whether the start condition is satisfied or not. For example, if the EPB switch is turned on, it can be determined that the electric parking brake system 70 is permitted to operate. The EPB switch is, for example, a switch that can be operated by the driver of the vehicle 90.
 助勢制御の一例では、助勢制御部15は、アプライ処理によって電気モータ71に流れる電流値Imの目標値として目標電流値Imtを算出する。助勢制御部15は、算出した目標電流値Imtに基づいて、モータ制御部14によって電気モータ71を駆動させる。 In an example of assistance control, the assistance control unit 15 calculates a target current value Imt as a target value of the current value Im flowing through the electric motor 71 through the apply process. The assistance control section 15 causes the motor control section 14 to drive the electric motor 71 based on the calculated target current value Imt.
 たとえば、助勢制御部15は、次のように目標電流値Imtを算出する。助勢制御部15は、目標制動力BPTから液圧制動力BPPを減算した差分を算出する。助勢制御部15は、差分に相当する制動力をEPB荷重によって付与することができるように、EPB荷重の目標値を算出する。助勢制御部15は、EPB荷重の目標値を作用させることができる目標電流値Imtを算出する。 For example, the assistance control unit 15 calculates the target current value Imt as follows. The assisting control unit 15 calculates a difference by subtracting the hydraulic braking force BPP from the target braking force BPT. The assist control unit 15 calculates a target value of the EPB load so that a braking force corresponding to the difference can be applied by the EPB load. The assisting control unit 15 calculates a target current value Imt at which the target value of the EPB load can be applied.
 助勢制御の一例では、助勢制御部15は、電流値Imが目標電流値Imt以下である場合にアプライ処理を実行する。助勢制御部15は、電流値Imが目標電流値Imtよりも大きい場合にリリース処理を実行することができる。 In an example of assistance control, the assistance control unit 15 executes the apply process when the current value Im is equal to or less than the target current value Imt. The assistance control unit 15 can execute the release process when the current value Im is larger than the target current value Imt.
 助勢制御は、たとえば、終了条件が成立している場合に助勢制御部15によって終了される。
 終了条件の一例について説明する。助勢制御部15は、たとえば、車両90が停止した場合に終了条件が成立したと判定することができる。ここでの車両90の停止とは、たとえば、車両90が走行している状態から車両90の車体速度が「0」の状態になることである。車両90の停止には、車速が「0」になる直前であり車体速度が「0」よりも僅かに大きい状態を含んでいてもよい。車体速度に限らず、車輪速度、車両90の前後加速度等に基づいて車両90が停止したか否かを判定することもできる。
The assistance control is terminated by the assistance control unit 15, for example, when the termination condition is satisfied.
An example of termination conditions will be explained. For example, the assistance control unit 15 can determine that the termination condition has been satisfied when the vehicle 90 has stopped. Here, stopping the vehicle 90 means, for example, that the vehicle body speed of the vehicle 90 changes from a state where the vehicle 90 is running to a state of "0". Stopping the vehicle 90 may include a state where the vehicle speed is just before reaching "0" and the vehicle body speed is slightly higher than "0". It is also possible to determine whether the vehicle 90 has stopped based not only on the vehicle body speed but also on the wheel speed, the longitudinal acceleration of the vehicle 90, and the like.
 助勢制御部15は、たとえば、車体速度が判定速度以下になった場合に終了条件が成立したと判定することもできる。すなわち、車両90の停止に至っていない減速中に助勢制御を終了してもよい。 For example, the assistance control unit 15 can also determine that the termination condition is satisfied when the vehicle speed becomes equal to or less than the determination speed. That is, the assistance control may be ended while the vehicle 90 is decelerating but has not yet come to a stop.
 助勢制御部15は、たとえば、制動要求が解消された場合に終了条件が成立したと判定することもできる。たとえば、制動操作部材92の操作が解消された場合に制動要求が解消されたと判定することができる。 The assistance control unit 15 can also determine that the termination condition is satisfied, for example, when the braking request is canceled. For example, when the operation of the brake operation member 92 is canceled, it can be determined that the brake request is canceled.
 助勢制御部15は、助勢制御の実行中に減速スリップを検出した際に車輪91のロックを抑制するように電動駐車制動装置70を制御する機能を備えている。助勢制御の実行中に助勢制御部15が実行する処理の流れの一例を図2に示す。 The assistance control unit 15 has a function of controlling the electric parking brake system 70 to suppress locking of the wheels 91 when deceleration slip is detected during execution of assistance control. FIG. 2 shows an example of the flow of processing executed by the assistance control unit 15 during execution of assistance control.
 図2に示す処理ルーチンは、助勢制御の実行中に所定の周期毎に繰り返し実行される。
 本処理ルーチンが開始されると、まずステップS101では、助勢制御部15は、減速スリップが生じているか否かを判定する。スリップ検出部11によって減速スリップが検出されていない場合には(S101:NO)、助勢制御部15は、本処理ルーチンを一旦終了する。一方、スリップ検出部11によって減速スリップが検出されている場合には(S101:YES)、助勢制御部15は、処理をステップS102に移行する。なお、本処理ルーチンが開始されてから終了されるまでの間は、目標電流値Imtを用いた電気モータ71の制御が行われない。
The processing routine shown in FIG. 2 is repeatedly executed at predetermined intervals during execution of assist control.
When this processing routine is started, first in step S101, the assistance control unit 15 determines whether a deceleration slip is occurring. If a deceleration slip is not detected by the slip detection unit 11 (S101: NO), the assistance control unit 15 temporarily ends this processing routine. On the other hand, if the slip detection section 11 detects a deceleration slip (S101: YES), the assistance control section 15 shifts the process to step S102. Note that the electric motor 71 is not controlled using the target current value Imt from the start to the end of this processing routine.
 ステップS102では、助勢制御部15は、液圧が生じているか否かを判定する。液圧検出部12によって液圧が検出されている場合には(S102:YES)、助勢制御部15は、処理をステップS103に移行する。 In step S102, the assistance control unit 15 determines whether or not hydraulic pressure is generated. If the hydraulic pressure is detected by the hydraulic pressure detection section 12 (S102: YES), the assistance control section 15 moves the process to step S103.
 ステップS103では、助勢制御部15は、EPB荷重が生じているか否かを判定する。具体的には、荷重検出部13によって電流値Imの絶対値が電流判定値Imthよりも大きいと判定されている場合にEPB荷重が生じていると判定する。すなわち、電流値Imの絶対値が電流判定値Imthよりも大きい場合には(S103:YES)、助勢制御部15は、処理をステップS104に移行する。 In step S103, the assistance control unit 15 determines whether an EPB load is occurring. Specifically, when the load detection unit 13 determines that the absolute value of the current value Im is larger than the current determination value Imth, it is determined that the EPB load is occurring. That is, when the absolute value of the current value Im is larger than the current determination value Imth (S103: YES), the assistance control unit 15 moves the process to step S104.
 ステップS104では、助勢制御部15は、リリース処理を実施する。リリース処理として電気モータ71に電圧が印加されると、EPB荷重が減少する方向に直動部材75が移動する。リリース処理によって電圧の印加を開始してから規定期間が経過すると、助勢制御部15は、電圧の印加を終了させる。その後、助勢制御部15は、本処理ルーチンを終了する。 In step S104, the assistance control unit 15 performs a release process. When a voltage is applied to the electric motor 71 as a release process, the linear member 75 moves in a direction in which the EPB load decreases. When a predetermined period of time has elapsed since the application of the voltage was started by the release process, the assisting control unit 15 ends the application of the voltage. Thereafter, the assistance control unit 15 ends this processing routine.
 一方で、ステップS103の処理において、電流値Imの絶対値が電流判定値Imth以下である場合、すなわちEPB荷重が生じていない場合には(S103:NO)、助勢制御部15は、処理をステップS105に移行する。 On the other hand, in the process of step S103, if the absolute value of the current value Im is less than or equal to the current determination value Imth, that is, if no EPB load is generated (S103: NO), the assisting control unit 15 skips the process to step S103. The process moves to S105.
 ステップS105では、助勢制御部15は、電気モータ71に電圧を印加することなく電動駐車制動装置70を待機させる。その後、助勢制御部15は、本処理ルーチンを終了する。 In step S105, the assistance control unit 15 puts the electric parking brake system 70 on standby without applying voltage to the electric motor 71. Thereafter, the assistance control unit 15 ends this processing routine.
 助勢制御部15は、ステップS102の処理において、液圧検出部12によって液圧が検出されていない場合には(S102:NO)、処理をステップS104に移行する。助勢制御部15は、リリース処理を実施すると、本処理ルーチンを終了する。 In the process of step S102, if the hydraulic pressure is not detected by the hydraulic pressure detection unit 12 (S102: NO), the assistance control unit 15 moves the process to step S104. After executing the release process, the assistance control unit 15 ends this process routine.
 図3に示すように、助勢制御部15は、助勢制御の実行中に減速スリップが継続する場合には、助勢制御を終了することもできる。
 図3は、助勢制御の実行中に助勢制御部15が実行する処理の流れを示す。図3に示す処理ルーチンは、助勢制御の実行中に所定の周期毎に繰り返し実行される。
As shown in FIG. 3, the assistance control unit 15 can also end the assistance control if the deceleration slip continues during the execution of the assistance control.
FIG. 3 shows the flow of processing executed by the assistance control unit 15 during execution of assistance control. The processing routine shown in FIG. 3 is repeatedly executed at predetermined intervals during execution of the assistance control.
 本処理ルーチンが開始されると、まずステップS201において、助勢制御部15は、減速スリップが継続しているか否かを判定する。
 減速スリップが継続しているとは、たとえば、減速スリップが検出された場合に実行されるステップS104の処理としてリリース処理を実施しても、減速スリップが解消していない状態をいう。たとえば、助勢制御部15は、所定回数のリリース処理を繰り返し実施しても減速スリップが解消していない場合に減速スリップが継続していると判定することができる。所定回数は、特に制限されないが、たとえば、二回以上の回数である。または、助勢制御部15は、減速スリップが検出されてから減速スリップが解消することなく所定時間が経過した場合に減速スリップが継続していると判定することもできる。この場合には、助勢制御部15は、上記所定時間が経過するまでの間にステップS105の処理として電動駐車制動装置70を待機させていてもよい。すなわち、助勢制御部15は、減速スリップが検出されてから電動駐車制動装置70を待機させた状態で所定時間が経過しても減速スリップが解消していない場合に減速スリップが継続していると判定することもできる。
When this processing routine is started, first in step S201, the assistance control unit 15 determines whether or not deceleration slip continues.
The continuation of the deceleration slip means, for example, that the deceleration slip is not resolved even if the release process is performed as the process in step S104 that is executed when the deceleration slip is detected. For example, the assistance control unit 15 can determine that the deceleration slip continues if the deceleration slip is not resolved even after repeating the release process a predetermined number of times. The predetermined number of times is, for example, two or more times, although it is not particularly limited. Alternatively, the assistance control unit 15 can also determine that the deceleration slip continues if a predetermined period of time has elapsed without the deceleration slip being resolved after the deceleration slip was detected. In this case, the assistance control unit 15 may keep the electric parking brake system 70 on standby as the process of step S105 until the predetermined time period elapses. That is, the assistance control unit 15 determines that the deceleration slip continues if the deceleration slip is not resolved even after a predetermined period of time has elapsed with the electric parking brake device 70 on standby after the deceleration slip was detected. It is also possible to judge.
 減速スリップが継続していない場合には(S201:NO)、助勢制御部15は、本処理ルーチンを一旦終了する。
 一方、ステップS201の処理において、減速スリップが継続している場合には(S201:YES)、助勢制御部15は、処理をステップS202に移行する。ステップS202では、助勢制御部15は、助勢制御を終了する。すなわち、制動中にEPB荷重を発生させることを終了する。このとき、助勢制御部15は、リリース処理によって直動部材75を押圧方向とは反対の方向に移動させる。助勢制御を終了する際のリリース処理によって、直動部材75は、たとえば初期位置に移動される。直動部材75の初期位置とは、たとえば、直動部材75をピストン87から離れる方向に移動させるように電気モータ71に電圧を所定の時間印加することで直動部材75を移動させた位置である。助勢制御部15は、助勢制御を終了すると、本処理ルーチンを終了する。
If the deceleration slip is not continuing (S201: NO), the assistance control unit 15 temporarily ends this processing routine.
On the other hand, in the process of step S201, if the deceleration slip continues (S201: YES), the assistance control unit 15 shifts the process to step S202. In step S202, the assistance control unit 15 ends the assistance control. In other words, generating the EPB load during braking ends. At this time, the assisting control unit 15 moves the linearly moving member 75 in the direction opposite to the pressing direction by the release process. The linear motion member 75 is moved, for example, to the initial position by the release process when the assisting control is ended. The initial position of the linearly moving member 75 is, for example, a position where the linearly moving member 75 is moved by applying a voltage to the electric motor 71 for a predetermined time so as to move the linearly moving member 75 in a direction away from the piston 87. be. When the assistance control unit 15 completes the assistance control, it terminates this processing routine.
 <作用および効果>
 本実施形態の作用および効果について説明する。
 図4および図5は、助勢制御においてアプライ処理を実行している際に減速スリップが発生した場合における各種状態の推移を示す。
<Action and effect>
The operation and effects of this embodiment will be explained.
FIGS. 4 and 5 show changes in various states when deceleration slip occurs during apply processing in assist control.
 図6および図7は、助勢制御においてリリース処理を実行している際に減速スリップが発生した場合における各種状態の推移を示す。図6および図7は、たとえば、目標制動力BPTに占める液圧制動力BPPの割合が増大している場合の例である。目標制動力BPTに占める液圧制動力BPPの割合が増大しているとは、たとえば、目標制動力BPTが一定である場合に液圧制動力BPPが増大している場合である。 FIGS. 6 and 7 show the transition of various states when deceleration slip occurs while executing the release process in assist control. FIGS. 6 and 7 are examples in which, for example, the ratio of the hydraulic braking force BPP to the target braking force BPT is increasing. The ratio of the hydraulic braking force BPP to the target braking force BPT is increasing when, for example, the hydraulic braking force BPP is increasing while the target braking force BPT is constant.
 図4の(a)、図5の(a)、図6の(a)、および図7の(a)には、液圧制動装置80の状態を表示している。具体的には、液圧制動装置80による液圧が検出されている期間を液圧「あり」と表示している。液圧制動装置80による液圧が検出されていない期間を液圧「なし」と表示している。 The state of the hydraulic braking device 80 is shown in FIG. 4(a), FIG. 5(a), FIG. 6(a), and FIG. 7(a). Specifically, the period in which the hydraulic pressure by the hydraulic braking device 80 is being detected is displayed as "hydraulic pressure present." A period in which no hydraulic pressure is detected by the hydraulic braking device 80 is displayed as "no hydraulic pressure."
 図4の(b)、図5の(b)、図6の(b)、および図7の(b)には、電動駐車制動装置70の制御態様を表示している。具体的には、アプライ処理を実行している期間を「アプライ」と表示している。リリース処理を実行している期間を「リリース」と表示している。アプライ処理およびリリース処理のいずれの処理も実行していない期間を「待機」と表示している。 FIG. 4(b), FIG. 5(b), FIG. 6(b), and FIG. 7(b) show control modes of the electric parking braking device 70. Specifically, the period during which the apply process is executed is displayed as "apply." The period during which release processing is being executed is displayed as "release". The period when neither the apply processing nor the release processing is being executed is displayed as "waiting".
 図4の(c)、図5の(c)、図6の(c)、および図7の(c)には、電気モータ71に流れる電流の大きさの推移を示している。
 図4の(d)、図5の(d)、図6の(d)、および図7の(d)には、減速スリップが検出されているか否かを表示している。具体的には、減速スリップが検出されている期間を減速スリップ「あり」と表示している。減速スリップが検出されていない期間を減速スリップ「なし」と表示している。
4(c), FIG. 5(c), FIG. 6(c), and FIG. 7(c) show changes in the magnitude of the current flowing through the electric motor 71.
4(d), FIG. 5(d), FIG. 6(d), and FIG. 7(d) display whether or not deceleration slip is detected. Specifically, a period in which a deceleration slip is detected is displayed as "deceleration slip present". A period in which no deceleration slip is detected is displayed as "no deceleration slip."
 なお、図4~図7に示す例では、減速スリップが検出されるとABS制御が開始される。すなわち、減速スリップが検出されると、スリップ量に応じてWC圧を調整するように液圧制動装置80が作動される。 Note that in the examples shown in FIGS. 4 to 7, ABS control is started when deceleration slip is detected. That is, when deceleration slip is detected, the hydraulic braking device 80 is operated to adjust the WC pressure according to the amount of slip.
 まず、図4に示す例では、図4の(b)に示すように、タイミングt11からタイミングt14までの期間にアプライ処理が行われている。このアプライ処理に関して、図4の(c)に示すように、突入電流が収束してからの電流値Imは、電流判定値Imthよりも小さい値を推移している。すなわち、この時点では、アプライ処理によって直動部材75が押圧方向に移動しているものの、直動部材75がピストン87を介して摩擦材88を回転体89に押し付けていない状態にあり電気モータ71の負荷が小さい状態である。 First, in the example shown in FIG. 4, as shown in FIG. 4(b), the apply process is performed during the period from timing t11 to timing t14. Regarding this apply process, as shown in FIG. 4(c), the current value Im after the inrush current converges remains smaller than the current determination value Imth. That is, at this point, although the direct-acting member 75 is moving in the pressing direction due to the apply process, the direct-acting member 75 is not pressing the friction material 88 against the rotating body 89 via the piston 87, and the electric motor 71 is in a state where the load is small.
 タイミングt12において、図4の(a)に示すように液圧が検出されている。タイミングt13において、図4の(d)に示すように減速スリップが検出されている。すなわち、制動力の増大に伴ってスリップ量が大きくなっている。 At timing t12, the hydraulic pressure is detected as shown in FIG. 4(a). At timing t13, a deceleration slip is detected as shown in FIG. 4(d). That is, the amount of slip increases as the braking force increases.
 助勢制御の実行中においては、車輪91の減速スリップを検出した場合には、車輪91のロックを抑制するために制動力を調整することが好ましい。ここで、助勢制御の実行中においてEPB荷重が発生していない状態からリリース処理を行ったとしてもリリース処理による直動部材75の移動は制動力の減少に寄与しない。それだけでなく、不要なリリース処理が行われることで、EPB荷重を減少させる方向に直動部材75が過度に移動するおそれがある。直動部材75が過度に移動すると、直動部材75が他の部材に干渉するおそれがある。また、不要なリリース処理が行われることでEPB荷重を減少させる方向に直動部材75が移動していると、次にアプライ処理が行われる際にEPB荷重の発生が遅延することもある。すなわち、電動駐車制動装置70の応答性が低下するおそれがある。 During execution of assist control, if deceleration slip of the wheels 91 is detected, it is preferable to adjust the braking force to suppress locking of the wheels 91. Here, even if the release process is performed in a state where no EPB load is generated during execution of the assisting control, the movement of the linearly moving member 75 due to the release process does not contribute to a reduction in the braking force. Not only that, but unnecessary release processing may cause the translational member 75 to move excessively in the direction of reducing the EPB load. If the translational member 75 moves excessively, there is a risk that the translational member 75 may interfere with other members. Furthermore, if the translational member 75 moves in a direction that reduces the EPB load due to unnecessary release processing being performed, generation of the EPB load may be delayed when the next apply processing is performed. That is, there is a possibility that the responsiveness of the electric parking brake device 70 may decrease.
 この点、制御装置10によれば、減速スリップが検出されており(S101:YES)、液圧が検出されており(S102:YES)、且つ、EPB荷重が検出されていない場合には(S103:NO)、リリース処理を実行しない(S105)。このため、タイミングt14以降ではリリース処理が実行されない。このようにリリース処理を実行することなく電動駐車制動装置70を待機させることによって、直動部材75が過度に移動することを抑制できる。また、電動駐車制動装置70の応答性が低下することを抑制できる。なお、上記の場合のように液圧が検出されており且つEPB荷重が検出されていない場合の減速スリップは、ABS制御によって解消できる。 In this regard, according to the control device 10, if deceleration slip is detected (S101: YES), hydraulic pressure is detected (S102: YES), and EPB load is not detected (S103 :NO), release processing is not executed (S105). Therefore, the release process is not executed after timing t14. By causing the electric parking brake device 70 to stand by without executing the release process in this manner, excessive movement of the linearly moving member 75 can be suppressed. Further, it is possible to suppress the responsiveness of the electric parking brake device 70 from decreasing. Note that deceleration slip when the hydraulic pressure is detected and the EPB load is not detected as in the above case can be eliminated by ABS control.
 次に、図5に示す例では、図5の(b)に示すように、タイミングt21からタイミングt24までの期間にアプライ処理が行われている。このアプライ処理に関して、図5の(c)に示すように、突入電流が収束してからの電流値Imは、タイミングt22までは電流判定値Imthよりも小さい値を推移している。タイミングt22において、図5の(a)に示すように液圧が検出されている。図5の(c)に示すように、タイミングt22からタイミングt24までの期間では、電流値Imが徐々に増大している。すなわち、電気モータ71の負荷が増大している。電流値Imの大きさは、タイミングt23において電流判定値Imthに達している。すなわち、タイミングt23においてEPB荷重が検出されている。タイミングt23において、図5の(d)に示すように減速スリップが検出されている。すなわち、制動力の増大に伴ってスリップ量が大きくなっている。 Next, in the example shown in FIG. 5, the apply process is performed during the period from timing t21 to timing t24, as shown in FIG. 5(b). Regarding this apply process, as shown in FIG. 5C, the current value Im after the inrush current converges remains smaller than the current determination value Imth until timing t22. At timing t22, the hydraulic pressure is detected as shown in FIG. 5(a). As shown in FIG. 5C, the current value Im gradually increases during the period from timing t22 to timing t24. In other words, the load on the electric motor 71 is increasing. The magnitude of current value Im reaches current determination value Imth at timing t23. That is, the EPB load is detected at timing t23. At timing t23, a deceleration slip is detected as shown in FIG. 5(d). That is, the amount of slip increases as the braking force increases.
 制御装置10では、減速スリップが検出されており(S101:YES)、液圧が検出されており(S102:YES)、且つ、EPB荷重が検出されている場合には(S103:YES)、リリース処理を実行する(S104)。このため、図5の(b)に示すように、タイミングt25からタイミングt26までの期間において、リリース処理が実行されている。この結果として、直動部材75がEPB荷重を減少させる方向に移動される。これによって、EPB荷重が減少される。図5の(c)に示す例では、タイミングt25からのリリース処理に伴う突入電流が収束してからの電流値Imの大きさは、電流判定値Imthよりも小さい値で推移している。この結果として、タイミングt26よりも後では、EPB荷重が検出されないことによって、リリース処理が実行されない。 In the control device 10, if deceleration slip is detected (S101: YES), hydraulic pressure is detected (S102: YES), and EPB load is detected (S103: YES), release is performed. Processing is executed (S104). Therefore, as shown in FIG. 5B, the release process is executed during the period from timing t25 to timing t26. As a result, the translational member 75 is moved in a direction that reduces the EPB load. This reduces the EPB load. In the example shown in FIG. 5C, the magnitude of the current value Im after the inrush current accompanying the release process converges from timing t25 remains smaller than the current determination value Imth. As a result, the EPB load is not detected after timing t26, so the release process is not executed.
 続いて、図6に示す例では、図6の(b)に示すように、タイミングt31からタイミングt32までの期間にリリース処理が行われている。このリリース処理に関して、図6の(c)に示すように、突入電流が収束してからの電流値Imは、電流判定値Imthよりも小さい値を推移している。液圧は、図6の(a)に示すようにタイミングt31以降において検出されている。減速スリップは、図6の(d)に示すようにタイミングt32以降において検出されている。 Subsequently, in the example shown in FIG. 6, the release process is performed during the period from timing t31 to timing t32, as shown in FIG. 6(b). Regarding this release process, as shown in FIG. 6(c), the current value Im after the inrush current converges remains smaller than the current determination value Imth. The hydraulic pressure is detected after timing t31, as shown in FIG. 6(a). The deceleration slip is detected after timing t32, as shown in FIG. 6(d).
 制御装置10によれば、減速スリップが検出されており(S101:YES)、液圧が検出されており(S102:YES)、且つ、EPB荷重が検出されていない場合には(S103:NO)、リリース処理を実行しない(S105)。このため、タイミングt32以降ではリリース処理が実行されない。 According to the control device 10, if deceleration slip is detected (S101: YES), hydraulic pressure is detected (S102: YES), and EPB load is not detected (S103: NO). , the release process is not executed (S105). Therefore, the release process is not executed after timing t32.
 次に、図7に示す例では、図7の(b)に示すように、タイミングt41からタイミングt42までの期間にリリース処理が行われている。このリリース処理に関して、図7の(c)に示すように、突入電流が収束してからの電流値Imは、電流判定値Imthよりも大きい値を推移している。電流値Imは、徐々に小さくなっている。これは、タイミングt41からタイミングt42までの期間において、EPB荷重が徐々に減少して電気モータ71の負荷が徐々に減少していることを示す。また、電流値Imは、リリース処理が終了するタイミングt42においても電流判定値Imthよりも大きい。すなわち、タイミングt42においてもEPB荷重が発生している。液圧は、図7の(a)に示すようにタイミングt41以降において検出されている。減速スリップは、図7の(d)に示すようにタイミングt42以降において検出されている。 Next, in the example shown in FIG. 7, as shown in FIG. 7(b), the release process is performed during the period from timing t41 to timing t42. Regarding this release process, as shown in FIG. 7(c), the current value Im after the inrush current converges remains larger than the current determination value Imth. The current value Im is gradually decreasing. This indicates that the EPB load gradually decreases and the load on the electric motor 71 gradually decreases during the period from timing t41 to timing t42. Further, the current value Im is also larger than the current determination value Imth at timing t42 when the release process ends. That is, the EPB load is generated also at timing t42. The hydraulic pressure is detected after timing t41, as shown in FIG. 7(a). The deceleration slip is detected after timing t42, as shown in FIG. 7(d).
 制御装置10では、減速スリップが検出されており(S101:YES)、液圧が検出されており(S102:YES)、且つ、EPB荷重が検出されている場合には(S103:YES)、リリース処理を実行する(S104)。このため、図7の(b)に示すように、タイミングt43からタイミングt44までの期間において、リリース処理が実行されている。この結果として、直動部材75がEPB荷重を減少させる方向に移動される。これによって、EPB荷重が減少される。このため、図7の(c)に示すように、リリース処理に伴う電流値Imの大きさは、突入電流が収束してから一時的に電流判定値Imthよりも大きくなるが、その後に電流判定値Imthよりも小さい値まで減少している。この結果として、タイミングt44よりも後では、EPB荷重が検出されないことによって、リリース処理が実行されない。 In the control device 10, if deceleration slip is detected (S101: YES), hydraulic pressure is detected (S102: YES), and EPB load is detected (S103: YES), release is performed. Processing is executed (S104). Therefore, as shown in FIG. 7B, the release process is executed during the period from timing t43 to timing t44. As a result, the translational member 75 is moved in a direction that reduces the EPB load. This reduces the EPB load. Therefore, as shown in FIG. 7(c), the magnitude of the current value Im accompanying the release process temporarily becomes larger than the current judgment value Imth after the inrush current converges; It has decreased to a value smaller than the value Imth. As a result, the EPB load is not detected after timing t44, so the release process is not executed.
 また、制御装置10では、助勢制御の実行中に減速スリップを検出した際に、液圧が検出されていない場合には(S102:NO)、リリース処理を実施する(S104)。助勢制御の実行中において液圧が検出されていないということは、EPB荷重のみによって制動力が付与されていると推定できる。このため、リリース処理を行うことで制動力を減少させることができる。これによって、スリップ量を小さくして車輪91のロックを抑制することができる。 In addition, in the control device 10, when a deceleration slip is detected during the execution of the assistance control, if the hydraulic pressure is not detected (S102: NO), a release process is performed (S104). The fact that the hydraulic pressure is not detected during execution of the assist control means that it can be inferred that the braking force is applied only by the EPB load. Therefore, the braking force can be reduced by performing the release process. This makes it possible to reduce the amount of slip and prevent the wheels 91 from locking.
 以上のように、制御装置10によれば、減速スリップが発生している際に、この減速スリップが電動駐車制動装置70によって生じているか否かを判定することによって、適当な機会にリリース処理を実行することができる。すなわち、EPB荷重によって減速スリップが発生している場合にはリリース処理を行うことによってスリップ量を小さくすることができる。一方で、液圧荷重によって減速スリップが発生している場合には、不要なリリース処理を抑制することができる。これによって、直動部材75が過度に移動することを抑制できる。また、電動駐車制動装置70の応答性が低下することを抑制できる。 As described above, according to the control device 10, when a deceleration slip occurs, by determining whether or not this deceleration slip is caused by the electric parking brake device 70, the release process is performed at an appropriate opportunity. can be executed. That is, when deceleration slip occurs due to the EPB load, the amount of slip can be reduced by performing the release process. On the other hand, if deceleration slip occurs due to hydraulic load, unnecessary release processing can be suppressed. This can suppress excessive movement of the linear motion member 75. Further, it is possible to suppress the responsiveness of the electric parking brake device 70 from decreasing.
 (変更例)
 本実施形態は、以下のように変更して実施することができる。本実施形態および以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Example of change)
This embodiment can be modified and implemented as follows. This embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
 ・上記実施形態では、制動機構としてディスクブレーキを例示した。これに限らず、制動機構は、ドラムブレーキでもよい。回転体に対して液圧に応じて押し付けられる摩擦材を助勢するように構成されている電動駐車制動装置が適用されるドラムブレーキであれば、上記実施形態のように制御装置10を適用することができる。 - In the above embodiment, a disc brake was illustrated as the braking mechanism. The braking mechanism is not limited to this, and may be a drum brake. If it is a drum brake to which an electric parking braking device configured to assist a friction material that is pressed against a rotating body according to hydraulic pressure, the control device 10 as in the above embodiment can be applied. I can do it.
 ・処理回路である制御装置10、液圧制御ユニット40が備える処理回路、および支援制御ユニット50が備える処理回路は、以下のように構成できる。処理回路は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備える回路として構成できる。処理回路は、各種処理を実行する一つ以上のハードウェア回路を備える回路として構成できる。処理回路は、各種処理のうち一部の処理を実行する一つ以上のプロセッサと、各種処理のうち残りの処理を実行する一つ以上のハードウェア回路とを組み合わせた回路として構成できる。 - The control device 10, which is a processing circuit, the processing circuit included in the hydraulic control unit 40, and the processing circuit included in the support control unit 50 can be configured as follows. The processing circuit can be configured as a circuit that includes one or more processors that perform various processes according to a computer program. The processing circuit can be configured as a circuit that includes one or more hardware circuits that perform various processes. The processing circuit can be configured as a circuit that combines one or more processors that execute some of the various processes and one or more hardware circuits that execute the remaining of the various processes.
 プロセッサは、CPU等の処理装置を備える。プロセッサは、RAMおよびROMなどのメモリを備える。メモリは、処理を処理装置に実行させるように構成されたプログラムコードまたは指令を格納している。メモリ、すなわち記憶媒体は、汎用または専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含む。ハードウェア回路としては、たとえば、特定用途向け集積回路であるASICを挙げることができる。 The processor includes a processing device such as a CPU. The processor includes memory such as RAM and ROM. The memory stores program code or instructions configured to cause the processing device to perform operations. Memory, or storage media, includes any available media that can be accessed by a general purpose or special purpose computer. Examples of the hardware circuit include an ASIC, which is an application-specific integrated circuit.
 ・液圧制御ユニット40が備える処理回路、および支援制御ユニット50が備える処理回路が実現する機能の一部または全部は、制御装置10によって実現されてもよい。
 ・制御装置10が実現する機能の一部は、制御装置10と接続されている他の処理回路によって実現されてもよい。
 
- A part or all of the functions realized by the processing circuit included in the hydraulic control unit 40 and the processing circuit included in the support control unit 50 may be realized by the control device 10.
- Some of the functions realized by the control device 10 may be realized by other processing circuits connected to the control device 10.

Claims (2)

  1.  車輪と一体に回転する回転体に摩擦材が押し付けられる荷重をホイールシリンダ内の液圧を調整することによって生じさせることで、前記車輪に制動力を発生させる液圧制動装置と、前記回転体に前記摩擦材が押し付けられる荷重を電気モータの回転運動に応じて生じさせる電動駐車制動装置と、を有している車両に適用される制動制御装置であって、
     前記車両を制動する際に前記液圧制動装置によって生じさせる荷重に加えて前記電動駐車制動装置によって生じさせる荷重によって制動力を発生させるように、前記回転体に押し付けられる前記摩擦材を前記電動駐車制動装置によって助勢させる助勢制御を実行する助勢制御部と、
     前記電動駐車制動装置によって生じさせる荷重をEPB荷重として、該EPB荷重に応じた値を取得することで前記EPB荷重の発生を検出する荷重検出部と、
     前記車輪の減速スリップを検出するスリップ検出部と、を備え、
     前記車輪の減速スリップを検出した際に、前記助勢制御部は、前記EPB荷重の発生が検出されている場合には、前記EPB荷重を減少させる方向に前記電気モータを駆動させるリリース処理を実行する一方で、前記EPB荷重の発生が検出されていない場合には、前記リリース処理を実行しない制動制御装置。
    A hydraulic braking device that generates braking force on the wheel by adjusting hydraulic pressure in a wheel cylinder to generate a load that presses a friction material against a rotating body that rotates together with the wheel; A brake control device applied to a vehicle, comprising: an electric parking brake device that generates a load on which the friction material is pressed in response to rotational movement of an electric motor;
    The friction material pressed against the rotating body is applied to the electric parking brake so that a braking force is generated by the load generated by the electric parking brake device in addition to the load generated by the hydraulic brake device when braking the vehicle. an assistance control unit that executes assistance control for assistance by a braking device;
    a load detection unit that detects the occurrence of the EPB load by determining a load generated by the electric parking brake device as an EPB load and acquiring a value corresponding to the EPB load;
    a slip detection unit that detects deceleration slip of the wheel,
    When detecting deceleration slip of the wheel, the assisting control unit executes a release process to drive the electric motor in a direction to reduce the EPB load, if generation of the EPB load is detected. On the other hand, if the occurrence of the EPB load is not detected, the brake control device does not execute the release process.
  2.  前記荷重検出部は、前記電気モータに流れる電流値を取得するものであり、該電流値が規定のしきい値よりも大きい場合に前記EPB荷重の発生を検出するように構成しており、
     前記規定のしきい値は、前記EPB荷重が発生していない場合に前記電気モータに流れる電流値以上の値である
     請求項1に記載の制動制御装置。
    The load detection unit is configured to acquire a current value flowing through the electric motor, and is configured to detect the occurrence of the EPB load when the current value is larger than a prescribed threshold;
    The brake control device according to claim 1, wherein the predetermined threshold value is a value greater than or equal to a current value flowing through the electric motor when the EPB load is not generated.
PCT/JP2023/030659 2022-08-25 2023-08-25 Braking control device WO2024043325A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022133781A JP2024030711A (en) 2022-08-25 2022-08-25 Brake control device
JP2022-133781 2022-08-25

Publications (1)

Publication Number Publication Date
WO2024043325A1 true WO2024043325A1 (en) 2024-02-29

Family

ID=90013506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/030659 WO2024043325A1 (en) 2022-08-25 2023-08-25 Braking control device

Country Status (2)

Country Link
JP (1) JP2024030711A (en)
WO (1) WO2024043325A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192900A (en) * 2017-05-17 2018-12-06 株式会社アドヴィックス Brake device for vehicle
WO2019208748A1 (en) * 2018-04-27 2019-10-31 株式会社アドヴィックス Brake control device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192900A (en) * 2017-05-17 2018-12-06 株式会社アドヴィックス Brake device for vehicle
WO2019208748A1 (en) * 2018-04-27 2019-10-31 株式会社アドヴィックス Brake control device

Also Published As

Publication number Publication date
JP2024030711A (en) 2024-03-07

Similar Documents

Publication Publication Date Title
KR102142028B1 (en) Brake system
US10001183B2 (en) Brake apparatus
JP5514805B2 (en) Brake control device
US10232834B2 (en) Brake device
US8632136B2 (en) Brake control system
US10005442B2 (en) Brake control device
US10442413B2 (en) Brake control apparatus
US20130025273A1 (en) Electric booster
US20090026835A1 (en) Hydraulic Braking Device
US20130082514A1 (en) Brake control device
JP7049841B2 (en) Electric brake device
JP7153743B2 (en) electric brake device
US9387845B2 (en) Brake apparatus
WO2021200459A1 (en) Electric brake device and electric brake control device
JP2017171215A (en) Brake system
JP6221118B2 (en) Brake system
JP6846077B2 (en) Brake system
JP2019157921A (en) Electric brake device and electric brake control device
WO2024043325A1 (en) Braking control device
JP2018140677A (en) Braking control device for vehicle
JP5648798B2 (en) Brake device
WO2023171723A1 (en) Braking control device
WO2022244405A1 (en) Brake device controller, brake device control method, and brake device
JP7332541B2 (en) Electric parking brake device and brake control device
WO2023062833A1 (en) Electric parking brake device and brake control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23857433

Country of ref document: EP

Kind code of ref document: A1