WO2023171251A1 - Laser processing apparatus - Google Patents

Laser processing apparatus Download PDF

Info

Publication number
WO2023171251A1
WO2023171251A1 PCT/JP2023/004780 JP2023004780W WO2023171251A1 WO 2023171251 A1 WO2023171251 A1 WO 2023171251A1 JP 2023004780 W JP2023004780 W JP 2023004780W WO 2023171251 A1 WO2023171251 A1 WO 2023171251A1
Authority
WO
WIPO (PCT)
Prior art keywords
rack
pinion gear
laser processing
shield gas
gas nozzle
Prior art date
Application number
PCT/JP2023/004780
Other languages
French (fr)
Japanese (ja)
Inventor
俊之 三島
龍幸 中川
潤司 藤原
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023171251A1 publication Critical patent/WO2023171251A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor

Definitions

  • the present invention relates to a laser processing device.
  • Patent Document 1 discloses that by rotating a shield gas nozzle (side nozzle) to change and adjust the angle with the welding surface, and then tightening a screw to maintain the adjusted position, the jet nozzle at the lower end of the shield gas nozzle is turned into a laser beam.
  • a laser processing device is disclosed in which the laser beam is directed near the focal point.
  • the angle adjustment of the shield gas nozzle is performed before starting laser processing, and the shield gas nozzle maintains the same posture during laser processing.
  • the present invention has been made in view of this point, and its purpose is to enable the blowing angle of the shielding gas to be changed during laser processing.
  • a first aspect is a laser processing apparatus including a laser processing head that emits a laser beam to a processing point of a workpiece, and a shield gas nozzle that supplies a shield gas to the processing point, the shield gas nozzle including: A first rack that is provided with a first link hole and a second link hole that is formed at a position farther from the laser processing head than the first link hole, and that extends along the laser emission direction of the laser processing head. and a first link pin inserted into the first link hole; a first support member that extends along the laser emission direction of the laser processing head and is further away from the laser processing head than the first rack.
  • a second support member having a second rack disposed therein, a second link pin inserted into the second link hole, a first pinion gear that meshes with the first rack, and a second support member that is disposed outside the first pinion gear; a second pinion gear that has a large diameter and meshes with the second rack; and a motor that rotates the first pinion gear and the second pinion gear, and the first link pin is configured to move the first rack.
  • the second link pin rotatably supports the shield gas nozzle, and the blowing angle of the shield gas nozzle is adjusted relative to the first link pin. As the shield gas nozzle rotates around the second link pin as it moves, the change is made.
  • the blowout angle of the shield gas nozzle during laser processing it becomes easier to supply shield gas to the processing point of the workpiece according to the shape of the workpiece.
  • a second aspect of the laser processing apparatus includes a switching mechanism that moves the first pinion gear and the second pinion gear in the direction of the rotation axis, and the second support member is configured to and the second rack, and the switching mechanism has a third rack that is disposed between the first pinion gear and the second rack, and the switching mechanism changes the positions of the first pinion gear and the second pinion gear. a first position where the first pinion gear meshes with the first rack and the second pinion gear meshes with the second rack; and a first position where the first pinion gear meshes with the first rack and the third rack and the second pinion gear meshes with the second rack. and a second position where the gear and the second rack are disengaged.
  • the amount of movement of the first rack that meshes with the first pinion gear is larger than the amount of movement of the second rack that meshes with the second pinion gear, so that the second rack is moved around the second link pin.
  • the shield gas nozzle can be rotated to change the blowing angle of the shield gas nozzle.
  • the movement amount of the first rack and the third rack that mesh with the first pinion gear is the same, so it is possible to change the height position of the shield gas nozzle relative to the workpiece while maintaining the blowing angle of the shield gas nozzle. can.
  • a third aspect of the laser processing apparatus includes a position detection section that detects the position of the laser processing head with respect to the workpiece, and the blowing angle of the shield gas nozzle is determined by the detection of the position detection section. Changes will be made based on the results.
  • the inclination of the workpiece can be calculated in real time, and feedback control can be performed so that the blowing angle of the shield gas nozzle is optimized. can.
  • a fourth aspect is the laser processing apparatus according to any one of the first to third aspects, including a blow nozzle that blows air in a direction intersecting the laser emission direction of the laser processing head, and the blow nozzle is configured to It is supported by at least one of the first support member and the second support member.
  • the blowing angle of the shield gas can be changed during laser processing.
  • FIG. 1 is a schematic configuration diagram of a laser processing apparatus according to this embodiment.
  • FIG. 2 is a side view showing the configuration of the laser processing device.
  • FIG. 3 is a plan view showing the configuration of the laser processing device.
  • FIG. 4 is a side view showing a state in which the blowing angle of the shielding gas is changed.
  • FIG. 5 is a side view showing the first pinion gear and the second pinion gear in the second position.
  • FIG. 6 is a plan view showing the first pinion gear and the second pinion gear in the second position.
  • the laser processing apparatus 1 includes a laser oscillator 2, an optical fiber 3, a robot 4, a control section 5, a laser processing head 6, a shielding gas supply section 7, and an air supply section 8. , is provided.
  • the laser oscillator 2 oscillates a laser beam L.
  • the laser oscillator 2 can use, for example, a solid laser light source, a gas laser light source, or a fiber laser light source. Further, the laser oscillator 2 may be a semiconductor laser light source that directly uses emitted light from a semiconductor laser, or a semiconductor laser array including a plurality of laser light emitters.
  • the laser oscillator 2 is connected to the input end of the optical fiber 3.
  • the laser processing head 6 is connected to the output end of the optical fiber 3.
  • Laser light L emitted from the laser oscillator 2 is transmitted to the laser processing head 6 via the optical fiber 3.
  • the laser processing head 6 emits a laser beam L to a processing point P of the workpiece W.
  • the laser processing head 6 is attached to the robot 4.
  • the laser processing head 6 can change the emission position and focal position of the laser beam L with respect to the workpiece W by operating the robot 4. In the example shown in FIG. 1, an elliptical workpiece W whose shape changes significantly along the emission path of the laser beam L is targeted.
  • a laser oscillator 2, a robot 4, and a laser processing head 6 are connected to the control unit 5.
  • the control unit 5 controls the start and stop of outputting the laser beam L, the output intensity of the laser beam L, and the like.
  • the control unit 5 may control the amount of gas supplied by the shielding gas supply unit 7 and the amount of air supplied by the air supply unit 8.
  • the laser processing apparatus 1 further includes a shield gas nozzle 10, a blow nozzle 20, a position change mechanism 25, a switching mechanism 60, and a position detection section 55.
  • the shield gas nozzle 10 is connected to the shield gas supply section 7.
  • the shield gas nozzle 10 supplies the shield gas supplied from the shield gas supply section 7 to the processing point P.
  • the shielding gas is used to suppress oxidation of the workpiece W.
  • the shield gas nozzle 10 is provided with a first link hole 11 and a second link hole 12.
  • the first link hole 11 is formed as a long hole extending along the blowing direction of the shield gas nozzle 10 .
  • the second link hole 12 is formed at a position farther from the laser processing head 6 than the first link hole 11 is.
  • Shield gas nozzle 10 is attached to position change mechanism 25 .
  • the blow nozzle 20 is arranged above the shield gas nozzle 10. Blow nozzle 20 is connected to air supply section 8 .
  • the blow nozzle 20 blows out the air supplied from the air supply section 8 in a direction intersecting the laser emission direction of the laser processing head 6.
  • the blow nozzle 20 blows away spatter and fumes generated at the processing point P from the optical axis of the laser beam L to remove them.
  • the blow nozzle 20 is provided with a third link hole 21 and a fourth link hole 22.
  • the third link hole 21 is formed as a long hole extending along the blowing direction of the blow nozzle 20 .
  • the fourth link hole 22 is formed at a position farther from the laser processing head 6 than the third link hole 21 is. Blow nozzle 20 is attached to position change mechanism 25 .
  • the position change mechanism 25 includes a first support member 30, a second support member 40, a first pinion gear 51, a second pinion gear 52, and a motor 53.
  • the first support member 30 includes a first bar 31, a first rack 32, a first link pin 33, and a third link pin 34.
  • the first bar 31 extends along the laser emission direction of the laser processing head 6.
  • the first rack 32 is provided on the upper side of the first bar 31.
  • the first rack 32 extends along the laser emission direction of the laser processing head 6.
  • the first link pin 33 is provided on the lower side of the first bar 31.
  • the first link pin 33 is inserted into the first link hole 11 of the shield gas nozzle 10 .
  • the first link pin 33 moves relatively inside the first link hole 11 as the first rack 32 moves.
  • the third link pin 34 is provided above the first link pin 33 on the first bar 31.
  • the third link pin 34 is inserted into the third link hole 21 of the blow nozzle 20.
  • the third link pin 34 relatively moves inside the third link hole 21 as the first rack 32 moves.
  • the second support member 40 includes a second bar 41, a second rack 42, a third rack 43, a second link pin 44, and a fourth link pin 45.
  • the second bar 41 extends along the laser emission direction of the laser processing head 6.
  • the second rack 42 is provided on the upper side of the second bar 41.
  • the second rack 42 extends along the laser emission direction of the laser processing head 6.
  • the second rack 42 is arranged further away from the laser processing head 6 than the first rack 32 is.
  • the third rack 43 is provided on the upper side of the second bar 41.
  • the third rack 43 is arranged between the first rack 32 and the second rack 42. As will be described in detail later, the third rack 43 can mesh with the first pinion gear 51 by moving the first pinion gear 51 in the direction of the rotating shaft 54.
  • the second link pin 44 is provided on the lower side of the second bar 41.
  • the second link pin 44 is inserted into the second link hole 12 of the shield gas nozzle 10.
  • the second link pin 44 rotatably supports the shield gas nozzle 10.
  • the fourth link pin 45 is provided above the second link pin 44 on the second bar 41.
  • the fourth link pin 45 is inserted into the fourth link hole 22 of the blow nozzle 20.
  • the fourth link pin 45 rotatably supports the blow nozzle 20.
  • the first pinion gear 51 meshes with the first rack 32.
  • the second pinion gear 52 meshes with the second rack 42.
  • the second pinion gear 52 has a larger outer diameter than the first pinion gear 51.
  • the motor 53 rotates the first pinion gear 51 and the second pinion gear 52.
  • a rotating shaft 54 of the motor 53 is connected to a first pinion gear 51 and a second pinion gear 52.
  • the first pinion gear 51 and the second pinion gear 52 are movable in the axial direction with respect to the rotating shaft 54 of the motor 53.
  • a key (not shown) may be provided on the rotating shaft 54 of the motor 53, and key grooves (not shown) may be provided in the first pinion gear 51 and the second pinion gear 52, so that the motor 53 can be configured to be movable in the axial direction.
  • the switching mechanism 60 is composed of, for example, a cylinder.
  • the switching mechanism 60 moves the first pinion gear 51 and the second pinion gear 52 in the axial direction of the rotating shaft 54.
  • the switching mechanism 60 switches the positions of the first pinion gear 51 and the second pinion gear 52 between a first position and a second position, which will be described later.
  • the amount of movement of the first rack 32 per rotation of the rotating shaft 54 of the motor 53 is smaller than the amount of movement of the second rack 42, and the first link pin 33 moves relatively inside the first link hole 11.
  • the shield gas nozzle 10 rotates around the second link pin 44. Thereby, the blowing angle of the shield gas nozzle 10 can be changed (see FIG. 4).
  • the shielding gas blown out from the shielding gas nozzle 10 may be applied to a steep slope beyond the machining point P (see FIG. It is preferable to increase the blowout angle ⁇ so that the airflow flows along the hatched area).
  • the blowing angle ⁇ of the shield gas nozzle 10 is determined by the relative difference between the moving distance x of the first bar 31 and the moving distance y of the second bar 41.
  • the distance a is from the optical axis of the laser beam L to the first bar 31
  • the distance b is the distance from the optical axis of the laser beam L to the second bar 41
  • the ratio of the pitch circle diameter of the first pinion gear 51 to the pitch circle diameter of the second pinion gear 52 is set to be a:b. In this way, the blowing angle ⁇ of the shield gas nozzle 10 can be arbitrarily adjusted by simply rotating the first pinion gear 51 and the second pinion gear 52 with one motor 53.
  • the third link pin 34 moves relatively inside the third link hole 21, so that the blow nozzle 20 rotates around the fourth link pin 45. Thereby, the blowing angle of the blow nozzle 20 can be changed (see FIG. 4).
  • a position detection section 55 is provided at the lower end of the laser processing head 6.
  • the position detection unit 55 detects the position of the laser processing head 6 with respect to the vicinity of the processing point P of the workpiece W.
  • a signal indicating the position information detected by the position detection section 55 is sent to the control section 5.
  • the control unit 5 controls the rotation angle of the motor 53 based on the detection result of the position detection unit 55, and changes the blowing angle of the shield gas nozzle 10.
  • the blowing angle ⁇ of the shield gas nozzle 10 can be changed depending on the curvature of the workpiece W near the processing point P.
  • blowing angle of the shield gas nozzle 10 may be changed based on the blowing angle and blowing position that are preset by teaching.
  • the first rack 32 and third rack 43 that mesh with the first pinion gear 51 simultaneously move in the height direction.
  • the height position of the shield gas nozzle 10 relative to the workpiece W can be changed while maintaining the blowing angle of the shield gas nozzle 10.
  • the blow nozzle 20 also moves in the height direction together with the shield gas nozzle 10, it is possible to suppress the mixture of the shield gas and air.
  • blow nozzle 20 is supported by the third link pin 34 of the first support member 30 and the fourth link pin 45 of the second support member 40, but the present invention is not limited to this form. do not have.
  • the blow nozzle 20 only needs to be supported by at least one of the first support member 30 and the second support member 40.
  • the blow nozzle 20 be supported by the first support member 30, which has a small movement amount.
  • the present invention has the highly practical effect of being able to change the blowout angle of shielding gas during laser processing, and therefore is extremely useful and has high industrial applicability.
  • Laser processing device 6 Laser processing head 10 Shield gas nozzle 11 First link hole 12 Second link hole 20 Blow nozzle 30 First support member 32 First rack 33 First link pin 40 Second support member 42 Second rack 43 Third Rack 44 Second link pin 51 First pinion gear 52 Second pinion gear 53 Motor 54 Rotating shaft 55 Position detection section 60 Switching mechanism W Work P Processing point L Laser light

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

A first support member 30 has a first rack 32 and a first link pin 33. The first link pin 33 moves relatively inside a first link hole 11 in association with movement of the first rack 32. A second support member 40 has a second rack 42 and a second link pin 44. The second link pin 44 rotatably supports a shield gas nozzle 10. The blow-out angle of the shield gas nozzle 10 is changed due to rotation of the shield gas nozzle 10 about the second link pin 44 in association with relative movement of the first link pin 33.

Description

レーザ加工装置laser processing equipment
 本発明は、レーザ加工装置に関するものである。 The present invention relates to a laser processing device.
 特許文献1には、シールドガスノズル(サイドノズル)を回動させて溶接面との角度を変更調節した後、ねじを締めてその調節位置を保持することで、シールドガスノズルの下端の噴出口をレーザビーム焦点の近傍に指向させるようにしたレーザ加工装置が開示されている。 Patent Document 1 discloses that by rotating a shield gas nozzle (side nozzle) to change and adjust the angle with the welding surface, and then tightening a screw to maintain the adjusted position, the jet nozzle at the lower end of the shield gas nozzle is turned into a laser beam. A laser processing device is disclosed in which the laser beam is directed near the focal point.
特許第5096000号公報Patent No. 5096000
 ところで、特許文献1の発明では、シールドガスノズルの角度調整は、レーザ加工の開始前に行うものであり、レーザ加工中、シールドガスノズルは、同じ姿勢を維持することとなる。 By the way, in the invention of Patent Document 1, the angle adjustment of the shield gas nozzle is performed before starting laser processing, and the shield gas nozzle maintains the same posture during laser processing.
 そのため、溶接経路の途中で形状が大きく変化するワークをレーザ加工する場合、ワークの加工点の周辺において、シールドガスが十分に供給されない箇所が発生して、ワークが酸化するおそれがある。 Therefore, when laser processing a workpiece whose shape changes significantly during the welding path, there may be areas around the processing point of the workpiece where shielding gas is not sufficiently supplied, which may cause the workpiece to oxidize.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、レーザ加工中に、シールドガスの吹き出し角度を変更できるようにすることにある。 The present invention has been made in view of this point, and its purpose is to enable the blowing angle of the shielding gas to be changed during laser processing.
 第1の態様は、ワークの加工点にレーザ光を出射するレーザ加工ヘッドと、前記加工点にシールドガスを供給するシールドガスノズルと、を備えたレーザ加工装置であって、前記シールドガスノズルには、第1リンク孔と、前記第1リンク孔よりも前記レーザ加工ヘッドから離れた位置に形成された第2リンク孔と、が設けられ、前記レーザ加工ヘッドのレーザ出射方向に沿って延びる第1ラックと、前記第1リンク孔に挿通される第1リンクピンと、を有する第1支持部材と、前記レーザ加工ヘッドのレーザ出射方向に沿って延びて前記第1ラックよりも前記レーザ加工ヘッドから離れて配置された第2ラックと、前記第2リンク孔に挿通される第2リンクピンと、を有する第2支持部材と、前記第1ラックに噛み合う第1ピニオンギアと、前記第1ピニオンギアよりも外径が大きく、前記第2ラックに噛み合う第2ピニオンギアと、前記第1ピニオンギア及び前記第2ピニオンギアを回転させるモータと、を備え、前記第1リンクピンは、前記第1ラックの移動に伴って前記第1リンク孔の内部を相対的に移動し、前記第2リンクピンは、前記シールドガスノズルを回転可能に支持し、前記シールドガスノズルの吹き出し角度は、前記第1リンクピンの相対的な移動に伴って、前記第2リンクピンを中心に前記シールドガスノズルが回転することで変更される。 A first aspect is a laser processing apparatus including a laser processing head that emits a laser beam to a processing point of a workpiece, and a shield gas nozzle that supplies a shield gas to the processing point, the shield gas nozzle including: A first rack that is provided with a first link hole and a second link hole that is formed at a position farther from the laser processing head than the first link hole, and that extends along the laser emission direction of the laser processing head. and a first link pin inserted into the first link hole; a first support member that extends along the laser emission direction of the laser processing head and is further away from the laser processing head than the first rack. a second support member having a second rack disposed therein, a second link pin inserted into the second link hole, a first pinion gear that meshes with the first rack, and a second support member that is disposed outside the first pinion gear; a second pinion gear that has a large diameter and meshes with the second rack; and a motor that rotates the first pinion gear and the second pinion gear, and the first link pin is configured to move the first rack. The second link pin rotatably supports the shield gas nozzle, and the blowing angle of the shield gas nozzle is adjusted relative to the first link pin. As the shield gas nozzle rotates around the second link pin as it moves, the change is made.
 第1の態様では、レーザ加工中に、シールドガスノズルの吹き出し角度を変更することで、ワークの形状に応じてワークの加工点にシールドガスを供給し易くなる。 In the first aspect, by changing the blowout angle of the shield gas nozzle during laser processing, it becomes easier to supply shield gas to the processing point of the workpiece according to the shape of the workpiece.
 第2の態様は、第1の態様のレーザ加工装置において、前記第1ピニオンギア及び前記第2ピニオンギアを回転軸方向に移動させる切替機構を備え、前記第2支持部材は、前記第1ラックと前記第2ラックとの間に配置され、前記第1ピニオンギアに噛み合い可能な第3ラックを有し、前記切替機構は、前記第1ピニオンギア及び前記第2ピニオンギアの位置を、前記第1ピニオンギアが前記第1ラックに噛み合うとともに前記第2ピニオンギアが前記第2ラックに噛み合う第1位置と、前記第1ピニオンギアが前記第1ラック及び前記第3ラックに噛み合うとともに前記第2ピニオンギアと前記第2ラックとの噛み合いが解除される第2位置と、に切り替える。 A second aspect of the laser processing apparatus according to the first aspect includes a switching mechanism that moves the first pinion gear and the second pinion gear in the direction of the rotation axis, and the second support member is configured to and the second rack, and the switching mechanism has a third rack that is disposed between the first pinion gear and the second rack, and the switching mechanism changes the positions of the first pinion gear and the second pinion gear. a first position where the first pinion gear meshes with the first rack and the second pinion gear meshes with the second rack; and a first position where the first pinion gear meshes with the first rack and the third rack and the second pinion gear meshes with the second rack. and a second position where the gear and the second rack are disengaged.
 第2の態様では、第1位置では、第1ピニオンギアに噛み合う第1ラックの移動量が、第2ピニオンギアに噛み合う第2ラックの移動量よりも大きくなるので、第2リンクピンを中心にシールドガスノズルが回転して、シールドガスノズルの吹き出し角度を変更することができる。 In the second aspect, in the first position, the amount of movement of the first rack that meshes with the first pinion gear is larger than the amount of movement of the second rack that meshes with the second pinion gear, so that the second rack is moved around the second link pin. The shield gas nozzle can be rotated to change the blowing angle of the shield gas nozzle.
 第2位置では、第1ピニオンギアに噛み合う第1ラック及び第3ラックの移動量が同じになるので、シールドガスノズルの吹き出し角度を維持したまま、ワークに対するシールドガスノズルの高さ位置を変更することができる。 In the second position, the movement amount of the first rack and the third rack that mesh with the first pinion gear is the same, so it is possible to change the height position of the shield gas nozzle relative to the workpiece while maintaining the blowing angle of the shield gas nozzle. can.
 第3の態様は、第1又は2の態様のレーザ加工装置において、前記ワークに対する前記レーザ加工ヘッドの位置を検出する位置検出部を備え、前記シールドガスノズルの吹き出し角度は、前記位置検出部の検出結果に基づいて変更される。 A third aspect of the laser processing apparatus according to the first or second aspect includes a position detection section that detects the position of the laser processing head with respect to the workpiece, and the blowing angle of the shield gas nozzle is determined by the detection of the position detection section. Changes will be made based on the results.
 第3の態様では、レーザ加工中に、ワークに対するレーザ加工ヘッドの位置を検出することで、ワークの傾きをリアルタイムで演算して、シールドガスノズルの吹き出し角度が最適となるようにフィードバック制御することができる。 In the third aspect, during laser processing, by detecting the position of the laser processing head with respect to the workpiece, the inclination of the workpiece can be calculated in real time, and feedback control can be performed so that the blowing angle of the shield gas nozzle is optimized. can.
 第4の態様は、第1~3の態様の何れか1つのレーザ加工装置において、前記レーザ加工ヘッドのレーザ出射方向と交差する方向にエアを吹き出すブローノズルを備え、前記ブローノズルは、前記第1支持部材及び前記第2支持部材の少なくとも一方に支持される。 A fourth aspect is the laser processing apparatus according to any one of the first to third aspects, including a blow nozzle that blows air in a direction intersecting the laser emission direction of the laser processing head, and the blow nozzle is configured to It is supported by at least one of the first support member and the second support member.
 第4の態様では、シールドガスノズル及びブローノズルを同じ支持部材で支持することで、ブローノズル専用の支持部材を別途設ける必要が無く、省スペース化及びコストダウンを図ることができる。 In the fourth aspect, by supporting the shield gas nozzle and the blow nozzle with the same support member, there is no need to separately provide a support member dedicated to the blow nozzle, and it is possible to save space and reduce costs.
 本開示の態様によれば、レーザ加工中に、シールドガスの吹き出し角度を変更することができる。 According to the aspect of the present disclosure, the blowing angle of the shield gas can be changed during laser processing.
図1は、本実施形態に係るレーザ加工装置の概略構成図である。FIG. 1 is a schematic configuration diagram of a laser processing apparatus according to this embodiment. 図2は、レーザ加工装置の構成を示す側面図である。FIG. 2 is a side view showing the configuration of the laser processing device. 図3は、レーザ加工装置の構成を示す平面図である。FIG. 3 is a plan view showing the configuration of the laser processing device. 図4は、シールドガスの吹き出し角度を変更した状態を示す側面図である。FIG. 4 is a side view showing a state in which the blowing angle of the shielding gas is changed. 図5は、第1ピニオンギア及び第2ピニオンギアが第2位置にある状態を示す側面図である。FIG. 5 is a side view showing the first pinion gear and the second pinion gear in the second position. 図6は、第1ピニオンギア及び第2ピニオンギアが第2位置にある状態を示す平面図である。FIG. 6 is a plan view showing the first pinion gear and the second pinion gear in the second position.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described based on the drawings. Note that the following description of preferred embodiments is essentially just an example, and is not intended to limit the present invention, its applications, or its uses.
 〈レーザ加工装置の構成〉
 図1に示すように、レーザ加工装置1は、レーザ発振器2と、光ファイバ3と、ロボット4と、制御部5と、レーザ加工ヘッド6と、シールドガス供給部7と、エア供給部8と、を備える。
<Configuration of laser processing equipment>
As shown in FIG. 1, the laser processing apparatus 1 includes a laser oscillator 2, an optical fiber 3, a robot 4, a control section 5, a laser processing head 6, a shielding gas supply section 7, and an air supply section 8. , is provided.
 レーザ発振器2は、レーザ光Lを発振する。レーザ発振器2は、例えば、固体レーザ光源、気体レーザ光源、ファイバレーザ光源を用いることができる。また、レーザ発振器2は、半導体レーザからの出射光を直接に用いる半導体レーザ光源や、複数のレーザ光エミッタを備える半導体レーザアレイであってもよい。 The laser oscillator 2 oscillates a laser beam L. The laser oscillator 2 can use, for example, a solid laser light source, a gas laser light source, or a fiber laser light source. Further, the laser oscillator 2 may be a semiconductor laser light source that directly uses emitted light from a semiconductor laser, or a semiconductor laser array including a plurality of laser light emitters.
 レーザ発振器2は、光ファイバ3の入射端に接続される。レーザ加工ヘッド6は、光ファイバ3の出射端に接続される。レーザ発振器2から出射されたレーザ光Lは、光ファイバ3を介してレーザ加工ヘッド6に伝送される。 The laser oscillator 2 is connected to the input end of the optical fiber 3. The laser processing head 6 is connected to the output end of the optical fiber 3. Laser light L emitted from the laser oscillator 2 is transmitted to the laser processing head 6 via the optical fiber 3.
 レーザ加工ヘッド6は、ワークWの加工点Pにレーザ光Lを出射する。レーザ加工ヘッド6は、ロボット4に取り付けられる。レーザ加工ヘッド6は、ロボット4を動作させることで、ワークWに対するレーザ光Lの出射位置及び焦点位置を変更可能となっている。図1に示す例では、レーザ光Lの出射経路の途中で形状が大きく変化する楕円形状のワークWを対象とする。 The laser processing head 6 emits a laser beam L to a processing point P of the workpiece W. The laser processing head 6 is attached to the robot 4. The laser processing head 6 can change the emission position and focal position of the laser beam L with respect to the workpiece W by operating the robot 4. In the example shown in FIG. 1, an elliptical workpiece W whose shape changes significantly along the emission path of the laser beam L is targeted.
 制御部5には、レーザ発振器2、ロボット4、及びレーザ加工ヘッド6が接続される。制御部5は、レーザ加工ヘッド6の移動速度の他に、レーザ光Lの出力開始や停止、レーザ光Lの出力強度などを制御する。なお、制御部5は、シールドガス供給部7のガス供給量や、エア供給部8のエア供給量を制御するようにしてもよい。 A laser oscillator 2, a robot 4, and a laser processing head 6 are connected to the control unit 5. In addition to the moving speed of the laser processing head 6, the control unit 5 controls the start and stop of outputting the laser beam L, the output intensity of the laser beam L, and the like. Note that the control unit 5 may control the amount of gas supplied by the shielding gas supply unit 7 and the amount of air supplied by the air supply unit 8.
 図2及び図3にも示すように、レーザ加工装置1は、シールドガスノズル10と、ブローノズル20と、位置変更機構25と、切替機構60と、位置検出部55と、をさらに備える。 As shown in FIGS. 2 and 3, the laser processing apparatus 1 further includes a shield gas nozzle 10, a blow nozzle 20, a position change mechanism 25, a switching mechanism 60, and a position detection section 55.
 シールドガスノズル10は、シールドガス供給部7に接続される。シールドガスノズル10は、シールドガス供給部7から供給されたシールドガスを加工点Pに供給する。シールドガスにより、ワークWの酸化を抑えるようにしている。 The shield gas nozzle 10 is connected to the shield gas supply section 7. The shield gas nozzle 10 supplies the shield gas supplied from the shield gas supply section 7 to the processing point P. The shielding gas is used to suppress oxidation of the workpiece W.
 シールドガスノズル10には、第1リンク孔11と、第2リンク孔12と、が設けられる。第1リンク孔11は、シールドガスノズル10の吹き出し方向に沿って延びる長孔で形成される。第2リンク孔12は、第1リンク孔11よりもレーザ加工ヘッド6から離れた位置に形成される。シールドガスノズル10は、位置変更機構25に取り付けられる。 The shield gas nozzle 10 is provided with a first link hole 11 and a second link hole 12. The first link hole 11 is formed as a long hole extending along the blowing direction of the shield gas nozzle 10 . The second link hole 12 is formed at a position farther from the laser processing head 6 than the first link hole 11 is. Shield gas nozzle 10 is attached to position change mechanism 25 .
 ブローノズル20は、シールドガスノズル10よりも上方に配置される。ブローノズル20は、エア供給部8に接続される。ブローノズル20は、エア供給部8から供給されたエアを、レーザ加工ヘッド6のレーザ出射方向と交差する方向に吹き出す。ブローノズル20は、加工点Pで発生するスパッタやヒュームを、レーザ光Lの光軸上から吹き飛ばして除去する。 The blow nozzle 20 is arranged above the shield gas nozzle 10. Blow nozzle 20 is connected to air supply section 8 . The blow nozzle 20 blows out the air supplied from the air supply section 8 in a direction intersecting the laser emission direction of the laser processing head 6. The blow nozzle 20 blows away spatter and fumes generated at the processing point P from the optical axis of the laser beam L to remove them.
 ブローノズル20には、第3リンク孔21と、第4リンク孔22と、が設けられる。第3リンク孔21は、ブローノズル20の吹き出し方向に沿って延びる長孔で形成される。第4リンク孔22は、第3リンク孔21よりもレーザ加工ヘッド6から離れた位置に形成される。ブローノズル20は、位置変更機構25に取り付けられる。 The blow nozzle 20 is provided with a third link hole 21 and a fourth link hole 22. The third link hole 21 is formed as a long hole extending along the blowing direction of the blow nozzle 20 . The fourth link hole 22 is formed at a position farther from the laser processing head 6 than the third link hole 21 is. Blow nozzle 20 is attached to position change mechanism 25 .
 位置変更機構25は、第1支持部材30と、第2支持部材40と、第1ピニオンギア51と、第2ピニオンギア52と、モータ53と、を有する。 The position change mechanism 25 includes a first support member 30, a second support member 40, a first pinion gear 51, a second pinion gear 52, and a motor 53.
 第1支持部材30は、第1バー31と、第1ラック32と、第1リンクピン33と、第3リンクピン34と、を有する。第1バー31は、レーザ加工ヘッド6のレーザ出射方向に沿って延びる。 The first support member 30 includes a first bar 31, a first rack 32, a first link pin 33, and a third link pin 34. The first bar 31 extends along the laser emission direction of the laser processing head 6.
 第1ラック32は、第1バー31の上部側に設けられる。第1ラック32は、レーザ加工ヘッド6のレーザ出射方向に沿って延びる。 The first rack 32 is provided on the upper side of the first bar 31. The first rack 32 extends along the laser emission direction of the laser processing head 6.
 第1リンクピン33は、第1バー31の下部側に設けられる。第1リンクピン33は、シールドガスノズル10の第1リンク孔11に挿通される。第1リンクピン33は、第1ラック32の移動に伴って第1リンク孔11の内部を相対的に移動する。 The first link pin 33 is provided on the lower side of the first bar 31. The first link pin 33 is inserted into the first link hole 11 of the shield gas nozzle 10 . The first link pin 33 moves relatively inside the first link hole 11 as the first rack 32 moves.
 第3リンクピン34は、第1バー31における第1リンクピン33よりも上方に設けられる。第3リンクピン34は、ブローノズル20の第3リンク孔21に挿通される。第3リンクピン34は、第1ラック32の移動に伴って第3リンク孔21の内部を相対的に移動する。 The third link pin 34 is provided above the first link pin 33 on the first bar 31. The third link pin 34 is inserted into the third link hole 21 of the blow nozzle 20. The third link pin 34 relatively moves inside the third link hole 21 as the first rack 32 moves.
 第2支持部材40は、第2バー41と、第2ラック42と、第3ラック43と、第2リンクピン44と、第4リンクピン45と、を有する。第2バー41は、レーザ加工ヘッド6のレーザ出射方向に沿って延びる。 The second support member 40 includes a second bar 41, a second rack 42, a third rack 43, a second link pin 44, and a fourth link pin 45. The second bar 41 extends along the laser emission direction of the laser processing head 6.
 第2ラック42は、第2バー41の上部側に設けられる。第2ラック42は、レーザ加工ヘッド6のレーザ出射方向に沿って延びる。第2ラック42は、第1ラック32よりもレーザ加工ヘッド6から離れて配置される。 The second rack 42 is provided on the upper side of the second bar 41. The second rack 42 extends along the laser emission direction of the laser processing head 6. The second rack 42 is arranged further away from the laser processing head 6 than the first rack 32 is.
 第3ラック43は、第2バー41の上部側に設けられる。第3ラック43は、第1ラック32と第2ラック42との間に配置される。詳しくは後述するが、第3ラック43は、第1ピニオンギア51を回転軸54方向に移動させることで、第1ピニオンギア51に噛み合い可能となっている。 The third rack 43 is provided on the upper side of the second bar 41. The third rack 43 is arranged between the first rack 32 and the second rack 42. As will be described in detail later, the third rack 43 can mesh with the first pinion gear 51 by moving the first pinion gear 51 in the direction of the rotating shaft 54.
 第2リンクピン44は、第2バー41の下部側に設けられる。第2リンクピン44は、シールドガスノズル10の第2リンク孔12に挿通される。第2リンクピン44は、シールドガスノズル10を回転可能に支持する。 The second link pin 44 is provided on the lower side of the second bar 41. The second link pin 44 is inserted into the second link hole 12 of the shield gas nozzle 10. The second link pin 44 rotatably supports the shield gas nozzle 10.
 第4リンクピン45は、第2バー41における第2リンクピン44よりも上方に設けられる。第4リンクピン45は、ブローノズル20の第4リンク孔22に挿通される。第4リンクピン45は、ブローノズル20を回転可能に支持する。 The fourth link pin 45 is provided above the second link pin 44 on the second bar 41. The fourth link pin 45 is inserted into the fourth link hole 22 of the blow nozzle 20. The fourth link pin 45 rotatably supports the blow nozzle 20.
 このように、シールドガスノズル10を取り付けるための第1支持部材30及び第2支持部材40を用いて、ブローノズル20を支持することで、ブローノズル20専用の支持部材を別途設ける必要が無く、省スペース化及びコストダウンを図ることができる。 In this way, by supporting the blow nozzle 20 using the first support member 30 and the second support member 40 for attaching the shield gas nozzle 10, there is no need to separately provide a support member dedicated to the blow nozzle 20, which saves money. It is possible to save space and reduce costs.
 第1ピニオンギア51は、第1ラック32に噛み合う。第2ピニオンギア52は、第2ラック42に噛み合う。第2ピニオンギア52は、第1ピニオンギア51よりも外径が大きい。 The first pinion gear 51 meshes with the first rack 32. The second pinion gear 52 meshes with the second rack 42. The second pinion gear 52 has a larger outer diameter than the first pinion gear 51.
 モータ53は、第1ピニオンギア51及び第2ピニオンギア52を回転させる。モータ53の回転軸54は、第1ピニオンギア51及び第2ピニオンギア52に連結される。第1ピニオンギア51及び第2ピニオンギア52は、モータ53の回転軸54に対して軸方向に移動可能となっている。例えば、モータ53の回転軸54に図示しないキーを設け、第1ピニオンギア51及び第2ピニオンギア52に図示しないキー溝を設けることで、軸方向に移動可能な構成とすればよい。 The motor 53 rotates the first pinion gear 51 and the second pinion gear 52. A rotating shaft 54 of the motor 53 is connected to a first pinion gear 51 and a second pinion gear 52. The first pinion gear 51 and the second pinion gear 52 are movable in the axial direction with respect to the rotating shaft 54 of the motor 53. For example, a key (not shown) may be provided on the rotating shaft 54 of the motor 53, and key grooves (not shown) may be provided in the first pinion gear 51 and the second pinion gear 52, so that the motor 53 can be configured to be movable in the axial direction.
 切替機構60は、例えば、シリンダで構成される。切替機構60は、第1ピニオンギア51及び第2ピニオンギア52を回転軸54の軸方向に移動させる。切替機構60は、第1ピニオンギア51及び第2ピニオンギア52の位置を、後述する第1位置と、第2位置と、に切り替える。 The switching mechanism 60 is composed of, for example, a cylinder. The switching mechanism 60 moves the first pinion gear 51 and the second pinion gear 52 in the axial direction of the rotating shaft 54. The switching mechanism 60 switches the positions of the first pinion gear 51 and the second pinion gear 52 between a first position and a second position, which will be described later.
 〈第1位置について〉
 図2及び図3に示すように、第1位置では、第1ピニオンギア51が第1ラック32に噛み合うとともに、第1ピニオンギア51に比べてピッチ円直径が大きい第2ピニオンギア52が第2ラック42に噛み合う。モータ53の回転軸54の一回転あたりにおいて、第1位置では、第1ピニオンギア51に噛み合う第1ラック32の移動量が、第2ピニオンギア52に噛み合う第2ラック42の移動量よりも小さくなる。
<About the first position>
As shown in FIGS. 2 and 3, in the first position, the first pinion gear 51 is engaged with the first rack 32, and the second pinion gear 52, which has a larger pitch circle diameter than the first pinion gear 51, is engaged with the first rack 32. It meshes with the rack 42. In the first position, the amount of movement of the first rack 32 that meshes with the first pinion gear 51 is smaller than the amount of movement of the second rack 42 that meshes with the second pinion gear 52 per rotation of the rotating shaft 54 of the motor 53. Become.
 そのため、モータ53の回転軸54の一回転あたりの第1ラック32の移動量が第2ラック42の移動量よりも小さく、第1リンクピン33が第1リンク孔11の内部で相対的に移動することで、第2リンクピン44を中心にシールドガスノズル10が回転する。これにより、シールドガスノズル10の吹き出し角度を変更することができる(図4参照)。 Therefore, the amount of movement of the first rack 32 per rotation of the rotating shaft 54 of the motor 53 is smaller than the amount of movement of the second rack 42, and the first link pin 33 moves relatively inside the first link hole 11. By doing so, the shield gas nozzle 10 rotates around the second link pin 44. Thereby, the blowing angle of the shield gas nozzle 10 can be changed (see FIG. 4).
 このように、レーザ加工中に、シールドガスノズル10の吹き出し角度を変更することで、ワークWの形状に応じてワークWの加工点Pにシールドガスを供給し易くなる。 In this way, by changing the blowout angle of the shield gas nozzle 10 during laser processing, it becomes easier to supply the shield gas to the processing point P of the workpiece W according to the shape of the workpiece W.
 具体的に、図2に示すように、ワークWにおける加工点P付近の曲率が大きい場合には、シールドガスノズル10から吹き出されたシールドガスが、加工点Pを超えた位置にある急斜面(図2のハッチングで示す領域)に沿って流れるように、吹き出し角度θを大きくするのが好ましい。 Specifically, as shown in FIG. 2, when the curvature near the machining point P on the workpiece W is large, the shielding gas blown out from the shielding gas nozzle 10 may be applied to a steep slope beyond the machining point P (see FIG. It is preferable to increase the blowout angle θ so that the airflow flows along the hatched area).
 一方、図4に示すように、ワークWにおける加工点P付近の曲率が小さい場合には、シールドガスノズル10から吹き出されたシールドガスが、加工点Pを超えた位置にある傾斜の緩やかな面(図4のハッチングで示す領域)に沿って流れるように、吹き出し角度θを小さくするのが好ましい。 On the other hand, as shown in FIG. 4, when the curvature near the processing point P on the workpiece W is small, the shielding gas blown out from the shielding gas nozzle 10 is applied to a gently sloped surface ( It is preferable to reduce the blowout angle θ so that the airflow flows along the hatched area in FIG.
 このように、ワークWの加工点P付近の曲率に応じて、シールドガスノズル10の吹き出し角度θを変更するのが好ましい。 In this way, it is preferable to change the blowing angle θ of the shield gas nozzle 10 according to the curvature of the workpiece W near the processing point P.
 ここで、図2に示すように、シールドガスノズル10の吹き出し角度θは、第1バー31の移動距離xと、第2バー41の移動距離yとの相対差によって決定される。ここで、レーザ光Lの光軸から第1バー31までの距離a、レーザ光Lの光軸から第2バー41までの距離bとすると、x:y=a:bの関係が成り立つ。 Here, as shown in FIG. 2, the blowing angle θ of the shield gas nozzle 10 is determined by the relative difference between the moving distance x of the first bar 31 and the moving distance y of the second bar 41. Here, if the distance a is from the optical axis of the laser beam L to the first bar 31, and the distance b is the distance from the optical axis of the laser beam L to the second bar 41, then the relationship x:y=a:b holds true.
 そこで、本実施形態では、第1ピニオンギア51のピッチ円直径と、第2ピニオンギア52のピッチ円直径との比が、a:bとなるように設定している。このようにすれば、第1ピニオンギア51及び第2ピニオンギア52を1つのモータ53で回転させるだけで、シールドガスノズル10の吹き出し角度θを任意に調整することができる。 Therefore, in this embodiment, the ratio of the pitch circle diameter of the first pinion gear 51 to the pitch circle diameter of the second pinion gear 52 is set to be a:b. In this way, the blowing angle θ of the shield gas nozzle 10 can be arbitrarily adjusted by simply rotating the first pinion gear 51 and the second pinion gear 52 with one motor 53.
 ブローノズル20についても同様に、第3リンクピン34が第3リンク孔21の内部で相対的に移動することで、第4リンクピン45を中心にブローノズル20が回転する。これにより、ブローノズル20の吹き出し角度を変更することができる(図4参照)。 Similarly, regarding the blow nozzle 20, the third link pin 34 moves relatively inside the third link hole 21, so that the blow nozzle 20 rotates around the fourth link pin 45. Thereby, the blowing angle of the blow nozzle 20 can be changed (see FIG. 4).
 レーザ加工ヘッド6の下端部には、位置検出部55が設けられる。位置検出部55は、ワークWの加工点P付近に対するレーザ加工ヘッド6の位置を検出する。位置検出部55で検出された位置情報を示す信号は、制御部5に送られる。制御部5は、位置検出部55の検出結果に基づいてモータ53の回転角度を制御して、シールドガスノズル10の吹き出し角度を変更する。 A position detection section 55 is provided at the lower end of the laser processing head 6. The position detection unit 55 detects the position of the laser processing head 6 with respect to the vicinity of the processing point P of the workpiece W. A signal indicating the position information detected by the position detection section 55 is sent to the control section 5. The control unit 5 controls the rotation angle of the motor 53 based on the detection result of the position detection unit 55, and changes the blowing angle of the shield gas nozzle 10.
 このように、レーザ加工中に、ワークWに対するレーザ加工ヘッド6の位置を検出することで、ワークWの加工点P付近の傾きをリアルタイムで演算して、シールドガスノズル10の吹き出し角度が最適となるようにフィードバック制御することができる。言い換えると、ワークWの加工点P付近の曲率に応じて、シールドガスノズル10の吹き出し角度θを変更することができる。 In this way, by detecting the position of the laser processing head 6 with respect to the workpiece W during laser processing, the inclination of the workpiece W near the processing point P is calculated in real time, and the blowing angle of the shield gas nozzle 10 is optimized. It can be controlled by feedback. In other words, the blowing angle θ of the shield gas nozzle 10 can be changed depending on the curvature of the workpiece W near the processing point P.
 なお、ティーチングによって予め設定された吹き出し角度や吹き出し位置に基づいて、シールドガスノズル10の吹き出し角度を変更するようにしてもよい。 Note that the blowing angle of the shield gas nozzle 10 may be changed based on the blowing angle and blowing position that are preset by teaching.
 〈第2位置について〉
 図5及び図6に示すように、第2位置では、一つのピッチ円直径としての第1ピニオンギア51が第1ラック32及び第3ラック43に噛み合うとともに、第1ピニオンギア51に比べてピッチ円直径が大きい第2ピニオンギア52と第2ラック42との噛み合いが解除される。第2位置では、モータ53の回転軸54の一回転あたりの第1ピニオンギア51に噛み合う第1ラック32及び第3ラック43の移動量が同じになる。
<About the second position>
As shown in FIGS. 5 and 6, in the second position, the first pinion gear 51 having one pitch diameter meshes with the first rack 32 and the third rack 43, and the pitch is smaller than that of the first pinion gear 51. The engagement between the second pinion gear 52, which has a larger circular diameter, and the second rack 42 is released. In the second position, the amount of movement of the first rack 32 and the third rack 43 that mesh with the first pinion gear 51 per rotation of the rotating shaft 54 of the motor 53 is the same.
 そのため、第1ピニオンギア51の回転に伴って、第1ピニオンギア51に噛み合う第1ラック32及び第3ラック43が同時に高さ方向に移動する。これにより、シールドガスノズル10の吹き出し角度を維持したまま、ワークWに対するシールドガスノズル10の高さ位置を変更することができる。また、シールドガスノズル10とともにブローノズル20も同時に高さ方向に移動するため、シールドガスとエアとが混在するのを抑えることができる。 Therefore, as the first pinion gear 51 rotates, the first rack 32 and third rack 43 that mesh with the first pinion gear 51 simultaneously move in the height direction. Thereby, the height position of the shield gas nozzle 10 relative to the workpiece W can be changed while maintaining the blowing angle of the shield gas nozzle 10. Furthermore, since the blow nozzle 20 also moves in the height direction together with the shield gas nozzle 10, it is possible to suppress the mixture of the shield gas and air.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
《Other embodiments》
The embodiment described above may have the following configuration.
 前記実施形態では、ブローノズル20を、第1支持部材30の第3リンクピン34と、第2支持部材40の第4リンクピン45とで支持するようにしたが、この形態に限定するものではない。 In the embodiment, the blow nozzle 20 is supported by the third link pin 34 of the first support member 30 and the fourth link pin 45 of the second support member 40, but the present invention is not limited to this form. do not have.
 具体的に、ブローノズル20の吹き出し角度は、レーザ加工中に特に変更する必要はない。そのため、ブローノズル20は、第1支持部材30及び第2支持部材40の少なくとも一方に支持されていればよい。 Specifically, there is no need to particularly change the blowing angle of the blow nozzle 20 during laser processing. Therefore, the blow nozzle 20 only needs to be supported by at least one of the first support member 30 and the second support member 40.
 例えば、第2ピニオンギア52は、第1ピニオンギア51よりもピッチ円直径が大きく外径が大きいため、第2ピニオンギア52の回転によって移動する第2支持部材40の移動量は、第1支持部材30の移動量よりも大きい。そのため、ブローノズル20は、移動量の小さい第1支持部材30に支持することが好ましい。 For example, since the second pinion gear 52 has a larger pitch diameter and a larger outer diameter than the first pinion gear 51, the amount of movement of the second support member 40 that moves due to the rotation of the second pinion gear 52 is smaller than that of the first support member 52. This is larger than the amount of movement of member 30. Therefore, it is preferable that the blow nozzle 20 be supported by the first support member 30, which has a small movement amount.
 以上説明したように、本発明は、レーザ加工中に、シールドガスの吹き出し角度を変更することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As explained above, the present invention has the highly practical effect of being able to change the blowout angle of shielding gas during laser processing, and therefore is extremely useful and has high industrial applicability.
  1  レーザ加工装置
  6  レーザ加工ヘッド
 10  シールドガスノズル
 11  第1リンク孔
 12  第2リンク孔
 20  ブローノズル
 30  第1支持部材
 32  第1ラック
 33  第1リンクピン
 40  第2支持部材
 42  第2ラック
 43  第3ラック
 44  第2リンクピン
 51  第1ピニオンギア
 52  第2ピニオンギア
 53  モータ
 54  回転軸
 55  位置検出部
 60  切替機構
  W  ワーク
  P  加工点
  L  レーザ光
1 Laser processing device 6 Laser processing head 10 Shield gas nozzle 11 First link hole 12 Second link hole 20 Blow nozzle 30 First support member 32 First rack 33 First link pin 40 Second support member 42 Second rack 43 Third Rack 44 Second link pin 51 First pinion gear 52 Second pinion gear 53 Motor 54 Rotating shaft 55 Position detection section 60 Switching mechanism W Work P Processing point L Laser light

Claims (4)

  1.  ワークの加工点にレーザ光を出射するレーザ加工ヘッドと、前記加工点にシールドガスを供給するシールドガスノズルと、を備えたレーザ加工装置であって、
     前記シールドガスノズルには、第1リンク孔と、前記第1リンク孔よりも前記レーザ加工ヘッドから離れた位置に形成された第2リンク孔と、が設けられ、
     前記レーザ加工ヘッドのレーザ出射方向に沿って延びる第1ラックと、前記第1リンク孔に挿通される第1リンクピンと、を有する第1支持部材と、
     前記レーザ加工ヘッドのレーザ出射方向に沿って延びて前記第1ラックよりも前記レーザ加工ヘッドから離れて配置された第2ラックと、前記第2リンク孔に挿通される第2リンクピンと、を有する第2支持部材と、
     前記第1ラックに噛み合う第1ピニオンギアと、
     前記第1ピニオンギアよりも外径が大きく、前記第2ラックに噛み合う第2ピニオンギアと、
     前記第1ピニオンギア及び前記第2ピニオンギアを回転させるモータと、を備え、
     前記第1リンクピンは、前記第1ラックの移動に伴って前記第1リンク孔の内部を相対的に移動し、
     前記第2リンクピンは、前記シールドガスノズルを回転可能に支持し、
     前記シールドガスノズルの吹き出し角度は、前記第1リンクピンの相対的な移動に伴って、前記第2リンクピンを中心に前記シールドガスノズルが回転することで変更される
    レーザ加工装置。
    A laser processing device comprising a laser processing head that emits a laser beam to a processing point of a workpiece, and a shield gas nozzle that supplies shielding gas to the processing point,
    The shield gas nozzle is provided with a first link hole and a second link hole formed at a position farther from the laser processing head than the first link hole,
    a first support member having a first rack extending along the laser emission direction of the laser processing head and a first link pin inserted into the first link hole;
    a second rack extending along the laser emission direction of the laser processing head and disposed further from the laser processing head than the first rack; and a second link pin inserted into the second link hole. a second support member;
    a first pinion gear that meshes with the first rack;
    a second pinion gear having a larger outer diameter than the first pinion gear and meshing with the second rack;
    a motor that rotates the first pinion gear and the second pinion gear,
    the first link pin relatively moves inside the first link hole as the first rack moves;
    the second link pin rotatably supports the shield gas nozzle;
    The blowing angle of the shield gas nozzle is changed by the shield gas nozzle rotating about the second link pin in accordance with the relative movement of the first link pin.
  2.  請求項1のレーザ加工装置において、
     前記第1ピニオンギア及び前記第2ピニオンギアを回転軸方向に移動させる切替機構を備え、
     前記第2支持部材は、前記第1ラックと前記第2ラックとの間に配置され、前記第1ピニオンギアに噛み合い可能な第3ラックを有し、
     前記切替機構は、前記第1ピニオンギア及び前記第2ピニオンギアの位置を、前記第1ピニオンギアが前記第1ラックに噛み合うとともに前記第2ピニオンギアが前記第2ラックに噛み合う第1位置と、前記第1ピニオンギアが前記第1ラック及び前記第3ラックに噛み合うとともに前記第2ピニオンギアと前記第2ラックとの噛み合いが解除される第2位置と、に切り替える
    レーザ加工装置。
    The laser processing apparatus according to claim 1,
    comprising a switching mechanism that moves the first pinion gear and the second pinion gear in the rotation axis direction,
    The second support member has a third rack disposed between the first rack and the second rack and capable of meshing with the first pinion gear,
    The switching mechanism sets the positions of the first pinion gear and the second pinion gear to a first position where the first pinion gear meshes with the first rack and the second pinion gear meshes with the second rack; A laser processing apparatus that switches to a second position in which the first pinion gear is engaged with the first rack and the third rack, and the second pinion gear and the second rack are disengaged.
  3.  請求項1又は2のレーザ加工装置において、
     前記ワークに対する前記レーザ加工ヘッドの位置を検出する位置検出部を備え、
     前記シールドガスノズルの吹き出し角度は、前記位置検出部の検出結果に基づいて変更される
    レーザ加工装置。
    The laser processing apparatus according to claim 1 or 2,
    comprising a position detection unit that detects the position of the laser processing head with respect to the workpiece,
    A laser processing apparatus in which the blowing angle of the shield gas nozzle is changed based on a detection result of the position detection section.
  4.  請求項1~3の何れか1つのレーザ加工装置において、
     前記レーザ加工ヘッドのレーザ出射方向と交差する方向にエアを吹き出すブローノズルを備え、
     前記ブローノズルは、前記第1支持部材及び前記第2支持部材の少なくとも一方に支持される
    レーザ加工装置。
    In the laser processing apparatus according to any one of claims 1 to 3,
    comprising a blow nozzle that blows air in a direction intersecting the laser emission direction of the laser processing head,
    The blow nozzle is a laser processing device supported by at least one of the first support member and the second support member.
PCT/JP2023/004780 2022-03-09 2023-02-13 Laser processing apparatus WO2023171251A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022036188 2022-03-09
JP2022-036188 2022-03-09

Publications (1)

Publication Number Publication Date
WO2023171251A1 true WO2023171251A1 (en) 2023-09-14

Family

ID=87936771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004780 WO2023171251A1 (en) 2022-03-09 2023-02-13 Laser processing apparatus

Country Status (1)

Country Link
WO (1) WO2023171251A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208291A (en) * 1992-01-31 1993-08-20 Amada Co Ltd Controlling method for assisting gas ejection in laser beam welding device and device therefor
JP2007253158A (en) * 2006-03-20 2007-10-04 Tokyu Car Corp Laser welding method and laser welding equipment
WO2018034378A2 (en) * 2016-08-19 2018-02-22 주식회사 에큐원 Torch angle adjuster and cutting device comprising same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05208291A (en) * 1992-01-31 1993-08-20 Amada Co Ltd Controlling method for assisting gas ejection in laser beam welding device and device therefor
JP2007253158A (en) * 2006-03-20 2007-10-04 Tokyu Car Corp Laser welding method and laser welding equipment
WO2018034378A2 (en) * 2016-08-19 2018-02-22 주식회사 에큐원 Torch angle adjuster and cutting device comprising same

Similar Documents

Publication Publication Date Title
JP5292256B2 (en) Laser processing head and laser cladding method
EP1832380B1 (en) Laser welding device and method
JP6832492B2 (en) Laser welding equipment and laser welding method
JP3484994B2 (en) Laser welding equipment
KR970008386A (en) A method of dividing a substrate and a dividing device
WO2015125522A1 (en) Laser welding head, laser welding device, and gas nozzle for laser welding head
JP2018020373A (en) Laser machining method for metal material under optical axis position control of laser over assist gas stream and machine and computer program for executing the same
JPWO2015129249A1 (en) Laser processing system
JP2006167759A (en) Controller and control method for laser beam welding
US8816241B2 (en) Laser welding apparatus
WO2023171251A1 (en) Laser processing apparatus
JP7324999B2 (en) Antifouling gas supply device and antifouling method for laser processing head
JP6393555B2 (en) Laser processing machine and laser cutting processing method
US20210080919A1 (en) Cutting processing machine and cutting processing method
US20230074954A1 (en) Laser Treatment Device and Procedure for Laser Treatment
JP6951040B2 (en) Laser processing equipment and laser processing method
JP3052931B2 (en) Laser processing apparatus and processing method
US20190321912A1 (en) Laser tool with a focus adjustment unit
JP2006346740A (en) Remote welding-teaching device
JP2016165737A (en) Laser welding device
JP4243894B2 (en) Laser processing equipment
WO2022244649A1 (en) Laser machining device and laser machining method
JPWO2020008779A1 (en) Cutting machine and cutting method
JP2007253216A (en) Gas feed nozzle for laser welding and laser welding equipment
WO2022202797A1 (en) Laser machining device and laser machining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23766431

Country of ref document: EP

Kind code of ref document: A1