WO2015125522A1 - Laser welding head, laser welding device, and gas nozzle for laser welding head - Google Patents

Laser welding head, laser welding device, and gas nozzle for laser welding head Download PDF

Info

Publication number
WO2015125522A1
WO2015125522A1 PCT/JP2015/050952 JP2015050952W WO2015125522A1 WO 2015125522 A1 WO2015125522 A1 WO 2015125522A1 JP 2015050952 W JP2015050952 W JP 2015050952W WO 2015125522 A1 WO2015125522 A1 WO 2015125522A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
laser welding
laser
welding head
Prior art date
Application number
PCT/JP2015/050952
Other languages
French (fr)
Japanese (ja)
Inventor
正人 高津
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Publication of WO2015125522A1 publication Critical patent/WO2015125522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1435Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means
    • B23K26/1438Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor involving specially adapted flow control means for directional control

Definitions

  • the present invention relates to a laser welding device for a workpiece such as a three-dimensional workpiece, a laser welding head used in the laser welding device, and a gas nozzle for the laser welding head.
  • a laser welding head in a remote laser processing apparatus such as a welding robot has a hollow head body. Further, the head main body has an emission opening for emitting laser light on the tip side thereof, and is optically connected to a laser oscillator that oscillates the laser light.
  • a galvano scanner is provided in the head body. The galvano scanner deflects and scans laser light oscillated from a laser oscillator in two orthogonal directions (a first scanning direction and a second scanning direction) and emits the laser light from an emission opening of the head body. Further, a protective glass covering the emission opening of the head body is detachably provided at the tip of the head body.
  • the opening area of the exit opening of the welding head is set according to the range of deflection scanning of the laser beam by the galvano scanner. Therefore, the area of the protective glass is large, and the spatter is likely to adhere to the protective glass. Further, compared to spot welding, the distance (work distance) between the welding head and the welded portion of the three-dimensional workpiece is long, and fume is likely to stay between the welding head and the three-dimensional workpiece. In order to suppress the adhesion of spatter to the protective glass and the retention of fume between the welding head and the three-dimensional workpiece, the following techniques have been developed.
  • Patent Document 1 discloses a welding head 101 according to a first prior art example as shown in FIG.
  • the welding head 101 has a head body 103.
  • air A is ejected in a curtain shape so as to cover the surface of the protective glass 105, thereby forming an air curtain.
  • the head main body 103 is provided with an air nozzle 107 for forming an air curtain.
  • an air nozzle 109 that ejects air B toward the welded portion Wa of the three-dimensional workpiece W is also provided in the vicinity of the air nozzle 107.
  • Patent Documents 2 and 3 below disclose a welding head 111 according to a second prior art example as shown in FIG.
  • the welding head 111 has a head body 113.
  • An annular air nozzle 117 that ejects air A toward the irradiation direction side of the laser beam LB is provided on the three-dimensional workpiece W side of the protective glass 115 of the head body 113.
  • the air nozzle 117 has an air passage 119 that can be connected to an air supply source (not shown).
  • the air nozzle 117 is formed with an annular nozzle slit 121 for ejecting air A toward the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB.
  • the nozzle slit 121 communicates with the air passage 119.
  • the three-dimensional workpiece W having a complicated shape is laser-welded using the welding head 101 in the first prior art example
  • the three-dimensional workpiece W is ejected from the air nozzle 109 toward the welding portion Wa of the three-dimensional workpiece W. It may not reach the welding point Wa of the workpiece W. In this case, fume retention between the welding head 101 and the three-dimensional workpiece W cannot be suppressed.
  • an external blower not shown
  • fume retention between the welding head 101 and the three-dimensional workpiece W cannot be sufficiently suppressed. Therefore, the welding conditions (processing conditions) change due to the interference of the fumes with the laser beam LB, and laser welding cannot be performed stably (first problem).
  • the sputter S may scatter to the welding head 101 while drawing a parabola from the welding spot Wa.
  • the air curtain is formed by the air nozzle 107
  • the adhesion of the sputter S to the protective glass 105 cannot be suppressed.
  • spatter S to the protective glass 105 increases, and the replacement frequency of the protective glass 105 will increase (2nd problem).
  • the air A ejected from the nozzle slit 121 merges on the optical axis of the laser beam LB, and the three-dimensional workpiece W Head toward the welding spot Wa.
  • the solid workpiece W has a complicated shape, fume retention between the welding head 111 and the solid workpiece W can be sufficiently suppressed.
  • An object of the present invention is to provide a welding head, a laser welding apparatus, and a gas nozzle for a welding head that can solve not only the first problem but also the second problem.
  • the present invention can be applied not only to a welding head or a laser welding apparatus provided with a galvano scanner, but also to various welding heads and laser welding apparatuses that cover the emission opening of the head body with a protective glass.
  • a first feature of the present invention is a laser welding head that is used in a laser welding apparatus that performs laser welding on a workpiece, and irradiates a laser beam toward a welding portion of the workpiece (including a three-dimensional workpiece).
  • a hollow head body that is optically connected to a laser oscillator, the exit opening that emits light is formed at the tip, a protective glass that is detachably provided on the head body and covers the exit opening, and
  • An annular gas nozzle provided on the workpiece side from the protective glass, and a gas passage that can be connected to a gas supply source is formed inside the gas nozzle, and the irradiation direction of the laser light on the gas nozzle
  • a first nozzle that ejects gas toward the optical axis of the laser beam on the side, and a second nozzle that ejects gas along the irradiation direction of the laser beam are formed.
  • the second nozzle communicates with the gas passage and is in a radial direction (of the gas
  • “provided” includes not only the case of being provided directly but also the case of being provided indirectly via an interposed member.
  • the “gas” includes an inert gas such as air or nitrogen.
  • one gas nozzle may be provided, or a gas nozzle that is divided into a first gas nozzle in which the first nozzle is formed and a second gas nozzle in which the second nozzle is formed is provided. May be.
  • the retention of fume between the welding head and the workpiece can be sufficiently suppressed, so that the interference of the fume with the laser beam is eliminated and stable.
  • the workpiece can be stably laser-welded under the welding conditions (processing conditions).
  • the spatter can be deflected from the welding head, so that the adhesion of the spatter to the protective glass can be reduced. As a result, the replacement frequency of the protective glass can be greatly reduced.
  • the first nozzle is an annular first nozzle slit, a plurality of first nozzle holes formed at intervals in the circumferential direction, or a plurality of arcuate shapes formed at intervals in the circumferential direction.
  • the arc-shaped second nozzle slit is preferable.
  • a second feature of the present invention is a laser welding apparatus, wherein the laser welding head of the first feature and the laser welding head are attached, and the laser welding head is approached from a side from a side, or And a moving device for moving the laser welding head so as to move the laser welding head laterally away from the workpiece.
  • a gas nozzle for a laser welding head the gas passage being formed therein and connectable to a gas supply source, and directed toward the optical axis of the laser beam on the laser beam irradiation direction side.
  • FIG. 1 It is a schematic block diagram of the laser welding machine (welding robot) which concerns on embodiment.
  • (A) is sectional drawing of the air nozzle (gas nozzle) of the welding head of the said laser welding machine
  • (b) is a bottom view of the air nozzle seen along the arrow IIB in (a).
  • (A) is a side view of the welding head which concerns on a 1st prior art example
  • (b) is a side view which shows this welding head which performs laser welding from a side.
  • (A) is a side view of the welding head which concerns on a 2nd prior art example
  • (b) is a side view which shows this welding head which performs laser welding from a side.
  • the remote laser welding apparatus is a welding robot 1 that performs laser welding on a three-dimensional workpiece W supported on a table (not shown).
  • the welding robot 1 is a known 6-axis articulated robot. Further, the welding robot 1 has a robot arm (moving device) 3 at its tip.
  • the robot arm 3 is attached with a laser welding head 5 (hereinafter simply referred to as a welding head 5) that irradiates a laser beam LB toward the welding spot Wa of the three-dimensional workpiece W.
  • the three-dimensional workpiece W is formed by three-dimensionally connecting a plurality of metal workpieces.
  • the welding location Wa becomes a butt portion of the metal workpiece.
  • the robot arm 3 can move so as to approach the solid work W from the side and to move away from the solid work W to the side.
  • the welding head 5 includes a hollow head body 7.
  • the head main body 7 has an emission opening 9 for emitting the laser beam LB at the tip thereof.
  • a connector 11 is provided at the base end of the head body 7.
  • One end of a transmission fiber 13 is connected to the connector 11.
  • the other end of the transmission fiber 13 is optically connected to a fiber laser oscillator 15 that oscillates the laser beam LB. That is, the head body 7 is optically connected to the fiber laser oscillator 15 via the connector 11 and the transmission fiber 13.
  • a collimating lens 17 is provided that can move along the optical axis direction of the laser beam LB.
  • the collimating lens 17 converts the laser light LB emitted from the transmission fiber 13 into parallel light. That is, the collimating lens 17 converts the laser light LB oscillated from the fiber laser oscillator 15 into parallel light.
  • a galvano scanner 21 is provided on the light exit side of the collimating lens 17.
  • the galvano scanner 21 scans while deflecting the laser beam LB emitted from the collimating lens 17 and emits the laser beam LB to the emission opening 9.
  • the galvano scanner 21 includes a first galvanometer mirror 25 and a second galvanometer mirror 29.
  • the first galvanometer mirror 25 is rotated by the first galvanometer motor 23 and scans while deflecting the laser beam LB in the first scanning direction.
  • the second galvanometer mirror 29 is rotated by the second galvanometer motor 27 and scans while deflecting the laser beam LB in the second scanning direction.
  • a reflecting mirror 31 is provided between the collimating lens 17 and the first galvanometer mirror 25.
  • An F ⁇ lens 33 is provided between the exit opening 9 and the galvano scanner 21.
  • the F ⁇ lens 33 condenses the laser beam LB that is two-dimensionally scanned by the galvano scanner 21.
  • a protective glass 35 covering the emission opening 9 is detachably attached to the tip of the head body 7.
  • an annular air nozzle (gas nozzle) 37 that ejects air toward the irradiation direction side of the laser beam LB is provided on the side of the three-dimensional workpiece W with respect to the protective glass 35.
  • the air nozzle 37 is attached to the head body 7 by a bracket 39.
  • the air nozzle 37 has an annular first nozzle member 41 and an annular second nozzle member 43 attached with a mounting screw (not shown) or the like. They are integrally joined.
  • An annular air passage (gas passage) 45 is formed inside the air nozzle 37.
  • the air passage 45 can be connected to an air supply source (gas supply source) 47 such as a fan via a pipe 49.
  • the air nozzle 37 is formed by integrally joining two annular members (the first nozzle member 41 and the second nozzle member 43), but may be configured by a single member.
  • annular first nozzle slit 51 (an example of a first nozzle) is an optical axis of the laser beam LB (air nozzle central axis). Is formed so as to surround. Air A is ejected from the first nozzle slit 51 toward the optical axis (air nozzle central axis) of the laser beam LB on the irradiation direction side of the laser beam LB. That is, an annular first nozzle slit 51 is formed on the inner periphery of the air nozzle 37 so as to surround the optical axis of the laser beam LB.
  • the gas ejection direction of the first nozzle slit 51 is directed to the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB. Further, the first nozzle slit 51 is communicated with the air passage 45. In addition, an annular shim (not shown) surrounding the air passage 45 is interposed between the first nozzle member 41 and the second nozzle member 43 to adjust the size of the first nozzle slit 51. Also good.
  • the first nozzle includes a plurality of first nozzle holes (not shown) formed at intervals in the circumferential direction, and a plurality of arc-shaped first nozzle slits formed at intervals in the circumferential direction ( (Not shown) may be formed (another example of the first nozzle).
  • a plurality of second nozzle holes 53 are formed so as to surround the first nozzle slit 51.
  • the air B is ejected from the second nozzle hole 53 along the irradiation direction of the laser beam LB (air nozzle central axis). That is, a plurality of second nozzle holes 53 are formed at intervals in the circumferential direction so as to surround the optical axis of the laser beam LB at a position radially outside the first nozzle slit 51 of the air nozzle 37.
  • the gas ejection direction of the second nozzle hole 53 is set parallel to the irradiation direction of the laser beam LB.
  • the second nozzle may be formed as an annular second nozzle slit (not shown) or a plurality of arcuate second nozzle slits (not shown) formed at intervals in the circumferential direction. (Another example of the second nozzle).
  • the second nozzle may be formed on another annular air nozzle (not shown) having a diameter larger than the diameter of the air nozzle 37.
  • the welding head 5 is moved to a position corresponding to the welding location Wa of the three-dimensional workpiece W by controlling the robot arm 3. Then, the laser beam LB oscillated by the fiber laser oscillator 15 is transmitted to the welding head 5 through the transmission fiber 13.
  • the laser beam LB transmitted to the welding head 5 is converted into parallel light by the collimator lens 17 and scanned while being deflected by the galvano scanner 21 in the first scanning direction and the second scanning direction.
  • the laser beam LB scanned while being deflected is collected by the F ⁇ lens 33 and irradiated to the welding spot Wa from the emission opening 9 of the head body 7 through the protective glass 35. Thereby, the solid workpiece W is laser-welded.
  • the welding head 5 can be moved integrally with the robot arm 3 along the welding location Wa.
  • the air A is ejected from the first nozzle slit 51 toward the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB.
  • air B is ejected from the plurality of second nozzle holes 53 along the irradiation direction of the laser beam LB.
  • the air A ejected from the first nozzle slit 51 is merged on the optical axis of the laser beam LB toward the welding spot Wa, and the air A ejected from the plurality of second nozzle holes 53 is the laser beam LB. While surrounding the air A that merges on the optical axis of the head, it goes around the welded portion Wa.
  • the first nozzle slit 51 is formed in the air nozzle 37 so as to surround the optical axis of the laser beam LB, and the first nozzle slit 51 communicates with the air passage 45, the first nozzle slit 51 is ejected from the first nozzle slit 51.
  • the air A merges on the optical axis of the laser beam LB and travels toward the welding location Wa.
  • a plurality of second nozzle holes 53 are formed at positions outside the first nozzle slit 51 in the radial direction so as to surround the optical axis of the laser beam LB, and the plurality of second nozzle holes 53 are formed in the air passage 45. Therefore, the air B ejected from the plurality of second nozzle holes 53 travels around the welding point Wa while surrounding the air A that merges on the optical axis of the laser beam LB. As a result, as shown in FIG.
  • the present embodiment even if the shape of the three-dimensional workpiece W is complicated, the retention of fume between the welding head 5 and the three-dimensional workpiece W can be sufficiently suppressed, so that the fume laser light LB is obtained.
  • the solid workpiece W can be stably laser-welded under stable welding conditions (processing conditions).
  • the spatter S when laser welding is performed on the three-dimensional workpiece W from the side, the spatter S can be deflected from the welding head 5 even if the spatter S scatters to the welding head 5 while drawing a parabola from the welding spot Wa. Adhesion of the sputter S to the glass 35 can be reduced. As a result, the replacement frequency of the protective glass 35 can be greatly reduced.
  • FIG. 4 shows the relationship between the number of welded solid workpieces W and the number of spatters attached to the protective glass 35. As shown in FIG. 4, when the welding head 5 is used, the number of spatters can be significantly reduced as compared with the case where the welding head 101 and the welding head 111 are used. Note that the number of pulse shots required to weld one solid workpiece W is set to 3960 times, and an external blower was used only in the case of the first prior art example.
  • the present invention is not limited to the above embodiment, and can be implemented in various modes.

Abstract

A laser welding head equipped with: a hollow head main body on the tip end of which an emission aperture that emits laser light is formed, and which is optically connected to a laser oscillator; a protective glass which covers the emission aperture and is provided on the head main body in a detachable manner; and an annular gas nozzle provided closer to the workpiece than the protective glass. A gas passage capable of being connected to a gas supply source is formed in the interior of the gas nozzle. A first nozzle, which emits gas toward the light axis of the laser light on the irradiation-direction side of the laser light, and second nozzles, which emit gas along the irradiation direction of the laser light, are formed on the gas nozzle. The first nozzle is formed so as to communicate with the gas passage and to surround the light axis of the laser light. The second nozzles are formed so as to communicate with the gas passage and to surround the first nozzle, at a position on the outside of the first nozzle in the radial direction. By means of this laser welding head it is possible to prevent fumes from interfering with the laser light and to reduce the adhesion of sputter on the protective glass.

Description

レーザ溶接ヘッド、レーザ溶接装置、及び、レーザ溶接ヘッド用ガスノズルLaser welding head, laser welding apparatus, and gas nozzle for laser welding head
 本発明は、立体ワーク[three-dimensional workpiece]等のワークのためのレーザ溶接装置[laser welding machine]、レーザ溶接装置に用いられるレーザ溶接ヘッド、及び、レーザ溶接ヘッド用ガスノズルに関する。 The present invention relates to a laser welding device for a workpiece such as a three-dimensional workpiece, a laser welding head used in the laser welding device, and a gas nozzle for the laser welding head.
 一般に、溶接ロボット等のリモートレーザ加工装置におけるレーザ溶接ヘッド(以下単に、溶接ヘッドと言う)は、中空状のヘッド本体を具備している。また、ヘッド本体は、その先端側にレーザ光を出射するための出射開口部を有しており、かつ、レーザ光を発振するレーザ発振器に光学的に接続されている。ヘッド本体内には、ガルバノスキャナが設けられている。ガルバノスキャナは、レーザ発振器から発振されたレーザ光を直交する2つの方向(第1走査方向と第2走査方向)へ偏向走査してヘッド本体の出射開口から出射するものである。更に、ヘッド本体の先端部には、ヘッド本体の出射開口部を覆う保護ガラスが着脱可能に設けられている。 Generally, a laser welding head (hereinafter simply referred to as a welding head) in a remote laser processing apparatus such as a welding robot has a hollow head body. Further, the head main body has an emission opening for emitting laser light on the tip side thereof, and is optically connected to a laser oscillator that oscillates the laser light. A galvano scanner is provided in the head body. The galvano scanner deflects and scans laser light oscillated from a laser oscillator in two orthogonal directions (a first scanning direction and a second scanning direction) and emits the laser light from an emission opening of the head body. Further, a protective glass covering the emission opening of the head body is detachably provided at the tip of the head body.
 溶接ヘッドの出射開口部の開口面積はガルバノスキャナによるレーザ光の偏向走査の範囲に応じて設定される。従って、保護ガラスの面積は大きく、スパッタが保護ガラスに付着し易い。また、スポット溶接に比べて、溶接ヘッドと立体ワークの溶接箇所との距離(ワークディスタンス)が長く、溶接ヘッドと立体ワークとの間にヒューム[fume]が滞留し易い。保護ガラスへのスパッタの付着及び溶接ヘッドと立体ワークとの間のヒュームの滞留を抑えるために、次のような技術が開発されている。 The opening area of the exit opening of the welding head is set according to the range of deflection scanning of the laser beam by the galvano scanner. Therefore, the area of the protective glass is large, and the spatter is likely to adhere to the protective glass. Further, compared to spot welding, the distance (work distance) between the welding head and the welded portion of the three-dimensional workpiece is long, and fume is likely to stay between the welding head and the three-dimensional workpiece. In order to suppress the adhesion of spatter to the protective glass and the retention of fume between the welding head and the three-dimensional workpiece, the following techniques have been developed.
 下記特許文献1は、図5(a)に示されるような、第1従来技術例に係る溶接ヘッド101を開示している。溶接ヘッド101はヘッド本体103を有している。ヘッド本体103の保護ガラス105の立体ワークWの側には、保護ガラス105の表面を覆うようにエアAがカーテン状に噴出されてエアカーテンが形成される。ヘッド本体103には、エアカーテンを形成するためのエアノズル107が設けられている。また、エアノズル107の近傍には、立体ワークWの溶接箇所Waに向かってエアBを噴出するエアノズル109も設けられている。 The following Patent Document 1 discloses a welding head 101 according to a first prior art example as shown in FIG. The welding head 101 has a head body 103. On the side of the three-dimensional workpiece W of the protective glass 105 of the head main body 103, air A is ejected in a curtain shape so as to cover the surface of the protective glass 105, thereby forming an air curtain. The head main body 103 is provided with an air nozzle 107 for forming an air curtain. Further, an air nozzle 109 that ejects air B toward the welded portion Wa of the three-dimensional workpiece W is also provided in the vicinity of the air nozzle 107.
 下記特許文献2及び3は、図6(a)に示されるような、第2従来技術例に係る溶接ヘッド111を開示している。溶接ヘッド111は、ヘッド本体113を有している。ヘッド本体113の保護ガラス115の立体ワークWの側には、レーザ光LBの照射方向側にエアAを噴出する環状のエアノズル117が設けられている。エアノズル117は、その内部に、エア供給源(図示省略)に接続可能なエア通路119を有している。エアノズル117には、レーザ光LBの照射方向側のレーザ光LBの光軸に向けてエアAを噴出するための環状のノズルスリット121が形成されている。ノズルスリット121は、エア通路119に連通されている。 Patent Documents 2 and 3 below disclose a welding head 111 according to a second prior art example as shown in FIG. The welding head 111 has a head body 113. An annular air nozzle 117 that ejects air A toward the irradiation direction side of the laser beam LB is provided on the three-dimensional workpiece W side of the protective glass 115 of the head body 113. The air nozzle 117 has an air passage 119 that can be connected to an air supply source (not shown). The air nozzle 117 is formed with an annular nozzle slit 121 for ejecting air A toward the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB. The nozzle slit 121 communicates with the air passage 119.
日本国特開2006-142383号公報Japanese Unexamined Patent Publication No. 2006-142383 日本国特開2012-76111号公報Japanese Unexamined Patent Publication No. 2012-76111 国際公開2008/037310パンフレットInternational Publication 2008/037310 Pamphlet
 しかし、第1従来技術例における溶接ヘッド101を用いて複雑な形状を有する立体ワークWをレーザ溶接する場合、エアノズル109から立体ワークWの溶接箇所Waに向けてエアAを噴出しても、立体ワークWの溶接箇所Waにまで届かないことがある。この場合、溶接ヘッド101と立体ワークWとの間のヒュームの滞留を抑えることができない。ここで、仮に外部送風機(図示省略)を用いたとしても、溶接ヘッド101と立体ワークWとの間のヒュームの滞留を十分に抑えることができない。そのため、ヒュームのレーザ光LBへの干渉によって溶接条件(加工条件)が変化し、安定してレーザ溶接を行えない(第1の問題)。 However, when the three-dimensional workpiece W having a complicated shape is laser-welded using the welding head 101 in the first prior art example, the three-dimensional workpiece W is ejected from the air nozzle 109 toward the welding portion Wa of the three-dimensional workpiece W. It may not reach the welding point Wa of the workpiece W. In this case, fume retention between the welding head 101 and the three-dimensional workpiece W cannot be suppressed. Here, even if an external blower (not shown) is used, fume retention between the welding head 101 and the three-dimensional workpiece W cannot be sufficiently suppressed. Therefore, the welding conditions (processing conditions) change due to the interference of the fumes with the laser beam LB, and laser welding cannot be performed stably (first problem).
 また、図5(b)に示されるように、立体ワークWに側方からレーザ溶接を行う場合、スパッタSが溶接箇所Waから放物線を描いて溶接ヘッド101へと飛散する場合がある。この場合、エアノズル107によってエアカーテンを形成させても、保護ガラス105へのスパッタSの付着を抑えることができない。このため、保護ガラス105へのスパッタSの付着量が増えて、保護ガラス105の交換頻度が増えてしまう(第2の問題)。 Further, as shown in FIG. 5B, when laser welding is performed on the three-dimensional workpiece W from the side, the sputter S may scatter to the welding head 101 while drawing a parabola from the welding spot Wa. In this case, even if the air curtain is formed by the air nozzle 107, the adhesion of the sputter S to the protective glass 105 cannot be suppressed. For this reason, the adhesion amount of the sputter | spatter S to the protective glass 105 increases, and the replacement frequency of the protective glass 105 will increase (2nd problem).
 一方、第2従来技術例における溶接ヘッド111を用いて、立体ワークWをレーザ溶接する場合、ノズルスリット121から噴出されたエアAは、レーザ光LBの光軸上で合流して、立体ワークWの溶接箇所Waに向かう。このため、立体ワークWが複雑な形状を有していても、溶接ヘッド111と立体ワークWとの間のヒュームの滞留を十分に抑えることができる。このため、ヒュームのレーザ光LBへの干渉がなく、安定的してレーザ溶接を行える(上記第1の問題の回避)。 On the other hand, when the three-dimensional workpiece W is laser-welded using the welding head 111 in the second prior art example, the air A ejected from the nozzle slit 121 merges on the optical axis of the laser beam LB, and the three-dimensional workpiece W Head toward the welding spot Wa. For this reason, even if the solid workpiece W has a complicated shape, fume retention between the welding head 111 and the solid workpiece W can be sufficiently suppressed. For this reason, there is no interference of the fumes with the laser beam LB, and laser welding can be performed stably (avoidance of the first problem).
 しかし、図6(b)に示されるように、立体ワークWに側方からレーザ溶接を行う場合、溶接箇所Waから放物線を描きながら溶接ヘッド111へと飛散するスパッタSを、ノズルスリット121から噴出されたエアAによって溶接ヘッド111から逸らすことができず、保護ガラス115へのスパッタSの付着を抑えることができない。このため、保護ガラス115へのスパッタSの付着量が増えて、保護ガラス115の交換頻度が増えてしまう(第2の問題)。 However, as shown in FIG. 6B, when laser welding is performed on the three-dimensional workpiece W from the side, spatter S that scatters to the welding head 111 while drawing a parabola from the welding spot Wa is ejected from the nozzle slit 121. It is not possible to deflect the welding head 111 from the welded air A, and adhesion of the sputter S to the protective glass 115 cannot be suppressed. For this reason, the adhesion amount of the sputter | spatter S to the protective glass 115 increases, and the replacement frequency of the protective glass 115 will increase (2nd problem).
 本発明の目的は、上記第1の問題のみならず上記第2の問題も解決することのできる溶接ヘッド、レーザ溶接装置、及び、溶接ヘッド用ガスノズルを提供することにある。なお、本発明は、ガルバノスキャナを備えた溶接ヘッドやレーザ溶接装置のみに適用できるのではなく、保護ガラスによってヘッド本体の出射開口部を覆う種々の溶接ヘッド及びレーザ溶接装置に適用できる。 An object of the present invention is to provide a welding head, a laser welding apparatus, and a gas nozzle for a welding head that can solve not only the first problem but also the second problem. The present invention can be applied not only to a welding head or a laser welding apparatus provided with a galvano scanner, but also to various welding heads and laser welding apparatuses that cover the emission opening of the head body with a protective glass.
 本発明の第1の特徴は、ワークにレーザ溶接を行うレーザ溶接装置に用いられ、ワーク(立体ワークを含む)の溶接箇所に向けてレーザ光を照射するレーザ溶接ヘッドであって、レーザ光を出射する出射開口部が先端に形成された、レーザ発振器に光学的に接続される中空状のヘッド本体と、前記ヘッド本体に着脱可能に設けられた、前記出射開口部を覆う保護ガラスと、前記保護ガラスよりワーク側に設けられた、環状のガスノズルと、を備えており、前記ガスノズルの内部に、ガス供給源に接続可能なガス通路が形成され、前記ガスノズル上に、前記レーザ光の照射方向側の前記レーザ光の光軸に向けてガスを噴出する第1ノズルと、前記レーザ光の照射方向に沿ってガスを噴出する第2ノズルとが形成されており、前記第1ノズルは、前記ガス通路に連通され、かつ、前記レーザ光の光軸を囲むように形成され、前記第2ノズルは、前記ガス通路に連通され、かつ、前記第1ノズルよりも(前記ガスノズルの)半径方向外側の位置に、前記第1ノズルを囲むように形成されている、レーザ溶接ヘッドを提供する。 A first feature of the present invention is a laser welding head that is used in a laser welding apparatus that performs laser welding on a workpiece, and irradiates a laser beam toward a welding portion of the workpiece (including a three-dimensional workpiece). A hollow head body that is optically connected to a laser oscillator, the exit opening that emits light is formed at the tip, a protective glass that is detachably provided on the head body and covers the exit opening, and An annular gas nozzle provided on the workpiece side from the protective glass, and a gas passage that can be connected to a gas supply source is formed inside the gas nozzle, and the irradiation direction of the laser light on the gas nozzle A first nozzle that ejects gas toward the optical axis of the laser beam on the side, and a second nozzle that ejects gas along the irradiation direction of the laser beam are formed. The second nozzle communicates with the gas passage and is in a radial direction (of the gas nozzle) than the first nozzle. The second nozzle communicates with the gas passage. A laser welding head is provided at an outer position so as to surround the first nozzle.
 なお、本願の明細書及び特許請求の範囲において、「設けられ」は、直接的に設けられる場合の他に、介在部材を介して間接的に設けられる場合を含む。また、「ガス」は、エア、窒素等の不活性ガスを含む。更に、「ガスノズル」については、1つのガスノズルが設けられてもよいし、第1ノズルが形成された第1ガスノズルと第2ノズルが形成された第2ガスノズルとに分割されているガスノズルが設けられてもよい。 In addition, in the specification and claims of the present application, “provided” includes not only the case of being provided directly but also the case of being provided indirectly via an interposed member. The “gas” includes an inert gas such as air or nitrogen. Further, regarding the “gas nozzle”, one gas nozzle may be provided, or a gas nozzle that is divided into a first gas nozzle in which the first nozzle is formed and a second gas nozzle in which the second nozzle is formed is provided. May be.
 上記第1の特徴によれば、ワークの形状が複雑であっても、溶接ヘッドとワークとの間のヒュームの滞留を十分に抑えることができるので、ヒュームのレーザ光への干渉がなくなり、安定した溶接条件(加工条件)でワークを安定的にレーザ溶接することができる。また、スパッタが溶接箇所から溶接ヘッドへと飛散しても、スパッタを溶接ヘッドから逸らすことができるので、保護ガラスへのスパッタの付着を低減できる。この結果、保護ガラスの交換頻度を大幅に減らすことができる。 According to the first feature, even if the shape of the workpiece is complicated, the retention of fume between the welding head and the workpiece can be sufficiently suppressed, so that the interference of the fume with the laser beam is eliminated and stable. The workpiece can be stably laser-welded under the welding conditions (processing conditions). Moreover, even if the spatter is scattered from the welding location to the welding head, the spatter can be deflected from the welding head, so that the adhesion of the spatter to the protective glass can be reduced. As a result, the replacement frequency of the protective glass can be greatly reduced.
 ここで、前記第1ノズルが、環状の第1ノズルスリット、周方向に間隔をおいて形成された複数の第1ノズル孔、又は、周方向に間隔をおいて形成された複数の円弧状の第1ノズルスリットであり、前記第2ノズルが、周方向に間隔をおいて形成された複数の第2ノズル孔、環状の第2ノズルスリット、又は、周方向に間隔をおいて形成された複数の円弧状の第2ノズルスリットである、ことが好ましい。 Here, the first nozzle is an annular first nozzle slit, a plurality of first nozzle holes formed at intervals in the circumferential direction, or a plurality of arcuate shapes formed at intervals in the circumferential direction. A plurality of second nozzle holes, annular second nozzle slits, or a plurality of circumferentially spaced second nozzle holes, each being a first nozzle slit. The arc-shaped second nozzle slit is preferable.
 本発明の第2の特徴は、レーザ溶接装置であって、上記第1の特徴の前記レーザ溶接ヘッドと、前記レーザ溶接ヘッドが取り付けられ、前記レーザ溶接ヘッドをワークに側方から接近させ、又は、前記レーザ溶接ヘッドをワークから側方に離反させるように、前記レーザ溶接ヘッドを移動する移動装置と、を備えたレーザ溶接装置を提供する。 A second feature of the present invention is a laser welding apparatus, wherein the laser welding head of the first feature and the laser welding head are attached, and the laser welding head is approached from a side from a side, or And a moving device for moving the laser welding head so as to move the laser welding head laterally away from the workpiece.
 本発明の第3の特徴は、レーザ溶接ヘッド用ガスノズルであって、内部に形成された、ガス供給源に接続可能なガス通路と、レーザ光の照射方向側の前記レーザ光の光軸に向けてガスを噴出する第1ノズルと、前記レーザ光の照射方向に沿ってガスを噴出する第2ノズルと、を備えており、前記第1ノズルが、前記ガス通路に連通され、かつ、前記レーザ光の光軸を囲むように形成され、前記第2ノズルが、前記ガス通路に連通され、かつ、前記第1ノズルよりも半径方向外側の位置に、前記第1ノズルを囲むように形成されている、ガスノズルを提供する。 According to a third aspect of the present invention, there is provided a gas nozzle for a laser welding head, the gas passage being formed therein and connectable to a gas supply source, and directed toward the optical axis of the laser beam on the laser beam irradiation direction side. A first nozzle that ejects gas and a second nozzle that ejects gas along the irradiation direction of the laser beam, the first nozzle being in communication with the gas passage, and the laser Formed so as to surround the optical axis of light, and the second nozzle communicates with the gas passage and is formed so as to surround the first nozzle at a position radially outward from the first nozzle. Provide a gas nozzle.
実施形態に係るレーザ溶接機(溶接ロボット)の概略構成図である。It is a schematic block diagram of the laser welding machine (welding robot) which concerns on embodiment. (a)は上記レーザ溶接機の溶接ヘッドのエアノズル(ガスノズル)の断面図であり、(b)は(a)における矢印IIBに沿って見たエアノズルの底面図である。(A) is sectional drawing of the air nozzle (gas nozzle) of the welding head of the said laser welding machine, (b) is a bottom view of the air nozzle seen along the arrow IIB in (a). 側方からレーザ溶接を行う上記レーザ溶接機を示す側面図である。It is a side view which shows the said laser welding machine which performs laser welding from a side. 側方からレーザ溶接を行った場合の加工数とスパッタ数との関係を示すグラフである。It is a graph which shows the relationship between the number of processes at the time of performing laser welding from the side, and the number of spatters. (a)は第1従来技術例に係る溶接ヘッドの側面図であり、(b)は側方からレーザ溶接を行う該溶接ヘッドを示す側面図である。(A) is a side view of the welding head which concerns on a 1st prior art example, (b) is a side view which shows this welding head which performs laser welding from a side. (a)は第2従来技術例に係る溶接ヘッドの側面図であり、(b)は側方からレーザ溶接を行う該溶接ヘッドを示す側面図である。(A) is a side view of the welding head which concerns on a 2nd prior art example, (b) is a side view which shows this welding head which performs laser welding from a side.
 実施形態について図1から図4を参照して説明する。図1に示されるように、本実施形態に係るリモートレーザ溶接装置は、テーブル(図示せず)上に支持された立体ワークWにレーザ溶接を行う溶接ロボット1である。溶接ロボット1は、公知の6軸多関節ロボットである。また、溶接ロボット1は、その先端にロボットアーム(移動装置)3を有している。ロボットアーム3には、立体ワークWの溶接箇所Waに向けてレーザ光LBを照射するレーザ溶接ヘッド5(以下単に、溶接ヘッド5と言う)が取り付けられている。なお、立体ワークWは、複数の金属製ワークを立体的に繋ぎ合わせて形成されている。溶接箇所Waは、金属製ワークの突き合わせ部になる。ロボットアーム3は、立体ワークWに側方から接近し、立体ワークWから側方に離反するように移動可能なである。 Embodiments will be described with reference to FIGS. 1 to 4. As shown in FIG. 1, the remote laser welding apparatus according to the present embodiment is a welding robot 1 that performs laser welding on a three-dimensional workpiece W supported on a table (not shown). The welding robot 1 is a known 6-axis articulated robot. Further, the welding robot 1 has a robot arm (moving device) 3 at its tip. The robot arm 3 is attached with a laser welding head 5 (hereinafter simply referred to as a welding head 5) that irradiates a laser beam LB toward the welding spot Wa of the three-dimensional workpiece W. The three-dimensional workpiece W is formed by three-dimensionally connecting a plurality of metal workpieces. The welding location Wa becomes a butt portion of the metal workpiece. The robot arm 3 can move so as to approach the solid work W from the side and to move away from the solid work W to the side.
 溶接ヘッド5は、中空状のヘッド本体7を具備している。ヘッド本体7は、その先端に、レーザ光LBを出射するための出射開口部9が形成されている。また、ヘッド本体7の基端には、コネクタ11が設けられている。コネクタ11には、伝送ファイバ13の一端が接続されている。伝送ファイバ13の他端は、レーザ光LBを発振するファイバレーザ発振器15に光学的に接続されている。即ち、ヘッド本体7は、コネクタ11及び伝送ファイバ13を介して、ファイバレーザ発振器15に光学的に接続されている。 The welding head 5 includes a hollow head body 7. The head main body 7 has an emission opening 9 for emitting the laser beam LB at the tip thereof. A connector 11 is provided at the base end of the head body 7. One end of a transmission fiber 13 is connected to the connector 11. The other end of the transmission fiber 13 is optically connected to a fiber laser oscillator 15 that oscillates the laser beam LB. That is, the head body 7 is optically connected to the fiber laser oscillator 15 via the connector 11 and the transmission fiber 13.
 ヘッド本体7内には、レーザ光LBの光軸方向に沿って移動可能なコリメートレンズ17が設けられている。コリメートレンズ17は、伝送ファイバ13から出射されたレーザ光LBを平行光に変換する。即ち、コリメートレンズ17は、ファイバレーザ発振器15から発振されたレーザ光LBを平行光に変換する。 In the head body 7, a collimating lens 17 is provided that can move along the optical axis direction of the laser beam LB. The collimating lens 17 converts the laser light LB emitted from the transmission fiber 13 into parallel light. That is, the collimating lens 17 converts the laser light LB oscillated from the fiber laser oscillator 15 into parallel light.
 コリメートレンズ17の光出射側には、ガルバノスキャナ21が設けられている。ガルバノスキャナ21は、コリメートレンズ17から出射されたレーザ光LBを偏向させつつ走査して、出射開口部9へと出射する。また、ガルバノスキャナ21は、第1ガルバノミラー25と第2ガルバノミラー29とを備えている。第1ガルバノミラー25は、第1ガルバノモータ23によって回転されて、レーザ光LBを第1走査方向に偏向させつつ走査する。第2ガルバノミラー29は、第2ガルバノモータ27によって回転されて、レーザ光LBを第2走査方向に偏向させつつ走査する。なお、コリメートレンズ17と第1ガルバノミラー25との間には、反射ミラー31が設けられている。 A galvano scanner 21 is provided on the light exit side of the collimating lens 17. The galvano scanner 21 scans while deflecting the laser beam LB emitted from the collimating lens 17 and emits the laser beam LB to the emission opening 9. The galvano scanner 21 includes a first galvanometer mirror 25 and a second galvanometer mirror 29. The first galvanometer mirror 25 is rotated by the first galvanometer motor 23 and scans while deflecting the laser beam LB in the first scanning direction. The second galvanometer mirror 29 is rotated by the second galvanometer motor 27 and scans while deflecting the laser beam LB in the second scanning direction. A reflecting mirror 31 is provided between the collimating lens 17 and the first galvanometer mirror 25.
 出射開口部9とガルバノスキャナ21との間には、Fθレンズ33が設けられている。Fθレンズ33は、ガルバノスキャナ21によって2次元走査されたレーザ光LBを集光する。また、ヘッド本体7の先端には、出射開口部9を覆う保護ガラス35が着脱可能に取り付けられている。さらに、保護ガラス35に対して立体ワークWの側には、レーザ光LBの照射方向側にエアを噴出する環状のエアノズル(ガスノズル)37が設けられている。エアノズル37は、ブラケット39によってヘッド本体7に取り付けられている。 An Fθ lens 33 is provided between the exit opening 9 and the galvano scanner 21. The Fθ lens 33 condenses the laser beam LB that is two-dimensionally scanned by the galvano scanner 21. Further, a protective glass 35 covering the emission opening 9 is detachably attached to the tip of the head body 7. Further, an annular air nozzle (gas nozzle) 37 that ejects air toward the irradiation direction side of the laser beam LB is provided on the side of the three-dimensional workpiece W with respect to the protective glass 35. The air nozzle 37 is attached to the head body 7 by a bracket 39.
 図1、図2(a)及び図2(b)に示されるように、エアノズル37は、環状の第1ノズル部材41と環状の第2ノズル部材43とを取付ネジ(図示せず)等で一体的に接合して構成されている。また、エアノズル37の内部には、環状のエア通路(ガス通路)45が形成されている。エア通路45は、配管49を介して、ファン等のエア供給源(ガス供給源)47に接続可能である。なお、エアノズル37は、本実施形態では2つの環状部材(第1ノズル部材41と第2ノズル部材43)を一体的に接合することで形成されたが、単一部材で構成されてもよい。 As shown in FIG. 1, FIG. 2A and FIG. 2B, the air nozzle 37 has an annular first nozzle member 41 and an annular second nozzle member 43 attached with a mounting screw (not shown) or the like. They are integrally joined. An annular air passage (gas passage) 45 is formed inside the air nozzle 37. The air passage 45 can be connected to an air supply source (gas supply source) 47 such as a fan via a pipe 49. In the present embodiment, the air nozzle 37 is formed by integrally joining two annular members (the first nozzle member 41 and the second nozzle member 43), but may be configured by a single member.
 第1ノズル部材41の内周縁近傍と第2ノズル部材43の内周縁との間には、環状の第1ノズルスリット51(第1ノズルの一例)がレーザ光LBの光軸(エアノズル中心軸)を囲むように形成されている。第1ノズルスリット51から、レーザ光LBの照射方向側のレーザ光LBの光軸(エアノズル中心軸)に向けてエアAが噴出される。即ち、エアノズル37の内周には、レーザ光LBの光軸を囲むように環状の第1ノズルスリット51が形成されている。言い換えれば、第1ノズルスリット51のガス噴出方向は、レーザ光LBの照射方向側のレーザ光LBの光軸に向けられている。また、第1ノズルスリット51は、エア通路45に連通されている。なお、第1ノズル部材41と第2ノズル部材43との間にエア通路45を囲む環状のシム[shim](図示せず)を介在させて、第1ノズルスリット51の大きさを調節してもよい。なお、第1ノズルは、周方向に間隔をおいて形成された複数の第1ノズル孔(図示せず)や、周方向に間隔をおいて形成された複数の円弧状の第1ノズルスリット(図示せず)として形成されてもよい(第1ノズルの他の例)。 Between the vicinity of the inner periphery of the first nozzle member 41 and the inner periphery of the second nozzle member 43, an annular first nozzle slit 51 (an example of a first nozzle) is an optical axis of the laser beam LB (air nozzle central axis). Is formed so as to surround. Air A is ejected from the first nozzle slit 51 toward the optical axis (air nozzle central axis) of the laser beam LB on the irradiation direction side of the laser beam LB. That is, an annular first nozzle slit 51 is formed on the inner periphery of the air nozzle 37 so as to surround the optical axis of the laser beam LB. In other words, the gas ejection direction of the first nozzle slit 51 is directed to the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB. Further, the first nozzle slit 51 is communicated with the air passage 45. In addition, an annular shim (not shown) surrounding the air passage 45 is interposed between the first nozzle member 41 and the second nozzle member 43 to adjust the size of the first nozzle slit 51. Also good. The first nozzle includes a plurality of first nozzle holes (not shown) formed at intervals in the circumferential direction, and a plurality of arc-shaped first nozzle slits formed at intervals in the circumferential direction ( (Not shown) may be formed (another example of the first nozzle).
 第2ノズル部材43の内周縁近傍には、複数の第2ノズル孔53(第2ノズルの一例)が第1ノズルスリット51を囲むように形成されている。第2ノズル孔53から、レーザ光LBの照射方向(エアノズル中心軸)に沿ってエアBが噴出される。即ち、エアノズル37の第1ノズルスリット51よりも半径方向外側の位置に、レーザ光LBの光軸を囲むように複数の第2ノズル孔53が周方向に間隔をおいて形成されている。言い換えれば、第2ノズル孔53のガス噴出方向は、レーザ光LBの照射方向に対して平行に設定されている。また、複数の第2ノズル孔53は、エア通路45に連通されている。なお、第2ノズルは、環状の第2ノズルスリット(図示せず)や、周方向に間隔をおいて形成された複数の円弧状の第2ノズルスリット(図示せず)として形成されてもよい(第2ノズルの他の例)。また、第2ノズルは、エアノズル37の直径よりも大きな直径を有する環状の別のエアノズル(図示せず)上に形成されてもよい。 In the vicinity of the inner peripheral edge of the second nozzle member 43, a plurality of second nozzle holes 53 (an example of second nozzles) are formed so as to surround the first nozzle slit 51. The air B is ejected from the second nozzle hole 53 along the irradiation direction of the laser beam LB (air nozzle central axis). That is, a plurality of second nozzle holes 53 are formed at intervals in the circumferential direction so as to surround the optical axis of the laser beam LB at a position radially outside the first nozzle slit 51 of the air nozzle 37. In other words, the gas ejection direction of the second nozzle hole 53 is set parallel to the irradiation direction of the laser beam LB. Further, the plurality of second nozzle holes 53 communicate with the air passage 45. The second nozzle may be formed as an annular second nozzle slit (not shown) or a plurality of arcuate second nozzle slits (not shown) formed at intervals in the circumferential direction. (Another example of the second nozzle). The second nozzle may be formed on another annular air nozzle (not shown) having a diameter larger than the diameter of the air nozzle 37.
 上述した構成を備えた溶接ロボット1によれば、ロボットアーム3を制御することで溶接ヘッド5が立体ワークWの溶接箇所Waに対応する位置に移動される。そして、ファイバレーザ発振器15によって発振されたレーザ光LBが、伝送ファイバ13を介して溶接ヘッド5へと伝送される。溶接ヘッド5に伝送されたレーザ光LBは、コリメートレンズ17によって平行光に変換され、ガルバノスキャナ21によってレーザ光LBを第1走査方向及び第2走査方向に偏向されつつ走査される。偏向されつつ走査されたレーザ光LBは、Fθレンズ33によって集光され、ヘッド本体7の出射開口部9から保護ガラス35を通して溶接箇所Waに照射される。これにより、立体ワークWがレーザ溶接される。なお、ファイバレーザ発振器15の作動中に、溶接ヘッド5を溶接箇所Waに沿ってロボットアーム3と一体的に移動させることも可能である。 According to the welding robot 1 having the above-described configuration, the welding head 5 is moved to a position corresponding to the welding location Wa of the three-dimensional workpiece W by controlling the robot arm 3. Then, the laser beam LB oscillated by the fiber laser oscillator 15 is transmitted to the welding head 5 through the transmission fiber 13. The laser beam LB transmitted to the welding head 5 is converted into parallel light by the collimator lens 17 and scanned while being deflected by the galvano scanner 21 in the first scanning direction and the second scanning direction. The laser beam LB scanned while being deflected is collected by the Fθ lens 33 and irradiated to the welding spot Wa from the emission opening 9 of the head body 7 through the protective glass 35. Thereby, the solid workpiece W is laser-welded. During the operation of the fiber laser oscillator 15, the welding head 5 can be moved integrally with the robot arm 3 along the welding location Wa.
 レーザ溶接中に、エア供給源47からエア通路45にエアを供給することで、第1ノズルスリット51からレーザ光LBの照射方向側のレーザ光LBの光軸に向けてエアAが噴出されると共に、複数の第2ノズル孔53からレーザ光LBの照射方向に沿ってエアBが噴出される。すると、第1ノズルスリット51から噴出されたエアAは、レーザ光LBの光軸上で合流して溶接箇所Waに向かい、複数の第2ノズル孔53から噴出されたエアAは、レーザ光LBの光軸上で合流するエアAを囲みつつ、溶接箇所Waの周囲に向かう。 By supplying air from the air supply source 47 to the air passage 45 during laser welding, the air A is ejected from the first nozzle slit 51 toward the optical axis of the laser beam LB on the irradiation direction side of the laser beam LB. At the same time, air B is ejected from the plurality of second nozzle holes 53 along the irradiation direction of the laser beam LB. Then, the air A ejected from the first nozzle slit 51 is merged on the optical axis of the laser beam LB toward the welding spot Wa, and the air A ejected from the plurality of second nozzle holes 53 is the laser beam LB. While surrounding the air A that merges on the optical axis of the head, it goes around the welded portion Wa.
 即ち、エアノズル37に第1ノズルスリット51がレーザ光LBの光軸を囲むように形成され、かつ、第1ノズルスリット51がエア通路45に連通されているので、第1ノズルスリット51から噴出されたエアAは、レーザ光LBの光軸上で合流して、溶接箇所Waに向かう。これにより、立体ワークWの形状が複雑であっても、溶接ヘッド5と立体ワークWとの間のヒュームの滞留を十分に抑えることができる。 That is, since the first nozzle slit 51 is formed in the air nozzle 37 so as to surround the optical axis of the laser beam LB, and the first nozzle slit 51 communicates with the air passage 45, the first nozzle slit 51 is ejected from the first nozzle slit 51. The air A merges on the optical axis of the laser beam LB and travels toward the welding location Wa. Thereby, even if the shape of the solid workpiece W is complicated, the retention of fume between the welding head 5 and the solid workpiece W can be sufficiently suppressed.
 また、第1ノズルスリット51よりも半径方向外側の位置に、レーザ光LBの光軸を囲むように複数の第2ノズル孔53が形成され、かつ、複数の第2ノズル孔53がエア通路45に連通されているので、複数の第2ノズル孔53から噴出されたエアBは、レーザ光LBの光軸上で合流するエアAを囲みつつ、溶接箇所Waの周囲に向かう。この結果、図3に示されるように、立体ワークWに側方からレーザ溶接を行う場合、スパッタSが溶接箇所Waから放物線を描いて溶接ヘッド5へと飛散しても、スパッタSを溶接ヘッド5から逸らすことができる(図3中の白矢印で示されるようにスパッタSの飛散方向が変えられる)。 In addition, a plurality of second nozzle holes 53 are formed at positions outside the first nozzle slit 51 in the radial direction so as to surround the optical axis of the laser beam LB, and the plurality of second nozzle holes 53 are formed in the air passage 45. Therefore, the air B ejected from the plurality of second nozzle holes 53 travels around the welding point Wa while surrounding the air A that merges on the optical axis of the laser beam LB. As a result, as shown in FIG. 3, when laser welding is performed on the three-dimensional workpiece W from the side, even if the spatter S scatters to the welding head 5 while drawing a parabola from the welding location Wa, the spatter S is transferred to the welding head 5 (the spattering direction of the spatter S can be changed as indicated by the white arrow in FIG. 3).
 従って、本実施形態によれば、立体ワークWの形状が複雑であっても、溶接ヘッド5と立体ワークWとの間のヒュームの滞留を十分に抑えることができるので、ヒュームのレーザ光LBへの干渉がなくなり、安定した溶接条件(加工条件)で立体ワークWを安定的にレーザ溶接することができる。 Therefore, according to the present embodiment, even if the shape of the three-dimensional workpiece W is complicated, the retention of fume between the welding head 5 and the three-dimensional workpiece W can be sufficiently suppressed, so that the fume laser light LB is obtained. The solid workpiece W can be stably laser-welded under stable welding conditions (processing conditions).
 また、立体ワークWに側方からレーザ溶接を行う場合、スパッタSが溶接箇所Waから放物線を描いて溶接ヘッド5へと飛散しても、スパッタSを溶接ヘッド5から逸らすことができるので、保護ガラス35へのスパッタSの付着を低減できる。この結果、保護ガラス35の交換頻度を大幅に減らすことができる。 Further, when laser welding is performed on the three-dimensional workpiece W from the side, the spatter S can be deflected from the welding head 5 even if the spatter S scatters to the welding head 5 while drawing a parabola from the welding spot Wa. Adhesion of the sputter S to the glass 35 can be reduced. As a result, the replacement frequency of the protective glass 35 can be greatly reduced.
 本実施形態に係る溶接ヘッド5、第1従来技術例に係る溶接ヘッド101(図5(b)参照)、及び、第2従来技術例に係る溶接ヘッド111(図6(b)参照)を用いて、立体ワークWに側方からレーザ溶接を行った。溶接した立体ワークWの数と保護ガラス35に付着したスパッタの数との関係を図4に示す。図4に示されるように、溶接ヘッド5を用いた場合は、溶接ヘッド101や溶接ヘッド111を用いた場合に比べて、スパッタの数を大幅に低減できる。なお、1つの立体ワークWを溶接するのに必要なパルスショットの数は3960回に設定されており、第1従来技術例の場合にのみ外部送風機を使用した。 The welding head 5 according to the present embodiment, the welding head 101 according to the first prior art example (see FIG. 5B), and the welding head 111 according to the second prior art example (see FIG. 6B) are used. Then, laser welding was performed on the solid workpiece W from the side. FIG. 4 shows the relationship between the number of welded solid workpieces W and the number of spatters attached to the protective glass 35. As shown in FIG. 4, when the welding head 5 is used, the number of spatters can be significantly reduced as compared with the case where the welding head 101 and the welding head 111 are used. Note that the number of pulse shots required to weld one solid workpiece W is set to 3960 times, and an external blower was used only in the case of the first prior art example.
 本発明は、上記実施形態に限定されず、種々の態様で実施可能である。 The present invention is not limited to the above embodiment, and can be implemented in various modes.

Claims (5)

  1.  ワークにレーザ溶接を行うレーザ溶接装置に用いられ、ワークの溶接箇所に向けてレーザ光を照射するレーザ溶接ヘッドであって、
     レーザ光を出射する出射開口部が先端に形成された、レーザ発振器に光学的に接続される中空状のヘッド本体と、
     前記ヘッド本体に着脱可能に設けられた、前記出射開口部を覆う保護ガラスと、
     前記保護ガラスよりワーク側に設けられた、環状のガスノズルと、を備えており、
     前記ガスノズルの内部に、ガス供給源に接続可能なガス通路が形成され、
     前記ガスノズル上に、前記レーザ光の照射方向側の前記レーザ光の光軸に向けてガスを噴出する第1ノズルと、前記レーザ光の照射方向に沿ってガスを噴出する第2ノズルとが形成されており、
     前記第1ノズルは、前記ガス通路に連通され、かつ、前記レーザ光の光軸を囲むように形成され、
     前記第2ノズルは、前記ガス通路に連通され、かつ、前記第1ノズルよりも半径方向外側の位置に、前記第1ノズルを囲むように形成されている、レーザ溶接ヘッド。
    A laser welding head that is used in a laser welding apparatus that performs laser welding on a workpiece and irradiates a laser beam toward a welding portion of the workpiece,
    A hollow head body optically connected to a laser oscillator, formed at the tip with an emission opening for emitting laser light;
    A protective glass that is detachably provided on the head body and covers the emission opening,
    An annular gas nozzle provided on the workpiece side from the protective glass, and
    A gas passage connectable to a gas supply source is formed inside the gas nozzle,
    A first nozzle that ejects gas toward the optical axis of the laser beam on the irradiation direction side of the laser beam and a second nozzle that ejects gas along the irradiation direction of the laser beam are formed on the gas nozzle. Has been
    The first nozzle communicates with the gas passage and is formed to surround the optical axis of the laser beam,
    The laser welding head, wherein the second nozzle communicates with the gas passage and is formed to surround the first nozzle at a position radially outward from the first nozzle.
  2.  請求項1に記載のレーザ溶接ヘッドであって、
     前記第1ノズルが、環状の第1ノズルスリット、周方向に間隔をおいて形成された複数の第1ノズル孔、又は、周方向に間隔をおいて形成された複数の円弧状の第1ノズルスリットであり、
     前記第2ノズルが、周方向に間隔をおいて形成された複数の第2ノズル孔、環状の第2ノズルスリット、又は、周方向に間隔をおいて形成された複数の円弧状の第2ノズルスリットである、レーザ溶接ヘッド。
    The laser welding head according to claim 1,
    The first nozzle is an annular first nozzle slit, a plurality of first nozzle holes formed at intervals in the circumferential direction, or a plurality of arc-shaped first nozzles formed at intervals in the circumferential direction. Slit,
    The second nozzles are a plurality of second nozzle holes, annular second nozzle slits formed at intervals in the circumferential direction, or a plurality of arc-shaped second nozzles formed at intervals in the circumferential direction. A laser welding head that is a slit.
  3.  レーザ溶接装置であって、
     請求項1又は2に記載の前記レーザ溶接ヘッドと、
     前記レーザ溶接ヘッドが取り付けられ、前記レーザ溶接ヘッドをワークに側方から接近させ、又は、前記レーザ溶接ヘッドをワークから側方に離反させるように、前記レーザ溶接ヘッドを移動する移動装置と、を備えたレーザ溶接装置。
    A laser welding apparatus,
    The laser welding head according to claim 1 or 2,
    A moving device that is mounted with the laser welding head and moves the laser welding head so that the laser welding head approaches the workpiece from the side or moves the laser welding head away from the workpiece laterally; Laser welding equipment provided.
  4.  レーザ溶接ヘッド用ガスノズルであって、
     内部に形成された、ガス供給源に接続可能なガス通路と、
     レーザ光の照射方向側の前記レーザ光の光軸に向けてガスを噴出する第1ノズルと、
     前記レーザ光の照射方向に沿ってガスを噴出する第2ノズルと、を備えており、
     前記第1ノズルが、前記ガス通路に連通され、かつ、前記レーザ光の光軸を囲むように形成され、
     前記第2ノズルが、前記ガス通路に連通され、かつ、前記第1ノズルよりも半径方向外側の位置に、前記第1ノズルを囲むように形成されている、ガスノズル。
    A gas nozzle for a laser welding head,
    A gas passage formed therein and connectable to a gas supply source;
    A first nozzle that ejects gas toward the optical axis of the laser beam on the irradiation direction side of the laser beam;
    A second nozzle that ejects gas along the irradiation direction of the laser beam,
    The first nozzle is formed to communicate with the gas passage and surround an optical axis of the laser beam;
    The gas nozzle, wherein the second nozzle communicates with the gas passage and is formed at a position radially outward from the first nozzle so as to surround the first nozzle.
  5.  請求項4に記載のレーザ溶接ヘッド用ガスノズルであって、
     前記第1ノズルが、環状の第1ノズルスリット、周方向に間隔をおいて形成された複数の第1ノズル孔、又は、周方向に間隔をおいて形成された複数の円弧状の第1ノズルスリットであり、
     前記第2ノズルが、周方向に間隔をおいて形成された複数の第2ノズル孔、環状の第2ノズルスリット、又は、周方向に間隔をおいて形成された複数の円弧状の第2ノズルスリットである、ガスノズル。
    A gas nozzle for a laser welding head according to claim 4,
    The first nozzle is an annular first nozzle slit, a plurality of first nozzle holes formed at intervals in the circumferential direction, or a plurality of arc-shaped first nozzles formed at intervals in the circumferential direction. Slit,
    The second nozzles are a plurality of second nozzle holes, annular second nozzle slits formed at intervals in the circumferential direction, or a plurality of arc-shaped second nozzles formed at intervals in the circumferential direction. A gas nozzle that is a slit.
PCT/JP2015/050952 2014-02-24 2015-01-15 Laser welding head, laser welding device, and gas nozzle for laser welding head WO2015125522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-032762 2014-02-24
JP2014032762A JP2015157297A (en) 2014-02-24 2014-02-24 Welding head, laser welding apparatus, and gas nozzle for welding head

Publications (1)

Publication Number Publication Date
WO2015125522A1 true WO2015125522A1 (en) 2015-08-27

Family

ID=53878038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050952 WO2015125522A1 (en) 2014-02-24 2015-01-15 Laser welding head, laser welding device, and gas nozzle for laser welding head

Country Status (2)

Country Link
JP (1) JP2015157297A (en)
WO (1) WO2015125522A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744213A (en) * 2019-10-30 2020-02-04 中国航空制造技术研究院 In-situ monitoring device and method for pollution of welding laser head protective lens
CN112171055A (en) * 2020-08-06 2021-01-05 中国科学院西安光学精密机械研究所 Ultrafast laser precision welding system and method for glass material

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102536222B1 (en) 2015-06-19 2023-05-23 아이피지 포토닉스 코포레이션 Laser welding head with dual movable mirrors providing beam movement
US11052482B2 (en) 2016-02-12 2021-07-06 Ipg Photonics Corporation Laser alignment apparatus and system for alignment of output fiber of a fiber laser
KR102587799B1 (en) * 2016-02-12 2023-10-10 아이피지 포토닉스 코포레이션 Laser cutting head with dual movable mirrors providing beam alignment and/or rocking movement
FR3054971B1 (en) * 2016-08-12 2019-01-25 Accelinn METHOD OF PROTECTING, BY FLUID BLOWING, AN APPARATUS FOR TRANSMITTING AND / OR RECEIVING ELECTROMAGNETIC WAVES, DEVICE SUITABLE FOR ITS IMPLEMENTATION AND AN APPARATUS EQUIPPED WITH SAID DEVICE
JP6608885B2 (en) * 2017-08-24 2019-11-20 ファナック株式会社 Galvano scanner and laser processing system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716776A (en) * 1993-06-29 1995-01-20 Dengensha Mfg Co Ltd Laser welding method and device of lap joint part
JP2002239770A (en) * 2001-02-20 2002-08-28 Koike Sanso Kogyo Co Ltd Nozzle for laser beam cutting
DE10239141A1 (en) * 2002-08-27 2004-03-18 Daimlerchrysler Ag Laser soldering method for two sheet metal workpieces, involves heating solder using an electric current prior to its supply to the are to be joined
JP2005014075A (en) * 2003-06-27 2005-01-20 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining device
DE102008025044B3 (en) * 2008-05-14 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser cutting torch for different types of workpiece has adjustable gas nozzle with rotating screen
JP2012076111A (en) * 2010-10-01 2012-04-19 Suzuki Motor Corp Laser beam welding apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716776A (en) * 1993-06-29 1995-01-20 Dengensha Mfg Co Ltd Laser welding method and device of lap joint part
JP2002239770A (en) * 2001-02-20 2002-08-28 Koike Sanso Kogyo Co Ltd Nozzle for laser beam cutting
DE10239141A1 (en) * 2002-08-27 2004-03-18 Daimlerchrysler Ag Laser soldering method for two sheet metal workpieces, involves heating solder using an electric current prior to its supply to the are to be joined
JP2005014075A (en) * 2003-06-27 2005-01-20 Shin Nippon Koki Co Ltd Laser beam machining method and laser beam machining device
DE102008025044B3 (en) * 2008-05-14 2009-09-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Laser cutting torch for different types of workpiece has adjustable gas nozzle with rotating screen
JP2012076111A (en) * 2010-10-01 2012-04-19 Suzuki Motor Corp Laser beam welding apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110744213A (en) * 2019-10-30 2020-02-04 中国航空制造技术研究院 In-situ monitoring device and method for pollution of welding laser head protective lens
CN112171055A (en) * 2020-08-06 2021-01-05 中国科学院西安光学精密机械研究所 Ultrafast laser precision welding system and method for glass material

Also Published As

Publication number Publication date
JP2015157297A (en) 2015-09-03

Similar Documents

Publication Publication Date Title
WO2015125522A1 (en) Laser welding head, laser welding device, and gas nozzle for laser welding head
JP5292256B2 (en) Laser processing head and laser cladding method
CN109153096B (en) Laser welding device and laser welding method
US8426766B2 (en) Welding method and welding apparatus for an impeller
TW201811480A (en) AA method of laser processing of a metallic material with high dynamic control of the movement axes of the laser beam along a predetermined processing path, as well as a machine and a computer program for the implementation of said method
WO2013121818A1 (en) Laser processing machine
US8816241B2 (en) Laser welding apparatus
JP2007021505A (en) Laser radiating nozzle device of laser beam machine, and air blowing method using the same
JPH0679489A (en) Torch for laser beam machining
JP6538911B1 (en) Laser processing machine and laser processing method
JP2016150384A (en) Laser welding system and laser welding method
JP2019141852A (en) Laser irradiation apparatus, and, laser beam machining method
EP3498417A1 (en) Welding apparatus with laser cleaning device and method of welding and cleaning
KR20210042398A (en) Gas shielding device for use with laser processing heads
JP2002307177A (en) Laser beam machining head and laser beam machining device furnished with the same
WO2014203489A1 (en) Outer can sealing method and outer can sealing device
KR20100035996A (en) Air nozzle for laser optic head
JP4645319B2 (en) Remote welding teaching device
JP6589016B1 (en) Laser processing head and laser processing apparatus
CN210209056U (en) Laser welding head
JP5587918B2 (en) Impeller welding method, welding apparatus, and impeller
JP2020022978A (en) Laser irradiation device, fluid supply device, and laser processing method
WO2019176292A1 (en) Laser processing machine and laser processing method
JP6713313B2 (en) Processing head for laser processing equipment
WO2022202797A1 (en) Laser machining device and laser machining method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15752501

Country of ref document: EP

Kind code of ref document: A1