WO2023171093A1 - Method for manufacturing magnetic wedge - Google Patents

Method for manufacturing magnetic wedge Download PDF

Info

Publication number
WO2023171093A1
WO2023171093A1 PCT/JP2022/048074 JP2022048074W WO2023171093A1 WO 2023171093 A1 WO2023171093 A1 WO 2023171093A1 JP 2022048074 W JP2022048074 W JP 2022048074W WO 2023171093 A1 WO2023171093 A1 WO 2023171093A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
resin
magnetic wedge
mold
magnetic
Prior art date
Application number
PCT/JP2022/048074
Other languages
French (fr)
Japanese (ja)
Inventor
裕己 押田
裕一 木場
Original Assignee
Towa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Towa株式会社 filed Critical Towa株式会社
Publication of WO2023171093A1 publication Critical patent/WO2023171093A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • H02K3/487Slot-closing devices
    • H02K3/493Slot-closing devices magnetic

Definitions

  • the present invention relates to a technique for manufacturing a magnetic wedge.
  • Patent Document 1 discloses a magnetic wedge for fixing a coil to a slot of a stator (iron core) of a motor.
  • This magnetic wedge has a tapered surface that becomes thinner toward the tip so that it can be easily inserted into the slot of the stator.
  • Patent Document 1 uses so-called injection molding, in which resin is poured into a cavity formed by an upper mold and a lower mold through a gate part, as a method of molding the magnetic wedge.
  • Patent Document 1 In injection molding as described in Patent Document 1, it is difficult to secure a large number of magnetic wedges that can be molded in one resin molding, and there is room for improvement in terms of poor productivity.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing magnetic wedges that can increase productivity.
  • a method for manufacturing a magnetic wedge according to the present invention includes a plurality of magnetic wedges formed on at least one of an upper mold and a lower mold facing each other.
  • a resin material containing magnetic powder is filled into a cavity and a gap formed between the plurality of cavities and between the upper mold and the lower mold and which is narrower than the depth of an adjacent portion of the cavity.
  • the method includes a resin molding step of performing resin molding by compression molding so as to mold a plurality of products at once, and a resin layer removing step of removing the resin layer formed by resin molding in the gap.
  • productivity of magnetic wedges can be increased.
  • FIG. 1 is a front sectional view showing the overall configuration of the resin molding device. The top view which showed the bottom member.
  • FIG. 2 is a front cross-sectional view schematically showing the upper mold, the lower mold, and the resin material to be resin-molded. A flowchart showing a method for manufacturing a magnetic wedge.
  • (a) A plan view schematically showing a molded product.
  • the motor 1 includes a cylindrical stator 10 and a rotor 20 arranged inside the stator 10 and rotatable relative to the stator 10.
  • a coil 12 is wound around a slot 11 formed in the stator 10. Further, a magnetic wedge 13 for fixing the coil 12 is arranged in the opening of the slot 11.
  • the magnetic wedge 13 As shown in FIG. 2, the magnetic wedge 13 according to this embodiment is formed into a rectangular plate shape.
  • the magnetic wedge 13 is formed into a trapezoidal shape in a longitudinal cross-sectional view, as shown in FIG. 2(c).
  • the magnetic wedge 13 is formed with a tapered portion 13a and a straight portion 13b.
  • the tapered portion 13a is a portion tapered toward one end in the longitudinal direction of the magnetic wedge 13.
  • the tapered portion 13a is formed only at one end of the magnetic wedge 13 in the longitudinal direction.
  • both side surfaces of the magnetic wedge 13 in the transverse direction are formed in an inclined shape such that they approach each other toward the tip.
  • the linear portion 13b is a portion formed in a straight line parallel to the longitudinal direction of the magnetic wedge 13.
  • a portion of the magnetic wedge 13 other than the tapered portion 13a is formed as a linear portion 13b.
  • both side surfaces of the magnetic wedge 13 in the transverse direction are formed parallel to each other.
  • the magnetic wedge 13 is manufactured by mixing and molding, for example, iron-based or iron-silicon-based granular soft magnetic powder and a synthetic resin such as epoxy resin. By including the soft magnetic powder in the resin in this manner, the magnetic wedge 13 having magnetism can be formed. By using the magnetic wedge 13 having magnetism in the motor 1, it is possible to suppress the occurrence of uneven magnetic flux density, and it is possible to improve the efficiency of the motor 1.
  • the resin molding apparatus 100 shown in FIG. 3 is an apparatus capable of resin molding using a compression molding method.
  • the resin molding apparatus 100 mainly includes a mold 110 (a lower mold 110D and an upper mold 110U), a mold clamping mechanism 120, and the like.
  • the mold 110 is composed of a lower mold 110D and an upper mold 110U, and forms a cavity C for molding the resin material R.
  • the lower mold 110D mainly includes a lower mold base member 111, a bottom member 112, a side member 113, an elastic member 114, and the like.
  • the lower die base member 111 supports a bottom member 112, a side member 113, etc., which will be described later.
  • the bottom member 112 shown in FIGS. 3 to 5 forms the bottom of the cavity C.
  • the bottom member 112 is formed into a rectangular shape in plan view.
  • the bottom member 112 is formed to have an appropriate vertical width.
  • the bottom member 112 is placed on the upper surface of the lower die base member 111.
  • a plurality of recesses 112a corresponding to the shape of the magnetic wedge 13 are formed on the upper surface of the bottom member 112.
  • the recess 112a is formed into a rectangular shape in plan view, similar to the outer shape of the magnetic wedge 13.
  • one longitudinal end portion of the recessed portion 112a is formed into a tapered shape corresponding to the tapered portion 13a of the magnetic wedge 13.
  • a plurality of recesses 112a are formed in a state in which they are aligned in the front-rear direction and the left-right direction. A slight gap is formed between adjacent recesses 112a.
  • a cavity C for molding the magnetic wedge 13 is defined by this recess 112a and an upper die 110U, which will be described later. Note that in FIGS. 3 and 5, the recessed portion 112a is illustrated in an exaggerated manner for convenience of explanation.
  • the side member 113 shown in FIG. 3 surrounds the bottom member 112 from the side.
  • the side member 113 is formed to have an appropriate vertical width.
  • the side member 113 mainly includes a hollow portion 113a.
  • the hollow portion 113a is formed to vertically penetrate the center of the side member 113.
  • the hollow portion 113a is formed into a rectangular shape in plan view.
  • the hollow portion 113a is formed in a shape that generally matches the outer shape of the bottom member 112 in plan view.
  • the side member 113 is formed into a frame shape that is rectangular in plan view.
  • the bottom member 112 is arranged in the hollow portion 113a of the side member 113.
  • the side member 113 is placed on the upper surface of the lower die base member 111 via an elastic member 114, which will be described later.
  • the upper surface of the side member 113 is located above the upper surface of the bottom member 112.
  • the elastic member 114 is arranged between the side member 113 and the lower die base member 111.
  • the elastic member 114 is formed of, for example, a compression coil spring that can be expanded and contracted up and down.
  • suction holes for sucking and holding the release film F are appropriately formed on the upper surface of the lower mold 110D (bottom member 112 and side member 113). By applying negative pressure to this suction hole using a vacuum pump or the like (not shown), the release film F can be suctioned and held.
  • the upper mold 110U is formed to have an appropriate vertical width.
  • the bottom surface of the upper mold 110U is formed into a flat surface with no irregularities.
  • Adsorption holes (not shown) for adsorbing and holding the release film F are appropriately formed on the bottom surface of the upper mold 110U. By applying negative pressure to this suction hole using a vacuum pump or the like (not shown), the release film F can be suctioned and held.
  • the mold clamping mechanism 120 moves the lower mold 110D up and down to perform mold clamping, mold opening, etc.
  • the mold clamping mechanism 120 mainly includes a base 121, a drive mechanism 122, and the like.
  • the base 121 supports the mold 110 and the like.
  • the base 121 is arranged below the mold 110 (lower mold 110D).
  • the drive mechanism 122 is for raising and lowering the lower mold 110D.
  • a ball screw mechanism, a hydraulic cylinder, a toggle mechanism, etc. can be used as the drive mechanism 122.
  • the drive mechanism 122 is arranged between the base 121 and the lower die base member 111.
  • the manufacturing method of the magnetic wedge 13 mainly includes a film arrangement step S10, a carrying-in step S20, a mold-clamping step S30, a resin molding step S40, a mold-opening step S50, a carrying-out step S60, and a resin It includes a layer removal step S70. Below, they will be explained in order.
  • the film placement step S10 is a step of placing a release film F (see FIG. 3) on the lower mold 110D and the upper mold 110U.
  • two release films F are carried into the mold 110 by a predetermined conveyance device.
  • the two release films F are adsorbed and held on the upper surface of the lower mold 110D and the bottom surface of the upper mold 110U, respectively.
  • the release film F is arranged so as to follow the shape of the upper surface of the lower mold 110D and the bottom surface of the upper mold 110U.
  • the process moves from the film arrangement step S10 to the carrying-in step S20.
  • the carrying process S20 is a process of carrying the resin material R into the mold 110.
  • the resin material R is carried into the mold 110 by a predetermined conveying device.
  • the resin material R is accommodated within the lower mold 110D (inside the side member 113).
  • resins in various states can be used, such as solid powder resin (including granular resin) and liquid resin.
  • the resin material R contains iron-based or iron-silicon-based granular soft magnetic powder.
  • the mold clamping process S30 is a process of closing (clamping) the mold 110 (lower mold 110D and upper mold 110U).
  • a heating mechanism (not shown) provided in the lower mold 110D melts the resin material R accommodated in the cavity C if it is in a solid state, and melts it if it is in a liquid state. If so, the viscosity will be lowered.
  • the lower die 110D is raised toward the upper die 110U.
  • the upper surface of the side member 113 comes into contact with the bottom surface of the upper mold 110U, and the lower mold 110D (the space in which the resin material R is accommodated) is closed from above by the upper mold 110U.
  • the mold clamping process S30 proceeds to the resin molding process S40.
  • the resin molding step S40 is a step in which the resin material R is compressed and resin molded.
  • the drive mechanism 122 is driven to further raise the bottom member 112 of the lower mold 110D toward the upper mold 110U. At this time, since the side member 113 is in contact with the upper mold 110U, it does not rise. That is, the bottom member 112 rises relative to the side member 113.
  • a predetermined gap is provided between the bottom member 112 and the upper mold 110U so that the upper surface of the bottom member 112 of the lower mold 110D and the bottom surface of the upper mold 110U do not come into direct contact. Can be vacated. In this way, a space for molding the resin material R is secured between the upper mold 110U and the lower mold 110D.
  • a gap G1 narrower than the depth of the cavities C is formed between two adjacent cavities C (recesses 112a).
  • the gap G1 is set to be narrower than the depth G2 of a portion of the cavity C formed by the recess 112a adjacent to the gap G1 (a portion immediately adjacent to the gap G1). Further, the gap G1 is set to be larger than the maximum particle size of the magnetic powder contained in the resin material R.
  • the maximum particle size means the largest diameter among the diameters of a single magnetic powder when viewed projectively. For example, for magnetic powder having a maximum particle size of 100 ⁇ m, the size of the gap G1 is set to a value larger than 100 ⁇ m (for example, 300 ⁇ m, etc.).
  • the resin material R accommodated in the lower mold 110D is pressurized and resin-molded.
  • the resin material R containing magnetic powder flows between the cavities C through the gap G1, and is evenly filled between the upper mold 110U and the lower mold 110D.
  • a homogeneous product ie, magnetic wedge 13
  • the resin material R is cured.
  • a resin layer 14 is formed between adjacent magnetic wedges 13 to connect the adjacent magnetic wedges 13 (see FIG. 7).
  • the thickness of the resin layer 14 is formed to be thinner than the thickness of the magnetic wedge 13. Note that, hereinafter, the magnetic wedge 13 and the resin layer 14 that are integrally molded may be referred to as a molded product M.
  • the process moves from the resin molding step S40 to the mold opening step S50.
  • the mold opening step S50 is a step of opening (opening) the mold 110 (lower mold 110D and upper mold 110U).
  • the drive mechanism 122 is driven to lower the lower mold 110D away from the upper mold 110U. This causes the lower mold 110D to separate from the bottom surface of the upper mold 110U.
  • the process moves from the mold opening step S50 to the unloading step S60.
  • the unloading step S60 is a step of unloading the molded product M from the mold 110.
  • the molded product M is unloaded from the mold 110 by a predetermined conveyance device.
  • the unloading step S60 proceeds to the resin layer removal step S70.
  • the resin layer removal step S70 is a step in which the resin layer 14 is removed from the molded product M to obtain the magnetic wedge 13, which is a product part.
  • the resin layer removal step S70 includes a laser cutting step S71 and a rotating blade cutting step S72.
  • the laser cutting step S71 is a step in which a portion of the resin layer 14 adjacent to the tapered portion 13a of the magnetic wedge 13 is removed by laser processing.
  • a portion of the resin layer 14 adjacent to the inclined portion of the tapered portion 13a is removed by laser processing.
  • unnecessary portions 14a of the resin layer 14 that are cut in the laser cutting step S71 are shown by hatching.
  • the laser beam used in the laser cutting step S71 is a pulsed laser, and the laser beam emitted from a YAG laser or YVO4 laser is used in a laser beam oscillator, or the laser beam emitted from these is converted into a wavelength by a second harmonic generation (SHG) material. Green lasers can be used to convert. Moreover, by scanning with a scanning optical system, the irradiation area of the laser beam can be changed. The wavelength, output, laser diameter, irradiation time, etc. of the laser beam used in the laser cutting step S71 are determined depending on the material of the resin layer 14 and the size of the resin layer 14 (thickness and size of the portion to be cut, etc.). The layer 14 can be optimized for efficient removal.
  • the process moves from the laser cutting step S71 to the rotating blade cutting step S72.
  • the rotary blade cutting step S72 is a step in which the resin layer 14 not removed in the laser cutting step S71 is removed by cutting using a rotary blade.
  • unnecessary portions 14b of the resin layer 14 that are cut in the rotary blade cutting step S72 are shown by hatching.
  • the unnecessary portion 14b includes a portion adjacent to the straight portion of the straight portion 13b.
  • the resin layers 14 formed on both sides of the magnetic wedge 13 in the lateral direction and the resin layers 14 formed on both sides of the magnetic wedge 13 in the longitudinal direction are cut by the rotating blade. removed.
  • the rotary blade used in the rotary blade cutting step S72 includes a rotary blade (spindle) for cutting various resin molded products (for example, a sealed board in which a board on which a semiconductor chip is mounted is sealed with resin). Can be used.
  • a rotary blade spindle for cutting various resin molded products (for example, a sealed board in which a board on which a semiconductor chip is mounted is sealed with resin). Can be used.
  • the molded product M can be separated into a plurality of magnetic wedges 13.
  • a plurality of magnetic wedges 13 can be manufactured by one compression molding. Note that, if necessary, it is also possible to perform a step of post-processing the magnetic wedge 13 (removal of burrs, cleaning, etc.) after the resin layer removal step S70.
  • the method for manufacturing the magnetic wedge 13 includes a plurality of cavities C formed in at least one of the upper mold 110U and the lower mold 110D facing each other, and between the plurality of cavities C and the A plurality of products (
  • the method includes a resin molding step S40 of performing resin molding by compression molding so as to collectively mold the magnetic wedge 13), and a resin layer removing step S70 of removing the resin layer 14 formed by resin molding in the gap G1. .
  • the productivity of the magnetic wedge 13 can be increased. That is, since the plurality of magnetic wedges 13 can be resin-molded by compression molding, the productivity of the magnetic wedges 13 can be improved.
  • the resin material R can flow between the cavities C via the gap G1, a homogeneous magnetic wedge 13 can be manufactured.
  • the resin layer 14 formed between the cavities C (gap G1) is relatively thin, it can be easily removed in the resin layer removal step S70.
  • equipment can be made more compact compared to other resin molding methods (for example, transfer molding, etc.).
  • it is possible to reduce the amount of waste generated during resin molding (improve yield).
  • the distance between the gaps G1 is larger than the maximum particle size of the magnetic powder contained in the resin material R.
  • a tapered portion 13a is formed in the magnetic wedge 13 in a tapered shape toward one end in the longitudinal direction, and in the resin layer removal step S70, the resin layer 13 adjacent to the tapered portion 13a is is removed by laser processing.
  • the tapered portion 13a which is difficult to cut with a rotating blade, can be cut relatively easily and precisely.
  • a linear portion 13b is formed in the magnetic wedge 13 in a straight line parallel to the longitudinal direction, and in the resin layer removal step S70, the resin layer 14 adjacent to the linear portion 13b is rotated. It is removed by cutting using a blade. With this configuration, the resin layer 14 can be easily removed at low cost.
  • the tapered portion 13a is formed only at one end in the longitudinal direction of the magnetic wedge 13, but the present invention is not limited to this.
  • the shape of the magnetic wedge 13 can be changed arbitrarily.
  • the cavity C is defined by the recess 112a formed in the bottom member 112 and the bottom surface (plane portion) of the upper mold 110U, but the method for defining the cavity C is not limited to this. It is not possible to change it arbitrarily.
  • the shapes of the recesses 112a and 110a can be arbitrarily changed depending on the shape of the product.
  • the gap G1 (see FIG. 5) is set to be larger than the maximum particle size of the magnetic powder contained in the resin material R, but the gap G1 can be set arbitrarily. It is possible to change. For example, it is also possible to set the size of the gap G1 to be twice or more, three times or more the maximum particle diameter of the magnetic powder. It is also possible to set the size of the gap G1 based on the average particle size of the magnetic powder. For example, it is also possible to set the size of the gap G1 to be twice or more, three times or more the average particle diameter of the magnetic powder.
  • the release film F placed on the lower mold 110D is It is also possible to place the resin material R on top and then place the release film F together with the resin material R on the lower mold 110D. In this case, after being placed on the lower mold 110D, it is possible to adsorb the release film F with the resin material R placed above.
  • the release film F may be placed on the upper mold 110U after the release film F is placed on the lower mold 110D, or the release film F may be placed on the lower mold 110D after the release film F is placed on the upper mold 110U. It is also possible to arrange the release film F on the lower mold 110D and the upper mold 110U at the same time.
  • the resin layer 14 is removed by laser processing and cutting using a rotating blade in the resin layer removal step S70, but the present invention is not limited to this.
  • scrape the surface of the magnetic wedge 13 with an appropriate tool such as a scraper
  • grooves 14c are first formed in the resin layer 14 by laser processing (see FIG. 10(a)).
  • the groove 14c is formed in the resin layer 14 adjacent to the linear portion 13b of the magnetic wedge 13 so as to extend parallel to the longitudinal direction of the magnetic wedge 13.
  • the magnetic wedge 13 is formed with the linear portion 13b that is formed in a straight line parallel to the longitudinal direction, and in the resin layer removal step S70. , a groove 14c is formed in the resin layer 14 adjacent to the linear portion 13b by laser processing, and the resin layer 14 is removed by folding the resin layer 14 along the groove 14c.
  • the resin layer 14 can be removed relatively easily, and the productivity of the magnetic wedge 13 can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Insulation, Fastening Of Motor, Generator Windings (AREA)

Abstract

Provided is a method for manufacturing a magnetic wedge by which productivity can be increased. The manufacturing method comprises: a resin molding step in which a plurality of cavities formed in an upper mold and/or a lower mold that are opposite each other and gaps narrower than the depth of adjacent portions of the cavities and formed between the plurality of cavities and between the upper mold and the lower mold are filled with a resin material containing a magnetic powder, and in that state, the resin material is resin molded through compression molding such that a plurality of products are collectively molded; and a resin layer removal step in which a resin layer formed by the resin molds at the gaps is removed.

Description

磁性楔の製造方法Method for manufacturing magnetic wedges
 本発明は、磁性楔の製造方法の技術に関する。 The present invention relates to a technique for manufacturing a magnetic wedge.
 特許文献1には、モータのステータ(鉄心)のスロットにコイルを固定するための磁性楔が開示されている。この磁性楔には、ステータのスロットに挿入しやすいように、先端に向かうに従って細くなるテーパ面が形成されている。 Patent Document 1 discloses a magnetic wedge for fixing a coil to a slot of a stator (iron core) of a motor. This magnetic wedge has a tapered surface that becomes thinner toward the tip so that it can be easily inserted into the slot of the stator.
 特許文献1に記載された技術では、磁性楔の成形方法として、上型と下型とによって形成されるキャビティ内にゲート部を介して樹脂を流し込んで成形する、いわゆる射出成形を用いている。 The technique described in Patent Document 1 uses so-called injection molding, in which resin is poured into a cavity formed by an upper mold and a lower mold through a gate part, as a method of molding the magnetic wedge.
実開昭56-116852号公報Utility Model Publication No. 56-116852
 特許文献1に記載のような射出成形では、1回の樹脂成形で成形可能な磁性楔の数量を多く確保することは困難であり、生産性に劣る点で改善の余地があった。 In injection molding as described in Patent Document 1, it is difficult to secure a large number of magnetic wedges that can be molded in one resin molding, and there is room for improvement in terms of poor productivity.
 本発明は以上の如き状況に鑑みてなされたものであり、その解決しようとする課題は、生産性を高めることが可能な磁性楔の製造方法を提供することである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for manufacturing magnetic wedges that can increase productivity.
 本発明の解決しようとする課題は以上の如くであり、この課題を解決するため、本発明に係る磁性楔の製造方法は、互いに対向する上型及び下型の少なくとも一方に形成された複数のキャビティ、及び、複数の前記キャビティの間かつ前記上型と前記下型との間に形成されて前記キャビティの隣接部分の深さよりも狭い隙間に、磁性体粉を含有する樹脂材料が充填された状態で、複数の製品を一括成形するように、圧縮成形により樹脂成形する樹脂成形工程と、前記隙間での樹脂成形により形成された樹脂層を除去する樹脂層除去工程と、を含むものである。 The problem to be solved by the present invention is as described above, and in order to solve this problem, a method for manufacturing a magnetic wedge according to the present invention includes a plurality of magnetic wedges formed on at least one of an upper mold and a lower mold facing each other. A resin material containing magnetic powder is filled into a cavity and a gap formed between the plurality of cavities and between the upper mold and the lower mold and which is narrower than the depth of an adjacent portion of the cavity. The method includes a resin molding step of performing resin molding by compression molding so as to mold a plurality of products at once, and a resin layer removing step of removing the resin layer formed by resin molding in the gap.
 本発明によれば、磁性楔の生産性を高めることができる。 According to the present invention, productivity of magnetic wedges can be increased.
(a)本発明の一実施形態に係る磁性楔が用いられるモータの構成を示した斜視図。(b)モータの一部拡大正面図。(a) A perspective view showing the configuration of a motor using a magnetic wedge according to an embodiment of the present invention. (b) A partially enlarged front view of the motor. (a)磁性楔を示した斜視図。(b)磁性楔を示した平面図。(c)X1-X1断面図。(a) A perspective view showing a magnetic wedge. (b) A plan view showing a magnetic wedge. (c) X1-X1 sectional view. 樹脂成形装置の全体的な構成を示した正面断面図。FIG. 1 is a front sectional view showing the overall configuration of the resin molding device. 底面部材を示した平面図。The top view which showed the bottom member. 上型及び下型、並びに樹脂成形される樹脂材料の様子を模式的に示した正面断面図。FIG. 2 is a front cross-sectional view schematically showing the upper mold, the lower mold, and the resin material to be resin-molded. 磁性楔の製造方法を示したフローチャート。A flowchart showing a method for manufacturing a magnetic wedge. (a)成形品を模式的に示した平面図。(b)X2-X2断面図。(a) A plan view schematically showing a molded product. (b) X2-X2 sectional view. (a)レーザ切断工程において切断される不要部分を示した図。(b)回転ブレード切断工程において切断される不要部分を示した図。(a) A diagram showing unnecessary parts cut in a laser cutting process. (b) A diagram showing unnecessary parts cut in the rotary blade cutting process. 上型に凹部を形成した変形例を示した正面断面図。The front cross-sectional view which showed the modification in which the recessed part was formed in the upper mold|type. (a)成形品にレーザ加工によって溝が形成される様子を示した正面断面図。(b)磁性楔を折り取る様子を示した正面断面図。(a) A front sectional view showing how grooves are formed in a molded product by laser processing. (b) A front sectional view showing how the magnetic wedge is broken off.
<モータ1、磁性楔13>
 まず、図1及び図2を用いて、磁性楔13を用いたモータ1の一例について説明する。
<Motor 1, magnetic wedge 13>
First, an example of the motor 1 using the magnetic wedge 13 will be described with reference to FIGS. 1 and 2.
 モータ1は、円筒状のステータ10と、ステータ10の内側に配置され、ステータ10に対して相対的に回転可能なロータ20を具備する。ステータ10に形成されたスロット11にはコイル12が巻回されている。またスロット11の開口部には、コイル12を固定するための磁性楔13が配置されている。 The motor 1 includes a cylindrical stator 10 and a rotor 20 arranged inside the stator 10 and rotatable relative to the stator 10. A coil 12 is wound around a slot 11 formed in the stator 10. Further, a magnetic wedge 13 for fixing the coil 12 is arranged in the opening of the slot 11.
 図2に示すように、本実施形態に係る磁性楔13は矩形板状に形成される。磁性楔13は、図2(c)に示すように、長手方向断面視において台形状に形成される。磁性楔13には、先細り形状部13a及び直線状部13bが形成される。 As shown in FIG. 2, the magnetic wedge 13 according to this embodiment is formed into a rectangular plate shape. The magnetic wedge 13 is formed into a trapezoidal shape in a longitudinal cross-sectional view, as shown in FIG. 2(c). The magnetic wedge 13 is formed with a tapered portion 13a and a straight portion 13b.
 先細り形状部13aは、磁性楔13の長手方向一端側に向かって先細り形状に形成された部分である。本実施形態において、先細り形状部13aは、磁性楔13の長手方向両端部のうち一方にのみ形成される。先細り形状部13aにおいて、磁性楔13の短手方向両側面は、先端に向かって互いに近接するような傾斜状に形成されている。このように磁性楔13に先細り形状部13aを形成することによって、磁性楔13をステータ10のスロット11に差し込み易くすることができる。 The tapered portion 13a is a portion tapered toward one end in the longitudinal direction of the magnetic wedge 13. In this embodiment, the tapered portion 13a is formed only at one end of the magnetic wedge 13 in the longitudinal direction. In the tapered portion 13a, both side surfaces of the magnetic wedge 13 in the transverse direction are formed in an inclined shape such that they approach each other toward the tip. By forming the tapered portion 13a on the magnetic wedge 13 in this manner, the magnetic wedge 13 can be easily inserted into the slot 11 of the stator 10.
 直線状部13bは、磁性楔13の長手方向に平行な直線状に形成された部分である。本実施形態において、磁性楔13のうち、先細り形状部13a以外の部分が直線状部13bとして形成されている。直線状部13bにおいて、磁性楔13の短手方向両側面は、互いに平行に形成されている。 The linear portion 13b is a portion formed in a straight line parallel to the longitudinal direction of the magnetic wedge 13. In this embodiment, a portion of the magnetic wedge 13 other than the tapered portion 13a is formed as a linear portion 13b. In the linear portion 13b, both side surfaces of the magnetic wedge 13 in the transverse direction are formed parallel to each other.
 磁性楔13は、例えば鉄系や鉄シリコン系の粒状の軟磁性体粉と、例えばエポキシ樹脂等の合成樹脂と、を混合して成形することで製造される。このように樹脂に軟磁性体粉を含ませることで、磁性を有する磁性楔13を形成することができる。磁性を有する磁性楔13をモータ1に用いることで、磁束密度の粗密が発生するのを抑制することができ、モータ1の効率の向上を図ることができる。 The magnetic wedge 13 is manufactured by mixing and molding, for example, iron-based or iron-silicon-based granular soft magnetic powder and a synthetic resin such as epoxy resin. By including the soft magnetic powder in the resin in this manner, the magnetic wedge 13 having magnetism can be formed. By using the magnetic wedge 13 having magnetism in the motor 1, it is possible to suppress the occurrence of uneven magnetic flux density, and it is possible to improve the efficiency of the motor 1.
<樹脂成形装置100>
 次に、磁性楔13の製造に用いられる樹脂成形装置100の一例について説明する。
<Resin molding device 100>
Next, an example of the resin molding apparatus 100 used for manufacturing the magnetic wedge 13 will be described.
 図3に示す樹脂成形装置100は、圧縮成形法による樹脂成形が可能な装置である。樹脂成形装置100は、主として成形型110(下型110D及び上型110U)及び型締め機構120等を具備する。 The resin molding apparatus 100 shown in FIG. 3 is an apparatus capable of resin molding using a compression molding method. The resin molding apparatus 100 mainly includes a mold 110 (a lower mold 110D and an upper mold 110U), a mold clamping mechanism 120, and the like.
 成形型110は、下型110D及び上型110Uから構成され、樹脂材料Rを成形するためのキャビティCを形成するものである。 The mold 110 is composed of a lower mold 110D and an upper mold 110U, and forms a cavity C for molding the resin material R.
 下型110Dは、主として下型ベース部材111、底面部材112、側面部材113及び弾性部材114等を具備する。 The lower mold 110D mainly includes a lower mold base member 111, a bottom member 112, a side member 113, an elastic member 114, and the like.
 下型ベース部材111は、後述する底面部材112及び側面部材113等を支持するものである。 The lower die base member 111 supports a bottom member 112, a side member 113, etc., which will be described later.
 図3から図5に示す底面部材112は、キャビティCの底面を形成するものである。底面部材112は、平面視矩形状に形成される。底面部材112は、適宜の上下幅を有するように形成される。底面部材112は、下型ベース部材111の上面に載せられた状態で配置される。 The bottom member 112 shown in FIGS. 3 to 5 forms the bottom of the cavity C. The bottom member 112 is formed into a rectangular shape in plan view. The bottom member 112 is formed to have an appropriate vertical width. The bottom member 112 is placed on the upper surface of the lower die base member 111.
 図4及び図5に示すように、底面部材112の上面には磁性楔13の形状に対応する凹部112aが複数形成される。具体的には、凹部112aは、磁性楔13の外形と同様に、平面視矩形状に形成される。また凹部112aの長手方向一端部は、磁性楔13の先細り形状部13aに対応する先細り形状に形成される。凹部112aは、前後方向及び左右方向に整列された状態で複数形成される。隣接する凹部112aの間には、若干の隙間が形成される。この凹部112a及び後述する上型110Uによって、磁性楔13を成形するためのキャビティCが規定される。なお、図3及び図5では、説明の便宜のために凹部112aを誇張して図示している。 As shown in FIGS. 4 and 5, a plurality of recesses 112a corresponding to the shape of the magnetic wedge 13 are formed on the upper surface of the bottom member 112. Specifically, the recess 112a is formed into a rectangular shape in plan view, similar to the outer shape of the magnetic wedge 13. Further, one longitudinal end portion of the recessed portion 112a is formed into a tapered shape corresponding to the tapered portion 13a of the magnetic wedge 13. A plurality of recesses 112a are formed in a state in which they are aligned in the front-rear direction and the left-right direction. A slight gap is formed between adjacent recesses 112a. A cavity C for molding the magnetic wedge 13 is defined by this recess 112a and an upper die 110U, which will be described later. Note that in FIGS. 3 and 5, the recessed portion 112a is illustrated in an exaggerated manner for convenience of explanation.
 図3に示す側面部材113は、底面部材112を側方から囲むものである。側面部材113は、適宜の上下幅を有するように形成される。側面部材113は、主として中空部113aを具備する。 The side member 113 shown in FIG. 3 surrounds the bottom member 112 from the side. The side member 113 is formed to have an appropriate vertical width. The side member 113 mainly includes a hollow portion 113a.
 中空部113aは、側面部材113の中央を上下に貫通するように形成される。中空部113aは、平面視矩形状に形成される。中空部113aは、平面視において、底面部材112の外形と概ね一致するような形状に形成される。 The hollow portion 113a is formed to vertically penetrate the center of the side member 113. The hollow portion 113a is formed into a rectangular shape in plan view. The hollow portion 113a is formed in a shape that generally matches the outer shape of the bottom member 112 in plan view.
 このように側面部材113は、平面視矩形状の枠状に形成される。側面部材113の中空部113aには底面部材112が配置される。側面部材113は、後述する弾性部材114を介して、下型ベース部材111の上面に載せられた状態で配置される。側面部材113の上面は、底面部材112の上面よりも上方に位置する。 In this way, the side member 113 is formed into a frame shape that is rectangular in plan view. The bottom member 112 is arranged in the hollow portion 113a of the side member 113. The side member 113 is placed on the upper surface of the lower die base member 111 via an elastic member 114, which will be described later. The upper surface of the side member 113 is located above the upper surface of the bottom member 112.
 弾性部材114は、側面部材113と下型ベース部材111との間に配置される。弾性部材114は、例えば上下に伸縮可能な圧縮コイルばね等により形成される。 The elastic member 114 is arranged between the side member 113 and the lower die base member 111. The elastic member 114 is formed of, for example, a compression coil spring that can be expanded and contracted up and down.
 なお、下型110D(底面部材112及び側面部材113)の上面には、離型フィルムFを吸着して保持するための吸着孔(不図示)が適宜形成される。この吸着孔を真空ポンプ等(不図示)によって負圧にすることで、離型フィルムFを吸着して保持することができる。 Note that suction holes (not shown) for sucking and holding the release film F are appropriately formed on the upper surface of the lower mold 110D (bottom member 112 and side member 113). By applying negative pressure to this suction hole using a vacuum pump or the like (not shown), the release film F can be suctioned and held.
 上型110Uは、適宜の上下幅を有するように形成される。上型110Uの底面は、凹凸のない平面状に形成される。上型110Uの底面には、離型フィルムFを吸着して保持するための吸着孔(不図示)が適宜形成される。この吸着孔を真空ポンプ等(不図示)によって負圧にすることで、離型フィルムFを吸着して保持することができる。 The upper mold 110U is formed to have an appropriate vertical width. The bottom surface of the upper mold 110U is formed into a flat surface with no irregularities. Adsorption holes (not shown) for adsorbing and holding the release film F are appropriately formed on the bottom surface of the upper mold 110U. By applying negative pressure to this suction hole using a vacuum pump or the like (not shown), the release film F can be suctioned and held.
 型締め機構120は、下型110Dを昇降させて型締め及び型開き等を行うものである。型締め機構120は、主として基台121及び駆動機構122等を具備する。 The mold clamping mechanism 120 moves the lower mold 110D up and down to perform mold clamping, mold opening, etc. The mold clamping mechanism 120 mainly includes a base 121, a drive mechanism 122, and the like.
 基台121は、成形型110等を支持するものである。基台121は、成形型110(下型110D)の下方に配置される。 The base 121 supports the mold 110 and the like. The base 121 is arranged below the mold 110 (lower mold 110D).
 駆動機構122は、下型110Dを昇降させるためのものである。駆動機構122としては、ボールねじ機構、油圧シリンダ、トグル機構等を用いることができる。駆動機構122は、基台121と下型ベース部材111との間に配置される。 The drive mechanism 122 is for raising and lowering the lower mold 110D. As the drive mechanism 122, a ball screw mechanism, a hydraulic cylinder, a toggle mechanism, etc. can be used. The drive mechanism 122 is arranged between the base 121 and the lower die base member 111.
 なお、上述の樹脂成形装置100の各部の動作は、図示せぬ制御装置によって適宜制御される。 Note that the operations of each part of the resin molding apparatus 100 described above are appropriately controlled by a control device (not shown).
<磁性楔13の製造方法>
 次に、樹脂成形品である磁性楔13の製造方法の一例について説明する。
<Method for manufacturing magnetic wedge 13>
Next, an example of a method for manufacturing the magnetic wedge 13, which is a resin molded product, will be described.
 図6に示すように、本実施形態に係る磁性楔13の製造方法は、主としてフィルム配置工程S10、搬入工程S20、型締め工程S30、樹脂成形工程S40、型開き工程S50、搬出工程S60及び樹脂層除去工程S70を含む。以下、順に説明する。 As shown in FIG. 6, the manufacturing method of the magnetic wedge 13 according to the present embodiment mainly includes a film arrangement step S10, a carrying-in step S20, a mold-clamping step S30, a resin molding step S40, a mold-opening step S50, a carrying-out step S60, and a resin It includes a layer removal step S70. Below, they will be explained in order.
 フィルム配置工程S10は、下型110D及び上型110Uに離型フィルムF(図3参照)を配置する工程である。 The film placement step S10 is a step of placing a release film F (see FIG. 3) on the lower mold 110D and the upper mold 110U.
 具体的には、フィルム配置工程S10において、所定の搬送装置によって2枚の離型フィルムFが成形型110に搬入される。2枚の離型フィルムFは、下型110Dの上面及び上型110Uの底面にそれぞれ吸着されて保持される。これによって、離型フィルムFが下型110Dの上面及び上型110Uの底面の形状に沿うように配置される。 Specifically, in the film arrangement step S10, two release films F are carried into the mold 110 by a predetermined conveyance device. The two release films F are adsorbed and held on the upper surface of the lower mold 110D and the bottom surface of the upper mold 110U, respectively. Thereby, the release film F is arranged so as to follow the shape of the upper surface of the lower mold 110D and the bottom surface of the upper mold 110U.
 なお、下型110D及び上型110Uのいずれに対しても先に離型フィルムFを配置することが可能であり、下型110D及び上型110Uの両方同時に離型フィルムFを配置することも可能である。 Note that it is possible to place the release film F on both the lower mold 110D and the upper mold 110U first, and it is also possible to place the release film F on both the lower mold 110D and the upper mold 110U at the same time. It is.
 離型フィルムFが下型110D及び上型110Uに吸着された後、フィルム配置工程S10から搬入工程S20に移行する。 After the release film F is adsorbed by the lower mold 110D and the upper mold 110U, the process moves from the film arrangement step S10 to the carrying-in step S20.
 搬入工程S20は、成形型110に樹脂材料Rを搬入する工程である。 The carrying process S20 is a process of carrying the resin material R into the mold 110.
 具体的には、搬入工程S20において、樹脂材料Rは、所定の搬送装置によって成形型110に搬入される。樹脂材料Rは、下型110D内(側面部材113の内側)に収容される。なお、樹脂材料Rとしては、固体状の粉粒体状樹脂(顆粒状樹脂含む)、液体状の液状樹脂など、各種状態の樹脂を用いることができる。また、樹脂材料Rには、鉄系や鉄シリコン系の粒状の軟磁性体粉が含有される。 Specifically, in the carrying-in step S20, the resin material R is carried into the mold 110 by a predetermined conveying device. The resin material R is accommodated within the lower mold 110D (inside the side member 113). Note that as the resin material R, resins in various states can be used, such as solid powder resin (including granular resin) and liquid resin. Further, the resin material R contains iron-based or iron-silicon-based granular soft magnetic powder.
 樹脂材料Rの搬入が完了した後、搬入工程S20から型締め工程S30に移行する。 After the import of the resin material R is completed, the process moves from the import process S20 to the mold clamping process S30.
 型締め工程S30は、成形型110(下型110D及び上型110U)を閉める(型締めする)工程である。 The mold clamping process S30 is a process of closing (clamping) the mold 110 (lower mold 110D and upper mold 110U).
 具体的には、型締め工程S30において、まず下型110Dに設けられた加熱機構(不図示)によって、キャビティC内に収容された樹脂材料Rが、固体状であれば溶融され、液体状であれば低粘度化される。次に、駆動機構122が駆動されることで、下型110Dが上型110Uに向かって上昇する。下型110Dが所定の位置まで上昇すると、側面部材113の上面が上型110Uの底面と接触し、下型110D(樹脂材料Rが収容された空間)が上型110Uによって上方から塞がれる。 Specifically, in the mold clamping step S30, first, a heating mechanism (not shown) provided in the lower mold 110D melts the resin material R accommodated in the cavity C if it is in a solid state, and melts it if it is in a liquid state. If so, the viscosity will be lowered. Next, by driving the drive mechanism 122, the lower die 110D is raised toward the upper die 110U. When the lower mold 110D rises to a predetermined position, the upper surface of the side member 113 comes into contact with the bottom surface of the upper mold 110U, and the lower mold 110D (the space in which the resin material R is accommodated) is closed from above by the upper mold 110U.
 なお、型締めを行う際には、成形型110内の空気を吸引して減圧を行うことが好ましい。これによって、樹脂材料R中の空気(気泡)を排出することができる。 Note that when clamping the mold, it is preferable to vacuum the air inside the mold 110 to reduce the pressure. Thereby, air (bubbles) in the resin material R can be discharged.
 型締めが完了した後、型締め工程S30から樹脂成形工程S40に移行する。 After the mold clamping is completed, the mold clamping process S30 proceeds to the resin molding process S40.
 樹脂成形工程S40は、樹脂材料Rを圧縮して樹脂成形を行う工程である。 The resin molding step S40 is a step in which the resin material R is compressed and resin molded.
 具体的には、樹脂成形工程S40において、駆動機構122が駆動されることで、下型110Dの底面部材112が上型110Uに向かってさらに上昇する。この際、側面部材113は上型110Uに接しているため、上昇することはない。すなわち、底面部材112は側面部材113に対して相対的に上昇する。 Specifically, in the resin molding step S40, the drive mechanism 122 is driven to further raise the bottom member 112 of the lower mold 110D toward the upper mold 110U. At this time, since the side member 113 is in contact with the upper mold 110U, it does not rise. That is, the bottom member 112 rises relative to the side member 113.
 図5に示すように、下型110Dの底面部材112の上面と、上型110Uの底面と、が直接接することがないように、底面部材112と上型110Uとの間には所定の隙間が空けられる。このようにして、上型110Uと下型110Dとの間には、樹脂材料Rを成形するための空間が確保される。隣接する2つのキャビティC(凹部112a)の間には、キャビティCの深さよりも狭い隙間G1が形成される。 As shown in FIG. 5, a predetermined gap is provided between the bottom member 112 and the upper mold 110U so that the upper surface of the bottom member 112 of the lower mold 110D and the bottom surface of the upper mold 110U do not come into direct contact. Can be vacated. In this way, a space for molding the resin material R is secured between the upper mold 110U and the lower mold 110D. A gap G1 narrower than the depth of the cavities C is formed between two adjacent cavities C (recesses 112a).
 より詳細には、隙間G1は、凹部112aによって形成されたキャビティCのうち、隙間G1と隣接する部分(隙間G1のすぐ隣の部分)の深さG2よりも狭くなるように設定されている。また隙間G1は、樹脂材料Rに含まれる磁性体粉の最大粒径よりも大きくなるように設定されている。最大粒径とは、単一の磁性体粉を投影的に見た場合において、その磁性体粉が有する径のうち最大の径を意味する。例えば、最大粒径が100μmの磁性体粉に対して、隙間G1の大きさは100μmよりも大きい値(例えば、300μm等)に設定される。 More specifically, the gap G1 is set to be narrower than the depth G2 of a portion of the cavity C formed by the recess 112a adjacent to the gap G1 (a portion immediately adjacent to the gap G1). Further, the gap G1 is set to be larger than the maximum particle size of the magnetic powder contained in the resin material R. The maximum particle size means the largest diameter among the diameters of a single magnetic powder when viewed projectively. For example, for magnetic powder having a maximum particle size of 100 μm, the size of the gap G1 is set to a value larger than 100 μm (for example, 300 μm, etc.).
 底面部材112が上昇すると、下型110Dに収容された樹脂材料Rが加圧され、樹脂成形される。この際、磁性体粉を含む樹脂材料Rは隙間G1を介してキャビティC間を流動し、上型110Uと下型110Dの間に均一に充填される。これによって、均質な製品(すなわち、磁性楔13)を製造することができる。樹脂材料Rが加圧された状態で所定時間待つことで、樹脂材料Rが硬化する。このように樹脂材料Rを成形することで、複数の凹部112a(キャビティC)によって、複数の製品(すなわち、磁性楔13)に相当する部分が一括して成形される。また、隣接する磁性楔13の間には、隣接する磁性楔13同士を接続する樹脂層14が成形される(図7参照)。樹脂層14の厚さは、磁性楔13の厚さよりも薄く形成される。なお、以下では、一体的に成形された磁性楔13及び樹脂層14を、成形品Mと称する場合がある。 When the bottom member 112 rises, the resin material R accommodated in the lower mold 110D is pressurized and resin-molded. At this time, the resin material R containing magnetic powder flows between the cavities C through the gap G1, and is evenly filled between the upper mold 110U and the lower mold 110D. Thereby, a homogeneous product (ie, magnetic wedge 13) can be manufactured. By waiting for a predetermined time while the resin material R is pressurized, the resin material R is cured. By molding the resin material R in this way, parts corresponding to a plurality of products (that is, the magnetic wedges 13) are molded at once by the plurality of recesses 112a (cavities C). Furthermore, a resin layer 14 is formed between adjacent magnetic wedges 13 to connect the adjacent magnetic wedges 13 (see FIG. 7). The thickness of the resin layer 14 is formed to be thinner than the thickness of the magnetic wedge 13. Note that, hereinafter, the magnetic wedge 13 and the resin layer 14 that are integrally molded may be referred to as a molded product M.
 樹脂材料Rが硬化した後、樹脂成形工程S40から型開き工程S50に移行する。 After the resin material R is cured, the process moves from the resin molding step S40 to the mold opening step S50.
 型開き工程S50は、成形型110(下型110D及び上型110U)を開く(型開きする)工程である。 The mold opening step S50 is a step of opening (opening) the mold 110 (lower mold 110D and upper mold 110U).
 具体的には、型開き工程S50において、駆動機構122が駆動されることで、下型110Dが上型110Uから離れるように下降する。これによって、下型110Dが上型110Uの底面から離れる。 Specifically, in the mold opening step S50, the drive mechanism 122 is driven to lower the lower mold 110D away from the upper mold 110U. This causes the lower mold 110D to separate from the bottom surface of the upper mold 110U.
 型開きが完了した後、型開き工程S50から搬出工程S60に移行する。 After the mold opening is completed, the process moves from the mold opening step S50 to the unloading step S60.
 搬出工程S60は、成形品Mを成形型110から搬出する工程である。搬出工程S60において、成形品Mは、所定の搬送装置によって成形型110から搬出される。 The unloading step S60 is a step of unloading the molded product M from the mold 110. In the unloading step S60, the molded product M is unloaded from the mold 110 by a predetermined conveyance device.
 成形品Mの搬出が完了した後、搬出工程S60から樹脂層除去工程S70に移行する。 After the molded product M is completely unloaded, the unloading step S60 proceeds to the resin layer removal step S70.
 樹脂層除去工程S70は、成形品Mから樹脂層14を除去することによって、製品部分である磁性楔13を得る工程である。樹脂層除去工程S70は、レーザ切断工程S71及び回転ブレード切断工程S72を含む。 The resin layer removal step S70 is a step in which the resin layer 14 is removed from the molded product M to obtain the magnetic wedge 13, which is a product part. The resin layer removal step S70 includes a laser cutting step S71 and a rotating blade cutting step S72.
 レーザ切断工程S71は、樹脂層14のうち、磁性楔13の先細り形状部13aと隣接する部分をレーザ加工によって除去する工程である。 The laser cutting step S71 is a step in which a portion of the resin layer 14 adjacent to the tapered portion 13a of the magnetic wedge 13 is removed by laser processing.
 具体的には、樹脂層14のうち、先細り形状部13aの傾斜部分(磁性楔13の長手方向に対して傾斜する部分)と隣接する部分が、レーザ加工によって除去される。図8(a)には、樹脂層14のうち、レーザ切断工程S71で切断される不要部分14aをハッチングで示している。 Specifically, a portion of the resin layer 14 adjacent to the inclined portion of the tapered portion 13a (the portion inclined with respect to the longitudinal direction of the magnetic wedge 13) is removed by laser processing. In FIG. 8A, unnecessary portions 14a of the resin layer 14 that are cut in the laser cutting step S71 are shown by hatching.
 レーザ切断工程S71で用いられるレーザ光としては、パルスレーザとして、レーザ光発振装置にYAGレーザやYVO4レーザ又はこれらから発せられたレーザ光を第2高調波発生(SHG:Second Harmonic Generation)材料により波長変換するグリーンレーザを利用することができる。また、走査光学系により走査することにより、レーザ光の照射領域を変化させることができる。レーザ切断工程S71で用いられるレーザ光の波長、出力、レーザ径、照射時間等は、樹脂層14の材質や樹脂層14のサイズ(切除する部分の厚さ及び大きさ等)に応じて、樹脂層14を効率良く除去できるように最適化することができる。 The laser beam used in the laser cutting step S71 is a pulsed laser, and the laser beam emitted from a YAG laser or YVO4 laser is used in a laser beam oscillator, or the laser beam emitted from these is converted into a wavelength by a second harmonic generation (SHG) material. Green lasers can be used to convert. Moreover, by scanning with a scanning optical system, the irradiation area of the laser beam can be changed. The wavelength, output, laser diameter, irradiation time, etc. of the laser beam used in the laser cutting step S71 are determined depending on the material of the resin layer 14 and the size of the resin layer 14 (thickness and size of the portion to be cut, etc.). The layer 14 can be optimized for efficient removal.
 レーザ加工によって不要部分14aが除去された後、レーザ切断工程S71から回転ブレード切断工程S72に移行する。 After the unnecessary portion 14a is removed by laser processing, the process moves from the laser cutting step S71 to the rotating blade cutting step S72.
 回転ブレード切断工程S72は、レーザ切断工程S71で除去されなかった樹脂層14を、回転ブレードを用いた切断加工によって除去する工程である。 The rotary blade cutting step S72 is a step in which the resin layer 14 not removed in the laser cutting step S71 is removed by cutting using a rotary blade.
 図8(b)には、樹脂層14のうち、回転ブレード切断工程S72で切断される不要部分14bをハッチングで示している。不要部分14bには、直線状部13bの直線部分と隣接する部分が含まれている。具体的には、回転ブレード切断工程S72において、磁性楔13の短手方向両側に形成された樹脂層14、及び、磁性楔13の長手方向両側に形成された樹脂層14が、回転ブレードによって切断されて除去される。 In FIG. 8(b), unnecessary portions 14b of the resin layer 14 that are cut in the rotary blade cutting step S72 are shown by hatching. The unnecessary portion 14b includes a portion adjacent to the straight portion of the straight portion 13b. Specifically, in the rotating blade cutting step S72, the resin layers 14 formed on both sides of the magnetic wedge 13 in the lateral direction and the resin layers 14 formed on both sides of the magnetic wedge 13 in the longitudinal direction are cut by the rotating blade. removed.
 回転ブレード切断工程S72で用いられる回転ブレードとしては、種々の樹脂成形品(例えば、半導体チップが装着された基板を樹脂封止した封止済基板等)を切断するための回転ブレード(スピンドル)を用いることができる。 The rotary blade used in the rotary blade cutting step S72 includes a rotary blade (spindle) for cutting various resin molded products (for example, a sealed board in which a board on which a semiconductor chip is mounted is sealed with resin). Can be used.
 レーザ切断工程S71及び回転ブレード切断工程S72によって樹脂層14を除去することによって、成形品Mを複数の磁性楔13に個片化することができる。 By removing the resin layer 14 through the laser cutting step S71 and the rotary blade cutting step S72, the molded product M can be separated into a plurality of magnetic wedges 13.
 このようにして、本実施形態では、一度の圧縮成形によって複数の磁性楔13を製造することができる。なお必要に応じて、樹脂層除去工程S70の後に、磁性楔13の後処理(バリの除去、清掃等)を行う工程を実施することも可能である。 In this way, in this embodiment, a plurality of magnetic wedges 13 can be manufactured by one compression molding. Note that, if necessary, it is also possible to perform a step of post-processing the magnetic wedge 13 (removal of burrs, cleaning, etc.) after the resin layer removal step S70.
 以上の如く、本実施形態に係る磁性楔13の製造方法は、互いに対向する上型110U及び下型110Dの少なくとも一方に形成された複数のキャビティC、及び、複数の前記キャビティCの間かつ前記上型110Uと前記下型110Dとの間に形成されて前記キャビティCの隣接部分の深さよりも狭い隙間G1に、磁性体粉を含有する樹脂材料Rが充填された状態で、複数の製品(磁性楔13)を一括成形するように、圧縮成形により樹脂成形する樹脂成形工程S40と、前記隙間G1での樹脂成形により形成された樹脂層14を除去する樹脂層除去工程S70と、を含むものである。
 このように構成することにより、磁性楔13の生産性を高めることができる。すなわち、圧縮成形によって複数の磁性楔13を樹脂成形することができるため、磁性楔13の生産性を高めることができる。また、樹脂材料Rが、隙間G1を介してキャビティC間を流動可能であるため、均質な磁性楔13を製造することができる。また、キャビティC間(隙間G1)において成形された樹脂層14は比較的薄いため、樹脂層除去工程S70において容易に除去することができる。また、圧縮成形法を採用することで、他の樹脂成形法(例えば、トランスファ成形法等)と比較して、設備のコンパクト化を図ることができる。また、他の樹脂成形法と比較して、樹脂成形時に生じる廃棄部分の削減(歩留まりの向上)を図ることができる。
As described above, the method for manufacturing the magnetic wedge 13 according to the present embodiment includes a plurality of cavities C formed in at least one of the upper mold 110U and the lower mold 110D facing each other, and between the plurality of cavities C and the A plurality of products ( The method includes a resin molding step S40 of performing resin molding by compression molding so as to collectively mold the magnetic wedge 13), and a resin layer removing step S70 of removing the resin layer 14 formed by resin molding in the gap G1. .
With this configuration, the productivity of the magnetic wedge 13 can be increased. That is, since the plurality of magnetic wedges 13 can be resin-molded by compression molding, the productivity of the magnetic wedges 13 can be improved. Moreover, since the resin material R can flow between the cavities C via the gap G1, a homogeneous magnetic wedge 13 can be manufactured. Further, since the resin layer 14 formed between the cavities C (gap G1) is relatively thin, it can be easily removed in the resin layer removal step S70. Moreover, by employing the compression molding method, equipment can be made more compact compared to other resin molding methods (for example, transfer molding, etc.). Furthermore, compared to other resin molding methods, it is possible to reduce the amount of waste generated during resin molding (improve yield).
 また、前記隙間G1の間隔は、前記樹脂材料Rに含まれる前記磁性体粉の最大粒径よりも大きいものである。
 このように構成することにより、樹脂材料Rが、隙間G1を介してキャビティC間を流動し易くなるため、均質な磁性楔13を製造することができる。
Further, the distance between the gaps G1 is larger than the maximum particle size of the magnetic powder contained in the resin material R.
With this configuration, the resin material R can easily flow between the cavities C through the gap G1, so that a homogeneous magnetic wedge 13 can be manufactured.
 また、前記磁性楔13には、長手方向一端側に向かって先細り形状に形成された先細り形状部13aが形成され、前記樹脂層除去工程S70では、前記先細り形状部13aと隣接する前記樹脂層14をレーザ加工によって除去するものである。
 このように構成することにより、樹脂層14を除去した部分のバリの発生を抑制することができる。また、回転ブレードでは切断し難い先細り形状部13aを、比較的容易にかつ精密に切断することができる。
Further, a tapered portion 13a is formed in the magnetic wedge 13 in a tapered shape toward one end in the longitudinal direction, and in the resin layer removal step S70, the resin layer 13 adjacent to the tapered portion 13a is is removed by laser processing.
With this configuration, it is possible to suppress the occurrence of burrs in the portion where the resin layer 14 has been removed. Further, the tapered portion 13a, which is difficult to cut with a rotating blade, can be cut relatively easily and precisely.
 また、前記磁性楔13には、長手方向に平行な直線状に形成された直線状部13bが形成され、前記樹脂層除去工程S70では、前記直線状部13bと隣接する前記樹脂層14を回転ブレードを用いた切断加工によって除去するものである。
 このように構成することにより、樹脂層14を低コストで容易に除去することができる。
Further, a linear portion 13b is formed in the magnetic wedge 13 in a straight line parallel to the longitudinal direction, and in the resin layer removal step S70, the resin layer 14 adjacent to the linear portion 13b is rotated. It is removed by cutting using a blade.
With this configuration, the resin layer 14 can be easily removed at low cost.
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲に記載された発明の技術的思想の範囲内で適宜の変更が可能である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and appropriate changes can be made within the scope of the technical idea of the invention described in the claims. .
 例えば、本実施形態では、磁性楔13の長手方向の一端部にのみ先細り形状部13aを形成した例を示したが、本発明はこれに限るものではない。例えば、磁性楔13の長手方向両端部にそれぞれ先細り形状部13aを形成することも可能である。その他にも、磁性楔13の形状は任意に変更することが可能である。 For example, in the present embodiment, an example is shown in which the tapered portion 13a is formed only at one end in the longitudinal direction of the magnetic wedge 13, but the present invention is not limited to this. For example, it is also possible to form tapered portions 13a at both longitudinal ends of the magnetic wedge 13, respectively. In addition, the shape of the magnetic wedge 13 can be changed arbitrarily.
 また、本実施形態では、複数の凹部112aが底面部材112の上面に前後方向及び左右方向に整列された状態で形成された例(図4参照)を示したが、凹部112aの形成箇所(整列方法)や個数は任意に変更することが可能である。 Further, in this embodiment, an example is shown in which a plurality of recesses 112a are formed on the upper surface of the bottom member 112 in a state in which they are aligned in the front-back direction and the left-right direction (see FIG. 4). method) and number can be changed arbitrarily.
 また、本実施形態では、底面部材112に形成された凹部112aと上型110Uの底面(平面部分)とによってキャビティCが規定される例を示したが、キャビティCの規定方法はこれに限るものではなく、任意に変更することが可能である。例えば図9に示すように、上型110Uの底面にも磁性楔13に対応する凹部110aを形成し、凹部112a及び凹部110aによってキャビティCを規定することも可能である。また、凹部112a及び凹部110aの形状は、製品の形状に応じて任意に変更することが可能である。 Further, in this embodiment, an example is shown in which the cavity C is defined by the recess 112a formed in the bottom member 112 and the bottom surface (plane portion) of the upper mold 110U, but the method for defining the cavity C is not limited to this. It is not possible to change it arbitrarily. For example, as shown in FIG. 9, it is also possible to form a recess 110a corresponding to the magnetic wedge 13 on the bottom surface of the upper die 110U, and define a cavity C by the recess 112a and the recess 110a. Furthermore, the shapes of the recesses 112a and 110a can be arbitrarily changed depending on the shape of the product.
 また、本実施形態では、隙間G1(図5参照)は、樹脂材料Rに含まれる磁性体粉の最大粒径よりも大きくなるように設定されるものとしたが、隙間G1の設定は任意に変更することが可能である。例えば隙間G1の大きさを、磁性体粉の最大粒径の2倍以上、3倍以上等に設定することも可能である。また、隙間G1の大きさを、磁性体粉の平均粒径を基準として設定することも可能である。例えば隙間G1の大きさを、磁性体粉の平均粒径の2倍以上、3倍以上等に設定することも可能である。 Further, in this embodiment, the gap G1 (see FIG. 5) is set to be larger than the maximum particle size of the magnetic powder contained in the resin material R, but the gap G1 can be set arbitrarily. It is possible to change. For example, it is also possible to set the size of the gap G1 to be twice or more, three times or more the maximum particle diameter of the magnetic powder. It is also possible to set the size of the gap G1 based on the average particle size of the magnetic powder. For example, it is also possible to set the size of the gap G1 to be twice or more, three times or more the average particle diameter of the magnetic powder.
 また、本実施形態では、下型110D及び上型110Uに離型フィルムFを配置した後に樹脂材料Rを搬入する例(図6参照)を示したが、下型110Dに配置する離型フィルムF上に樹脂材料Rを配置してから、樹脂材料Rと共に離型フィルムFを下型110Dに配置することも可能である。この場合、下型110Dに配置された後に、上方に樹脂材料Rが配置された状態の離型フィルムFを吸着することが可能である。また、下型110Dに離型フィルムFを配置した後に上型110Uに離型フィルムFを配置することも、上型110Uに離型フィルムFを配置した後に下型110Dに離型フィルムFを配置することも、下型110D及び上型110Uに同時に離型フィルムFを配置することも可能である。 Further, in this embodiment, an example was shown in which the resin material R is carried in after placing the release film F on the lower mold 110D and the upper mold 110U (see FIG. 6), but the release film F placed on the lower mold 110D is It is also possible to place the resin material R on top and then place the release film F together with the resin material R on the lower mold 110D. In this case, after being placed on the lower mold 110D, it is possible to adsorb the release film F with the resin material R placed above. Alternatively, the release film F may be placed on the upper mold 110U after the release film F is placed on the lower mold 110D, or the release film F may be placed on the lower mold 110D after the release film F is placed on the upper mold 110U. It is also possible to arrange the release film F on the lower mold 110D and the upper mold 110U at the same time.
 また、本実施形態では、樹脂層除去工程S70において、レーザ加工及び回転ブレードを用いた切断加工によって樹脂層14を除去する例を示したが、本発明はこれに限定するものではない。例えば、レーザ加工のみによって樹脂層14を除去することや、回転ブレードを用いた切断加工のみによって樹脂層14を除去することも可能である。また、抜き型を用いたプレス加工によって樹脂層14を除去することも可能である。また、製品部分(磁性楔13)を保持し、樹脂層14部分で折り曲げて樹脂層14の境界部分を折った後で、適宜の器具(スクレーパ等)によって磁性楔13の表面を削って樹脂層14を除去する仕上げ加工を施すことも可能である。このように、樹脂層14の除去方法としては、各種の加工方法を用いることが可能であり、また、複数の加工方法を組み合わせて適用することも可能である。 Furthermore, in the present embodiment, an example is shown in which the resin layer 14 is removed by laser processing and cutting using a rotating blade in the resin layer removal step S70, but the present invention is not limited to this. For example, it is also possible to remove the resin layer 14 only by laser processing or only by cutting using a rotating blade. It is also possible to remove the resin layer 14 by press working using a cutting die. Further, after holding the product part (magnetic wedge 13) and bending it at the resin layer 14 part to break the boundary part of the resin layer 14, scrape the surface of the magnetic wedge 13 with an appropriate tool (such as a scraper) to make the resin layer. It is also possible to perform a finishing process to remove 14. In this way, various processing methods can be used to remove the resin layer 14, and it is also possible to apply a combination of a plurality of processing methods.
 以下では、樹脂層除去工程S70の一変形例を具体的に説明する。 Hereinafter, a modified example of the resin layer removal step S70 will be specifically described.
 本変形例に係る樹脂層除去工程S70では、不要部分14b(図8(b)参照)を除去する場合に、まずレーザ加工によって樹脂層14に溝14cが形成される(図10(a)参照)。例えば溝14cは、磁性楔13の直線状部13bと隣接する樹脂層14に、磁性楔13の長手方向と平行に延びるように形成される。溝14cを形成することによって、樹脂層14の厚さがさらに薄くなる。 In the resin layer removal step S70 according to this modification, when removing the unnecessary portion 14b (see FIG. 8(b)), grooves 14c are first formed in the resin layer 14 by laser processing (see FIG. 10(a)). ). For example, the groove 14c is formed in the resin layer 14 adjacent to the linear portion 13b of the magnetic wedge 13 so as to extend parallel to the longitudinal direction of the magnetic wedge 13. By forming the grooves 14c, the thickness of the resin layer 14 is further reduced.
 次に、溝14cの両側に位置する製品部分(磁性楔13)を保持し、溝14cに沿って折り曲げる。これによって、樹脂層14のうち、厚さが薄い溝14c部分に応力が集中し、溝14cに沿って磁性楔13を折り取ることができる(図10(b)参照)。この際、不要な樹脂層14が磁性楔13に残っている場合には、適宜の器具(スクレーパ等)によって磁性楔13の表面を削って樹脂層14を除去する仕上げ加工を施すことも可能である。またレーザ光の出力等を調整することで、折り取った磁性楔13に樹脂層14が残留しないように調整することも可能である。このように構成すれば、仕上げ加工が不要となり、磁性楔13の生産性をさらに向上させることができる。 Next, the product parts (magnetic wedges 13) located on both sides of the groove 14c are held and bent along the groove 14c. As a result, stress is concentrated in the thin groove 14c portion of the resin layer 14, and the magnetic wedge 13 can be broken off along the groove 14c (see FIG. 10(b)). At this time, if unnecessary resin layer 14 remains on magnetic wedge 13, it is also possible to perform a finishing process to remove resin layer 14 by scraping the surface of magnetic wedge 13 with an appropriate tool (such as a scraper). be. Further, by adjusting the output of the laser beam, etc., it is also possible to make adjustments so that the resin layer 14 does not remain on the broken-off magnetic wedge 13. With this configuration, finishing processing becomes unnecessary, and the productivity of the magnetic wedge 13 can be further improved.
 以上の如く、本変形例に係る磁性楔13の製造方法において、前記磁性楔13には、長手方向に平行な直線状に形成された直線状部13bが形成され、前記樹脂層除去工程S70では、前記直線状部13bに隣接する前記樹脂層14にレーザ加工によって溝14cを形成し、前記溝14cに沿って前記樹脂層14を折ることで、前記樹脂層14を除去するものである。
 このように構成することにより、比較的容易に樹脂層14を除去することができ、磁性楔13の生産性を高めることができる。
As described above, in the method for manufacturing the magnetic wedge 13 according to the present modification, the magnetic wedge 13 is formed with the linear portion 13b that is formed in a straight line parallel to the longitudinal direction, and in the resin layer removal step S70. , a groove 14c is formed in the resin layer 14 adjacent to the linear portion 13b by laser processing, and the resin layer 14 is removed by folding the resin layer 14 along the groove 14c.
With this configuration, the resin layer 14 can be removed relatively easily, and the productivity of the magnetic wedge 13 can be improved.
 13   磁性楔
 13a  先細り形状部
 13b  直線状部
 14   樹脂層
 14c  溝
 110U 上型
 110D 下型
13 Magnetic wedge 13a Tapered portion 13b Straight portion 14 Resin layer 14c Groove 110U Upper mold 110D Lower mold

Claims (5)

  1.  互いに対向する上型及び下型の少なくとも一方に形成された複数のキャビティ、及び、複数の前記キャビティの間かつ前記上型と前記下型との間に形成されて前記キャビティの隣接部分の深さよりも狭い隙間に、磁性体粉を含有する樹脂材料が充填された状態で、複数の製品を一括成形するように、圧縮成形により樹脂成形する樹脂成形工程と、
     前記隙間での樹脂成形により形成された樹脂層を除去する樹脂層除去工程と、
     を含む磁性楔の製造方法。
    a plurality of cavities formed in at least one of an upper mold and a lower mold facing each other; and a plurality of cavities formed between the plurality of cavities and between the upper mold and the lower mold, the depth of which is deeper than the adjacent portions of the cavities; A resin molding process in which resin material containing magnetic powder is filled into a narrow gap and resin is molded by compression molding so as to mold multiple products at once;
    a resin layer removing step of removing a resin layer formed by resin molding in the gap;
    A method of manufacturing a magnetic wedge, including:
  2.  前記隙間の間隔は、前記樹脂材料に含まれる前記磁性体粉の最大粒径よりも大きい、
     請求項1に記載の磁性楔の製造方法。
    The interval between the gaps is larger than the maximum particle size of the magnetic powder contained in the resin material.
    A method for manufacturing a magnetic wedge according to claim 1.
  3.  前記磁性楔には、長手方向一端側に向かって先細り形状に形成された先細り形状部が形成され、
     前記樹脂層除去工程では、前記先細り形状部と隣接する前記樹脂層をレーザ加工によって除去する、
     請求項1又は請求項2に記載の磁性楔の製造方法。
    The magnetic wedge is formed with a tapered portion that is tapered toward one end in the longitudinal direction,
    In the resin layer removal step, the resin layer adjacent to the tapered portion is removed by laser processing.
    A method for manufacturing a magnetic wedge according to claim 1 or 2.
  4.  前記磁性楔には、長手方向に平行な直線状に形成された直線状部が形成され、
     前記樹脂層除去工程では、前記直線状部と隣接する前記樹脂層を回転ブレードを用いた切断加工によって除去する、
     請求項1から請求項3までのいずれか一項に記載の磁性楔の製造方法。
    The magnetic wedge has a linear portion formed in a straight line parallel to the longitudinal direction,
    In the resin layer removal step, the resin layer adjacent to the linear portion is removed by cutting using a rotating blade.
    A method for manufacturing a magnetic wedge according to any one of claims 1 to 3.
  5.  前記磁性楔には、長手方向に平行な直線状に形成された直線状部が形成され、
     前記樹脂層除去工程では、前記直線状部に隣接する前記樹脂層にレーザ加工によって溝を形成し、前記溝に沿って前記樹脂層を折ることで、前記樹脂層を除去する、
     請求項1から請求項3までのいずれか一項に記載の磁性楔の製造方法。
    The magnetic wedge has a linear portion formed in a straight line parallel to the longitudinal direction,
    In the resin layer removal step, a groove is formed in the resin layer adjacent to the linear part by laser processing, and the resin layer is removed by folding the resin layer along the groove.
    A method for manufacturing a magnetic wedge according to any one of claims 1 to 3.
PCT/JP2022/048074 2022-03-10 2022-12-27 Method for manufacturing magnetic wedge WO2023171093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022037283A JP2023132127A (en) 2022-03-10 2022-03-10 Method for manufacturing magnetic wedge
JP2022-037283 2022-03-10

Publications (1)

Publication Number Publication Date
WO2023171093A1 true WO2023171093A1 (en) 2023-09-14

Family

ID=87936629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048074 WO2023171093A1 (en) 2022-03-10 2022-12-27 Method for manufacturing magnetic wedge

Country Status (3)

Country Link
JP (1) JP2023132127A (en)
TW (1) TW202335826A (en)
WO (1) WO2023171093A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116852U (en) * 1980-02-01 1981-09-07
JPH07227053A (en) * 1994-02-08 1995-08-22 Toshiba Corp Magnetic wedge for rotary electric machine and its manufacture
JPH11163193A (en) * 1997-11-25 1999-06-18 Kyocera Corp Manufacture of electronic component mounting package
JP2003209198A (en) * 2001-11-09 2003-07-25 Nippon Sheet Glass Co Ltd Electronic component package
JP2007214475A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Heat disspating light-emitting component and method of manufacturing same
JP2015537188A (en) * 2012-09-26 2015-12-24 オムニラーダー ベスローテン・ヴェンノーツハップOmniradarbv High frequency module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116852U (en) * 1980-02-01 1981-09-07
JPH07227053A (en) * 1994-02-08 1995-08-22 Toshiba Corp Magnetic wedge for rotary electric machine and its manufacture
JPH11163193A (en) * 1997-11-25 1999-06-18 Kyocera Corp Manufacture of electronic component mounting package
JP2003209198A (en) * 2001-11-09 2003-07-25 Nippon Sheet Glass Co Ltd Electronic component package
JP2007214475A (en) * 2006-02-13 2007-08-23 Matsushita Electric Ind Co Ltd Heat disspating light-emitting component and method of manufacturing same
JP2015537188A (en) * 2012-09-26 2015-12-24 オムニラーダー ベスローテン・ヴェンノーツハップOmniradarbv High frequency module

Also Published As

Publication number Publication date
TW202335826A (en) 2023-09-16
JP2023132127A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP6533635B1 (en) Rotor core holding jig, manufacturing apparatus and manufacturing method of magnet embedded type core
KR101913979B1 (en) Method for manufacturing three-dimensionally shaped molding
KR20180111912A (en) Method for manufacturing three dimensional shaped sculpture
KR102099574B1 (en) Manufacturing method of 3D shape sculpture and 3D shape sculpture
JP2007204828A (en) Surface finishing method for three-dimensional stacked shaped article
JP2006211865A (en) Device and method for manufacturing laminated core of rotor
WO2023171093A1 (en) Method for manufacturing magnetic wedge
JP4451338B2 (en) Resin sealing mold, resin sealing device using the same, and resin sealing method
CN107134359B (en) The processing method of sintered NdFeB
KR102127648B1 (en) Method of manufacturing salt core
KR100909117B1 (en) Method and apparatus for removing a carrier part from a carrier, and a aproduct removed from a carrier
JPWO2006129343A1 (en) Semiconductor device manufacturing apparatus and semiconductor device manufacturing method
JP2000234103A (en) Manufacture of mold by optical molding
US20050141172A1 (en) Method for making solid electrolytic capacitor
JP2007077443A (en) Method for manufacturing three-dimensional structure
JP3304520B2 (en) Mold mold and method of manufacturing the same
WO2024047916A1 (en) Resin sealing device and resin sealing method
CN211138254U (en) Graphite alkene board forming die
JP2022173612A (en) Method for producing resin molding, molding die and resin molding device
JP2005059296A (en) Resin sealing mold
KR100533756B1 (en) Mold for semiconductor package
JP2022029018A (en) Sand cutter device
CN116169123A (en) Manufacturing device for mask plate high-precision alignment chip gate electrode graph table top glue protection layer
JP2013089668A (en) Resin sealing apparatus
JPH0579204B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931063

Country of ref document: EP

Kind code of ref document: A1