WO2023171043A1 - Transfer device and computer-readable storage medium - Google Patents

Transfer device and computer-readable storage medium Download PDF

Info

Publication number
WO2023171043A1
WO2023171043A1 PCT/JP2022/042179 JP2022042179W WO2023171043A1 WO 2023171043 A1 WO2023171043 A1 WO 2023171043A1 JP 2022042179 W JP2022042179 W JP 2022042179W WO 2023171043 A1 WO2023171043 A1 WO 2023171043A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
identifier
transfer device
transfer
address
Prior art date
Application number
PCT/JP2022/042179
Other languages
French (fr)
Japanese (ja)
Inventor
一暁 植田
敦士 田上
Original Assignee
Kddi株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kddi株式会社 filed Critical Kddi株式会社
Publication of WO2023171043A1 publication Critical patent/WO2023171043A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/12Reselecting a serving backbone network switching or routing node

Definitions

  • the present disclosure relates to techniques for continuing communication in an edge computing environment.
  • Non-Patent Document 1 discloses MEC (Multi-Access Edge Computing) in which many small-scale data centers are geographically distributed to provide services.
  • MEC Multi-Access Edge Computing
  • the MEC data center will be referred to as the MEC site.
  • Each MEC site is associated with a geographic area.
  • an area associated with one MEC site may be an area served by one or more base stations.
  • a wireless device (WD) of a mobile communication network is served by equipment at a MEC site associated with the area in which the WD is currently located.
  • a communication device obtains the IP address of the communication partner from DNS when starting communication. Therefore, when a WD connects to a MEC site, the DNS must inform the WD of the IP address of the device in the MEC site that is associated with the area in which the WD is currently located. To achieve this, the IP address acquisition process must be changed so that the WD notifies the DNS of location information indicating its location, and the DNS determines the IP address to be notified to the WD based on the location information. .
  • Non-Patent Document 2 discloses a technology called IP Anycast (hereinafter referred to as Anycast method).
  • Anycast method the same IP address (hereinafter referred to as a common address) is assigned to devices at all MEC sites that provide the same service. Therefore, when receiving services provided by devices at the MEC site, the WD will obtain a common address from the DNS regardless of its location. When the WD obtains the common address from the DNS, it transmits an IP packet with the common address set as the destination address. When the mobile communication network receives an IP packet with the common address set as the destination address, it forwards the IP packet to the MEC site associated with the area where the WD is currently located.
  • the mobile communication network forwards the IP packet to the MEC site associated with the base station to which the WD is currently connected.
  • a connection such as a TCP connection is established between the WD and a device within the MEC site, the WD and the device within the MEC site thereafter communicate using the established connection.
  • the WD moves to a second area associated with the second MEC site.
  • the IP packet sent by the WD is sent to the device within the second MEC site. Since the device within the second MEC site does not have a connection with the WD, it discards the IP packet received from the WD. Therefore, service provision to the WD is stopped.
  • the present disclosure provides technology that allows wireless devices to continue providing service even when they move to areas associated with different MEC sites.
  • the method is used in a network that forwards a first packet destined for a common address transmitted by the wireless device to one of a plurality of forwarding devices according to the location of the wireless device.
  • the transfer device includes a holding unit that holds a first identifier, and upon receiving the first packet from the network, determines whether a second identifier included in the first packet matches the first identifier, and If the second identifier matches the first identifier, the first packet is transferred to one of the one or more server devices associated with the transfer device, and the second identifier is and a transfer means for transferring a first encapsulated packet in which the first packet is stored in a payload to another transfer device to which the second identifier is assigned, if the first identifier does not match the first identifier.
  • FIG. 1 is a system configuration diagram according to an embodiment.
  • FIG. 2 is a sequence diagram according to one embodiment.
  • FIG. 2 is a sequence diagram according to one embodiment.
  • FIG. 3 is a diagram illustrating transfer information according to one embodiment.
  • FIG. 1 is a configuration diagram of a transfer device according to an embodiment.
  • FIG. 3 is a diagram showing determination information according to an embodiment.
  • FIG. 2 is a sequence diagram according to one embodiment.
  • FIG. 1 shows the system configuration according to this embodiment.
  • the MEC site 1 includes a transfer device 2 and a plurality of server devices 3.
  • the number of MEC sites 1 is any number greater than or equal to 2, and they are located at various geographical locations.
  • MEC site #1 and MEC site #2 when two MEC sites 1 are to be distinguished, they will be referred to as MEC site #1 and MEC site #2.
  • the number of server devices 3 located at each MEC site 1 is two, but the number of server devices 3 located at each MEC site 1 may be any number greater than or equal to one.
  • transfer devices #1 and #2 as shown in FIG.
  • a site identifier is assigned to each MEC site 1.
  • the site identifier of MEC site #1 is ID#1
  • the site identifier of MEC site #2 is ID#2.
  • the site identifier is also the device identifier of the transfer device 2 at the same MEC site.
  • the site identifier is set for all devices (transfer device 2 and server device 3) in the same MEC site 1.
  • the server device 3 to which the same site identifier as the site identifier set to the transfer device 2 is set is the server device 3 associated with the transfer device 2.
  • a server identifier is assigned to each server device 3.
  • the server identifiers of server devices #1-1, #1-2, #2-1 and #2-2 are SID #1-1, #1-2, #2-1 and #2, respectively. It is 2-2.
  • the server identifier of the associated server device 3 is set in the transfer device 2.
  • a common address AD#C is assigned to the transfer device 2 of each MEC site 1.
  • each transfer device 2 is assigned a unique address, which is a unique address.
  • the unique address of transfer device #1 is AD#1
  • the unique address of transfer device #2 is AD#2.
  • Transfer device 2 is connected to network 4 . Further, the transfer device 2 is connected to the server device 3 within the same MEC site 1. Note that each server device 3 is also assigned a unique address. The unique address assigned to each server device 3 may be a private address.
  • the WD 5 accesses the MEC site 1 via a base station (not shown) of the mobile communication network and the network 4, and receives service from the server device 3 within the MEC site 1.
  • the DNS (not shown) is configured to notify the common address AD#C to the WD 5 regardless of the location of the WD 5.
  • a packet transmitted by the WD 5 toward the MEC site 1, that is, a packet in which the common address AD#C is set as the destination address will be referred to as an "MEC packet.”
  • the network 4 changes the destination of the MEC packet depending on the location of the WD 5. In this embodiment, if WD5 is in area #1, the MEC packet is transferred to MEC site #1, and if WD5 is in area #2, the MEC packet is transferred to MEC site #2. .
  • FIG. 2 is a sequence diagram when the WD 5 starts accessing the MEC site 1. Note that it is assumed that WD5 is in area #1.
  • the WD 5 Upon acquiring the common address AD#C from the DNS, the WD 5 transmits an MEC packet (request MEC packet) for requesting a connection in S10.
  • the request MEC packet is transferred to transfer device #1 of MEC site #1.
  • transfer device #1 selects one of server devices #1-1 and #1-2 and transfers the request MEC packet to the selected server device 3.
  • the transfer device 2 has a normal NAT function, and converts the common address AD#C set as the destination address of the request MEC packet to the unique address of the selected server device 3.
  • transfer device #1 has selected server device #1-1. Therefore, transfer device #1 transmits a request MEC packet to server device #1-1 in S11.
  • server device #1-1 Upon receiving the request MEC packet, server device #1-1 sets a connection identifier for the connection to be established.
  • the connection identifier is the site identifier ID#1 of the MEC site #1 where the server device #1-1 to set up the connection is installed, and the server identifier SID #1-1 of the server device #1-1. Contains the concatenated value.
  • the connection identifier can be a value obtained by concatenating the site identifier ID#1 of the MEC site #1, the server identifier SID#1-1 of the server device #1-1, and a random number in a predetermined order.
  • server device #1-1 transmits a response packet, which includes a connection identifier and is a packet indicating a response to the request MEC packet, to transfer device #1 in S12.
  • the address of the WD5 which is the source address of the request MEC packet, is set as the destination address of the response packet.
  • the transfer device #1 Upon receiving the response packet from the server device #1-1, the transfer device #1 transmits the received response packet to the WD 5 via the network 4 in S13. After the connection between the WD 5 and the server device #1-1 is established, a connection identifier is set in all packets sent and received between the WD 5 and the server device #1-1.
  • the WD 5 transmits an MEC packet including data (data MEC packet) in S14.
  • Transfer device #1 which has received the data MEC packet, determines that the transfer destination server device 3 is server device #1-1 based on the connection identifier (including the server identifier) included in the data MEC packet. Therefore, transfer device #1 transmits the data MEC packet to server device #1-1 in S15.
  • server device #1-1 transmits a data packet, which is a packet containing data, to WD5.
  • the transfer device #1 receives the data packet from the server device #1-1, it transfers it to the WD 5 (S17).
  • FIG. 3 is a sequence diagram when the WD 5 moves to area #2 while continuing communication with server device #1-1. Since WD5 has entered area #2, the data MEC packet transmitted in S20 is transferred to transfer device #2 of MEC site #2. Based on the connection identifier included in the received data MEC packet, the transfer device #2 determines in S21 whether the data MEC packet is destined for its own site. In this example, the site identifier included in the connection identifier is ID#1, which does not match the site identifier ID#2 of MEC site #2 where transfer device #2 is installed, so transfer device #2 receives the It is determined that the data MEC packet is not destined for the own site.
  • transfer device #2 transfers the received data MEC packet to transfer device 2 (transfer device #1 in this example) of MEC site 1 (in this example, MEC site #1) which is the original destination.
  • transfer device #2 generates a new packet, stores the received data MEC packet in the payload of the generated packet, and transmits it to transfer destination transfer device 2 in S22.
  • a packet that encapsulates another packet will be referred to as an encapsulated packet.
  • each transfer device 2 uses the site identifier of the other MEC site 1 and the transfer device 2 installed at the MEC site 1 to which the site identifier is assigned.
  • FIG. 4 shows an example of transfer information held by transfer device #2. Based on the transfer information and the site identifier ID#1 included in the received data MEC packet, the transfer device #2 sets the unique address AD#1 of the transfer device #1 as the destination address of the encapsulated packet and transfers it to the network. Send to 4.
  • the transfer device #1 Upon receiving the encapsulated packet containing the data MEC packet in the payload, the transfer device #1 extracts the data MEC packet stored in the payload. Then, in S23, transfer device #1 converts the source address of the data MEC packet, that is, the address of WD5, to the source address of the encapsulated packet, that is, the unique address of transfer device #2 in this example. Register it in the return information in association with #2. Furthermore, based on the server identifier SID#1-1 included in the retrieved data MEC packet, the transfer device #1 transmits the data MEC packet to the server device #1-1 in S24.
  • server device #1-1 transmits a data packet destined for WD5 to transfer device #1.
  • transfer device #1 determines in S26 whether the destination address of the data packet is registered in the return information. If not registered, transfer device #1 transmits the received data packet to network 4. On the other hand, if registered, the transfer device #1 encapsulates the received data packet and transmits it to the transfer device 2 associated with the destination address of the data packet in the return information. In this example, since the IP address of the WD5 is registered in the return information and associated with the unique address AD#2 of the transfer device #2, the transfer device #1 encapsulates the data packet in S27 and transfers the data packet to the transfer device #2. Send to 2. Upon receiving the encapsulated packet containing the data packet, the transfer device #2 extracts the data packet and transmits the data packet to the WD 5 in S28 based on the destination address of the data packet.
  • FIG. 5 is a configuration diagram of the transfer device 2.
  • Communication interface 20 is connected to network 4 .
  • the connection interface 21 is connected to the server device 3.
  • the transfer unit 22 has determination information and determines processing for the received packet based on the determination information.
  • FIG. 6 shows determination information held by transfer device #k installed at MEC site #k. Note that the site identifier of MEC site #k is ID#k, and the unique address of transfer device #k is AD#k. Note that, as described above, the site identifier ID#k can also be regarded as the device identifier of the transfer device #k.
  • the transfer unit 22 when the transfer unit 22 receives a packet whose destination address is the common address AD#C and has no connection identifier (no site identifier), it determines to transmit the packet to the server device 3 in the MEC site #k. do. Note that when a plurality of server devices 3 are installed at the MEC site #k, the transfer device #k selects which server device 3 to send to by an arbitrary method. In this case, the transfer unit 22 outputs the packet to the connection interface 21 together with information indicating the destination server device 3 . Note that this process corresponds to S10 and S11 in FIG.
  • the transfer unit 22 When the transfer unit 22 receives a packet in which the destination address is the common address AD#C and the site identifier in the connection identifier is ID#k, the transfer unit 22 transfers the packet to the MEC site #k indicated by the server identifier in the connection identifier. It is determined that the data is to be transmitted to the server device 3 of. In this case, the transfer unit 22 outputs the packet to the connection interface 21 along with information indicating the destination server device 3 . Note that this process corresponds to S14 and S15 in FIG.
  • the transfer unit 22 determines to encapsulate the packet and transmit it to the network 4. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to encapsulate the received packet. That is, the encapsulation processing unit 23 is caused to generate an encapsulated packet.
  • a packet stored in the payload of an encapsulated packet will be referred to as an encapsulated packet.
  • the transfer unit 22 determines the value to be set as the destination address of the encapsulated packet by referring to the transfer information using the site identifier.
  • the transfer unit 22 transmits the encapsulated packet to the communication interface 20. Note that this process corresponds to S20 to S22 in FIG.
  • the transfer unit 22 When the transfer unit 22 receives an encapsulated packet whose destination address is the unique address AD#k, it determines that the encapsulated packet is to be decapsulated. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to decapsulate the received encapsulated packet. That is, the encapsulation processing unit 23 is caused to take out the encapsulated packet stored in the payload of the encapsulated packet. Subsequently, processing for the encapsulated packet is determined again based on the determination information. This process corresponds to the processes of S22 to S24 and S27 and S28 in FIG. Note that, as shown in S23 in FIG.
  • the transfer unit 22 determines the correspondence between the source address of the encapsulated packet and the source address of the encapsulated packet. to be registered in the return information. Note that when receiving a packet whose destination address is the unique address AD#k but which is not an encapsulated packet, the transfer unit 22 performs normal packet processing.
  • the transfer unit 22 When the transfer unit 22 receives a packet whose destination address is different from the common address AD#C and the unique address AD#k and which is not registered in the return information, the transfer unit 22 transmits the destination address of the packet to the packet. Perform normal transfer processing according to . In this case, the transfer unit 22 transmits the received packet to the interface corresponding to the destination address. Note that this process corresponds to S16 and S17 in FIG.
  • the transfer unit 22 When the transfer unit 22 receives a packet whose destination address is different from the common address AD#C and the unique address AD#k and whose destination address is registered in the return information from the server device 3 of the MEC site #k, , it is determined that the packet is to be encapsulated and transmitted to the network 4. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to encapsulate the received packet. The transfer unit 22 determines the value to be set as the destination address of the encapsulated packet by referring to the return information using the destination address of the encapsulated packet. The transfer unit 22 transmits the encapsulated packet to the communication interface 20. Note that this process corresponds to S25 to S27 in FIG.
  • the common address AD#C and the unique address are assigned to the transfer device 2, and only the unique address is assigned to each server device 3.
  • each MEC site 1 is configured so that packets are transmitted and received between the network 4 and each server device 3 via the transfer device 2 of the same MEC site 1.
  • the transfer device 2 does not perform NAT. By doing so, communication can be performed as explained in FIGS. 1 to 6.
  • server device #1-1 can send a request to shift the service provision to WD5 to MEC site #2.
  • FIG. 7 is a sequence diagram of a process in which server device #1-1 transfers service provision to WD5 to MEC site #2.
  • the dotted line arrow indicates the process by which server device #1-1 takes over the role of providing services to MEC site #2
  • the solid line arrow indicates the process by which server device #1-1 transfers the connection identifier to WD5. This shows the process for notifying changes.
  • server device #1-1 transmits a takeover request packet, which is a packet requesting takeover to MEC site #2.
  • the destination of the takeover request packet is, for example, the unique address of the transfer device #2 notified from the transfer device #1 in the notification.
  • the takeover request packet includes the unique address of server device #1-1.
  • Transfer device #1 transfers a takeover request packet to transfer device #2 in S31.
  • transfer device #2 selects server device 3 from server devices #2-1 and #2-2 to take over service provision.
  • transfer device #2 selects server device #2-2. Therefore, transfer device #2 transmits a newly generated takeover request packet to server device #2-2 in S32. This newly generated takeover request packet includes the unique address of server device #1-1.
  • Server device #2-2 sends a response packet to server device #1-1 based on the unique address of server device #1-1 included in the takeover request packet, and sends a response packet to server device #1-1 that is necessary for providing the service. Obtain relevant information. For example, when the WD 5 receives distribution of video data, it acquires information for identifying undelivered data. Additionally, the server device #2-2 generates a connection identifier, that is, a value that combines the site identifier ID #2 of the MEC site #2, the server identifier #2-2 of the server device #2-2, and a random number. Then, the server device #1-1 is notified in the process of S33.
  • a connection identifier that is, a value that combines the site identifier ID #2 of the MEC site #2, the server identifier #2-2 of the server device #2-2, and a random number.
  • server device #1-1 When the handover is completed, server device #1-1 generates an identifier switching notification packet that notifies that the connection identifier will be changed.
  • the identifier switching notification packet contains, in addition to the previous connection identifier, the connection identifier to be used in future communication with WD5, that is, the connection generated by server device #2-2 and notified to server device #1-1. Contains an identifier.
  • server device #1-1 transmits an identifier switching notification packet with the destination set to WD5 to transfer device #1. Transfer device #1 encapsulates the identifier switching notification packet and sends it to transfer device #2 (S35), and transfer device #2 sends the identifier switching notification packet included in the encapsulated packet to WD 5 (S36).
  • the WD 5 includes a connection identifier including the site identifier ID#2 of the MEC site #2 and the server identifier SID#2-2 of the server device #2-2 in subsequent MEC packets.
  • the MEC packet is transmitted from transfer device #2 to server device #2-2.
  • the transfer device #1 deletes the entry of return information regarding the WD5.
  • the transfer device 2 is connected to one or more associated server devices 3. However, it is only necessary that packets can be sent and received between the transfer device 2 and the associated one or more server devices 3, and the transfer device 2 can directly communicate with the associated one or more server devices 3. does not need to be connected to.
  • the transfer device 2 can be realized by a program that causes a computer to operate as the transfer device 2.
  • the program is configured to cause the device to function as the transfer device 2 when executed on one or more processors of a device having one or more processors.
  • the program can be stored on a non-transitory computer readable storage medium or distributed over a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A transfer device used in a network for transferring, to one transfer device among a plurality of transfer devices, a first packet having, as a destination, a shared address transmitted by a wireless device in accordance with the position of the wireless device, the transfer device comprising: a means for storing a first identifier; and a means for assessing, upon receipt of the first packet, whether a second identifier included in the first packet matches the first identifier, said means transferring the first packet to one server device among one or more server devices associated with the transfer device if the second identifier matches the first identifier, and transferring a first encapsulated packet obtained by storing the first packet in a payload to a separate transfer device to which the second identifier is allocated if the second identifier does not match the first identifier.

Description

転送装置及びコンピュータ可読記憶媒体Transfer device and computer readable storage medium
 本開示は、エッジコンピューティング環境において通信を継続させる技術に関する。 The present disclosure relates to techniques for continuing communication in an edge computing environment.
 現在の集約型の巨大データセンタを用いたクラウドコンピューティング環境では、低遅延サービスを提供することが難しい。このため、非特許文献1は、多くの小規模なデータセンタを地理的に分散配置してサービスを提供するMEC(Multi-Access Edge Computing)を開示している。以下では、MECのデータセンタをMECサイトとして参照する。各MECサイトは、地理的領域(エリア)に関連付けられる。例えば、1つのMECサイトに関連付けられるエリアは、1つ以上の基地局がサービス提供するエリアとすることができる。移動通信ネットワークの無線デバイス(WD)は、当該WDが現在位置するエリアに関連付けられたMECサイトの装置によってサービス提供される。 It is difficult to provide low-latency services in the current cloud computing environment that uses large, centralized data centers. For this reason, Non-Patent Document 1 discloses MEC (Multi-Access Edge Computing) in which many small-scale data centers are geographically distributed to provide services. In the following, the MEC data center will be referred to as the MEC site. Each MEC site is associated with a geographic area. For example, an area associated with one MEC site may be an area served by one or more base stations. A wireless device (WD) of a mobile communication network is served by equipment at a MEC site associated with the area in which the WD is currently located.
 現在のIPプロトコルを使用するネットワークにおいて、通信装置は、通信を開始する際、通信相手のIPアドレスをDNSから取得する。したがって、WDがMECサイトに接続する際、DNSは、当該WDが現在位置するエリアに関連付けられたMECサイト内の装置のIPアドレスを当該WDに通知しなければならない。これを実現するには、WDがその位置を示す位置情報をDNSに通知し、DNSが位置情報に応じて当該WDに通知するIPアドレスを判定する様にIPアドレス取得処理を変更しなければならい。 In networks that use current IP protocols, a communication device obtains the IP address of the communication partner from DNS when starting communication. Therefore, when a WD connects to a MEC site, the DNS must inform the WD of the IP address of the device in the MEC site that is associated with the area in which the WD is currently located. To achieve this, the IP address acquisition process must be changed so that the WD notifies the DNS of location information indicating its location, and the DNS determines the IP address to be notified to the WD based on the location information. .
 IPアドレス取得処理の変更を要しない方式として、非特許文献2は、IP Anycast(以下、Anycast方式と表記する。)と呼ばれる技術を開示している。Anycast方式においては、同じサービスを提供する総てのMECサイトの装置に同じIPアドレス(以下、共通アドレス)を割り当てる。したがって、WDは、MECサイトの装置によって提供されるサービスを受ける際、その位置に拘わらずDNSから共通アドレスを取得することになる。WDは、共通アドレスをDNSから取得すると、共通アドレスを宛先アドレスに設定したIPパケットを送信する。移動通信ネットワークは、共通アドレスが宛先アドレスに設定されたIPパケットを受信すると、当該IPパケットを、WDが現在位置するエリアに関連付けられたMECサイトに転送する。例えば、MECサイトが1つ以上の基地局に関連付けられている場合、移動通信ネットワークは、当該IPパケットを、WDが現在接続している基地局に関連付けられたMECサイトに転送する。WDとMECサイト内の装置との間で、例えば、TCPコネクションといったコネクションが確立されると、以後、当該WDとMECサイト内の装置は、確立したコネクションを利用して通信を行う。 As a method that does not require changes to the IP address acquisition process, Non-Patent Document 2 discloses a technology called IP Anycast (hereinafter referred to as Anycast method). In the Anycast method, the same IP address (hereinafter referred to as a common address) is assigned to devices at all MEC sites that provide the same service. Therefore, when receiving services provided by devices at the MEC site, the WD will obtain a common address from the DNS regardless of its location. When the WD obtains the common address from the DNS, it transmits an IP packet with the common address set as the destination address. When the mobile communication network receives an IP packet with the common address set as the destination address, it forwards the IP packet to the MEC site associated with the area where the WD is currently located. For example, if the MEC site is associated with one or more base stations, the mobile communication network forwards the IP packet to the MEC site associated with the base station to which the WD is currently connected. When a connection such as a TCP connection is established between the WD and a device within the MEC site, the WD and the device within the MEC site thereafter communicate using the established connection.
 例えば、第1エリアにいるWDが第1MECサイト内の装置によってサービス提供を受けているときに、当該WDが、第2MECサイトに関連付けられている第2エリアに移動したものとする。この場合、当該WDが送信するIPパケットは、第2MECサイト内の装置に送信される。第2MECサイト内の装置は、当該WDとのコネクションを有していないため、当該WDから受信するIPパケットを廃棄する。したがって、当該WDに対するサービス提供はストップする。 For example, assume that while a WD in the first area is receiving service from a device in the first MEC site, the WD moves to a second area associated with the second MEC site. In this case, the IP packet sent by the WD is sent to the device within the second MEC site. Since the device within the second MEC site does not have a connection with the WD, it discards the IP packet received from the WD. Therefore, service provision to the WD is stopped.
 本開示は、無線デバイスが異なるMECサイトに関連付けられたエリアに移動してもサービス提供を継続できる様にする技術を提供するものである。 The present disclosure provides technology that allows wireless devices to continue providing service even when they move to areas associated with different MEC sites.
 本発明の一態様によると、無線デバイスの位置に応じて前記無線デバイスが送信した共通アドレスを宛先とする第1パケットを複数の転送装置の内の1つの転送装置に転送するネットワークで使用される転送装置は、第1識別子を保持する保持手段と、前記ネットワークから前記第1パケットを受信すると、前記第1パケットに含まれる第2識別子が前記第1識別子に一致しているかを判定し、前記第2識別子が前記第1識別子に一致している場合、前記第1パケットを前記転送装置に関連付けられている1つ以上のサーバ装置の内の1つのサーバ装置に転送し、前記第2識別子が前記第1識別子に一致していない場合、前記第1パケットをペイロードに格納した第1カプセル化パケットを前記第2識別子が割り当てられている別の転送装置に転送する転送手段と、を備えている。 According to one aspect of the present invention, the method is used in a network that forwards a first packet destined for a common address transmitted by the wireless device to one of a plurality of forwarding devices according to the location of the wireless device. The transfer device includes a holding unit that holds a first identifier, and upon receiving the first packet from the network, determines whether a second identifier included in the first packet matches the first identifier, and If the second identifier matches the first identifier, the first packet is transferred to one of the one or more server devices associated with the transfer device, and the second identifier is and a transfer means for transferring a first encapsulated packet in which the first packet is stored in a payload to another transfer device to which the second identifier is assigned, if the first identifier does not match the first identifier. .
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the invention will become apparent from the following description with reference to the accompanying drawings. In addition, in the accompanying drawings, the same or similar structures are given the same reference numerals.
一実施形態によるシステム構成図。FIG. 1 is a system configuration diagram according to an embodiment. 一実施形態によるシーケンス図。FIG. 2 is a sequence diagram according to one embodiment. 一実施形態によるシーケンス図。FIG. 2 is a sequence diagram according to one embodiment. 一実施形態による転送情報を示す図。FIG. 3 is a diagram illustrating transfer information according to one embodiment. 一実施形態による転送装置の構成図。FIG. 1 is a configuration diagram of a transfer device according to an embodiment. 一実施形態による判定情報を示す図。FIG. 3 is a diagram showing determination information according to an embodiment. 一実施形態によるシーケンス図。FIG. 2 is a sequence diagram according to one embodiment.
 以下、添付図面を参照して実施形態を詳しく説明する。尚、以下の実施形態は特許請求の範囲に係る発明を限定するものでなく、また実施形態で説明されている特徴の組み合わせの全てが発明に必須のものとは限らない。実施形態で説明されている複数の特徴のうち二つ以上の特徴が任意に組み合わされてもよい。また、同一若しくは同様の構成には同一の参照番号を付し、重複した説明は省略する。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. Note that the following embodiments do not limit the claimed invention, and not all combinations of features described in the embodiments are essential to the invention. Two or more features among the plurality of features described in the embodiments may be arbitrarily combined. In addition, the same or similar configurations are given the same reference numerals, and duplicate explanations will be omitted.
 <第一実施形態>
 図1は、本実施形態によるシステム構成を示している。MECサイト1は、転送装置2と、複数のサーバ装置3と、を有する。なお、図1では、2つのMECサイト1を示しているが、MECサイト1の数は、2以上の任意の数であり、様々な地理的位置に配置される。以下の説明において、2つのMECサイト1を区別する場合、MECサイト#1、MECサイト#2と表記する。また、図1において、各MECサイト1に配置されているサーバ装置3の数は2であるが、各MECサイト1に配置されるサーバ装置3の数は、1以上の任意の数とし得る。また、各MECサイト1に配置されるサーバ装置3の数を同じにする必要はない。以下の説明において、各サーバ装置3を区別する場合、図1に示す様に、サーバ装置#1-1、#1-2、#2-1、#2-2と表記する。同様に、2つの転送装置2を区別する場合、図1に示す様に、転送装置#1、#2と表記する。
<First embodiment>
FIG. 1 shows the system configuration according to this embodiment. The MEC site 1 includes a transfer device 2 and a plurality of server devices 3. Although two MEC sites 1 are shown in FIG. 1, the number of MEC sites 1 is any number greater than or equal to 2, and they are located at various geographical locations. In the following description, when two MEC sites 1 are to be distinguished, they will be referred to as MEC site #1 and MEC site #2. Further, in FIG. 1, the number of server devices 3 located at each MEC site 1 is two, but the number of server devices 3 located at each MEC site 1 may be any number greater than or equal to one. Furthermore, it is not necessary to make the number of server devices 3 arranged at each MEC site 1 the same. In the following description, when distinguishing between the server devices 3, they are expressed as server devices #1-1, #1-2, #2-1, and #2-2, as shown in FIG. Similarly, when distinguishing two transfer devices 2, they are expressed as transfer devices #1 and #2, as shown in FIG.
 本実施形態では、各MECサイト1にサイト識別子を割り当てる。図1によると、MECサイト#1のサイト識別子はID#1であり、MECサイト#2のサイト識別子はID#2である。なお、サイト識別子は、同じMECサイトの転送装置2の装置識別子でもある。サイト識別子は、同じMECサイト1の総ての装置(転送装置2及びサーバ装置3)に設定される。転送装置2に設定されたサイト識別子と、同じサイト識別子が設定されたサーバ装置3は、当該転送装置2に関連付けられたサーバ装置3である。 In this embodiment, a site identifier is assigned to each MEC site 1. According to FIG. 1, the site identifier of MEC site #1 is ID#1, and the site identifier of MEC site #2 is ID#2. Note that the site identifier is also the device identifier of the transfer device 2 at the same MEC site. The site identifier is set for all devices (transfer device 2 and server device 3) in the same MEC site 1. The server device 3 to which the same site identifier as the site identifier set to the transfer device 2 is set is the server device 3 associated with the transfer device 2.
 また、各サーバ装置3にはサーバ識別子を割り当てる。図1によると、サーバ装置#1-1、#1-2、#2-1及び#2-2のサーバ識別子は、それぞれ、SID#1-1、#1-2、#2-1及び#2-2である。なお、転送装置2には、関連付けられているサーバ装置3のサーバ識別子が設定される。さらに、Anycast方式と同様に、本実施形態では、各MECサイト1の転送装置2に共通アドレスAD#Cを割り当てる。 Additionally, a server identifier is assigned to each server device 3. According to FIG. 1, the server identifiers of server devices #1-1, #1-2, #2-1 and #2-2 are SID #1-1, #1-2, #2-1 and #2, respectively. It is 2-2. Note that the server identifier of the associated server device 3 is set in the transfer device 2. Furthermore, similarly to the Anycast method, in this embodiment, a common address AD#C is assigned to the transfer device 2 of each MEC site 1.
 また、各転送装置2には、固有のアドレスである固有アドレスを割り当てる。図1によると、転送装置#1の固有アドレスはAD#1であり、転送装置#2の固有アドレスはAD#2である。転送装置2は、ネットワーク4に接続される。また、転送装置2は、同じMECサイト1内のサーバ装置3に接続される。なお、各サーバ装置3にも固有アドレスを割り当てる。各サーバ装置3に割り当てる固有アドレスは、プライベートアドレスであり得る。 Furthermore, each transfer device 2 is assigned a unique address, which is a unique address. According to FIG. 1, the unique address of transfer device #1 is AD#1, and the unique address of transfer device #2 is AD#2. Transfer device 2 is connected to network 4 . Further, the transfer device 2 is connected to the server device 3 within the same MEC site 1. Note that each server device 3 is also assigned a unique address. The unique address assigned to each server device 3 may be a private address.
 WD5は、移動通信ネットワークの図示しない基地局及びネットワーク4を介してMECサイト1にアクセスし、MECサイト1内のサーバ装置3によってサービス提供を受ける。なお、Anycast方式と同様に、WD5がMECサイト1にアクセスする際、図示しないDNSは、当該WD5の位置に拘わらず、共通アドレスAD#Cを当該WD5に通知する様に構成される。以下の説明において、WD5がMECサイト1に向けて送信するパケット、つまり、宛先アドレスに共通アドレスAD#Cが設定されているパケットを"MECパケット"と表記する。ネットワーク4は、WD5の位置に応じてMECパケットの転送先を変更する。本実施形態では、WD5がエリア#1内にいる場合、MECパケットはMECサイト#1に転送され、WD5がエリア#2内にいる場合、MECパケットはMECサイト#2に転送されるものとする。 The WD 5 accesses the MEC site 1 via a base station (not shown) of the mobile communication network and the network 4, and receives service from the server device 3 within the MEC site 1. Note that, similarly to the Anycast method, when the WD 5 accesses the MEC site 1, the DNS (not shown) is configured to notify the common address AD#C to the WD 5 regardless of the location of the WD 5. In the following description, a packet transmitted by the WD 5 toward the MEC site 1, that is, a packet in which the common address AD#C is set as the destination address, will be referred to as an "MEC packet." The network 4 changes the destination of the MEC packet depending on the location of the WD 5. In this embodiment, if WD5 is in area #1, the MEC packet is transferred to MEC site #1, and if WD5 is in area #2, the MEC packet is transferred to MEC site #2. .
 図2は、WD5がMECサイト1にアクセスを開始する際のシーケンス図である。なお、WD5はエリア#1内にいるものとする。WD5は、DNSから共通アドレスAD#Cを取得すると、S10において、コネクションを要求するためのMECパケット(要求MECパケット)を送信する。要求MECパケットは、MECサイト#1の転送装置#1に転送される。転送装置#1は、要求MECパケットを受信すると、サーバ装置#1-1及び#1-2の内の1つを選択し、選択したサーバ装置3に要求MECパケットを転送する。なお、転送装置2は、通常のNAT機能を備え、要求MECパケットの宛先アドレスに設定されている共通アドレスAD#Cを選択したサーバ装置3の固有アドレスに変換する。なお、以下の説明では、転送装置2により宛先アドレスが変更されたMECパケットもMECパケットと表記する。図2によると、転送装置#1は、サーバ装置#1-1を選択している。したがって、転送装置#1は、S11で、要求MECパケットをサーバ装置#1-1に送信する。 FIG. 2 is a sequence diagram when the WD 5 starts accessing the MEC site 1. Note that it is assumed that WD5 is in area #1. Upon acquiring the common address AD#C from the DNS, the WD 5 transmits an MEC packet (request MEC packet) for requesting a connection in S10. The request MEC packet is transferred to transfer device #1 of MEC site #1. Upon receiving the request MEC packet, transfer device #1 selects one of server devices #1-1 and #1-2 and transfers the request MEC packet to the selected server device 3. Note that the transfer device 2 has a normal NAT function, and converts the common address AD#C set as the destination address of the request MEC packet to the unique address of the selected server device 3. Note that in the following description, an MEC packet whose destination address has been changed by the transfer device 2 will also be referred to as an MEC packet. According to FIG. 2, transfer device #1 has selected server device #1-1. Therefore, transfer device #1 transmits a request MEC packet to server device #1-1 in S11.
 サーバ装置#1-1は、要求MECパケットを受信すると、これから確立するコネクションのコネクション識別子を設定する。本実施形態において、コネクション識別子は、コネクションを設定するサーバ装置#1-1が設置されているMECサイト#1のサイト識別子ID#1と、サーバ装置#1-1のサーバ識別子SID#1-1を連結した値を含む。例えば、コネクション識別子を、MECサイト#1のサイト識別子ID#1と、サーバ装置#1-1のサーバ識別子SID#1-1と、乱数と、を所定順序で連結した値とすることができる。サーバ装置#1-1は、要求MECパケットの応答として、S12で、コネクション識別子を含み、要求MECパケットに対する応答を示すパケットである応答パケットを転送装置#1に送信する。当該応答パケットの宛先アドレスには、要求MECパケットの送信元アドレスであるWD5のアドレスが設定される。 Upon receiving the request MEC packet, server device #1-1 sets a connection identifier for the connection to be established. In this embodiment, the connection identifier is the site identifier ID#1 of the MEC site #1 where the server device #1-1 to set up the connection is installed, and the server identifier SID #1-1 of the server device #1-1. Contains the concatenated value. For example, the connection identifier can be a value obtained by concatenating the site identifier ID#1 of the MEC site #1, the server identifier SID#1-1 of the server device #1-1, and a random number in a predetermined order. As a response to the request MEC packet, server device #1-1 transmits a response packet, which includes a connection identifier and is a packet indicating a response to the request MEC packet, to transfer device #1 in S12. The address of the WD5, which is the source address of the request MEC packet, is set as the destination address of the response packet.
 転送装置#1は、サーバ装置#1-1から応答パケットを受信すると、S13において、ネットワーク4を介して、受信した応答パケットをWD5に送信する。WD5とサーバ装置#1-1との間のコネクションが確立された後、WD5とサーバ装置#1-1との間で送受信される総てのパケットにはコネクション識別子が設定される。WD5は、S14で、データを含むMECパケット(データMECパケット)を送信する。データMECパケットを受信した転送装置#1は、データMECパケットに含まれるコネクション識別子(サーバ識別子を含む)に基づき転送先のサーバ装置3がサーバ装置#1-1であると判定する。したがって、転送装置#1は、S15において、データMECパケットをサーバ装置#1-1に送信する。S16において、サーバ装置#1-1は、WD5にデータを含むパケットであるデータパケットを送信する。転送装置#1は、サーバ装置#1-1からデータパケットを受信すると、WD5に転送する(S17)。 Upon receiving the response packet from the server device #1-1, the transfer device #1 transmits the received response packet to the WD 5 via the network 4 in S13. After the connection between the WD 5 and the server device #1-1 is established, a connection identifier is set in all packets sent and received between the WD 5 and the server device #1-1. The WD 5 transmits an MEC packet including data (data MEC packet) in S14. Transfer device #1, which has received the data MEC packet, determines that the transfer destination server device 3 is server device #1-1 based on the connection identifier (including the server identifier) included in the data MEC packet. Therefore, transfer device #1 transmits the data MEC packet to server device #1-1 in S15. In S16, server device #1-1 transmits a data packet, which is a packet containing data, to WD5. When the transfer device #1 receives the data packet from the server device #1-1, it transfers it to the WD 5 (S17).
 以後、WD5がエリア#1内にいる限り、図2のS14~S17に示す様に、WD5とサーバ装置#1-1との間で通信が行われる。 Thereafter, as long as the WD 5 is within the area #1, communication is performed between the WD 5 and the server device #1-1 as shown in S14 to S17 in FIG.
 図3は、WD5がサーバ装置#1-1との通信を継続中にエリア#2に移動した際のシーケンス図である。WD5がエリア#2に進入したため、S20で送信したデータMECパケットは、MECサイト#2の転送装置#2に転送される。転送装置#2は、受信したデータMECパケットに含まれるコネクション識別子に基づき、S21において、当該データMECパケットが自サイトを宛先とするものか否かを判定する。本例では、コネクション識別子に含まれるサイト識別子がID#1であり、転送装置#2が設置されているMECサイト#2のサイト識別子ID#2と一致しないため、転送装置#2は、受信したデータMECパケットが自サイトを宛先とするものではないと判定する。 FIG. 3 is a sequence diagram when the WD 5 moves to area #2 while continuing communication with server device #1-1. Since WD5 has entered area #2, the data MEC packet transmitted in S20 is transferred to transfer device #2 of MEC site #2. Based on the connection identifier included in the received data MEC packet, the transfer device #2 determines in S21 whether the data MEC packet is destined for its own site. In this example, the site identifier included in the connection identifier is ID#1, which does not match the site identifier ID#2 of MEC site #2 where transfer device #2 is installed, so transfer device #2 receives the It is determined that the data MEC packet is not destined for the own site.
 この場合、転送装置#2は、受信したデータMECパケットを、本来の宛先であるMECサイト1(本例では、MECサイト#1)の転送装置2(本例では転送装置#1)に転送する。なお、転送にはカプセル化が使用される。つまり、転送装置#2は、新たなパケットを生成し、生成したパケットのペイロードに受信したデータMECパケットを格納し、S22で転送先の転送装置2に送信する。以下では、他のパケットをカプセル化しているパケットをカプセル化パケットと表記する。カプセル化パケットの宛先アドレスに設定する値を判定するため、各転送装置2は、他のMECサイト1について、サイト識別子と、当該サイト識別子が割り当てられたMECサイト1に設置されている転送装置2の固有アドレスとの関係を示す転送情報を保持している。図4は、転送装置#2が保持している転送情報の例を示す。転送装置#2は、転送情報と、受信したデータMECパケットに含まれるサイト識別子ID#1と、に基づき、カプセル化パケットの宛先アドレスに転送装置#1の固有アドレスAD#1を設定してネットワーク4に送信する。 In this case, transfer device #2 transfers the received data MEC packet to transfer device 2 (transfer device #1 in this example) of MEC site 1 (in this example, MEC site #1) which is the original destination. . Note that encapsulation is used for transfer. That is, transfer device #2 generates a new packet, stores the received data MEC packet in the payload of the generated packet, and transmits it to transfer destination transfer device 2 in S22. Hereinafter, a packet that encapsulates another packet will be referred to as an encapsulated packet. In order to determine the value to be set as the destination address of the encapsulated packet, each transfer device 2 uses the site identifier of the other MEC site 1 and the transfer device 2 installed at the MEC site 1 to which the site identifier is assigned. It holds forwarding information indicating the relationship with the unique address. FIG. 4 shows an example of transfer information held by transfer device #2. Based on the transfer information and the site identifier ID#1 included in the received data MEC packet, the transfer device #2 sets the unique address AD#1 of the transfer device #1 as the destination address of the encapsulated packet and transfers it to the network. Send to 4.
 転送装置#1は、データMECパケットをペイロードに含むカプセル化パケットを受信すると、ペイロードに格納されているデータMECパケットを取り出す。そして、転送装置#1は、S23で、データMECパケットの送信元アドレス、つまり、WD5のアドレスを、カプセル化パケットの送信元のアドレス、つまり、本例では転送装置#2の固有アドレスであるAD#2に関連付けて返送情報に登録する。また、転送装置#1は、取り出したデータMECパケットに含まれるサーバ識別子SID#1-1に基づき、S24で、当該データMECパケットをサーバ装置#1-1に送信する。 Upon receiving the encapsulated packet containing the data MEC packet in the payload, the transfer device #1 extracts the data MEC packet stored in the payload. Then, in S23, transfer device #1 converts the source address of the data MEC packet, that is, the address of WD5, to the source address of the encapsulated packet, that is, the unique address of transfer device #2 in this example. Register it in the return information in association with #2. Furthermore, based on the server identifier SID#1-1 included in the retrieved data MEC packet, the transfer device #1 transmits the data MEC packet to the server device #1-1 in S24.
 サーバ装置#1-1は、S25において、WD5を宛先としたデータパケットを転送装置#1に送信する。転送装置#1は、データパケットを受信すると、S26において、当該データパケットの宛先アドレスが返送情報に登録されているか否かを判定する。登録されていない場合、転送装置#1は、受信したデータパケットをネットワーク4に送信する。一方、登録されている場合、転送装置#1は、受信したデータパケットをカプセル化し、返送情報においてデータパケットの宛先アドレスに関連付けられている転送装置2に送信する。本例では、WD5のIPアドレスが返送情報に登録され、転送装置#2の固有アドレスAD#2に関連付けられているため、転送装置#1は、S27において、データパケットをカプセル化して転送装置#2に送信する。転送装置#2は、データパケットを含むカプセル化パケットを受信すると、データパケットを取り出し、データパケットの宛先アドレスに基づき、S28において、当該データパケットをWD5に送信する。 In S25, server device #1-1 transmits a data packet destined for WD5 to transfer device #1. Upon receiving the data packet, transfer device #1 determines in S26 whether the destination address of the data packet is registered in the return information. If not registered, transfer device #1 transmits the received data packet to network 4. On the other hand, if registered, the transfer device #1 encapsulates the received data packet and transmits it to the transfer device 2 associated with the destination address of the data packet in the return information. In this example, since the IP address of the WD5 is registered in the return information and associated with the unique address AD#2 of the transfer device #2, the transfer device #1 encapsulates the data packet in S27 and transfers the data packet to the transfer device #2. Send to 2. Upon receiving the encapsulated packet containing the data packet, the transfer device #2 extracts the data packet and transmits the data packet to the WD 5 in S28 based on the destination address of the data packet.
 以上の構成により、WD5が移動することにより、MECパケットがそれまでとは異なるMECサイト1に転送されても通信を継続させることができる。なお、説明の簡略化のため図2及び図3では一部省略しているが、転送装置2は、パケットを受信する度に、当該パケットをどの様に転送するのかを判定する。この判定方法については後述する。 With the above configuration, when the WD 5 moves, communication can be continued even if the MEC packet is transferred to a different MEC site 1 from before. Although some parts are omitted in FIGS. 2 and 3 to simplify the explanation, each time the transfer device 2 receives a packet, it determines how to transfer the packet. This determination method will be described later.
 図5は、転送装置2の構成図である。通信インタフェース20は、ネットワーク4に接続される。接続インタフェース21は、サーバ装置3に接続される。通信インタフェース20及び接続インタフェース21は、パケットを受信すると、受信したパケットを転送部22に出力する。転送部22は、判定情報を有し、判定情報に基づき受信したパケットに対する処理を判定する。図6は、MECサイト#kに設置されている転送装置#kが保持している判定情報を示している。なお、MECサイト#kのサイト識別子をID#kとし、転送装置#kの固有アドレスをAD#kとする。なお、上述した様に、サイト識別子ID#kは、転送装置#kの装置識別子と見做すこともできる。 FIG. 5 is a configuration diagram of the transfer device 2. Communication interface 20 is connected to network 4 . The connection interface 21 is connected to the server device 3. When the communication interface 20 and the connection interface 21 receive a packet, they output the received packet to the transfer unit 22 . The transfer unit 22 has determination information and determines processing for the received packet based on the determination information. FIG. 6 shows determination information held by transfer device #k installed at MEC site #k. Note that the site identifier of MEC site #k is ID#k, and the unique address of transfer device #k is AD#k. Note that, as described above, the site identifier ID#k can also be regarded as the device identifier of the transfer device #k.
 まず、転送部22は、宛先アドレスが共通アドレスAD#Cであり、コネクション識別子の無い(サイト識別子の無い)パケットを受信した場合、当該パケットをMECサイト#k内のサーバ装置3に送信すると判定する。なお、複数のサーバ装置3がMECサイト#kに設置されている場合、どのサーバ装置3に送信するかは転送装置#kが任意の方法で選択する。この場合、転送部22は、送信先のサーバ装置3を示す情報と共に当該パケットを接続インタフェース21に出力する。なお、この処理は、図2のS10及びS11に対応する。 First, when the transfer unit 22 receives a packet whose destination address is the common address AD#C and has no connection identifier (no site identifier), it determines to transmit the packet to the server device 3 in the MEC site #k. do. Note that when a plurality of server devices 3 are installed at the MEC site #k, the transfer device #k selects which server device 3 to send to by an arbitrary method. In this case, the transfer unit 22 outputs the packet to the connection interface 21 together with information indicating the destination server device 3 . Note that this process corresponds to S10 and S11 in FIG.
 転送部22は、宛先アドレスが共通アドレスAD#Cであり、コネクション識別子内のサイト識別子がID#kのパケットを受信した場合、当該パケットを、コネクション識別子内のサーバ識別子で示されるMECサイト#kのサーバ装置3に送信すると判定する。この場合、転送部22は、送信先のサーバ装置3を示す情報と共にパケットを接続インタフェース21に出力する。なお、この処理は、図2のS14及びS15に対応する。 When the transfer unit 22 receives a packet in which the destination address is the common address AD#C and the site identifier in the connection identifier is ID#k, the transfer unit 22 transfers the packet to the MEC site #k indicated by the server identifier in the connection identifier. It is determined that the data is to be transmitted to the server device 3 of. In this case, the transfer unit 22 outputs the packet to the connection interface 21 along with information indicating the destination server device 3 . Note that this process corresponds to S14 and S15 in FIG.
 転送部22は、宛先アドレスが共通アドレスAD#Cであり、コネクション識別子内のサイト識別子がID#kとは異なるパケットを受信した場合、当該パケットを、カプセル化してネットワーク4に送信すると判定する。この場合、転送部22は、受信したパケットをカプセル化処理部23にカプセル化させる。つまり、カプセル化処理部23にカプセル化パケットを生成させる。以下の説明においては、カプセル化パケットのペイロードに格納されているパケットを被カプセル化パケットと表記する。転送部22は、カプセル化パケットの宛先アドレスに設定する値を、サイト識別子を使用して転送情報を参照することで判定する。転送部22は、カプセル化パケットを通信インタフェース20に送信する。なお、この処理は、図3のS20~S22に対応する。 When the transfer unit 22 receives a packet in which the destination address is the common address AD#C and the site identifier in the connection identifier is different from ID#k, the transfer unit 22 determines to encapsulate the packet and transmit it to the network 4. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to encapsulate the received packet. That is, the encapsulation processing unit 23 is caused to generate an encapsulated packet. In the following description, a packet stored in the payload of an encapsulated packet will be referred to as an encapsulated packet. The transfer unit 22 determines the value to be set as the destination address of the encapsulated packet by referring to the transfer information using the site identifier. The transfer unit 22 transmits the encapsulated packet to the communication interface 20. Note that this process corresponds to S20 to S22 in FIG.
 転送部22は、宛先アドレスが固有アドレスAD#kであるカプセル化パケットを受信した場合、当該カプセル化パケットをディカプセル化すると判定する。この場合、転送部22は、受信したカプセル化パケットをカプセル化処理部23にディカプセル化させる。つまり、カプセル化パケットのペイロードに格納されている被カプセル化パケットをカプセル化処理部23に取り出させる。続いて、被カプセル化パケットに対する処理を判定情報に基づき再度判定する。この処理は、図3のS22~S24と、S27及びS28の処理に対応する。なお、図3のS23に示す様に、転送部22は、被カプセル化パケットをサーバ装置3に送信する場合、被カプセル化パケットの送信元アドレスと、カプセル化パケットの送信元アドレスとの対応関係を返送情報に登録する。なお、宛先アドレスが固有アドレスAD#kであるが、カプセル化パケットではないパケットを受信すると、転送部22は、通常のパケット処理を行う。 When the transfer unit 22 receives an encapsulated packet whose destination address is the unique address AD#k, it determines that the encapsulated packet is to be decapsulated. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to decapsulate the received encapsulated packet. That is, the encapsulation processing unit 23 is caused to take out the encapsulated packet stored in the payload of the encapsulated packet. Subsequently, processing for the encapsulated packet is determined again based on the determination information. This process corresponds to the processes of S22 to S24 and S27 and S28 in FIG. Note that, as shown in S23 in FIG. 3, when transmitting the encapsulated packet to the server device 3, the transfer unit 22 determines the correspondence between the source address of the encapsulated packet and the source address of the encapsulated packet. to be registered in the return information. Note that when receiving a packet whose destination address is the unique address AD#k but which is not an encapsulated packet, the transfer unit 22 performs normal packet processing.
 転送部22は、宛先アドレスが共通アドレスAD#C及び固有アドレスAD#kとは異なり、かつ、返送情報に登録されていないパケットを受信した場合、当該パケットに対しては、当該パケットの宛先アドレスに従う通常の転送処理を行う。この場合、転送部22は、受信したパケットを、宛先アドレスに応じたインタフェースに送信する。なお、この処理は、図2のS16及びS17に対応する。 When the transfer unit 22 receives a packet whose destination address is different from the common address AD#C and the unique address AD#k and which is not registered in the return information, the transfer unit 22 transmits the destination address of the packet to the packet. Perform normal transfer processing according to . In this case, the transfer unit 22 transmits the received packet to the interface corresponding to the destination address. Note that this process corresponds to S16 and S17 in FIG.
 転送部22は、宛先アドレスが共通アドレスAD#C及び固有アドレスAD#kとは異なり、かつ、宛先アドレスが返送情報に登録されているパケットを、MECサイト#kのサーバ装置3から受信した場合、当該パケットを、カプセル化してネットワーク4に送信すると判定する。この場合、転送部22は、受信したパケットをカプセル化処理部23にカプセル化させる。転送部22は、カプセル化パケットの宛先アドレスに設定する値を、被カプセル化パケットの宛先アドレスを使用して返送情報を参照することで判定する。転送部22は、カプセル化パケットを通信インタフェース20に送信する。なお、この処理は、図3のS25~S27に対応する。 When the transfer unit 22 receives a packet whose destination address is different from the common address AD#C and the unique address AD#k and whose destination address is registered in the return information from the server device 3 of the MEC site #k, , it is determined that the packet is to be encapsulated and transmitted to the network 4. In this case, the transfer unit 22 causes the encapsulation processing unit 23 to encapsulate the received packet. The transfer unit 22 determines the value to be set as the destination address of the encapsulated packet by referring to the return information using the destination address of the encapsulated packet. The transfer unit 22 transmits the encapsulated packet to the communication interface 20. Note that this process corresponds to S25 to S27 in FIG.
 なお、上記説明した実施形態では、共通アドレスAD#C及び固有アドレスを転送装置2に割り当て、各サーバ装置3には固有アドレスのみを割り当ていた。しかしながら、共通アドレスAD#C及び固有アドレスを各サーバ装置3に割り当て、各転送装置2には固有アドレスのみを割り当てる構成とすることもできる。この場合においても、ネットワーク4と各サーバ装置3との間のパケットの送受信は、同じMECサイト1の転送装置2を介して行われる様に各MECサイト1は構成される。なお、この場合、転送装置2は、NATを行わない。そうすることで、図1~図6で説明した様に通信を行うことができる。 In the embodiment described above, the common address AD#C and the unique address are assigned to the transfer device 2, and only the unique address is assigned to each server device 3. However, it is also possible to have a configuration in which the common address AD#C and a unique address are assigned to each server device 3, and only the unique address is assigned to each transfer device 2. Even in this case, each MEC site 1 is configured so that packets are transmitted and received between the network 4 and each server device 3 via the transfer device 2 of the same MEC site 1. Note that in this case, the transfer device 2 does not perform NAT. By doing so, communication can be performed as explained in FIGS. 1 to 6.
 <第二実施形態>
 続いて、第二実施形態について第一実施形態との相違点を中心に説明する。図3のシーケンスでは、WD5がエリア#1に戻らない限り、WD5とサーバ装置#1-1との通信は、他のMECサイト1を介することになり遅延が増大する。したがって、本実施形態において、転送装置#1は、S22で、MECサイト#2からカプセル化されたデータMECパケットを受信すると、MECサイト#2の転送装置#2を介して通信が行われていることをサーバ装置#1-1に通知する。この通知には、例えば、転送装置#2の固有アドレスを含める。例えば、転送装置#1は、S24のデータMECパケットのヘッダ領域を使用して当該通知を行うことができる。また、転送装置#1は、個別にサーバ装置#1-1にWD5との通信がMECサイト#2の転送装置#2を介して行われていることを通知することができる。
<Second embodiment>
Next, the second embodiment will be described focusing on the differences from the first embodiment. In the sequence of FIG. 3, unless the WD 5 returns to area #1, communication between the WD 5 and the server device #1-1 will go through another MEC site 1, resulting in increased delay. Therefore, in this embodiment, when transfer device #1 receives the encapsulated data MEC packet from MEC site #2 in S22, communication is performed via transfer device #2 of MEC site #2. This is notified to server device #1-1. This notification includes, for example, the unique address of transfer device #2. For example, the transfer device #1 can make the notification using the header area of the data MEC packet in S24. Further, transfer device #1 can individually notify server device #1-1 that communication with WD5 is being performed via transfer device #2 of MEC site #2.
 サーバ装置#1-1は当該通知に対して、WD5へのサービス提供をMECサイト#2に移行させる要求を送信することができる。図7は、サーバ装置#1-1がWD5へのサービス提供をMECサイト#2に移行させる処理のシーケンス図である。なお、図7において点線の矢印は、サーバ装置#1-1がMECサイト#2にサービス提供の役割を引き継ぐための処理を示し、実線の矢印は、サーバ装置#1-1がWD5にコネクション識別子の変更を通知するための処理を示している。 In response to the notification, server device #1-1 can send a request to shift the service provision to WD5 to MEC site #2. FIG. 7 is a sequence diagram of a process in which server device #1-1 transfers service provision to WD5 to MEC site #2. In addition, in FIG. 7, the dotted line arrow indicates the process by which server device #1-1 takes over the role of providing services to MEC site #2, and the solid line arrow indicates the process by which server device #1-1 transfers the connection identifier to WD5. This shows the process for notifying changes.
 S30において、サーバ装置#1-1は、MECサイト#2への引継ぎを要求するパケットである引継要求パケットを送信する。引継要求パケットの宛先は、例えば、前記通知により転送装置#1から通知された転送装置#2の固有アドレスである。なお、引継要求パケットには、サーバ装置#1-1の固有アドレスが含められる。転送装置#1は、S31において、転送装置#2に対して引継要求パケットを転送する。転送装置#2は、引継要求パケットを受信すると、サービス提供を引き継ぐサーバ装置3を、サーバ装置#2-1及び#2-2から選択する。図7において、転送装置#2は、サーバ装置#2-2を選択している。したがって、転送装置#2は、S32において、サーバ装置#2-2に新たに生成した引継要求パケットを送信する。この新たに生成した引継要求パケットには、サーバ装置#1-1の固有アドレスを含める。サーバ装置#2-2は、引継要求パケットに含まれるサーバ装置#1-1の固有アドレスに基づき、サーバ装置#1-1に応答パケットを送信し、サーバ装置#1-1からサービス提供に必要な情報を取得する。例えば、WD5が動画データの配信を受けている場合、未配信のデータを特定するための情報等を取得する。また、サーバ装置#2-2は、コネクション識別子、つまり、MECサイト#2のサイト識別子ID#2と、サーバ装置#2-2のサーバ識別子#2-2と、乱数とを結合した値を生成して、S33の処理内でサーバ装置#1-1に通知する。 In S30, server device #1-1 transmits a takeover request packet, which is a packet requesting takeover to MEC site #2. The destination of the takeover request packet is, for example, the unique address of the transfer device #2 notified from the transfer device #1 in the notification. Note that the takeover request packet includes the unique address of server device #1-1. Transfer device #1 transfers a takeover request packet to transfer device #2 in S31. Upon receiving the takeover request packet, transfer device #2 selects server device 3 from server devices #2-1 and #2-2 to take over service provision. In FIG. 7, transfer device #2 selects server device #2-2. Therefore, transfer device #2 transmits a newly generated takeover request packet to server device #2-2 in S32. This newly generated takeover request packet includes the unique address of server device #1-1. Server device #2-2 sends a response packet to server device #1-1 based on the unique address of server device #1-1 included in the takeover request packet, and sends a response packet to server device #1-1 that is necessary for providing the service. Obtain relevant information. For example, when the WD 5 receives distribution of video data, it acquires information for identifying undelivered data. Additionally, the server device #2-2 generates a connection identifier, that is, a value that combines the site identifier ID #2 of the MEC site #2, the server identifier #2-2 of the server device #2-2, and a random number. Then, the server device #1-1 is notified in the process of S33.
 サーバ装置#1-1は、引継ぎが完了すると、コネクション識別子を変更することを通知する識別子切替通知パケットを生成する。識別子切替通知パケットは、それまでのコネクション識別子に加えて、今後、WD5との通信で使用すべきコネクション識別子、つまり、サーバ装置#2-2が生成してサーバ装置#1-1に通知したコネクション識別子を含む。サーバ装置#1-1は、S34において、宛先をWD5に設定した識別子切替通知パケットを転送装置#1に送信する。転送装置#1は、識別子切替通知パケットをカプセル化して転送装置#2に送信し(S35)、転送装置#2は、カプセル化パケットに含まれる識別子切替通知パケットをWD5に送信する(S36)。これにより、WD5は、以後のMECパケットに、MECサイト#2のサイト識別子ID#2と、サーバ装置#2-2のサーバ識別子SID#2-2とを含んだコネクション識別子を含める。これにより、MECパケットは、転送装置#2からサーバ装置#2-2に送信される。また、転送装置#1は、識別子切替通知パケットをWD5に送信すると、WD5に関する返送情報のエントリを削除する。 When the handover is completed, server device #1-1 generates an identifier switching notification packet that notifies that the connection identifier will be changed. The identifier switching notification packet contains, in addition to the previous connection identifier, the connection identifier to be used in future communication with WD5, that is, the connection generated by server device #2-2 and notified to server device #1-1. Contains an identifier. In S34, server device #1-1 transmits an identifier switching notification packet with the destination set to WD5 to transfer device #1. Transfer device #1 encapsulates the identifier switching notification packet and sends it to transfer device #2 (S35), and transfer device #2 sends the identifier switching notification packet included in the encapsulated packet to WD 5 (S36). As a result, the WD 5 includes a connection identifier including the site identifier ID#2 of the MEC site #2 and the server identifier SID#2-2 of the server device #2-2 in subsequent MEC packets. As a result, the MEC packet is transmitted from transfer device #2 to server device #2-2. Furthermore, upon transmitting the identifier switching notification packet to the WD5, the transfer device #1 deletes the entry of return information regarding the WD5.
 以上の構成により、WD5が移動することにより、MECパケットがそれまでとは異なるMECサイト1に転送されても通信を継続させることができ、かつ、通信遅延が増加することを抑えることができる。 With the above configuration, by moving the WD 5, communication can be continued even if the MEC packet is transferred to a different MEC site 1 from before, and an increase in communication delay can be suppressed.
 なお、上記各実施形態において、転送装置2は、関連付けられている1つ以上のサーバ装置3に接続されているものとした。しかしながら、転送装置2と、関連付けられている1つ以上のサーバ装置3との間でパケットの送受信が行えれば良く、転送装置2が、関連付けられている1つ以上のサーバ装置3に直接的に接続されている必要はない。 Note that in each of the above embodiments, the transfer device 2 is connected to one or more associated server devices 3. However, it is only necessary that packets can be sent and received between the transfer device 2 and the associated one or more server devices 3, and the transfer device 2 can directly communicate with the associated one or more server devices 3. does not need to be connected to.
 なお、本開示による転送装置2は、コンピュータを転送装置2として動作させるプログラムにより実現することができる。プログラムは、1つ以上のプロセッサを有する装置の1つ以上のプロセッサで実行されると、当該装置を上記転送装置2として機能させる様に構成される。プログラムは、コンピュータが読み取り可能な非一時的な記憶媒体に記憶されて、又は、ネットワーク経由で配布が可能なものである。 Note that the transfer device 2 according to the present disclosure can be realized by a program that causes a computer to operate as the transfer device 2. The program is configured to cause the device to function as the transfer device 2 when executed on one or more processors of a device having one or more processors. The program can be stored on a non-transitory computer readable storage medium or distributed over a network.
 発明は上記の実施形態に制限されるものではなく、発明の要旨の範囲内で、種々の変形・変更が可能である。 The invention is not limited to the above embodiments, and various modifications and changes can be made within the scope of the invention.
 本願は、2022年3月8日提出の日本国特許出願特願2022-035443を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。 This application claims priority based on Japanese Patent Application No. 2022-035443 filed on March 8, 2022, and the entire content thereof is incorporated herein by reference.

Claims (11)

  1.  無線デバイスの位置に応じて前記無線デバイスが送信した共通アドレスを宛先とする第1パケットを複数の転送装置の内の1つの転送装置に転送するネットワークで使用される転送装置であって、
     第1識別子を保持する保持手段と、
     前記ネットワークから前記第1パケットを受信すると、前記第1パケットに含まれる第2識別子が前記第1識別子に一致しているかを判定し、前記第2識別子が前記第1識別子に一致している場合、前記第1パケットを前記転送装置に関連付けられている1つ以上のサーバ装置の内の1つのサーバ装置に転送し、前記第2識別子が前記第1識別子に一致していない場合、前記第1パケットをペイロードに格納した第1カプセル化パケットを前記第2識別子が割り当てられている別の転送装置に転送する転送手段と、
    を備えている転送装置。
    A transfer device used in a network that transfers a first packet destined for a common address transmitted by the wireless device to one transfer device among a plurality of transfer devices according to the location of the wireless device,
    holding means for holding the first identifier;
    Upon receiving the first packet from the network, it is determined whether a second identifier included in the first packet matches the first identifier, and if the second identifier matches the first identifier, , forwards the first packet to one of the one or more server devices associated with the transfer device, and if the second identifier does not match the first identifier, the first Transfer means for transferring a first encapsulated packet containing the packet in a payload to another transfer device to which the second identifier is assigned;
    A transfer device equipped with
  2.  前記第2識別子が前記第1識別子に一致している場合、前記転送手段は、前記1つ以上のサーバ装置の内の、前記第1パケットに含まれるサーバ識別子が割り当てられているサーバ装置に前記第1パケットを転送する、請求項1に記載の転送装置。 If the second identifier matches the first identifier, the transfer means transfers the server device to which the server identifier included in the first packet is assigned, among the one or more server devices. The transfer device according to claim 1, which transfers the first packet.
  3.  前記第1パケットに前記第2識別子が含まれていない場合、前記転送手段は、前記1つ以上のサーバ装置から選択した1つのサーバ装置に前記第1パケットを転送する、請求項1又は2に記載の転送装置。 According to claim 1 or 2, when the first packet does not include the second identifier, the transfer means transfers the first packet to one server device selected from the one or more server devices. Transfer device as described.
  4.  前記転送手段は、前記複数の転送装置それぞれに割り当てられた固有アドレスと、前記第2識別子との対応関係を示す転送情報を保持し、
     前記第2識別子が前記第1識別子に一致していない場合、前記転送手段は、前記第1カプセル化パケットの宛先アドレスに前記第2識別子に対応する固有アドレスを設定して前記ネットワークに送信することで、前記第1カプセル化パケットを前記別の転送装置に転送する、請求項1から3のいずれか1項に記載の転送装置。
    The transfer means holds transfer information indicating a correspondence relationship between a unique address assigned to each of the plurality of transfer devices and the second identifier,
    If the second identifier does not match the first identifier, the transfer means sets a unique address corresponding to the second identifier as a destination address of the first encapsulated packet and transmits it to the network. The transfer device according to any one of claims 1 to 3, wherein the first encapsulated packet is transferred to the another transfer device.
  5.  前記ネットワークから前記転送装置に割り当てられた固有アドレスが宛先に設定され、かつ、第2パケットをペイロードに格納した第2カプセル化パケットを受信した場合、前記転送手段は、前記第2パケットの宛先に前記共通アドレスが設定され、かつ、前記第2パケットに含まれる前記第2識別子が前記第1識別子に一致している場合、前記第2パケットを、前記1つ以上のサーバ装置の内の、前記第2パケットに含まれるサーバ識別子が割り当てられているサーバ装置に転送する、請求項4に記載の転送装置。 When receiving a second encapsulated packet in which a unique address assigned to the transfer device is set as the destination from the network and a second packet is stored in the payload, the transfer means sends a message to the destination of the second packet. If the common address is set and the second identifier included in the second packet matches the first identifier, the second packet is sent to one of the one or more server devices. The transfer device according to claim 4, wherein the transfer device transfers the second packet to a server device to which the server identifier included in the second packet is assigned.
  6.  前記転送手段は、他の転送装置から前記第2パケットを受信したことを、前記第2パケットに含まれるサーバ識別子が割り当てられているサーバ装置に通知する、請求項5に記載の転送装置。 The transfer device according to claim 5, wherein the transfer means notifies a server device to which a server identifier included in the second packet is assigned that the second packet has been received from another transfer device.
  7.  前記転送手段は、前記第2パケットの宛先に前記共通アドレスが設定されていない場合、前記第2パケットを前記第2パケットの宛先に設定されたアドレスが割り当てられている装置に転送する、請求項5又は6に記載の転送装置。 2. The transfer means, when the common address is not set as the destination of the second packet, transfers the second packet to a device to which the address set as the destination of the second packet is assigned. 6. The transfer device according to 5 or 6.
  8.  前記転送手段は、前記第2パケットを前記第2パケットに含まれるサーバ識別子が割り当てられているサーバ装置に転送した場合、前記第2カプセル化パケットの第1送信元アドレスと、前記第2パケットの第2送信元アドレスと、の対応関係を返送情報として保持する、請求項5から7のいずれか1項に記載の転送装置。 When the transfer means transfers the second packet to a server device to which a server identifier included in the second packet is assigned, the transfer means includes a first source address of the second encapsulated packet and a first source address of the second packet. The transfer device according to any one of claims 5 to 7, wherein the transfer device retains a correspondence relationship between the second source address and the second source address as return information.
  9.  前記1つ以上のサーバ装置の内の1つのサーバ装置から第3パケットを受信すると、前記転送手段は、前記第3パケットの宛先に設定されたアドレスが前記返送情報の前記第2送信元アドレスに一致するか否かを判定し、前記第3パケットの宛先に設定されたアドレスが前記返送情報の前記第2送信元アドレスに一致しない場合、前記第3パケットを前記第3パケットの宛先に設定されたアドレスが割り当てられている装置に転送する、請求項8に記載の転送装置。 Upon receiving the third packet from one of the one or more server devices, the transfer means transfers the address set as the destination of the third packet to the second source address of the return information. It is determined whether or not they match, and if the address set as the destination of the third packet does not match the second source address of the return information, the third packet is set as the destination of the third packet. 9. The transfer device according to claim 8, wherein the transfer device transfers the transferred address to the device to which the address is assigned.
  10.  前記第3パケットの宛先に設定されたアドレスが前記返送情報の前記第2送信元アドレスに一致する場合、前記転送手段は、前記第3パケットをペイロードに格納し、かつ、前記返送情報において前記第2送信元アドレスに対応すると示されている前記第1送信元アドレスを宛先に設定した第3カプセル化パケットを前記ネットワークに送信する、請求項9に記載の転送装置。 If the address set as the destination of the third packet matches the second source address of the return information, the transfer means stores the third packet in a payload and includes the third packet in the return information. 10. The transfer device according to claim 9, wherein the third encapsulated packet having the first source address indicated as corresponding to the second source address as the destination is transmitted to the network.
  11.  コンピュータプログラムを格納するコンピュータ可読記憶媒体であって、前記コンピュータプログラムは、1つ以上のプロセッサを有する装置の前記1つ以上のプロセッサで実行されると、前記装置を請求項1から10のいずれか1項に記載の転送装置として機能させる、コンピュータ可読記憶媒体。 11. A computer-readable storage medium storing a computer program, said computer program, when executed on said one or more processors of a device having one or more processors, said computer program leading to said device as claimed in any one of claims 1 to 10. A computer-readable storage medium that functions as the transfer device according to item 1.
PCT/JP2022/042179 2022-03-08 2022-11-14 Transfer device and computer-readable storage medium WO2023171043A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022035443A JP2023130884A (en) 2022-03-08 2022-03-08 Transfer device and program
JP2022-035443 2022-03-08

Publications (1)

Publication Number Publication Date
WO2023171043A1 true WO2023171043A1 (en) 2023-09-14

Family

ID=87936575

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042179 WO2023171043A1 (en) 2022-03-08 2022-11-14 Transfer device and computer-readable storage medium

Country Status (2)

Country Link
JP (1) JP2023130884A (en)
WO (1) WO2023171043A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032936A (en) * 2016-08-23 2018-03-01 日本電信電話株式会社 Routing control system and method
JP2019041266A (en) * 2017-08-25 2019-03-14 日本電信電話株式会社 Communication system and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018032936A (en) * 2016-08-23 2018-03-01 日本電信電話株式会社 Routing control system and method
JP2019041266A (en) * 2017-08-25 2019-03-14 日本電信電話株式会社 Communication system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, KYOUNGJAE ET AL.: "Enhanced LISP Mapping System for Optimizing Service Path in Edge Computing Environment", IEEE ACCESS, vol. 8, 19 October 2020 (2020-10-19), pages 190559 - 190571, XP011816976, DOI: 10.1109/ACCESS.2020.3031915 *

Also Published As

Publication number Publication date
JP2023130884A (en) 2023-09-21

Similar Documents

Publication Publication Date Title
US20220124147A1 (en) Application relocation method and apparatus
US11457358B2 (en) Scalable WLAN gateway
EP2332290B1 (en) Scalable wlan gateway
CN113596191B (en) Data processing method, network element equipment and readable storage medium
US8711749B2 (en) Information obtaining and notification, data message forwarding and handover method and access node
US6958988B1 (en) Mobile communication network and data delivery method in mobile communications network
CN100459544C (en) Prefix delegation system and method of ad-hoc network
WO2023171043A1 (en) Transfer device and computer-readable storage medium
JP3693230B2 (en) Packet communication system
JP2011055236A (en) Communication system, mapping information notification device, mapping information notification method and program
JP3742060B2 (en) Mobile IP packet communication system
JP2002199004A (en) Mobile communication method through ip network
CN102957755A (en) Address resolution method, address resolution device and information transmission method
JP2000341330A (en) Communication protocol proxy processing method, communication protocol proxy processing unit and communication protocol proxy picture service unit
US20200137726A1 (en) Communications device and communication method
CN101494849A (en) Communication equipment and application method and system thereof
JP2021501547A (en) How to manage mobile signaling
JP2016021648A (en) Communication system, relay device, control method and program
JP5203878B2 (en) Communication system, gateway, and communication method
KR20110071442A (en) Wireless network method and system with distributed location management function
JP2000183971A (en) Network connecting device
KR20130087918A (en) Method and system of distributed mobility control on network
JP2020167598A (en) Communication system, transfer device and transfer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22931015

Country of ref document: EP

Kind code of ref document: A1